1 /*- 2 * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU) 3 * 4 * Copyright (c) 1991, 1993 5 * The Regents of the University of California. All rights reserved. 6 * Copyright (c) 1994 John S. Dyson 7 * All rights reserved. 8 * Copyright (c) 1994 David Greenman 9 * All rights reserved. 10 * 11 * 12 * This code is derived from software contributed to Berkeley by 13 * The Mach Operating System project at Carnegie-Mellon University. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions 17 * are met: 18 * 1. Redistributions of source code must retain the above copyright 19 * notice, this list of conditions and the following disclaimer. 20 * 2. Redistributions in binary form must reproduce the above copyright 21 * notice, this list of conditions and the following disclaimer in the 22 * documentation and/or other materials provided with the distribution. 23 * 3. All advertising materials mentioning features or use of this software 24 * must display the following acknowledgement: 25 * This product includes software developed by the University of 26 * California, Berkeley and its contributors. 27 * 4. Neither the name of the University nor the names of its contributors 28 * may be used to endorse or promote products derived from this software 29 * without specific prior written permission. 30 * 31 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 32 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 33 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 34 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 35 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 36 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 37 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 38 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 39 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 40 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 41 * SUCH DAMAGE. 42 * 43 * 44 * Copyright (c) 1987, 1990 Carnegie-Mellon University. 45 * All rights reserved. 46 * 47 * Authors: Avadis Tevanian, Jr., Michael Wayne Young 48 * 49 * Permission to use, copy, modify and distribute this software and 50 * its documentation is hereby granted, provided that both the copyright 51 * notice and this permission notice appear in all copies of the 52 * software, derivative works or modified versions, and any portions 53 * thereof, and that both notices appear in supporting documentation. 54 * 55 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS" 56 * CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND 57 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE. 58 * 59 * Carnegie Mellon requests users of this software to return to 60 * 61 * Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU 62 * School of Computer Science 63 * Carnegie Mellon University 64 * Pittsburgh PA 15213-3890 65 * 66 * any improvements or extensions that they make and grant Carnegie the 67 * rights to redistribute these changes. 68 */ 69 70 /* 71 * Page fault handling module. 72 */ 73 74 #include <sys/cdefs.h> 75 #include "opt_ktrace.h" 76 #include "opt_vm.h" 77 78 #include <sys/param.h> 79 #include <sys/systm.h> 80 #include <sys/kernel.h> 81 #include <sys/lock.h> 82 #include <sys/mman.h> 83 #include <sys/mutex.h> 84 #include <sys/pctrie.h> 85 #include <sys/proc.h> 86 #include <sys/racct.h> 87 #include <sys/refcount.h> 88 #include <sys/resourcevar.h> 89 #include <sys/rwlock.h> 90 #include <sys/signalvar.h> 91 #include <sys/sysctl.h> 92 #include <sys/sysent.h> 93 #include <sys/vmmeter.h> 94 #include <sys/vnode.h> 95 #ifdef KTRACE 96 #include <sys/ktrace.h> 97 #endif 98 99 #include <vm/vm.h> 100 #include <vm/vm_param.h> 101 #include <vm/pmap.h> 102 #include <vm/vm_map.h> 103 #include <vm/vm_object.h> 104 #include <vm/vm_page.h> 105 #include <vm/vm_pageout.h> 106 #include <vm/vm_kern.h> 107 #include <vm/vm_pager.h> 108 #include <vm/vm_extern.h> 109 #include <vm/vm_reserv.h> 110 111 #define PFBAK 4 112 #define PFFOR 4 113 114 #define VM_FAULT_READ_DEFAULT (1 + VM_FAULT_READ_AHEAD_INIT) 115 116 #define VM_FAULT_DONTNEED_MIN 1048576 117 118 struct faultstate { 119 /* Fault parameters. */ 120 vm_offset_t vaddr; 121 vm_page_t *m_hold; 122 vm_prot_t fault_type; 123 vm_prot_t prot; 124 int fault_flags; 125 boolean_t wired; 126 127 /* Control state. */ 128 struct timeval oom_start_time; 129 bool oom_started; 130 int nera; 131 bool can_read_lock; 132 133 /* Page reference for cow. */ 134 vm_page_t m_cow; 135 136 /* Current object. */ 137 vm_object_t object; 138 vm_pindex_t pindex; 139 vm_page_t m; 140 141 /* Top-level map object. */ 142 vm_object_t first_object; 143 vm_pindex_t first_pindex; 144 vm_page_t first_m; 145 146 /* Map state. */ 147 vm_map_t map; 148 vm_map_entry_t entry; 149 int map_generation; 150 bool lookup_still_valid; 151 152 /* Vnode if locked. */ 153 struct vnode *vp; 154 }; 155 156 /* 157 * Return codes for internal fault routines. 158 */ 159 enum fault_status { 160 FAULT_SUCCESS = 10000, /* Return success to user. */ 161 FAULT_FAILURE, /* Return failure to user. */ 162 FAULT_CONTINUE, /* Continue faulting. */ 163 FAULT_RESTART, /* Restart fault. */ 164 FAULT_OUT_OF_BOUNDS, /* Invalid address for pager. */ 165 FAULT_HARD, /* Performed I/O. */ 166 FAULT_SOFT, /* Found valid page. */ 167 FAULT_PROTECTION_FAILURE, /* Invalid access. */ 168 }; 169 170 enum fault_next_status { 171 FAULT_NEXT_GOTOBJ = 1, 172 FAULT_NEXT_NOOBJ, 173 FAULT_NEXT_RESTART, 174 }; 175 176 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, 177 int ahead); 178 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 179 int backward, int forward, bool obj_locked); 180 181 static int vm_pfault_oom_attempts = 3; 182 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN, 183 &vm_pfault_oom_attempts, 0, 184 "Number of page allocation attempts in page fault handler before it " 185 "triggers OOM handling"); 186 187 static int vm_pfault_oom_wait = 10; 188 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN, 189 &vm_pfault_oom_wait, 0, 190 "Number of seconds to wait for free pages before retrying " 191 "the page fault handler"); 192 193 static inline void 194 vm_fault_page_release(vm_page_t *mp) 195 { 196 vm_page_t m; 197 198 m = *mp; 199 if (m != NULL) { 200 /* 201 * We are likely to loop around again and attempt to busy 202 * this page. Deactivating it leaves it available for 203 * pageout while optimizing fault restarts. 204 */ 205 vm_page_deactivate(m); 206 vm_page_xunbusy(m); 207 *mp = NULL; 208 } 209 } 210 211 static inline void 212 vm_fault_page_free(vm_page_t *mp) 213 { 214 vm_page_t m; 215 216 m = *mp; 217 if (m != NULL) { 218 VM_OBJECT_ASSERT_WLOCKED(m->object); 219 if (!vm_page_wired(m)) 220 vm_page_free(m); 221 else 222 vm_page_xunbusy(m); 223 *mp = NULL; 224 } 225 } 226 227 /* 228 * Return true if a vm_pager_get_pages() call is needed in order to check 229 * whether the pager might have a particular page, false if it can be determined 230 * immediately that the pager can not have a copy. For swap objects, this can 231 * be checked quickly. 232 */ 233 static inline bool 234 vm_fault_object_needs_getpages(vm_object_t object) 235 { 236 VM_OBJECT_ASSERT_LOCKED(object); 237 238 return ((object->flags & OBJ_SWAP) == 0 || 239 !pctrie_is_empty(&object->un_pager.swp.swp_blks)); 240 } 241 242 static inline void 243 vm_fault_unlock_map(struct faultstate *fs) 244 { 245 246 if (fs->lookup_still_valid) { 247 vm_map_lookup_done(fs->map, fs->entry); 248 fs->lookup_still_valid = false; 249 } 250 } 251 252 static void 253 vm_fault_unlock_vp(struct faultstate *fs) 254 { 255 256 if (fs->vp != NULL) { 257 vput(fs->vp); 258 fs->vp = NULL; 259 } 260 } 261 262 static void 263 vm_fault_deallocate(struct faultstate *fs) 264 { 265 266 vm_fault_page_release(&fs->m_cow); 267 vm_fault_page_release(&fs->m); 268 vm_object_pip_wakeup(fs->object); 269 if (fs->object != fs->first_object) { 270 VM_OBJECT_WLOCK(fs->first_object); 271 vm_fault_page_free(&fs->first_m); 272 VM_OBJECT_WUNLOCK(fs->first_object); 273 vm_object_pip_wakeup(fs->first_object); 274 } 275 vm_object_deallocate(fs->first_object); 276 vm_fault_unlock_map(fs); 277 vm_fault_unlock_vp(fs); 278 } 279 280 static void 281 vm_fault_unlock_and_deallocate(struct faultstate *fs) 282 { 283 284 VM_OBJECT_UNLOCK(fs->object); 285 vm_fault_deallocate(fs); 286 } 287 288 static void 289 vm_fault_dirty(struct faultstate *fs, vm_page_t m) 290 { 291 bool need_dirty; 292 293 if (((fs->prot & VM_PROT_WRITE) == 0 && 294 (fs->fault_flags & VM_FAULT_DIRTY) == 0) || 295 (m->oflags & VPO_UNMANAGED) != 0) 296 return; 297 298 VM_PAGE_OBJECT_BUSY_ASSERT(m); 299 300 need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 && 301 (fs->fault_flags & VM_FAULT_WIRE) == 0) || 302 (fs->fault_flags & VM_FAULT_DIRTY) != 0; 303 304 vm_object_set_writeable_dirty(m->object); 305 306 /* 307 * If the fault is a write, we know that this page is being 308 * written NOW so dirty it explicitly to save on 309 * pmap_is_modified() calls later. 