1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice unmodified, this list of conditions, and the following 13 * disclaimer. 14 * 2. Redistributions in binary form must reproduce the above copyright 15 * notice, this list of conditions and the following disclaimer in the 16 * documentation and/or other materials provided with the distribution. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 28 * 29 * $FreeBSD$ 30 * 31 */ 32 33 #include <sys/counter.h> 34 #include <sys/_bitset.h> 35 #include <sys/_domainset.h> 36 #include <sys/_task.h> 37 38 /* 39 * This file includes definitions, structures, prototypes, and inlines that 40 * should not be used outside of the actual implementation of UMA. 41 */ 42 43 /* 44 * The brief summary; Zones describe unique allocation types. Zones are 45 * organized into per-CPU caches which are filled by buckets. Buckets are 46 * organized according to memory domains. Buckets are filled from kegs which 47 * are also organized according to memory domains. Kegs describe a unique 48 * allocation type, backend memory provider, and layout. Kegs are associated 49 * with one or more zones and zones reference one or more kegs. Kegs provide 50 * slabs which are virtually contiguous collections of pages. Each slab is 51 * broken down int one or more items that will satisfy an individual allocation. 52 * 53 * Allocation is satisfied in the following order: 54 * 1) Per-CPU cache 55 * 2) Per-domain cache of buckets 56 * 3) Slab from any of N kegs 57 * 4) Backend page provider 58 * 59 * More detail on individual objects is contained below: 60 * 61 * Kegs contain lists of slabs which are stored in either the full bin, empty 62 * bin, or partially allocated bin, to reduce fragmentation. They also contain 63 * the user supplied value for size, which is adjusted for alignment purposes 64 * and rsize is the result of that. The Keg also stores information for 65 * managing a hash of page addresses that maps pages to uma_slab_t structures 66 * for pages that don't have embedded uma_slab_t's. 67 * 68 * Keg slab lists are organized by memory domain to support NUMA allocation 69 * policies. By default allocations are spread across domains to reduce the 70 * potential for hotspots. Special keg creation flags may be specified to 71 * prefer location allocation. However there is no strict enforcement as frees 72 * may happen on any CPU and these are returned to the CPU-local cache 73 * regardless of the originating domain. 74 * 75 * The uma_slab_t may be embedded in a UMA_SLAB_SIZE chunk of memory or it may 76 * be allocated off the page from a special slab zone. The free list within a 77 * slab is managed with a bitmask. For item sizes that would yield more than 78 * 10% memory waste we potentially allocate a separate uma_slab_t if this will 79 * improve the number of items per slab that will fit. 80 * 81 * The only really gross cases, with regards to memory waste, are for those 82 * items that are just over half the page size. You can get nearly 50% waste, 83 * so you fall back to the memory footprint of the power of two allocator. I 84 * have looked at memory allocation sizes on many of the machines available to 85 * me, and there does not seem to be an abundance of allocations at this range 86 * so at this time it may not make sense to optimize for it. This can, of 87 * course, be solved with dynamic slab sizes. 