1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * from: @(#)vm_fault.c 8.4 (Berkeley) 1/12/94 44 * 45 * 46 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 47 * All rights reserved. 48 * 49 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 50 * 51 * Permission to use, copy, modify and distribute this software and 52 * its documentation is hereby granted, provided that both the copyright 53 * notice and this permission notice appear in all copies of the 54 * software, derivative works or modified versions, and any portions 55 * thereof, and that both notices appear in supporting documentation. 56 * 57 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 58 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 59 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 60 * 61 * Carnegie Mellon requests users of this software to return to 62 * 63 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 64 * School of Computer Science 65 * Carnegie Mellon University 66 * Pittsburgh PA 15213-3890 67 * 68 * any improvements or extensions that they make and grant Carnegie the 69 * rights to redistribute these changes. 70 */ 71 72 /* 73 * Page fault handling module. 74 */ 75 76 #include <sys/cdefs.h> 77 __FBSDID("$FreeBSD$"); 78 79 #include "opt_ktrace.h" 80 #include "opt_vm.h" 81 82 #include <sys/param.h> 83 #include <sys/systm.h> 84 #include <sys/kernel.h> 85 #include <sys/lock.h> 86 #include <sys/mman.h> 87 #include <sys/mutex.h> 88 #include <sys/pctrie.h> 89 #include <sys/proc.h> 90 #include <sys/racct.h> 91 #include <sys/refcount.h> 92 #include <sys/resourcevar.h> 93 #include <sys/rwlock.h> 94 #include <sys/signalvar.h> 95 #include <sys/sysctl.h> 96 #include <sys/sysent.h> 97 #include <sys/vmmeter.h> 98 #include <sys/vnode.h> 99 #ifdef KTRACE 100 #include <sys/ktrace.h> 101 #endif 102 103 #include <vm/vm.h> 104 #include <vm/vm_param.h> 105 #include <vm/pmap.h> 106 #include <vm/vm_map.h> 107 #include <vm/vm_object.h> 108 #include <vm/vm_page.h> 109 #include <vm/vm_pageout.h> 110 #include <vm/vm_kern.h> 111 #include <vm/vm_pager.h> 112 #include <vm/vm_extern.h> 113 #include <vm/vm_reserv.h> 114 115 #define PFBAK 4 116 #define PFFOR 4 117 118 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 119 120 #define VM_FAULT_DONTNEED_MIN 1048576 121 122 struct faultstate { 123 /* Fault parameters. */ 124 vm_offset_t vaddr; 125 vm_page_t *m_hold; 126 vm_prot_t fault_type; 127 vm_prot_t prot; 128 int fault_flags; 129 boolean_t wired; 130 131 /* Control state. */ 132 struct timeval oom_start_time; 133 bool oom_started; 134 int nera; 135 bool can_read_lock; 136 137 /* Page reference for cow. */ 138 vm_page_t m_cow; 139 140 /* Current object. */ 141 vm_object_t object; 142 vm_pindex_t pindex; 143 vm_page_t m; 144 145 /* Top-level map object. */ 146 vm_object_t first_object; 147 vm_pindex_t first_pindex; 148 vm_page_t first_m; 149 150 /* Map state. */ 151 vm_map_t map; 152 vm_map_entry_t entry; 153 int map_generation; 154 bool lookup_still_valid; 155 156 /* Vnode if locked. */ 157 struct vnode *vp; 158 }; 159 160 /* 161 * Return codes for internal fault routines. 162 */ 163 enum fault_status { 164 FAULT_SUCCESS = 1, /* Return success to user. */ 165 FAULT_FAILURE, /* Return failure to user. */ 166 FAULT_CONTINUE, /* Continue faulting. */ 167 FAULT_RESTART, /* Restart fault. */ 168 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 169 FAULT_HARD, /* Performed I/O. */ 170 FAULT_SOFT, /* Found valid page. */ 171 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 172 }; 173 174 enum fault_next_status { 175 FAULT_NEXT_GOTOBJ = 1, 176 FAULT_NEXT_NOOBJ, 177 FAULT_NEXT_RESTART, 178 }; 179 180 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 181 int ahead); 182 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 183 int backward, int forward, bool obj_locked); 184 185 static int vm_pfault_oom_attempts = 3; 186 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 187 &vm_pfault_oom_attempts, 0, 188 "Number of page allocation attempts in page fault handler before it " 189 "triggers OOM handling"); 190 191 static int vm_pfault_oom_wait = 10; 192 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 193 &vm_pfault_oom_wait, 0, 194 "Number of seconds to wait for free pages before retrying " 195 "the page fault handler"); 196 197 static inline void 198 vm_fault_page_release(vm_page_t *mp) 199 { 200 vm_page_t m; 201 202 m = *mp; 203 if (m != NULL) { 204 /* 205 * We are likely to loop around again and attempt to busy 206 * this page. Deactivating it leaves it available for 207 * pageout while optimizing fault restarts. 208 */ 209 vm_page_deactivate(m); 210 vm_page_xunbusy(m); 211 *mp = NULL; 212 } 213 } 214 215 static inline void 216 vm_fault_page_free(vm_page_t *mp) 217 { 218 vm_page_t m; 219 220 m = *mp; 221 if (m != NULL) { 222 VM_OBJECT_ASSERT_WLOCKED(m->object); 223 if (!vm_page_wired(m)) 224 vm_page_free(m); 225 else 226 vm_page_xunbusy(m); 227 *mp = NULL; 228 } 229 } 230 231 /* 232 * Return true if a vm_pager_get_pages() call is needed in order to check 233 * whether the pager might have a particular page, false if it can be determined 234 * immediately that the pager can not have a copy. For swap objects, this can 235 * be checked quickly. 236 */ 237 static inline bool 238 vm_fault_object_needs_getpages(vm_object_t object) 239 { 240 VM_OBJECT_ASSERT_LOCKED(object); 241 242 return ((object->flags & OBJ_SWAP) == 0 || 243 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 244 } 245 246 static inline void 247 vm_fault_unlock_map(struct faultstate *fs) 248 { 249 250 if (fs->lookup_still_valid) { 251 vm_map_lookup_done(fs->map, fs->entry); 252 fs->lookup_still_valid = false; 253 } 254 } 255 256 static void 257 vm_fault_unlock_vp(struct faultstate *fs) 258 { 259 260 if (fs->vp != NULL) { 261 vput(fs->vp); 262 fs->vp = NULL; 263 } 264 } 265 266 static void 267 vm_fault_deallocate(struct faultstate *fs) 268 { 269 270 vm_fault_page_release(&fs->m_cow); 271 vm_fault_page_release(&fs->m); 272 vm_object_pip_wakeup(fs->object); 273 if (fs->object != fs->first_object) { 274 VM_OBJECT_WLOCK(fs->first_object); 275 vm_fault_page_free(&fs->first_m); 276 VM_OBJECT_WUNLOCK(fs->first_object); 277 vm_object_pip_wakeup(fs->first_object); 278 } 279 vm_object_deallocate(fs->first_object); 280 vm_fault_unlock_map(fs); 281 vm_fault_unlock_vp(fs); 282 } 283 284 static void 285 vm_fault_unlock_and_deallocate(struct faultstate *fs) 286 { 287 288 VM_OBJECT_UNLOCK(fs->object); 289 vm_fault_deallocate(fs); 290 } 291 292 static void 293 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 294 { 295 bool need_dirty; 296 297 if (((fs->prot & VM_PROT_WRITE) == 0 && 298 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 299 (m->oflags & VPO_UNMANAGED) != 0) 300 return; 301 302 VM_PAGE_OBJECT_BUSY_ASSERT(m); 303 304 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 305 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 306 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 307 308 vm_object_set_writeable_dirty(m->object); 309 310 /* 311 * If the fault is a write, we know that this page is being 312 * written NOW so dirty it explicitly to save on 313 * pmap_is_modified() calls later. 314 * 315 * Also, since the page is now dirty, we can possibly tell 316 * the pager to release any swap backing the page. 317 */ 318 if (need_dirty && vm_page_set_dirty(m) == 0) { 319 /* 320 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 321 * if the page is already dirty to prevent data written with 322 * the expectation of being synced from not being synced. 323 * Likewise if this entry does not request NOSYNC then make 324 * sure the page isn't marked NOSYNC. Applications sharing 325 * data should use the same flags to avoid ping ponging. 326 */ 327 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 328 vm_page_aflag_set(m, PGA_NOSYNC); 329 else 330 vm_page_aflag_clear(m, PGA_NOSYNC); 331 } 332 333 } 334 335 /* 336 * Unlocks fs.first_object and fs.map on success. 337 */ 338 static enum fault_status 339 vm_fault_soft_fast(struct faultstate *fs) 340 { 341 vm_page_t m, m_map; 342 #if VM_NRESERVLEVEL > 0 343 vm_page_t m_super; 344 int flags; 345 #endif 346 int psind; 347 vm_offset_t vaddr; 348 349 MPASS(fs->vp == NULL); 350 351 /* 352 * If we fail, vast majority of the time it is because the page is not 353 * there to begin with. Opportunistically perform the lookup and 354 * subsequent checks without the object lock, revalidate later. 355 * 356 * Note: a busy page can be mapped for read|execute access. 