xref: /freebsd/sys/vm/vm_fault.c (revision b85b9c88eb02298ea7fa3885619f54ac0e930ba4)
1 /*-
2  * SPDX-License-Identifier: (BSD-4-Clause AND MIT-CMU)
3  *
4  * Copyright (c) 1991, 1993
5  *	The Regents of the University of California.  All rights reserved.
6  * Copyright (c) 1994 John S. Dyson
7  * All rights reserved.
8  * Copyright (c) 1994 David Greenman
9  * All rights reserved.
10  *
11  *
12  * This code is derived from software contributed to Berkeley by
13  * The Mach Operating System project at Carnegie-Mellon University.
14  *
15  * Redistribution and use in source and binary forms, with or without
16  * modification, are permitted provided that the following conditions
17  * are met:
18  * 1. Redistributions of source code must retain the above copyright
19  *    notice, this list of conditions and the following disclaimer.
20  * 2. Redistributions in binary form must reproduce the above copyright
21  *    notice, this list of conditions and the following disclaimer in the
22  *    documentation and/or other materials provided with the distribution.
23  * 3. All advertising materials mentioning features or use of this software
24  *    must display the following acknowledgement:
25  *	This product includes software developed by the University of
26  *	California, Berkeley and its contributors.
27  * 4. Neither the name of the University nor the names of its contributors
28  *    may be used to endorse or promote products derived from this software
29  *    without specific prior written permission.
30  *
31  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
32  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
33  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
34  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
35  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
36  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
37  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
38  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
39  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
40  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
41  * SUCH DAMAGE.
42  *
43  *	from: @(#)vm_fault.c	8.4 (Berkeley) 1/12/94
44  *
45  *
46  * Copyright (c) 1987, 1990 Carnegie-Mellon University.
47  * All rights reserved.
48  *
49  * Authors: Avadis Tevanian, Jr., Michael Wayne Young
50  *
51  * Permission to use, copy, modify and distribute this software and
52  * its documentation is hereby granted, provided that both the copyright
53  * notice and this permission notice appear in all copies of the
54  * software, derivative works or modified versions, and any portions
55  * thereof, and that both notices appear in supporting documentation.
56  *
57  * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
58  * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
59  * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
60  *
61  * Carnegie Mellon requests users of this software to return to
62  *
63  *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
64  *  School of Computer Science
65  *  Carnegie Mellon University
66  *  Pittsburgh PA 15213-3890
67  *
68  * any improvements or extensions that they make and grant Carnegie the
69  * rights to redistribute these changes.
70  */
71 
72 /*
73  *	Page fault handling module.
74  */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ktrace.h"
80 #include "opt_vm.h"
81 
82 #include <sys/param.h>
83 #include <sys/systm.h>
84 #include <sys/kernel.h>
85 #include <sys/lock.h>
86 #include <sys/mman.h>
87 #include <sys/mutex.h>
88 #include <sys/proc.h>
89 #include <sys/racct.h>
90 #include <sys/refcount.h>
91 #include <sys/resourcevar.h>
92 #include <sys/rwlock.h>
93 #include <sys/signalvar.h>
94 #include <sys/sysctl.h>
95 #include <sys/sysent.h>
96 #include <sys/vmmeter.h>
97 #include <sys/vnode.h>
98 #ifdef KTRACE
99 #include <sys/ktrace.h>
100 #endif
101 
102 #include <vm/vm.h>
103 #include <vm/vm_param.h>
104 #include <vm/pmap.h>
105 #include <vm/vm_map.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_page.h>
108 #include <vm/vm_pageout.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_pager.h>
111 #include <vm/vm_extern.h>
112 #include <vm/vm_reserv.h>
113 
114 #define PFBAK 4
115 #define PFFOR 4
116 
117 #define	VM_FAULT_READ_DEFAULT	(1 + VM_FAULT_READ_AHEAD_INIT)
118 
119 #define	VM_FAULT_DONTNEED_MIN	1048576
120 
121 struct faultstate {
122 	/* Fault parameters. */
123 	vm_offset_t	vaddr;
124 	vm_page_t	*m_hold;
125 	vm_prot_t	fault_type;
126 	vm_prot_t	prot;
127 	int		fault_flags;
128 	boolean_t	wired;
129 
130 	/* Control state. */
131 	struct timeval	oom_start_time;
132 	bool		oom_started;
133 	int		nera;
134 
135 	/* Page reference for cow. */
136 	vm_page_t m_cow;
137 
138 	/* Current object. */
139 	vm_object_t	object;
140 	vm_pindex_t	pindex;
141 	vm_page_t	m;
142 
143 	/* Top-level map object. */
144 	vm_object_t	first_object;
145 	vm_pindex_t	first_pindex;
146 	vm_page_t	first_m;
147 
148 	/* Map state. */
149 	vm_map_t	map;
150 	vm_map_entry_t	entry;
151 	int		map_generation;
152 	bool		lookup_still_valid;
153 
154 	/* Vnode if locked. */
155 	struct vnode	*vp;
156 };
157 
158 /*
159  * Return codes for internal fault routines.
160  */
161 enum fault_status {
162 	FAULT_SUCCESS = 1,	/* Return success to user. */
163 	FAULT_FAILURE,		/* Return failure to user. */
164 	FAULT_CONTINUE,		/* Continue faulting. */
165 	FAULT_RESTART,		/* Restart fault. */
166 	FAULT_OUT_OF_BOUNDS,	/* Invalid address for pager. */
167 	FAULT_HARD,		/* Performed I/O. */
168 	FAULT_SOFT,		/* Found valid page. */
169 	FAULT_PROTECTION_FAILURE, /* Invalid access. */
170 };
171 
172 static void vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr,
173 	    int ahead);
174 static void vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
175 	    int backward, int forward, bool obj_locked);
176 
177 static int vm_pfault_oom_attempts = 3;
178 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_attempts, CTLFLAG_RWTUN,
179     &vm_pfault_oom_attempts, 0,
180     "Number of page allocation attempts in page fault handler before it "
181     "triggers OOM handling");
182 
183 static int vm_pfault_oom_wait = 10;
184 SYSCTL_INT(_vm, OID_AUTO, pfault_oom_wait, CTLFLAG_RWTUN,
185     &vm_pfault_oom_wait, 0,
186     "Number of seconds to wait for free pages before retrying "
187     "the page fault handler");
188 
189 static inline void
190 fault_page_release(vm_page_t *mp)
191 {
192 	vm_page_t m;
193 
194 	m = *mp;
195 	if (m != NULL) {
196 		/*
197 		 * We are likely to loop around again and attempt to busy
198 		 * this page.  Deactivating it leaves it available for
199 		 * pageout while optimizing fault restarts.
200 		 */
201 		vm_page_deactivate(m);
202 		vm_page_xunbusy(m);
203 		*mp = NULL;
204 	}
205 }
206 
207 static inline void
208 fault_page_free(vm_page_t *mp)
209 {
210 	vm_page_t m;
211 
212 	m = *mp;
213 	if (m != NULL) {
214 		VM_OBJECT_ASSERT_WLOCKED(m->object);
215 		if (!vm_page_wired(m))
216 			vm_page_free(m);
217 		else
218 			vm_page_xunbusy(m);
219 		*mp = NULL;
220 	}
221 }
222 
223 static inline void
224 unlock_map(struct faultstate *fs)
225 {
226 
227 	if (fs->lookup_still_valid) {
228 		vm_map_lookup_done(fs->map, fs->entry);
229 		fs->lookup_still_valid = false;
230 	}
231 }
232 
233 static void
234 unlock_vp(struct faultstate *fs)
235 {
236 
237 	if (fs->vp != NULL) {
238 		vput(fs->vp);
239 		fs->vp = NULL;
240 	}
241 }
242 
243 static void
244 fault_deallocate(struct faultstate *fs)
245 {
246 
247 	fault_page_release(&fs->m_cow);
248 	fault_page_release(&fs->m);
249 	vm_object_pip_wakeup(fs->object);
250 	if (fs->object != fs->first_object) {
251 		VM_OBJECT_WLOCK(fs->first_object);
252 		fault_page_free(&fs->first_m);
253 		VM_OBJECT_WUNLOCK(fs->first_object);
254 		vm_object_pip_wakeup(fs->first_object);
255 	}
256 	vm_object_deallocate(fs->first_object);
257 	unlock_map(fs);
258 	unlock_vp(fs);
259 }
260 
261 static void
262 unlock_and_deallocate(struct faultstate *fs)
263 {
264 
265 	VM_OBJECT_WUNLOCK(fs->object);
266 	fault_deallocate(fs);
267 }
268 
269 static void
270 vm_fault_dirty(struct faultstate *fs, vm_page_t m)
271 {
272 	bool need_dirty;
273 
274 	if (((fs->prot & VM_PROT_WRITE) == 0 &&
275 	    (fs->fault_flags & VM_FAULT_DIRTY) == 0) ||
276 	    (m->oflags & VPO_UNMANAGED) != 0)
277 		return;
278 
279 	VM_PAGE_OBJECT_BUSY_ASSERT(m);
280 
281 	need_dirty = ((fs->fault_type & VM_PROT_WRITE) != 0 &&
282 	    (fs->fault_flags & VM_FAULT_WIRE) == 0) ||
283 	    (fs->fault_flags & VM_FAULT_DIRTY) != 0;
284 
285 	vm_object_set_writeable_dirty(m->object);
286 
287 	/*
288 	 * If the fault is a write, we know that this page is being
289 	 * written NOW so dirty it explicitly to save on
290 	 * pmap_is_modified() calls later.
291 	 *
292 	 * Also, since the page is now dirty, we can possibly tell
293 	 * the pager to release any swap backing the page.
294 	 */
295 	if (need_dirty && vm_page_set_dirty(m) == 0) {
296 		/*
297 		 * If this is a NOSYNC mmap we do not want to set PGA_NOSYNC
298 		 * if the page is already dirty to prevent data written with
299 		 * the expectation of being synced from not being synced.
300 		 * Likewise if this entry does not request NOSYNC then make
301 		 * sure the page isn't marked NOSYNC.  Applications sharing
302 		 * data should use the same flags to avoid ping ponging.
303 		 */
304 		if ((fs->entry->eflags & MAP_ENTRY_NOSYNC) != 0)
305 			vm_page_aflag_set(m, PGA_NOSYNC);
306 		else
307 			vm_page_aflag_clear(m, PGA_NOSYNC);
308 	}
309 
310 }
311 
312 /*
313  * Unlocks fs.first_object and fs.map on success.