88 * 89 * Kegs may serve multiple Zones but by far most of the time they only serve 90 * one. When a Zone is created, a Keg is allocated and setup for it. While 91 * the backing Keg stores slabs, the Zone caches Buckets of items allocated 92 * from the slabs. Each Zone is equipped with an init/fini and ctor/dtor 93 * pair, as well as with its own set of small per-CPU caches, layered above 94 * the Zone's general Bucket cache. 95 * 96 * The PCPU caches are protected by critical sections, and may be accessed 97 * safely only from their associated CPU, while the Zones backed by the same 98 * Keg all share a common Keg lock (to coalesce contention on the backing 99 * slabs). The backing Keg typically only serves one Zone but in the case of 100 * multiple Zones, one of the Zones is considered the Master Zone and all 101 * Zone-related stats from the Keg are done in the Master Zone. For an 102 * example of a Multi-Zone setup, refer to the Mbuf allocation code. 103 */ 104 105 /* 106 * This is the representation for normal (Non OFFPAGE slab) 107 * 108 * i == item 109 * s == slab pointer 110 * 111 * <---------------- Page (UMA_SLAB_SIZE) ------------------> 112 * ___________________________________________________________ 113 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ___________ | 114 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| |slab header|| 115 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| |___________|| 116 * |___________________________________________________________| 117 * 118 * 119 * This is an OFFPAGE slab. These can be larger than UMA_SLAB_SIZE. 120 * 121 * ___________________________________________________________ 122 * | _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 123 * ||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i||i| | 124 * ||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_||_| | 125 * |___________________________________________________________| 126 * ___________ ^ 127 * |slab header| | 128 * |___________|---* 129 * 130 */ 131 132 #ifndef VM_UMA_INT_H 133 #define VM_UMA_INT_H 134 135 #define UMA_SLAB_SIZE PAGE_SIZE /* How big are our slabs? */ 136 #define UMA_SLAB_MASK (PAGE_SIZE - 1) /* Mask to get back to the page */ 137 #define UMA_SLAB_SHIFT PAGE_SHIFT /* Number of bits PAGE_MASK */ 138 139 /* Max waste percentage before going to off page slab management */ 140 #define UMA_MAX_WASTE 10 141 142 /* Max size of a CACHESPREAD slab. */ 143 #define UMA_CACHESPREAD_MAX_SIZE (128 * 1024) 144 145 /* 146 * These flags must not overlap with the UMA_ZONE flags specified in uma.h. 147 */ 148 #define UMA_ZFLAG_OFFPAGE 0x00200000 /* 149 * Force the slab structure 150 * allocation off of the real 151 * memory. 152 */ 153 #define UMA_ZFLAG_HASH 0x00400000 /* 154 * Use a hash table instead of 155 * caching information in the 156 * vm_page. 157 */ 158 #define UMA_ZFLAG_VTOSLAB 0x00800000 /* 159 * Zone uses vtoslab for 160 * lookup. 