357 */ 358 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 359 if (m == NULL || !vm_page_all_valid(m) || 360 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 361 VM_OBJECT_WLOCK(fs->first_object); 362 return (FAULT_FAILURE); 363 } 364 365 vaddr = fs->vaddr; 366 367 VM_OBJECT_RLOCK(fs->first_object); 368 369 /* 370 * Now that we stabilized the state, revalidate the page is in the shape 371 * we encountered above. 372 */ 373 374 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 375 goto fail; 376 377 vm_object_busy(fs->first_object); 378 379 if (!vm_page_all_valid(m) || 380 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 381 goto fail_busy; 382 383 m_map = m; 384 psind = 0; 385 #if VM_NRESERVLEVEL > 0 386 if ((m->flags & PG_FICTITIOUS) == 0 && 387 (m_super = vm_reserv_to_superpage(m)) != NULL && 388 rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start && 389 roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end && 390 (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) & 391 (pagesizes[m_super->psind] - 1)) && !fs->wired && 392 pmap_ps_enabled(fs->map->pmap)) { 393 flags = PS_ALL_VALID; 394 if ((fs->prot & VM_PROT_WRITE) != 0) { 395 /* 396 * Create a superpage mapping allowing write access 397 * only if none of the constituent pages are busy and 398 * all of them are already dirty (except possibly for 399 * the page that was faulted on). 400 */ 401 flags |= PS_NONE_BUSY; 402 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 403 flags |= PS_ALL_DIRTY; 404 } 405 if (vm_page_ps_test(m_super, flags, m)) { 406 m_map = m_super; 407 psind = m_super->psind; 408 vaddr = rounddown2(vaddr, pagesizes[psind]); 409 /* Preset the modified bit for dirty superpages. */ 410 if ((flags & PS_ALL_DIRTY) != 0) 411 fs->fault_type |= VM_PROT_WRITE; 412 } 413 } 414 #endif 415 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 416 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 417 KERN_SUCCESS) 418 goto fail_busy; 419 if (fs->m_hold != NULL) { 420 (*fs->m_hold) = m; 421 vm_page_wire(m); 422 } 423 if (psind == 0 && !fs->wired) 424 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 425 VM_OBJECT_RUNLOCK(fs->first_object); 426 vm_fault_dirty(fs, m); 427 vm_object_unbusy(fs->first_object); 428 vm_map_lookup_done(fs->map, fs->entry); 429 curthread->td_ru.ru_minflt++; 430 return (FAULT_SUCCESS); 431 fail_busy: 432 vm_object_unbusy(fs->first_object); 433 fail: 434 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 435 VM_OBJECT_RUNLOCK(fs->first_object); 436 VM_OBJECT_WLOCK(fs->first_object); 437 } 438 return (FAULT_FAILURE); 439 } 440 441 static void 442 vm_fault_restore_map_lock(struct faultstate *fs) 443 { 444 445 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 446 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 447 448 if (!vm_map_trylock_read(fs->map)) { 449 VM_OBJECT_WUNLOCK(fs->first_object); 450 vm_map_lock_read(fs->map); 451 VM_OBJECT_WLOCK(fs->first_object); 452 } 453 fs->lookup_still_valid = true; 454 } 455 456 static void 457 vm_fault_populate_check_page(vm_page_t m) 458 { 459 460 /* 461 * Check each page to ensure that the pager is obeying the 462 * interface: the page must be installed in the object, fully 463 * valid, and exclusively busied. 464 */ 465 MPASS(m != NULL); 466 MPASS(vm_page_all_valid(m)); 467 MPASS(vm_page_xbusied(m)); 468 } 469 470 static void 471 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 472 vm_pindex_t last) 473 { 474 vm_page_t m; 475 vm_pindex_t pidx; 476 477 VM_OBJECT_ASSERT_WLOCKED(object); 478 MPASS(first <= last); 479 for (pidx = first, m = vm_page_lookup(object, pidx); 480 pidx <= last; pidx++, m = vm_page_next(m)) { 481 vm_fault_populate_check_page(m); 482 vm_page_deactivate(m); 483 vm_page_xunbusy(m); 484 } 485 } 486 487 static enum fault_status 488 vm_fault_populate(struct faultstate *fs) 489 { 490 vm_offset_t vaddr; 491 vm_page_t m; 492 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 493 int bdry_idx, i, npages, psind, rv; 494 enum fault_status res; 495 496 MPASS(fs->object == fs->first_object); 497 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 498 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 499 MPASS(fs->first_object->backing_object == NULL); 500 MPASS(fs->lookup_still_valid); 501 502 pager_first = OFF_TO_IDX(fs->entry->offset); 503 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 504 vm_fault_unlock_map(fs); 505 vm_fault_unlock_vp(fs); 506 507 res = FAULT_SUCCESS; 508 509 /* 510 * Call the pager (driver) populate() method. 511 * 512 * There is no guarantee that the method will be called again 513 * if the current fault is for read, and a future fault is 514 * for write. Report the entry's maximum allowed protection 515 * to the driver. 516 */ 517 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 518 fs->fault_type, fs->entry->max_protection, &pager_first, 519 &pager_last); 520 521 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 522 if (rv == VM_PAGER_BAD) { 523 /* 524 * VM_PAGER_BAD is the backdoor for a pager to request 525 * normal fault handling. 526 */ 527 vm_fault_restore_map_lock(fs); 528 if (fs->map->timestamp != fs->map_generation) 529 return (FAULT_RESTART); 530 return (FAULT_CONTINUE); 531 } 532 if (rv != VM_PAGER_OK) 533 return (FAULT_FAILURE); /* AKA SIGSEGV */ 534 535 /* Ensure that the driver is obeying the interface. */ 536 MPASS(pager_first <= pager_last); 537 MPASS(fs->first_pindex <= pager_last); 538 MPASS(fs->first_pindex >= pager_first); 539 MPASS(pager_last < fs->first_object->size); 540 541 vm_fault_restore_map_lock(fs); 542 bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >> 543 MAP_ENTRY_SPLIT_BOUNDARY_SHIFT; 544 if (fs->map->timestamp != fs->map_generation) { 545 if (bdry_idx == 0) { 546 vm_fault_populate_cleanup(fs->first_object, pager_first, 547 pager_last); 548 } else { 549 m = vm_page_lookup(fs->first_object, pager_first); 550 if (m != fs->m) 551 vm_page_xunbusy(m); 552 } 553 return (FAULT_RESTART); 554 } 555 556 /* 557 * The map is unchanged after our last unlock. Process the fault. 558 * 559 * First, the special case of largepage mappings, where 560 * populate only busies the first page in superpage run. 561 */ 562 if (bdry_idx != 0) { 563 KASSERT(PMAP_HAS_LARGEPAGES, 564 ("missing pmap support for large pages")); 565 m = vm_page_lookup(fs->first_object, pager_first); 566 vm_fault_populate_check_page(m); 567 VM_OBJECT_WUNLOCK(fs->first_object); 568 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 569 fs->entry->offset; 570 /* assert alignment for entry */ 571 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 572 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 573 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 574 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 575 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 576 ("unaligned superpage m %p %#jx", m, 577 (uintmax_t)VM_PAGE_TO_PHYS(m))); 578 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 579 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 580 PMAP_ENTER_LARGEPAGE, bdry_idx); 581 VM_OBJECT_WLOCK(fs->first_object); 582 vm_page_xunbusy(m); 583 if (rv != KERN_SUCCESS) { 584 res = FAULT_FAILURE; 585 goto out; 586 } 587 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 588 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 589 vm_page_wire(m + i); 590 } 591 if (fs->m_hold != NULL) { 592 *fs->m_hold = m + (fs->first_pindex - pager_first); 593 vm_page_wire(*fs->m_hold); 594 } 595 goto out; 596 } 597 598 /* 599 * The range [pager_first, pager_last] that is given to the 600 * pager is only a hint. The pager may populate any range 601 * within the object that includes the requested page index. 602 * In case the pager expanded the range, clip it to fit into 603 * the map entry. 604 */ 605 map_first = OFF_TO_IDX(fs->entry->offset); 606 if (map_first > pager_first) { 607 vm_fault_populate_cleanup(fs->first_object, pager_first, 608 map_first - 1); 609 pager_first = map_first; 610 } 611 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 612 if (map_last < pager_last) { 613 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 614 pager_last); 615 pager_last = map_last; 616 } 617 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 618 pidx <= pager_last; 619 pidx += npages, m = vm_page_next(&m[npages - 1])) { 620 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 621 622 psind = m->psind; 623 if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 624 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 625 !pmap_ps_enabled(fs->map->pmap) || fs->wired)) 626 psind = 0; 627 628 npages = atop(pagesizes[psind]); 629 for (i = 0; i < npages; i++) { 630 vm_fault_populate_check_page(&m[i]); 631 vm_fault_dirty(fs, &m[i]); 632 } 633 VM_OBJECT_WUNLOCK(fs->first_object); 634 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 635 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 636 637 /* 638 * pmap_enter() may fail for a superpage mapping if additional 639 * protection policies prevent the full mapping. 