314  */
315 static enum fault_status
316 vm_fault_soft_fast(struct faultstate *fs)
317 {
318 	vm_page_t m, m_map;
319 #if VM_NRESERVLEVEL > 0
320 	vm_page_t m_super;
321 	int flags;
322 #endif
323 	int psind;
324 	vm_offset_t vaddr;
325 	enum fault_status res;
326 
327 	MPASS(fs->vp == NULL);
328 
329 	res = FAULT_SUCCESS;
330 	vaddr = fs->vaddr;
331 	vm_object_busy(fs->first_object);
332 	m = vm_page_lookup(fs->first_object, fs->first_pindex);
333 	/* A busy page can be mapped for read|execute access. */
334 	if (m == NULL || ((fs->prot & VM_PROT_WRITE) != 0 &&
335 	    vm_page_busied(m)) || !vm_page_all_valid(m)) {
336 		res = FAULT_FAILURE;
337 		goto out;
338 	}
339 	m_map = m;
340 	psind = 0;
341 #if VM_NRESERVLEVEL > 0
342 	if ((m->flags & PG_FICTITIOUS) == 0 &&
343 	    (m_super = vm_reserv_to_superpage(m)) != NULL &&
344 	    rounddown2(vaddr, pagesizes[m_super->psind]) >= fs->entry->start &&
345 	    roundup2(vaddr + 1, pagesizes[m_super->psind]) <= fs->entry->end &&
346 	    (vaddr & (pagesizes[m_super->psind] - 1)) == (VM_PAGE_TO_PHYS(m) &
347 	    (pagesizes[m_super->psind] - 1)) && !fs->wired &&
348 	    pmap_ps_enabled(fs->map->pmap)) {
349 		flags = PS_ALL_VALID;
350 		if ((fs->prot & VM_PROT_WRITE) != 0) {
351 			/*
352 			 * Create a superpage mapping allowing write access
353 			 * only if none of the constituent pages are busy and
354 			 * all of them are already dirty (except possibly for
355 			 * the page that was faulted on).
356 			 */
357 			flags |= PS_NONE_BUSY;
358 			if ((fs->first_object->flags & OBJ_UNMANAGED) == 0)
359 				flags |= PS_ALL_DIRTY;
360 		}
361 		if (vm_page_ps_test(m_super, flags, m)) {
362 			m_map = m_super;
363 			psind = m_super->psind;
364 			vaddr = rounddown2(vaddr, pagesizes[psind]);
365 			/* Preset the modified bit for dirty superpages. */
366 			if ((flags & PS_ALL_DIRTY) != 0)
367 				fs->fault_type |= VM_PROT_WRITE;
368 		}
369 	}
370 #endif
371 	if (pmap_enter(fs->map->pmap, vaddr, m_map, fs->prot, fs->fault_type |
372 	    PMAP_ENTER_NOSLEEP | (fs->wired ? PMAP_ENTER_WIRED : 0), psind) !=
373 	    KERN_SUCCESS) {
374 		res = FAULT_FAILURE;
375 		goto out;
376 	}
377 	if (fs->m_hold != NULL) {
378 		(*fs->m_hold) = m;
379 		vm_page_wire(m);
380 	}
381 	if (psind == 0 && !fs->wired)
382 		vm_fault_prefault(fs, vaddr, PFBAK, PFFOR, true);
383 	VM_OBJECT_RUNLOCK(fs->first_object);
384 	vm_fault_dirty(fs, m);
385 	vm_map_lookup_done(fs->map, fs->entry);
386 	curthread->td_ru.ru_minflt++;
387 
388 out:
389 	vm_object_unbusy(fs->first_object);
390 	return (res);
391 }
392 
393 static void
394 vm_fault_restore_map_lock(struct faultstate *fs)
395 {
396 
397 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
398 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
399 
400 	if (!vm_map_trylock_read(fs->map)) {
401 		VM_OBJECT_WUNLOCK(fs->first_object);
402 		vm_map_lock_read(fs->map);
403 		VM_OBJECT_WLOCK(fs->first_object);
404 	}
405 	fs->lookup_still_valid = true;
406 }
407 
408 static void
409 vm_fault_populate_check_page(vm_page_t m)
410 {
411 
412 	/*
413 	 * Check each page to ensure that the pager is obeying the
414 	 * interface: the page must be installed in the object, fully
415 	 * valid, and exclusively busied.
416 	 */
417 	MPASS(m != NULL);
418 	MPASS(vm_page_all_valid(m));
419 	MPASS(vm_page_xbusied(m));
420 }
421 
422 static void
423 vm_fault_populate_cleanup(vm_object_t object, vm_pindex_t first,
424     vm_pindex_t last)
425 {
426 	vm_page_t m;
427 	vm_pindex_t pidx;
428 
429 	VM_OBJECT_ASSERT_WLOCKED(object);
430 	MPASS(first <= last);
431 	for (pidx = first, m = vm_page_lookup(object, pidx);
432 	    pidx <= last; pidx++, m = vm_page_next(m)) {
433 		vm_fault_populate_check_page(m);
434 		vm_page_deactivate(m);
435 		vm_page_xunbusy(m);
436 	}
437 }
438 
439 static enum fault_status
440 vm_fault_populate(struct faultstate *fs)
441 {
442 	vm_offset_t vaddr;
443 	vm_page_t m;
444 	vm_pindex_t map_first, map_last, pager_first, pager_last, pidx;
445 	int bdry_idx, i, npages, psind, rv;
446 	enum fault_status res;
447 
448 	MPASS(fs->object == fs->first_object);
449 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
450 	MPASS(blockcount_read(&fs->first_object->paging_in_progress) > 0);
451 	MPASS(fs->first_object->backing_object == NULL);
452 	MPASS(fs->lookup_still_valid);
453 
454 	pager_first = OFF_TO_IDX(fs->entry->offset);
455 	pager_last = pager_first + atop(fs->entry->end - fs->entry->start) - 1;
456 	unlock_map(fs);
457 	unlock_vp(fs);
458 
459 	res = FAULT_SUCCESS;
460 
461 	/*
462 	 * Call the pager (driver) populate() method.
463 	 *
464 	 * There is no guarantee that the method will be called again
465 	 * if the current fault is for read, and a future fault is
466 	 * for write.  Report the entry's maximum allowed protection
467 	 * to the driver.
468 	 */
469 	rv = vm_pager_populate(fs->first_object, fs->first_pindex,
470 	    fs->fault_type, fs->entry->max_protection, &pager_first,
471 	    &pager_last);
472 
473 	VM_OBJECT_ASSERT_WLOCKED(fs->first_object);
474 	if (rv == VM_PAGER_BAD) {
475 		/*
476 		 * VM_PAGER_BAD is the backdoor for a pager to request
477 		 * normal fault handling.
478 		 */
479 		vm_fault_restore_map_lock(fs);
480 		if (fs->map->timestamp != fs->map_generation)
481 			return (FAULT_RESTART);
482 		return (FAULT_CONTINUE);
483 	}
484 	if (rv != VM_PAGER_OK)
485 		return (FAULT_FAILURE); /* AKA SIGSEGV */
486 
487 	/* Ensure that the driver is obeying the interface. */
488 	MPASS(pager_first <= pager_last);
489 	MPASS(fs->first_pindex <= pager_last);
490 	MPASS(fs->first_pindex >= pager_first);
491 	MPASS(pager_last < fs->first_object->size);
492 
493 	vm_fault_restore_map_lock(fs);
494 	bdry_idx = (fs->entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) >>
495 	    MAP_ENTRY_SPLIT_BOUNDARY_SHIFT;
496 	if (fs->map->timestamp != fs->map_generation) {
497 		if (bdry_idx == 0) {
498 			vm_fault_populate_cleanup(fs->first_object, pager_first,
499 			    pager_last);
500 		} else {
501 			m = vm_page_lookup(fs->first_object, pager_first);
502 			if (m != fs->m)
503 				vm_page_xunbusy(m);
504 		}
505 		return (FAULT_RESTART);
506 	}
507 
508 	/*
509 	 * The map is unchanged after our last unlock.  Process the fault.
510 	 *
511 	 * First, the special case of largepage mappings, where
512 	 * populate only busies the first page in superpage run.
513 	 */
514 	if (bdry_idx != 0) {
515 		KASSERT(PMAP_HAS_LARGEPAGES,
516 		    ("missing pmap support for large pages"));
517 		m = vm_page_lookup(fs->first_object, pager_first);
518 		vm_fault_populate_check_page(m);
519 		VM_OBJECT_WUNLOCK(fs->first_object);
520 		vaddr = fs->entry->start + IDX_TO_OFF(pager_first) -
521 		    fs->entry->offset;
522 		/* assert alignment for entry */
523 		KASSERT((vaddr & (pagesizes[bdry_idx] - 1)) == 0,
524     ("unaligned superpage start %#jx pager_first %#jx offset %#jx vaddr %#jx",
525 		    (uintmax_t)fs->entry->start, (uintmax_t)pager_first,
526 		    (uintmax_t)fs->entry->offset, (uintmax_t)vaddr));
527 		KASSERT((VM_PAGE_TO_PHYS(m) & (pagesizes[bdry_idx] - 1)) == 0,
528 		    ("unaligned superpage m %p %#jx", m,
529 		    (uintmax_t)VM_PAGE_TO_PHYS(m)));
530 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot,
531 		    fs->fault_type | (fs->wired ? PMAP_ENTER_WIRED : 0) |
532 		    PMAP_ENTER_LARGEPAGE, bdry_idx);
533 		VM_OBJECT_WLOCK(fs->first_object);
534 		vm_page_xunbusy(m);
535 		if (rv != KERN_SUCCESS) {
536 			res = FAULT_FAILURE;
537 			goto out;
538 		}
539 		if ((fs->fault_flags & VM_FAULT_WIRE) != 0) {
540 			for (i = 0; i < atop(pagesizes[bdry_idx]); i++)
541 				vm_page_wire(m + i);
542 		}
543 		if (fs->m_hold != NULL) {
544 			*fs->m_hold = m + (fs->first_pindex - pager_first);
545 			vm_page_wire(*fs->m_hold);
546 		}
547 		goto out;
548 	}
549 
550 	/*
551 	 * The range [pager_first, pager_last] that is given to the
552 	 * pager is only a hint.  The pager may populate any range
553 	 * within the object that includes the requested page index.
554 	 * In case the pager expanded the range, clip it to fit into
555 	 * the map entry.
556 	 */
557 	map_first = OFF_TO_IDX(fs->entry->offset);
558 	if (map_first > pager_first) {
559 		vm_fault_populate_cleanup(fs->first_object, pager_first,
560 		    map_first - 1);
561 		pager_first = map_first;
562 	}
563 	map_last = map_first + atop(fs->entry->end - fs->entry->start) - 1;
564 	if (map_last < pager_last) {
565 		vm_fault_populate_cleanup(fs->first_object, map_last + 1,
566 		    pager_last);
567 		pager_last = map_last;
568 	}
569 	for (pidx = pager_first, m = vm_page_lookup(fs->first_object, pidx);
570 	    pidx <= pager_last;
571 	    pidx += npages, m = vm_page_next(&m[npages - 1])) {
572 		vaddr = fs->entry->start + IDX_TO_OFF(pidx) - fs->entry->offset;
573 
574 		psind = m->psind;
575 		if (psind > 0 && ((vaddr & (pagesizes[psind] - 1)) != 0 ||
576 		    pidx + OFF_TO_IDX(pagesizes[psind]) - 1 > pager_last ||
577 		    !pmap_ps_enabled(fs->map->pmap) || fs->wired))
578 			psind = 0;
579 
580 		npages = atop(pagesizes[psind]);
581 		for (i = 0; i < npages; i++) {
582 			vm_fault_populate_check_page(&m[i]);
583 			vm_fault_dirty(fs, &m[i]);
584 		}
585 		VM_OBJECT_WUNLOCK(fs->first_object);
586 		rv = pmap_enter(fs->map->pmap, vaddr, m, fs->prot, fs->fault_type |
587 		    (fs->wired ? PMAP_ENTER_WIRED : 0), psind);
588 
589 		/*
590 		 * pmap_enter() may fail for a superpage mapping if additional
591 		 * protection policies prevent the full mapping.
