xref: /freebsd/sys/vm/uma_core.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*-
2  * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org>
3  * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org>
4  * Copyright (c) 2004-2006 Robert N. M. Watson
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice unmodified, this list of conditions, and the following
12  *    disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  */
28 
29 /*
30  * uma_core.c  Implementation of the Universal Memory allocator
31  *
32  * This allocator is intended to replace the multitude of similar object caches
33  * in the standard FreeBSD kernel.  The intent is to be flexible as well as
34  * effecient.  A primary design goal is to return unused memory to the rest of
35  * the system.  This will make the system as a whole more flexible due to the
36  * ability to move memory to subsystems which most need it instead of leaving
37  * pools of reserved memory unused.
38  *
39  * The basic ideas stem from similar slab/zone based allocators whose algorithms
40  * are well known.
41  *
42  */
43 
44 /*
45  * TODO:
46  *	- Improve memory usage for large allocations
47  *	- Investigate cache size adjustments
48  */
49 
50 #include <sys/cdefs.h>
51 __FBSDID("$FreeBSD$");
52 
53 /* I should really use ktr.. */
54 /*
55 #define UMA_DEBUG 1
56 #define UMA_DEBUG_ALLOC 1
57 #define UMA_DEBUG_ALLOC_1 1
58 */
59 
60 #include "opt_ddb.h"
61 #include "opt_param.h"
62 #include "opt_vm.h"
63 
64 #include <sys/param.h>
65 #include <sys/systm.h>
66 #include <sys/bitset.h>
67 #include <sys/kernel.h>
68 #include <sys/types.h>
69 #include <sys/queue.h>
70 #include <sys/malloc.h>
71 #include <sys/ktr.h>
72 #include <sys/lock.h>
73 #include <sys/sysctl.h>
74 #include <sys/mutex.h>
75 #include <sys/proc.h>
76 #include <sys/random.h>
77 #include <sys/rwlock.h>
78 #include <sys/sbuf.h>
79 #include <sys/sched.h>
80 #include <sys/smp.h>
81 #include <sys/vmmeter.h>
82 
83 #include <vm/vm.h>
84 #include <vm/vm_object.h>
85 #include <vm/vm_page.h>
86 #include <vm/vm_pageout.h>
87 #include <vm/vm_param.h>
88 #include <vm/vm_map.h>
89 #include <vm/vm_kern.h>
90 #include <vm/vm_extern.h>
91 #include <vm/uma.h>
92 #include <vm/uma_int.h>
93 #include <vm/uma_dbg.h>
94 
95 #include <ddb/ddb.h>
96 
97 #ifdef DEBUG_MEMGUARD
98 #include <vm/memguard.h>
99 #endif
100 
101 /*
102  * This is the zone and keg from which all zones are spawned.  The idea is that
103  * even the zone & keg heads are allocated from the allocator, so we use the
104  * bss section to bootstrap us.
105  */
106 static struct uma_keg masterkeg;
107 static struct uma_zone masterzone_k;
108 static struct uma_zone masterzone_z;
109 static uma_zone_t kegs = &masterzone_k;
110 static uma_zone_t zones = &masterzone_z;
111 
112 /* This is the zone from which all of uma_slab_t's are allocated. */
113 static uma_zone_t slabzone;
114 static uma_zone_t slabrefzone;	/* With refcounters (for UMA_ZONE_REFCNT) */
115 
116 /*
117  * The initial hash tables come out of this zone so they can be allocated
118  * prior to malloc coming up.
119  */
120 static uma_zone_t hashzone;
121 
122 /* The boot-time adjusted value for cache line alignment. */
123 int uma_align_cache = 64 - 1;
124 
125 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets");
126 
127 /*
128  * Are we allowed to allocate buckets?
129  */
130 static int bucketdisable = 1;
131 
132 /* Linked list of all kegs in the system */
133 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs);
134 
135 /* Linked list of all cache-only zones in the system */
136 static LIST_HEAD(,uma_zone) uma_cachezones =
137     LIST_HEAD_INITIALIZER(uma_cachezones);
138 
139 /* This RW lock protects the keg list */
140 static struct rwlock_padalign uma_rwlock;
141 
142 /* Linked list of boot time pages */
143 static LIST_HEAD(,uma_slab) uma_boot_pages =
144     LIST_HEAD_INITIALIZER(uma_boot_pages);
145 
146 /* This mutex protects the boot time pages list */
147 static struct mtx_padalign uma_boot_pages_mtx;
148 
149 /* Is the VM done starting up? */
150 static int booted = 0;
151 #define	UMA_STARTUP	1
152 #define	UMA_STARTUP2	2
153 
154 /*
155  * Only mbuf clusters use ref zones.  Just provide enough references
156  * to support the one user.  New code should not use the ref facility.
157  */
158 static const u_int uma_max_ipers_ref = PAGE_SIZE / MCLBYTES;
159 
160 /*
161  * This is the handle used to schedule events that need to happen
162  * outside of the allocation fast path.
163  */
164 static struct callout uma_callout;
165 #define	UMA_TIMEOUT	20		/* Seconds for callout interval. */
166 
167 /*
168  * This structure is passed as the zone ctor arg so that I don't have to create
169  * a special allocation function just for zones.
170  */
171 struct uma_zctor_args {
172 	const char *name;
173 	size_t size;
174 	uma_ctor ctor;
175 	uma_dtor dtor;
176 	uma_init uminit;
177 	uma_fini fini;
178 	uma_import import;
179 	uma_release release;
180 	void *arg;
181 	uma_keg_t keg;
182 	int align;
183 	uint32_t flags;
184 };
185 
186 struct uma_kctor_args {
187 	uma_zone_t zone;
188 	size_t size;
189 	uma_init uminit;
190 	uma_fini fini;
191 	int align;
192 	uint32_t flags;
193 };
194 
195 struct uma_bucket_zone {
196 	uma_zone_t	ubz_zone;
197 	char		*ubz_name;
198 	int		ubz_entries;	/* Number of items it can hold. */
199 	int		ubz_maxsize;	/* Maximum allocation size per-item. */
200 };
201 
202 /*
203  * Compute the actual number of bucket entries to pack them in power
204  * of two sizes for more efficient space utilization.
205  */
206 #define	BUCKET_SIZE(n)						\
207     (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *))
208 
209 #define	BUCKET_MAX	BUCKET_SIZE(256)
210 
211 struct uma_bucket_zone bucket_zones[] = {
212 	{ NULL, "4 Bucket", BUCKET_SIZE(4), 4096 },
213 	{ NULL, "6 Bucket", BUCKET_SIZE(6), 3072 },
214 	{ NULL, "8 Bucket", BUCKET_SIZE(8), 2048 },
215 	{ NULL, "12 Bucket", BUCKET_SIZE(12), 1536 },
216 	{ NULL, "16 Bucket", BUCKET_SIZE(16), 1024 },
217 	{ NULL, "32 Bucket", BUCKET_SIZE(32), 512 },
218 	{ NULL, "64 Bucket", BUCKET_SIZE(64), 256 },
219 	{ NULL, "128 Bucket", BUCKET_SIZE(128), 128 },
220 	{ NULL, "256 Bucket", BUCKET_SIZE(256), 64 },
221 	{ NULL, NULL, 0}
222 };
223 
224 /*
225  * Flags and enumerations to be passed to internal functions.
226  */
227 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI };
228 
229 /* Prototypes.. */
230 
231 static void *noobj_alloc(uma_zone_t, int, uint8_t *, int);
232 static void *page_alloc(uma_zone_t, int, uint8_t *, int);
233 static void *startup_alloc(uma_zone_t, int, uint8_t *, int);
234 static void page_free(void *, int, uint8_t);
235 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int);
236 static void cache_drain(uma_zone_t);
237 static void bucket_drain(uma_zone_t, uma_bucket_t);
238 static void bucket_cache_drain(uma_zone_t zone);
239 static int keg_ctor(void *, int, void *, int);
240 static void keg_dtor(void *, int, void *);
241 static int zone_ctor(void *, int, void *, int);
242 static void zone_dtor(void *, int, void *);
243 static int zero_init(void *, int, int);
244 static void keg_small_init(uma_keg_t keg);
245 static void keg_large_init(uma_keg_t keg);
246 static void zone_foreach(void (*zfunc)(uma_zone_t));
247 static void zone_timeout(uma_zone_t zone);
248 static int hash_alloc(struct uma_hash *);
249 static int hash_expand(struct uma_hash *, struct uma_hash *);
250 static void hash_free(struct uma_hash *hash);
251 static void uma_timeout(void *);
252 static void uma_startup3(void);
253 static void *zone_alloc_item(uma_zone_t, void *, int);
254 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip);
255 static void bucket_enable(void);
256 static void bucket_init(void);
257 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int);
258 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *);
259 static void bucket_zone_drain(void);
260 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags);
261 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags);
262 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags);
263 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab);
264 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item);
265 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit,
266     uma_fini fini, int align, uint32_t flags);
267 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags);
268 static void zone_release(uma_zone_t zone, void **bucket, int cnt);
269 static void uma_zero_item(void *item, uma_zone_t zone);
270 
271 void uma_print_zone(uma_zone_t);
272 void uma_print_stats(void);
273 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS);
274 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS);
275 
276 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL);
277 
278 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT,
279     0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones");
280 
281 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT,
282     0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats");
283 
284 static int zone_warnings = 1;
285 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0,
286     "Warn when UMA zones becomes full");
287 
288 /*
289  * This routine checks to see whether or not it's safe to enable buckets.
290  */
291 static void
292 bucket_enable(void)
293 {
294 	bucketdisable = vm_page_count_min();
295 }
296 
297 /*
298  * Initialize bucket_zones, the array of zones of buckets of various sizes.
299  *
300  * For each zone, calculate the memory required for each bucket, consisting
301  * of the header and an array of pointers.
302  */
303 static void
304 bucket_init(void)
305 {
306 	struct uma_bucket_zone *ubz;
307 	int size;
308 	int i;
309 
310 	for (i = 0, ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) {
311 		size = roundup(sizeof(struct uma_bucket), sizeof(void *));
312 		size += sizeof(void *) * ubz->ubz_entries;
313 		ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size,
314 		    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
315 		    UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET);
316 	}
317 }
318 
319 /*
320  * Given a desired number of entries for a bucket, return the zone from which
321  * to allocate the bucket.
322  */
323 static struct uma_bucket_zone *
324 bucket_zone_lookup(int entries)
325 {
326 	struct uma_bucket_zone *ubz;
327 
328 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
329 		if (ubz->ubz_entries >= entries)
330 			return (ubz);
331 	ubz--;
332 	return (ubz);
333 }
334 
335 static int
336 bucket_select(int size)
337 {
338 	struct uma_bucket_zone *ubz;
339 
340 	ubz = &bucket_zones[0];
341 	if (size > ubz->ubz_maxsize)
342 		return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1);
343 
344 	for (; ubz->ubz_entries != 0; ubz++)
345 		if (ubz->ubz_maxsize < size)
346 			break;
347 	ubz--;
348 	return (ubz->ubz_entries);
349 }
350 
351 static uma_bucket_t
352 bucket_alloc(uma_zone_t zone, void *udata, int flags)
353 {
354 	struct uma_bucket_zone *ubz;
355 	uma_bucket_t bucket;
356 
357 	/*
358 	 * This is to stop us from allocating per cpu buckets while we're
359 	 * running out of vm.boot_pages.  Otherwise, we would exhaust the
360 	 * boot pages.  This also prevents us from allocating buckets in
361 	 * low memory situations.
362 	 */
363 	if (bucketdisable)
364 		return (NULL);
365 	/*
366 	 * To limit bucket recursion we store the original zone flags
367 	 * in a cookie passed via zalloc_arg/zfree_arg.  This allows the
368 	 * NOVM flag to persist even through deep recursions.  We also
369 	 * store ZFLAG_BUCKET once we have recursed attempting to allocate
370 	 * a bucket for a bucket zone so we do not allow infinite bucket
371 	 * recursion.  This cookie will even persist to frees of unused
372 	 * buckets via the allocation path or bucket allocations in the
373 	 * free path.
374 	 */
375 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
376 		udata = (void *)(uintptr_t)zone->uz_flags;
377 	else {
378 		if ((uintptr_t)udata & UMA_ZFLAG_BUCKET)
379 			return (NULL);
380 		udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET);
381 	}
382 	if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY)
383 		flags |= M_NOVM;
384 	ubz = bucket_zone_lookup(zone->uz_count);
385 	if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0)
386 		ubz++;
387 	bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags);
388 	if (bucket) {
389 #ifdef INVARIANTS
390 		bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries);
391 #endif
392 		bucket->ub_cnt = 0;
393 		bucket->ub_entries = ubz->ubz_entries;
394 	}
395 
396 	return (bucket);
397 }
398 
399 static void
400 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata)
401 {
402 	struct uma_bucket_zone *ubz;
403 
404 	KASSERT(bucket->ub_cnt == 0,
405 	    ("bucket_free: Freeing a non free bucket."));
406 	if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0)
407 		udata = (void *)(uintptr_t)zone->uz_flags;
408 	ubz = bucket_zone_lookup(bucket->ub_entries);
409 	uma_zfree_arg(ubz->ubz_zone, bucket, udata);
410 }
411 
412 static void
413 bucket_zone_drain(void)
414 {
415 	struct uma_bucket_zone *ubz;
416 
417 	for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++)
418 		zone_drain(ubz->ubz_zone);
419 }
420 
421 static void
422 zone_log_warning(uma_zone_t zone)
423 {
424 	static const struct timeval warninterval = { 300, 0 };
425 
426 	if (!zone_warnings || zone->uz_warning == NULL)
427 		return;
428 
429 	if (ratecheck(&zone->uz_ratecheck, &warninterval))
430 		printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning);
431 }
432 
433 static void
434 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t))
435 {
436 	uma_klink_t klink;
437 
438 	LIST_FOREACH(klink, &zone->uz_kegs, kl_link)
439 		kegfn(klink->kl_keg);
440 }
441 
442 /*
443  * Routine called by timeout which is used to fire off some time interval
444  * based calculations.  (stats, hash size, etc.)
445  *
446  * Arguments:
447  *	arg   Unused
448  *
449  * Returns:
450  *	Nothing
451  */
452 static void
453 uma_timeout(void *unused)
454 {
455 	bucket_enable();
456 	zone_foreach(zone_timeout);
457 
458 	/* Reschedule this event */
459 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
460 }
461 
462 /*
463  * Routine to perform timeout driven calculations.  This expands the
464  * hashes and does per cpu statistics aggregation.
465  *
466  *  Returns nothing.
467  */
468 static void
469 keg_timeout(uma_keg_t keg)
470 {
471 
472 	KEG_LOCK(keg);
473 	/*
474 	 * Expand the keg hash table.
475 	 *
476 	 * This is done if the number of slabs is larger than the hash size.
477 	 * What I'm trying to do here is completely reduce collisions.  This
478 	 * may be a little aggressive.  Should I allow for two collisions max?
479 	 */
480 	if (keg->uk_flags & UMA_ZONE_HASH &&
481 	    keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) {
482 		struct uma_hash newhash;
483 		struct uma_hash oldhash;
484 		int ret;
485 
486 		/*
487 		 * This is so involved because allocating and freeing
488 		 * while the keg lock is held will lead to deadlock.
489 		 * I have to do everything in stages and check for
490 		 * races.
