1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/smp.h> 79 #include <sys/taskqueue.h> 80 #include <sys/vmmeter.h> 81 82 #include <vm/vm.h> 83 #include <vm/vm_domainset.h> 84 #include <vm/vm_object.h> 85 #include <vm/vm_page.h> 86 #include <vm/vm_pageout.h> 87 #include <vm/vm_param.h> 88 #include <vm/vm_phys.h> 89 #include <vm/vm_pagequeue.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. 105 */ 106 static uma_zone_t kegs; 107 static uma_zone_t zones; 108 109 /* This is the zone from which all offpage uma_slab_ts are allocated. */ 110 static uma_zone_t slabzone; 111 112 /* 113 * The initial hash tables come out of this zone so they can be allocated 114 * prior to malloc coming up. 115 */ 116 static uma_zone_t hashzone; 117 118 /* The boot-time adjusted value for cache line alignment. */ 119 int uma_align_cache = 64 - 1; 120 121 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 122 123 /* 124 * Are we allowed to allocate buckets? 125 */ 126 static int bucketdisable = 1; 127 128 /* Linked list of all kegs in the system */ 129 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 130 131 /* Linked list of all cache-only zones in the system */ 132 static LIST_HEAD(,uma_zone) uma_cachezones = 133 LIST_HEAD_INITIALIZER(uma_cachezones); 134 135 /* This RW lock protects the keg list */ 136 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 137 138 /* 139 * Pointer and counter to pool of pages, that is preallocated at 140 * startup to bootstrap UMA. 141 */ 142 static char *bootmem; 143 static int boot_pages; 144 145 static struct sx uma_drain_lock; 146 147 /* kmem soft limit. */ 148 static unsigned long uma_kmem_limit = LONG_MAX; 149 static volatile unsigned long uma_kmem_total; 150 151 /* Is the VM done starting up? */ 152 static enum { BOOT_COLD = 0, BOOT_STRAPPED, BOOT_PAGEALLOC, BOOT_BUCKETS, 153 BOOT_RUNNING } booted = BOOT_COLD; 154 155 /* 156 * This is the handle used to schedule events that need to happen 157 * outside of the allocation fast path. 158 */ 159 static struct callout uma_callout; 160 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 161 162 /* 163 * This structure is passed as the zone ctor arg so that I don't have to create 164 * a special allocation function just for zones. 165 */ 166 struct uma_zctor_args { 167 const char *name; 168 size_t size; 169 uma_ctor ctor; 170 uma_dtor dtor; 171 uma_init uminit; 172 uma_fini fini; 173 uma_import import; 174 uma_release release; 175 void *arg; 176 uma_keg_t keg; 177 int align; 178 uint32_t flags; 179 }; 180 181 struct uma_kctor_args { 182 uma_zone_t zone; 183 size_t size; 184 uma_init uminit; 185 uma_fini fini; 186 int align; 187 uint32_t flags; 188 }; 189 190 struct uma_bucket_zone { 191 uma_zone_t ubz_zone; 192 char *ubz_name; 193 int ubz_entries; /* Number of items it can hold. */ 194 int ubz_maxsize; /* Maximum allocation size per-item. */ 195 }; 196 197 /* 198 * Compute the actual number of bucket entries to pack them in power 199 * of two sizes for more efficient space utilization. 200 */ 201 #define BUCKET_SIZE(n) \ 202 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 203 204 #define BUCKET_MAX BUCKET_SIZE(256) 205 206 struct uma_bucket_zone bucket_zones[] = { 207 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 208 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 209 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 210 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 211 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 212 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 213 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 214 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 215 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 216 { NULL, NULL, 0} 217 }; 218 219 /* 220 * Flags and enumerations to be passed to internal functions. 221 */ 222 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 223 224 #define UMA_ANYDOMAIN -1 /* Special value for domain search. */ 225 226 /* Prototypes.. */ 227 228 int uma_startup_count(int); 229 void uma_startup(void *, int); 230 void uma_startup1(void); 231 void uma_startup2(void); 232 233 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 234 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 235 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 236 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 237 static void page_free(void *, vm_size_t, uint8_t); 238 static void pcpu_page_free(void *, vm_size_t, uint8_t); 239 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int); 240 static void cache_drain(uma_zone_t); 241 static void bucket_drain(uma_zone_t, uma_bucket_t); 242 static void bucket_cache_drain(uma_zone_t zone); 243 static int keg_ctor(void *, int, void *, int); 244 static void keg_dtor(void *, int, void *); 245 static int zone_ctor(void *, int, void *, int); 246 static void zone_dtor(void *, int, void *); 247 static int zero_init(void *, int, int); 248 static void keg_small_init(uma_keg_t keg); 249 static void keg_large_init(uma_keg_t keg); 250 static void zone_foreach(void (*zfunc)(uma_zone_t)); 251 static void zone_timeout(uma_zone_t zone); 252 static int hash_alloc(struct uma_hash *); 253 static int hash_expand(struct uma_hash *, struct uma_hash *); 254 static void hash_free(struct uma_hash *hash); 255 static void uma_timeout(void *); 256 static void uma_startup3(void); 257 static void *zone_alloc_item(uma_zone_t, void *, int, int); 258 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 259 static void bucket_enable(void); 260 static void bucket_init(void); 261 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 262 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 263 static void bucket_zone_drain(void); 264 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 265 static uma_slab_t zone_fetch_slab(uma_zone_t, uma_keg_t, int, int); 266 static uma_slab_t zone_fetch_slab_multi(uma_zone_t, uma_keg_t, int, int); 267 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 268 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 269 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 270 uma_fini fini, int align, uint32_t flags); 271 static int zone_import(uma_zone_t, void **, int, int, int); 272 static void