592 		 * For example, this will happen on amd64 if the entire
593 		 * address range does not share the same userspace protection
594 		 * key.  Revert to single-page mappings if this happens.
595 		 */
596 		MPASS(rv == KERN_SUCCESS ||
597 		    (psind > 0 && rv == KERN_PROTECTION_FAILURE));
598 		if (__predict_false(psind > 0 &&
599 		    rv == KERN_PROTECTION_FAILURE)) {
600 			MPASS(!fs->wired);
601 			for (i = 0; i < npages; i++) {
602 				rv = pmap_enter(fs->map->pmap, vaddr + ptoa(i),
603 				    &m[i], fs->prot, fs->fault_type, 0);
604 				MPASS(rv == KERN_SUCCESS);
605 			}
606 		}
607 
608 		VM_OBJECT_WLOCK(fs->first_object);
609 		for (i = 0; i < npages; i++) {
610 			if ((fs->fault_flags & VM_FAULT_WIRE) != 0 &&
611 			    m[i].pindex == fs->first_pindex)
612 				vm_page_wire(&m[i]);
613 			else
614 				vm_page_activate(&m[i]);
615 			if (fs->m_hold != NULL &&
616 			    m[i].pindex == fs->first_pindex) {
617 				(*fs->m_hold) = &m[i];
618 				vm_page_wire(&m[i]);
619 			}
620 			vm_page_xunbusy(&m[i]);
621 		}
622 	}
623 out:
624 	curthread->td_ru.ru_majflt++;
625 	return (res);
626 }
627 
628 static int prot_fault_translation;
629 SYSCTL_INT(_machdep, OID_AUTO, prot_fault_translation, CTLFLAG_RWTUN,
630     &prot_fault_translation, 0,
631     "Control signal to deliver on protection fault");
632 
633 /* compat definition to keep common code for signal translation */
634 #define	UCODE_PAGEFLT	12
635 #ifdef T_PAGEFLT
636 _Static_assert(UCODE_PAGEFLT == T_PAGEFLT, "T_PAGEFLT");
637 #endif
638 
639 /*
640  *	vm_fault_trap:
641  *
642  *	Handle a page fault occurring at the given address,
643  *	requiring the given permissions, in the map specified.
644  *	If successful, the page is inserted into the
645  *	associated physical map.
646  *
647  *	NOTE: the given address should be truncated to the
648  *	proper page address.
649  *
650  *	KERN_SUCCESS is returned if the page fault is handled; otherwise,
651  *	a standard error specifying why the fault is fatal is returned.
652  *
653  *	The map in question must be referenced, and remains so.
654  *	Caller may hold no locks.
655  */
656 int
657 vm_fault_trap(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
658     int fault_flags, int *signo, int *ucode)
659 {
660 	int result;
661 
662 	MPASS(signo == NULL || ucode != NULL);
663 #ifdef KTRACE
664 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULT))
665 		ktrfault(vaddr, fault_type);
666 #endif
667 	result = vm_fault(map, trunc_page(vaddr), fault_type, fault_flags,
668 	    NULL);
669 	KASSERT(result == KERN_SUCCESS || result == KERN_FAILURE ||
670 	    result == KERN_INVALID_ADDRESS ||
671 	    result == KERN_RESOURCE_SHORTAGE ||
672 	    result == KERN_PROTECTION_FAILURE ||
673 	    result == KERN_OUT_OF_BOUNDS,
674 	    ("Unexpected Mach error %d from vm_fault()", result));
675 #ifdef KTRACE
676 	if (map != kernel_map && KTRPOINT(curthread, KTR_FAULTEND))
677 		ktrfaultend(result);
678 #endif
679 	if (result != KERN_SUCCESS && signo != NULL) {
680 		switch (result) {
681 		case KERN_FAILURE:
682 		case KERN_INVALID_ADDRESS:
683 			*signo = SIGSEGV;
684 			*ucode = SEGV_MAPERR;
685 			break;
686 		case KERN_RESOURCE_SHORTAGE:
687 			*signo = SIGBUS;
688 			*ucode = BUS_OOMERR;
689 			break;
690 		case KERN_OUT_OF_BOUNDS:
691 			*signo = SIGBUS;
692 			*ucode = BUS_OBJERR;
693 			break;
694 		case KERN_PROTECTION_FAILURE:
695 			if (prot_fault_translation == 0) {
696 				/*
697 				 * Autodetect.  This check also covers
698 				 * the images without the ABI-tag ELF
699 				 * note.
700 				 */
701 				if (SV_CURPROC_ABI() == SV_ABI_FREEBSD &&
702 				    curproc->p_osrel >= P_OSREL_SIGSEGV) {
703 					*signo = SIGSEGV;
704 					*ucode = SEGV_ACCERR;
705 				} else {
706 					*signo = SIGBUS;
707 					*ucode = UCODE_PAGEFLT;
708 				}
709 			} else if (prot_fault_translation == 1) {
710 				/* Always compat mode. */
711 				*signo = SIGBUS;
712 				*ucode = UCODE_PAGEFLT;
713 			} else {
714 				/* Always SIGSEGV mode. */
715 				*signo = SIGSEGV;
716 				*ucode = SEGV_ACCERR;
717 			}
718 			break;
719 		default:
720 			KASSERT(0, ("Unexpected Mach error %d from vm_fault()",
721 			    result));
722 			break;
723 		}
724 	}
725 	return (result);
726 }
727 
728 static enum fault_status
729 vm_fault_lock_vnode(struct faultstate *fs, bool objlocked)
730 {
731 	struct vnode *vp;
732 	int error, locked;
733 
734 	if (fs->object->type != OBJT_VNODE)
735 		return (FAULT_CONTINUE);
736 	vp = fs->object->handle;
737 	if (vp == fs->vp) {
738 		ASSERT_VOP_LOCKED(vp, "saved vnode is not locked");
739 		return (FAULT_CONTINUE);
740 	}
741 
742 	/*
743 	 * Perform an unlock in case the desired vnode changed while
744 	 * the map was unlocked during a retry.
745 	 */
746 	unlock_vp(fs);
747 
748 	locked = VOP_ISLOCKED(vp);
749 	if (locked != LK_EXCLUSIVE)
750 		locked = LK_SHARED;
751 
752 	/*
753 	 * We must not sleep acquiring the vnode lock while we have
754 	 * the page exclusive busied or the object's
755 	 * paging-in-progress count incremented.  Otherwise, we could
756 	 * deadlock.
757 	 */
758 	error = vget(vp, locked | LK_CANRECURSE | LK_NOWAIT);
759 	if (error == 0) {
760 		fs->vp = vp;
761 		return (FAULT_CONTINUE);
762 	}
763 
764 	vhold(vp);
765 	if (objlocked)
766 		unlock_and_deallocate(fs);
767 	else
768 		fault_deallocate(fs);
769 	error = vget(vp, locked | LK_RETRY | LK_CANRECURSE);
770 	vdrop(vp);
771 	fs->vp = vp;
772 	KASSERT(error == 0, ("vm_fault: vget failed %d", error));
773 	return (FAULT_RESTART);
774 }
775 
776 /*
777  * Calculate the desired readahead.  Handle drop-behind.
778  *
779  * Returns the number of readahead blocks to pass to the pager.
780  */
781 static int
782 vm_fault_readahead(struct faultstate *fs)
783 {
784 	int era, nera;
785 	u_char behavior;
786 
787 	KASSERT(fs->lookup_still_valid, ("map unlocked"));
788 	era = fs->entry->read_ahead;
789 	behavior = vm_map_entry_behavior(fs->entry);
790 	if (behavior == MAP_ENTRY_BEHAV_RANDOM) {
791 		nera = 0;
792 	} else if (behavior == MAP_ENTRY_BEHAV_SEQUENTIAL) {
793 		nera = VM_FAULT_READ_AHEAD_MAX;
794 		if (fs->vaddr == fs->entry->next_read)
795 			vm_fault_dontneed(fs, fs->vaddr, nera);
796 	} else if (fs->vaddr == fs->entry->next_read) {
797 		/*
798 		 * This is a sequential fault.  Arithmetically
799 		 * increase the requested number of pages in
800 		 * the read-ahead window.  The requested
801 		 * number of pages is "# of sequential faults
802 		 * x (read ahead min + 1) + read ahead min"
803 		 */
804 		nera = VM_FAULT_READ_AHEAD_MIN;
805 		if (era > 0) {
806 			nera += era + 1;
807 			if (nera > VM_FAULT_READ_AHEAD_MAX)
808 				nera = VM_FAULT_READ_AHEAD_MAX;
809 		}
810 		if (era == VM_FAULT_READ_AHEAD_MAX)
811 			vm_fault_dontneed(fs, fs->vaddr, nera);
812 	} else {
813 		/*
814 		 * This is a non-sequential fault.
815 		 */
816 		nera = 0;
817 	}
818 	if (era != nera) {
819 		/*
820 		 * A read lock on the map suffices to update
821 		 * the read ahead count safely.