161 */ 162 #define UMA_ZFLAG_CTORDTOR 0x01000000 /* Zone has ctor/dtor set. */ 163 #define UMA_ZFLAG_LIMIT 0x02000000 /* Zone has limit set. */ 164 #define UMA_ZFLAG_CACHE 0x04000000 /* uma_zcache_create()d it */ 165 #define UMA_ZFLAG_RECLAIMING 0x08000000 /* Running zone_reclaim(). */ 166 #define UMA_ZFLAG_BUCKET 0x10000000 /* Bucket zone. */ 167 #define UMA_ZFLAG_INTERNAL 0x20000000 /* No offpage no PCPU. */ 168 #define UMA_ZFLAG_TRASH 0x40000000 /* Add trash ctor/dtor. */ 169 170 #define UMA_ZFLAG_INHERIT \ 171 (UMA_ZFLAG_OFFPAGE | UMA_ZFLAG_HASH | UMA_ZFLAG_VTOSLAB | \ 172 UMA_ZFLAG_BUCKET | UMA_ZFLAG_INTERNAL) 173 174 #define PRINT_UMA_ZFLAGS "\20" \ 175 "\37TRASH" \ 176 "\36INTERNAL" \ 177 "\35BUCKET" \ 178 "\34RECLAIMING" \ 179 "\33CACHE" \ 180 "\32LIMIT" \ 181 "\31CTORDTOR" \ 182 "\30VTOSLAB" \ 183 "\27HASH" \ 184 "\26OFFPAGE" \ 185 "\23SMR" \ 186 "\22ROUNDROBIN" \ 187 "\21FIRSTTOUCH" \ 188 "\20PCPU" \ 189 "\17NODUMP" \ 190 "\16CACHESPREAD" \ 191 "\15MINBUCKET" \ 192 "\14MAXBUCKET" \ 193 "\13NOBUCKET" \ 194 "\12SECONDARY" \ 195 "\11NOTPAGE" \ 196 "\10VM" \ 197 "\7MTXCLASS" \ 198 "\6NOFREE" \ 199 "\5MALLOC" \ 200 "\4NOTOUCH" \ 201 "\3CONTIG" \ 202 "\2ZINIT" 203 204 /* 205 * Hash table for freed address -> slab translation. 206 * 207 * Only zones with memory not touchable by the allocator use the 208 * hash table. Otherwise slabs are found with vtoslab(). 209 */ 210 #define UMA_HASH_SIZE_INIT 32 211 212 #define UMA_HASH(h, s) ((((uintptr_t)s) >> UMA_SLAB_SHIFT) & (h)->uh_hashmask) 213 214 #define UMA_HASH_INSERT(h, s, mem) \ 215 LIST_INSERT_HEAD(&(h)->uh_slab_hash[UMA_HASH((h), \ 216 (mem))], slab_tohashslab(s), uhs_hlink) 217 218 #define UMA_HASH_REMOVE(h, s) \ 219 LIST_REMOVE(slab_tohashslab(s), uhs_hlink) 220 221 LIST_HEAD(slabhashhead, uma_hash_slab); 222 223 struct uma_hash { 224 struct slabhashhead *uh_slab_hash; /* Hash table for slabs */ 225 u_int uh_hashsize; /* Current size of the hash table */ 226 u_int uh_hashmask; /* Mask used during hashing */ 227 }; 228 229 /* 230 * Align field or structure to cache 'sector' in intel terminology. This 231 * is more efficient with adjacent line prefetch. 232 */ 233 #if defined(__amd64__) || defined(__powerpc64__) 234 #define UMA_SUPER_ALIGN (CACHE_LINE_SIZE * 2) 235 #else 236 #define UMA_SUPER_ALIGN CACHE_LINE_SIZE 237 #endif 238 239 #define UMA_ALIGN __aligned(UMA_SUPER_ALIGN) 240 241 /* 242 * The uma_bucket structure is used to queue and manage buckets divorced 243 * from per-cpu caches. They are loaded into uma_cache_bucket structures 244 * for use. 245 */ 246 struct uma_bucket { 247 STAILQ_ENTRY(uma_bucket) ub_link; /* Link into the zone */ 248 int16_t ub_cnt; /* Count of items in bucket. */ 249 int16_t ub_entries; /* Max items. */ 250 smr_seq_t ub_seq; /* SMR sequence number. */ 251 void *ub_bucket[]; /* actual allocation storage */ 252 }; 253 254 typedef struct uma_bucket * uma_bucket_t; 255 256 /* 257 * The uma_cache_bucket structure is statically allocated on each per-cpu 258 * cache. Its use reduces branches and cache misses in the fast path. 259 */ 260 struct uma_cache_bucket { 261 uma_bucket_t ucb_bucket; 262 int16_t ucb_cnt; 263 int16_t ucb_entries; 264 uint32_t ucb_spare; 265 }; 266 267 typedef struct uma_cache_bucket * uma_cache_bucket_t; 268 269 /* 270 * The uma_cache structure is allocated for each cpu for every zone 271 * type. This optimizes synchronization out of the allocator fast path. 272 */ 273 struct uma_cache { 274 struct uma_cache_bucket uc_freebucket; /* Bucket we're freeing to */ 275 struct uma_cache_bucket uc_allocbucket; /* Bucket to allocate from */ 276 struct uma_cache_bucket uc_crossbucket; /* cross domain