zone_release(uma_zone_t, void **, int); 273 static void uma_zero_item(void *, uma_zone_t); 274 275 void uma_print_zone(uma_zone_t); 276 void uma_print_stats(void); 277 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 278 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 279 280 #ifdef INVARIANTS 281 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 282 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 283 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 284 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 285 286 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD, 0, 287 "Memory allocation debugging"); 288 289 static u_int dbg_divisor = 1; 290 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 291 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 292 "Debug & thrash every this item in memory allocator"); 293 294 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 295 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 296 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 297 &uma_dbg_cnt, "memory items debugged"); 298 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 299 &uma_skip_cnt, "memory items skipped, not debugged"); 300 #endif 301 302 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 303 304 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 305 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 306 307 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 308 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 309 310 static int zone_warnings = 1; 311 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 312 "Warn when UMA zones becomes full"); 313 314 /* Adjust bytes under management by UMA. */ 315 static inline void 316 uma_total_dec(unsigned long size) 317 { 318 319 atomic_subtract_long(&uma_kmem_total, size); 320 } 321 322 static inline void 323 uma_total_inc(unsigned long size) 324 { 325 326 if (atomic_fetchadd_long(&uma_kmem_total, size) > uma_kmem_limit) 327 uma_reclaim_wakeup(); 328 } 329 330 /* 331 * This routine checks to see whether or not it's safe to enable buckets. 332 */ 333 static void 334 bucket_enable(void) 335 { 336 bucketdisable = vm_page_count_min(); 337 } 338 339 /* 340 * Initialize bucket_zones, the array of zones of buckets of various sizes. 341 * 342 * For each zone, calculate the memory required for each bucket, consisting 343 * of the header and an array of pointers. 344 */ 345 static void 346 bucket_init(void) 347 { 348 struct uma_bucket_zone *ubz; 349 int size; 350 351 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 352 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 353 size += sizeof(void *) * ubz->ubz_entries; 354 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 355 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 356 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | UMA_ZONE_NUMA); 357 } 358 } 359 360 /* 361 * Given a desired number of entries for a bucket, return the zone from which 362 * to allocate the bucket. 363 */ 364 static struct uma_bucket_zone * 365 bucket_zone_lookup(int entries) 366 { 367 struct uma_bucket_zone *ubz; 368 369 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 370 if (ubz->ubz_entries >= entries) 371 return (ubz); 372 ubz--; 373 return (ubz); 374 } 375 376 static int 377 bucket_select(int size) 378 { 379 struct uma_bucket_zone *ubz; 380 381 ubz = &bucket_zones[0]; 382 if (size > ubz->ubz_maxsize) 383 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 384 385 for (; ubz->ubz_entries != 0; ubz++) 386 if (ubz->ubz_maxsize < size) 387 break; 388 ubz--; 389 return (ubz->ubz_entries); 390 } 391 392 static uma_bucket_t 393 bucket_alloc(uma_zone_t zone, void *udata, int flags) 394 { 395 struct uma_bucket_zone *ubz; 396 uma_bucket_t bucket; 397 398 /* 399 * This is to stop us from allocating per cpu buckets while we're 400 * running out of vm.boot_pages. Otherwise, we would exhaust the 401 * boot pages. This also prevents us from allocating buckets in 402 * low memory situations. 403 */ 404 if (bucketdisable) 405 return (NULL); 406 /* 407 * To limit bucket recursion we store the original zone flags 408 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 409 * NOVM flag to persist even through deep recursions. We also 410 * store ZFLAG_BUCKET once we have recursed attempting to allocate 411 * a bucket for a bucket zone so we do not allow infinite bucket 412 * recursion. This cookie will even persist to frees of unused 413 * buckets via the allocation path or bucket allocations in the 414 * free path. 415 */ 416 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 417 udata = (void *)(uintptr_t)zone->uz_flags; 418 else { 419 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 420 return (NULL); 421 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 422 } 423 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 424 flags |= M_NOVM; 425 ubz = bucket_zone_lookup(zone->uz_count); 426 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 427 ubz++; 428 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 429 if (bucket) { 430 #ifdef INVARIANTS 431 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 432 #endif 433 bucket->ub_cnt = 0; 434 bucket->ub_entries = ubz->ubz_entries; 435 } 436 437 return (bucket); 438 } 439 440 static void 441 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 442 { 443 struct uma_bucket_zone *ubz; 444 445 KASSERT(bucket->ub_cnt == 0, 446 ("bucket_free: Freeing a non free bucket.")); 447 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 448 udata = (void *)(uintptr_t)zone->uz_flags; 449 ubz = bucket_zone_lookup(bucket->ub_entries); 450 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 451 } 452 453 static void 454 bucket_zone_drain(void) 455 { 456 struct uma_bucket_zone *ubz; 457 458 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 459 zone_drain(ubz->ubz_zone); 460 } 461 462 static uma_bucket_t 463 zone_try_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, const bool ws) 464 { 465 uma_bucket_t bucket; 466 467 ZONE_LOCK_ASSERT(zone); 468 469 if ((bucket = LIST_FIRST(&zdom->uzd_buckets)) != NULL) { 470 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 471 LIST_REMOVE(bucket, ub_link); 472 