491 		 */
492 		newhash = keg->uk_hash;
493 		KEG_UNLOCK(keg);
494 		ret = hash_alloc(&newhash);
495 		KEG_LOCK(keg);
496 		if (ret) {
497 			if (hash_expand(&keg->uk_hash, &newhash)) {
498 				oldhash = keg->uk_hash;
499 				keg->uk_hash = newhash;
500 			} else
501 				oldhash = newhash;
502 
503 			KEG_UNLOCK(keg);
504 			hash_free(&oldhash);
505 			return;
506 		}
507 	}
508 	KEG_UNLOCK(keg);
509 }
510 
511 static void
512 zone_timeout(uma_zone_t zone)
513 {
514 
515 	zone_foreach_keg(zone, &keg_timeout);
516 }
517 
518 /*
519  * Allocate and zero fill the next sized hash table from the appropriate
520  * backing store.
521  *
522  * Arguments:
523  *	hash  A new hash structure with the old hash size in uh_hashsize
524  *
525  * Returns:
526  *	1 on sucess and 0 on failure.
527  */
528 static int
529 hash_alloc(struct uma_hash *hash)
530 {
531 	int oldsize;
532 	int alloc;
533 
534 	oldsize = hash->uh_hashsize;
535 
536 	/* We're just going to go to a power of two greater */
537 	if (oldsize)  {
538 		hash->uh_hashsize = oldsize * 2;
539 		alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize;
540 		hash->uh_slab_hash = (struct slabhead *)malloc(alloc,
541 		    M_UMAHASH, M_NOWAIT);
542 	} else {
543 		alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT;
544 		hash->uh_slab_hash = zone_alloc_item(hashzone, NULL,
545 		    M_WAITOK);
546 		hash->uh_hashsize = UMA_HASH_SIZE_INIT;
547 	}
548 	if (hash->uh_slab_hash) {
549 		bzero(hash->uh_slab_hash, alloc);
550 		hash->uh_hashmask = hash->uh_hashsize - 1;
551 		return (1);
552 	}
553 
554 	return (0);
555 }
556 
557 /*
558  * Expands the hash table for HASH zones.  This is done from zone_timeout
559  * to reduce collisions.  This must not be done in the regular allocation
560  * path, otherwise, we can recurse on the vm while allocating pages.
561  *
562  * Arguments:
563  *	oldhash  The hash you want to expand
564  *	newhash  The hash structure for the new table
565  *
566  * Returns:
567  *	Nothing
568  *
569  * Discussion:
570  */
571 static int
572 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash)
573 {
574 	uma_slab_t slab;
575 	int hval;
576 	int i;
577 
578 	if (!newhash->uh_slab_hash)
579 		return (0);
580 
581 	if (oldhash->uh_hashsize >= newhash->uh_hashsize)
582 		return (0);
583 
584 	/*
585 	 * I need to investigate hash algorithms for resizing without a
586 	 * full rehash.
587 	 */
588 
589 	for (i = 0; i < oldhash->uh_hashsize; i++)
590 		while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) {
591 			slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]);
592 			SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink);
593 			hval = UMA_HASH(newhash, slab->us_data);
594 			SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval],
595 			    slab, us_hlink);
596 		}
597 
598 	return (1);
599 }
600 
601 /*
602  * Free the hash bucket to the appropriate backing store.
603  *
604  * Arguments:
605  *	slab_hash  The hash bucket we're freeing
606  *	hashsize   The number of entries in that hash bucket
607  *
608  * Returns:
609  *	Nothing
610  */
611 static void
612 hash_free(struct uma_hash *hash)
613 {
614 	if (hash->uh_slab_hash == NULL)
615 		return;
616 	if (hash->uh_hashsize == UMA_HASH_SIZE_INIT)
617 		zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE);
618 	else
619 		free(hash->uh_slab_hash, M_UMAHASH);
620 }
621 
622 /*
623  * Frees all outstanding items in a bucket
624  *
625  * Arguments:
626  *	zone   The zone to free to, must be unlocked.
627  *	bucket The free/alloc bucket with items, cpu queue must be locked.
628  *
629  * Returns:
630  *	Nothing
631  */
632 
633 static void
634 bucket_drain(uma_zone_t zone, uma_bucket_t bucket)
635 {
636 	int i;
637 
638 	if (bucket == NULL)
639 		return;
640 
641 	if (zone->uz_fini)
642 		for (i = 0; i < bucket->ub_cnt; i++)
643 			zone->uz_fini(bucket->ub_bucket[i], zone->uz_size);
644 	zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt);
645 	bucket->ub_cnt = 0;
646 }
647 
648 /*
649  * Drains the per cpu caches for a zone.
650  *
651  * NOTE: This may only be called while the zone is being turn down, and not
652  * during normal operation.  This is necessary in order that we do not have
653  * to migrate CPUs to drain the per-CPU caches.
654  *
655  * Arguments:
656  *	zone     The zone to drain, must be unlocked.
657  *
658  * Returns:
659  *	Nothing
660  */
661 static void
662 cache_drain(uma_zone_t zone)
663 {
664 	uma_cache_t cache;
665 	int cpu;
666 
667 	/*
668 	 * XXX: It is safe to not lock the per-CPU caches, because we're
669 	 * tearing down the zone anyway.  I.e., there will be no further use
670 	 * of the caches at this point.
671 	 *
672 	 * XXX: It would good to be able to assert that the zone is being
673 	 * torn down to prevent improper use of cache_drain().
674 	 *
675 	 * XXX: We lock the zone before passing into bucket_cache_drain() as
676 	 * it is used elsewhere.  Should the tear-down path be made special
677 	 * there in some form?
678 	 */
679 	CPU_FOREACH(cpu) {
680 		cache = &zone->uz_cpu[cpu];
681 		bucket_drain(zone, cache->uc_allocbucket);
682 		bucket_drain(zone, cache->uc_freebucket);
683 		if (cache->uc_allocbucket != NULL)
684 			bucket_free(zone, cache->uc_allocbucket, NULL);
685 		if (cache->uc_freebucket != NULL)
686 			bucket_free(zone, cache->uc_freebucket, NULL);
687 		cache->uc_allocbucket = cache->uc_freebucket = NULL;
688 	}
689 	ZONE_LOCK(zone);
690 	bucket_cache_drain(zone);
691 	ZONE_UNLOCK(zone);
692 }
693 
694 static void
695 cache_shrink(uma_zone_t zone)
696 {
697 
698 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
699 		return;
700 
701 	ZONE_LOCK(zone);
702 	zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2;
703 	ZONE_UNLOCK(zone);
704 }
705 
706 static void
707 cache_drain_safe_cpu(uma_zone_t zone)
708 {
709 	uma_cache_t cache;
710 	uma_bucket_t b1, b2;
711 
712 	if (zone->uz_flags & UMA_ZFLAG_INTERNAL)
713 		return;
714 
715 	b1 = b2 = NULL;
716 	ZONE_LOCK(zone);
717 	critical_enter();
718 	cache = &zone->uz_cpu[curcpu];
719 	if (cache->uc_allocbucket) {
720 		if (cache->uc_allocbucket->ub_cnt != 0)
721 			LIST_INSERT_HEAD(&zone->uz_buckets,
722 			    cache->uc_allocbucket, ub_link);
723 		else
724 			b1 = cache->uc_allocbucket;
725 		cache->uc_allocbucket = NULL;
726 	}
727 	if (cache->uc_freebucket) {
728 		if (cache->uc_freebucket->ub_cnt != 0)
729 			LIST_INSERT_HEAD(&zone->uz_buckets,
730 			    cache->uc_freebucket, ub_link);
731 		else
732 			b2 = cache->uc_freebucket;
733 		cache->uc_freebucket = NULL;
734 	}
735 	critical_exit();
736 	ZONE_UNLOCK(zone);
737 	if (b1)
738 		bucket_free(zone, b1, NULL);
739 	if (b2)
740 		bucket_free(zone, b2, NULL);
741 }
742 
743 /*
744  * Safely drain per-CPU caches of a zone(s) to alloc bucket.
745  * This is an expensive call because it needs to bind to all CPUs
746  * one by one and enter a critical section on each of them in order
747  * to safely access their cache buckets.
748  * Zone lock must not be held on call this function.
749  */
750 static void
751 cache_drain_safe(uma_zone_t zone)
752 {
753 	int cpu;
754 
755 	/*
756 	 * Polite bucket sizes shrinking was not enouth, shrink aggressively.
757 	 */
758 	if (zone)
759 		cache_shrink(zone);
760 	else
761 		zone_foreach(cache_shrink);
762 
763 	CPU_FOREACH(cpu) {
764 		thread_lock(curthread);
765 		sched_bind(curthread, cpu);
766 		thread_unlock(curthread);
767 
768 		if (zone)
769 			cache_drain_safe_cpu(zone);
770 		else
771 			zone_foreach(cache_drain_safe_cpu);
772 	}
773 	thread_lock(curthread);
774 	sched_unbind(curthread);
775 	thread_unlock(curthread);
776 }
777 
778 /*
779  * Drain the cached buckets from a zone.  Expects a locked zone on entry.
780  */
781 static void
782 bucket_cache_drain(uma_zone_t zone)
783 {
784 	uma_bucket_t bucket;
785 
786 	/*
787 	 * Drain the bucket queues and free the buckets, we just keep two per
788 	 * cpu (alloc/free).
789 	 */
790 	while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
791 		LIST_REMOVE(bucket, ub_link);
792 		ZONE_UNLOCK(zone);
793 		bucket_drain(zone, bucket);
794 		bucket_free(zone, bucket, NULL);
795 		ZONE_LOCK(zone);
796 	}
797 
798 	/*
799 	 * Shrink further bucket sizes.  Price of single zone lock collision
800 	 * is probably lower then price of global cache drain.
801 	 */
802 	if (zone->uz_count > zone->uz_count_min)
803 		zone->uz_count--;
804 }
805 
806 static void
807 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start)
808 {
809 	uint8_t *mem;
810 	int i;
811 	uint8_t flags;
812 
813 	mem = slab->us_data;
814 	flags = slab->us_flags;
815 	i = start;
816 	if (keg->uk_fini != NULL) {
817 		for (i--; i > -1; i--)
818 			keg->uk_fini(slab->us_data + (keg->uk_rsize * i),
819 			    keg->uk_size);
820 	}
821 	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
822 		zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
823 #ifdef UMA_DEBUG
824 	printf("%s: Returning %d bytes.\n", keg->uk_name,
825 	    PAGE_SIZE * keg->uk_ppera);
826 #endif
827 	keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags);
828 }
829 
830 /*
831  * Frees pages from a keg back to the system.  This is done on demand from
832  * the pageout daemon.
833  *
834  * Returns nothing.
835  */
836 static void
837 keg_drain(uma_keg_t keg)
838 {
839 	struct slabhead freeslabs = { 0 };
840 	uma_slab_t slab;
841 	uma_slab_t n;
842 
843 	/*
844 	 * We don't want to take pages from statically allocated kegs at this
845 	 * time
846 	 */
847 	if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL)
848 		return;
849 
850 #ifdef UMA_DEBUG
851 	printf("%s free items: %u\n", keg->uk_name, keg->uk_free);
852 #endif
853 	KEG_LOCK(keg);
854 	if (keg->uk_free == 0)
855 		goto finished;
856 
857 	slab = LIST_FIRST(&keg->uk_free_slab);
858 	while (slab) {
859 		n = LIST_NEXT(slab, us_link);
860 
861 		/* We have no where to free these to */
862 		if (slab->us_flags & UMA_SLAB_BOOT) {
863 			slab = n;
864 			continue;
865 		}
866 
867 		LIST_REMOVE(slab, us_link);
868 		keg->uk_pages -= keg->uk_ppera;
869 		keg->uk_free -= keg->uk_ipers;
870 
871 		if (keg->uk_flags & UMA_ZONE_HASH)
872 			UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data);
873 
874 		SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink);
875 
876 		slab = n;
877 	}
878 finished:
879 	KEG_UNLOCK(keg);
880 
881 	while ((slab = SLIST_FIRST(&freeslabs)) != NULL) {
882 		SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink);
883 		keg_free_slab(keg, slab, keg->uk_ipers);
884 	}
885 }
886 
887 static void
888 zone_drain_wait(uma_zone_t zone, int waitok)
889 {
890 
891 	/*
892 	 * Set draining to interlock with zone_dtor() so we can release our
893 	 * locks as we go.  Only dtor() should do a WAITOK call since it
894 	 * is the only call that knows the structure will still be available
895 	 * when it wakes up.
896 	 */
897 	ZONE_LOCK(zone);
898 	while (zone->uz_flags & UMA_ZFLAG_DRAINING) {
899 		if (waitok == M_NOWAIT)
900 			goto out;
901 		msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1);
902 	}
903 	zone->uz_flags |= UMA_ZFLAG_DRAINING;
904 	bucket_cache_drain(zone);
905 	ZONE_UNLOCK(zone);
906 	/*
907 	 * The DRAINING flag protects us from being freed while
908 	 * we're running.  Normally the uma_rwlock would protect us but we
909 	 * must be able to release and acquire the right lock for each keg.
910 	 */
911 	zone_foreach_keg(zone, &keg_drain);
912 	ZONE_LOCK(zone);
913 	zone->uz_flags &= ~UMA_ZFLAG_DRAINING;
914 	wakeup(zone);
915 out:
916 	ZONE_UNLOCK(zone);
917 }
918 
919 void
920 zone_drain(uma_zone_t zone)
921 {
922 
923 	zone_drain_wait(zone, M_NOWAIT);
924 }
925 
926 /*
927  * Allocate a new slab for a keg.  This does not insert the slab onto a list.
928  *
929  * Arguments:
930  *	wait  Shall we wait?
931  *
932  * Returns:
933  *	The slab that was allocated or NULL if there is no memory and the
934  *	caller specified M_NOWAIT.
935  */
936 static uma_slab_t
937 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait)
938 {
939 	uma_slabrefcnt_t slabref;
940 	uma_alloc allocf;
941 	uma_slab_t slab;
942 	uint8_t *mem;
943 	uint8_t flags;
944 	int i;
945 
946 	mtx_assert(&keg->uk_lock, MA_OWNED);
947 	slab = NULL;
948 	mem = NULL;
949 
950 #ifdef UMA_DEBUG
951 	printf("alloc_slab:  Allocating a new slab for %s\n", keg->uk_name);
952 #endif
953 	allocf = keg->uk_allocf;
954 	KEG_UNLOCK(keg);
955 
956 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
957 		slab = zone_alloc_item(keg->uk_slabzone, NULL, wait);
958 		if (slab == NULL)
959 			goto out;
960 	}
961 
962 	/*
963 	 * This reproduces the old vm_zone behavior of zero filling pages the
964 	 * first time they are added to a zone.
965 	 *
966 	 * Malloced items are zeroed in uma_zalloc.