640 * For example, this will happen on amd64 if the entire 641 * address range does not share the same userspace protection 642 * key. Revert to single-page mappings if this happens. 643 */ 644 MPASS(rv == KERN_SUCCESS || 645 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 646 if (__predict_false(psind > 0 && 647 rv == KERN_PROTECTION_FAILURE)) { 648 MPASS(!fs->wired); 649 for (i = 0; i < npages; i++) { 650 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 651 &m[i], fs->prot, fs->fault_type, 0); 652 MPASS(rv == KERN_SUCCESS); 653 } 654 } 655 656 VM_OBJECT_WLOCK(fs->first_object); 657 for (i = 0; i < npages; i++) { 658 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 659 m[i].pindex == fs->first_pindex) 660 vm_page_wire(&m[i]); 661 else 662 vm_page_activate(&m[i]); 663 if (fs->m_hold != NULL && 664 m[i].pindex == fs->first_pindex) { 665 (*fs->m_hold) = &m[i]; 666 vm_page_wire(&m[i]); 667 } 668 vm_page_xunbusy(&m[i]); 669 } 670 } 671 out: 672 curthread->td_ru.ru_majflt++; 673 return (res); 674 } 675 676 static int prot_fault_translation; 677 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 678 &prot_fault_translation, 0, 679 "Control signal to deliver on protection fault"); 680 681 /* compat definition to keep common code for signal translation */ 682 #define UCODE_PAGEFLT 12 683 #ifdef T_PAGEFLT 684 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 685 #endif 686 687 /* 688 * vm_fault_trap: 689 * 690 * Handle a page fault occurring at the given address, 691 * requiring the given permissions, in the map specified. 692 * If successful, the page is inserted into the 693 * associated physical map. 694 * 695 * NOTE: the given address should be truncated to the 696 * proper page address. 697 * 698 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 699 * a standard error specifying why the fault is fatal is returned. 700 * 701 * The map in question must be referenced, and remains so. 702 * Caller may hold no locks. 703 */ 704 int 705 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 706 int fault_flags, int *signo, int *ucode) 707 { 708 int result; 709 710 MPASS(signo == NULL || ucode != NULL); 711 #ifdef KTRACE 712 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 713 ktrfault(vaddr, fault_type); 714 #endif 715 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 716 NULL); 717 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 718 result == KERN_INVALID_ADDRESS || 719 result == KERN_RESOURCE_SHORTAGE || 720 result == KERN_PROTECTION_FAILURE || 721 result == KERN_OUT_OF_BOUNDS, 722 ("Unexpected Mach error %d from vm_fault()", result)); 723 #ifdef KTRACE 724 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 725 ktrfaultend(result); 726 #endif 727 if (result != KERN_SUCCESS && signo != NULL) { 728 switch (result) { 729 case KERN_FAILURE: 730 case KERN_INVALID_ADDRESS: 731 *signo = SIGSEGV; 732 *ucode = SEGV_MAPERR; 733 break; 734 case KERN_RESOURCE_SHORTAGE: 735 *signo = SIGBUS; 736 *ucode = BUS_OOMERR; 737 break; 738 case KERN_OUT_OF_BOUNDS: 739 *signo = SIGBUS; 740 *ucode = BUS_OBJERR; 741 break; 742 case KERN_PROTECTION_FAILURE: 743 if (prot_fault_translation == 0) { 744 /* 745 * Autodetect. This check also covers 746 * the images without the ABI-tag ELF 747 * note. 748 */ 749 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 750 curproc->p_osrel >= P_OSREL_SIGSEGV) { 751 *signo = SIGSEGV; 752 *ucode = SEGV_ACCERR; 753 } else { 754 *signo = SIGBUS; 755 *ucode = UCODE_PAGEFLT; 756 } 757 } else if (prot_fault_translation == 1) { 758 /* Always compat mode. */ 759 *signo = SIGBUS; 760 *ucode = UCODE_PAGEFLT; 761 } else { 762 /* Always SIGSEGV mode. */ 763 *signo = SIGSEGV; 764 *ucode = SEGV_ACCERR; 765 } 766 break; 767 default: 768 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 769 result)); 770 break; 771 } 772 } 773 return (result); 774 } 775 776 static bool 777 vm_fault_object_ensure_wlocked(struct faultstate *fs) 778 { 779 if (fs->object == fs->first_object) 780 VM_OBJECT_ASSERT_WLOCKED(fs->object); 781 782 if (!fs->can_read_lock) { 783 VM_OBJECT_ASSERT_WLOCKED(fs->object); 784 return (true); 785 } 786 787 if (VM_OBJECT_WOWNED(fs->object)) 788 return (true); 789 790 if (VM_OBJECT_TRYUPGRADE(fs->object)) 791 return (true); 792 793 return (false); 794 } 795 796 static enum fault_status 797 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 798 { 799 struct vnode *vp; 800 int error, locked; 801 802 if (fs->object->type != OBJT_VNODE) 803 return (FAULT_CONTINUE); 804 vp = fs->object->handle; 805 if (vp == fs->vp) { 806 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 807 return (FAULT_CONTINUE); 808 } 809 810 /* 811 * Perform an unlock in case the desired vnode changed while 812 * the map was unlocked during a retry. 813 */ 814 vm_fault_unlock_vp(fs); 815 816 locked = VOP_ISLOCKED(vp); 817 if (locked != LK_EXCLUSIVE) 818 locked = LK_SHARED; 819 820 /* 821 * We must not sleep acquiring the vnode lock while we have 822 * the page exclusive busied or the object's 823 * paging-in-progress count incremented. Otherwise, we could 824 * deadlock. 825 */ 826 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 827 if (error == 0) { 828 fs->vp = vp; 829 return (FAULT_CONTINUE); 830 } 831 832 vhold(vp); 833 if (objlocked) 834 vm_fault_unlock_and_deallocate(fs); 835 else 836 vm_fault_deallocate(fs); 837 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 838 vdrop(vp); 839 fs->vp = vp; 840 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 841 return (FAULT_RESTART); 842 } 843 844 /* 845 * Calculate the desired readahead. Handle drop-behind. 846 * 847 * Returns the number of readahead blocks to pass to the pager. 848 */ 849 static int 850 vm_fault_readahead(struct faultstate *fs) 851 { 852 int era, nera; 853 u_char behavior; 854 855 KASSERT(fs->lookup_still_valid, ("map unlocked")); 856 era = fs->entry->read_ahead; 857 behavior = vm_map_entry_behavior(fs->entry); 858 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 859 nera = 0; 860 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 861 nera = VM_FAULT_READ_AHEAD_MAX; 862 if (fs->vaddr == fs->entry->next_read) 863 vm_fault_dontneed(fs, fs->vaddr, nera); 864 } else if (fs->vaddr == fs->entry->next_read) { 865 /* 866 * This is a sequential fault. Arithmetically 867 * increase the requested number of pages in 868 * the read-ahead window. The requested 869 * number of pages is "# of sequential faults 870 * x (read ahead min + 1) + read ahead min" 871 */ 872 nera = VM_FAULT_READ_AHEAD_MIN; 873 if (era > 0) { 874 nera += era + 1; 875 if (nera > VM_FAULT_READ_AHEAD_MAX) 876 nera = VM_FAULT_READ_AHEAD_MAX; 877 } 878 if (era == VM_FAULT_READ_AHEAD_MAX) 879 vm_fault_dontneed(fs, fs->vaddr, nera); 880 } else { 881 /* 882 * This is a non-sequential fault. 883 */ 884 nera = 0; 885 } 886 if (era != nera) { 887 /* 888 * A read lock on the map suffices to update 889 * the read ahead count safely. 890 */ 891 fs->entry->read_ahead = nera; 892 } 893 894 return (nera); 895 } 896 897 static int 898 vm_fault_lookup(struct faultstate *fs) 899 { 900 int result; 901 902 KASSERT(!fs->lookup_still_valid, 903 ("vm_fault_lookup: Map already locked.")); 904 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 905 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 906 &fs->first_pindex, &fs->prot, &fs->wired); 907 if (result != KERN_SUCCESS) { 908 vm_fault_unlock_vp(fs); 909 return (result); 910 } 911 912 fs->map_generation = fs->map->timestamp; 913 914 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 915 panic("%s: fault on nofault entry, addr: %#lx", 916 __func__, (u_long)fs->vaddr); 917 } 918 919 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 920 fs->entry->wiring_thread != curthread) { 921 vm_map_unlock_read(fs->map); 922 vm_map_lock(fs->map); 923 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 924 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 925 vm_fault_unlock_vp(fs); 926 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 927 vm_map_unlock_and_wait(fs->map, 0); 928 } else 929 vm_map_unlock(fs->map); 930 return (KERN_RESOURCE_SHORTAGE); 931 } 932 933 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 934 935 if (fs->wired) 936 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 937 else 938 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 939 ("!fs->wired && VM_FAULT_WIRE")); 940 fs->lookup_still_valid = true; 941 942 return (KERN_SUCCESS); 943 } 944 945 static int 946 vm_fault_relookup(struct faultstate *fs) 947 { 948 vm_object_t retry_object; 949 vm_pindex_t retry_pindex; 950 vm_prot_t retry_prot; 951 int result; 952 953 if (!vm_map_trylock_read(fs->map)) 954 return (KERN_RESTART); 955 956 fs->lookup_still_valid = true; 957 if (fs->map->timestamp == fs->map_generation) 958 return (KERN_SUCCESS); 959 960 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 961 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 962 &fs->wired); 963 if (result != KERN_SUCCESS) { 964 /* 965 * If retry of map lookup would have blocked then 966 * retry fault from start. 