310 * 311 * Also, since the page is now dirty, we can possibly tell 312 * the pager to release any swap backing the page. 313 */ 314 if (need_dirty && vm_page_set_dirty(m) == 0) { 315 /* 316 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC 317 * if the page is already dirty to prevent data written with 318 * the expectation of being synced from not being synced. 319 * Likewise if this entry does not request NOSYNC then make 320 * sure the page isn't marked NOSYNC. Applications sharing 321 * data should use the same flags to avoid ping ponging. 322 */ 323 if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0) 324 vm_page_aflag_set(m, PGA_NOSYNC); 325 else 326 vm_page_aflag_clear(m, PGA_NOSYNC); 327 } 328 329 } 330 331 /* 332 * Unlocks fs.first_object and fs.map on success. 333 */ 334 static enum fault_status 335 vm_fault_soft_fast(struct faultstate *fs) 336 { 337 vm_page_t m, m_map; 338 #if VM_NRESERVLEVEL > 0 339 vm_page_t m_super; 340 int flags; 341 #endif 342 int psind; 343 vm_offset_t vaddr; 344 345 MPASS(fs->vp == NULL); 346 347 /* 348 * If we fail, vast majority of the time it is because the page is not 349 * there to begin with. Opportunistically perform the lookup and 350 * subsequent checks without the object lock, revalidate later. 351 * 352 * Note: a busy page can be mapped for read|execute access. 353 */ 354 m = vm_page_lookup_unlocked(fs->first_object, fs->first_pindex); 355 if (m == NULL || !vm_page_all_valid(m) || 356 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) { 357 VM_OBJECT_WLOCK(fs->first_object); 358 return (FAULT_FAILURE); 359 } 360 361 vaddr = fs->vaddr; 362 363 VM_OBJECT_RLOCK(fs->first_object); 364 365 /* 366 * Now that we stabilized the state, revalidate the page is in the shape 367 * we encountered above. 368 */ 369 370 if (m->object != fs->first_object || m->pindex != fs->first_pindex) 371 goto fail; 372 373 vm_object_busy(fs->first_object); 374 375 if (!vm_page_all_valid(m) || 376 ((fs->prot & VM_PROT_WRITE) != 0 && vm_page_busied(m))) 377 goto fail_busy; 378 379 m_map = m; 380 psind = 0; 381 #if VM_NRESERVLEVEL > 0 382 if ((m->flags & PG_FICTITIOUS) == 0 && 383 (m_super = vm_reserv_to_superpage(m)) != NULL) { 384 psind = m_super->psind; 385 KASSERT(psind > 0, 386 ("psind %d of m_super %p < 1", psind, m_super)); 387 flags = PS_ALL_VALID; 388 if ((fs->prot & VM_PROT_WRITE) != 0) { 389 /* 390 * Create a superpage mapping allowing write access 391 * only if none of the constituent pages are busy and 392 * all of them are already dirty (except possibly for 393 * the page that was faulted on). 394 */ 395 flags |= PS_NONE_BUSY; 396 if ((fs->first_object->flags & OBJ_UNMANAGED) == 0) 397 flags |= PS_ALL_DIRTY; 398 } 399 while (rounddown2(vaddr, pagesizes[psind]) < fs->entry->start || 400 roundup2(vaddr + 1, pagesizes[psind]) > fs->entry->end || 401 (vaddr & (pagesizes[psind] - 1)) != 402 (VM_PAGE_TO_PHYS(m) & (pagesizes[psind] - 1)) || 403 !vm_page_ps_test(m_super, psind, flags, m) || 404 !pmap_ps_enabled(fs->map->pmap)) { 405 psind--; 406 if (psind == 0) 407 break; 408 m_super += rounddown2(m - m_super, 409 atop(pagesizes[psind])); 410 KASSERT(m_super->psind >= psind, 411 ("psind %d of m_super %p < %d", m_super->psind, 412 m_super, psind)); 413 } 414 if (psind > 0) { 415 m_map = m_super; 416 vaddr = rounddown2(vaddr, pagesizes[psind]); 417 /* Preset the modified bit for dirty superpages. */ 418 if ((flags & PS_ALL_DIRTY) != 0) 419 fs->fault_type |= VM_PROT_WRITE; 420 } 421 } 422 #endif 423 if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type | 424 PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) != 425 KERN_SUCCESS) 426 goto fail_busy; 427 if (fs->m_hold != NULL) { 428 (*fs->m_hold) = m; 429 vm_page_wire(m); 430 } 431 if (psind == 0 && !fs->wired) 432 vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true); 433 VM_OBJECT_RUNLOCK(fs->first_object); 434 vm_fault_dirty(fs, m); 435 vm_object_unbusy(fs->first_object); 436 vm_map_lookup_done(fs->map, fs->entry); 437 curthread->td_ru.ru_minflt++; 438 return (FAULT_SUCCESS); 439 fail_busy: 440 vm_object_unbusy(fs->first_object); 441 fail: 442 if (!VM_OBJECT_TRYUPGRADE(fs->first_object)) { 443 VM_OBJECT_RUNLOCK(fs->first_object); 444 VM_OBJECT_WLOCK(fs->first_object); 445 } 446 return (FAULT_FAILURE); 447 } 448 449 static void 450 vm_fault_restore_map_lock(struct faultstate *fs) 451 { 452 453 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 454 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 455 456 if (!vm_map_trylock_read(fs->map)) { 457 VM_OBJECT_WUNLOCK(fs->first_object); 458 vm_map_lock_read(fs->map); 459 VM_OBJECT_WLOCK(fs->first_object); 460 } 461 fs->lookup_still_valid = true; 462 } 463 464 static void 465 vm_fault_populate_check_page(vm_page_t m) 466 { 467 468 /* 469 * Check each page to ensure that the pager is obeying the 470 * interface: the page must be installed in the object, fully 471 * valid, and exclusively busied. 472 */ 473 MPASS(m != NULL); 474 MPASS(vm_page_all_valid(m)); 475 MPASS(vm_page_xbusied(m)); 476 } 477 478 static void 479 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first, 480 vm_pindex_t last) 481 { 482 vm_page_t m; 483 vm_pindex_t pidx; 484 485 VM_OBJECT_ASSERT_WLOCKED(object); 486 MPASS(first <= last); 487 for (pidx = first, m = vm_page_lookup(object, pidx); 488 pidx <= last; pidx++, m = vm_page_next(m)) { 489 vm_fault_populate_check_page(m); 490 vm_page_deactivate(m); 491 vm_page_xunbusy(m); 492 } 493 } 494 495 static enum fault_status 496 vm_fault_populate(struct faultstate *fs) 497 { 498 vm_offset_t vaddr; 499 vm_page_t m; 500 vm_pindex_t map_first, map_last, pager_first, pager_last, pidx; 501 int bdry_idx, i, npages, psind, rv; 502 enum fault_status res; 503 504 MPASS(fs->object == fs->first_object); 505 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 506 MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0); 507 MPASS(fs->first_object->backing_object == NULL); 508 MPASS(fs->lookup_still_valid); 509 510 pager_first = OFF_TO_IDX(fs->entry->offset); 511 pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1; 512 vm_fault_unlock_map(fs); 513 vm_fault_unlock_vp(fs); 514 515 res = FAULT_SUCCESS; 516 517 /* 518 * Call the pager (driver) populate() method. 519 * 520 * There is no guarantee that the method will be called again 521 * if the current fault is for read, and a future fault is 522 * for write. Report the entry's maximum allowed protection 523 * to the driver. 524 */ 525 rv = vm_pager_populate(fs->first_object, fs->first_pindex, 526 fs->fault_type, fs->entry->max_protection, &pager_first, 527 &pager_last); 528 529 VM_OBJECT_ASSERT_WLOCKED(fs->first_object); 530 if (rv == VM_PAGER_BAD) { 531 /* 532 * VM_PAGER_BAD is the backdoor for a pager to request 533 * normal fault handling. 534 */ 535 vm_fault_restore_map_lock(fs); 536 if (fs->map->timestamp != fs->map_generation) 537 return (FAULT_RESTART); 538 return (FAULT_CONTINUE); 539 } 540 if (rv != VM_PAGER_OK) 541 return (FAULT_FAILURE); /* AKA SIGSEGV */ 542 543 /* Ensure that the driver is obeying the interface. */ 544 MPASS(pager_first <= pager_last); 545 MPASS(fs->first_pindex <= pager_last); 546 MPASS(fs->first_pindex >= pager_first); 547 MPASS(pager_last < fs->first_object->size); 548 549 vm_fault_restore_map_lock(fs); 550 bdry_idx = MAP_ENTRY_SPLIT_BOUNDARY_INDEX(fs->entry); 551 if (fs->map->timestamp != fs->map_generation) { 552 if (bdry_idx == 0) { 553 vm_fault_populate_cleanup(fs->first_object, pager_first, 554 pager_last); 555 } else { 556 m = vm_page_lookup(fs->first_object, pager_first); 557 if (m != fs->m) 558 vm_page_xunbusy(m); 559 } 560 return (FAULT_RESTART); 561 } 562 563 /* 564 * The map is unchanged after our last unlock. Process the fault. 565 * 566 * First, the special case of largepage mappings, where 567 * populate only busies the first page in superpage run. 568 */ 569 if (bdry_idx != 0) { 570 KASSERT(PMAP_HAS_LARGEPAGES, 571 ("missing pmap support for large pages")); 572 m = vm_page_lookup(fs->first_object, pager_first); 573 vm_fault_populate_check_page(m); 574 VM_OBJECT_WUNLOCK(fs->first_object); 575 vaddr = fs->entry->start + IDX_TO_OFF(pager_first) - 576 fs->entry->offset; 577 /* assert alignment for entry */ 578 KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0, 579 ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx", 580 (uintmax_t)fs->entry->start, (uintmax_t)pager_first, 581 (uintmax_t)fs->entry->offset, (uintmax_t)vaddr)); 582 KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0, 583 ("unaligned superpage m %p %#jx", m, 584 (uintmax_t)VM_PAGE_TO_PHYS(m))); 585 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, 586 fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) | 587 PMAP_ENTER_LARGEPAGE, bdry_idx); 588 VM_OBJECT_WLOCK(fs->first_object); 589 vm_page_xunbusy(m); 590 if (rv != KERN_SUCCESS) { 591 res = FAULT_FAILURE; 592 goto out; 593 } 594 if ((fs->fault_flags & VM_FAULT_WIRE) != 0) { 595 for (i = 0; i < atop(pagesizes[bdry_idx]); i++) 596 vm_page_wire(m + i); 597 } 598 if (fs->m_hold != NULL) { 599 *fs->m_hold = m + (fs->first_pindex - pager_first); 600 vm_page_wire(*fs->m_hold); 601 } 602 goto out; 603 } 604 605 /* 606 * The range [pager_first, pager_last] that is given to the 607 * pager is only a hint. The pager may populate any range 608 * within the object that includes the requested page index. 