bucket */ 277 uint64_t uc_allocs; /* Count of allocations */ 278 uint64_t uc_frees; /* Count of frees */ 279 } UMA_ALIGN; 280 281 typedef struct uma_cache * uma_cache_t; 282 283 LIST_HEAD(slabhead, uma_slab); 284 285 /* 286 * The cache structure pads perfectly into 64 bytes so we use spare 287 * bits from the embedded cache buckets to store information from the zone 288 * and keep all fast-path allocations accessing a single per-cpu line. 289 */ 290 static inline void 291 cache_set_uz_flags(uma_cache_t cache, uint32_t flags) 292 { 293 294 cache->uc_freebucket.ucb_spare = flags; 295 } 296 297 static inline void 298 cache_set_uz_size(uma_cache_t cache, uint32_t size) 299 { 300 301 cache->uc_allocbucket.ucb_spare = size; 302 } 303 304 static inline uint32_t 305 cache_uz_flags(uma_cache_t cache) 306 { 307 308 return (cache->uc_freebucket.ucb_spare); 309 } 310 311 static inline uint32_t 312 cache_uz_size(uma_cache_t cache) 313 { 314 315 return (cache->uc_allocbucket.ucb_spare); 316 } 317 318 /* 319 * Per-domain slab lists. Embedded in the kegs. 320 */ 321 struct uma_domain { 322 struct mtx_padalign ud_lock; /* Lock for the domain lists. */ 323 struct slabhead ud_part_slab; /* partially allocated slabs */ 324 struct slabhead ud_free_slab; /* completely unallocated slabs */ 325 struct slabhead ud_full_slab; /* fully allocated slabs */ 326 uint32_t ud_pages; /* Total page count */ 327 uint32_t ud_free_items; /* Count of items free in all slabs */ 328 uint32_t ud_free_slabs; /* Count of free slabs */ 329 } __aligned(CACHE_LINE_SIZE); 330 331 typedef struct uma_domain * uma_domain_t; 332 333 /* 334 * Keg management structure 335 * 336 * TODO: Optimize for cache line size 337 * 338 */ 339 struct uma_keg { 340 struct uma_hash uk_hash; 341 LIST_HEAD(,uma_zone) uk_zones; /* Keg's zones */ 342 343 struct domainset_ref uk_dr; /* Domain selection policy. */ 344 uint32_t uk_align; /* Alignment mask */ 345 uint32_t uk_reserve; /* Number of reserved items. */ 346 uint32_t uk_size; /* Requested size of each item */ 347 uint32_t uk_rsize; /* Real size of each item */ 348 349 uma_init uk_init; /* Keg's init routine */ 350 uma_fini uk_fini; /* Keg's fini routine */ 351 uma_alloc uk_allocf; /* Allocation function */ 352 uma_free uk_freef; /* Free routine */ 353 354 u_long uk_offset; /* Next free offset from base KVA */ 355 vm_offset_t uk_kva; /* Zone base KVA */ 356 357 uint32_t uk_pgoff; /* Offset to uma_slab struct */ 358 uint16_t uk_ppera; /* pages per allocation from backend */ 359 uint16_t uk_ipers; /* Items per slab */ 360 uint32_t uk_flags; /* Internal flags */ 361 362 /* Least used fields go to the last cache line. */ 363 const char *uk_name; /* Name of creating zone. */ 364 LIST_ENTRY(uma_keg) uk_link; /* List of all kegs */ 365 366 /* Must be last, variable sized. */ 367 struct uma_domain uk_domain[]; /* Keg's slab lists. */ 368 }; 369 typedef struct uma_keg * uma_keg_t; 370 371 /* 372 * Free bits per-slab. 373 */ 374 #define SLAB_MAX_SETSIZE (PAGE_SIZE / UMA_SMALLEST_UNIT) 375 #define SLAB_MIN_SETSIZE _BITSET_BITS 376 BITSET_DEFINE(noslabbits, 0); 377 378 /* 379 * The slab structure manages a single contiguous allocation from backing 380 * store and subdivides it into individually allocatable items. 