822 		 */
823 		fs->entry->read_ahead = nera;
824 	}
825 
826 	return (nera);
827 }
828 
829 static int
830 vm_fault_lookup(struct faultstate *fs)
831 {
832 	int result;
833 
834 	KASSERT(!fs->lookup_still_valid,
835 	   ("vm_fault_lookup: Map already locked."));
836 	result = vm_map_lookup(&fs->map, fs->vaddr, fs->fault_type |
837 	    VM_PROT_FAULT_LOOKUP, &fs->entry, &fs->first_object,
838 	    &fs->first_pindex, &fs->prot, &fs->wired);
839 	if (result != KERN_SUCCESS) {
840 		unlock_vp(fs);
841 		return (result);
842 	}
843 
844 	fs->map_generation = fs->map->timestamp;
845 
846 	if (fs->entry->eflags & MAP_ENTRY_NOFAULT) {
847 		panic("%s: fault on nofault entry, addr: %#lx",
848 		    __func__, (u_long)fs->vaddr);
849 	}
850 
851 	if (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION &&
852 	    fs->entry->wiring_thread != curthread) {
853 		vm_map_unlock_read(fs->map);
854 		vm_map_lock(fs->map);
855 		if (vm_map_lookup_entry(fs->map, fs->vaddr, &fs->entry) &&
856 		    (fs->entry->eflags & MAP_ENTRY_IN_TRANSITION)) {
857 			unlock_vp(fs);
858 			fs->entry->eflags |= MAP_ENTRY_NEEDS_WAKEUP;
859 			vm_map_unlock_and_wait(fs->map, 0);
860 		} else
861 			vm_map_unlock(fs->map);
862 		return (KERN_RESOURCE_SHORTAGE);
863 	}
864 
865 	MPASS((fs->entry->eflags & MAP_ENTRY_GUARD) == 0);
866 
867 	if (fs->wired)
868 		fs->fault_type = fs->prot | (fs->fault_type & VM_PROT_COPY);
869 	else
870 		KASSERT((fs->fault_flags & VM_FAULT_WIRE) == 0,
871 		    ("!fs->wired && VM_FAULT_WIRE"));
872 	fs->lookup_still_valid = true;
873 
874 	return (KERN_SUCCESS);
875 }
876 
877 static int
878 vm_fault_relookup(struct faultstate *fs)
879 {
880 	vm_object_t retry_object;
881 	vm_pindex_t retry_pindex;
882 	vm_prot_t retry_prot;
883 	int result;
884 
885 	if (!vm_map_trylock_read(fs->map))
886 		return (KERN_RESTART);
887 
888 	fs->lookup_still_valid = true;
889 	if (fs->map->timestamp == fs->map_generation)
890 		return (KERN_SUCCESS);
891 
892 	result = vm_map_lookup_locked(&fs->map, fs->vaddr, fs->fault_type,
893 	    &fs->entry, &retry_object, &retry_pindex, &retry_prot,
894 	    &fs->wired);
895 	if (result != KERN_SUCCESS) {
896 		/*
897 		 * If retry of map lookup would have blocked then
898 		 * retry fault from start.
899 		 */
900 		if (result == KERN_FAILURE)
901 			return (KERN_RESTART);
902 		return (result);
903 	}
904 	if (retry_object != fs->first_object ||
905 	    retry_pindex != fs->first_pindex)
906 		return (KERN_RESTART);
907 
908 	/*
909 	 * Check whether the protection has changed or the object has
910 	 * been copied while we left the map unlocked. Changing from
911 	 * read to write permission is OK - we leave the page
912 	 * write-protected, and catch the write fault. Changing from
913 	 * write to read permission means that we can't mark the page
914 	 * write-enabled after all.
915 	 */
916 	fs->prot &= retry_prot;
917 	fs->fault_type &= retry_prot;
918 	if (fs->prot == 0)
919 		return (KERN_RESTART);
920 
921 	/* Reassert because wired may have changed. */
922 	KASSERT(fs->wired || (fs->fault_flags & VM_FAULT_WIRE) == 0,
923 	    ("!wired && VM_FAULT_WIRE"));
924 
925 	return (KERN_SUCCESS);
926 }
927 
928 static void
929 vm_fault_cow(struct faultstate *fs)
930 {
931 	bool is_first_object_locked;
932 
933 	KASSERT(fs->object != fs->first_object,
934 	    ("source and target COW objects are identical"));
935 
936 	/*
937 	 * This allows pages to be virtually copied from a backing_object
938 	 * into the first_object, where the backing object has no other
939 	 * refs to it, and cannot gain any more refs.  Instead of a bcopy,
940 	 * we just move the page from the backing object to the first
941 	 * object.  Note that we must mark the page dirty in the first
942 	 * object so that it will go out to swap when needed.
943 	 */
944 	is_first_object_locked = false;
945 	if (
946 	    /*
947 	     * Only one shadow object and no other refs.
948 	     */
949 	    fs->object->shadow_count == 1 && fs->object->ref_count == 1 &&
950 	    /*
951 	     * No other ways to look the object up
952 	     */
953 	    fs->object->handle == NULL && (fs->object->flags & OBJ_ANON) != 0 &&
954 	    /*
955 	     * We don't chase down the shadow chain and we can acquire locks.
956 	     */
957 	    (is_first_object_locked = VM_OBJECT_TRYWLOCK(fs->first_object)) &&
958 	    fs->object == fs->first_object->backing_object &&
959 	    VM_OBJECT_TRYWLOCK(fs->object)) {
960 		/*
961 		 * Remove but keep xbusy for replace.  fs->m is moved into
962 		 * fs->first_object and left busy while fs->first_m is
963 		 * conditionally freed.
964 		 */
965 		vm_page_remove_xbusy(fs->m);
966 		vm_page_replace(fs->m, fs->first_object, fs->first_pindex,
967 		    fs->first_m);
968 		vm_page_dirty(fs->m);
969 #if VM_NRESERVLEVEL > 0
970 		/*
971 		 * Rename the reservation.
972 		 */
973 		vm_reserv_rename(fs->m, fs->first_object, fs->object,
974 		    OFF_TO_IDX(fs->first_object->backing_object_offset));
975 #endif
976 		VM_OBJECT_WUNLOCK(fs->object);
977 		VM_OBJECT_WUNLOCK(fs->first_object);
978 		fs->first_m = fs->m;
979 		fs->m = NULL;
980 		VM_CNT_INC(v_cow_optim);
981 	} else {
982 		if (is_first_object_locked)
983 			VM_OBJECT_WUNLOCK(fs->first_object);
984 		/*
985 		 * Oh, well, lets copy it.
986 		 */
987 		pmap_copy_page(fs->m, fs->first_m);
988 		vm_page_valid(fs->first_m);
989 		if (fs->wired && (fs->fault_flags & VM_FAULT_WIRE) == 0) {
990 			vm_page_wire(fs->first_m);
991 			vm_page_unwire(fs->m, PQ_INACTIVE);
992 		}
993 		/*
994 		 * Save the cow page to be released after
995 		 * pmap_enter is complete.
996 		 */
997 		fs->m_cow = fs->m;
998 		fs->m = NULL;
999 
1000 		/*
1001 		 * Typically, the shadow object is either private to this
1002 		 * address space (OBJ_ONEMAPPING) or its pages are read only.
1003 		 * In the highly unusual case where the pages of a shadow object
1004 		 * are read/write shared between this and other address spaces,
1005 		 * we need to ensure that any pmap-level mappings to the
1006 		 * original, copy-on-write page from the backing object are
1007 		 * removed from those other address spaces.
1008 		 *
1009 		 * The flag check is racy, but this is tolerable: if
1010 		 * OBJ_ONEMAPPING is cleared after the check, the busy state
1011 		 * ensures that new mappings of m_cow can't be created.
1012 		 * pmap_enter() will replace an existing mapping in the current
1013 		 * address space.  If OBJ_ONEMAPPING is set after the check,
1014 		 * removing mappings will at worse trigger some unnecessary page
1015 		 * faults.
1016 		 */
1017 		vm_page_assert_xbusied(fs->m_cow);
1018 		if ((fs->first_object->flags & OBJ_ONEMAPPING) == 0)
1019 			pmap_remove_all(fs->m_cow);
1020 	}
1021 
1022 	vm_object_pip_wakeup(fs->object);
1023 
1024 	/*
1025 	 * Only use the new page below...
1026 	 */
1027 	fs->object = fs->first_object;
1028 	fs->pindex = fs->first_pindex;
1029 	fs->m = fs->first_m;
1030 	VM_CNT_INC(v_cow_faults);
1031 	curthread->td_cow++;
1032 }
1033 
1034 static bool
1035 vm_fault_next(struct faultstate *fs)
1036 {
1037 	vm_object_t next_object;
1038 
1039 	/*
1040 	 * The requested page does not exist at this object/
1041 	 * offset.  Remove the invalid page from the object,
1042 	 * waking up anyone waiting for it, and continue on to
1043 	 * the next object.  However, if this is the top-level
1044 	 * object, we must leave the busy page in place to
1045 	 * prevent another process from rushing past us, and
1046 	 * inserting the page in that object at the same time
1047 	 * that we are.
1048 	 */
1049 	if (fs->object == fs->first_object) {
1050 		fs->first_m = fs->m;
1051 		fs->m = NULL;
1052 	} else
1053 		fault_page_free(&fs->m);
1054 
1055 	/*
1056 	 * Move on to the next object.  Lock the next object before
1057 	 * unlocking the current one.
1058 	 */
1059 	VM_OBJECT_ASSERT_WLOCKED(fs->object);
1060 	next_object = fs->object->backing_object;
1061 	if (next_object == NULL)
1062 		return (false);
1063 	MPASS(fs->first_m != NULL);
1064 	KASSERT(fs->object != next_object, ("object loop %p", next_object));
1065 	VM_OBJECT_WLOCK(next_object);
1066 	vm_object_pip_add(next_object, 1);
1067 	if (fs->object != fs->first_object)
1068 		vm_object_pip_wakeup(fs->object);
1069 	fs->pindex += OFF_TO_IDX(fs->object->backing_object_offset);
1070 	VM_OBJECT_WUNLOCK(fs->object);
1071 	fs->object = next_object;
1072 
1073 	return (true);
1074 }
1075 
1076 static void
1077 vm_fault_zerofill(struct faultstate *fs)
1078 {
1079 
1080 	/*
1081 	 * If there's no object left, fill the page in the top
1082 	 * object with zeros.
1083 	 */
1084 	if (fs->object != fs->first_object) {
1085 		vm_object_pip_wakeup(fs->object);
1086 		fs->object = fs->first_object;
1087 		fs->pindex = fs->first_pindex;
1088 	}
1089 	MPASS(fs->first_m != NULL);
1090 	MPASS(fs->m == NULL);
1091 	fs->m = fs->first_m;
1092 	fs->first_m = NULL;
1093 
1094 	/*
1095 	 * Zero the page if necessary and mark it valid.
1096 	 */
1097 	if ((fs->m->flags & PG_ZERO) == 0) {
1098 		pmap_zero_page(fs->m);
1099 	} else {
1100 		VM_CNT_INC(v_ozfod);
1101 	}
1102 	VM_CNT_INC(v_zfod);
1103 	vm_page_valid(fs->m);
1104 }
1105 
1106 /*
1107  * Initiate page fault after timeout.  Returns true if caller should
1108  * do vm_waitpfault() after the call.
1109  */
1110 static bool
1111 vm_fault_allocate_oom(struct faultstate *fs)
1112 {
1113 	struct timeval now;
1114 
1115 	unlock_and_deallocate(fs);
1116 	if (vm_pfault_oom_attempts < 0)
1117 		return (true);
1118 	if (!fs->oom_started) {
1119 		fs->oom_started = true;
1120 		getmicrotime(&fs->oom_start_time);
1121 		return (true);
1122 	}
1123 
1124 	getmicrotime(&now);
1125 	timevalsub(&now, &fs->oom_start_time);
1126 	if (now.tv_sec < vm_pfault_oom_attempts * vm_pfault_oom_wait)
1127 		return (true);
1128 
1129 	if (bootverbose)
1130 		printf(
1131 	    "proc %d (%s) failed to alloc page on fault, starting OOM\n",
1132 		    curproc->p_pid, curproc->p_comm);
1133 	vm_pageout_oom(VM_OOM_MEM_PF);
1134 	fs->oom_started = false;
1135 	return (false);
1136 }
1137 
1138 /*
1139  * Allocate a page directly or via the object populate method.