609 * In case the pager expanded the range, clip it to fit into 610 * the map entry. 611 */ 612 map_first = OFF_TO_IDX(fs->entry->offset); 613 if (map_first > pager_first) { 614 vm_fault_populate_cleanup(fs->first_object, pager_first, 615 map_first - 1); 616 pager_first = map_first; 617 } 618 map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1; 619 if (map_last < pager_last) { 620 vm_fault_populate_cleanup(fs->first_object, map_last + 1, 621 pager_last); 622 pager_last = map_last; 623 } 624 for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx); 625 pidx <= pager_last; 626 pidx += npages, m = vm_page_next(&m[npages - 1])) { 627 vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset; 628 629 psind = m->psind; 630 while (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 || 631 pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last || 632 !pmap_ps_enabled(fs->map->pmap))) 633 psind--; 634 635 npages = atop(pagesizes[psind]); 636 for (i = 0; i < npages; i++) { 637 vm_fault_populate_check_page(&m[i]); 638 vm_fault_dirty(fs, &m[i]); 639 } 640 VM_OBJECT_WUNLOCK(fs->first_object); 641 rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type | 642 (fs->wired ? PMAP_ENTER_WIRED : 0), psind); 643 644 /* 645 * pmap_enter() may fail for a superpage mapping if additional 646 * protection policies prevent the full mapping. 647 * For example, this will happen on amd64 if the entire 648 * address range does not share the same userspace protection 649 * key. Revert to single-page mappings if this happens. 650 */ 651 MPASS(rv == KERN_SUCCESS || 652 (psind > 0 && rv == KERN_PROTECTION_FAILURE)); 653 if (__predict_false(psind > 0 && 654 rv == KERN_PROTECTION_FAILURE)) { 655 MPASS(!fs->wired); 656 for (i = 0; i < npages; i++) { 657 rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i), 658 &m[i], fs->prot, fs->fault_type, 0); 659 MPASS(rv == KERN_SUCCESS); 660 } 661 } 662 663 VM_OBJECT_WLOCK(fs->first_object); 664 for (i = 0; i < npages; i++) { 665 if ((fs->fault_flags & VM_FAULT_WIRE) != 0 && 666 m[i].pindex == fs->first_pindex) 667 vm_page_wire(&m[i]); 668 else 669 vm_page_activate(&m[i]); 670 if (fs->m_hold != NULL && 671 m[i].pindex == fs->first_pindex) { 672 (*fs->m_hold) = &m[i]; 673 vm_page_wire(&m[i]); 674 } 675 vm_page_xunbusy(&m[i]); 676 } 677 } 678 out: 679 curthread->td_ru.ru_majflt++; 680 return (res); 681 } 682 683 static int prot_fault_translation; 684 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN, 685 &prot_fault_translation, 0, 686 "Control signal to deliver on protection fault"); 687 688 /* compat definition to keep common code for signal translation */ 689 #define UCODE_PAGEFLT 12 690 #ifdef T_PAGEFLT 691 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT"); 692 #endif 693 694 /* 695 * vm_fault_trap: 696 * 697 * Handle a page fault occurring at the given address, 698 * requiring the given permissions, in the map specified. 699 * If successful, the page is inserted into the 700 * associated physical map. 701 * 702 * NOTE: the given address should be truncated to the 703 * proper page address. 704 * 705 * KERN_SUCCESS is returned if the page fault is handled; otherwise, 706 * a standard error specifying why the fault is fatal is returned. 707 * 708 * The map in question must be referenced, and remains so. 709 * Caller may hold no locks. 710 */ 711 int 712 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 713 int fault_flags, int *signo, int *ucode) 714 { 715 int result; 716 717 MPASS(signo == NULL || ucode != NULL); 718 #ifdef KTRACE 719 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT)) 720 ktrfault(vaddr, fault_type); 721 #endif 722 result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags, 723 NULL); 724 KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE || 725 result == KERN_INVALID_ADDRESS || 726 result == KERN_RESOURCE_SHORTAGE || 727 result == KERN_PROTECTION_FAILURE || 728 result == KERN_OUT_OF_BOUNDS, 729 ("Unexpected Mach error %d from vm_fault()", result)); 730 #ifdef KTRACE 731 if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND)) 732 ktrfaultend(result); 733 #endif 734 if (result != KERN_SUCCESS && signo != NULL) { 735 switch (result) { 736 case KERN_FAILURE: 737 case KERN_INVALID_ADDRESS: 738 *signo = SIGSEGV; 739 *ucode = SEGV_MAPERR; 740 break; 741 case KERN_RESOURCE_SHORTAGE: 742 *signo = SIGBUS; 743 *ucode = BUS_OOMERR; 744 break; 745 case KERN_OUT_OF_BOUNDS: 746 *signo = SIGBUS; 747 *ucode = BUS_OBJERR; 748 break; 749 case KERN_PROTECTION_FAILURE: 750 if (prot_fault_translation == 0) { 751 /* 752 * Autodetect. This check also covers 753 * the images without the ABI-tag ELF 754 * note. 755 */ 756 if (SV_CURPROC_ABI() == SV_ABI_FREEBSD && 757 curproc->p_osrel >= P_OSREL_SIGSEGV) { 758 *signo = SIGSEGV; 759 *ucode = SEGV_ACCERR; 760 } else { 761 *signo = SIGBUS; 762 *ucode = UCODE_PAGEFLT; 763 } 764 } else if (prot_fault_translation == 1) { 765 /* Always compat mode. */ 766 *signo = SIGBUS; 767 *ucode = UCODE_PAGEFLT; 768 } else { 769 /* Always SIGSEGV mode. */ 770 *signo = SIGSEGV; 771 *ucode = SEGV_ACCERR; 772 } 773 break; 774 default: 775 KASSERT(0, ("Unexpected Mach error %d from vm_fault()", 776 result)); 777 break; 778 } 779 } 780 return (result); 781 } 782 783 static bool 784 vm_fault_object_ensure_wlocked(struct faultstate *fs) 785 { 786 if (fs->object == fs->first_object) 787 VM_OBJECT_ASSERT_WLOCKED(fs->object); 788 789 if (!fs->can_read_lock) { 790 VM_OBJECT_ASSERT_WLOCKED(fs->object); 791 return (true); 792 } 793 794 if (VM_OBJECT_WOWNED(fs->object)) 795 return (true); 796 797 if (VM_OBJECT_TRYUPGRADE(fs->object)) 798 return (true); 799 800 return (false); 801 } 802 803 static enum fault_status 804 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked) 805 { 806 struct vnode *vp; 807 int error, locked; 808 809 if (fs->object->type != OBJT_VNODE) 810 return (FAULT_CONTINUE); 811 vp = fs->object->handle; 812 if (vp == fs->vp) { 813 ASSERT_VOP_LOCKED(vp, "saved vnode is not locked"); 814 return (FAULT_CONTINUE); 815 } 816 817 /* 818 * Perform an unlock in case the desired vnode changed while 819 * the map was unlocked during a retry. 820 */ 821 vm_fault_unlock_vp(fs); 822 823 locked = VOP_ISLOCKED(vp); 824 if (locked != LK_EXCLUSIVE) 825 locked = LK_SHARED; 826 827 /* 828 * We must not sleep acquiring the vnode lock while we have 829 * the page exclusive busied or the object's 830 * paging-in-progress count incremented. Otherwise, we could 831 * deadlock. 832 */ 833 error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT); 834 if (error == 0) { 835 fs->vp = vp; 836 return (FAULT_CONTINUE); 837 } 838 839 vhold(vp); 840 if (objlocked) 841 vm_fault_unlock_and_deallocate(fs); 842 else 843 vm_fault_deallocate(fs); 844 error = vget(vp, locked | LK_RETRY | LK_CANRECURSE); 845 vdrop(vp); 846 fs->vp = vp; 847 KASSERT(error == 0, ("vm_fault: vget failed %d", error)); 848 return (FAULT_RESTART); 849 } 850 851 /* 852 * Calculate the desired readahead. Handle drop-behind. 853 * 854 * Returns the number of readahead blocks to pass to the pager. 855 */ 856 static int 857 vm_fault_readahead(struct faultstate *fs) 858 { 859 int era, nera; 860 u_char behavior; 861 862 KASSERT(fs->lookup_still_valid, ("map unlocked")); 863 era = fs->entry->read_ahead; 864 behavior = vm_map_entry_behavior(fs->entry); 865 if (behavior == MAP_ENTRY_BEHAV_RANDOM) { 866 nera = 0; 867 } else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) { 868 nera = VM_FAULT_READ_AHEAD_MAX; 869 if (fs->vaddr == fs->entry->next_read) 870 vm_fault_dontneed(fs, fs->vaddr, nera); 871 } else if (fs->vaddr == fs->entry->next_read) { 872 /* 873 * This is a sequential fault. Arithmetically 874 * increase the requested number of pages in 875 * the read-ahead window. The requested 876 * number of pages is "# of sequential faults 877 * x (read ahead min + 1) + read ahead min" 878 */ 879 nera = VM_FAULT_READ_AHEAD_MIN; 880 if (era > 0) { 881 nera += era + 1; 882 if (nera > VM_FAULT_READ_AHEAD_MAX) 883 nera = VM_FAULT_READ_AHEAD_MAX; 884 } 885 if (era == VM_FAULT_READ_AHEAD_MAX) 886 vm_fault_dontneed(fs, fs->vaddr, nera); 887 } else { 888 /* 889 * This is a non-sequential fault. 890 */ 891 nera = 0; 892 } 893 if (era != nera) { 894 /* 895 * A read lock on the map suffices to update 896 * the read ahead count safely. 