967 */ 968 if (result == KERN_FAILURE) 969 return (KERN_RESTART); 970 return (result); 971 } 972 if (retry_object != fs->first_object || 973 retry_pindex != fs->first_pindex) 974 return (KERN_RESTART); 975 976 /* 977 * Check whether the protection has changed or the object has 978 * been copied while we left the map unlocked. Changing from 979 * read to write permission is OK - we leave the page 980 * write-protected, and catch the write fault. Changing from 981 * write to read permission means that we can't mark the page 982 * write-enabled after all. 983 */ 984 fs->prot &= retry_prot; 985 fs->fault_type &= retry_prot; 986 if (fs->prot == 0) 987 return (KERN_RESTART); 988 989 /* Reassert because wired may have changed. */ 990 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 991 ("!wired && VM_FAULT_WIRE")); 992 993 return (KERN_SUCCESS); 994 } 995 996 static void 997 vm_fault_cow(struct faultstate *fs) 998 { 999 bool is_first_object_locked; 1000 1001 KASSERT(fs->object != fs->first_object, 1002 ("source and target COW objects are identical")); 1003 1004 /* 1005 * This allows pages to be virtually copied from a backing_object 1006 * into the first_object, where the backing object has no other 1007 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1008 * we just move the page from the backing object to the first 1009 * object. Note that we must mark the page dirty in the first 1010 * object so that it will go out to swap when needed. 1011 */ 1012 is_first_object_locked = false; 1013 if ( 1014 /* 1015 * Only one shadow object and no other refs. 1016 */ 1017 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1018 /* 1019 * No other ways to look the object up 1020 */ 1021 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1022 /* 1023 * We don't chase down the shadow chain and we can acquire locks. 1024 */ 1025 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1026 fs->object == fs->first_object->backing_object && 1027 VM_OBJECT_TRYWLOCK(fs->object)) { 1028 /* 1029 * Remove but keep xbusy for replace. fs->m is moved into 1030 * fs->first_object and left busy while fs->first_m is 1031 * conditionally freed. 1032 */ 1033 vm_page_remove_xbusy(fs->m); 1034 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1035 fs->first_m); 1036 vm_page_dirty(fs->m); 1037 #if VM_NRESERVLEVEL > 0 1038 /* 1039 * Rename the reservation. 1040 */ 1041 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1042 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1043 #endif 1044 VM_OBJECT_WUNLOCK(fs->object); 1045 VM_OBJECT_WUNLOCK(fs->first_object); 1046 fs->first_m = fs->m; 1047 fs->m = NULL; 1048 VM_CNT_INC(v_cow_optim); 1049 } else { 1050 if (is_first_object_locked) 1051 VM_OBJECT_WUNLOCK(fs->first_object); 1052 /* 1053 * Oh, well, lets copy it. 1054 */ 1055 pmap_copy_page(fs->m, fs->first_m); 1056 vm_page_valid(fs->first_m); 1057 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1058 vm_page_wire(fs->first_m); 1059 vm_page_unwire(fs->m, PQ_INACTIVE); 1060 } 1061 /* 1062 * Save the cow page to be released after 1063 * pmap_enter is complete. 1064 */ 1065 fs->m_cow = fs->m; 1066 fs->m = NULL; 1067 1068 /* 1069 * Typically, the shadow object is either private to this 1070 * address space (OBJ_ONEMAPPING) or its pages are read only. 1071 * In the highly unusual case where the pages of a shadow object 1072 * are read/write shared between this and other address spaces, 1073 * we need to ensure that any pmap-level mappings to the 1074 * original, copy-on-write page from the backing object are 1075 * removed from those other address spaces. 1076 * 1077 * The flag check is racy, but this is tolerable: if 1078 * OBJ_ONEMAPPING is cleared after the check, the busy state 1079 * ensures that new mappings of m_cow can't be created. 1080 * pmap_enter() will replace an existing mapping in the current 1081 * address space. If OBJ_ONEMAPPING is set after the check, 1082 * removing mappings will at worse trigger some unnecessary page 1083 * faults. 1084 */ 1085 vm_page_assert_xbusied(fs->m_cow); 1086 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1087 pmap_remove_all(fs->m_cow); 1088 } 1089 1090 vm_object_pip_wakeup(fs->object); 1091 1092 /* 1093 * Only use the new page below... 1094 */ 1095 fs->object = fs->first_object; 1096 fs->pindex = fs->first_pindex; 1097 fs->m = fs->first_m; 1098 VM_CNT_INC(v_cow_faults); 1099 curthread->td_cow++; 1100 } 1101 1102 static enum fault_next_status 1103 vm_fault_next(struct faultstate *fs) 1104 { 1105 vm_object_t next_object; 1106 1107 if (fs->object == fs->first_object || !fs->can_read_lock) 1108 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1109 else 1110 VM_OBJECT_ASSERT_LOCKED(fs->object); 1111 1112 /* 1113 * The requested page does not exist at this object/ 1114 * offset. Remove the invalid page from the object, 1115 * waking up anyone waiting for it, and continue on to 1116 * the next object. However, if this is the top-level 1117 * object, we must leave the busy page in place to 1118 * prevent another process from rushing past us, and 1119 * inserting the page in that object at the same time 1120 * that we are. 1121 */ 1122 if (fs->object == fs->first_object) { 1123 fs->first_m = fs->m; 1124 fs->m = NULL; 1125 } else if (fs->m != NULL) { 1126 if (!vm_fault_object_ensure_wlocked(fs)) { 1127 fs->can_read_lock = false; 1128 vm_fault_unlock_and_deallocate(fs); 1129 return (FAULT_NEXT_RESTART); 1130 } 1131 vm_fault_page_free(&fs->m); 1132 } 1133 1134 /* 1135 * Move on to the next object. Lock the next object before 1136 * unlocking the current one. 1137 */ 1138 next_object = fs->object->backing_object; 1139 if (next_object == NULL) 1140 return (FAULT_NEXT_NOOBJ); 1141 MPASS(fs->first_m != NULL); 1142 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1143 if (fs->can_read_lock) 1144 VM_OBJECT_RLOCK(next_object); 1145 else 1146 VM_OBJECT_WLOCK(next_object); 1147 vm_object_pip_add(next_object, 1); 1148 if (fs->object != fs->first_object) 1149 vm_object_pip_wakeup(fs->object); 1150 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1151 VM_OBJECT_UNLOCK(fs->object); 1152 fs->object = next_object; 1153 1154 return (FAULT_NEXT_GOTOBJ); 1155 } 1156 1157 static void 1158 vm_fault_zerofill(struct faultstate *fs) 1159 { 1160 1161 /* 1162 * If there's no object left, fill the page in the top 1163 * object with zeros. 1164 */ 1165 if (fs->object != fs->first_object) { 1166 vm_object_pip_wakeup(fs->object); 1167 fs->object = fs->first_object; 1168 fs->pindex = fs->first_pindex; 1169 } 1170 MPASS(fs->first_m != NULL); 1171 MPASS(fs->m == NULL); 1172 fs->m = fs->first_m; 1173 fs->first_m = NULL; 1174 1175 /* 1176 * Zero the page if necessary and mark it valid. 1177 */ 1178 if ((fs->m->flags & PG_ZERO) == 0) { 1179 pmap_zero_page(fs->m); 1180 } else { 1181 VM_CNT_INC(v_ozfod); 1182 } 1183 VM_CNT_INC(v_zfod); 1184 vm_page_valid(fs->m); 1185 } 1186 1187 /* 1188 * Initiate page fault after timeout. Returns true if caller should 1189 * do vm_waitpfault() after the call. 1190 */ 1191 static bool 1192 vm_fault_allocate_oom(struct faultstate *fs) 1193 { 1194 struct timeval now; 1195 1196 vm_fault_unlock_and_deallocate(fs); 1197 if (vm_pfault_oom_attempts < 0) 1198 return (true); 1199 if (!fs->oom_started) { 1200 fs->oom_started = true; 1201 getmicrotime(&fs->oom_start_time); 1202 return (true); 1203 } 1204 1205 getmicrotime(&now); 1206 timevalsub(&now, &fs->oom_start_time); 1207 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1208 return (true); 1209 1210 if (bootverbose) 1211 printf( 1212 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1213 curproc->p_pid, curproc->p_comm); 1214 vm_pageout_oom(VM_OOM_MEM_PF); 1215 fs->oom_started = false; 1216 return (false); 1217 } 1218 1219 /* 1220 * Allocate a page directly or via the object populate method. 