1140  */
1141 static enum fault_status
1142 vm_fault_allocate(struct faultstate *fs)
1143 {
1144 	struct domainset *dset;
1145 	enum fault_status res;
1146 
1147 	if ((fs->object->flags & OBJ_SIZEVNLOCK) != 0) {
1148 		res = vm_fault_lock_vnode(fs, true);
1149 		MPASS(res == FAULT_CONTINUE || res == FAULT_RESTART);
1150 		if (res == FAULT_RESTART)
1151 			return (res);
1152 	}
1153 
1154 	if (fs->pindex >= fs->object->size) {
1155 		unlock_and_deallocate(fs);
1156 		return (FAULT_OUT_OF_BOUNDS);
1157 	}
1158 
1159 	if (fs->object == fs->first_object &&
1160 	    (fs->first_object->flags & OBJ_POPULATE) != 0 &&
1161 	    fs->first_object->shadow_count == 0) {
1162 		res = vm_fault_populate(fs);
1163 		switch (res) {
1164 		case FAULT_SUCCESS:
1165 		case FAULT_FAILURE:
1166 		case FAULT_RESTART:
1167 			unlock_and_deallocate(fs);
1168 			return (res);
1169 		case FAULT_CONTINUE:
1170 			/*
1171 			 * Pager's populate() method
1172 			 * returned VM_PAGER_BAD.
1173 			 */
1174 			break;
1175 		default:
1176 			panic("inconsistent return codes");
1177 		}
1178 	}
1179 
1180 	/*
1181 	 * Allocate a new page for this object/offset pair.
1182 	 *
1183 	 * If the process has a fatal signal pending, prioritize the allocation
1184 	 * with the expectation that the process will exit shortly and free some
1185 	 * pages.  In particular, the signal may have been posted by the page
1186 	 * daemon in an attempt to resolve an out-of-memory condition.
1187 	 *
1188 	 * The unlocked read of the p_flag is harmless.  At worst, the P_KILLED
1189 	 * might be not observed here, and allocation fails, causing a restart
1190 	 * and new reading of the p_flag.
1191 	 */
1192 	dset = fs->object->domain.dr_policy;
1193 	if (dset == NULL)
1194 		dset = curthread->td_domain.dr_policy;
1195 	if (!vm_page_count_severe_set(&dset->ds_mask) || P_KILLED(curproc)) {
1196 #if VM_NRESERVLEVEL > 0
1197 		vm_object_color(fs->object, atop(fs->vaddr) - fs->pindex);
1198 #endif
1199 		fs->m = vm_page_alloc(fs->object, fs->pindex,
1200 		    P_KILLED(curproc) ? VM_ALLOC_SYSTEM : 0);
1201 	}
1202 	if (fs->m == NULL) {
1203 		if (vm_fault_allocate_oom(fs))
1204 			vm_waitpfault(dset, vm_pfault_oom_wait * hz);
1205 		return (FAULT_RESTART);
1206 	}
1207 	fs->oom_started = false;
1208 
1209 	return (FAULT_CONTINUE);
1210 }
1211 
1212 /*
1213  * Call the pager to retrieve the page if there is a chance
1214  * that the pager has it, and potentially retrieve additional
1215  * pages at the same time.
1216  */
1217 static enum fault_status
1218 vm_fault_getpages(struct faultstate *fs, int *behindp, int *aheadp)
1219 {
1220 	vm_offset_t e_end, e_start;
1221 	int ahead, behind, cluster_offset, rv;
1222 	enum fault_status status;
1223 	u_char behavior;
1224 
1225 	/*
1226 	 * Prepare for unlocking the map.  Save the map
1227 	 * entry's start and end addresses, which are used to
1228 	 * optimize the size of the pager operation below.
1229 	 * Even if the map entry's addresses change after
1230 	 * unlocking the map, using the saved addresses is
1231 	 * safe.
1232 	 */
1233 	e_start = fs->entry->start;
1234 	e_end = fs->entry->end;
1235 	behavior = vm_map_entry_behavior(fs->entry);
1236 
1237 	/*
1238 	 * If the pager for the current object might have
1239 	 * the page, then determine the number of additional
1240 	 * pages to read and potentially reprioritize
1241 	 * previously read pages for earlier reclamation.
1242 	 * These operations should only be performed once per
1243 	 * page fault.  Even if the current pager doesn't
1244 	 * have the page, the number of additional pages to
1245 	 * read will apply to subsequent objects in the
1246 	 * shadow chain.
1247 	 */
1248 	if (fs->nera == -1 && !P_KILLED(curproc))
1249 		fs->nera = vm_fault_readahead(fs);
1250 
1251 	/*
1252 	 * Release the map lock before locking the vnode or
1253 	 * sleeping in the pager.  (If the current object has
1254 	 * a shadow, then an earlier iteration of this loop
1255 	 * may have already unlocked the map.)
1256 	 */
1257 	unlock_map(fs);
1258 
1259 	status = vm_fault_lock_vnode(fs, false);
1260 	MPASS(status == FAULT_CONTINUE || status == FAULT_RESTART);
1261 	if (status == FAULT_RESTART)
1262 		return (status);
1263 	KASSERT(fs->vp == NULL || !fs->map->system_map,
1264 	    ("vm_fault: vnode-backed object mapped by system map"));
1265 
1266 	/*
1267 	 * Page in the requested page and hint the pager,
1268 	 * that it may bring up surrounding pages.
1269 	 */
1270 	if (fs->nera == -1 || behavior == MAP_ENTRY_BEHAV_RANDOM ||
1271 	    P_KILLED(curproc)) {
1272 		behind = 0;
1273 		ahead = 0;
1274 	} else {
1275 		/* Is this a sequential fault? */
1276 		if (fs->nera > 0) {
1277 			behind = 0;
1278 			ahead = fs->nera;
1279 		} else {
1280 			/*
1281 			 * Request a cluster of pages that is
1282 			 * aligned to a VM_FAULT_READ_DEFAULT
1283 			 * page offset boundary within the
1284 			 * object.  Alignment to a page offset
1285 			 * boundary is more likely to coincide
1286 			 * with the underlying file system
1287 			 * block than alignment to a virtual
1288 			 * address boundary.
1289 			 */
1290 			cluster_offset = fs->pindex % VM_FAULT_READ_DEFAULT;
1291 			behind = ulmin(cluster_offset,
1292 			    atop(fs->vaddr - e_start));
1293 			ahead = VM_FAULT_READ_DEFAULT - 1 - cluster_offset;
1294 		}
1295 		ahead = ulmin(ahead, atop(e_end - fs->vaddr) - 1);
1296 	}
1297 	*behindp = behind;
1298 	*aheadp = ahead;
1299 	rv = vm_pager_get_pages(fs->object, &fs->m, 1, behindp, aheadp);
1300 	if (rv == VM_PAGER_OK)
1301 		return (FAULT_HARD);
1302 	if (rv == VM_PAGER_ERROR)
1303 		printf("vm_fault: pager read error, pid %d (%s)\n",
1304 		    curproc->p_pid, curproc->p_comm);
1305 	/*
1306 	 * If an I/O error occurred or the requested page was
1307 	 * outside the range of the pager, clean up and return
1308 	 * an error.
1309 	 */
1310 	if (rv == VM_PAGER_ERROR || rv == VM_PAGER_BAD) {
1311 		VM_OBJECT_WLOCK(fs->object);
1312 		fault_page_free(&fs->m);
1313 		unlock_and_deallocate(fs);
1314 		return (FAULT_OUT_OF_BOUNDS);
1315 	}
1316 	KASSERT(rv == VM_PAGER_FAIL,
1317 	    ("%s: unexpected pager error %d", __func__, rv));
1318 	return (FAULT_CONTINUE);
1319 }
1320 
1321 /*
1322  * Wait/Retry if the page is busy.  We have to do this if the page is
1323  * either exclusive or shared busy because the vm_pager may be using
1324  * read busy for pageouts (and even pageins if it is the vnode pager),
1325  * and we could end up trying to pagein and pageout the same page
1326  * simultaneously.
1327  *
1328  * We can theoretically allow the busy case on a read fault if the page
1329  * is marked valid, but since such pages are typically already pmap'd,
1330  * putting that special case in might be more effort then it is worth.
1331  * We cannot under any circumstances mess around with a shared busied
1332  * page except, perhaps, to pmap it.
1333  */
1334 static void
1335 vm_fault_busy_sleep(struct faultstate *fs)
1336 {
1337 	/*
1338 	 * Reference the page before unlocking and
1339 	 * sleeping so that the page daemon is less
1340 	 * likely to reclaim it.
1341 	 */
1342 	vm_page_aflag_set(fs->m, PGA_REFERENCED);
1343 	if (fs->object != fs->first_object) {
1344 		fault_page_release(&fs->first_m);
1345 		vm_object_pip_wakeup(fs->first_object);
1346 	}
1347 	vm_object_pip_wakeup(fs->object);
1348 	unlock_map(fs);
1349 	if (fs->m != vm_page_lookup(fs->object, fs->pindex) ||
1350 	    !vm_page_busy_sleep(fs->m, "vmpfw", 0))
1351 		VM_OBJECT_WUNLOCK(fs->object);
1352 	VM_CNT_INC(v_intrans);
1353 	vm_object_deallocate(fs->first_object);
1354 }
1355 
1356 /*
1357  * Handle page lookup, populate, allocate, page-in for the current
1358  * object.
1359  *
1360  * The object is locked on entry and will remain locked with a return
1361  * code of FAULT_CONTINUE so that fault may follow the shadow chain.
1362  * Otherwise, the object will be unlocked upon return.
1363  */
1364 static enum fault_status
1365 vm_fault_object(struct faultstate *fs, int *behindp, int *aheadp)
1366 {
1367 	enum fault_status res;
1368 	bool dead;
1369 
1370 	/*
1371 	 * If the object is marked for imminent termination, we retry
1372 	 * here, since the collapse pass has raced with us.  Otherwise,
1373 	 * if we see terminally dead object, return fail.
1374 	 */
1375 	if ((fs->object->flags & OBJ_DEAD) != 0) {
1376 		dead = fs->object->type == OBJT_DEAD;
1377 		unlock_and_deallocate(fs);
1378 		if (dead)
1379 			return (FAULT_PROTECTION_FAILURE);
1380 		pause("vmf_de", 1);
1381 		return (FAULT_RESTART);
1382 	}
1383 
1384 	/*
1385 	 * See if the page is resident.
1386 	 */
1387 	fs->m = vm_page_lookup(fs->object, fs->pindex);
1388 	if (fs->m != NULL) {
1389 		if (!vm_page_tryxbusy(fs->m)) {
1390 			vm_fault_busy_sleep(fs);
1391 			return (FAULT_RESTART);
1392 		}
1393 
1394 		/*
1395 		 * The page is marked busy for other processes and the
1396 		 * pagedaemon.  If it is still completely valid we are
1397 		 * done.