967 	 */
968 
969 	if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0)
970 		wait |= M_ZERO;
971 	else
972 		wait &= ~M_ZERO;
973 
974 	if (keg->uk_flags & UMA_ZONE_NODUMP)
975 		wait |= M_NODUMP;
976 
977 	/* zone is passed for legacy reasons. */
978 	mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait);
979 	if (mem == NULL) {
980 		if (keg->uk_flags & UMA_ZONE_OFFPAGE)
981 			zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE);
982 		slab = NULL;
983 		goto out;
984 	}
985 
986 	/* Point the slab into the allocated memory */
987 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE))
988 		slab = (uma_slab_t )(mem + keg->uk_pgoff);
989 
990 	if (keg->uk_flags & UMA_ZONE_VTOSLAB)
991 		for (i = 0; i < keg->uk_ppera; i++)
992 			vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab);
993 
994 	slab->us_keg = keg;
995 	slab->us_data = mem;
996 	slab->us_freecount = keg->uk_ipers;
997 	slab->us_flags = flags;
998 	BIT_FILL(SLAB_SETSIZE, &slab->us_free);
999 #ifdef INVARIANTS
1000 	BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree);
1001 #endif
1002 	if (keg->uk_flags & UMA_ZONE_REFCNT) {
1003 		slabref = (uma_slabrefcnt_t)slab;
1004 		for (i = 0; i < keg->uk_ipers; i++)
1005 			slabref->us_refcnt[i] = 0;
1006 	}
1007 
1008 	if (keg->uk_init != NULL) {
1009 		for (i = 0; i < keg->uk_ipers; i++)
1010 			if (keg->uk_init(slab->us_data + (keg->uk_rsize * i),
1011 			    keg->uk_size, wait) != 0)
1012 				break;
1013 		if (i != keg->uk_ipers) {
1014 			keg_free_slab(keg, slab, i);
1015 			slab = NULL;
1016 			goto out;
1017 		}
1018 	}
1019 out:
1020 	KEG_LOCK(keg);
1021 
1022 	if (slab != NULL) {
1023 		if (keg->uk_flags & UMA_ZONE_HASH)
1024 			UMA_HASH_INSERT(&keg->uk_hash, slab, mem);
1025 
1026 		keg->uk_pages += keg->uk_ppera;
1027 		keg->uk_free += keg->uk_ipers;
1028 	}
1029 
1030 	return (slab);
1031 }
1032 
1033 /*
1034  * This function is intended to be used early on in place of page_alloc() so
1035  * that we may use the boot time page cache to satisfy allocations before
1036  * the VM is ready.
1037  */
1038 static void *
1039 startup_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1040 {
1041 	uma_keg_t keg;
1042 	uma_slab_t tmps;
1043 	int pages, check_pages;
1044 
1045 	keg = zone_first_keg(zone);
1046 	pages = howmany(bytes, PAGE_SIZE);
1047 	check_pages = pages - 1;
1048 	KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n"));
1049 
1050 	/*
1051 	 * Check our small startup cache to see if it has pages remaining.
1052 	 */
1053 	mtx_lock(&uma_boot_pages_mtx);
1054 
1055 	/* First check if we have enough room. */
1056 	tmps = LIST_FIRST(&uma_boot_pages);
1057 	while (tmps != NULL && check_pages-- > 0)
1058 		tmps = LIST_NEXT(tmps, us_link);
1059 	if (tmps != NULL) {
1060 		/*
1061 		 * It's ok to lose tmps references.  The last one will
1062 		 * have tmps->us_data pointing to the start address of
1063 		 * "pages" contiguous pages of memory.
1064 		 */
1065 		while (pages-- > 0) {
1066 			tmps = LIST_FIRST(&uma_boot_pages);
1067 			LIST_REMOVE(tmps, us_link);
1068 		}
1069 		mtx_unlock(&uma_boot_pages_mtx);
1070 		*pflag = tmps->us_flags;
1071 		return (tmps->us_data);
1072 	}
1073 	mtx_unlock(&uma_boot_pages_mtx);
1074 	if (booted < UMA_STARTUP2)
1075 		panic("UMA: Increase vm.boot_pages");
1076 	/*
1077 	 * Now that we've booted reset these users to their real allocator.
1078 	 */
1079 #ifdef UMA_MD_SMALL_ALLOC
1080 	keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc;
1081 #else
1082 	keg->uk_allocf = page_alloc;
1083 #endif
1084 	return keg->uk_allocf(zone, bytes, pflag, wait);
1085 }
1086 
1087 /*
1088  * Allocates a number of pages from the system
1089  *
1090  * Arguments:
1091  *	bytes  The number of bytes requested
1092  *	wait  Shall we wait?
1093  *
1094  * Returns:
1095  *	A pointer to the alloced memory or possibly
1096  *	NULL if M_NOWAIT is set.
1097  */
1098 static void *
1099 page_alloc(uma_zone_t zone, int bytes, uint8_t *pflag, int wait)
1100 {
1101 	void *p;	/* Returned page */
1102 
1103 	*pflag = UMA_SLAB_KMEM;
1104 	p = (void *) kmem_malloc(kmem_arena, bytes, wait);
1105 
1106 	return (p);
1107 }
1108 
1109 /*
1110  * Allocates a number of pages from within an object
1111  *
1112  * Arguments:
1113  *	bytes  The number of bytes requested
1114  *	wait   Shall we wait?
1115  *
1116  * Returns:
1117  *	A pointer to the alloced memory or possibly
1118  *	NULL if M_NOWAIT is set.
1119  */
1120 static void *
1121 noobj_alloc(uma_zone_t zone, int bytes, uint8_t *flags, int wait)
1122 {
1123 	TAILQ_HEAD(, vm_page) alloctail;
1124 	u_long npages;
1125 	vm_offset_t retkva, zkva;
1126 	vm_page_t p, p_next;
1127 	uma_keg_t keg;
1128 
1129 	TAILQ_INIT(&alloctail);
1130 	keg = zone_first_keg(zone);
1131 
1132 	npages = howmany(bytes, PAGE_SIZE);
1133 	while (npages > 0) {
1134 		p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT |
1135 		    VM_ALLOC_WIRED | VM_ALLOC_NOOBJ);
1136 		if (p != NULL) {
1137 			/*
1138 			 * Since the page does not belong to an object, its
1139 			 * listq is unused.
1140 			 */
1141 			TAILQ_INSERT_TAIL(&alloctail, p, listq);
1142 			npages--;
1143 			continue;
1144 		}
1145 		if (wait & M_WAITOK) {
1146 			VM_WAIT;
1147 			continue;
1148 		}
1149 
1150 		/*
1151 		 * Page allocation failed, free intermediate pages and
1152 		 * exit.
1153 		 */
1154 		TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) {
1155 			vm_page_unwire(p, PQ_INACTIVE);
1156 			vm_page_free(p);
1157 		}
1158 		return (NULL);
1159 	}
1160 	*flags = UMA_SLAB_PRIV;
1161 	zkva = keg->uk_kva +
1162 	    atomic_fetchadd_long(&keg->uk_offset, round_page(bytes));
1163 	retkva = zkva;
1164 	TAILQ_FOREACH(p, &alloctail, listq) {
1165 		pmap_qenter(zkva, &p, 1);
1166 		zkva += PAGE_SIZE;
1167 	}
1168 
1169 	return ((void *)retkva);
1170 }
1171 
1172 /*
1173  * Frees a number of pages to the system
1174  *
1175  * Arguments:
1176  *	mem   A pointer to the memory to be freed
1177  *	size  The size of the memory being freed
1178  *	flags The original p->us_flags field
1179  *
1180  * Returns:
1181  *	Nothing
1182  */
1183 static void
1184 page_free(void *mem, int size, uint8_t flags)
1185 {
1186 	struct vmem *vmem;
1187 
1188 	if (flags & UMA_SLAB_KMEM)
1189 		vmem = kmem_arena;
1190 	else if (flags & UMA_SLAB_KERNEL)
1191 		vmem = kernel_arena;
1192 	else
1193 		panic("UMA: page_free used with invalid flags %d", flags);
1194 
1195 	kmem_free(vmem, (vm_offset_t)mem, size);
1196 }
1197 
1198 /*
1199  * Zero fill initializer
1200  *
1201  * Arguments/Returns follow uma_init specifications
1202  */
1203 static int
1204 zero_init(void *mem, int size, int flags)
1205 {
1206 	bzero(mem, size);
1207 	return (0);
1208 }
1209 
1210 /*
1211  * Finish creating a small uma keg.  This calculates ipers, and the keg size.
1212  *
1213  * Arguments
1214  *	keg  The zone we should initialize
1215  *
1216  * Returns
1217  *	Nothing
1218  */
1219 static void
1220 keg_small_init(uma_keg_t keg)
1221 {
1222 	u_int rsize;
1223 	u_int memused;
1224 	u_int wastedspace;
1225 	u_int shsize;
1226 
1227 	if (keg->uk_flags & UMA_ZONE_PCPU) {
1228 		u_int ncpus = mp_ncpus ? mp_ncpus : MAXCPU;
1229 
1230 		keg->uk_slabsize = sizeof(struct pcpu);
1231 		keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu),
1232 		    PAGE_SIZE);
1233 	} else {
1234 		keg->uk_slabsize = UMA_SLAB_SIZE;
1235 		keg->uk_ppera = 1;
1236 	}
1237 
1238 	/*
1239 	 * Calculate the size of each allocation (rsize) according to
1240 	 * alignment.  If the requested size is smaller than we have
1241 	 * allocation bits for we round it up.
1242 	 */
1243 	rsize = keg->uk_size;
1244 	if (rsize < keg->uk_slabsize / SLAB_SETSIZE)
1245 		rsize = keg->uk_slabsize / SLAB_SETSIZE;
1246 	if (rsize & keg->uk_align)
1247 		rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1);
1248 	keg->uk_rsize = rsize;
1249 
1250 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 ||
1251 	    keg->uk_rsize < sizeof(struct pcpu),
1252 	    ("%s: size %u too large", __func__, keg->uk_rsize));
1253 
1254 	if (keg->uk_flags & UMA_ZONE_REFCNT)
1255 		rsize += sizeof(uint32_t);
1256 
1257 	if (keg->uk_flags & UMA_ZONE_OFFPAGE)
1258 		shsize = 0;
1259 	else
1260 		shsize = sizeof(struct uma_slab);
1261 
1262 	keg->uk_ipers = (keg->uk_slabsize - shsize) / rsize;
1263 	KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1264 	    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1265 
1266 	memused = keg->uk_ipers * rsize + shsize;
1267 	wastedspace = keg->uk_slabsize - memused;
1268 
1269 	/*
1270 	 * We can't do OFFPAGE if we're internal or if we've been
1271 	 * asked to not go to the VM for buckets.  If we do this we
1272 	 * may end up going to the VM  for slabs which we do not
1273 	 * want to do if we're UMA_ZFLAG_CACHEONLY as a result
1274 	 * of UMA_ZONE_VM, which clearly forbids it.
1275 	 */
1276 	if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) ||
1277 	    (keg->uk_flags & UMA_ZFLAG_CACHEONLY))
1278 		return;
1279 
1280 	/*
1281 	 * See if using an OFFPAGE slab will limit our waste.  Only do
1282 	 * this if it permits more items per-slab.
1283 	 *
1284 	 * XXX We could try growing slabsize to limit max waste as well.
1285 	 * Historically this was not done because the VM could not
1286 	 * efficiently handle contiguous allocations.
1287 	 */
1288 	if ((wastedspace >= keg->uk_slabsize / UMA_MAX_WASTE) &&
1289 	    (keg->uk_ipers < (keg->uk_slabsize / keg->uk_rsize))) {
1290 		keg->uk_ipers = keg->uk_slabsize / keg->uk_rsize;
1291 		KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE,
1292 		    ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers));
1293 #ifdef UMA_DEBUG
1294 		printf("UMA decided we need offpage slab headers for "
1295 		    "keg: %s, calculated wastedspace = %d, "
1296 		    "maximum wasted space allowed = %d, "
1297 		    "calculated ipers = %d, "
1298 		    "new wasted space = %d\n", keg->uk_name, wastedspace,
1299 		    keg->uk_slabsize / UMA_MAX_WASTE, keg->uk_ipers,
1300 		    keg->uk_slabsize - keg->uk_ipers * keg->uk_rsize);
1301 #endif
1302 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1303 	}
1304 
1305 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1306 	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1307 		keg->uk_flags |= UMA_ZONE_HASH;
1308 }
1309 
1310 /*
1311  * Finish creating a large (> UMA_SLAB_SIZE) uma kegs.  Just give in and do
1312  * OFFPAGE for now.  When I can allow for more dynamic slab sizes this will be
1313  * more complicated.
1314  *
1315  * Arguments
1316  *	keg  The keg we should initialize
1317  *
1318  * Returns
1319  *	Nothing
1320  */
1321 static void
1322 keg_large_init(uma_keg_t keg)
1323 {
1324 	u_int shsize;
1325 
1326 	KASSERT(keg != NULL, ("Keg is null in keg_large_init"));
1327 	KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0,
1328 	    ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg"));
1329 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1330 	    ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__));
1331 
1332 	keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE);
1333 	keg->uk_slabsize = keg->uk_ppera * PAGE_SIZE;
1334 	keg->uk_ipers = 1;
1335 	keg->uk_rsize = keg->uk_size;
1336 
1337 	/* We can't do OFFPAGE if we're internal, bail out here. */
1338 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL)
1339 		return;
1340 
1341 	/* Check whether we have enough space to not do OFFPAGE. */
1342 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) {
1343 		shsize = sizeof(struct uma_slab);
1344 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1345 			shsize += keg->uk_ipers * sizeof(uint32_t);
1346 		if (shsize & UMA_ALIGN_PTR)
1347 			shsize = (shsize & ~UMA_ALIGN_PTR) +
1348 			    (UMA_ALIGN_PTR + 1);
1349 
1350 		if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize)
1351 			keg->uk_flags |= UMA_ZONE_OFFPAGE;
1352 	}
1353 
1354 	if ((keg->uk_flags & UMA_ZONE_OFFPAGE) &&
1355 	    (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0)
1356 		keg->uk_flags |= UMA_ZONE_HASH;
1357 }
1358 
1359 static void
1360 keg_cachespread_init(uma_keg_t keg)
1361 {
1362 	int alignsize;
1363 	int trailer;
1364 	int pages;
1365 	int rsize;
1366 
1367 	KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0,
1368 	    ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__));
1369 
1370 	alignsize = keg->uk_align + 1;
1371 	rsize = keg->uk_size;
1372 	/*
1373 	 * We want one item to start on every align boundary in a page.  To
1374 	 * do this we will span pages.  We will also extend the item by the
1375 	 * size of align if it is an even multiple of align.  Otherwise, it
1376 	 * would fall on the same boundary every time.
1377 	 */
1378 	if (rsize & keg->uk_align)
1379 		rsize = (rsize & ~keg->uk_align) + alignsize;
1380 	if ((rsize & alignsize) == 0)
1381 		rsize += alignsize;
1382 	trailer = rsize - keg->uk_size;
1383 	pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE;
1384 	pages = MIN(pages, (128 * 1024) / PAGE_SIZE);
1385 	keg->uk_rsize = rsize;
1386 	keg->uk_ppera = pages;
1387 	keg->uk_slabsize = UMA_SLAB_SIZE;
1388 	keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize;
1389 	keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB;
1390 	KASSERT(keg->uk_ipers <= SLAB_SETSIZE,
1391 	    ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__,
1392 	    keg->uk_ipers));
1393 }
1394 
1395 /*
1396  * Keg header ctor.  This initializes all fields, locks, etc.  And inserts
1397  * the keg onto the global keg list.
1398  *
1399  * Arguments/Returns follow uma_ctor specifications
1400  *	udata  Actually uma_kctor_args
1401  */
1402 static int
1403 keg_ctor(void *mem, int size, void *udata, int flags)
1404 {
1405 	struct uma_kctor_args *arg = udata;
1406 	uma_keg_t keg = mem;
1407 	uma_zone_t zone;
1408 
1409 	bzero(keg, size);
1410 	keg->uk_size = arg->size;
1411 	keg->uk_init = arg->uminit;
1412 	keg->uk_fini = arg->fini;
1413 	keg->uk_align = arg->align;
1414 	keg->uk_free = 0;
1415 	keg->uk_reserve = 0;
1416 	keg->uk_pages = 0;
1417 	keg->uk_flags = arg->flags;
1418 	keg->uk_allocf = page_alloc;
1419 	keg->uk_freef = page_free;
1420 	keg->uk_slabzone = NULL;
1421 
1422 	/*
1423 	 * The master zone is passed to us at keg-creation time.