1221 */ 1222 static enum fault_status 1223 vm_fault_allocate(struct faultstate *fs) 1224 { 1225 struct domainset *dset; 1226 enum fault_status res; 1227 1228 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1229 res = vm_fault_lock_vnode(fs, true); 1230 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1231 if (res == FAULT_RESTART) 1232 return (res); 1233 } 1234 1235 if (fs->pindex >= fs->object->size) { 1236 vm_fault_unlock_and_deallocate(fs); 1237 return (FAULT_OUT_OF_BOUNDS); 1238 } 1239 1240 if (fs->object == fs->first_object && 1241 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1242 fs->first_object->shadow_count == 0) { 1243 res = vm_fault_populate(fs); 1244 switch (res) { 1245 case FAULT_SUCCESS: 1246 case FAULT_FAILURE: 1247 case FAULT_RESTART: 1248 vm_fault_unlock_and_deallocate(fs); 1249 return (res); 1250 case FAULT_CONTINUE: 1251 /* 1252 * Pager's populate() method 1253 * returned VM_PAGER_BAD. 1254 */ 1255 break; 1256 default: 1257 panic("inconsistent return codes"); 1258 } 1259 } 1260 1261 /* 1262 * Allocate a new page for this object/offset pair. 1263 * 1264 * If the process has a fatal signal pending, prioritize the allocation 1265 * with the expectation that the process will exit shortly and free some 1266 * pages. In particular, the signal may have been posted by the page 1267 * daemon in an attempt to resolve an out-of-memory condition. 1268 * 1269 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1270 * might be not observed here, and allocation fails, causing a restart 1271 * and new reading of the p_flag. 1272 */ 1273 dset = fs->object->domain.dr_policy; 1274 if (dset == NULL) 1275 dset = curthread->td_domain.dr_policy; 1276 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1277 #if VM_NRESERVLEVEL > 0 1278 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1279 #endif 1280 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1281 vm_fault_unlock_and_deallocate(fs); 1282 return (FAULT_FAILURE); 1283 } 1284 fs->m = vm_page_alloc(fs->object, fs->pindex, 1285 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0); 1286 } 1287 if (fs->m == NULL) { 1288 if (vm_fault_allocate_oom(fs)) 1289 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1290 return (FAULT_RESTART); 1291 } 1292 fs->oom_started = false; 1293 1294 return (FAULT_CONTINUE); 1295 } 1296 1297 /* 1298 * Call the pager to retrieve the page if there is a chance 1299 * that the pager has it, and potentially retrieve additional 1300 * pages at the same time. 1301 */ 1302 static enum fault_status 1303 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1304 { 1305 vm_offset_t e_end, e_start; 1306 int ahead, behind, cluster_offset, rv; 1307 enum fault_status status; 1308 u_char behavior; 1309 1310 /* 1311 * Prepare for unlocking the map. Save the map 1312 * entry's start and end addresses, which are used to 1313 * optimize the size of the pager operation below. 1314 * Even if the map entry's addresses change after 1315 * unlocking the map, using the saved addresses is 1316 * safe. 1317 */ 1318 e_start = fs->entry->start; 1319 e_end = fs->entry->end; 1320 behavior = vm_map_entry_behavior(fs->entry); 1321 1322 /* 1323 * If the pager for the current object might have 1324 * the page, then determine the number of additional 1325 * pages to read and potentially reprioritize 1326 * previously read pages for earlier reclamation. 1327 * These operations should only be performed once per 1328 * page fault. Even if the current pager doesn't 1329 * have the page, the number of additional pages to 1330 * read will apply to subsequent objects in the 1331 * shadow chain. 1332 */ 1333 if (fs->nera == -1 && !P_KILLED(curproc)) 1334 fs->nera = vm_fault_readahead(fs); 1335 1336 /* 1337 * Release the map lock before locking the vnode or 1338 * sleeping in the pager. (If the current object has 1339 * a shadow, then an earlier iteration of this loop 1340 * may have already unlocked the map.) 1341 */ 1342 vm_fault_unlock_map(fs); 1343 1344 status = vm_fault_lock_vnode(fs, false); 1345 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1346 if (status == FAULT_RESTART) 1347 return (status); 1348 KASSERT(fs->vp == NULL || !fs->map->system_map, 1349 ("vm_fault: vnode-backed object mapped by system map")); 1350 1351 /* 1352 * Page in the requested page and hint the pager, 1353 * that it may bring up surrounding pages. 1354 */ 1355 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1356 P_KILLED(curproc)) { 1357 behind = 0; 1358 ahead = 0; 1359 } else { 1360 /* Is this a sequential fault? */ 1361 if (fs->nera > 0) { 1362 behind = 0; 1363 ahead = fs->nera; 1364 } else { 1365 /* 1366 * Request a cluster of pages that is 1367 * aligned to a VM_FAULT_READ_DEFAULT 1368 * page offset boundary within the 1369 * object. Alignment to a page offset 1370 * boundary is more likely to coincide 1371 * with the underlying file system 1372 * block than alignment to a virtual 1373 * address boundary. 1374 */ 1375 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1376 behind = ulmin(cluster_offset, 1377 atop(fs->vaddr - e_start)); 1378 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1379 } 1380 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1381 } 1382 *behindp = behind; 1383 *aheadp = ahead; 1384 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1385 if (rv == VM_PAGER_OK) 1386 return (FAULT_HARD); 1387 if (rv == VM_PAGER_ERROR) 1388 printf("vm_fault: pager read error, pid %d (%s)\n", 1389 curproc->p_pid, curproc->p_comm); 1390 /* 1391 * If an I/O error occurred or the requested page was 1392 * outside the range of the pager, clean up and return 1393 * an error. 1394 */ 1395 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1396 VM_OBJECT_WLOCK(fs->object); 1397 vm_fault_page_free(&fs->m); 1398 vm_fault_unlock_and_deallocate(fs); 1399 return (FAULT_OUT_OF_BOUNDS); 1400 } 1401 KASSERT(rv == VM_PAGER_FAIL, 1402 ("%s: unexpected pager error %d", __func__, rv)); 1403 return (FAULT_CONTINUE); 1404 } 1405 1406 /* 1407 * Wait/Retry if the page is busy. We have to do this if the page is 1408 * either exclusive or shared busy because the vm_pager may be using 1409 * read busy for pageouts (and even pageins if it is the vnode pager), 1410 * and we could end up trying to pagein and pageout the same page 1411 * simultaneously. 1412 * 1413 * We can theoretically allow the busy case on a read fault if the page 1414 * is marked valid, but since such pages are typically already pmap'd, 1415 * putting that special case in might be more effort then it is worth. 1416 * We cannot under any circumstances mess around with a shared busied 1417 * page except, perhaps, to pmap it. 1418 */ 1419 static void 1420 vm_fault_busy_sleep(struct faultstate *fs) 1421 { 1422 /* 1423 * Reference the page before unlocking and 1424 * sleeping so that the page daemon is less 1425 * likely to reclaim it. 1426 */ 1427 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1428 if (fs->object != fs->first_object) { 1429 vm_fault_page_release(&fs->first_m); 1430 vm_object_pip_wakeup(fs->first_object); 1431 } 1432 vm_object_pip_wakeup(fs->object); 1433 vm_fault_unlock_map(fs); 1434 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1435 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1436 VM_OBJECT_UNLOCK(fs->object); 1437 VM_CNT_INC(v_intrans); 1438 vm_object_deallocate(fs->first_object); 1439 } 1440 1441 /* 1442 * Handle page lookup, populate, allocate, page-in for the current 1443 * object. 1444 * 1445 * The object is locked on entry and will remain locked with a return 1446 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1447 * Otherwise, the object will be unlocked upon return. 1448 */ 1449 static enum fault_status 1450 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1451 { 1452 enum fault_status res; 1453 bool dead; 1454 1455 if (fs->object == fs->first_object || !fs->can_read_lock) 1456 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1457 else 1458 VM_OBJECT_ASSERT_LOCKED(fs->object); 1459 1460 /* 1461 * If the object is marked for imminent termination, we retry 1462 * here, since the collapse pass has raced with us. Otherwise, 1463 * if we see terminally dead object, return fail. 1464 */ 1465 if ((fs->object->flags & OBJ_DEAD) != 0) { 1466 dead = fs->object->type == OBJT_DEAD; 1467 vm_fault_unlock_and_deallocate(fs); 1468 if (dead) 1469 return (FAULT_PROTECTION_FAILURE); 1470 pause("vmf_de", 1); 1471 return (FAULT_RESTART); 1472 } 1473 1474 /* 1475 * See if the page is resident. 