zdom->uzd_nitems -= bucket->ub_cnt; 473 if (ws && zdom->uzd_imin > zdom->uzd_nitems) 474 zdom->uzd_imin = zdom->uzd_nitems; 475 } 476 return (bucket); 477 } 478 479 static void 480 zone_put_bucket(uma_zone_t zone, uma_zone_domain_t zdom, uma_bucket_t bucket, 481 const bool ws) 482 { 483 484 ZONE_LOCK_ASSERT(zone); 485 486 LIST_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 487 zdom->uzd_nitems += bucket->ub_cnt; 488 if (ws && zdom->uzd_imax < zdom->uzd_nitems) 489 zdom->uzd_imax = zdom->uzd_nitems; 490 } 491 492 static void 493 zone_log_warning(uma_zone_t zone) 494 { 495 static const struct timeval warninterval = { 300, 0 }; 496 497 if (!zone_warnings || zone->uz_warning == NULL) 498 return; 499 500 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 501 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 502 } 503 504 static inline void 505 zone_maxaction(uma_zone_t zone) 506 { 507 508 if (zone->uz_maxaction.ta_func != NULL) 509 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 510 } 511 512 static void 513 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 514 { 515 uma_klink_t klink; 516 517 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 518 kegfn(klink->kl_keg); 519 } 520 521 /* 522 * Routine called by timeout which is used to fire off some time interval 523 * based calculations. (stats, hash size, etc.) 524 * 525 * Arguments: 526 * arg Unused 527 * 528 * Returns: 529 * Nothing 530 */ 531 static void 532 uma_timeout(void *unused) 533 { 534 bucket_enable(); 535 zone_foreach(zone_timeout); 536 537 /* Reschedule this event */ 538 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 539 } 540 541 /* 542 * Update the working set size estimate for the zone's bucket cache. 543 * The constants chosen here are somewhat arbitrary. With an update period of 544 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 545 * last 100s. 546 */ 547 static void 548 zone_domain_update_wss(uma_zone_domain_t zdom) 549 { 550 long wss; 551 552 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 553 wss = zdom->uzd_imax - zdom->uzd_imin; 554 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 555 zdom->uzd_wss = (3 * wss + 2 * zdom->uzd_wss) / 5; 556 } 557 558 /* 559 * Routine to perform timeout driven calculations. This expands the 560 * hashes and does per cpu statistics aggregation. 561 * 562 * Returns nothing. 563 */ 564 static void 565 keg_timeout(uma_keg_t keg) 566 { 567 568 KEG_LOCK(keg); 569 /* 570 * Expand the keg hash table. 571 * 572 * This is done if the number of slabs is larger than the hash size. 573 * What I'm trying to do here is completely reduce collisions. This 574 * may be a little aggressive. Should I allow for two collisions max? 575 */ 576 if (keg->uk_flags & UMA_ZONE_HASH && 577 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 578 struct uma_hash newhash; 579 struct uma_hash oldhash; 580 int ret; 581 582 /* 583 * This is so involved because allocating and freeing 584 * while the keg lock is held will lead to deadlock. 585 * I have to do everything in stages and check for 586 * races. 587 */ 588 newhash = keg->uk_hash; 589 KEG_UNLOCK(keg); 590 ret = hash_alloc(&newhash); 591 KEG_LOCK(keg); 592 if (ret) { 593 if (hash_expand(&keg->uk_hash, &newhash)) { 594 oldhash = keg->uk_hash; 595 keg->uk_hash = newhash; 596 } else 597 oldhash = newhash; 598 599 KEG_UNLOCK(keg); 600 hash_free(&oldhash); 601 return; 602 } 603 } 604 KEG_UNLOCK(keg); 605 } 606 607 static void 608 zone_timeout(uma_zone_t zone) 609 { 610 int i; 611 612 zone_foreach_keg(zone, &keg_timeout); 613 614 ZONE_LOCK(zone); 615 for (i = 0; i < vm_ndomains; i++) 616 zone_domain_update_wss(&zone->uz_domain[i]); 617 ZONE_UNLOCK(zone); 618 } 619 620 /* 621 * Allocate and zero fill the next sized hash table from the appropriate 622 * backing store. 623 * 624 * Arguments: 625 * hash A new hash structure with the old hash size in uh_hashsize 626 * 627 * Returns: 628 * 1 on success and 0 on failure. 629 */ 630 static int 631 hash_alloc(struct uma_hash *hash) 632 { 633 int oldsize; 634 int alloc; 635 636 oldsize = hash->uh_hashsize; 637 638 /* We're just going to go to a power of two greater */ 639 if (oldsize) { 640 hash->uh_hashsize = oldsize * 2; 641 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 642 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 643 M_UMAHASH, M_NOWAIT); 644 } else { 645 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 646 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 647 UMA_ANYDOMAIN, M_WAITOK); 648 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 649 } 650 if (hash->uh_slab_hash) { 651 bzero(hash->uh_slab_hash, alloc); 652 hash->uh_hashmask = hash->uh_hashsize - 1; 653 return (1); 654 } 655 656 return (0); 657 } 658 659 /* 660 * Expands the hash table for HASH zones. This is done from zone_timeout 661 * to reduce collisions. This must not be done in the regular allocation 662 * path, otherwise, we can recurse on the vm while allocating pages. 663 * 664 * Arguments: 665 * oldhash The hash you want to expand 666 * newhash The hash structure for the new table 667 * 668 * Returns: 669 * Nothing 670 * 671 * Discussion: 672 */ 673 static int 674 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 675 { 676 uma_slab_t slab; 677 int hval; 678 int i; 679 680 if (!newhash->uh_slab_hash) 681 return (0); 682 683 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 684 return (0); 685 686 /* 687 * I need to investigate hash algorithms for resizing without a 688 * full rehash. 689 */ 690 691 for (i = 0; i < oldhash->uh_hashsize; i++) 692 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 693 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 694 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 695 hval = UMA_HASH(newhash, slab->us_data); 696 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 697 slab, us_hlink); 698 } 699 700 return (1); 701 } 702 703 /* 704 * Free the hash bucket to the appropriate backing store. 