1424 	 */
1425 	zone = arg->zone;
1426 	keg->uk_name = zone->uz_name;
1427 
1428 	if (arg->flags & UMA_ZONE_VM)
1429 		keg->uk_flags |= UMA_ZFLAG_CACHEONLY;
1430 
1431 	if (arg->flags & UMA_ZONE_ZINIT)
1432 		keg->uk_init = zero_init;
1433 
1434 	if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC)
1435 		keg->uk_flags |= UMA_ZONE_VTOSLAB;
1436 
1437 	if (arg->flags & UMA_ZONE_PCPU)
1438 #ifdef SMP
1439 		keg->uk_flags |= UMA_ZONE_OFFPAGE;
1440 #else
1441 		keg->uk_flags &= ~UMA_ZONE_PCPU;
1442 #endif
1443 
1444 	if (keg->uk_flags & UMA_ZONE_CACHESPREAD) {
1445 		keg_cachespread_init(keg);
1446 	} else if (keg->uk_flags & UMA_ZONE_REFCNT) {
1447 		if (keg->uk_size >
1448 		    (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) -
1449 		    sizeof(uint32_t)))
1450 			keg_large_init(keg);
1451 		else
1452 			keg_small_init(keg);
1453 	} else {
1454 		if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab)))
1455 			keg_large_init(keg);
1456 		else
1457 			keg_small_init(keg);
1458 	}
1459 
1460 	if (keg->uk_flags & UMA_ZONE_OFFPAGE) {
1461 		if (keg->uk_flags & UMA_ZONE_REFCNT) {
1462 			if (keg->uk_ipers > uma_max_ipers_ref)
1463 				panic("Too many ref items per zone: %d > %d\n",
1464 				    keg->uk_ipers, uma_max_ipers_ref);
1465 			keg->uk_slabzone = slabrefzone;
1466 		} else
1467 			keg->uk_slabzone = slabzone;
1468 	}
1469 
1470 	/*
1471 	 * If we haven't booted yet we need allocations to go through the
1472 	 * startup cache until the vm is ready.
1473 	 */
1474 	if (keg->uk_ppera == 1) {
1475 #ifdef UMA_MD_SMALL_ALLOC
1476 		keg->uk_allocf = uma_small_alloc;
1477 		keg->uk_freef = uma_small_free;
1478 
1479 		if (booted < UMA_STARTUP)
1480 			keg->uk_allocf = startup_alloc;
1481 #else
1482 		if (booted < UMA_STARTUP2)
1483 			keg->uk_allocf = startup_alloc;
1484 #endif
1485 	} else if (booted < UMA_STARTUP2 &&
1486 	    (keg->uk_flags & UMA_ZFLAG_INTERNAL))
1487 		keg->uk_allocf = startup_alloc;
1488 
1489 	/*
1490 	 * Initialize keg's lock
1491 	 */
1492 	KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS));
1493 
1494 	/*
1495 	 * If we're putting the slab header in the actual page we need to
1496 	 * figure out where in each page it goes.  This calculates a right
1497 	 * justified offset into the memory on an ALIGN_PTR boundary.
1498 	 */
1499 	if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) {
1500 		u_int totsize;
1501 
1502 		/* Size of the slab struct and free list */
1503 		totsize = sizeof(struct uma_slab);
1504 
1505 		/* Size of the reference counts. */
1506 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1507 			totsize += keg->uk_ipers * sizeof(uint32_t);
1508 
1509 		if (totsize & UMA_ALIGN_PTR)
1510 			totsize = (totsize & ~UMA_ALIGN_PTR) +
1511 			    (UMA_ALIGN_PTR + 1);
1512 		keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize;
1513 
1514 		/*
1515 		 * The only way the following is possible is if with our
1516 		 * UMA_ALIGN_PTR adjustments we are now bigger than
1517 		 * UMA_SLAB_SIZE.  I haven't checked whether this is
1518 		 * mathematically possible for all cases, so we make
1519 		 * sure here anyway.
1520 		 */
1521 		totsize = keg->uk_pgoff + sizeof(struct uma_slab);
1522 		if (keg->uk_flags & UMA_ZONE_REFCNT)
1523 			totsize += keg->uk_ipers * sizeof(uint32_t);
1524 		if (totsize > PAGE_SIZE * keg->uk_ppera) {
1525 			printf("zone %s ipers %d rsize %d size %d\n",
1526 			    zone->uz_name, keg->uk_ipers, keg->uk_rsize,
1527 			    keg->uk_size);
1528 			panic("UMA slab won't fit.");
1529 		}
1530 	}
1531 
1532 	if (keg->uk_flags & UMA_ZONE_HASH)
1533 		hash_alloc(&keg->uk_hash);
1534 
1535 #ifdef UMA_DEBUG
1536 	printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n",
1537 	    zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags,
1538 	    keg->uk_ipers, keg->uk_ppera,
1539 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free);
1540 #endif
1541 
1542 	LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link);
1543 
1544 	rw_wlock(&uma_rwlock);
1545 	LIST_INSERT_HEAD(&uma_kegs, keg, uk_link);
1546 	rw_wunlock(&uma_rwlock);
1547 	return (0);
1548 }
1549 
1550 /*
1551  * Zone header ctor.  This initializes all fields, locks, etc.
1552  *
1553  * Arguments/Returns follow uma_ctor specifications
1554  *	udata  Actually uma_zctor_args
1555  */
1556 static int
1557 zone_ctor(void *mem, int size, void *udata, int flags)
1558 {
1559 	struct uma_zctor_args *arg = udata;
1560 	uma_zone_t zone = mem;
1561 	uma_zone_t z;
1562 	uma_keg_t keg;
1563 
1564 	bzero(zone, size);
1565 	zone->uz_name = arg->name;
1566 	zone->uz_ctor = arg->ctor;
1567 	zone->uz_dtor = arg->dtor;
1568 	zone->uz_slab = zone_fetch_slab;
1569 	zone->uz_init = NULL;
1570 	zone->uz_fini = NULL;
1571 	zone->uz_allocs = 0;
1572 	zone->uz_frees = 0;
1573 	zone->uz_fails = 0;
1574 	zone->uz_sleeps = 0;
1575 	zone->uz_count = 0;
1576 	zone->uz_count_min = 0;
1577 	zone->uz_flags = 0;
1578 	zone->uz_warning = NULL;
1579 	timevalclear(&zone->uz_ratecheck);
1580 	keg = arg->keg;
1581 
1582 	ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS));
1583 
1584 	/*
1585 	 * This is a pure cache zone, no kegs.
1586 	 */
1587 	if (arg->import) {
1588 		if (arg->flags & UMA_ZONE_VM)
1589 			arg->flags |= UMA_ZFLAG_CACHEONLY;
1590 		zone->uz_flags = arg->flags;
1591 		zone->uz_size = arg->size;
1592 		zone->uz_import = arg->import;
1593 		zone->uz_release = arg->release;
1594 		zone->uz_arg = arg->arg;
1595 		zone->uz_lockptr = &zone->uz_lock;
1596 		rw_wlock(&uma_rwlock);
1597 		LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link);
1598 		rw_wunlock(&uma_rwlock);
1599 		goto out;
1600 	}
1601 
1602 	/*
1603 	 * Use the regular zone/keg/slab allocator.
1604 	 */
1605 	zone->uz_import = (uma_import)zone_import;
1606 	zone->uz_release = (uma_release)zone_release;
1607 	zone->uz_arg = zone;
1608 
1609 	if (arg->flags & UMA_ZONE_SECONDARY) {
1610 		KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg"));
1611 		zone->uz_init = arg->uminit;
1612 		zone->uz_fini = arg->fini;
1613 		zone->uz_lockptr = &keg->uk_lock;
1614 		zone->uz_flags |= UMA_ZONE_SECONDARY;
1615 		rw_wlock(&uma_rwlock);
1616 		ZONE_LOCK(zone);
1617 		LIST_FOREACH(z, &keg->uk_zones, uz_link) {
1618 			if (LIST_NEXT(z, uz_link) == NULL) {
1619 				LIST_INSERT_AFTER(z, zone, uz_link);
1620 				break;
1621 			}
1622 		}
1623 		ZONE_UNLOCK(zone);
1624 		rw_wunlock(&uma_rwlock);
1625 	} else if (keg == NULL) {
1626 		if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini,
1627 		    arg->align, arg->flags)) == NULL)
1628 			return (ENOMEM);
1629 	} else {
1630 		struct uma_kctor_args karg;
1631 		int error;
1632 
1633 		/* We should only be here from uma_startup() */
1634 		karg.size = arg->size;
1635 		karg.uminit = arg->uminit;
1636 		karg.fini = arg->fini;
1637 		karg.align = arg->align;
1638 		karg.flags = arg->flags;
1639 		karg.zone = zone;
1640 		error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg,
1641 		    flags);
1642 		if (error)
1643 			return (error);
1644 	}
1645 
1646 	/*
1647 	 * Link in the first keg.
1648 	 */
1649 	zone->uz_klink.kl_keg = keg;
1650 	LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link);
1651 	zone->uz_lockptr = &keg->uk_lock;
1652 	zone->uz_size = keg->uk_size;
1653 	zone->uz_flags |= (keg->uk_flags &
1654 	    (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT));
1655 
1656 	/*
1657 	 * Some internal zones don't have room allocated for the per cpu
1658 	 * caches.  If we're internal, bail out here.
1659 	 */
1660 	if (keg->uk_flags & UMA_ZFLAG_INTERNAL) {
1661 		KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0,
1662 		    ("Secondary zone requested UMA_ZFLAG_INTERNAL"));
1663 		return (0);
1664 	}
1665 
1666 out:
1667 	if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0)
1668 		zone->uz_count = bucket_select(zone->uz_size);
1669 	else
1670 		zone->uz_count = BUCKET_MAX;
1671 	zone->uz_count_min = zone->uz_count;
1672 
1673 	return (0);
1674 }
1675 
1676 /*
1677  * Keg header dtor.  This frees all data, destroys locks, frees the hash
1678  * table and removes the keg from the global list.
1679  *
1680  * Arguments/Returns follow uma_dtor specifications
1681  *	udata  unused
1682  */
1683 static void
1684 keg_dtor(void *arg, int size, void *udata)
1685 {
1686 	uma_keg_t keg;
1687 
1688 	keg = (uma_keg_t)arg;
1689 	KEG_LOCK(keg);
1690 	if (keg->uk_free != 0) {
1691 		printf("Freed UMA keg (%s) was not empty (%d items). "
1692 		    " Lost %d pages of memory.\n",
1693 		    keg->uk_name ? keg->uk_name : "",
1694 		    keg->uk_free, keg->uk_pages);
1695 	}
1696 	KEG_UNLOCK(keg);
1697 
1698 	hash_free(&keg->uk_hash);
1699 
1700 	KEG_LOCK_FINI(keg);
1701 }
1702 
1703 /*
1704  * Zone header dtor.
1705  *
1706  * Arguments/Returns follow uma_dtor specifications
1707  *	udata  unused
1708  */
1709 static void
1710 zone_dtor(void *arg, int size, void *udata)
1711 {
1712 	uma_klink_t klink;
1713 	uma_zone_t zone;
1714 	uma_keg_t keg;
1715 
1716 	zone = (uma_zone_t)arg;
1717 	keg = zone_first_keg(zone);
1718 
1719 	if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL))
1720 		cache_drain(zone);
1721 
1722 	rw_wlock(&uma_rwlock);
1723 	LIST_REMOVE(zone, uz_link);
1724 	rw_wunlock(&uma_rwlock);
1725 	/*
1726 	 * XXX there are some races here where
1727 	 * the zone can be drained but zone lock
1728 	 * released and then refilled before we
1729 	 * remove it... we dont care for now
1730 	 */
1731 	zone_drain_wait(zone, M_WAITOK);
1732 	/*
1733 	 * Unlink all of our kegs.
1734 	 */
1735 	while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) {
1736 		klink->kl_keg = NULL;
1737 		LIST_REMOVE(klink, kl_link);
1738 		if (klink == &zone->uz_klink)
1739 			continue;
1740 		free(klink, M_TEMP);
1741 	}
1742 	/*
1743 	 * We only destroy kegs from non secondary zones.
1744 	 */
1745 	if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0)  {
1746 		rw_wlock(&uma_rwlock);
1747 		LIST_REMOVE(keg, uk_link);
1748 		rw_wunlock(&uma_rwlock);
1749 		zone_free_item(kegs, keg, NULL, SKIP_NONE);
1750 	}
1751 	ZONE_LOCK_FINI(zone);
1752 }
1753 
1754 /*
1755  * Traverses every zone in the system and calls a callback
1756  *
1757  * Arguments:
1758  *	zfunc  A pointer to a function which accepts a zone
1759  *		as an argument.
1760  *
1761  * Returns:
1762  *	Nothing
1763  */
1764 static void
1765 zone_foreach(void (*zfunc)(uma_zone_t))
1766 {
1767 	uma_keg_t keg;
1768 	uma_zone_t zone;
1769 
1770 	rw_rlock(&uma_rwlock);
1771 	LIST_FOREACH(keg, &uma_kegs, uk_link) {
1772 		LIST_FOREACH(zone, &keg->uk_zones, uz_link)
1773 			zfunc(zone);
1774 	}
1775 	rw_runlock(&uma_rwlock);
1776 }
1777 
1778 /* Public functions */
1779 /* See uma.h */
1780 void
1781 uma_startup(void *bootmem, int boot_pages)
1782 {
1783 	struct uma_zctor_args args;
1784 	uma_slab_t slab;
1785 	u_int slabsize;
1786 	int i;
1787 
1788 #ifdef UMA_DEBUG
1789 	printf("Creating uma keg headers zone and keg.\n");
1790 #endif
1791 	rw_init(&uma_rwlock, "UMA lock");
1792 
1793 	/* "manually" create the initial zone */
1794 	memset(&args, 0, sizeof(args));
1795 	args.name = "UMA Kegs";
1796 	args.size = sizeof(struct uma_keg);
1797 	args.ctor = keg_ctor;
1798 	args.dtor = keg_dtor;
1799 	args.uminit = zero_init;
1800 	args.fini = NULL;
1801 	args.keg = &masterkeg;
1802 	args.align = 32 - 1;
1803 	args.flags = UMA_ZFLAG_INTERNAL;
1804 	/* The initial zone has no Per cpu queues so it's smaller */
1805 	zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK);
1806 
1807 #ifdef UMA_DEBUG
1808 	printf("Filling boot free list.\n");
1809 #endif
1810 	for (i = 0; i < boot_pages; i++) {
1811 		slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE));
1812 		slab->us_data = (uint8_t *)slab;
1813 		slab->us_flags = UMA_SLAB_BOOT;
1814 		LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link);
1815 	}
1816 	mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF);
1817 
1818 #ifdef UMA_DEBUG
1819 	printf("Creating uma zone headers zone and keg.\n");
1820 #endif
1821 	args.name = "UMA Zones";
1822 	args.size = sizeof(struct uma_zone) +
1823 	    (sizeof(struct uma_cache) * (mp_maxid + 1));
1824 	args.ctor = zone_ctor;
1825 	args.dtor = zone_dtor;
1826 	args.uminit = zero_init;
1827 	args.fini = NULL;
1828 	args.keg = NULL;
1829 	args.align = 32 - 1;
1830 	args.flags = UMA_ZFLAG_INTERNAL;
1831 	/* The initial zone has no Per cpu queues so it's smaller */
1832 	zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK);
1833 
1834 #ifdef UMA_DEBUG
1835 	printf("Initializing pcpu cache locks.\n");
1836 #endif
1837 #ifdef UMA_DEBUG
1838 	printf("Creating slab and hash zones.\n");
1839 #endif
1840 
1841 	/* Now make a zone for slab headers */
1842 	slabzone = uma_zcreate("UMA Slabs",
1843 				sizeof(struct uma_slab),
1844 				NULL, NULL, NULL, NULL,
1845 				UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1846 
1847 	/*
1848 	 * We also create a zone for the bigger slabs with reference
1849 	 * counts in them, to accomodate UMA_ZONE_REFCNT zones.