897 */ 898 fs->entry->read_ahead = nera; 899 } 900 901 return (nera); 902 } 903 904 static int 905 vm_fault_lookup(struct faultstate *fs) 906 { 907 int result; 908 909 KASSERT(!fs->lookup_still_valid, 910 ("vm_fault_lookup: Map already locked.")); 911 result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type | 912 VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object, 913 &fs->first_pindex, &fs->prot, &fs->wired); 914 if (result != KERN_SUCCESS) { 915 vm_fault_unlock_vp(fs); 916 return (result); 917 } 918 919 fs->map_generation = fs->map->timestamp; 920 921 if (fs->entry->eflags & MAP_ENTRY_NOFAULT) { 922 panic("%s: fault on nofault entry, addr: %#lx", 923 __func__, (u_long)fs->vaddr); 924 } 925 926 if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION && 927 fs->entry->wiring_thread != curthread) { 928 vm_map_unlock_read(fs->map); 929 vm_map_lock(fs->map); 930 if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) && 931 (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) { 932 vm_fault_unlock_vp(fs); 933 fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP; 934 vm_map_unlock_and_wait(fs->map, 0); 935 } else 936 vm_map_unlock(fs->map); 937 return (KERN_RESOURCE_SHORTAGE); 938 } 939 940 MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0); 941 942 if (fs->wired) 943 fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY); 944 else 945 KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0, 946 ("!fs->wired && VM_FAULT_WIRE")); 947 fs->lookup_still_valid = true; 948 949 return (KERN_SUCCESS); 950 } 951 952 static int 953 vm_fault_relookup(struct faultstate *fs) 954 { 955 vm_object_t retry_object; 956 vm_pindex_t retry_pindex; 957 vm_prot_t retry_prot; 958 int result; 959 960 if (!vm_map_trylock_read(fs->map)) 961 return (KERN_RESTART); 962 963 fs->lookup_still_valid = true; 964 if (fs->map->timestamp == fs->map_generation) 965 return (KERN_SUCCESS); 966 967 result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type, 968 &fs->entry, &retry_object, &retry_pindex, &retry_prot, 969 &fs->wired); 970 if (result != KERN_SUCCESS) { 971 /* 972 * If retry of map lookup would have blocked then 973 * retry fault from start. 974 */ 975 if (result == KERN_FAILURE) 976 return (KERN_RESTART); 977 return (result); 978 } 979 if (retry_object != fs->first_object || 980 retry_pindex != fs->first_pindex) 981 return (KERN_RESTART); 982 983 /* 984 * Check whether the protection has changed or the object has 985 * been copied while we left the map unlocked. Changing from 986 * read to write permission is OK - we leave the page 987 * write-protected, and catch the write fault. Changing from 988 * write to read permission means that we can't mark the page 989 * write-enabled after all. 990 */ 991 fs->prot &= retry_prot; 992 fs->fault_type &= retry_prot; 993 if (fs->prot == 0) 994 return (KERN_RESTART); 995 996 /* Reassert because wired may have changed. */ 997 KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0, 998 ("!wired && VM_FAULT_WIRE")); 999 1000 return (KERN_SUCCESS); 1001 } 1002 1003 static void 1004 vm_fault_cow(struct faultstate *fs) 1005 { 1006 bool is_first_object_locked; 1007 1008 KASSERT(fs->object != fs->first_object, 1009 ("source and target COW objects are identical")); 1010 1011 /* 1012 * This allows pages to be virtually copied from a backing_object 1013 * into the first_object, where the backing object has no other 1014 * refs to it, and cannot gain any more refs. Instead of a bcopy, 1015 * we just move the page from the backing object to the first 1016 * object. Note that we must mark the page dirty in the first 1017 * object so that it will go out to swap when needed. 1018 */ 1019 is_first_object_locked = false; 1020 if ( 1021 /* 1022 * Only one shadow object and no other refs. 1023 */ 1024 fs->object->shadow_count == 1 && fs->object->ref_count == 1 && 1025 /* 1026 * No other ways to look the object up 1027 */ 1028 fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 && 1029 /* 1030 * We don't chase down the shadow chain and we can acquire locks. 1031 */ 1032 (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) && 1033 fs->object == fs->first_object->backing_object && 1034 VM_OBJECT_TRYWLOCK(fs->object)) { 1035 /* 1036 * Remove but keep xbusy for replace. fs->m is moved into 1037 * fs->first_object and left busy while fs->first_m is 1038 * conditionally freed. 1039 */ 1040 vm_page_remove_xbusy(fs->m); 1041 vm_page_replace(fs->m, fs->first_object, fs->first_pindex, 1042 fs->first_m); 1043 vm_page_dirty(fs->m); 1044 #if VM_NRESERVLEVEL > 0 1045 /* 1046 * Rename the reservation. 1047 */ 1048 vm_reserv_rename(fs->m, fs->first_object, fs->object, 1049 OFF_TO_IDX(fs->first_object->backing_object_offset)); 1050 #endif 1051 VM_OBJECT_WUNLOCK(fs->object); 1052 VM_OBJECT_WUNLOCK(fs->first_object); 1053 fs->first_m = fs->m; 1054 fs->m = NULL; 1055 VM_CNT_INC(v_cow_optim); 1056 } else { 1057 if (is_first_object_locked) 1058 VM_OBJECT_WUNLOCK(fs->first_object); 1059 /* 1060 * Oh, well, lets copy it. 1061 */ 1062 pmap_copy_page(fs->m, fs->first_m); 1063 vm_page_valid(fs->first_m); 1064 if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) { 1065 vm_page_wire(fs->first_m); 1066 vm_page_unwire(fs->m, PQ_INACTIVE); 1067 } 1068 /* 1069 * Save the cow page to be released after 1070 * pmap_enter is complete. 1071 */ 1072 fs->m_cow = fs->m; 1073 fs->m = NULL; 1074 1075 /* 1076 * Typically, the shadow object is either private to this 1077 * address space (OBJ_ONEMAPPING) or its pages are read only. 1078 * In the highly unusual case where the pages of a shadow object 1079 * are read/write shared between this and other address spaces, 1080 * we need to ensure that any pmap-level mappings to the 1081 * original, copy-on-write page from the backing object are 1082 * removed from those other address spaces. 1083 * 1084 * The flag check is racy, but this is tolerable: if 1085 * OBJ_ONEMAPPING is cleared after the check, the busy state 1086 * ensures that new mappings of m_cow can't be created. 1087 * pmap_enter() will replace an existing mapping in the current 1088 * address space. If OBJ_ONEMAPPING is set after the check, 1089 * removing mappings will at worse trigger some unnecessary page 1090 * faults. 1091 */ 1092 vm_page_assert_xbusied(fs->m_cow); 1093 if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0) 1094 pmap_remove_all(fs->m_cow); 1095 } 1096 1097 vm_object_pip_wakeup(fs->object); 1098 1099 /* 1100 * Only use the new page below... 1101 */ 1102 fs->object = fs->first_object; 1103 fs->pindex = fs->first_pindex; 1104 fs->m = fs->first_m; 1105 VM_CNT_INC(v_cow_faults); 1106 curthread->td_cow++; 1107 } 1108 1109 static enum fault_next_status 1110 vm_fault_next(struct faultstate *fs) 1111 { 1112 vm_object_t next_object; 1113 1114 if (fs->object == fs->first_object || !fs->can_read_lock) 1115 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1116 else 1117 VM_OBJECT_ASSERT_LOCKED(fs->object); 1118 1119 /* 1120 * The requested page does not exist at this object/ 1121 * offset. Remove the invalid page from the object, 1122 * waking up anyone waiting for it, and continue on to 1123 * the next object. However, if this is the top-level 1124 * object, we must leave the busy page in place to 1125 * prevent another process from rushing past us, and 1126 * inserting the page in that object at the same time 1127 * that we are. 1128 */ 1129 if (fs->object == fs->first_object) { 1130 fs->first_m = fs->m; 1131 fs->m = NULL; 1132 } else if (fs->m != NULL) { 1133 if (!vm_fault_object_ensure_wlocked(fs)) { 1134 fs->can_read_lock = false; 1135 vm_fault_unlock_and_deallocate(fs); 1136 return (FAULT_NEXT_RESTART); 1137 } 1138 vm_fault_page_free(&fs->m); 1139 } 1140 1141 /* 1142 * Move on to the next object. Lock the next object before 1143 * unlocking the current one. 1144 */ 1145 next_object = fs->object->backing_object; 1146 if (next_object == NULL) 1147 return (FAULT_NEXT_NOOBJ); 1148 MPASS(fs->first_m != NULL); 1149 KASSERT(fs->object != next_object, ("object loop %p", next_object)); 1150 if (fs->can_read_lock) 1151 VM_OBJECT_RLOCK(next_object); 1152 else 1153 VM_OBJECT_WLOCK(next_object); 1154 vm_object_pip_add(next_object, 1); 1155 if (fs->object != fs->first_object) 1156 vm_object_pip_wakeup(fs->object); 1157 fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset); 1158 VM_OBJECT_UNLOCK(fs->object); 1159 fs->object = next_object; 1160 1161 return (FAULT_NEXT_GOTOBJ); 1162 } 1163 1164 static void 1165 vm_fault_zerofill(struct faultstate *fs) 1166 { 1167 1168 /* 1169 * If there's no object left, fill the page in the top 1170 * object with zeros. 1171 */ 1172 if (fs->object != fs->first_object) { 1173 vm_object_pip_wakeup(fs->object); 1174 fs->object = fs->first_object; 1175 fs->pindex = fs->first_pindex; 1176 } 1177 MPASS(fs->first_m != NULL); 1178 MPASS(fs->m == NULL); 1179 fs->m = fs->first_m; 1180 fs->first_m = NULL; 1181 1182 /* 1183 * Zero the page if necessary and mark it valid. 