381 */ 382 struct uma_slab { 383 LIST_ENTRY(uma_slab) us_link; /* slabs in zone */ 384 uint16_t us_freecount; /* How many are free? */ 385 uint8_t us_flags; /* Page flags see uma.h */ 386 uint8_t us_domain; /* Backing NUMA domain. */ 387 struct noslabbits us_free; /* Free bitmask, flexible. */ 388 }; 389 _Static_assert(sizeof(struct uma_slab) == __offsetof(struct uma_slab, us_free), 390 "us_free field must be last"); 391 _Static_assert(MAXMEMDOM < 255, 392 "us_domain field is not wide enough"); 393 394 typedef struct uma_slab * uma_slab_t; 395 396 /* 397 * Slab structure with a full sized bitset and hash link for both 398 * HASH and OFFPAGE zones. 399 */ 400 struct uma_hash_slab { 401 LIST_ENTRY(uma_hash_slab) uhs_hlink; /* Link for hash table */ 402 uint8_t *uhs_data; /* First item */ 403 struct uma_slab uhs_slab; /* Must be last. */ 404 }; 405 406 typedef struct uma_hash_slab * uma_hash_slab_t; 407 408 static inline uma_hash_slab_t 409 slab_tohashslab(uma_slab_t slab) 410 { 411 412 return (__containerof(slab, struct uma_hash_slab, uhs_slab)); 413 } 414 415 static inline void * 416 slab_data(uma_slab_t slab, uma_keg_t keg) 417 { 418 419 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) == 0) 420 return ((void *)((uintptr_t)slab - keg->uk_pgoff)); 421 else 422 return (slab_tohashslab(slab)->uhs_data); 423 } 424 425 static inline void * 426 slab_item(uma_slab_t slab, uma_keg_t keg, int index) 427 { 428 uintptr_t data; 429 430 data = (uintptr_t)slab_data(slab, keg); 431 return ((void *)(data + keg->uk_rsize * index)); 432 } 433 434 static inline int 435 slab_item_index(uma_slab_t slab, uma_keg_t keg, void *item) 436 { 437 uintptr_t data; 438 439 data = (uintptr_t)slab_data(slab, keg); 440 return (((uintptr_t)item - data) / keg->uk_rsize); 441 } 442 443 STAILQ_HEAD(uma_bucketlist, uma_bucket); 444 445 struct uma_zone_domain { 446 struct uma_bucketlist uzd_buckets; /* full buckets */ 447 uma_bucket_t uzd_cross; /* Fills from cross buckets. */ 448 long uzd_nitems; /* total item count */ 449 long uzd_imax; /* maximum item count this period */ 450 long uzd_imin; /* minimum item count this period */ 451 long uzd_wss; /* working set size estimate */ 452 smr_seq_t uzd_seq; /* Lowest queued seq. */ 453 struct mtx uzd_lock; /* Lock for the domain */ 454 } __aligned(CACHE_LINE_SIZE); 455 456 typedef struct uma_zone_domain * uma_zone_domain_t; 457 458 /* 459 * Zone structure - per memory type. 460 */ 461 struct uma_zone { 462 /* Offset 0, used in alloc/free fast/medium fast path and const. */ 463 uint32_t uz_flags; /* Flags inherited from kegs */ 464 uint32_t uz_size; /* Size inherited from kegs */ 465 uma_ctor uz_ctor; /* Constructor for each allocation */ 466 uma_dtor uz_dtor; /* Destructor */ 467 smr_t uz_smr; /* Safe memory reclaim context. */ 468 uint64_t uz_max_items; /* Maximum number of items to alloc */ 469 uint64_t uz_bucket_max; /* Maximum bucket cache size */ 470 uint16_t uz_bucket_size; /* Number of items in full bucket */ 471 uint16_t uz_bucket_size_max; /* Maximum number of bucket items */ 472 uint32_t uz_sleepers; /* Threads sleeping on limit */ 473 counter_u64_t uz_xdomain; /* Total number of cross-domain frees */ 474 475 /* Offset 64, used in bucket replenish. */ 476 uma_keg_t uz_keg; /* This zone's keg if !CACHE */ 477 uma_import uz_import; /* Import new memory to cache. */ 478 uma_release uz_release; /* Release memory from cache. */ 479 