705 * 706 * Arguments: 707 * slab_hash The hash bucket we're freeing 708 * hashsize The number of entries in that hash bucket 709 * 710 * Returns: 711 * Nothing 712 */ 713 static void 714 hash_free(struct uma_hash *hash) 715 { 716 if (hash->uh_slab_hash == NULL) 717 return; 718 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 719 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 720 else 721 free(hash->uh_slab_hash, M_UMAHASH); 722 } 723 724 /* 725 * Frees all outstanding items in a bucket 726 * 727 * Arguments: 728 * zone The zone to free to, must be unlocked. 729 * bucket The free/alloc bucket with items, cpu queue must be locked. 730 * 731 * Returns: 732 * Nothing 733 */ 734 735 static void 736 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 737 { 738 int i; 739 740 if (bucket == NULL) 741 return; 742 743 if (zone->uz_fini) 744 for (i = 0; i < bucket->ub_cnt; i++) 745 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 746 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 747 bucket->ub_cnt = 0; 748 } 749 750 /* 751 * Drains the per cpu caches for a zone. 752 * 753 * NOTE: This may only be called while the zone is being turn down, and not 754 * during normal operation. This is necessary in order that we do not have 755 * to migrate CPUs to drain the per-CPU caches. 756 * 757 * Arguments: 758 * zone The zone to drain, must be unlocked. 759 * 760 * Returns: 761 * Nothing 762 */ 763 static void 764 cache_drain(uma_zone_t zone) 765 { 766 uma_cache_t cache; 767 int cpu; 768 769 /* 770 * XXX: It is safe to not lock the per-CPU caches, because we're 771 * tearing down the zone anyway. I.e., there will be no further use 772 * of the caches at this point. 773 * 774 * XXX: It would good to be able to assert that the zone is being 775 * torn down to prevent improper use of cache_drain(). 776 * 777 * XXX: We lock the zone before passing into bucket_cache_drain() as 778 * it is used elsewhere. Should the tear-down path be made special 779 * there in some form? 780 */ 781 CPU_FOREACH(cpu) { 782 cache = &zone->uz_cpu[cpu]; 783 bucket_drain(zone, cache->uc_allocbucket); 784 bucket_drain(zone, cache->uc_freebucket); 785 if (cache->uc_allocbucket != NULL) 786 bucket_free(zone, cache->uc_allocbucket, NULL); 787 if (cache->uc_freebucket != NULL) 788 bucket_free(zone, cache->uc_freebucket, NULL); 789 cache->uc_allocbucket = cache->uc_freebucket = NULL; 790 } 791 ZONE_LOCK(zone); 792 bucket_cache_drain(zone); 793 ZONE_UNLOCK(zone); 794 } 795 796 static void 797 cache_shrink(uma_zone_t zone) 798 { 799 800 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 801 return; 802 803 ZONE_LOCK(zone); 804 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 805 ZONE_UNLOCK(zone); 806 } 807 808 static void 809 cache_drain_safe_cpu(uma_zone_t zone) 810 { 811 uma_cache_t cache; 812 uma_bucket_t b1, b2; 813 int domain; 814 815 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 816 return; 817 818 b1 = b2 = NULL; 819 ZONE_LOCK(zone); 820 critical_enter(); 821 if (zone->uz_flags & UMA_ZONE_NUMA) 822 domain = PCPU_GET(domain); 823 else 824 domain = 0; 825 cache = &zone->uz_cpu[curcpu]; 826 if (cache->uc_allocbucket) { 827 if (cache->uc_allocbucket->ub_cnt != 0) 828 zone_put_bucket(zone, &zone->uz_domain[domain], 829 cache->uc_allocbucket, false); 830 else 831 b1 = cache->uc_allocbucket; 832 cache->uc_allocbucket = NULL; 833 } 834 if (cache->uc_freebucket) { 835 if (cache->uc_freebucket->ub_cnt != 0) 836 zone_put_bucket(zone, &zone->uz_domain[domain], 837 cache->uc_freebucket, false); 838 else 839 b2 = cache->uc_freebucket; 840 cache->uc_freebucket = NULL; 841 } 842 critical_exit(); 843 ZONE_UNLOCK(zone); 844 if (b1) 845 bucket_free(zone, b1, NULL); 846 if (b2) 847 bucket_free(zone, b2, NULL); 848 } 849 850 /* 851 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 852 * This is an expensive call because it needs to bind to all CPUs 853 * one by one and enter a critical section on each of them in order 854 * to safely access their cache buckets. 855 * Zone lock must not be held on call this function. 856 */ 857 static void 858 cache_drain_safe(uma_zone_t zone) 859 { 860 int cpu; 861 862 /* 863 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 864 */ 865 if (zone) 866 cache_shrink(zone); 867 else 868 zone_foreach(cache_shrink); 869 870 CPU_FOREACH(cpu) { 871 thread_lock(curthread); 872 sched_bind(curthread, cpu); 873 thread_unlock(curthread); 874 875 if (zone) 876 cache_drain_safe_cpu(zone); 877 else 878 zone_foreach(cache_drain_safe_cpu); 879 } 880 thread_lock(curthread); 881 sched_unbind(curthread); 882 thread_unlock(curthread); 883 } 884 885 /* 886 * Drain the cached buckets from a zone. Expects a locked zone on entry. 887 */ 888 static void 889 bucket_cache_drain(uma_zone_t zone) 890 { 891 uma_zone_domain_t zdom; 892 uma_bucket_t bucket; 893 int i; 894 895 /* 896 * Drain the bucket queues and free the buckets. 897 */ 898 for (i = 0; i < vm_ndomains; i++) { 899 zdom = &zone->uz_domain[i]; 900 while ((bucket = zone_try_fetch_bucket(zone, zdom, false)) != 901 NULL) { 902 ZONE_UNLOCK(zone); 903 bucket_drain(zone, bucket); 904 bucket_free(zone, bucket, NULL); 905 ZONE_LOCK(zone); 906 } 907 } 908 909 /* 910 * Shrink further bucket sizes. Price of single zone lock collision 911 * is probably lower then price of global cache drain. 912 */ 913 if (zone->uz_count > zone->uz_count_min) 914 zone->uz_count--; 915 } 916 917 static void 918 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 919 { 920 uint8_t *mem; 921 int i; 922 uint8_t flags; 923 924 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 925 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 926 927 mem = slab->us_data; 928 flags = slab->us_flags; 929 i = start; 930 if (keg->uk_fini != NULL) { 931 for (i--; i > -1; i--) 932 #ifdef INVARIANTS 933 /* 934 * trash_fini implies that dtor was trash_dtor. trash_fini 935 * would check that memory hasn't been modified since free, 936 * which executed trash_dtor. 937 * That's why we need to run uma_dbg_kskip() check here, 938 * albeit we don't make skip check for other init/fini 939 * invocations. 940 */ 941 if (!uma_dbg_kskip(keg, slab->us_data + (keg->uk_rsize * i)) || 942 keg->uk_fini != trash_fini) 943 #endif 944 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 945 keg->uk_size); 946 } 947 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 948 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 949 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 950 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 951 } 952 953 /* 954 * Frees pages from a keg back to the system. This is done on demand from 955 * the pageout daemon. 