1476 */ 1477 fs->m = vm_page_lookup(fs->object, fs->pindex); 1478 if (fs->m != NULL) { 1479 if (!vm_page_tryxbusy(fs->m)) { 1480 vm_fault_busy_sleep(fs); 1481 return (FAULT_RESTART); 1482 } 1483 1484 /* 1485 * The page is marked busy for other processes and the 1486 * pagedaemon. If it is still completely valid we are 1487 * done. 1488 */ 1489 if (vm_page_all_valid(fs->m)) { 1490 VM_OBJECT_UNLOCK(fs->object); 1491 return (FAULT_SOFT); 1492 } 1493 } 1494 1495 /* 1496 * Page is not resident. If the pager might contain the page 1497 * or this is the beginning of the search, allocate a new 1498 * page. 1499 */ 1500 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1501 fs->object == fs->first_object)) { 1502 if (!vm_fault_object_ensure_wlocked(fs)) { 1503 fs->can_read_lock = false; 1504 vm_fault_unlock_and_deallocate(fs); 1505 return (FAULT_RESTART); 1506 } 1507 res = vm_fault_allocate(fs); 1508 if (res != FAULT_CONTINUE) 1509 return (res); 1510 } 1511 1512 /* 1513 * Check to see if the pager can possibly satisfy this fault. 1514 * If not, skip to the next object without dropping the lock to 1515 * preserve atomicity of shadow faults. 1516 */ 1517 if (vm_fault_object_needs_getpages(fs->object)) { 1518 /* 1519 * At this point, we have either allocated a new page 1520 * or found an existing page that is only partially 1521 * valid. 1522 * 1523 * We hold a reference on the current object and the 1524 * page is exclusive busied. The exclusive busy 1525 * prevents simultaneous faults and collapses while 1526 * the object lock is dropped. 1527 */ 1528 VM_OBJECT_UNLOCK(fs->object); 1529 res = vm_fault_getpages(fs, behindp, aheadp); 1530 if (res == FAULT_CONTINUE) 1531 VM_OBJECT_WLOCK(fs->object); 1532 } else { 1533 res = FAULT_CONTINUE; 1534 } 1535 return (res); 1536 } 1537 1538 int 1539 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1540 int fault_flags, vm_page_t *m_hold) 1541 { 1542 struct faultstate fs; 1543 int ahead, behind, faultcount, rv; 1544 enum fault_status res; 1545 enum fault_next_status res_next; 1546 bool hardfault; 1547 1548 VM_CNT_INC(v_vm_faults); 1549 1550 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1551 return (KERN_PROTECTION_FAILURE); 1552 1553 fs.vp = NULL; 1554 fs.vaddr = vaddr; 1555 fs.m_hold = m_hold; 1556 fs.fault_flags = fault_flags; 1557 fs.map = map; 1558 fs.lookup_still_valid = false; 1559 fs.oom_started = false; 1560 fs.nera = -1; 1561 fs.can_read_lock = true; 1562 faultcount = 0; 1563 hardfault = false; 1564 1565 RetryFault: 1566 fs.fault_type = fault_type; 1567 1568 /* 1569 * Find the backing store object and offset into it to begin the 1570 * search. 1571 */ 1572 rv = vm_fault_lookup(&fs); 1573 if (rv != KERN_SUCCESS) { 1574 if (rv == KERN_RESOURCE_SHORTAGE) 1575 goto RetryFault; 1576 return (rv); 1577 } 1578 1579 /* 1580 * Try to avoid lock contention on the top-level object through 1581 * special-case handling of some types of page faults, specifically, 1582 * those that are mapping an existing page from the top-level object. 1583 * Under this condition, a read lock on the object suffices, allowing 1584 * multiple page faults of a similar type to run in parallel. 1585 */ 1586 if (fs.vp == NULL /* avoid locked vnode leak */ && 1587 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1588 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1589 res = vm_fault_soft_fast(&fs); 1590 if (res == FAULT_SUCCESS) { 1591 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1592 return (KERN_SUCCESS); 1593 } 1594 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1595 } else { 1596 VM_OBJECT_WLOCK(fs.first_object); 1597 } 1598 1599 /* 1600 * Make a reference to this object to prevent its disposal while we 1601 * are messing with it. Once we have the reference, the map is free 1602 * to be diddled. Since objects reference their shadows (and copies), 1603 * they will stay around as well. 1604 * 1605 * Bump the paging-in-progress count to prevent size changes (e.g. 1606 * truncation operations) during I/O. 1607 */ 1608 vm_object_reference_locked(fs.first_object); 1609 vm_object_pip_add(fs.first_object, 1); 1610 1611 fs.m_cow = fs.m = fs.first_m = NULL; 1612 1613 /* 1614 * Search for the page at object/offset. 1615 */ 1616 fs.object = fs.first_object; 1617 fs.pindex = fs.first_pindex; 1618 1619 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1620 res = vm_fault_allocate(&fs); 1621 switch (res) { 1622 case FAULT_RESTART: 1623 goto RetryFault; 1624 case FAULT_SUCCESS: 1625 return (KERN_SUCCESS); 1626 case FAULT_FAILURE: 1627 return (KERN_FAILURE); 1628 case FAULT_OUT_OF_BOUNDS: 1629 return (KERN_OUT_OF_BOUNDS); 1630 case FAULT_CONTINUE: 1631 break; 1632 default: 1633 panic("vm_fault: Unhandled status %d", res); 1634 } 1635 } 1636 1637 while (TRUE) { 1638 KASSERT(fs.m == NULL, 1639 ("page still set %p at loop start", fs.m)); 1640 1641 res = vm_fault_object(&fs, &behind, &ahead); 1642 switch (res) { 1643 case FAULT_SOFT: 1644 goto found; 1645 case FAULT_HARD: 1646 faultcount = behind + 1 + ahead; 1647 hardfault = true; 1648 goto found; 1649 case FAULT_RESTART: 1650 goto RetryFault; 1651 case FAULT_SUCCESS: 1652 return (KERN_SUCCESS); 1653 case FAULT_FAILURE: 1654 return (KERN_FAILURE); 1655 case FAULT_OUT_OF_BOUNDS: 1656 return (KERN_OUT_OF_BOUNDS); 1657 case FAULT_PROTECTION_FAILURE: 1658 return (KERN_PROTECTION_FAILURE); 1659 case FAULT_CONTINUE: 1660 break; 1661 default: 1662 panic("vm_fault: Unhandled status %d", res); 1663 } 1664 1665 /* 1666 * The page was not found in the current object. Try to 1667 * traverse into a backing object or zero fill if none is 1668 * found. 1669 */ 1670 res_next = vm_fault_next(&fs); 1671 if (res_next == FAULT_NEXT_RESTART) 1672 goto RetryFault; 1673 else if (res_next == FAULT_NEXT_GOTOBJ) 1674 continue; 1675 MPASS(res_next == FAULT_NEXT_NOOBJ); 1676 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1677 if (fs.first_object == fs.object) 1678 vm_fault_page_free(&fs.first_m); 1679 vm_fault_unlock_and_deallocate(&fs); 1680 return (KERN_OUT_OF_BOUNDS); 1681 } 1682 VM_OBJECT_UNLOCK(fs.object); 1683 vm_fault_zerofill(&fs); 1684 /* Don't try to prefault neighboring pages. */ 1685 faultcount = 1; 1686 break; 1687 } 1688 1689 found: 1690 /* 1691 * A valid page has been found and exclusively busied. The 1692 * object lock must no longer be held. 1693 */ 1694 vm_page_assert_xbusied(fs.m); 1695 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1696 1697 /* 1698 * If the page is being written, but isn't already owned by the 1699 * top-level object, we have to copy it into a new page owned by the 1700 * top-level object. 1701 */ 1702 if (fs.object != fs.first_object) { 1703 /* 1704 * We only really need to copy if we want to write it. 1705 */ 1706 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1707 vm_fault_cow(&fs); 1708 /* 1709 * We only try to prefault read-only mappings to the 1710 * neighboring pages when this copy-on-write fault is 1711 * a hard fault. In other cases, trying to prefault 1712 * is typically wasted effort. 1713 */ 1714 if (faultcount == 0) 1715 faultcount = 1; 1716 1717 } else { 1718 fs.prot &= ~VM_PROT_WRITE; 1719 } 1720 } 1721 1722 /* 1723 * We must verify that the maps have not changed since our last 1724 * lookup. 1725 */ 1726 if (!fs.lookup_still_valid) { 1727 rv = vm_fault_relookup(&fs); 1728 if (rv != KERN_SUCCESS) { 1729 vm_fault_deallocate(&fs); 1730 if (rv == KERN_RESTART) 1731 goto RetryFault; 1732 return (rv); 1733 } 1734 } 1735 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1736 1737 /* 1738 * If the page was filled by a pager, save the virtual address that 1739 * should be faulted on next under a sequential access pattern to the 1740 * map entry. A read lock on the map suffices to update this address 1741 * safely. 1742 */ 1743 if (hardfault) 1744 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1745 1746 /* 1747 * Page must be completely valid or it is not fit to 1748 * map into user space. vm_pager_get_pages() ensures this. 1749 */ 1750 vm_page_assert_xbusied(fs.m); 1751 KASSERT(vm_page_all_valid(fs.m), 1752 ("vm_fault: page %p partially invalid", fs.m)); 1753 1754 vm_fault_dirty(&fs, fs.m); 1755 1756 /* 1757 * Put this page into the physical map. We had to do the unlock above 1758 * because pmap_enter() may sleep. We don't put the page 1759 * back on the active queue until later so that the pageout daemon 1760 * won't find it (yet). 