1184 */ 1185 if ((fs->m->flags & PG_ZERO) == 0) { 1186 pmap_zero_page(fs->m); 1187 } else { 1188 VM_CNT_INC(v_ozfod); 1189 } 1190 VM_CNT_INC(v_zfod); 1191 vm_page_valid(fs->m); 1192 } 1193 1194 /* 1195 * Initiate page fault after timeout. Returns true if caller should 1196 * do vm_waitpfault() after the call. 1197 */ 1198 static bool 1199 vm_fault_allocate_oom(struct faultstate *fs) 1200 { 1201 struct timeval now; 1202 1203 vm_fault_unlock_and_deallocate(fs); 1204 if (vm_pfault_oom_attempts < 0) 1205 return (true); 1206 if (!fs->oom_started) { 1207 fs->oom_started = true; 1208 getmicrotime(&fs->oom_start_time); 1209 return (true); 1210 } 1211 1212 getmicrotime(&now); 1213 timevalsub(&now, &fs->oom_start_time); 1214 if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait) 1215 return (true); 1216 1217 if (bootverbose) 1218 printf( 1219 "proc %d (%s) failed to alloc page on fault, starting OOM\n", 1220 curproc->p_pid, curproc->p_comm); 1221 vm_pageout_oom(VM_OOM_MEM_PF); 1222 fs->oom_started = false; 1223 return (false); 1224 } 1225 1226 /* 1227 * Allocate a page directly or via the object populate method. 1228 */ 1229 static enum fault_status 1230 vm_fault_allocate(struct faultstate *fs) 1231 { 1232 struct domainset *dset; 1233 enum fault_status res; 1234 1235 if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) { 1236 res = vm_fault_lock_vnode(fs, true); 1237 MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART); 1238 if (res == FAULT_RESTART) 1239 return (res); 1240 } 1241 1242 if (fs->pindex >= fs->object->size) { 1243 vm_fault_unlock_and_deallocate(fs); 1244 return (FAULT_OUT_OF_BOUNDS); 1245 } 1246 1247 if (fs->object == fs->first_object && 1248 (fs->first_object->flags & OBJ_POPULATE) != 0 && 1249 fs->first_object->shadow_count == 0) { 1250 res = vm_fault_populate(fs); 1251 switch (res) { 1252 case FAULT_SUCCESS: 1253 case FAULT_FAILURE: 1254 case FAULT_RESTART: 1255 vm_fault_unlock_and_deallocate(fs); 1256 return (res); 1257 case FAULT_CONTINUE: 1258 /* 1259 * Pager's populate() method 1260 * returned VM_PAGER_BAD. 1261 */ 1262 break; 1263 default: 1264 panic("inconsistent return codes"); 1265 } 1266 } 1267 1268 /* 1269 * Allocate a new page for this object/offset pair. 1270 * 1271 * If the process has a fatal signal pending, prioritize the allocation 1272 * with the expectation that the process will exit shortly and free some 1273 * pages. In particular, the signal may have been posted by the page 1274 * daemon in an attempt to resolve an out-of-memory condition. 1275 * 1276 * The unlocked read of the p_flag is harmless. At worst, the P_KILLED 1277 * might be not observed here, and allocation fails, causing a restart 1278 * and new reading of the p_flag. 1279 */ 1280 dset = fs->object->domain.dr_policy; 1281 if (dset == NULL) 1282 dset = curthread->td_domain.dr_policy; 1283 if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) { 1284 #if VM_NRESERVLEVEL > 0 1285 vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex); 1286 #endif 1287 if (!vm_pager_can_alloc_page(fs->object, fs->pindex)) { 1288 vm_fault_unlock_and_deallocate(fs); 1289 return (FAULT_FAILURE); 1290 } 1291 fs->m = vm_page_alloc(fs->object, fs->pindex, 1292 P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0); 1293 } 1294 if (fs->m == NULL) { 1295 if (vm_fault_allocate_oom(fs)) 1296 vm_waitpfault(dset, vm_pfault_oom_wait * hz); 1297 return (FAULT_RESTART); 1298 } 1299 fs->oom_started = false; 1300 1301 return (FAULT_CONTINUE); 1302 } 1303 1304 /* 1305 * Call the pager to retrieve the page if there is a chance 1306 * that the pager has it, and potentially retrieve additional 1307 * pages at the same time. 1308 */ 1309 static enum fault_status 1310 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp) 1311 { 1312 vm_offset_t e_end, e_start; 1313 int ahead, behind, cluster_offset, rv; 1314 enum fault_status status; 1315 u_char behavior; 1316 1317 /* 1318 * Prepare for unlocking the map. Save the map 1319 * entry's start and end addresses, which are used to 1320 * optimize the size of the pager operation below. 1321 * Even if the map entry's addresses change after 1322 * unlocking the map, using the saved addresses is 1323 * safe. 1324 */ 1325 e_start = fs->entry->start; 1326 e_end = fs->entry->end; 1327 behavior = vm_map_entry_behavior(fs->entry); 1328 1329 /* 1330 * If the pager for the current object might have 1331 * the page, then determine the number of additional 1332 * pages to read and potentially reprioritize 1333 * previously read pages for earlier reclamation. 1334 * These operations should only be performed once per 1335 * page fault. Even if the current pager doesn't 1336 * have the page, the number of additional pages to 1337 * read will apply to subsequent objects in the 1338 * shadow chain. 1339 */ 1340 if (fs->nera == -1 && !P_KILLED(curproc)) 1341 fs->nera = vm_fault_readahead(fs); 1342 1343 /* 1344 * Release the map lock before locking the vnode or 1345 * sleeping in the pager. (If the current object has 1346 * a shadow, then an earlier iteration of this loop 1347 * may have already unlocked the map.) 1348 */ 1349 vm_fault_unlock_map(fs); 1350 1351 status = vm_fault_lock_vnode(fs, false); 1352 MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART); 1353 if (status == FAULT_RESTART) 1354 return (status); 1355 KASSERT(fs->vp == NULL || !fs->map->system_map, 1356 ("vm_fault: vnode-backed object mapped by system map")); 1357 1358 /* 1359 * Page in the requested page and hint the pager, 1360 * that it may bring up surrounding pages. 1361 */ 1362 if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM || 1363 P_KILLED(curproc)) { 1364 behind = 0; 1365 ahead = 0; 1366 } else { 1367 /* Is this a sequential fault? */ 1368 if (fs->nera > 0) { 1369 behind = 0; 1370 ahead = fs->nera; 1371 } else { 1372 /* 1373 * Request a cluster of pages that is 1374 * aligned to a VM_FAULT_READ_DEFAULT 1375 * page offset boundary within the 1376 * object. Alignment to a page offset 1377 * boundary is more likely to coincide 1378 * with the underlying file system 1379 * block than alignment to a virtual 1380 * address boundary. 1381 */ 1382 cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT; 1383 behind = ulmin(cluster_offset, 1384 atop(fs->vaddr - e_start)); 1385 ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset; 1386 } 1387 ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1); 1388 } 1389 *behindp = behind; 1390 *aheadp = ahead; 1391 rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp); 1392 if (rv == VM_PAGER_OK) 1393 return (FAULT_HARD); 1394 if (rv == VM_PAGER_ERROR) 1395 printf("vm_fault: pager read error, pid %d (%s)\n", 1396 curproc->p_pid, curproc->p_comm); 1397 /* 1398 * If an I/O error occurred or the requested page was 1399 * outside the range of the pager, clean up and return 1400 * an error. 1401 */ 1402 if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) { 1403 VM_OBJECT_WLOCK(fs->object); 1404 vm_fault_page_free(&fs->m); 1405 vm_fault_unlock_and_deallocate(fs); 1406 return (FAULT_OUT_OF_BOUNDS); 1407 } 1408 KASSERT(rv == VM_PAGER_FAIL, 1409 ("%s: unexpected pager error %d", __func__, rv)); 1410 return (FAULT_CONTINUE); 1411 } 1412 1413 /* 1414 * Wait/Retry if the page is busy. We have to do this if the page is 1415 * either exclusive or shared busy because the vm_pager may be using 1416 * read busy for pageouts (and even pageins if it is the vnode pager), 1417 * and we could end up trying to pagein and pageout the same page 1418 * simultaneously. 1419 * 1420 * We can theoretically allow the busy case on a read fault if the page 1421 * is marked valid, but since such pages are typically already pmap'd, 1422 * putting that special case in might be more effort then it is worth. 1423 * We cannot under any circumstances mess around with a shared busied 1424 * page except, perhaps, to pmap it. 1425 */ 1426 static void 1427 vm_fault_busy_sleep(struct faultstate *fs) 1428 { 1429 /* 1430 * Reference the page before unlocking and 1431 * sleeping so that the page daemon is less 1432 * likely to reclaim it. 1433 */ 1434 vm_page_aflag_set(fs->m, PGA_REFERENCED); 1435 if (fs->object != fs->first_object) { 1436 vm_fault_page_release(&fs->first_m); 1437 vm_object_pip_wakeup(fs->first_object); 1438 } 1439 vm_object_pip_wakeup(fs->object); 1440 vm_fault_unlock_map(fs); 1441 if (fs->m != vm_page_lookup(fs->object, fs->pindex) || 1442 !vm_page_busy_sleep(fs->m, "vmpfw", 0)) 1443 VM_OBJECT_UNLOCK(fs->object); 1444 VM_CNT_INC(v_intrans); 1445 vm_object_deallocate(fs->first_object); 1446 } 1447 1448 /* 1449 * Handle page lookup, populate, allocate, page-in for the current 1450 * object. 1451 * 1452 * The object is locked on entry and will remain locked with a return 1453 * code of FAULT_CONTINUE so that fault may follow the shadow chain. 1454 * Otherwise, the object will be unlocked upon return. 