1398 		 */
1399 		if (vm_page_all_valid(fs->m)) {
1400 			VM_OBJECT_WUNLOCK(fs->object);
1401 			return (FAULT_SOFT);
1402 		}
1403 	}
1404 	VM_OBJECT_ASSERT_WLOCKED(fs->object);
1405 
1406 	/*
1407 	 * Page is not resident.  If the pager might contain the page
1408 	 * or this is the beginning of the search, allocate a new
1409 	 * page.  (Default objects are zero-fill, so there is no real
1410 	 * pager for them.)
1411 	 */
1412 	if (fs->m == NULL && (fs->object->type != OBJT_DEFAULT ||
1413 	    fs->object == fs->first_object)) {
1414 		res = vm_fault_allocate(fs);
1415 		if (res != FAULT_CONTINUE)
1416 			return (res);
1417 	}
1418 
1419 	/*
1420 	 * Default objects have no pager so no exclusive busy exists
1421 	 * to protect this page in the chain.  Skip to the next
1422 	 * object without dropping the lock to preserve atomicity of
1423 	 * shadow faults.
1424 	 */
1425 	if (fs->object->type != OBJT_DEFAULT) {
1426 		/*
1427 		 * At this point, we have either allocated a new page
1428 		 * or found an existing page that is only partially
1429 		 * valid.
1430 		 *
1431 		 * We hold a reference on the current object and the
1432 		 * page is exclusive busied.  The exclusive busy
1433 		 * prevents simultaneous faults and collapses while
1434 		 * the object lock is dropped.
1435 		 */
1436 		VM_OBJECT_WUNLOCK(fs->object);
1437 		res = vm_fault_getpages(fs, behindp, aheadp);
1438 		if (res == FAULT_CONTINUE)
1439 			VM_OBJECT_WLOCK(fs->object);
1440 	} else {
1441 		res = FAULT_CONTINUE;
1442 	}
1443 	return (res);
1444 }
1445 
1446 int
1447 vm_fault(vm_map_t map, vm_offset_t vaddr, vm_prot_t fault_type,
1448     int fault_flags, vm_page_t *m_hold)
1449 {
1450 	struct faultstate fs;
1451 	int ahead, behind, faultcount, rv;
1452 	enum fault_status res;
1453 	bool hardfault;
1454 
1455 	VM_CNT_INC(v_vm_faults);
1456 
1457 	if ((curthread->td_pflags & TDP_NOFAULTING) != 0)
1458 		return (KERN_PROTECTION_FAILURE);
1459 
1460 	fs.vp = NULL;
1461 	fs.vaddr = vaddr;
1462 	fs.m_hold = m_hold;
1463 	fs.fault_flags = fault_flags;
1464 	fs.map = map;
1465 	fs.lookup_still_valid = false;
1466 	fs.oom_started = false;
1467 	fs.nera = -1;
1468 	faultcount = 0;
1469 	hardfault = false;
1470 
1471 RetryFault:
1472 	fs.fault_type = fault_type;
1473 
1474 	/*
1475 	 * Find the backing store object and offset into it to begin the
1476 	 * search.
1477 	 */
1478 	rv = vm_fault_lookup(&fs);
1479 	if (rv != KERN_SUCCESS) {
1480 		if (rv == KERN_RESOURCE_SHORTAGE)
1481 			goto RetryFault;
1482 		return (rv);
1483 	}
1484 
1485 	/*
1486 	 * Try to avoid lock contention on the top-level object through
1487 	 * special-case handling of some types of page faults, specifically,
1488 	 * those that are mapping an existing page from the top-level object.
1489 	 * Under this condition, a read lock on the object suffices, allowing
1490 	 * multiple page faults of a similar type to run in parallel.
1491 	 */
1492 	if (fs.vp == NULL /* avoid locked vnode leak */ &&
1493 	    (fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) == 0 &&
1494 	    (fs.fault_flags & (VM_FAULT_WIRE | VM_FAULT_DIRTY)) == 0) {
1495 		VM_OBJECT_RLOCK(fs.first_object);
1496 		res = vm_fault_soft_fast(&fs);
1497 		if (res == FAULT_SUCCESS)
1498 			return (KERN_SUCCESS);
1499 		if (!VM_OBJECT_TRYUPGRADE(fs.first_object)) {
1500 			VM_OBJECT_RUNLOCK(fs.first_object);
1501 			VM_OBJECT_WLOCK(fs.first_object);
1502 		}
1503 	} else {
1504 		VM_OBJECT_WLOCK(fs.first_object);
1505 	}
1506 
1507 	/*
1508 	 * Make a reference to this object to prevent its disposal while we
1509 	 * are messing with it.  Once we have the reference, the map is free
1510 	 * to be diddled.  Since objects reference their shadows (and copies),
1511 	 * they will stay around as well.
1512 	 *
1513 	 * Bump the paging-in-progress count to prevent size changes (e.g.
1514 	 * truncation operations) during I/O.
1515 	 */
1516 	vm_object_reference_locked(fs.first_object);
1517 	vm_object_pip_add(fs.first_object, 1);
1518 
1519 	fs.m_cow = fs.m = fs.first_m = NULL;
1520 
1521 	/*
1522 	 * Search for the page at object/offset.
1523 	 */
1524 	fs.object = fs.first_object;
1525 	fs.pindex = fs.first_pindex;
1526 
1527 	if ((fs.entry->eflags & MAP_ENTRY_SPLIT_BOUNDARY_MASK) != 0) {
1528 		res = vm_fault_allocate(&fs);
1529 		switch (res) {
1530 		case FAULT_RESTART:
1531 			goto RetryFault;
1532 		case FAULT_SUCCESS:
1533 			return (KERN_SUCCESS);
1534 		case FAULT_FAILURE:
1535 			return (KERN_FAILURE);
1536 		case FAULT_OUT_OF_BOUNDS:
1537 			return (KERN_OUT_OF_BOUNDS);
1538 		case FAULT_CONTINUE:
1539 			break;
1540 		default:
1541 			panic("vm_fault: Unhandled status %d", res);
1542 		}
1543 	}
1544 
1545 	while (TRUE) {
1546 		KASSERT(fs.m == NULL,
1547 		    ("page still set %p at loop start", fs.m));
1548 
1549 		res = vm_fault_object(&fs, &behind, &ahead);
1550 		switch (res) {
1551 		case FAULT_SOFT:
1552 			goto found;
1553 		case FAULT_HARD:
1554 			faultcount = behind + 1 + ahead;
1555 			hardfault = true;
1556 			goto found;
1557 		case FAULT_RESTART:
1558 			goto RetryFault;
1559 		case FAULT_SUCCESS:
1560 			return (KERN_SUCCESS);
1561 		case FAULT_FAILURE:
1562 			return (KERN_FAILURE);
1563 		case FAULT_OUT_OF_BOUNDS:
1564 			return (KERN_OUT_OF_BOUNDS);
1565 		case FAULT_PROTECTION_FAILURE:
1566 			return (KERN_PROTECTION_FAILURE);
1567 		case FAULT_CONTINUE:
1568 			break;
1569 		default:
1570 			panic("vm_fault: Unhandled status %d", res);
1571 		}
1572 
1573 		/*
1574 		 * The page was not found in the current object.  Try to
1575 		 * traverse into a backing object or zero fill if none is
1576 		 * found.
1577 		 */
1578 		if (vm_fault_next(&fs))
1579 			continue;
1580 		if ((fs.fault_flags & VM_FAULT_NOFILL) != 0) {
1581 			if (fs.first_object == fs.object)
1582 				fault_page_free(&fs.first_m);
1583 			unlock_and_deallocate(&fs);
1584 			return (KERN_OUT_OF_BOUNDS);
1585 		}
1586 		VM_OBJECT_WUNLOCK(fs.object);
1587 		vm_fault_zerofill(&fs);
1588 		/* Don't try to prefault neighboring pages. */
1589 		faultcount = 1;
1590 		break;
1591 	}
1592 
1593 found:
1594 	/*
1595 	 * A valid page has been found and exclusively busied.  The
1596 	 * object lock must no longer be held.
1597 	 */
1598 	vm_page_assert_xbusied(fs.m);
1599 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1600 
1601 	/*
1602 	 * If the page is being written, but isn't already owned by the
1603 	 * top-level object, we have to copy it into a new page owned by the
1604 	 * top-level object.
1605 	 */
1606 	if (fs.object != fs.first_object) {
1607 		/*
1608 		 * We only really need to copy if we want to write it.
1609 		 */
1610 		if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1611 			vm_fault_cow(&fs);
1612 			/*
1613 			 * We only try to prefault read-only mappings to the
1614 			 * neighboring pages when this copy-on-write fault is
1615 			 * a hard fault.  In other cases, trying to prefault
1616 			 * is typically wasted effort.
1617 			 */
1618 			if (faultcount == 0)
1619 				faultcount = 1;
1620 
1621 		} else {
1622 			fs.prot &= ~VM_PROT_WRITE;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * We must verify that the maps have not changed since our last
1628 	 * lookup.
1629 	 */
1630 	if (!fs.lookup_still_valid) {
1631 		rv = vm_fault_relookup(&fs);
1632 		if (rv != KERN_SUCCESS) {
1633 			fault_deallocate(&fs);
1634 			if (rv == KERN_RESTART)
1635 				goto RetryFault;
1636 			return (rv);
1637 		}
1638 	}
1639 	VM_OBJECT_ASSERT_UNLOCKED(fs.object);
1640 
1641 	/*
1642 	 * If the page was filled by a pager, save the virtual address that
1643 	 * should be faulted on next under a sequential access pattern to the
1644 	 * map entry.  A read lock on the map suffices to update this address
1645 	 * safely.
1646 	 */
1647 	if (hardfault)
1648 		fs.entry->next_read = vaddr + ptoa(ahead) + PAGE_SIZE;
1649 
1650 	/*
1651 	 * Page must be completely valid or it is not fit to
1652 	 * map into user space.  vm_pager_get_pages() ensures this.
1653 	 */
1654 	vm_page_assert_xbusied(fs.m);
1655 	KASSERT(vm_page_all_valid(fs.m),
1656 	    ("vm_fault: page %p partially invalid", fs.m));
1657 
1658 	vm_fault_dirty(&fs, fs.m);
1659 
1660 	/*
1661 	 * Put this page into the physical map.  We had to do the unlock above
1662 	 * because pmap_enter() may sleep.  We don't put the page
1663 	 * back on the active queue until later so that the pageout daemon
1664 	 * won't find it (yet).
1665 	 */
1666 	pmap_enter(fs.map->pmap, vaddr, fs.m, fs.prot,
1667 	    fs.fault_type | (fs.wired ? PMAP_ENTER_WIRED : 0), 0);
1668 	if (faultcount != 1 && (fs.fault_flags & VM_FAULT_WIRE) == 0 &&
1669 	    fs.wired == 0)
1670 		vm_fault_prefault(&fs, vaddr,
1671 		    faultcount > 0 ? behind : PFBAK,
1672 		    faultcount > 0 ? ahead : PFFOR, false);
1673 
1674 	/*
1675 	 * If the page is not wired down, then put it where the pageout daemon
1676 	 * can find it.