1850 	 */
1851 	slabsize = sizeof(struct uma_slab_refcnt);
1852 	slabsize += uma_max_ipers_ref * sizeof(uint32_t);
1853 	slabrefzone = uma_zcreate("UMA RCntSlabs",
1854 				  slabsize,
1855 				  NULL, NULL, NULL, NULL,
1856 				  UMA_ALIGN_PTR,
1857 				  UMA_ZFLAG_INTERNAL);
1858 
1859 	hashzone = uma_zcreate("UMA Hash",
1860 	    sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT,
1861 	    NULL, NULL, NULL, NULL,
1862 	    UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL);
1863 
1864 	bucket_init();
1865 
1866 	booted = UMA_STARTUP;
1867 
1868 #ifdef UMA_DEBUG
1869 	printf("UMA startup complete.\n");
1870 #endif
1871 }
1872 
1873 /* see uma.h */
1874 void
1875 uma_startup2(void)
1876 {
1877 	booted = UMA_STARTUP2;
1878 	bucket_enable();
1879 #ifdef UMA_DEBUG
1880 	printf("UMA startup2 complete.\n");
1881 #endif
1882 }
1883 
1884 /*
1885  * Initialize our callout handle
1886  *
1887  */
1888 
1889 static void
1890 uma_startup3(void)
1891 {
1892 #ifdef UMA_DEBUG
1893 	printf("Starting callout.\n");
1894 #endif
1895 	callout_init(&uma_callout, CALLOUT_MPSAFE);
1896 	callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL);
1897 #ifdef UMA_DEBUG
1898 	printf("UMA startup3 complete.\n");
1899 #endif
1900 }
1901 
1902 static uma_keg_t
1903 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini,
1904 		int align, uint32_t flags)
1905 {
1906 	struct uma_kctor_args args;
1907 
1908 	args.size = size;
1909 	args.uminit = uminit;
1910 	args.fini = fini;
1911 	args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align;
1912 	args.flags = flags;
1913 	args.zone = zone;
1914 	return (zone_alloc_item(kegs, &args, M_WAITOK));
1915 }
1916 
1917 /* See uma.h */
1918 void
1919 uma_set_align(int align)
1920 {
1921 
1922 	if (align != UMA_ALIGN_CACHE)
1923 		uma_align_cache = align;
1924 }
1925 
1926 /* See uma.h */
1927 uma_zone_t
1928 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor,
1929 		uma_init uminit, uma_fini fini, int align, uint32_t flags)
1930 
1931 {
1932 	struct uma_zctor_args args;
1933 
1934 	/* This stuff is essential for the zone ctor */
1935 	memset(&args, 0, sizeof(args));
1936 	args.name = name;
1937 	args.size = size;
1938 	args.ctor = ctor;
1939 	args.dtor = dtor;
1940 	args.uminit = uminit;
1941 	args.fini = fini;
1942 	args.align = align;
1943 	args.flags = flags;
1944 	args.keg = NULL;
1945 
1946 	return (zone_alloc_item(zones, &args, M_WAITOK));
1947 }
1948 
1949 /* See uma.h */
1950 uma_zone_t
1951 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor,
1952 		    uma_init zinit, uma_fini zfini, uma_zone_t master)
1953 {
1954 	struct uma_zctor_args args;
1955 	uma_keg_t keg;
1956 
1957 	keg = zone_first_keg(master);
1958 	memset(&args, 0, sizeof(args));
1959 	args.name = name;
1960 	args.size = keg->uk_size;
1961 	args.ctor = ctor;
1962 	args.dtor = dtor;
1963 	args.uminit = zinit;
1964 	args.fini = zfini;
1965 	args.align = keg->uk_align;
1966 	args.flags = keg->uk_flags | UMA_ZONE_SECONDARY;
1967 	args.keg = keg;
1968 
1969 	/* XXX Attaches only one keg of potentially many. */
1970 	return (zone_alloc_item(zones, &args, M_WAITOK));
1971 }
1972 
1973 /* See uma.h */
1974 uma_zone_t
1975 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor,
1976 		    uma_init zinit, uma_fini zfini, uma_import zimport,
1977 		    uma_release zrelease, void *arg, int flags)
1978 {
1979 	struct uma_zctor_args args;
1980 
1981 	memset(&args, 0, sizeof(args));
1982 	args.name = name;
1983 	args.size = size;
1984 	args.ctor = ctor;
1985 	args.dtor = dtor;
1986 	args.uminit = zinit;
1987 	args.fini = zfini;
1988 	args.import = zimport;
1989 	args.release = zrelease;
1990 	args.arg = arg;
1991 	args.align = 0;
1992 	args.flags = flags;
1993 
1994 	return (zone_alloc_item(zones, &args, M_WAITOK));
1995 }
1996 
1997 static void
1998 zone_lock_pair(uma_zone_t a, uma_zone_t b)
1999 {
2000 	if (a < b) {
2001 		ZONE_LOCK(a);
2002 		mtx_lock_flags(b->uz_lockptr, MTX_DUPOK);
2003 	} else {
2004 		ZONE_LOCK(b);
2005 		mtx_lock_flags(a->uz_lockptr, MTX_DUPOK);
2006 	}
2007 }
2008 
2009 static void
2010 zone_unlock_pair(uma_zone_t a, uma_zone_t b)
2011 {
2012 
2013 	ZONE_UNLOCK(a);
2014 	ZONE_UNLOCK(b);
2015 }
2016 
2017 int
2018 uma_zsecond_add(uma_zone_t zone, uma_zone_t master)
2019 {
2020 	uma_klink_t klink;
2021 	uma_klink_t kl;
2022 	int error;
2023 
2024 	error = 0;
2025 	klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO);
2026 
2027 	zone_lock_pair(zone, master);
2028 	/*
2029 	 * zone must use vtoslab() to resolve objects and must already be
2030 	 * a secondary.
2031 	 */
2032 	if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY))
2033 	    != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) {
2034 		error = EINVAL;
2035 		goto out;
2036 	}
2037 	/*
2038 	 * The new master must also use vtoslab().
2039 	 */
2040 	if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) {
2041 		error = EINVAL;
2042 		goto out;
2043 	}
2044 	/*
2045 	 * Both must either be refcnt, or not be refcnt.
2046 	 */
2047 	if ((zone->uz_flags & UMA_ZONE_REFCNT) !=
2048 	    (master->uz_flags & UMA_ZONE_REFCNT)) {
2049 		error = EINVAL;
2050 		goto out;
2051 	}
2052 	/*
2053 	 * The underlying object must be the same size.  rsize
2054 	 * may be different.
2055 	 */
2056 	if (master->uz_size != zone->uz_size) {
2057 		error = E2BIG;
2058 		goto out;
2059 	}
2060 	/*
2061 	 * Put it at the end of the list.
2062 	 */
2063 	klink->kl_keg = zone_first_keg(master);
2064 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link) {
2065 		if (LIST_NEXT(kl, kl_link) == NULL) {
2066 			LIST_INSERT_AFTER(kl, klink, kl_link);
2067 			break;
2068 		}
2069 	}
2070 	klink = NULL;
2071 	zone->uz_flags |= UMA_ZFLAG_MULTI;
2072 	zone->uz_slab = zone_fetch_slab_multi;
2073 
2074 out:
2075 	zone_unlock_pair(zone, master);
2076 	if (klink != NULL)
2077 		free(klink, M_TEMP);
2078 
2079 	return (error);
2080 }
2081 
2082 
2083 /* See uma.h */
2084 void
2085 uma_zdestroy(uma_zone_t zone)
2086 {
2087 
2088 	zone_free_item(zones, zone, NULL, SKIP_NONE);
2089 }
2090 
2091 /* See uma.h */
2092 void *
2093 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags)
2094 {
2095 	void *item;
2096 	uma_cache_t cache;
2097 	uma_bucket_t bucket;
2098 	int lockfail;
2099 	int cpu;
2100 
2101 #if 0
2102 	/* XXX: FIX!! Do not enable this in CURRENT!! MarkM */
2103 	/* The entropy here is desirable, but the harvesting is expensive */
2104 	random_harvest(&(zone->uz_name), sizeof(void *), 1, RANDOM_UMA_ALLOC);
2105 #endif
2106 
2107 	/* This is the fast path allocation */
2108 #ifdef UMA_DEBUG_ALLOC_1
2109 	printf("Allocating one item from %s(%p)\n", zone->uz_name, zone);
2110 #endif
2111 	CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread,
2112 	    zone->uz_name, flags);
2113 
2114 	if (flags & M_WAITOK) {
2115 		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL,
2116 		    "uma_zalloc_arg: zone \"%s\"", zone->uz_name);
2117 	}
2118 #ifdef DEBUG_MEMGUARD
2119 	if (memguard_cmp_zone(zone)) {
2120 		item = memguard_alloc(zone->uz_size, flags);
2121 		if (item != NULL) {
2122 			/*
2123 			 * Avoid conflict with the use-after-free
2124 			 * protecting infrastructure from INVARIANTS.
2125 			 */
2126 			if (zone->uz_init != NULL &&
2127 			    zone->uz_init != mtrash_init &&
2128 			    zone->uz_init(item, zone->uz_size, flags) != 0)
2129 				return (NULL);
2130 			if (zone->uz_ctor != NULL &&
2131 			    zone->uz_ctor != mtrash_ctor &&
2132 			    zone->uz_ctor(item, zone->uz_size, udata,
2133 			    flags) != 0) {
2134 			    	zone->uz_fini(item, zone->uz_size);
2135 				return (NULL);
2136 			}
2137 #if 0
2138 			/* XXX: FIX!! Do not enable this in CURRENT!! MarkM */
2139 			/* The entropy here is desirable, but the harvesting is expensive */
2140 			random_harvest(&item, sizeof(void *), 1, RANDOM_UMA_ALLOC);
2141 #endif
2142 			return (item);
2143 		}
2144 		/* This is unfortunate but should not be fatal. */
2145 	}
2146 #endif
2147 	/*
2148 	 * If possible, allocate from the per-CPU cache.  There are two
2149 	 * requirements for safe access to the per-CPU cache: (1) the thread
2150 	 * accessing the cache must not be preempted or yield during access,
2151 	 * and (2) the thread must not migrate CPUs without switching which
2152 	 * cache it accesses.  We rely on a critical section to prevent
2153 	 * preemption and migration.  We release the critical section in
2154 	 * order to acquire the zone mutex if we are unable to allocate from
2155 	 * the current cache; when we re-acquire the critical section, we
2156 	 * must detect and handle migration if it has occurred.
2157 	 */
2158 	critical_enter();
2159 	cpu = curcpu;
2160 	cache = &zone->uz_cpu[cpu];
2161 
2162 zalloc_start:
2163 	bucket = cache->uc_allocbucket;
2164 	if (bucket != NULL && bucket->ub_cnt > 0) {
2165 		bucket->ub_cnt--;
2166 		item = bucket->ub_bucket[bucket->ub_cnt];
2167 #ifdef INVARIANTS
2168 		bucket->ub_bucket[bucket->ub_cnt] = NULL;
2169 #endif
2170 		KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled."));
2171 		cache->uc_allocs++;
2172 		critical_exit();
2173 		if (zone->uz_ctor != NULL &&
2174 		    zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2175 			atomic_add_long(&zone->uz_fails, 1);
2176 			zone_free_item(zone, item, udata, SKIP_DTOR);
2177 			return (NULL);
2178 		}
2179 #ifdef INVARIANTS
2180 		uma_dbg_alloc(zone, NULL, item);
2181 #endif
2182 		if (flags & M_ZERO)
2183 			uma_zero_item(item, zone);
2184 #if 0
2185 		/* XXX: FIX!! Do not enable this in CURRENT!! MarkM */
2186 		/* The entropy here is desirable, but the harvesting is expensive */
2187 		random_harvest(&item, sizeof(void *), 1, RANDOM_UMA_ALLOC);
2188 #endif
2189 		return (item);
2190 	}
2191 
2192 	/*
2193 	 * We have run out of items in our alloc bucket.
2194 	 * See if we can switch with our free bucket.
2195 	 */
2196 	bucket = cache->uc_freebucket;
2197 	if (bucket != NULL && bucket->ub_cnt > 0) {
2198 #ifdef UMA_DEBUG_ALLOC
2199 		printf("uma_zalloc: Swapping empty with alloc.\n");
2200 #endif
2201 		cache->uc_freebucket = cache->uc_allocbucket;
2202 		cache->uc_allocbucket = bucket;
2203 		goto zalloc_start;
2204 	}
2205 
2206 	/*
2207 	 * Discard any empty allocation bucket while we hold no locks.
2208 	 */
2209 	bucket = cache->uc_allocbucket;
2210 	cache->uc_allocbucket = NULL;
2211 	critical_exit();
2212 	if (bucket != NULL)
2213 		bucket_free(zone, bucket, udata);
2214 
2215 	/* Short-circuit for zones without buckets and low memory. */
2216 	if (zone->uz_count == 0 || bucketdisable)
2217 		goto zalloc_item;
2218 
2219 	/*
2220 	 * Attempt to retrieve the item from the per-CPU cache has failed, so
2221 	 * we must go back to the zone.  This requires the zone lock, so we
2222 	 * must drop the critical section, then re-acquire it when we go back
2223 	 * to the cache.  Since the critical section is released, we may be
2224 	 * preempted or migrate.  As such, make sure not to maintain any
2225 	 * thread-local state specific to the cache from prior to releasing
2226 	 * the critical section.
2227 	 */
2228 	lockfail = 0;
2229 	if (ZONE_TRYLOCK(zone) == 0) {
2230 		/* Record contention to size the buckets. */
2231 		ZONE_LOCK(zone);
2232 		lockfail = 1;
2233 	}
2234 	critical_enter();
2235 	cpu = curcpu;
2236 	cache = &zone->uz_cpu[cpu];
2237 
2238 	/*
2239 	 * Since we have locked the zone we may as well send back our stats.
2240 	 */
2241 	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2242 	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2243 	cache->uc_allocs = 0;
2244 	cache->uc_frees = 0;
2245 
2246 	/* See if we lost the race to fill the cache. */
2247 	if (cache->uc_allocbucket != NULL) {
2248 		ZONE_UNLOCK(zone);
2249 		goto zalloc_start;
2250 	}
2251 
2252 	/*
2253 	 * Check the zone's cache of buckets.
2254 	 */
2255 	if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) {
2256 		KASSERT(bucket->ub_cnt != 0,
2257 		    ("uma_zalloc_arg: Returning an empty bucket."));
2258 
2259 		LIST_REMOVE(bucket, ub_link);
2260 		cache->uc_allocbucket = bucket;
2261 		ZONE_UNLOCK(zone);
2262 		goto zalloc_start;
2263 	}
2264 	/* We are no longer associated with this CPU. */
2265 	critical_exit();
2266 
2267 	/*
2268 	 * We bump the uz count when the cache size is insufficient to
2269 	 * handle the working set.