1455 */ 1456 static enum fault_status 1457 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp) 1458 { 1459 enum fault_status res; 1460 bool dead; 1461 1462 if (fs->object == fs->first_object || !fs->can_read_lock) 1463 VM_OBJECT_ASSERT_WLOCKED(fs->object); 1464 else 1465 VM_OBJECT_ASSERT_LOCKED(fs->object); 1466 1467 /* 1468 * If the object is marked for imminent termination, we retry 1469 * here, since the collapse pass has raced with us. Otherwise, 1470 * if we see terminally dead object, return fail. 1471 */ 1472 if ((fs->object->flags & OBJ_DEAD) != 0) { 1473 dead = fs->object->type == OBJT_DEAD; 1474 vm_fault_unlock_and_deallocate(fs); 1475 if (dead) 1476 return (FAULT_PROTECTION_FAILURE); 1477 pause("vmf_de", 1); 1478 return (FAULT_RESTART); 1479 } 1480 1481 /* 1482 * See if the page is resident. 1483 */ 1484 fs->m = vm_page_lookup(fs->object, fs->pindex); 1485 if (fs->m != NULL) { 1486 if (!vm_page_tryxbusy(fs->m)) { 1487 vm_fault_busy_sleep(fs); 1488 return (FAULT_RESTART); 1489 } 1490 1491 /* 1492 * The page is marked busy for other processes and the 1493 * pagedaemon. If it is still completely valid we are 1494 * done. 1495 */ 1496 if (vm_page_all_valid(fs->m)) { 1497 VM_OBJECT_UNLOCK(fs->object); 1498 return (FAULT_SOFT); 1499 } 1500 } 1501 1502 /* 1503 * Page is not resident. If the pager might contain the page 1504 * or this is the beginning of the search, allocate a new 1505 * page. 1506 */ 1507 if (fs->m == NULL && (vm_fault_object_needs_getpages(fs->object) || 1508 fs->object == fs->first_object)) { 1509 if (!vm_fault_object_ensure_wlocked(fs)) { 1510 fs->can_read_lock = false; 1511 vm_fault_unlock_and_deallocate(fs); 1512 return (FAULT_RESTART); 1513 } 1514 res = vm_fault_allocate(fs); 1515 if (res != FAULT_CONTINUE) 1516 return (res); 1517 } 1518 1519 /* 1520 * Check to see if the pager can possibly satisfy this fault. 1521 * If not, skip to the next object without dropping the lock to 1522 * preserve atomicity of shadow faults. 1523 */ 1524 if (vm_fault_object_needs_getpages(fs->object)) { 1525 /* 1526 * At this point, we have either allocated a new page 1527 * or found an existing page that is only partially 1528 * valid. 1529 * 1530 * We hold a reference on the current object and the 1531 * page is exclusive busied. The exclusive busy 1532 * prevents simultaneous faults and collapses while 1533 * the object lock is dropped. 1534 */ 1535 VM_OBJECT_UNLOCK(fs->object); 1536 res = vm_fault_getpages(fs, behindp, aheadp); 1537 if (res == FAULT_CONTINUE) 1538 VM_OBJECT_WLOCK(fs->object); 1539 } else { 1540 res = FAULT_CONTINUE; 1541 } 1542 return (res); 1543 } 1544 1545 int 1546 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type, 1547 int fault_flags, vm_page_t *m_hold) 1548 { 1549 struct faultstate fs; 1550 int ahead, behind, faultcount, rv; 1551 enum fault_status res; 1552 enum fault_next_status res_next; 1553 bool hardfault; 1554 1555 VM_CNT_INC(v_vm_faults); 1556 1557 if ((curthread->td_pflags & TDP_NOFAULTING) != 0) 1558 return (KERN_PROTECTION_FAILURE); 1559 1560 fs.vp = NULL; 1561 fs.vaddr = vaddr; 1562 fs.m_hold = m_hold; 1563 fs.fault_flags = fault_flags; 1564 fs.map = map; 1565 fs.lookup_still_valid = false; 1566 fs.oom_started = false; 1567 fs.nera = -1; 1568 fs.can_read_lock = true; 1569 faultcount = 0; 1570 hardfault = false; 1571 1572 RetryFault: 1573 fs.fault_type = fault_type; 1574 1575 /* 1576 * Find the backing store object and offset into it to begin the 1577 * search. 1578 */ 1579 rv = vm_fault_lookup(&fs); 1580 if (rv != KERN_SUCCESS) { 1581 if (rv == KERN_RESOURCE_SHORTAGE) 1582 goto RetryFault; 1583 return (rv); 1584 } 1585 1586 /* 1587 * Try to avoid lock contention on the top-level object through 1588 * special-case handling of some types of page faults, specifically, 1589 * those that are mapping an existing page from the top-level object. 1590 * Under this condition, a read lock on the object suffices, allowing 1591 * multiple page faults of a similar type to run in parallel. 1592 */ 1593 if (fs.vp == NULL /* avoid locked vnode leak */ && 1594 (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 && 1595 (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) { 1596 res = vm_fault_soft_fast(&fs); 1597 if (res == FAULT_SUCCESS) { 1598 VM_OBJECT_ASSERT_UNLOCKED(fs.first_object); 1599 return (KERN_SUCCESS); 1600 } 1601 VM_OBJECT_ASSERT_WLOCKED(fs.first_object); 1602 } else { 1603 VM_OBJECT_WLOCK(fs.first_object); 1604 } 1605 1606 /* 1607 * Make a reference to this object to prevent its disposal while we 1608 * are messing with it. Once we have the reference, the map is free 1609 * to be diddled. Since objects reference their shadows (and copies), 1610 * they will stay around as well. 1611 * 1612 * Bump the paging-in-progress count to prevent size changes (e.g. 1613 * truncation operations) during I/O. 1614 */ 1615 vm_object_reference_locked(fs.first_object); 1616 vm_object_pip_add(fs.first_object, 1); 1617 1618 fs.m_cow = fs.m = fs.first_m = NULL; 1619 1620 /* 1621 * Search for the page at object/offset. 1622 */ 1623 fs.object = fs.first_object; 1624 fs.pindex = fs.first_pindex; 1625 1626 if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) { 1627 res = vm_fault_allocate(&fs); 1628 switch (res) { 1629 case FAULT_RESTART: 1630 goto RetryFault; 1631 case FAULT_SUCCESS: 1632 return (KERN_SUCCESS); 1633 case FAULT_FAILURE: 1634 return (KERN_FAILURE); 1635 case FAULT_OUT_OF_BOUNDS: 1636 return (KERN_OUT_OF_BOUNDS); 1637 case FAULT_CONTINUE: 1638 break; 1639 default: 1640 panic("vm_fault: Unhandled status %d", res); 1641 } 1642 } 1643 1644 while (TRUE) { 1645 KASSERT(fs.m == NULL, 1646 ("page still set %p at loop start", fs.m)); 1647 1648 res = vm_fault_object(&fs, &behind, &ahead); 1649 switch (res) { 1650 case FAULT_SOFT: 1651 goto found; 1652 case FAULT_HARD: 1653 faultcount = behind + 1 + ahead; 1654 hardfault = true; 1655 goto found; 1656 case FAULT_RESTART: 1657 goto RetryFault; 1658 case FAULT_SUCCESS: 1659 return (KERN_SUCCESS); 1660 case FAULT_FAILURE: 1661 return (KERN_FAILURE); 1662 case FAULT_OUT_OF_BOUNDS: 1663 return (KERN_OUT_OF_BOUNDS); 1664 case FAULT_PROTECTION_FAILURE: 1665 return (KERN_PROTECTION_FAILURE); 1666 case FAULT_CONTINUE: 1667 break; 1668 default: 1669 panic("vm_fault: Unhandled status %d", res); 1670 } 1671 1672 /* 1673 * The page was not found in the current object. Try to 1674 * traverse into a backing object or zero fill if none is 1675 * found. 1676 */ 1677 res_next = vm_fault_next(&fs); 1678 if (res_next == FAULT_NEXT_RESTART) 1679 goto RetryFault; 1680 else if (res_next == FAULT_NEXT_GOTOBJ) 1681 continue; 1682 MPASS(res_next == FAULT_NEXT_NOOBJ); 1683 if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) { 1684 if (fs.first_object == fs.object) 1685 vm_fault_page_free(&fs.first_m); 1686 vm_fault_unlock_and_deallocate(&fs); 1687 return (KERN_OUT_OF_BOUNDS); 1688 } 1689 VM_OBJECT_UNLOCK(fs.object); 1690 vm_fault_zerofill(&fs); 1691 /* Don't try to prefault neighboring pages. */ 1692 faultcount = 1; 1693 break; 1694 } 1695 1696 found: 1697 /* 1698 * A valid page has been found and exclusively busied. The 1699 * object lock must no longer be held. 1700 */ 1701 vm_page_assert_xbusied(fs.m); 1702 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1703 1704 /* 1705 * If the page is being written, but isn't already owned by the 1706 * top-level object, we have to copy it into a new page owned by the 1707 * top-level object. 1708 */ 1709 if (fs.object != fs.first_object) { 1710 /* 1711 * We only really need to copy if we want to write it. 1712 */ 1713 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1714 vm_fault_cow(&fs); 1715 /* 1716 * We only try to prefault read-only mappings to the 1717 * neighboring pages when this copy-on-write fault is 1718 * a hard fault. In other cases, trying to prefault 1719 * is typically wasted effort. 1720 */ 1721 if (faultcount == 0) 1722 faultcount = 1; 1723 1724 } else { 1725 fs.prot &= ~VM_PROT_WRITE; 1726 } 1727 } 1728 1729 /* 1730 * We must verify that the maps have not changed since our last 1731 * lookup. 1732 */ 1733 if (!fs.lookup_still_valid) { 1734 rv = vm_fault_relookup(&fs); 1735 if (rv != KERN_SUCCESS) { 1736 vm_fault_deallocate(&fs); 1737 if (rv == KERN_RESTART) 1738 goto RetryFault; 1739 return (rv); 1740 } 1741 } 1742 VM_OBJECT_ASSERT_UNLOCKED(fs.object); 1743 1744 /* 1745 * If the page was filled by a pager, save the virtual address that 1746 * should be faulted on next under a sequential access pattern to the 1747 * map entry. A read lock on the map suffices to update this address 1748 * safely. 1749 */ 1750 if (hardfault) 1751 fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE; 1752 1753 /* 1754 * Page must be completely valid or it is not fit to 1755 * map into user space. vm_pager_get_pages() ensures this. 1756 */ 1757 vm_page_assert_xbusied(fs.m); 1758 KASSERT(vm_page_all_valid(fs.m), 1759 ("vm_fault: page %p partially invalid", fs.m)); 1760 1761 vm_fault_dirty(&fs, fs.m); 1762 1763 /* 1764 * Put this page into the physical map. We had to do the unlock above 1765 * because pmap_enter() may sleep. We don't put the page 1766 * back on the active queue until later so that the pageout daemon 1767 * won't find it (yet). 