void *uz_arg; /* Import/release argument. */ 480 uma_init uz_init; /* Initializer for each item */ 481 uma_fini uz_fini; /* Finalizer for each item. */ 482 volatile uint64_t uz_items; /* Total items count & sleepers */ 483 uint64_t uz_sleeps; /* Total number of alloc sleeps */ 484 485 /* Offset 128 Rare stats, misc read-only. */ 486 LIST_ENTRY(uma_zone) uz_link; /* List of all zones in keg */ 487 counter_u64_t uz_allocs; /* Total number of allocations */ 488 counter_u64_t uz_frees; /* Total number of frees */ 489 counter_u64_t uz_fails; /* Total number of alloc failures */ 490 const char *uz_name; /* Text name of the zone */ 491 char *uz_ctlname; /* sysctl safe name string. */ 492 int uz_namecnt; /* duplicate name count. */ 493 uint16_t uz_bucket_size_min; /* Min number of items in bucket */ 494 uint16_t uz_pad0; 495 496 /* Offset 192, rare read-only. */ 497 struct sysctl_oid *uz_oid; /* sysctl oid pointer. */ 498 const char *uz_warning; /* Warning to print on failure */ 499 struct timeval uz_ratecheck; /* Warnings rate-limiting */ 500 struct task uz_maxaction; /* Task to run when at limit */ 501 502 /* Offset 256. */ 503 struct mtx uz_cross_lock; /* Cross domain free lock */ 504 505 /* 506 * This HAS to be the last item because we adjust the zone size 507 * based on NCPU and then allocate the space for the zones. 508 */ 509 struct uma_cache uz_cpu[]; /* Per cpu caches */ 510 511 /* domains follow here. */ 512 }; 513 514 /* 515 * Macros for interpreting the uz_items field. 20 bits of sleeper count 516 * and 44 bit of item count. 517 */ 518 #define UZ_ITEMS_SLEEPER_SHIFT 44LL 519 #define UZ_ITEMS_SLEEPERS_MAX ((1 << (64 - UZ_ITEMS_SLEEPER_SHIFT)) - 1) 520 #define UZ_ITEMS_COUNT_MASK ((1LL << UZ_ITEMS_SLEEPER_SHIFT) - 1) 521 #define UZ_ITEMS_COUNT(x) ((x) & UZ_ITEMS_COUNT_MASK) 522 #define UZ_ITEMS_SLEEPERS(x) ((x) >> UZ_ITEMS_SLEEPER_SHIFT) 523 #define UZ_ITEMS_SLEEPER (1LL << UZ_ITEMS_SLEEPER_SHIFT) 524 525 #define ZONE_ASSERT_COLD(z) \ 526 KASSERT(uma_zone_get_allocs((z)) == 0, \ 527 ("zone %s initialization after use.", (z)->uz_name)) 528 529 #undef UMA_ALIGN 530 531 #ifdef _KERNEL 532 /* Internal prototypes */ 533 static __inline uma_slab_t hash_sfind(struct uma_hash *hash, uint8_t *data); 534 535 /* Lock Macros */ 536 537 #define KEG_LOCKPTR(k, d) (struct mtx *)&(k)->uk_domain[(d)].ud_lock 538 #define KEG_LOCK_INIT(k, d, lc) \ 539 do { \ 540 if ((lc)) \ 541 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ 542 (k)->uk_name, MTX_DEF | MTX_DUPOK); \ 543 else \ 544 mtx_init(KEG_LOCKPTR(k, d), (k)->uk_name, \ 545 "UMA zone", MTX_DEF | MTX_DUPOK); \ 546 } while (0) 547 548 #define KEG_LOCK_FINI(k, d) mtx_destroy(KEG_LOCKPTR(k, d)) 549 #define KEG_LOCK(k, d) \ 550 ({ mtx_lock(KEG_LOCKPTR(k, d)); KEG_LOCKPTR(k, d); }) 551 #define KEG_UNLOCK(k, d) mtx_unlock(KEG_LOCKPTR(k, d)) 552 #define KEG_LOCK_ASSERT(k, d) mtx_assert(KEG_LOCKPTR(k, d), MA_OWNED) 553 554 #define KEG_GET(zone, keg) do { \ 555 (keg) = (zone)->uz_keg; \ 556 KASSERT((void *)(keg) != NULL, \ 557 ("%s: Invalid zone %p type", __func__, (zone))); \ 558 } while (0) 559 560 #define KEG_ASSERT_COLD(k) \ 561 KASSERT(uma_keg_get_allocs((k)) == 0, \ 562 ("keg %s initialization after use.", (k)->uk_name)) 563 564 /* Domains are contiguous after the last CPU */ 565 #define ZDOM_GET(z, n) \ 566 (&((uma_zone_domain_t)&(z)->uz_cpu[mp_maxid + 1])[n]) 567 568 #define ZDOM_LOCK_INIT(z, zdom, lc) \ 569 do { \ 570 if ((lc)) \ 571 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \ 572 (z)->uz_name, MTX_DEF | MTX_DUPOK); \ 573 else \ 574 mtx_init(&(zdom)->uzd_lock, (z)->uz_name, \ 575 "UMA zone", MTX_DEF | MTX_DUPOK); \ 576 } while (0) 577 #define ZDOM_LOCK_FINI(z) mtx_destroy(&(z)->uzd_lock) 578 #define ZDOM_LOCK_ASSERT(z) mtx_assert(&(z)->uzd_lock, MA_OWNED) 579 580 #define ZDOM_LOCK(z) mtx_lock(&(z)->uzd_lock) 581 #define ZDOM_OWNED(z) (mtx_owner(&(z)->uzd_lock) != NULL) 582 #define ZDOM_UNLOCK(z) mtx_unlock(&(z)->uzd_lock) 583 584 #define ZONE_LOCK(z) ZDOM_LOCK(ZDOM_GET((z), 0)) 585 #define ZONE_UNLOCK(z) ZDOM_UNLOCK(ZDOM_GET((z), 0)) 586 587 #define ZONE_CROSS_LOCK_INIT(z) \ 588 mtx_init(&(z)->uz_cross_lock, "UMA Cross", NULL, MTX_DEF) 589 #define ZONE_CROSS_LOCK(z) mtx_lock(&(z)->uz_cross_lock) 590 #define ZONE_CROSS_UNLOCK(z) mtx_unlock(&(z)->uz_cross_lock) 591 #define ZONE_CROSS_LOCK_FINI(z) mtx_destroy(&(z)->uz_cross_lock) 592 593 /* 594 * Find a slab within a hash table. This is used for OFFPAGE zones to lookup 595 * the slab structure. 596 * 597 * Arguments: 598 * hash The hash table to search. 599 * data The base page of the item. 600 * 601 * Returns: 602 * A pointer to a slab if successful, else NULL. 603 */ 604 static __inline uma_slab_t 605 hash_sfind(struct uma_hash *hash, uint8_t *data) 606 { 607 uma_hash_slab_t slab; 608 u_int hval; 609 610 hval = UMA_HASH(hash, data); 611 612 LIST_FOREACH(slab, &hash->uh_slab_hash[hval], uhs_hlink) { 613 if ((uint8_t *)slab->uhs_data == data) 614 return (&slab->uhs_slab); 615 } 616 return (NULL); 617 } 618 619 static __inline uma_slab_t 620 vtoslab(vm_offset_t va) 621 { 622 vm_page_t p; 623 624 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 625 return (p->plinks.uma.slab); 626 } 627 628 static __inline void 629 vtozoneslab(vm_offset_t va, uma_zone_t *zone, uma_slab_t *slab) 630 { 631 vm_page_t p; 632 633 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 634 *slab = p->plinks.uma.slab; 635 *zone = p->plinks.uma.zone; 636 } 637 638 static __inline void 639 vsetzoneslab(vm_offset_t va, uma_zone_t zone, uma_slab_t slab) 640 { 641 vm_page_t p; 642 643 p = PHYS_TO_VM_PAGE(pmap_kextract(va)); 644 p->plinks.uma.slab = slab; 645 p->plinks.uma.zone = zone; 646 } 647 648 extern unsigned long uma_kmem_limit; 649 extern unsigned long uma_kmem_total; 650 651 /* Adjust bytes under management by UMA. */ 652 static inline void 653 uma_total_dec(unsigned long size) 654 { 655 656 atomic_subtract_long(&uma_kmem_total, size); 657 } 658 659 static inline void 660 uma_total_inc(unsigned long size) 661 { 662 663 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 664 uma_reclaim_wakeup(); 665 } 666 667 /* 668 * The following two functions may be defined by architecture specific code 669 * if they can provide more efficient allocation functions. This is useful 670 * for using direct mapped addresses. 671 */ 672 void *uma_small_alloc(uma_zone_t zone, vm_size_t bytes, int domain, 673 uint8_t *pflag, int wait); 674 void uma_small_free(void *mem, vm_size_t size, uint8_t flags); 675 676 /* Set a global soft limit on UMA managed memory. */ 677 void uma_set_limit(unsigned long limit); 678 679 #endif /* _KERNEL */ 680 681 #endif /* VM_UMA_INT_H */ 682