2270 	 */
2271 	if (lockfail && zone->uz_count < BUCKET_MAX)
2272 		zone->uz_count++;
2273 	ZONE_UNLOCK(zone);
2274 
2275 	/*
2276 	 * Now lets just fill a bucket and put it on the free list.  If that
2277 	 * works we'll restart the allocation from the begining and it
2278 	 * will use the just filled bucket.
2279 	 */
2280 	bucket = zone_alloc_bucket(zone, udata, flags);
2281 	if (bucket != NULL) {
2282 		ZONE_LOCK(zone);
2283 		critical_enter();
2284 		cpu = curcpu;
2285 		cache = &zone->uz_cpu[cpu];
2286 		/*
2287 		 * See if we lost the race or were migrated.  Cache the
2288 		 * initialized bucket to make this less likely or claim
2289 		 * the memory directly.
2290 		 */
2291 		if (cache->uc_allocbucket == NULL)
2292 			cache->uc_allocbucket = bucket;
2293 		else
2294 			LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2295 		ZONE_UNLOCK(zone);
2296 		goto zalloc_start;
2297 	}
2298 
2299 	/*
2300 	 * We may not be able to get a bucket so return an actual item.
2301 	 */
2302 #ifdef UMA_DEBUG
2303 	printf("uma_zalloc_arg: Bucketzone returned NULL\n");
2304 #endif
2305 
2306 zalloc_item:
2307 	item = zone_alloc_item(zone, udata, flags);
2308 
2309 #if 0
2310 	/* XXX: FIX!! Do not enable this in CURRENT!! MarkM */
2311 	/* The entropy here is desirable, but the harvesting is expensive */
2312 	random_harvest(&item, sizeof(void *), 1, RANDOM_UMA_ALLOC);
2313 #endif
2314 	return (item);
2315 }
2316 
2317 static uma_slab_t
2318 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags)
2319 {
2320 	uma_slab_t slab;
2321 	int reserve;
2322 
2323 	mtx_assert(&keg->uk_lock, MA_OWNED);
2324 	slab = NULL;
2325 	reserve = 0;
2326 	if ((flags & M_USE_RESERVE) == 0)
2327 		reserve = keg->uk_reserve;
2328 
2329 	for (;;) {
2330 		/*
2331 		 * Find a slab with some space.  Prefer slabs that are partially
2332 		 * used over those that are totally full.  This helps to reduce
2333 		 * fragmentation.
2334 		 */
2335 		if (keg->uk_free > reserve) {
2336 			if (!LIST_EMPTY(&keg->uk_part_slab)) {
2337 				slab = LIST_FIRST(&keg->uk_part_slab);
2338 			} else {
2339 				slab = LIST_FIRST(&keg->uk_free_slab);
2340 				LIST_REMOVE(slab, us_link);
2341 				LIST_INSERT_HEAD(&keg->uk_part_slab, slab,
2342 				    us_link);
2343 			}
2344 			MPASS(slab->us_keg == keg);
2345 			return (slab);
2346 		}
2347 
2348 		/*
2349 		 * M_NOVM means don't ask at all!
2350 		 */
2351 		if (flags & M_NOVM)
2352 			break;
2353 
2354 		if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) {
2355 			keg->uk_flags |= UMA_ZFLAG_FULL;
2356 			/*
2357 			 * If this is not a multi-zone, set the FULL bit.
2358 			 * Otherwise slab_multi() takes care of it.
2359 			 */
2360 			if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) {
2361 				zone->uz_flags |= UMA_ZFLAG_FULL;
2362 				zone_log_warning(zone);
2363 			}
2364 			if (flags & M_NOWAIT)
2365 				break;
2366 			zone->uz_sleeps++;
2367 			msleep(keg, &keg->uk_lock, PVM, "keglimit", 0);
2368 			continue;
2369 		}
2370 		slab = keg_alloc_slab(keg, zone, flags);
2371 		/*
2372 		 * If we got a slab here it's safe to mark it partially used
2373 		 * and return.  We assume that the caller is going to remove
2374 		 * at least one item.
2375 		 */
2376 		if (slab) {
2377 			MPASS(slab->us_keg == keg);
2378 			LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2379 			return (slab);
2380 		}
2381 		/*
2382 		 * We might not have been able to get a slab but another cpu
2383 		 * could have while we were unlocked.  Check again before we
2384 		 * fail.
2385 		 */
2386 		flags |= M_NOVM;
2387 	}
2388 	return (slab);
2389 }
2390 
2391 static uma_slab_t
2392 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags)
2393 {
2394 	uma_slab_t slab;
2395 
2396 	if (keg == NULL) {
2397 		keg = zone_first_keg(zone);
2398 		KEG_LOCK(keg);
2399 	}
2400 
2401 	for (;;) {
2402 		slab = keg_fetch_slab(keg, zone, flags);
2403 		if (slab)
2404 			return (slab);
2405 		if (flags & (M_NOWAIT | M_NOVM))
2406 			break;
2407 	}
2408 	KEG_UNLOCK(keg);
2409 	return (NULL);
2410 }
2411 
2412 /*
2413  * uma_zone_fetch_slab_multi:  Fetches a slab from one available keg.  Returns
2414  * with the keg locked.  On NULL no lock is held.
2415  *
2416  * The last pointer is used to seed the search.  It is not required.
2417  */
2418 static uma_slab_t
2419 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags)
2420 {
2421 	uma_klink_t klink;
2422 	uma_slab_t slab;
2423 	uma_keg_t keg;
2424 	int flags;
2425 	int empty;
2426 	int full;
2427 
2428 	/*
2429 	 * Don't wait on the first pass.  This will skip limit tests
2430 	 * as well.  We don't want to block if we can find a provider
2431 	 * without blocking.
2432 	 */
2433 	flags = (rflags & ~M_WAITOK) | M_NOWAIT;
2434 	/*
2435 	 * Use the last slab allocated as a hint for where to start
2436 	 * the search.
2437 	 */
2438 	if (last != NULL) {
2439 		slab = keg_fetch_slab(last, zone, flags);
2440 		if (slab)
2441 			return (slab);
2442 		KEG_UNLOCK(last);
2443 	}
2444 	/*
2445 	 * Loop until we have a slab incase of transient failures
2446 	 * while M_WAITOK is specified.  I'm not sure this is 100%
2447 	 * required but we've done it for so long now.
2448 	 */
2449 	for (;;) {
2450 		empty = 0;
2451 		full = 0;
2452 		/*
2453 		 * Search the available kegs for slabs.  Be careful to hold the
2454 		 * correct lock while calling into the keg layer.
2455 		 */
2456 		LIST_FOREACH(klink, &zone->uz_kegs, kl_link) {
2457 			keg = klink->kl_keg;
2458 			KEG_LOCK(keg);
2459 			if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) {
2460 				slab = keg_fetch_slab(keg, zone, flags);
2461 				if (slab)
2462 					return (slab);
2463 			}
2464 			if (keg->uk_flags & UMA_ZFLAG_FULL)
2465 				full++;
2466 			else
2467 				empty++;
2468 			KEG_UNLOCK(keg);
2469 		}
2470 		if (rflags & (M_NOWAIT | M_NOVM))
2471 			break;
2472 		flags = rflags;
2473 		/*
2474 		 * All kegs are full.  XXX We can't atomically check all kegs
2475 		 * and sleep so just sleep for a short period and retry.
2476 		 */
2477 		if (full && !empty) {
2478 			ZONE_LOCK(zone);
2479 			zone->uz_flags |= UMA_ZFLAG_FULL;
2480 			zone->uz_sleeps++;
2481 			zone_log_warning(zone);
2482 			msleep(zone, zone->uz_lockptr, PVM,
2483 			    "zonelimit", hz/100);
2484 			zone->uz_flags &= ~UMA_ZFLAG_FULL;
2485 			ZONE_UNLOCK(zone);
2486 			continue;
2487 		}
2488 	}
2489 	return (NULL);
2490 }
2491 
2492 static void *
2493 slab_alloc_item(uma_keg_t keg, uma_slab_t slab)
2494 {
2495 	void *item;
2496 	uint8_t freei;
2497 
2498 	MPASS(keg == slab->us_keg);
2499 	mtx_assert(&keg->uk_lock, MA_OWNED);
2500 
2501 	freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1;
2502 	BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free);
2503 	item = slab->us_data + (keg->uk_rsize * freei);
2504 	slab->us_freecount--;
2505 	keg->uk_free--;
2506 
2507 	/* Move this slab to the full list */
2508 	if (slab->us_freecount == 0) {
2509 		LIST_REMOVE(slab, us_link);
2510 		LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link);
2511 	}
2512 
2513 	return (item);
2514 }
2515 
2516 static int
2517 zone_import(uma_zone_t zone, void **bucket, int max, int flags)
2518 {
2519 	uma_slab_t slab;
2520 	uma_keg_t keg;
2521 	int i;
2522 
2523 	slab = NULL;
2524 	keg = NULL;
2525 	/* Try to keep the buckets totally full */
2526 	for (i = 0; i < max; ) {
2527 		if ((slab = zone->uz_slab(zone, keg, flags)) == NULL)
2528 			break;
2529 		keg = slab->us_keg;
2530 		while (slab->us_freecount && i < max) {
2531 			bucket[i++] = slab_alloc_item(keg, slab);
2532 			if (keg->uk_free <= keg->uk_reserve)
2533 				break;
2534 		}
2535 		/* Don't grab more than one slab at a time. */
2536 		flags &= ~M_WAITOK;
2537 		flags |= M_NOWAIT;
2538 	}
2539 	if (slab != NULL)
2540 		KEG_UNLOCK(keg);
2541 
2542 	return i;
2543 }
2544 
2545 static uma_bucket_t
2546 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags)
2547 {
2548 	uma_bucket_t bucket;
2549 	int max;
2550 
2551 	/* Don't wait for buckets, preserve caller's NOVM setting. */
2552 	bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM));
2553 	if (bucket == NULL)
2554 		return (NULL);
2555 
2556 	max = MIN(bucket->ub_entries, zone->uz_count);
2557 	bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket,
2558 	    max, flags);
2559 
2560 	/*
2561 	 * Initialize the memory if necessary.
2562 	 */
2563 	if (bucket->ub_cnt != 0 && zone->uz_init != NULL) {
2564 		int i;
2565 
2566 		for (i = 0; i < bucket->ub_cnt; i++)
2567 			if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size,
2568 			    flags) != 0)
2569 				break;
2570 		/*
2571 		 * If we couldn't initialize the whole bucket, put the
2572 		 * rest back onto the freelist.
2573 		 */
2574 		if (i != bucket->ub_cnt) {
2575 			zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i],
2576 			    bucket->ub_cnt - i);
2577 #ifdef INVARIANTS
2578 			bzero(&bucket->ub_bucket[i],
2579 			    sizeof(void *) * (bucket->ub_cnt - i));
2580 #endif
2581 			bucket->ub_cnt = i;
2582 		}
2583 	}
2584 
2585 	if (bucket->ub_cnt == 0) {
2586 		bucket_free(zone, bucket, udata);
2587 		atomic_add_long(&zone->uz_fails, 1);
2588 		return (NULL);
2589 	}
2590 
2591 	return (bucket);
2592 }
2593 
2594 /*
2595  * Allocates a single item from a zone.
2596  *
2597  * Arguments
2598  *	zone   The zone to alloc for.
2599  *	udata  The data to be passed to the constructor.
2600  *	flags  M_WAITOK, M_NOWAIT, M_ZERO.
2601  *
2602  * Returns
2603  *	NULL if there is no memory and M_NOWAIT is set
2604  *	An item if successful
2605  */
2606 
2607 static void *
2608 zone_alloc_item(uma_zone_t zone, void *udata, int flags)
2609 {
2610 	void *item;
2611 
2612 	item = NULL;
2613 
2614 #ifdef UMA_DEBUG_ALLOC
2615 	printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone);
2616 #endif
2617 	if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1)
2618 		goto fail;
2619 	atomic_add_long(&zone->uz_allocs, 1);
2620 
2621 	/*
2622 	 * We have to call both the zone's init (not the keg's init)
2623 	 * and the zone's ctor.  This is because the item is going from
2624 	 * a keg slab directly to the user, and the user is expecting it
2625 	 * to be both zone-init'd as well as zone-ctor'd.
2626 	 */
2627 	if (zone->uz_init != NULL) {
2628 		if (zone->uz_init(item, zone->uz_size, flags) != 0) {
2629 			zone_free_item(zone, item, udata, SKIP_FINI);
2630 			goto fail;
2631 		}
2632 	}
2633 	if (zone->uz_ctor != NULL) {
2634 		if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) {
2635 			zone_free_item(zone, item, udata, SKIP_DTOR);
2636 			goto fail;
2637 		}
2638 	}
2639 #ifdef INVARIANTS
2640 	uma_dbg_alloc(zone, NULL, item);
2641 #endif
2642 	if (flags & M_ZERO)
2643 		uma_zero_item(item, zone);
2644 
2645 	return (item);
2646 
2647 fail:
2648 	atomic_add_long(&zone->uz_fails, 1);
2649 	return (NULL);
2650 }
2651 
2652 /* See uma.h */
2653 void
2654 uma_zfree_arg(uma_zone_t zone, void *item, void *udata)
2655 {
2656 	uma_cache_t cache;
2657 	uma_bucket_t bucket;
2658 	int lockfail;
2659 	int cpu;
2660 
2661 #if 0
2662 	/* XXX: FIX!! Do not enable this in CURRENT!! MarkM */
2663 	/* The entropy here is desirable, but the harvesting is expensive */
2664 	struct entropy {
2665 		const void *uz_name;
2666 		const void *item;
2667 	} entropy;
2668 
2669 	entropy.uz_name = zone->uz_name;
2670 	entropy.item = item;
2671 	random_harvest(&entropy, sizeof(struct entropy), 2, RANDOM_UMA_ALLOC);
2672 #endif
2673 
2674 #ifdef UMA_DEBUG_ALLOC_1
2675 	printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone);
2676 #endif
2677 	CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread,
2678 	    zone->uz_name);
2679 
2680         /* uma_zfree(..., NULL) does nothing, to match free(9). */
2681         if (item == NULL)
2682                 return;
2683 #ifdef DEBUG_MEMGUARD
2684 	if (is_memguard_addr(item)) {
2685 		if (zone->uz_dtor != NULL && zone->uz_dtor != mtrash_dtor)
2686 			zone->uz_dtor(item, zone->uz_size, udata);
2687 		if (zone->uz_fini != NULL && zone->uz_fini != mtrash_fini)
2688 			zone->uz_fini(item, zone->uz_size);
2689 		memguard_free(item);
2690 		return;
2691 	}
2692 #endif
2693 #ifdef INVARIANTS
2694 	if (zone->uz_flags & UMA_ZONE_MALLOC)
2695 		uma_dbg_free(zone, udata, item);
2696 	else
2697 		uma_dbg_free(zone, NULL, item);
2698 #endif
2699 	if (zone->uz_dtor != NULL)
2700 		zone->uz_dtor(item, zone->uz_size, udata);
2701 
2702 	/*
2703 	 * The race here is acceptable.  If we miss it we'll just have to wait
2704 	 * a little longer for the limits to be reset.
2705 	 */
2706 	if (zone->uz_flags & UMA_ZFLAG_FULL)
2707 		goto zfree_item;
2708 
2709 	/*
2710 	 * If possible, free to the per-CPU cache.  There are two
2711 	 * requirements for safe access to the per-CPU cache: (1) the thread
2712 	 * accessing the cache must not be preempted or yield during access,
2713 	 * and (2) the thread must not migrate CPUs without switching which
2714 	 * cache it accesses.  We rely on a critical section to prevent
2715 	 * preemption and migration.  We release the critical section in
2716 	 * order to acquire the zone mutex if we are unable to free to the
2717 	 * current cache; when we re-acquire the critical section, we must
2718 	 * detect and handle migration if it has occurred.