1677 	 */
1678 	if ((fs.fault_flags & VM_FAULT_WIRE) != 0)
1679 		vm_page_wire(fs.m);
1680 	else
1681 		vm_page_activate(fs.m);
1682 	if (fs.m_hold != NULL) {
1683 		(*fs.m_hold) = fs.m;
1684 		vm_page_wire(fs.m);
1685 	}
1686 	vm_page_xunbusy(fs.m);
1687 	fs.m = NULL;
1688 
1689 	/*
1690 	 * Unlock everything, and return
1691 	 */
1692 	fault_deallocate(&fs);
1693 	if (hardfault) {
1694 		VM_CNT_INC(v_io_faults);
1695 		curthread->td_ru.ru_majflt++;
1696 #ifdef RACCT
1697 		if (racct_enable && fs.object->type == OBJT_VNODE) {
1698 			PROC_LOCK(curproc);
1699 			if ((fs.fault_type & (VM_PROT_COPY | VM_PROT_WRITE)) != 0) {
1700 				racct_add_force(curproc, RACCT_WRITEBPS,
1701 				    PAGE_SIZE + behind * PAGE_SIZE);
1702 				racct_add_force(curproc, RACCT_WRITEIOPS, 1);
1703 			} else {
1704 				racct_add_force(curproc, RACCT_READBPS,
1705 				    PAGE_SIZE + ahead * PAGE_SIZE);
1706 				racct_add_force(curproc, RACCT_READIOPS, 1);
1707 			}
1708 			PROC_UNLOCK(curproc);
1709 		}
1710 #endif
1711 	} else
1712 		curthread->td_ru.ru_minflt++;
1713 
1714 	return (KERN_SUCCESS);
1715 }
1716 
1717 /*
1718  * Speed up the reclamation of pages that precede the faulting pindex within
1719  * the first object of the shadow chain.  Essentially, perform the equivalent
1720  * to madvise(..., MADV_DONTNEED) on a large cluster of pages that precedes
1721  * the faulting pindex by the cluster size when the pages read by vm_fault()
1722  * cross a cluster-size boundary.  The cluster size is the greater of the
1723  * smallest superpage size and VM_FAULT_DONTNEED_MIN.
1724  *
1725  * When "fs->first_object" is a shadow object, the pages in the backing object
1726  * that precede the faulting pindex are deactivated by vm_fault().  So, this
1727  * function must only be concerned with pages in the first object.
1728  */
1729 static void
1730 vm_fault_dontneed(const struct faultstate *fs, vm_offset_t vaddr, int ahead)
1731 {
1732 	vm_map_entry_t entry;
1733 	vm_object_t first_object;
1734 	vm_offset_t end, start;
1735 	vm_page_t m, m_next;
1736 	vm_pindex_t pend, pstart;
1737 	vm_size_t size;
1738 
1739 	VM_OBJECT_ASSERT_UNLOCKED(fs->object);
1740 	first_object = fs->first_object;
1741 	/* Neither fictitious nor unmanaged pages can be reclaimed. */
1742 	if ((first_object->flags & (OBJ_FICTITIOUS | OBJ_UNMANAGED)) == 0) {
1743 		VM_OBJECT_RLOCK(first_object);
1744 		size = VM_FAULT_DONTNEED_MIN;
1745 		if (MAXPAGESIZES > 1 && size < pagesizes[1])
1746 			size = pagesizes[1];
1747 		end = rounddown2(vaddr, size);
1748 		if (vaddr - end >= size - PAGE_SIZE - ptoa(ahead) &&
1749 		    (entry = fs->entry)->start < end) {
1750 			if (end - entry->start < size)
1751 				start = entry->start;
1752 			else
1753 				start = end - size;
1754 			pmap_advise(fs->map->pmap, start, end, MADV_DONTNEED);
1755 			pstart = OFF_TO_IDX(entry->offset) + atop(start -
1756 			    entry->start);
1757 			m_next = vm_page_find_least(first_object, pstart);
1758 			pend = OFF_TO_IDX(entry->offset) + atop(end -
1759 			    entry->start);
1760 			while ((m = m_next) != NULL && m->pindex < pend) {
1761 				m_next = TAILQ_NEXT(m, listq);
1762 				if (!vm_page_all_valid(m) ||
1763 				    vm_page_busied(m))
1764 					continue;
1765 
1766 				/*
1767 				 * Don't clear PGA_REFERENCED, since it would
1768 				 * likely represent a reference by a different
1769 				 * process.
1770 				 *
1771 				 * Typically, at this point, prefetched pages
1772 				 * are still in the inactive queue.  Only
1773 				 * pages that triggered page faults are in the
1774 				 * active queue.  The test for whether the page
1775 				 * is in the inactive queue is racy; in the
1776 				 * worst case we will requeue the page
1777 				 * unnecessarily.
1778 				 */
1779 				if (!vm_page_inactive(m))
1780 					vm_page_deactivate(m);
1781 			}
1782 		}
1783 		VM_OBJECT_RUNLOCK(first_object);
1784 	}
1785 }
1786 
1787 /*
1788  * vm_fault_prefault provides a quick way of clustering
1789  * pagefaults into a processes address space.  It is a "cousin"
1790  * of vm_map_pmap_enter, except it runs at page fault time instead
1791  * of mmap time.
1792  */
1793 static void
1794 vm_fault_prefault(const struct faultstate *fs, vm_offset_t addra,
1795     int backward, int forward, bool obj_locked)
1796 {
1797 	pmap_t pmap;
1798 	vm_map_entry_t entry;
1799 	vm_object_t backing_object, lobject;
1800 	vm_offset_t addr, starta;
1801 	vm_pindex_t pindex;
1802 	vm_page_t m;
1803 	int i;
1804 
1805 	pmap = fs->map->pmap;
1806 	if (pmap != vmspace_pmap(curthread->td_proc->p_vmspace))
1807 		return;
1808 
1809 	entry = fs->entry;
1810 
1811 	if (addra < backward * PAGE_SIZE) {
1812 		starta = entry->start;
1813 	} else {
1814 		starta = addra - backward * PAGE_SIZE;
1815 		if (starta < entry->start)
1816 			starta = entry->start;
1817 	}
1818 
1819 	/*
1820 	 * Generate the sequence of virtual addresses that are candidates for
1821 	 * prefaulting in an outward spiral from the faulting virtual address,
1822 	 * "addra".  Specifically, the sequence is "addra - PAGE_SIZE", "addra
1823 	 * + PAGE_SIZE", "addra - 2 * PAGE_SIZE", "addra + 2 * PAGE_SIZE", ...
1824 	 * If the candidate address doesn't have a backing physical page, then
1825 	 * the loop immediately terminates.
1826 	 */
1827 	for (i = 0; i < 2 * imax(backward, forward); i++) {
1828 		addr = addra + ((i >> 1) + 1) * ((i & 1) == 0 ? -PAGE_SIZE :
1829 		    PAGE_SIZE);
1830 		if (addr > addra + forward * PAGE_SIZE)
1831 			addr = 0;
1832 
1833 		if (addr < starta || addr >= entry->end)
1834 			continue;
1835 
1836 		if (!pmap_is_prefaultable(pmap, addr))
1837 			continue;
1838 
1839 		pindex = ((addr - entry->start) + entry->offset) >> PAGE_SHIFT;
1840 		lobject = entry->object.vm_object;
1841 		if (!obj_locked)
1842 			VM_OBJECT_RLOCK(lobject);
1843 		while ((m = vm_page_lookup(lobject, pindex)) == NULL &&
1844 		    lobject->type == OBJT_DEFAULT &&
1845 		    (backing_object = lobject->backing_object) != NULL) {
1846 			KASSERT((lobject->backing_object_offset & PAGE_MASK) ==
1847 			    0, ("vm_fault_prefault: unaligned object offset"));
1848 			pindex += lobject->backing_object_offset >> PAGE_SHIFT;
1849 			VM_OBJECT_RLOCK(backing_object);
1850 			if (!obj_locked || lobject != entry->object.vm_object)
1851 				VM_OBJECT_RUNLOCK(lobject);
1852 			lobject = backing_object;
1853 		}
1854 		if (m == NULL) {
1855 			if (!obj_locked || lobject != entry->object.vm_object)
1856 				VM_OBJECT_RUNLOCK(lobject);
1857 			break;
1858 		}
1859 		if (vm_page_all_valid(m) &&
1860 		    (m->flags & PG_FICTITIOUS) == 0)
1861 			pmap_enter_quick(pmap, addr, m, entry->protection);
1862 		if (!obj_locked || lobject != entry->object.vm_object)
1863 			VM_OBJECT_RUNLOCK(lobject);
1864 	}
1865 }
1866 
1867 /*
1868  * Hold each of the physical pages that are mapped by the specified range of
1869  * virtual addresses, ["addr", "addr" + "len"), if those mappings are valid
1870  * and allow the specified types of access, "prot".  If all of the implied
1871  * pages are successfully held, then the number of held pages is returned
1872  * together with pointers to those pages in the array "ma".  However, if any
1873  * of the pages cannot be held, -1 is returned.
1874  */
1875 int
1876 vm_fault_quick_hold_pages(vm_map_t map, vm_offset_t addr, vm_size_t len,
1877     vm_prot_t prot, vm_page_t *ma, int max_count)
1878 {
1879 	vm_offset_t end, va;
1880 	vm_page_t *mp;
1881 	int count;
1882 	boolean_t pmap_failed;
1883 
1884 	if (len == 0)
1885 		return (0);
1886 	end = round_page(addr + len);
1887 	addr = trunc_page(addr);
1888 
1889 	if (!vm_map_range_valid(map, addr, end))
1890 		return (-1);
1891 
1892 	if (atop(end - addr) > max_count)
1893 		panic("vm_fault_quick_hold_pages: count > max_count");
1894 	count = atop(end - addr);
1895 
1896 	/*
1897 	 * Most likely, the physical pages are resident in the pmap, so it is
1898 	 * faster to try pmap_extract_and_hold() first.
1899 	 */
1900 	pmap_failed = FALSE;
1901 	for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE) {
1902 		*mp = pmap_extract_and_hold(map->pmap, va, prot);
1903 		if (*mp == NULL)
1904 			pmap_failed = TRUE;
1905 		else if ((prot & VM_PROT_WRITE) != 0 &&
1906 		    (*mp)->dirty != VM_PAGE_BITS_ALL) {
1907 			/*
1908 			 * Explicitly dirty the physical page.  Otherwise, the
1909 			 * caller's changes may go unnoticed because they are
1910 			 * performed through an unmanaged mapping or by a DMA
1911 			 * operation.
1912 			 *
1913 			 * The object lock is not held here.
1914 			 * See vm_page_clear_dirty_mask().
1915 			 */
1916 			vm_page_dirty(*mp);
1917 		}
1918 	}
1919 	if (pmap_failed) {
1920 		/*
1921 		 * One or more pages could not be held by the pmap.  Either no
1922 		 * page was mapped at the specified virtual address or that
1923 		 * mapping had insufficient permissions.  Attempt to fault in
1924 		 * and hold these pages.