956 * 957 * Returns nothing. 958 */ 959 static void 960 keg_drain(uma_keg_t keg) 961 { 962 struct slabhead freeslabs = { 0 }; 963 uma_domain_t dom; 964 uma_slab_t slab, tmp; 965 int i; 966 967 /* 968 * We don't want to take pages from statically allocated kegs at this 969 * time 970 */ 971 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 972 return; 973 974 CTR3(KTR_UMA, "keg_drain %s(%p) free items: %u", 975 keg->uk_name, keg, keg->uk_free); 976 KEG_LOCK(keg); 977 if (keg->uk_free == 0) 978 goto finished; 979 980 for (i = 0; i < vm_ndomains; i++) { 981 dom = &keg->uk_domain[i]; 982 LIST_FOREACH_SAFE(slab, &dom->ud_free_slab, us_link, tmp) { 983 /* We have nowhere to free these to. */ 984 if (slab->us_flags & UMA_SLAB_BOOT) 985 continue; 986 987 LIST_REMOVE(slab, us_link); 988 keg->uk_pages -= keg->uk_ppera; 989 keg->uk_free -= keg->uk_ipers; 990 991 if (keg->uk_flags & UMA_ZONE_HASH) 992 UMA_HASH_REMOVE(&keg->uk_hash, slab, 993 slab->us_data); 994 995 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 996 } 997 } 998 999 finished: 1000 KEG_UNLOCK(keg); 1001 1002 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 1003 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 1004 keg_free_slab(keg, slab, keg->uk_ipers); 1005 } 1006 } 1007 1008 static void 1009 zone_drain_wait(uma_zone_t zone, int waitok) 1010 { 1011 1012 /* 1013 * Set draining to interlock with zone_dtor() so we can release our 1014 * locks as we go. Only dtor() should do a WAITOK call since it 1015 * is the only call that knows the structure will still be available 1016 * when it wakes up. 1017 */ 1018 ZONE_LOCK(zone); 1019 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 1020 if (waitok == M_NOWAIT) 1021 goto out; 1022 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 1023 } 1024 zone->uz_flags |= UMA_ZFLAG_DRAINING; 1025 bucket_cache_drain(zone); 1026 ZONE_UNLOCK(zone); 1027 /* 1028 * The DRAINING flag protects us from being freed while 1029 * we're running. Normally the uma_rwlock would protect us but we 1030 * must be able to release and acquire the right lock for each keg. 1031 */ 1032 zone_foreach_keg(zone, &keg_drain); 1033 ZONE_LOCK(zone); 1034 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 1035 wakeup(zone); 1036 out: 1037 ZONE_UNLOCK(zone); 1038 } 1039 1040 void 1041 zone_drain(uma_zone_t zone) 1042 { 1043 1044 zone_drain_wait(zone, M_NOWAIT); 1045 } 1046 1047 /* 1048 * Allocate a new slab for a keg. This does not insert the slab onto a list. 1049 * If the allocation was successful, the keg lock will be held upon return, 1050 * otherwise the keg will be left unlocked. 1051 * 1052 * Arguments: 1053 * wait Shall we wait? 1054 * 1055 * Returns: 1056 * The slab that was allocated or NULL if there is no memory and the 1057 * caller specified M_NOWAIT. 1058 */ 1059 static uma_slab_t 1060 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int wait) 1061 { 1062 uma_alloc allocf; 1063 uma_slab_t slab; 1064 unsigned long size; 1065 uint8_t *mem; 1066 uint8_t flags; 1067 int i; 1068 1069 KASSERT(domain >= 0 && domain < vm_ndomains, 1070 ("keg_alloc_slab: domain %d out of range", domain)); 1071 mtx_assert(&keg->uk_lock, MA_OWNED); 1072 1073 allocf = keg->uk_allocf; 1074 KEG_UNLOCK(keg); 1075 1076 slab = NULL; 1077 mem = NULL; 1078 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1079 slab = zone_alloc_item(keg->uk_slabzone, NULL, domain, wait); 1080 if (slab == NULL) 1081 goto out; 1082 } 1083 1084 /* 1085 * This reproduces the old vm_zone behavior of zero filling pages the 1086 * first time they are added to a zone. 1087 * 1088 * Malloced items are zeroed in uma_zalloc. 1089 */ 1090 1091 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1092 wait |= M_ZERO; 1093 else 1094 wait &= ~M_ZERO; 1095 1096 if (keg->uk_flags & UMA_ZONE_NODUMP) 1097 wait |= M_NODUMP; 1098 1099 /* zone is passed for legacy reasons. */ 1100 size = keg->uk_ppera * PAGE_SIZE; 1101 mem = allocf(zone, size, domain, &flags, wait); 1102 if (mem == NULL) { 1103 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1104 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 1105 slab = NULL; 1106 goto out; 1107 } 1108 uma_total_inc(size); 1109 1110 /* Point the slab into the allocated memory */ 1111 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 1112 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1113 1114 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 1115 for (i = 0; i < keg->uk_ppera; i++) 1116 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 1117 1118 slab->us_keg = keg; 1119 slab->us_data = mem; 1120 slab->us_freecount = keg->uk_ipers; 1121 slab->us_flags = flags; 1122 slab->us_domain = domain; 1123 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 1124 #ifdef INVARIANTS 1125 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1126 #endif 1127 1128 if (keg->uk_init != NULL) { 1129 for (i = 0; i < keg->uk_ipers; i++) 1130 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1131 keg->uk_size, wait) != 0) 1132 break; 1133 if (i != keg->uk_ipers) { 1134 keg_free_slab(keg, slab, i); 1135 slab = NULL; 1136 goto out; 1137 } 1138 } 1139 KEG_LOCK(keg); 1140 1141 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1142 slab, keg->uk_name, keg); 1143 1144 if (keg->uk_flags & UMA_ZONE_HASH) 1145 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1146 1147 keg->uk_pages += keg->uk_ppera; 1148 keg->uk_free += keg->uk_ipers; 1149 1150 out: 1151 return (slab); 1152 } 1153 1154 /* 1155 * This function is intended to be used early on in place of page_alloc() so 1156 * that we may use the boot time page cache to satisfy allocations before 1157 * the VM is ready. 1158 */ 1159 static void * 1160 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1161 int wait) 1162 { 1163 uma_keg_t keg; 1164 void *mem; 1165 int pages; 1166 1167 keg = zone_first_keg(zone); 1168 1169 /* 1170 * If we are in BOOT_BUCKETS or higher, than switch to real 1171 * allocator. Zones with page sized slabs switch at BOOT_PAGEALLOC. 