2719 	 */
2720 zfree_restart:
2721 	critical_enter();
2722 	cpu = curcpu;
2723 	cache = &zone->uz_cpu[cpu];
2724 
2725 zfree_start:
2726 	/*
2727 	 * Try to free into the allocbucket first to give LIFO ordering
2728 	 * for cache-hot datastructures.  Spill over into the freebucket
2729 	 * if necessary.  Alloc will swap them if one runs dry.
2730 	 */
2731 	bucket = cache->uc_allocbucket;
2732 	if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries)
2733 		bucket = cache->uc_freebucket;
2734 	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2735 		KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL,
2736 		    ("uma_zfree: Freeing to non free bucket index."));
2737 		bucket->ub_bucket[bucket->ub_cnt] = item;
2738 		bucket->ub_cnt++;
2739 		cache->uc_frees++;
2740 		critical_exit();
2741 		return;
2742 	}
2743 
2744 	/*
2745 	 * We must go back the zone, which requires acquiring the zone lock,
2746 	 * which in turn means we must release and re-acquire the critical
2747 	 * section.  Since the critical section is released, we may be
2748 	 * preempted or migrate.  As such, make sure not to maintain any
2749 	 * thread-local state specific to the cache from prior to releasing
2750 	 * the critical section.
2751 	 */
2752 	critical_exit();
2753 	if (zone->uz_count == 0 || bucketdisable)
2754 		goto zfree_item;
2755 
2756 	lockfail = 0;
2757 	if (ZONE_TRYLOCK(zone) == 0) {
2758 		/* Record contention to size the buckets. */
2759 		ZONE_LOCK(zone);
2760 		lockfail = 1;
2761 	}
2762 	critical_enter();
2763 	cpu = curcpu;
2764 	cache = &zone->uz_cpu[cpu];
2765 
2766 	/*
2767 	 * Since we have locked the zone we may as well send back our stats.
2768 	 */
2769 	atomic_add_long(&zone->uz_allocs, cache->uc_allocs);
2770 	atomic_add_long(&zone->uz_frees, cache->uc_frees);
2771 	cache->uc_allocs = 0;
2772 	cache->uc_frees = 0;
2773 
2774 	bucket = cache->uc_freebucket;
2775 	if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) {
2776 		ZONE_UNLOCK(zone);
2777 		goto zfree_start;
2778 	}
2779 	cache->uc_freebucket = NULL;
2780 
2781 	/* Can we throw this on the zone full list? */
2782 	if (bucket != NULL) {
2783 #ifdef UMA_DEBUG_ALLOC
2784 		printf("uma_zfree: Putting old bucket on the free list.\n");
2785 #endif
2786 		/* ub_cnt is pointing to the last free item */
2787 		KASSERT(bucket->ub_cnt != 0,
2788 		    ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n"));
2789 		LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link);
2790 	}
2791 
2792 	/* We are no longer associated with this CPU. */
2793 	critical_exit();
2794 
2795 	/*
2796 	 * We bump the uz count when the cache size is insufficient to
2797 	 * handle the working set.
2798 	 */
2799 	if (lockfail && zone->uz_count < BUCKET_MAX)
2800 		zone->uz_count++;
2801 	ZONE_UNLOCK(zone);
2802 
2803 #ifdef UMA_DEBUG_ALLOC
2804 	printf("uma_zfree: Allocating new free bucket.\n");
2805 #endif
2806 	bucket = bucket_alloc(zone, udata, M_NOWAIT);
2807 	if (bucket) {
2808 		critical_enter();
2809 		cpu = curcpu;
2810 		cache = &zone->uz_cpu[cpu];
2811 		if (cache->uc_freebucket == NULL) {
2812 			cache->uc_freebucket = bucket;
2813 			goto zfree_start;
2814 		}
2815 		/*
2816 		 * We lost the race, start over.  We have to drop our
2817 		 * critical section to free the bucket.
2818 		 */
2819 		critical_exit();
2820 		bucket_free(zone, bucket, udata);
2821 		goto zfree_restart;
2822 	}
2823 
2824 	/*
2825 	 * If nothing else caught this, we'll just do an internal free.
2826 	 */
2827 zfree_item:
2828 	zone_free_item(zone, item, udata, SKIP_DTOR);
2829 
2830 	return;
2831 }
2832 
2833 static void
2834 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item)
2835 {
2836 	uint8_t freei;
2837 
2838 	mtx_assert(&keg->uk_lock, MA_OWNED);
2839 	MPASS(keg == slab->us_keg);
2840 
2841 	/* Do we need to remove from any lists? */
2842 	if (slab->us_freecount+1 == keg->uk_ipers) {
2843 		LIST_REMOVE(slab, us_link);
2844 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
2845 	} else if (slab->us_freecount == 0) {
2846 		LIST_REMOVE(slab, us_link);
2847 		LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link);
2848 	}
2849 
2850 	/* Slab management. */
2851 	freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
2852 	BIT_SET(SLAB_SETSIZE, freei, &slab->us_free);
2853 	slab->us_freecount++;
2854 
2855 	/* Keg statistics. */
2856 	keg->uk_free++;
2857 }
2858 
2859 static void
2860 zone_release(uma_zone_t zone, void **bucket, int cnt)
2861 {
2862 	void *item;
2863 	uma_slab_t slab;
2864 	uma_keg_t keg;
2865 	uint8_t *mem;
2866 	int clearfull;
2867 	int i;
2868 
2869 	clearfull = 0;
2870 	keg = zone_first_keg(zone);
2871 	KEG_LOCK(keg);
2872 	for (i = 0; i < cnt; i++) {
2873 		item = bucket[i];
2874 		if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) {
2875 			mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK));
2876 			if (zone->uz_flags & UMA_ZONE_HASH) {
2877 				slab = hash_sfind(&keg->uk_hash, mem);
2878 			} else {
2879 				mem += keg->uk_pgoff;
2880 				slab = (uma_slab_t)mem;
2881 			}
2882 		} else {
2883 			slab = vtoslab((vm_offset_t)item);
2884 			if (slab->us_keg != keg) {
2885 				KEG_UNLOCK(keg);
2886 				keg = slab->us_keg;
2887 				KEG_LOCK(keg);
2888 			}
2889 		}
2890 		slab_free_item(keg, slab, item);
2891 		if (keg->uk_flags & UMA_ZFLAG_FULL) {
2892 			if (keg->uk_pages < keg->uk_maxpages) {
2893 				keg->uk_flags &= ~UMA_ZFLAG_FULL;
2894 				clearfull = 1;
2895 			}
2896 
2897 			/*
2898 			 * We can handle one more allocation. Since we're
2899 			 * clearing ZFLAG_FULL, wake up all procs blocked
2900 			 * on pages. This should be uncommon, so keeping this
2901 			 * simple for now (rather than adding count of blocked
2902 			 * threads etc).
2903 			 */
2904 			wakeup(keg);
2905 		}
2906 	}
2907 	KEG_UNLOCK(keg);
2908 	if (clearfull) {
2909 		ZONE_LOCK(zone);
2910 		zone->uz_flags &= ~UMA_ZFLAG_FULL;
2911 		wakeup(zone);
2912 		ZONE_UNLOCK(zone);
2913 	}
2914 
2915 }
2916 
2917 /*
2918  * Frees a single item to any zone.
2919  *
2920  * Arguments:
2921  *	zone   The zone to free to
2922  *	item   The item we're freeing
2923  *	udata  User supplied data for the dtor
2924  *	skip   Skip dtors and finis
2925  */
2926 static void
2927 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip)
2928 {
2929 
2930 #ifdef INVARIANTS
2931 	if (skip == SKIP_NONE) {
2932 		if (zone->uz_flags & UMA_ZONE_MALLOC)
2933 			uma_dbg_free(zone, udata, item);
2934 		else
2935 			uma_dbg_free(zone, NULL, item);
2936 	}
2937 #endif
2938 	if (skip < SKIP_DTOR && zone->uz_dtor)
2939 		zone->uz_dtor(item, zone->uz_size, udata);
2940 
2941 	if (skip < SKIP_FINI && zone->uz_fini)
2942 		zone->uz_fini(item, zone->uz_size);
2943 
2944 	atomic_add_long(&zone->uz_frees, 1);
2945 	zone->uz_release(zone->uz_arg, &item, 1);
2946 }
2947 
2948 /* See uma.h */
2949 int
2950 uma_zone_set_max(uma_zone_t zone, int nitems)
2951 {
2952 	uma_keg_t keg;
2953 
2954 	keg = zone_first_keg(zone);
2955 	if (keg == NULL)
2956 		return (0);
2957 	KEG_LOCK(keg);
2958 	keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera;
2959 	if (keg->uk_maxpages * keg->uk_ipers < nitems)
2960 		keg->uk_maxpages += keg->uk_ppera;
2961 	nitems = keg->uk_maxpages * keg->uk_ipers;
2962 	KEG_UNLOCK(keg);
2963 
2964 	return (nitems);
2965 }
2966 
2967 /* See uma.h */
2968 int
2969 uma_zone_get_max(uma_zone_t zone)
2970 {
2971 	int nitems;
2972 	uma_keg_t keg;
2973 
2974 	keg = zone_first_keg(zone);
2975 	if (keg == NULL)
2976 		return (0);
2977 	KEG_LOCK(keg);
2978 	nitems = keg->uk_maxpages * keg->uk_ipers;
2979 	KEG_UNLOCK(keg);
2980 
2981 	return (nitems);
2982 }
2983 
2984 /* See uma.h */
2985 void
2986 uma_zone_set_warning(uma_zone_t zone, const char *warning)
2987 {
2988 
2989 	ZONE_LOCK(zone);
2990 	zone->uz_warning = warning;
2991 	ZONE_UNLOCK(zone);
2992 }
2993 
2994 /* See uma.h */
2995 int
2996 uma_zone_get_cur(uma_zone_t zone)
2997 {
2998 	int64_t nitems;
2999 	u_int i;
3000 
3001 	ZONE_LOCK(zone);
3002 	nitems = zone->uz_allocs - zone->uz_frees;
3003 	CPU_FOREACH(i) {
3004 		/*
3005 		 * See the comment in sysctl_vm_zone_stats() regarding the
3006 		 * safety of accessing the per-cpu caches. With the zone lock
3007 		 * held, it is safe, but can potentially result in stale data.
3008 		 */
3009 		nitems += zone->uz_cpu[i].uc_allocs -
3010 		    zone->uz_cpu[i].uc_frees;
3011 	}
3012 	ZONE_UNLOCK(zone);
3013 
3014 	return (nitems < 0 ? 0 : nitems);
3015 }
3016 
3017 /* See uma.h */
3018 void
3019 uma_zone_set_init(uma_zone_t zone, uma_init uminit)
3020 {
3021 	uma_keg_t keg;
3022 
3023 	keg = zone_first_keg(zone);
3024 	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3025 	KEG_LOCK(keg);
3026 	KASSERT(keg->uk_pages == 0,
3027 	    ("uma_zone_set_init on non-empty keg"));
3028 	keg->uk_init = uminit;
3029 	KEG_UNLOCK(keg);
3030 }
3031 
3032 /* See uma.h */
3033 void
3034 uma_zone_set_fini(uma_zone_t zone, uma_fini fini)
3035 {
3036 	uma_keg_t keg;
3037 
3038 	keg = zone_first_keg(zone);
3039 	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3040 	KEG_LOCK(keg);
3041 	KASSERT(keg->uk_pages == 0,
3042 	    ("uma_zone_set_fini on non-empty keg"));
3043 	keg->uk_fini = fini;
3044 	KEG_UNLOCK(keg);
3045 }
3046 
3047 /* See uma.h */
3048 void
3049 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit)
3050 {
3051 
3052 	ZONE_LOCK(zone);
3053 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3054 	    ("uma_zone_set_zinit on non-empty keg"));
3055 	zone->uz_init = zinit;
3056 	ZONE_UNLOCK(zone);
3057 }
3058 
3059 /* See uma.h */
3060 void
3061 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini)
3062 {
3063 
3064 	ZONE_LOCK(zone);
3065 	KASSERT(zone_first_keg(zone)->uk_pages == 0,
3066 	    ("uma_zone_set_zfini on non-empty keg"));
3067 	zone->uz_fini = zfini;
3068 	ZONE_UNLOCK(zone);
3069 }
3070 
3071 /* See uma.h */
3072 /* XXX uk_freef is not actually used with the zone locked */
3073 void
3074 uma_zone_set_freef(uma_zone_t zone, uma_free freef)
3075 {
3076 	uma_keg_t keg;
3077 
3078 	keg = zone_first_keg(zone);
3079 	KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type"));
3080 	KEG_LOCK(keg);
3081 	keg->uk_freef = freef;
3082 	KEG_UNLOCK(keg);
3083 }
3084 
3085 /* See uma.h */
3086 /* XXX uk_allocf is not actually used with the zone locked */
3087 void
3088 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf)
3089 {
3090 	uma_keg_t keg;
3091 
3092 	keg = zone_first_keg(zone);
3093 	KEG_LOCK(keg);
3094 	keg->uk_allocf = allocf;
3095 	KEG_UNLOCK(keg);
3096 }
3097 
3098 /* See uma.h */
3099 void
3100 uma_zone_reserve(uma_zone_t zone, int items)
3101 {
3102 	uma_keg_t keg;
3103 
3104 	keg = zone_first_keg(zone);
3105 	if (keg == NULL)
3106 		return;
3107 	KEG_LOCK(keg);
3108 	keg->uk_reserve = items;
3109 	KEG_UNLOCK(keg);
3110 
3111 	return;
3112 }
3113 
3114 /* See uma.h */
3115 int
3116 uma_zone_reserve_kva(uma_zone_t zone, int count)
3117 {
3118 	uma_keg_t keg;
3119 	vm_offset_t kva;
3120 	int pages;
3121 
3122 	keg = zone_first_keg(zone);
3123 	if (keg == NULL)
3124 		return (0);
3125 	pages = count / keg->uk_ipers;
3126 
3127 	if (pages * keg->uk_ipers < count)
3128 		pages++;
3129 
3130 #ifdef UMA_MD_SMALL_ALLOC
3131 	if (keg->uk_ppera > 1) {
3132 #else
3133 	if (1) {
3134 #endif
3135 		kva = kva_alloc(pages * UMA_SLAB_SIZE);
3136 		if (kva == 0)
3137 			return (0);
3138 	} else
3139 		kva = 0;
3140 	KEG_LOCK(keg);
3141 	keg->uk_kva = kva;
3142 	keg->uk_offset = 0;
3143 	keg->uk_maxpages = pages;
3144 #ifdef UMA_MD_SMALL_ALLOC
3145 	keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc;
3146 #else
3147 	keg->uk_allocf = noobj_alloc;
3148 #endif
3149 	keg->uk_flags |= UMA_ZONE_NOFREE;
3150 	KEG_UNLOCK(keg);
3151 
3152 	return (1);
3153 }
3154 
3155 /* See uma.h */
3156 void
3157 uma_prealloc(uma_zone_t zone, int items)
3158 {
3159 	int slabs;
3160 	uma_slab_t slab;
3161 	uma_keg_t keg;
3162 
3163 	keg = zone_first_keg(zone);
3164 	if (keg == NULL)
3165 		return;
3166 	KEG_LOCK(keg);
3167 	slabs = items / keg->uk_ipers;
3168 	if (slabs * keg->uk_ipers < items)
3169 		slabs++;
3170 	while (slabs > 0) {
3171 		slab = keg_alloc_slab(keg, zone, M_WAITOK);
3172 		if (slab == NULL)
3173 			break;
3174 		MPASS(slab->us_keg == keg);
3175 		LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link);
3176 		slabs--;
3177 	}
3178 	KEG_UNLOCK(keg);
3179 }
3180 
3181 /* See uma.h */
3182 uint32_t *
3183 uma_find_refcnt(uma_zone_t zone, void *item)
3184 {
3185 	uma_slabrefcnt_t slabref;
3186 	uma_slab_t slab;
3187 	uma_keg_t keg;
3188 	uint32_t *refcnt;
3189 	int idx;
3190 
3191 	slab = vtoslab((vm_offset_t)item & (~UMA_SLAB_MASK));
3192 	slabref = (uma_slabrefcnt_t)slab;
3193 	keg = slab->us_keg;
3194 	KASSERT(keg->uk_flags & UMA_ZONE_REFCNT,
3195 	    ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT"));
3196 	idx = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize;
3197 	refcnt = &slabref->us_refcnt[idx];
3198 	return refcnt;
3199 }
3200 
3201 /* See uma.h */
3202 void
3203 uma_reclaim(void)
3204 {
3205 #ifdef UMA_DEBUG
3206 	printf("UMA: vm asked us to release pages!\n");
3207 #endif
3208 	bucket_enable();
3209 	zone_foreach(zone_drain);
3210 	if (vm_page_count_min()) {
3211 		cache_drain_safe(NULL);
3212 		zone_foreach(zone_drain);
3213 	}
3214 	/*
3215 	 * Some slabs may have been freed but this zone will be visited early
3216 	 * we visit again so that we can free pages that are empty once other
3217 	 * zones are drained.  We have to do the same for buckets.