1768 */ 1769 pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot, 1770 fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0); 1771 if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 && 1772 fs.wired == 0) 1773 vm_fault_prefault(&fs, vaddr, 1774 faultcount > 0 ? behind : PFBAK, 1775 faultcount > 0 ? ahead : PFFOR, false); 1776 1777 /* 1778 * If the page is not wired down, then put it where the pageout daemon 1779 * can find it. 1780 */ 1781 if ((fs.fault_flags & VM_FAULT_WIRE) != 0) 1782 vm_page_wire(fs.m); 1783 else 1784 vm_page_activate(fs.m); 1785 if (fs.m_hold != NULL) { 1786 (*fs.m_hold) = fs.m; 1787 vm_page_wire(fs.m); 1788 } 1789 vm_page_xunbusy(fs.m); 1790 fs.m = NULL; 1791 1792 /* 1793 * Unlock everything, and return 1794 */ 1795 vm_fault_deallocate(&fs); 1796 if (hardfault) { 1797 VM_CNT_INC(v_io_faults); 1798 curthread->td_ru.ru_majflt++; 1799 #ifdef RACCT 1800 if (racct_enable && fs.object->type == OBJT_VNODE) { 1801 PROC_LOCK(curproc); 1802 if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) { 1803 racct_add_force(curproc, RACCT_WRITEBPS, 1804 PAGE_SIZE + behind * PAGE_SIZE); 1805 racct_add_force(curproc, RACCT_WRITEIOPS, 1); 1806 } else { 1807 racct_add_force(curproc, RACCT_READBPS, 1808 PAGE_SIZE + ahead * PAGE_SIZE); 1809 racct_add_force(curproc, RACCT_READIOPS, 1); 1810 } 1811 PROC_UNLOCK(curproc); 1812 } 1813 #endif 1814 } else 1815 curthread->td_ru.ru_minflt++; 1816 1817 return (KERN_SUCCESS); 1818 } 1819 1820 /* 1821 * Speed up the reclamation of pages that precede the faulting pindex within 1822 * the first object of the shadow chain. Essentially, perform the equivalent 1823 * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes 1824 * the faulting pindex by the cluster size when the pages read by vm_fault() 1825 * cross a cluster-size boundary. The cluster size is the greater of the 1826 * smallest superpage size and VM_FAULT_DONTNEED_MIN. 1827 * 1828 * When "fs->first_object" is a shadow object, the pages in the backing object 1829 * that precede the faulting pindex are deactivated by vm_fault(). So, this 1830 * function must only be concerned with pages in the first object. 1831 */ 1832 static void 1833 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead) 1834 { 1835 vm_map_entry_t entry; 1836 vm_object_t first_object; 1837 vm_offset_t end, start; 1838 vm_page_t m, m_next; 1839 vm_pindex_t pend, pstart; 1840 vm_size_t size; 1841 1842 VM_OBJECT_ASSERT_UNLOCKED(fs->object); 1843 first_object = fs->first_object; 1844 /* Neither fictitious nor unmanaged pages can be reclaimed. */ 1845 if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) { 1846 VM_OBJECT_RLOCK(first_object); 1847 size = VM_FAULT_DONTNEED_MIN; 1848 if (MAXPAGESIZES > 1 && size < pagesizes[1]) 1849 size = pagesizes[1]; 1850 end = rounddown2(vaddr, size); 1851 if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) && 1852 (entry = fs->entry)->start < end) { 1853 if (end - entry->start < size) 1854 start = entry->start; 1855 else 1856 start = end - size; 1857 pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED); 1858 pstart = OFF_TO_IDX(entry->offset) + atop(start - 1859 entry->start); 1860 m_next = vm_page_find_least(first_object, pstart); 1861 pend = OFF_TO_IDX(entry->offset) + atop(end - 1862 entry->start); 1863 while ((m = m_next) != NULL && m->pindex < pend) { 1864 m_next = TAILQ_NEXT(m, listq); 1865 if (!vm_page_all_valid(m) || 1866 vm_page_busied(m)) 1867 continue; 1868 1869 /* 1870 * Don't clear PGA_REFERENCED, since it would 1871 * likely represent a reference by a different 1872 * process. 1873 * 1874 * Typically, at this point, prefetched pages 1875 * are still in the inactive queue. Only 1876 * pages that triggered page faults are in the 1877 * active queue. The test for whether the page 1878 * is in the inactive queue is racy; in the 1879 * worst case we will requeue the page 1880 * unnecessarily. 1881 */ 1882 if (!vm_page_inactive(m)) 1883 vm_page_deactivate(m); 1884 } 1885 } 1886 VM_OBJECT_RUNLOCK(first_object); 1887 } 1888 } 1889 1890 /* 1891 * vm_fault_prefault provides a quick way of clustering 1892 * pagefaults into a processes address space. It is a "cousin" 1893 * of vm_map_pmap_enter, except it runs at page fault time instead 1894 * of mmap time. 1895 */ 1896 static void 1897 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra, 1898 int backward, int forward, bool obj_locked) 1899 { 1900 pmap_t pmap; 1901 vm_map_entry_t entry; 1902 vm_object_t backing_object, lobject; 1903 vm_offset_t addr, starta; 1904 vm_pindex_t pindex; 1905 vm_page_t m; 1906 vm_prot_t prot; 1907 int i; 1908 1909 pmap = fs->map->pmap; 1910 if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace)) 1911 return; 1912 1913 entry = fs->entry; 1914 1915 if (addra < backward * PAGE_SIZE) { 1916 starta = entry->start; 1917 } else { 1918 starta = addra - backward * PAGE_SIZE; 1919 if (starta < entry->start) 1920 starta = entry->start; 1921 } 1922 prot = entry->protection; 1923 1924 /* 1925 * If pmap_enter() has enabled write access on a nearby mapping, then 1926 * don't attempt promotion, because it will fail. 1927 */ 1928 if ((fs->prot & VM_PROT_WRITE) != 0) 1929 prot |= VM_PROT_NO_PROMOTE; 1930 1931 /* 1932 * Generate the sequence of virtual addresses that are candidates for 1933 * prefaulting in an outward spiral from the faulting virtual address, 1934 * "addra". Specifically, the sequence is "addra - PAGE_SIZE", "addra 1935 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ... 1936 * If the candidate address doesn't have a backing physical page, then 1937 * the loop immediately terminates. 1938 */ 1939 for (i = 0; i < 2 * imax(backward, forward); i++) { 1940 addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE : 1941 PAGE_SIZE); 1942 if (addr > addra + forward * PAGE_SIZE) 1943 addr = 0; 1944 1945 if (addr < starta || addr >= entry->end) 1946 continue; 1947 1948 if (!pmap_is_prefaultable(pmap, addr)) 1949 continue; 1950 1951 pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT; 1952 lobject = entry->object.vm_object; 1953 if (!obj_locked) 1954 VM_OBJECT_RLOCK(lobject); 1955 while ((m = vm_page_lookup(lobject, pindex)) == NULL && 1956 !vm_fault_object_needs_getpages(lobject) && 1957 (backing_object = lobject->backing_object) != NULL) { 1958 KASSERT((lobject->backing_object_offset & PAGE_MASK) == 1959 0, ("vm_fault_prefault: unaligned object offset")); 1960 pindex += lobject->backing_object_offset >> PAGE_SHIFT; 1961 VM_OBJECT_RLOCK(backing_object); 1962 if (!obj_locked || lobject != entry->object.vm_object) 1963 VM_OBJECT_RUNLOCK(lobject); 1964 lobject = backing_object; 1965 } 1966 if (m == NULL) { 1967 if (!obj_locked || lobject != entry->object.vm_object) 1968 VM_OBJECT_RUNLOCK(lobject); 1969 break; 1970 } 1971 if (vm_page_all_valid(m) && 1972 (m->flags & PG_FICTITIOUS) == 0) 1973 pmap_enter_quick(pmap, addr, m, prot); 1974 if (!obj_locked || lobject != entry->object.vm_object) 1975 VM_OBJECT_RUNLOCK(lobject); 1976 } 1977 } 1978 1979 /* 1980 * Hold each of the physical pages that are mapped by the specified range of 1981 * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid 1982 * and allow the specified types of access, "prot". If all of the implied 1983 * pages are successfully held, then the number of held pages is returned 1984 * together with pointers to those pages in the array "ma". However, if any 1985 * of the pages cannot be held, -1 is returned. 1986 */ 1987 int 1988 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len, 1989 vm_prot_t prot, vm_page_t *ma, int max_count) 1990 { 1991 vm_offset_t end, va; 1992 vm_page_t *mp; 1993 int count; 1994 boolean_t pmap_failed; 1995 1996 if (len == 0) 1997 return (0); 1998 end = round_page(addr + len); 1999 addr = trunc_page(addr); 2000 2001 if (!vm_map_range_valid(map, addr, end)) 2002 return (-1); 2003 2004 if (atop(end - addr) > max_count) 2005 panic("vm_fault_quick_hold_pages: count > max_count"); 2006 count = atop(end - addr); 2007 2008 /* 2009 * Most likely, the physical pages are resident in the pmap, so it is 2010 * faster to try pmap_extract_and_hold() first. 2011 */ 2012 pmap_failed = FALSE; 2013 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) { 2014 *mp = pmap_extract_and_hold(map->pmap, va, prot); 2015 if (*mp == NULL) 2016 pmap_failed = TRUE; 2017 else if ((prot & VM_PROT_WRITE) != 0 && 2018 (*mp)->dirty != VM_PAGE_BITS_ALL) { 2019 /* 2020 * Explicitly dirty the physical page. Otherwise, the 2021 * caller's changes may go unnoticed because they are 2022 * performed through an unmanaged mapping or by a DMA 2023 * operation. 2024 * 2025 * The object lock is not held here. 2026 * See vm_page_clear_dirty_mask(). 