1761 */ 1762 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1763 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1764 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1765 fs.wired == 0) 1766 vm_fault_prefault(&fs, vaddr, 1767 faultcount > 0 ? behind : PFBAK, 1768 faultcount > 0 ? ahead : PFFOR, false); 1769 1770 /* 1771 * If the page is not wired down, then put it where the pageout daemon 1772 * can find it. 1773 */ 1774 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1775 vm_page_wire(fs.m); 1776 else 1777 vm_page_activate(fs.m); 1778 if (fs.m_hold != NULL) { 1779 (*fs.m_hold) = fs.m; 1780 vm_page_wire(fs.m); 1781 } 1782 vm_page_xunbusy(fs.m); 1783 fs.m = NULL; 1784 1785 /* 1786 * Unlock everything, and return 1787 */ 1788 vm_fault_deallocate(&fs); 1789 if (hardfault) { 1790 VM_CNT_INC(v_io_faults); 1791 curthread->td_ru.ru_majflt++; 1792 #ifdef RACCT 1793 if (racct_enable && fs.object->type == OBJT_VNODE) { 1794 PROC_LOCK(curproc); 1795 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1796 racct_add_force(curproc, RACCT_WRITEBPS, 1797 PAGE_SIZE + behind * PAGE_SIZE); 1798 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1799 } else { 1800 racct_add_force(curproc, RACCT_READBPS, 1801 PAGE_SIZE + ahead * PAGE_SIZE); 1802 racct_add_force(curproc, RACCT_READIOPS, 1); 1803 } 1804 PROC_UNLOCK(curproc); 1805 } 1806 #endif 1807 } else 1808 curthread->td_ru.ru_minflt++; 1809 1810 return (KERN_SUCCESS); 1811 } 1812 1813 /* 1814 * Speed up the reclamation of pages that precede the faulting pindex within 1815 * the first object of the shadow chain. Essentially, perform the equivalent 1816 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1817 * the faulting pindex by the cluster size when the pages read by vm_fault() 1818 * cross a cluster-size boundary. The cluster size is the greater of the 1819 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1820 * 1821 * When "fs->first_object" is a shadow object, the pages in the backing object 1822 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1823 * function must only be concerned with pages in the first object. 1824 */ 1825 static void 1826 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1827 { 1828 vm_map_entry_t entry; 1829 vm_object_t first_object; 1830 vm_offset_t end, start; 1831 vm_page_t m, m_next; 1832 vm_pindex_t pend, pstart; 1833 vm_size_t size; 1834 1835 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1836 first_object = fs->first_object; 1837 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1838 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1839 VM_OBJECT_RLOCK(first_object); 1840 size = VM_FAULT_DONTNEED_MIN; 1841 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1842 size = pagesizes[1]; 1843 end = rounddown2(vaddr, size); 1844 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1845 (entry = fs->entry)->start < end) { 1846 if (end - entry->start < size) 1847 start = entry->start; 1848 else 1849 start = end - size; 1850 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1851 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1852 entry->start); 1853 m_next = vm_page_find_least(first_object, pstart); 1854 pend = OFF_TO_IDX(entry->offset) + atop(end - 1855 entry->start); 1856 while ((m = m_next) != NULL && m->pindex < pend) { 1857 m_next = TAILQ_NEXT(m, listq); 1858 if (!vm_page_all_valid(m) || 1859 vm_page_busied(m)) 1860 continue; 1861 1862 /* 1863 * Don't clear PGA_REFERENCED, since it would 1864 * likely represent a reference by a different 1865 * process. 1866 * 1867 * Typically, at this point, prefetched pages 1868 * are still in the inactive queue. Only 1869 * pages that triggered page faults are in the 1870 * active queue. The test for whether the page 1871 * is in the inactive queue is racy; in the 1872 * worst case we will requeue the page 1873 * unnecessarily. 1874 */ 1875 if (!vm_page_inactive(m)) 1876 vm_page_deactivate(m); 1877 } 1878 } 1879 VM_OBJECT_RUNLOCK(first_object); 1880 } 1881 } 1882 1883 /* 1884 * vm_fault_prefault provides a quick way of clustering 1885 * pagefaults into a processes address space. It is a "cousin" 1886 * of vm_map_pmap_enter, except it runs at page fault time instead 1887 * of mmap time. 1888 */ 1889 static void 1890 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1891 int backward, int forward, bool obj_locked) 1892 { 1893 pmap_t pmap; 1894 vm_map_entry_t entry; 1895 vm_object_t backing_object, lobject; 1896 vm_offset_t addr, starta; 1897 vm_pindex_t pindex; 1898 vm_page_t m; 1899 int i; 1900 1901 pmap = fs->map->pmap; 1902 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1903 return; 1904 1905 entry = fs->entry; 1906 1907 if (addra < backward * PAGE_SIZE) { 1908 starta = entry->start; 1909 } else { 1910 starta = addra - backward * PAGE_SIZE; 1911 if (starta < entry->start) 1912 starta = entry->start; 1913 } 1914 1915 /* 1916 * Generate the sequence of virtual addresses that are candidates for 1917 * prefaulting in an outward spiral from the faulting virtual address, 1918 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1919 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1920 * If the candidate address doesn't have a backing physical page, then 1921 * the loop immediately terminates. 1922 */ 1923 for (i = 0; i < 2 * imax(backward, forward); i++) { 1924 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1925 PAGE_SIZE); 1926 if (addr > addra + forward * PAGE_SIZE) 1927 addr = 0; 1928 1929 if (addr < starta || addr >= entry->end) 1930 continue; 1931 1932 if (!pmap_is_prefaultable(pmap, addr)) 1933 continue; 1934 1935 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1936 lobject = entry->object.vm_object; 1937 if (!obj_locked) 1938 VM_OBJECT_RLOCK(lobject); 1939 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1940 !vm_fault_object_needs_getpages(lobject) && 1941 (backing_object = lobject->backing_object) != NULL) { 1942 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1943 0, ("vm_fault_prefault: unaligned object offset")); 1944 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1945 VM_OBJECT_RLOCK(backing_object); 1946 if (!obj_locked || lobject != entry->object.vm_object) 1947 VM_OBJECT_RUNLOCK(lobject); 1948 lobject = backing_object; 1949 } 1950 if (m == NULL) { 1951 if (!obj_locked || lobject != entry->object.vm_object) 1952 VM_OBJECT_RUNLOCK(lobject); 1953 break; 1954 } 1955 if (vm_page_all_valid(m) && 1956 (m->flags & PG_FICTITIOUS) == 0) 1957 pmap_enter_quick(pmap, addr, m, entry->protection); 1958 if (!obj_locked || lobject != entry->object.vm_object) 1959 VM_OBJECT_RUNLOCK(lobject); 1960 } 1961 } 1962 1963 /* 1964 * Hold each of the physical pages that are mapped by the specified range of 1965 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1966 * and allow the specified types of access, "prot". If all of the implied 1967 * pages are successfully held, then the number of held pages is returned 1968 * together with pointers to those pages in the array "ma". However, if any 1969 * of the pages cannot be held, -1 is returned. 1970 */ 1971 int 1972 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1973 vm_prot_t prot, vm_page_t *ma, int max_count) 1974 { 1975 vm_offset_t end, va; 1976 vm_page_t *mp; 1977 int count; 1978 boolean_t pmap_failed; 1979 1980 if (len == 0) 1981 return (0); 1982 end = round_page(addr + len); 1983 addr = trunc_page(addr); 1984 1985 if (!vm_map_range_valid(map, addr, end)) 1986 return (-1); 1987 1988 if (atop(end - addr) > max_count) 1989 panic("vm_fault_quick_hold_pages: count > max_count"); 1990 count = atop(end - addr); 1991 1992 /* 1993 * Most likely, the physical pages are resident in the pmap, so it is 1994 * faster to try pmap_extract_and_hold() first. 1995 */ 1996 pmap_failed = FALSE; 1997 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 1998 *mp = pmap_extract_and_hold(map->pmap, va, prot); 1999 if (*mp == NULL) 2000 pmap_failed = TRUE; 2001 else if ((prot & VM_PROT_WRITE) != 0 && 2002 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2003 /* 2004 * Explicitly dirty the physical page. Otherwise, the 2005 * caller's changes may go unnoticed because they are 2006 * performed through an unmanaged mapping or by a DMA 2007 * operation. 2008 * 2009 * The object lock is not held here. 2010 * See vm_page_clear_dirty_mask(). 2011 */ 2012 vm_page_dirty(*mp); 2013 } 2014 } 2015 if (pmap_failed) { 2016 /* 2017 * One or more pages could not be held by the pmap. Either no 2018 * page was mapped at the specified virtual address or that 2019 * mapping had insufficient permissions. Attempt to fault in 2020 * and hold these pages. 