3218 	 */
3219 	zone_drain(slabzone);
3220 	zone_drain(slabrefzone);
3221 	bucket_zone_drain();
3222 }
3223 
3224 /* See uma.h */
3225 int
3226 uma_zone_exhausted(uma_zone_t zone)
3227 {
3228 	int full;
3229 
3230 	ZONE_LOCK(zone);
3231 	full = (zone->uz_flags & UMA_ZFLAG_FULL);
3232 	ZONE_UNLOCK(zone);
3233 	return (full);
3234 }
3235 
3236 int
3237 uma_zone_exhausted_nolock(uma_zone_t zone)
3238 {
3239 	return (zone->uz_flags & UMA_ZFLAG_FULL);
3240 }
3241 
3242 void *
3243 uma_large_malloc(int size, int wait)
3244 {
3245 	void *mem;
3246 	uma_slab_t slab;
3247 	uint8_t flags;
3248 
3249 	slab = zone_alloc_item(slabzone, NULL, wait);
3250 	if (slab == NULL)
3251 		return (NULL);
3252 	mem = page_alloc(NULL, size, &flags, wait);
3253 	if (mem) {
3254 		vsetslab((vm_offset_t)mem, slab);
3255 		slab->us_data = mem;
3256 		slab->us_flags = flags | UMA_SLAB_MALLOC;
3257 		slab->us_size = size;
3258 	} else {
3259 		zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3260 	}
3261 
3262 	return (mem);
3263 }
3264 
3265 void
3266 uma_large_free(uma_slab_t slab)
3267 {
3268 
3269 	page_free(slab->us_data, slab->us_size, slab->us_flags);
3270 	zone_free_item(slabzone, slab, NULL, SKIP_NONE);
3271 }
3272 
3273 static void
3274 uma_zero_item(void *item, uma_zone_t zone)
3275 {
3276 
3277 	if (zone->uz_flags & UMA_ZONE_PCPU) {
3278 		for (int i = 0; i < mp_ncpus; i++)
3279 			bzero(zpcpu_get_cpu(item, i), zone->uz_size);
3280 	} else
3281 		bzero(item, zone->uz_size);
3282 }
3283 
3284 void
3285 uma_print_stats(void)
3286 {
3287 	zone_foreach(uma_print_zone);
3288 }
3289 
3290 static void
3291 slab_print(uma_slab_t slab)
3292 {
3293 	printf("slab: keg %p, data %p, freecount %d\n",
3294 		slab->us_keg, slab->us_data, slab->us_freecount);
3295 }
3296 
3297 static void
3298 cache_print(uma_cache_t cache)
3299 {
3300 	printf("alloc: %p(%d), free: %p(%d)\n",
3301 		cache->uc_allocbucket,
3302 		cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0,
3303 		cache->uc_freebucket,
3304 		cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0);
3305 }
3306 
3307 static void
3308 uma_print_keg(uma_keg_t keg)
3309 {
3310 	uma_slab_t slab;
3311 
3312 	printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d "
3313 	    "out %d free %d limit %d\n",
3314 	    keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags,
3315 	    keg->uk_ipers, keg->uk_ppera,
3316 	    (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free,
3317 	    (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers);
3318 	printf("Part slabs:\n");
3319 	LIST_FOREACH(slab, &keg->uk_part_slab, us_link)
3320 		slab_print(slab);
3321 	printf("Free slabs:\n");
3322 	LIST_FOREACH(slab, &keg->uk_free_slab, us_link)
3323 		slab_print(slab);
3324 	printf("Full slabs:\n");
3325 	LIST_FOREACH(slab, &keg->uk_full_slab, us_link)
3326 		slab_print(slab);
3327 }
3328 
3329 void
3330 uma_print_zone(uma_zone_t zone)
3331 {
3332 	uma_cache_t cache;
3333 	uma_klink_t kl;
3334 	int i;
3335 
3336 	printf("zone: %s(%p) size %d flags %#x\n",
3337 	    zone->uz_name, zone, zone->uz_size, zone->uz_flags);
3338 	LIST_FOREACH(kl, &zone->uz_kegs, kl_link)
3339 		uma_print_keg(kl->kl_keg);
3340 	CPU_FOREACH(i) {
3341 		cache = &zone->uz_cpu[i];
3342 		printf("CPU %d Cache:\n", i);
3343 		cache_print(cache);
3344 	}
3345 }
3346 
3347 #ifdef DDB
3348 /*
3349  * Generate statistics across both the zone and its per-cpu cache's.  Return
3350  * desired statistics if the pointer is non-NULL for that statistic.
3351  *
3352  * Note: does not update the zone statistics, as it can't safely clear the
3353  * per-CPU cache statistic.
3354  *
3355  * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't
3356  * safe from off-CPU; we should modify the caches to track this information
3357  * directly so that we don't have to.
3358  */
3359 static void
3360 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp,
3361     uint64_t *freesp, uint64_t *sleepsp)
3362 {
3363 	uma_cache_t cache;
3364 	uint64_t allocs, frees, sleeps;
3365 	int cachefree, cpu;
3366 
3367 	allocs = frees = sleeps = 0;
3368 	cachefree = 0;
3369 	CPU_FOREACH(cpu) {
3370 		cache = &z->uz_cpu[cpu];
3371 		if (cache->uc_allocbucket != NULL)
3372 			cachefree += cache->uc_allocbucket->ub_cnt;
3373 		if (cache->uc_freebucket != NULL)
3374 			cachefree += cache->uc_freebucket->ub_cnt;
3375 		allocs += cache->uc_allocs;
3376 		frees += cache->uc_frees;
3377 	}
3378 	allocs += z->uz_allocs;
3379 	frees += z->uz_frees;
3380 	sleeps += z->uz_sleeps;
3381 	if (cachefreep != NULL)
3382 		*cachefreep = cachefree;
3383 	if (allocsp != NULL)
3384 		*allocsp = allocs;
3385 	if (freesp != NULL)
3386 		*freesp = frees;
3387 	if (sleepsp != NULL)
3388 		*sleepsp = sleeps;
3389 }
3390 #endif /* DDB */
3391 
3392 static int
3393 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS)
3394 {
3395 	uma_keg_t kz;
3396 	uma_zone_t z;
3397 	int count;
3398 
3399 	count = 0;
3400 	rw_rlock(&uma_rwlock);
3401 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3402 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3403 			count++;
3404 	}
3405 	rw_runlock(&uma_rwlock);
3406 	return (sysctl_handle_int(oidp, &count, 0, req));
3407 }
3408 
3409 static int
3410 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS)
3411 {
3412 	struct uma_stream_header ush;
3413 	struct uma_type_header uth;
3414 	struct uma_percpu_stat ups;
3415 	uma_bucket_t bucket;
3416 	struct sbuf sbuf;
3417 	uma_cache_t cache;
3418 	uma_klink_t kl;
3419 	uma_keg_t kz;
3420 	uma_zone_t z;
3421 	uma_keg_t k;
3422 	int count, error, i;
3423 
3424 	error = sysctl_wire_old_buffer(req, 0);
3425 	if (error != 0)
3426 		return (error);
3427 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
3428 
3429 	count = 0;
3430 	rw_rlock(&uma_rwlock);
3431 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3432 		LIST_FOREACH(z, &kz->uk_zones, uz_link)
3433 			count++;
3434 	}
3435 
3436 	/*
3437 	 * Insert stream header.
3438 	 */
3439 	bzero(&ush, sizeof(ush));
3440 	ush.ush_version = UMA_STREAM_VERSION;
3441 	ush.ush_maxcpus = (mp_maxid + 1);
3442 	ush.ush_count = count;
3443 	(void)sbuf_bcat(&sbuf, &ush, sizeof(ush));
3444 
3445 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3446 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3447 			bzero(&uth, sizeof(uth));
3448 			ZONE_LOCK(z);
3449 			strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME);
3450 			uth.uth_align = kz->uk_align;
3451 			uth.uth_size = kz->uk_size;
3452 			uth.uth_rsize = kz->uk_rsize;
3453 			LIST_FOREACH(kl, &z->uz_kegs, kl_link) {
3454 				k = kl->kl_keg;
3455 				uth.uth_maxpages += k->uk_maxpages;
3456 				uth.uth_pages += k->uk_pages;
3457 				uth.uth_keg_free += k->uk_free;
3458 				uth.uth_limit = (k->uk_maxpages / k->uk_ppera)
3459 				    * k->uk_ipers;
3460 			}
3461 
3462 			/*
3463 			 * A zone is secondary is it is not the first entry
3464 			 * on the keg's zone list.
3465 			 */
3466 			if ((z->uz_flags & UMA_ZONE_SECONDARY) &&
3467 			    (LIST_FIRST(&kz->uk_zones) != z))
3468 				uth.uth_zone_flags = UTH_ZONE_SECONDARY;
3469 
3470 			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3471 				uth.uth_zone_free += bucket->ub_cnt;
3472 			uth.uth_allocs = z->uz_allocs;
3473 			uth.uth_frees = z->uz_frees;
3474 			uth.uth_fails = z->uz_fails;
3475 			uth.uth_sleeps = z->uz_sleeps;
3476 			(void)sbuf_bcat(&sbuf, &uth, sizeof(uth));
3477 			/*
3478 			 * While it is not normally safe to access the cache
3479 			 * bucket pointers while not on the CPU that owns the
3480 			 * cache, we only allow the pointers to be exchanged
3481 			 * without the zone lock held, not invalidated, so
3482 			 * accept the possible race associated with bucket
3483 			 * exchange during monitoring.
3484 			 */
3485 			for (i = 0; i < (mp_maxid + 1); i++) {
3486 				bzero(&ups, sizeof(ups));
3487 				if (kz->uk_flags & UMA_ZFLAG_INTERNAL)
3488 					goto skip;
3489 				if (CPU_ABSENT(i))
3490 					goto skip;
3491 				cache = &z->uz_cpu[i];
3492 				if (cache->uc_allocbucket != NULL)
3493 					ups.ups_cache_free +=
3494 					    cache->uc_allocbucket->ub_cnt;
3495 				if (cache->uc_freebucket != NULL)
3496 					ups.ups_cache_free +=
3497 					    cache->uc_freebucket->ub_cnt;
3498 				ups.ups_allocs = cache->uc_allocs;
3499 				ups.ups_frees = cache->uc_frees;
3500 skip:
3501 				(void)sbuf_bcat(&sbuf, &ups, sizeof(ups));
3502 			}
3503 			ZONE_UNLOCK(z);
3504 		}
3505 	}
3506 	rw_runlock(&uma_rwlock);
3507 	error = sbuf_finish(&sbuf);
3508 	sbuf_delete(&sbuf);
3509 	return (error);
3510 }
3511 
3512 int
3513 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS)
3514 {
3515 	uma_zone_t zone = *(uma_zone_t *)arg1;
3516 	int error, max, old;
3517 
3518 	old = max = uma_zone_get_max(zone);
3519 	error = sysctl_handle_int(oidp, &max, 0, req);
3520 	if (error || !req->newptr)
3521 		return (error);
3522 
3523 	if (max < old)
3524 		return (EINVAL);
3525 
3526 	uma_zone_set_max(zone, max);
3527 
3528 	return (0);
3529 }
3530 
3531 int
3532 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS)
3533 {
3534 	uma_zone_t zone = *(uma_zone_t *)arg1;
3535 	int cur;
3536 
3537 	cur = uma_zone_get_cur(zone);
3538 	return (sysctl_handle_int(oidp, &cur, 0, req));
3539 }
3540 
3541 #ifdef DDB
3542 DB_SHOW_COMMAND(uma, db_show_uma)
3543 {
3544 	uint64_t allocs, frees, sleeps;
3545 	uma_bucket_t bucket;
3546 	uma_keg_t kz;
3547 	uma_zone_t z;
3548 	int cachefree;
3549 
3550 	db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used",
3551 	    "Free", "Requests", "Sleeps", "Bucket");
3552 	LIST_FOREACH(kz, &uma_kegs, uk_link) {
3553 		LIST_FOREACH(z, &kz->uk_zones, uz_link) {
3554 			if (kz->uk_flags & UMA_ZFLAG_INTERNAL) {
3555 				allocs = z->uz_allocs;
3556 				frees = z->uz_frees;
3557 				sleeps = z->uz_sleeps;
3558 				cachefree = 0;
3559 			} else
3560 				uma_zone_sumstat(z, &cachefree, &allocs,
3561 				    &frees, &sleeps);
3562 			if (!((z->uz_flags & UMA_ZONE_SECONDARY) &&
3563 			    (LIST_FIRST(&kz->uk_zones) != z)))
3564 				cachefree += kz->uk_free;
3565 			LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3566 				cachefree += bucket->ub_cnt;
3567 			db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n",
3568 			    z->uz_name, (uintmax_t)kz->uk_size,
3569 			    (intmax_t)(allocs - frees), cachefree,
3570 			    (uintmax_t)allocs, sleeps, z->uz_count);
3571 			if (db_pager_quit)
3572 				return;
3573 		}
3574 	}
3575 }
3576 
3577 DB_SHOW_COMMAND(umacache, db_show_umacache)
3578 {
3579 	uint64_t allocs, frees;
3580 	uma_bucket_t bucket;
3581 	uma_zone_t z;
3582 	int cachefree;
3583 
3584 	db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free",
3585 	    "Requests", "Bucket");
3586 	LIST_FOREACH(z, &uma_cachezones, uz_link) {
3587 		uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL);
3588 		LIST_FOREACH(bucket, &z->uz_buckets, ub_link)
3589 			cachefree += bucket->ub_cnt;
3590 		db_printf("%18s %8ju %8jd %8d %12ju %8u\n",
3591 		    z->uz_name, (uintmax_t)z->uz_size,
3592 		    (intmax_t)(allocs - frees), cachefree,
3593 		    (uintmax_t)allocs, z->uz_count);
3594 		if (db_pager_quit)
3595 			return;
3596 	}
3597 }
3598 #endif
3599