1172 */ 1173 switch (booted) { 1174 case BOOT_COLD: 1175 case BOOT_STRAPPED: 1176 break; 1177 case BOOT_PAGEALLOC: 1178 if (keg->uk_ppera > 1) 1179 break; 1180 case BOOT_BUCKETS: 1181 case BOOT_RUNNING: 1182 #ifdef UMA_MD_SMALL_ALLOC 1183 keg->uk_allocf = (keg->uk_ppera > 1) ? 1184 page_alloc : uma_small_alloc; 1185 #else 1186 keg->uk_allocf = page_alloc; 1187 #endif 1188 return keg->uk_allocf(zone, bytes, domain, pflag, wait); 1189 } 1190 1191 /* 1192 * Check our small startup cache to see if it has pages remaining. 1193 */ 1194 pages = howmany(bytes, PAGE_SIZE); 1195 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1196 if (pages > boot_pages) 1197 panic("UMA zone \"%s\": Increase vm.boot_pages", zone->uz_name); 1198 #ifdef DIAGNOSTIC 1199 printf("%s from \"%s\", %d boot pages left\n", __func__, zone->uz_name, 1200 boot_pages); 1201 #endif 1202 mem = bootmem; 1203 boot_pages -= pages; 1204 bootmem += pages * PAGE_SIZE; 1205 *pflag = UMA_SLAB_BOOT; 1206 1207 return (mem); 1208 } 1209 1210 /* 1211 * Allocates a number of pages from the system 1212 * 1213 * Arguments: 1214 * bytes The number of bytes requested 1215 * wait Shall we wait? 1216 * 1217 * Returns: 1218 * A pointer to the alloced memory or possibly 1219 * NULL if M_NOWAIT is set. 1220 */ 1221 static void * 1222 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1223 int wait) 1224 { 1225 void *p; /* Returned page */ 1226 1227 *pflag = UMA_SLAB_KERNEL; 1228 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1229 1230 return (p); 1231 } 1232 1233 static void * 1234 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1235 int wait) 1236 { 1237 struct pglist alloctail; 1238 vm_offset_t addr, zkva; 1239 int cpu, flags; 1240 vm_page_t p, p_next; 1241 #ifdef NUMA 1242 struct pcpu *pc; 1243 #endif 1244 1245 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1246 1247 TAILQ_INIT(&alloctail); 1248 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1249 malloc2vm_flags(wait); 1250 *pflag = UMA_SLAB_KERNEL; 1251 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1252 if (CPU_ABSENT(cpu)) { 1253 p = vm_page_alloc(NULL, 0, flags); 1254 } else { 1255 #ifndef NUMA 1256 p = vm_page_alloc(NULL, 0, flags); 1257 #else 1258 pc = pcpu_find(cpu); 1259 p = vm_page_alloc_domain(NULL, 0, pc->pc_domain, flags); 1260 if (__predict_false(p == NULL)) 1261 p = vm_page_alloc(NULL, 0, flags); 1262 #endif 1263 } 1264 if (__predict_false(p == NULL)) 1265 goto fail; 1266 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1267 } 1268 if ((addr = kva_alloc(bytes)) == 0) 1269 goto fail; 1270 zkva = addr; 1271 TAILQ_FOREACH(p, &alloctail, listq) { 1272 pmap_qenter(zkva, &p, 1); 1273 zkva += PAGE_SIZE; 1274 } 1275 return ((void*)addr); 1276 fail: 1277 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1278 vm_page_unwire(p, PQ_NONE); 1279 vm_page_free(p); 1280 } 1281 return (NULL); 1282 } 1283 1284 /* 1285 * Allocates a number of pages from within an object 1286 * 1287 * Arguments: 1288 * bytes The number of bytes requested 1289 * wait Shall we wait? 1290 * 1291 * Returns: 1292 * A pointer to the alloced memory or possibly 1293 * NULL if M_NOWAIT is set. 1294 */ 1295 static void * 1296 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1297 int wait) 1298 { 1299 TAILQ_HEAD(, vm_page) alloctail; 1300 u_long npages; 1301 vm_offset_t retkva, zkva; 1302 vm_page_t p, p_next; 1303 uma_keg_t keg; 1304 1305 TAILQ_INIT(&alloctail); 1306 keg = zone_first_keg(zone); 1307 1308 npages = howmany(bytes, PAGE_SIZE); 1309 while (npages > 0) { 1310 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1311 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1312 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1313 VM_ALLOC_NOWAIT)); 1314 if (p != NULL) { 1315 /* 1316 * Since the page does not belong to an object, its 1317 * listq is unused. 1318 */ 1319 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1320 npages--; 1321 continue; 1322 } 1323 /* 1324 * Page allocation failed, free intermediate pages and 1325 * exit. 1326 */ 1327 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1328 vm_page_unwire(p, PQ_NONE); 1329 vm_page_free(p); 1330 } 1331 return (NULL); 1332 } 1333 *flags = UMA_SLAB_PRIV; 1334 zkva = keg->uk_kva + 1335 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1336 retkva = zkva; 1337 TAILQ_FOREACH(p, &alloctail, listq) { 1338 pmap_qenter(zkva, &p, 1); 1339 zkva += PAGE_SIZE; 1340 } 1341 1342 return ((void *)retkva); 1343 } 1344 1345 /* 1346 * Frees a number of pages to the system 1347 * 1348 * Arguments: 1349 * mem A pointer to the memory to be freed 1350 * size The size of the memory being freed 1351 * flags The original p->us_flags field 1352 * 1353 * Returns: 1354 * Nothing 1355 */ 1356 static void 1357 page_free(void *mem, vm_size_t size, uint8_t flags) 1358 { 1359 1360 if ((flags & UMA_SLAB_KERNEL) == 0) 1361 panic("UMA: page_free used with invalid flags %x", flags); 1362 1363 kmem_free((vm_offset_t)mem, size); 1364 } 1365 1366 /* 1367 * Frees pcpu zone allocations 1368 * 1369 * Arguments: 1370 * mem A pointer to the memory to be freed 1371 * size The size of the memory being freed 1372 * flags The original p->us_flags field 1373 * 1374 * Returns: 1375 * Nothing 1376 */ 1377 static void 1378 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1379 { 1380 vm_offset_t sva, curva; 1381 vm_paddr_t paddr; 1382 vm_page_t m; 1383 1384 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1385 sva = (vm_offset_t)mem; 1386 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1387 paddr = pmap_kextract(curva); 1388 m = PHYS_TO_VM_PAGE(paddr); 1389 vm_page_unwire(m, PQ_NONE); 1390 vm_page_free(m); 1391 } 1392 pmap_qremove(sva, size >> PAGE_SHIFT); 1393 kva_free(sva, size); 1394 } 1395 1396 1397 /* 1398 * Zero fill initializer 1399 * 1400 * Arguments/Returns follow uma_init specifications 1401 */ 1402 static int 1403 zero_init(void *mem, int size, int flags) 1404 { 1405 bzero(mem, size); 1406 return (0); 1407 } 1408 1409 /* 1410 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1411 * 1412 * Arguments 1413 * keg The zone we should initialize 1414 * 1415 * Returns 1416 * Nothing 1417 */ 1418 static void 1419 keg_small_init(uma_keg_t keg) 1420 { 1421 u_int rsize; 1422 u_int memused; 1423 u_int wastedspace; 