1925 		 *
1926 		 * If vm_fault_disable_pagefaults() was called,
1927 		 * i.e., TDP_NOFAULTING is set, we must not sleep nor
1928 		 * acquire MD VM locks, which means we must not call
1929 		 * vm_fault().  Some (out of tree) callers mark
1930 		 * too wide a code area with vm_fault_disable_pagefaults()
1931 		 * already, use the VM_PROT_QUICK_NOFAULT flag to request
1932 		 * the proper behaviour explicitly.
1933 		 */
1934 		if ((prot & VM_PROT_QUICK_NOFAULT) != 0 &&
1935 		    (curthread->td_pflags & TDP_NOFAULTING) != 0)
1936 			goto error;
1937 		for (mp = ma, va = addr; va < end; mp++, va += PAGE_SIZE)
1938 			if (*mp == NULL && vm_fault(map, va, prot,
1939 			    VM_FAULT_NORMAL, mp) != KERN_SUCCESS)
1940 				goto error;
1941 	}
1942 	return (count);
1943 error:
1944 	for (mp = ma; mp < ma + count; mp++)
1945 		if (*mp != NULL)
1946 			vm_page_unwire(*mp, PQ_INACTIVE);
1947 	return (-1);
1948 }
1949 
1950 /*
1951  *	Routine:
1952  *		vm_fault_copy_entry
1953  *	Function:
1954  *		Create new shadow object backing dst_entry with private copy of
1955  *		all underlying pages. When src_entry is equal to dst_entry,
1956  *		function implements COW for wired-down map entry. Otherwise,
1957  *		it forks wired entry into dst_map.
1958  *
1959  *	In/out conditions:
1960  *		The source and destination maps must be locked for write.
1961  *		The source map entry must be wired down (or be a sharing map
1962  *		entry corresponding to a main map entry that is wired down).
1963  */
1964 void
1965 vm_fault_copy_entry(vm_map_t dst_map, vm_map_t src_map,
1966     vm_map_entry_t dst_entry, vm_map_entry_t src_entry,
1967     vm_ooffset_t *fork_charge)
1968 {
1969 	vm_object_t backing_object, dst_object, object, src_object;
1970 	vm_pindex_t dst_pindex, pindex, src_pindex;
1971 	vm_prot_t access, prot;
1972 	vm_offset_t vaddr;
1973 	vm_page_t dst_m;
1974 	vm_page_t src_m;
1975 	boolean_t upgrade;
1976 
1977 #ifdef	lint
1978 	src_map++;
1979 #endif	/* lint */
1980 
1981 	upgrade = src_entry == dst_entry;
1982 	access = prot = dst_entry->protection;
1983 
1984 	src_object = src_entry->object.vm_object;
1985 	src_pindex = OFF_TO_IDX(src_entry->offset);
1986 
1987 	if (upgrade && (dst_entry->eflags & MAP_ENTRY_NEEDS_COPY) == 0) {
1988 		dst_object = src_object;
1989 		vm_object_reference(dst_object);
1990 	} else {
1991 		/*
1992 		 * Create the top-level object for the destination entry.
1993 		 * Doesn't actually shadow anything - we copy the pages
1994 		 * directly.
1995 		 */
1996 		dst_object = vm_object_allocate_anon(atop(dst_entry->end -
1997 		    dst_entry->start), NULL, NULL, 0);
1998 #if VM_NRESERVLEVEL > 0
1999 		dst_object->flags |= OBJ_COLORED;
2000 		dst_object->pg_color = atop(dst_entry->start);
2001 #endif
2002 		dst_object->domain = src_object->domain;
2003 		dst_object->charge = dst_entry->end - dst_entry->start;
2004 	}
2005 
2006 	VM_OBJECT_WLOCK(dst_object);
2007 	KASSERT(upgrade || dst_entry->object.vm_object == NULL,
2008 	    ("vm_fault_copy_entry: vm_object not NULL"));
2009 	if (src_object != dst_object) {
2010 		dst_entry->object.vm_object = dst_object;
2011 		dst_entry->offset = 0;
2012 		dst_entry->eflags &= ~MAP_ENTRY_VN_EXEC;
2013 	}
2014 	if (fork_charge != NULL) {
2015 		KASSERT(dst_entry->cred == NULL,
2016 		    ("vm_fault_copy_entry: leaked swp charge"));
2017 		dst_object->cred = curthread->td_ucred;
2018 		crhold(dst_object->cred);
2019 		*fork_charge += dst_object->charge;
2020 	} else if ((dst_object->type == OBJT_DEFAULT ||
2021 	    (dst_object->flags & OBJ_SWAP) != 0) &&
2022 	    dst_object->cred == NULL) {
2023 		KASSERT(dst_entry->cred != NULL, ("no cred for entry %p",
2024 		    dst_entry));
2025 		dst_object->cred = dst_entry->cred;
2026 		dst_entry->cred = NULL;
2027 	}
2028 
2029 	/*
2030 	 * If not an upgrade, then enter the mappings in the pmap as
2031 	 * read and/or execute accesses.  Otherwise, enter them as
2032 	 * write accesses.
2033 	 *
2034 	 * A writeable large page mapping is only created if all of
2035 	 * the constituent small page mappings are modified. Marking
2036 	 * PTEs as modified on inception allows promotion to happen
2037 	 * without taking potentially large number of soft faults.
2038 	 */
2039 	if (!upgrade)
2040 		access &= ~VM_PROT_WRITE;
2041 
2042 	/*
2043 	 * Loop through all of the virtual pages within the entry's
2044 	 * range, copying each page from the source object to the
2045 	 * destination object.  Since the source is wired, those pages
2046 	 * must exist.  In contrast, the destination is pageable.
2047 	 * Since the destination object doesn't share any backing storage
2048 	 * with the source object, all of its pages must be dirtied,
2049 	 * regardless of whether they can be written.
2050 	 */
2051 	for (vaddr = dst_entry->start, dst_pindex = 0;
2052 	    vaddr < dst_entry->end;
2053 	    vaddr += PAGE_SIZE, dst_pindex++) {
2054 again:
2055 		/*
2056 		 * Find the page in the source object, and copy it in.
2057 		 * Because the source is wired down, the page will be
2058 		 * in memory.
2059 		 */
2060 		if (src_object != dst_object)
2061 			VM_OBJECT_RLOCK(src_object);
2062 		object = src_object;
2063 		pindex = src_pindex + dst_pindex;
2064 		while ((src_m = vm_page_lookup(object, pindex)) == NULL &&
2065 		    (backing_object = object->backing_object) != NULL) {
2066 			/*
2067 			 * Unless the source mapping is read-only or
2068 			 * it is presently being upgraded from
2069 			 * read-only, the first object in the shadow
2070 			 * chain should provide all of the pages.  In
2071 			 * other words, this loop body should never be
2072 			 * executed when the source mapping is already
2073 			 * read/write.
2074 			 */
2075 			KASSERT((src_entry->protection & VM_PROT_WRITE) == 0 ||
2076 			    upgrade,
2077 			    ("vm_fault_copy_entry: main object missing page"));
2078 
2079 			VM_OBJECT_RLOCK(backing_object);
2080 			pindex += OFF_TO_IDX(object->backing_object_offset);
2081 			if (object != dst_object)
2082 				VM_OBJECT_RUNLOCK(object);
2083 			object = backing_object;
2084 		}
2085 		KASSERT(src_m != NULL, ("vm_fault_copy_entry: page missing"));
2086 
2087 		if (object != dst_object) {
2088 			/*
2089 			 * Allocate a page in the destination object.
2090 			 */
2091 			dst_m = vm_page_alloc(dst_object, (src_object ==
2092 			    dst_object ? src_pindex : 0) + dst_pindex,
2093 			    VM_ALLOC_NORMAL);
2094 			if (dst_m == NULL) {
2095 				VM_OBJECT_WUNLOCK(dst_object);
2096 				VM_OBJECT_RUNLOCK(object);
2097 				vm_wait(dst_object);
2098 				VM_OBJECT_WLOCK(dst_object);
2099 				goto again;
2100 			}
2101 			pmap_copy_page(src_m, dst_m);
2102 			VM_OBJECT_RUNLOCK(object);
2103 			dst_m->dirty = dst_m->valid = src_m->valid;
2104 		} else {
2105 			dst_m = src_m;
2106 			if (vm_page_busy_acquire(dst_m, VM_ALLOC_WAITFAIL) == 0)
2107 				goto again;
2108 			if (dst_m->pindex >= dst_object->size) {
2109 				/*
2110 				 * We are upgrading.  Index can occur
2111 				 * out of bounds if the object type is
2112 				 * vnode and the file was truncated.
2113 				 */
2114 				vm_page_xunbusy(dst_m);
2115 				break;
2116 			}
2117 		}
2118 		VM_OBJECT_WUNLOCK(dst_object);
2119 
2120 		/*
2121 		 * Enter it in the pmap. If a wired, copy-on-write
2122 		 * mapping is being replaced by a write-enabled
2123 		 * mapping, then wire that new mapping.
2124 		 *
2125 		 * The page can be invalid if the user called
2126 		 * msync(MS_INVALIDATE) or truncated the backing vnode
2127 		 * or shared memory object.  In this case, do not
2128 		 * insert it into pmap, but still do the copy so that
2129 		 * all copies of the wired map entry have similar
2130 		 * backing pages.
2131 		 */
2132 		if (vm_page_all_valid(dst_m)) {
2133 			pmap_enter(dst_map->pmap, vaddr, dst_m, prot,
2134 			    access | (upgrade ? PMAP_ENTER_WIRED : 0), 0);
2135 		}
2136 
2137 		/*
2138 		 * Mark it no longer busy, and put it on the active list.
2139 		 */
2140 		VM_OBJECT_WLOCK(dst_object);
2141 
2142 		if (upgrade) {
2143 			if (src_m != dst_m) {
2144 				vm_page_unwire(src_m, PQ_INACTIVE);
2145 				vm_page_wire(dst_m);
2146 			} else {
2147 				KASSERT(vm_page_wired(dst_m),
2148 				    ("dst_m %p is not wired", dst_m));
2149 			}
2150 		} else {
2151 			vm_page_activate(dst_m);
2152 		}
2153 		vm_page_xunbusy(dst_m);
2154 	}
2155 	VM_OBJECT_WUNLOCK(dst_object);
2156 	if (upgrade) {
2157 		dst_entry->eflags &= ~(MAP_ENTRY_COW | MAP_ENTRY_NEEDS_COPY);
2158 		vm_object_deallocate(src_object);
2159 	}
2160 }
2161 
2162 /*
2163  * Block entry into the machine-independent layer's page fault handler by
2164  * the calling thread.  Subsequent calls to vm_fault() by that thread will
2165  * return KERN_PROTECTION_FAILURE.  Enable machine-dependent handling of
2166  * spurious page faults.
2167  */
2168 int
2169 vm_fault_disable_pagefaults(void)
2170 {
2171 
2172 	return (curthread_pflags_set(TDP_NOFAULTING | TDP_RESETSPUR));
2173 }
2174 
2175 void
2176 vm_fault_enable_pagefaults(int save)
2177 {
2178 
2179 	curthread_pflags_restore(save);
2180 }
2181