2021 * 2022 * If vm_fault_disable_pagefaults() was called, 2023 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2024 * acquire MD VM locks, which means we must not call 2025 * vm_fault(). Some (out of tree) callers mark 2026 * too wide a code area with vm_fault_disable_pagefaults() 2027 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2028 * the proper behaviour explicitly. 2029 */ 2030 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2031 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2032 goto error; 2033 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2034 if (*mp == NULL && vm_fault(map, va, prot, 2035 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2036 goto error; 2037 } 2038 return (count); 2039 error: 2040 for (mp = ma; mp < ma + count; mp++) 2041 if (*mp != NULL) 2042 vm_page_unwire(*mp, PQ_INACTIVE); 2043 return (-1); 2044 } 2045 2046 /* 2047 * Routine: 2048 * vm_fault_copy_entry 2049 * Function: 2050 * Create new object backing dst_entry with private copy of all 2051 * underlying pages. When src_entry is equal to dst_entry, function 2052 * implements COW for wired-down map entry. Otherwise, it forks 2053 * wired entry into dst_map. 2054 * 2055 * In/out conditions: 2056 * The source and destination maps must be locked for write. 2057 * The source map entry must be wired down (or be a sharing map 2058 * entry corresponding to a main map entry that is wired down). 2059 */ 2060 void 2061 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2062 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2063 vm_ooffset_t *fork_charge) 2064 { 2065 vm_object_t backing_object, dst_object, object, src_object; 2066 vm_pindex_t dst_pindex, pindex, src_pindex; 2067 vm_prot_t access, prot; 2068 vm_offset_t vaddr; 2069 vm_page_t dst_m; 2070 vm_page_t src_m; 2071 bool upgrade; 2072 2073 upgrade = src_entry == dst_entry; 2074 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2075 ("vm_fault_copy_entry: vm_object not NULL")); 2076 2077 /* 2078 * If not an upgrade, then enter the mappings in the pmap as 2079 * read and/or execute accesses. Otherwise, enter them as 2080 * write accesses. 2081 * 2082 * A writeable large page mapping is only created if all of 2083 * the constituent small page mappings are modified. Marking 2084 * PTEs as modified on inception allows promotion to happen 2085 * without taking potentially large number of soft faults. 2086 */ 2087 access = prot = dst_entry->protection; 2088 if (!upgrade) 2089 access &= ~VM_PROT_WRITE; 2090 2091 src_object = src_entry->object.vm_object; 2092 src_pindex = OFF_TO_IDX(src_entry->offset); 2093 2094 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2095 dst_object = src_object; 2096 vm_object_reference(dst_object); 2097 } else { 2098 /* 2099 * Create the top-level object for the destination entry. 2100 * Doesn't actually shadow anything - we copy the pages 2101 * directly. 2102 */ 2103 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2104 dst_entry->start), NULL, NULL, 0); 2105 #if VM_NRESERVLEVEL > 0 2106 dst_object->flags |= OBJ_COLORED; 2107 dst_object->pg_color = atop(dst_entry->start); 2108 #endif 2109 dst_object->domain = src_object->domain; 2110 dst_object->charge = dst_entry->end - dst_entry->start; 2111 2112 dst_entry->object.vm_object = dst_object; 2113 dst_entry->offset = 0; 2114 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2115 } 2116 2117 VM_OBJECT_WLOCK(dst_object); 2118 if (fork_charge != NULL) { 2119 KASSERT(dst_entry->cred == NULL, 2120 ("vm_fault_copy_entry: leaked swp charge")); 2121 dst_object->cred = curthread->td_ucred; 2122 crhold(dst_object->cred); 2123 *fork_charge += dst_object->charge; 2124 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2125 dst_object->cred == NULL) { 2126 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2127 dst_entry)); 2128 dst_object->cred = dst_entry->cred; 2129 dst_entry->cred = NULL; 2130 } 2131 2132 /* 2133 * Loop through all of the virtual pages within the entry's 2134 * range, copying each page from the source object to the 2135 * destination object. Since the source is wired, those pages 2136 * must exist. In contrast, the destination is pageable. 2137 * Since the destination object doesn't share any backing storage 2138 * with the source object, all of its pages must be dirtied, 2139 * regardless of whether they can be written. 2140 */ 2141 for (vaddr = dst_entry->start, dst_pindex = 0; 2142 vaddr < dst_entry->end; 2143 vaddr += PAGE_SIZE, dst_pindex++) { 2144 again: 2145 /* 2146 * Find the page in the source object, and copy it in. 2147 * Because the source is wired down, the page will be 2148 * in memory. 2149 */ 2150 if (src_object != dst_object) 2151 VM_OBJECT_RLOCK(src_object); 2152 object = src_object; 2153 pindex = src_pindex + dst_pindex; 2154 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2155 (backing_object = object->backing_object) != NULL) { 2156 /* 2157 * Unless the source mapping is read-only or 2158 * it is presently being upgraded from 2159 * read-only, the first object in the shadow 2160 * chain should provide all of the pages. In 2161 * other words, this loop body should never be 2162 * executed when the source mapping is already 2163 * read/write. 2164 */ 2165 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2166 upgrade, 2167 ("vm_fault_copy_entry: main object missing page")); 2168 2169 VM_OBJECT_RLOCK(backing_object); 2170 pindex += OFF_TO_IDX(object->backing_object_offset); 2171 if (object != dst_object) 2172 VM_OBJECT_RUNLOCK(object); 2173 object = backing_object; 2174 } 2175 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2176 2177 if (object != dst_object) { 2178 /* 2179 * Allocate a page in the destination object. 2180 */ 2181 dst_m = vm_page_alloc(dst_object, (src_object == 2182 dst_object ? src_pindex : 0) + dst_pindex, 2183 VM_ALLOC_NORMAL); 2184 if (dst_m == NULL) { 2185 VM_OBJECT_WUNLOCK(dst_object); 2186 VM_OBJECT_RUNLOCK(object); 2187 vm_wait(dst_object); 2188 VM_OBJECT_WLOCK(dst_object); 2189 goto again; 2190 } 2191 2192 /* 2193 * See the comment in vm_fault_cow(). 2194 */ 2195 if (src_object == dst_object && 2196 (object->flags & OBJ_ONEMAPPING) == 0) 2197 pmap_remove_all(src_m); 2198 pmap_copy_page(src_m, dst_m); 2199 2200 /* 2201 * The object lock does not guarantee that "src_m" will 2202 * transition from invalid to valid, but it does ensure 2203 * that "src_m" will not transition from valid to 2204 * invalid. 2205 */ 2206 dst_m->dirty = dst_m->valid = src_m->valid; 2207 VM_OBJECT_RUNLOCK(object); 2208 } else { 2209 dst_m = src_m; 2210 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 2211 goto again; 2212 if (dst_m->pindex >= dst_object->size) { 2213 /* 2214 * We are upgrading. Index can occur 2215 * out of bounds if the object type is 2216 * vnode and the file was truncated. 2217 */ 2218 vm_page_xunbusy(dst_m); 2219 break; 2220 } 2221 } 2222 2223 /* 2224 * Enter it in the pmap. If a wired, copy-on-write 2225 * mapping is being replaced by a write-enabled 2226 * mapping, then wire that new mapping. 2227 * 2228 * The page can be invalid if the user called 2229 * msync(MS_INVALIDATE) or truncated the backing vnode 2230 * or shared memory object. In this case, do not 2231 * insert it into pmap, but still do the copy so that 2232 * all copies of the wired map entry have similar 2233 * backing pages. 2234 */ 2235 if (vm_page_all_valid(dst_m)) { 2236 VM_OBJECT_WUNLOCK(dst_object); 2237 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2238 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2239 VM_OBJECT_WLOCK(dst_object); 2240 } 2241 2242 /* 2243 * Mark it no longer busy, and put it on the active list. 2244 */ 2245 if (upgrade) { 2246 if (src_m != dst_m) { 2247 vm_page_unwire(src_m, PQ_INACTIVE); 2248 vm_page_wire(dst_m); 2249 } else { 2250 KASSERT(vm_page_wired(dst_m), 2251 ("dst_m %p is not wired", dst_m)); 2252 } 2253 } else { 2254 vm_page_activate(dst_m); 2255 } 2256 vm_page_xunbusy(dst_m); 2257 } 2258 VM_OBJECT_WUNLOCK(dst_object); 2259 if (upgrade) { 2260 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2261 vm_object_deallocate(src_object); 2262 } 2263 } 2264 2265 /* 2266 * Block entry into the machine-independent layer's page fault handler by 2267 * the calling thread. Subsequent calls to vm_fault() by that thread will 2268 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2269 * spurious page faults. 2270 */ 2271 int 2272 vm_fault_disable_pagefaults(void) 2273 { 2274 2275 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2276 } 2277 2278 void 2279 vm_fault_enable_pagefaults(int save) 2280 { 2281 2282 curthread_pflags_restore(save); 2283 } 2284