2027 */ 2028 vm_page_dirty(*mp); 2029 } 2030 } 2031 if (pmap_failed) { 2032 /* 2033 * One or more pages could not be held by the pmap. Either no 2034 * page was mapped at the specified virtual address or that 2035 * mapping had insufficient permissions. Attempt to fault in 2036 * and hold these pages. 2037 * 2038 * If vm_fault_disable_pagefaults() was called, 2039 * i.e., TDP_NOFAULTING is set, we must not sleep nor 2040 * acquire MD VM locks, which means we must not call 2041 * vm_fault(). Some (out of tree) callers mark 2042 * too wide a code area with vm_fault_disable_pagefaults() 2043 * already, use the VM_PROT_QUICK_NOFAULT flag to request 2044 * the proper behaviour explicitly. 2045 */ 2046 if ((prot & VM_PROT_QUICK_NOFAULT) != 0 && 2047 (curthread->td_pflags & TDP_NOFAULTING) != 0) 2048 goto error; 2049 for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) 2050 if (*mp == NULL && vm_fault(map, va, prot, 2051 VM_FAULT_NORMAL, mp) != KERN_SUCCESS) 2052 goto error; 2053 } 2054 return (count); 2055 error: 2056 for (mp = ma; mp < ma + count; mp++) 2057 if (*mp != NULL) 2058 vm_page_unwire(*mp, PQ_INACTIVE); 2059 return (-1); 2060 } 2061 2062 /* 2063 * Routine: 2064 * vm_fault_copy_entry 2065 * Function: 2066 * Create new object backing dst_entry with private copy of all 2067 * underlying pages. When src_entry is equal to dst_entry, function 2068 * implements COW for wired-down map entry. Otherwise, it forks 2069 * wired entry into dst_map. 2070 * 2071 * In/out conditions: 2072 * The source and destination maps must be locked for write. 2073 * The source map entry must be wired down (or be a sharing map 2074 * entry corresponding to a main map entry that is wired down). 2075 */ 2076 void 2077 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map __unused, 2078 vm_map_entry_t dst_entry, vm_map_entry_t src_entry, 2079 vm_ooffset_t *fork_charge) 2080 { 2081 vm_object_t backing_object, dst_object, object, src_object; 2082 vm_pindex_t dst_pindex, pindex, src_pindex; 2083 vm_prot_t access, prot; 2084 vm_offset_t vaddr; 2085 vm_page_t dst_m; 2086 vm_page_t src_m; 2087 bool upgrade; 2088 2089 upgrade = src_entry == dst_entry; 2090 KASSERT(upgrade || dst_entry->object.vm_object == NULL, 2091 ("vm_fault_copy_entry: vm_object not NULL")); 2092 2093 /* 2094 * If not an upgrade, then enter the mappings in the pmap as 2095 * read and/or execute accesses. Otherwise, enter them as 2096 * write accesses. 2097 * 2098 * A writeable large page mapping is only created if all of 2099 * the constituent small page mappings are modified. Marking 2100 * PTEs as modified on inception allows promotion to happen 2101 * without taking potentially large number of soft faults. 2102 */ 2103 access = prot = dst_entry->protection; 2104 if (!upgrade) 2105 access &= ~VM_PROT_WRITE; 2106 2107 src_object = src_entry->object.vm_object; 2108 src_pindex = OFF_TO_IDX(src_entry->offset); 2109 2110 if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) { 2111 dst_object = src_object; 2112 vm_object_reference(dst_object); 2113 } else { 2114 /* 2115 * Create the top-level object for the destination entry. 2116 * Doesn't actually shadow anything - we copy the pages 2117 * directly. 2118 */ 2119 dst_object = vm_object_allocate_anon(atop(dst_entry->end - 2120 dst_entry->start), NULL, NULL, 0); 2121 #if VM_NRESERVLEVEL > 0 2122 dst_object->flags |= OBJ_COLORED; 2123 dst_object->pg_color = atop(dst_entry->start); 2124 #endif 2125 dst_object->domain = src_object->domain; 2126 dst_object->charge = dst_entry->end - dst_entry->start; 2127 2128 dst_entry->object.vm_object = dst_object; 2129 dst_entry->offset = 0; 2130 dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC; 2131 } 2132 2133 VM_OBJECT_WLOCK(dst_object); 2134 if (fork_charge != NULL) { 2135 KASSERT(dst_entry->cred == NULL, 2136 ("vm_fault_copy_entry: leaked swp charge")); 2137 dst_object->cred = curthread->td_ucred; 2138 crhold(dst_object->cred); 2139 *fork_charge += dst_object->charge; 2140 } else if ((dst_object->flags & OBJ_SWAP) != 0 && 2141 dst_object->cred == NULL) { 2142 KASSERT(dst_entry->cred != NULL, ("no cred for entry %p", 2143 dst_entry)); 2144 dst_object->cred = dst_entry->cred; 2145 dst_entry->cred = NULL; 2146 } 2147 2148 /* 2149 * Loop through all of the virtual pages within the entry's 2150 * range, copying each page from the source object to the 2151 * destination object. Since the source is wired, those pages 2152 * must exist. In contrast, the destination is pageable. 2153 * Since the destination object doesn't share any backing storage 2154 * with the source object, all of its pages must be dirtied, 2155 * regardless of whether they can be written. 2156 */ 2157 for (vaddr = dst_entry->start, dst_pindex = 0; 2158 vaddr < dst_entry->end; 2159 vaddr += PAGE_SIZE, dst_pindex++) { 2160 again: 2161 /* 2162 * Find the page in the source object, and copy it in. 2163 * Because the source is wired down, the page will be 2164 * in memory. 2165 */ 2166 if (src_object != dst_object) 2167 VM_OBJECT_RLOCK(src_object); 2168 object = src_object; 2169 pindex = src_pindex + dst_pindex; 2170 while ((src_m = vm_page_lookup(object, pindex)) == NULL && 2171 (backing_object = object->backing_object) != NULL) { 2172 /* 2173 * Unless the source mapping is read-only or 2174 * it is presently being upgraded from 2175 * read-only, the first object in the shadow 2176 * chain should provide all of the pages. In 2177 * other words, this loop body should never be 2178 * executed when the source mapping is already 2179 * read/write. 2180 */ 2181 KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 || 2182 upgrade, 2183 ("vm_fault_copy_entry: main object missing page")); 2184 2185 VM_OBJECT_RLOCK(backing_object); 2186 pindex += OFF_TO_IDX(object->backing_object_offset); 2187 if (object != dst_object) 2188 VM_OBJECT_RUNLOCK(object); 2189 object = backing_object; 2190 } 2191 KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing")); 2192 2193 if (object != dst_object) { 2194 /* 2195 * Allocate a page in the destination object. 2196 */ 2197 dst_m = vm_page_alloc(dst_object, (src_object == 2198 dst_object ? src_pindex : 0) + dst_pindex, 2199 VM_ALLOC_NORMAL); 2200 if (dst_m == NULL) { 2201 VM_OBJECT_WUNLOCK(dst_object); 2202 VM_OBJECT_RUNLOCK(object); 2203 vm_wait(dst_object); 2204 VM_OBJECT_WLOCK(dst_object); 2205 goto again; 2206 } 2207 2208 /* 2209 * See the comment in vm_fault_cow(). 2210 */ 2211 if (src_object == dst_object && 2212 (object->flags & OBJ_ONEMAPPING) == 0) 2213 pmap_remove_all(src_m); 2214 pmap_copy_page(src_m, dst_m); 2215 2216 /* 2217 * The object lock does not guarantee that "src_m" will 2218 * transition from invalid to valid, but it does ensure 2219 * that "src_m" will not transition from valid to 2220 * invalid. 2221 */ 2222 dst_m->dirty = dst_m->valid = src_m->valid; 2223 VM_OBJECT_RUNLOCK(object); 2224 } else { 2225 dst_m = src_m; 2226 if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0) 2227 goto again; 2228 if (dst_m->pindex >= dst_object->size) { 2229 /* 2230 * We are upgrading. Index can occur 2231 * out of bounds if the object type is 2232 * vnode and the file was truncated. 2233 */ 2234 vm_page_xunbusy(dst_m); 2235 break; 2236 } 2237 } 2238 2239 /* 2240 * Enter it in the pmap. If a wired, copy-on-write 2241 * mapping is being replaced by a write-enabled 2242 * mapping, then wire that new mapping. 2243 * 2244 * The page can be invalid if the user called 2245 * msync(MS_INVALIDATE) or truncated the backing vnode 2246 * or shared memory object. In this case, do not 2247 * insert it into pmap, but still do the copy so that 2248 * all copies of the wired map entry have similar 2249 * backing pages. 2250 */ 2251 if (vm_page_all_valid(dst_m)) { 2252 VM_OBJECT_WUNLOCK(dst_object); 2253 pmap_enter(dst_map->pmap, vaddr, dst_m, prot, 2254 access | (upgrade ? PMAP_ENTER_WIRED : 0), 0); 2255 VM_OBJECT_WLOCK(dst_object); 2256 } 2257 2258 /* 2259 * Mark it no longer busy, and put it on the active list. 2260 */ 2261 if (upgrade) { 2262 if (src_m != dst_m) { 2263 vm_page_unwire(src_m, PQ_INACTIVE); 2264 vm_page_wire(dst_m); 2265 } else { 2266 KASSERT(vm_page_wired(dst_m), 2267 ("dst_m %p is not wired", dst_m)); 2268 } 2269 } else { 2270 vm_page_activate(dst_m); 2271 } 2272 vm_page_xunbusy(dst_m); 2273 } 2274 VM_OBJECT_WUNLOCK(dst_object); 2275 if (upgrade) { 2276 dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY); 2277 vm_object_deallocate(src_object); 2278 } 2279 } 2280 2281 /* 2282 * Block entry into the machine-independent layer's page fault handler by 2283 * the calling thread. Subsequent calls to vm_fault() by that thread will 2284 * return KERN_PROTECTION_FAILURE. Enable machine-dependent handling of 2285 * spurious page faults. 2286 */ 2287 int 2288 vm_fault_disable_pagefaults(void) 2289 { 2290 2291 return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR)); 2292 } 2293 2294 void 2295 vm_fault_enable_pagefaults(int save) 2296 { 2297 2298 curthread_pflags_restore(save); 2299 } 2300