1424 u_int shsize; 1425 u_int slabsize; 1426 1427 if (keg->uk_flags & UMA_ZONE_PCPU) { 1428 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1429 1430 slabsize = UMA_PCPU_ALLOC_SIZE; 1431 keg->uk_ppera = ncpus; 1432 } else { 1433 slabsize = UMA_SLAB_SIZE; 1434 keg->uk_ppera = 1; 1435 } 1436 1437 /* 1438 * Calculate the size of each allocation (rsize) according to 1439 * alignment. If the requested size is smaller than we have 1440 * allocation bits for we round it up. 1441 */ 1442 rsize = keg->uk_size; 1443 if (rsize < slabsize / SLAB_SETSIZE) 1444 rsize = slabsize / SLAB_SETSIZE; 1445 if (rsize & keg->uk_align) 1446 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1447 keg->uk_rsize = rsize; 1448 1449 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1450 keg->uk_rsize < UMA_PCPU_ALLOC_SIZE, 1451 ("%s: size %u too large", __func__, keg->uk_rsize)); 1452 1453 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1454 shsize = 0; 1455 else 1456 shsize = sizeof(struct uma_slab); 1457 1458 if (rsize <= slabsize - shsize) 1459 keg->uk_ipers = (slabsize - shsize) / rsize; 1460 else { 1461 /* Handle special case when we have 1 item per slab, so 1462 * alignment requirement can be relaxed. */ 1463 KASSERT(keg->uk_size <= slabsize - shsize, 1464 ("%s: size %u greater than slab", __func__, keg->uk_size)); 1465 keg->uk_ipers = 1; 1466 } 1467 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1468 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1469 1470 memused = keg->uk_ipers * rsize + shsize; 1471 wastedspace = slabsize - memused; 1472 1473 /* 1474 * We can't do OFFPAGE if we're internal or if we've been 1475 * asked to not go to the VM for buckets. If we do this we 1476 * may end up going to the VM for slabs which we do not 1477 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1478 * of UMA_ZONE_VM, which clearly forbids it. 1479 */ 1480 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1481 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1482 return; 1483 1484 /* 1485 * See if using an OFFPAGE slab will limit our waste. Only do 1486 * this if it permits more items per-slab. 1487 * 1488 * XXX We could try growing slabsize to limit max waste as well. 1489 * Historically this was not done because the VM could not 1490 * efficiently handle contiguous allocations. 1491 */ 1492 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1493 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1494 keg->uk_ipers = slabsize / keg->uk_rsize; 1495 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1496 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1497 CTR6(KTR_UMA, "UMA decided we need offpage slab headers for " 1498 "keg: %s(%p), calculated wastedspace = %d, " 1499 "maximum wasted space allowed = %d, " 1500 "calculated ipers = %d, " 1501 "new wasted space = %d\n", keg->uk_name, keg, wastedspace, 1502 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1503 slabsize - keg->uk_ipers * keg->uk_rsize); 1504 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1505 } 1506 1507 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1508 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1509 keg->uk_flags |= UMA_ZONE_HASH; 1510 } 1511 1512 /* 1513 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1514 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1515 * more complicated. 1516 * 1517 * Arguments 1518 * keg The keg we should initialize 1519 * 1520 * Returns 1521 * Nothing 1522 */ 1523 static void 1524 keg_large_init(uma_keg_t keg) 1525 { 1526 u_int shsize; 1527 1528 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1529 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1530 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1531 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1532 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1533 1534 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1535 keg->uk_ipers = 1; 1536 keg->uk_rsize = keg->uk_size; 1537 1538 /* Check whether we have enough space to not do OFFPAGE. */ 1539 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1540 shsize = sizeof(struct uma_slab); 1541 if (shsize & UMA_ALIGN_PTR) 1542 shsize = (shsize & ~UMA_ALIGN_PTR) + 1543 (UMA_ALIGN_PTR + 1); 1544 1545 if (PAGE_SIZE * keg->uk_ppera - keg->uk_rsize < shsize) { 1546 /* 1547 * We can't do OFFPAGE if we're internal, in which case 1548 * we need an extra page per allocation to contain the 1549 * slab header. 1550 */ 1551 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) == 0) 1552 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1553 else 1554 keg->uk_ppera++; 1555 } 1556 } 1557 1558 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1559 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1560 keg->uk_flags |= UMA_ZONE_HASH; 1561 } 1562 1563 static void 1564 keg_cachespread_init(uma_keg_t keg) 1565 { 1566 int alignsize; 1567 int trailer; 1568 int pages; 1569 int rsize; 1570 1571 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1572 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1573 1574 alignsize = keg->uk_align + 1; 1575 rsize = keg->uk_size; 1576 /* 1577 * We want one item to start on every align boundary in a page. To 1578 * do this we will span pages. We will also extend the item by the 1579 * size of align if it is an even multiple of align. Otherwise, it 1580 * would fall on the same boundary every time. 1581 */ 1582 if (rsize & keg->uk_align) 1583 rsize = (rsize & ~keg->uk_align) + alignsize; 1584 if ((rsize & alignsize) == 0) 1585 rsize += alignsize; 1586 trailer = rsize - keg->uk_size; 1587 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1588 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1589 keg->uk_rsize = rsize; 1590 keg->uk_ppera = pages; 1591 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1592 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1593 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1594 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1595 keg->uk_ipers)); 1596 } 1597 1598 /* 1599 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1600 * the keg onto the global keg list. 1601 * 1602 * Arguments/Returns follow uma_ctor specifications 1603 * udata Actually uma_kctor_args 1604 */ 1605 static int 1606 keg_ctor(void *mem, int size, void *udata, int flags) 1607 { 1608 struct uma_kctor_args *arg = udata; 1609 uma_keg_t keg = mem; 1610 uma_zone_t zone; 1611 1612 bzero(keg, size); 1613 keg->uk_size = arg->size; 1614 keg->uk_init = arg->uminit; 1615 keg->uk_fini = arg->fini; 1616 keg->uk_align = arg->align; 1617 keg->uk_free = 0; 1618 keg->uk_reserve = 0; 1619 keg->uk_pages = 0; 1620 keg->uk_flags = arg->flags; 1621 keg->uk_slabzone = NULL; 1622 1623 /* 1624 * We use a global round-robin policy by default. Zones with 1625 * UMA_ZONE_NUMA set will use first-touch instead, in which case the 1626 * iterator is never run. 1627 */ 1628 keg->uk_dr.dr_policy = DOMAINSET_RR(); 1629 keg->uk_dr.dr_iter = 0; 1630 1631 /* 1632 * The master zone is passed to us at keg-creation time. 1633 */ 1634 zone = arg->zone; 1635 keg->uk_name = zone->uz_name; 1636 1637 if (arg->flags & UMA_ZONE_VM) 1638 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1639 1640 if (arg->flags & UMA_ZONE_ZINIT) 1641 keg->uk_init = zero_init; 1642 1643 if (arg->flags & UMA_ZONE_MALLOC) 1644 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1645 1646 if (arg->flags & UMA_ZONE_PCPU) 1647 #ifdef SMP 1648 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1649 #else 1650 keg->uk_flags &= ~UMA_ZONE_PCPU; 1651 #endif 1652 1653 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1654 keg_cachespread_init(keg); 1655 } else { 1656 if (keg->uk_size > UMA_SLAB_SPACE) 1657 keg_large_init(keg); 1658 else 1659 keg_small_init(keg); 1660 } 1661 1662 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1663 keg->uk_slabzone = slabzone; 1664 1665 /* 1666 * If we haven't booted yet we need allocations to go through the 1667 * startup cache until the vm is ready. 1668 */ 1669 if (booted < BOOT_PAGEALLOC) 1670 keg->uk_allocf = startup_alloc; 1671 #ifdef UMA_MD_SMALL_ALLOC 1672 else if (keg->uk_ppera == 1) 1673 keg->uk_allocf = uma_small_alloc; 1674 #endif 1675 else if (keg->uk_flags & UMA_ZONE_PCPU) 1676 keg->uk_allocf = pcpu_page_alloc; 1677 else 1678 keg->uk_allocf = page_alloc; 1679 #ifdef UMA_MD_SMALL_ALLOC 1680 if (keg->uk_ppera == 1) 1681 keg->uk_freef = uma_small_free; 1682 else 1683 #endif 1684 if (keg->uk_flags & UMA_ZONE_PCPU) 1685 keg->uk_freef = pcpu_page_free; 1686 else 1687 keg->uk_freef = page_free; 1688 1689 /* 1690 * Initialize keg's lock 1691 */ 1692 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1693 1694 /* 1695 * If we're putting the slab header in the actual page we need to 1696 * figure out where in each page it goes. This calculates a right 1697 * justified offset into the memory on an ALIGN_PTR boundary. 1698 */ 1699 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1700 u_int totsize; 1701 1702 /* Size of the slab struct and free list */ 1703 totsize = sizeof(struct uma_slab); 1704 1705 if (totsize & UMA_ALIGN_PTR) 1706 totsize = (totsize & ~UMA_ALIGN_PTR) + 1707 (UMA_ALIGN_PTR + 1); 1708 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1709 1710 /* 1711 * The only way the following is possible is if with our 1712 * UMA_ALIGN_PTR adjustments we are now bigger than 1713 * UMA_SLAB_SIZE. I haven't checked whether this is 1714 * mathematically possible for all cases, so we make 1715 * sure here anyway. 1716 */ 1717 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1718 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1719 printf("zone %s ipers %d rsize %d size %d\n", 1720 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1721 keg->uk_size); 1722 panic("UMA slab won't fit."); 1723 } 1724 } 1725 1726 if (keg->uk_flags & UMA_ZONE_HASH) 1727 hash_alloc(&keg->uk_hash); 1728 1729 CTR5(KTR_UMA, "keg_ctor %p zone %s(%p) out %d free %d\n", 1730 keg, zone->uz_name, zone, 1731 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1732 keg->uk_free); 1733 1734 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1735 1736 rw_wlock(&uma_rwlock); 1737 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1738 rw_wunlock(&uma_rwlock); 1739 return (0); 1740 } 1741 1742 /* 1743 * Zone header ctor. This initializes all fields, locks, etc. 1744 * 1745 * Arguments/Returns follow uma_ctor specifications 1746 * udata Actually uma_zctor_args 1747 */ 1748 static int 1749 zone_ctor(void *mem, int size, void *udata, int flags) 1750 { 1751 struct uma_zctor_args *arg = udata; 1752 uma_zone_t zone = mem; 1753 uma_zone_t z; 1754 uma_keg_t keg; 1755 1756 bzero(zone, size); 1757 zone->uz_name = arg->name; 1758 zone->uz_ctor = arg->ctor; 1759 zone->uz_dtor = arg->dtor; 1760 zone->uz_slab = zone_fetch_slab; 1761 zone->uz_init = NULL; 1762 zone->uz_fini = NULL; 1763 zone->uz_allocs = 0; 1764 zone->uz_frees = 0; 1765 zone->uz_fails = 0; 1766 zone->uz_sleeps = 0; 1767 zone->uz_count = 0; 1768 zone->uz_count_min = 0; 1769 zone->uz_flags = 0; 1770 zone->uz_warning = NULL; 1771 /* The domain structures follow the cpu structures. */ 1772 zone->uz_domain = (struct uma_zone_domain *)&zone->uz_cpu[mp_ncpus]; 1773 timevalclear(&zone->uz_ratecheck); 1774 keg = arg->keg; 1775 1776 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1777 1778 /* 1779 * This is a pure cache zone, no kegs. 1780 */ 1781 if (arg->import) { 1782 if (arg->flags & UMA_ZONE_VM) 1783 arg->flags |= UMA_ZFLAG_CACHEONLY; 1784 zone->uz_flags = arg->flags; 1785 zone->uz_size = arg->size; 1786 zone->uz_import = arg->import; 1787 zone->uz_release = arg->release; 1788 zone->uz_arg = arg->arg; 1789 zone->uz_lockptr = &zone->uz_lock; 1790 rw_wlock(&uma_rwlock); 1791 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1792 rw_wunlock(&uma_rwlock); 1793 goto out; 1794 } 1795 1796 /* 1797 * Use the regular zone/keg/slab allocator. 1798 */ 1799 zone->uz_import = (uma_import)zone_import; 1800 zone->uz_release = (uma_release)zone_release; 1801 zone->uz_arg = zone; 1802 1803 if (arg->flags & UMA_ZONE_SECONDARY) { 1804 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1805 zone->uz_init = arg->uminit; 1806 zone->uz_fini = arg->fini; 1807 zone->uz_lockptr = &keg->uk_lock; 1808 zone->uz_flags |= UMA_ZONE_SECONDARY; 1809 rw_wlock(&uma_rwlock); 1810 ZONE_LOCK(zone); 1811 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1812 if (LIST_NEXT(z, uz_link) == NULL) { 1813 LIST_INSERT_AFTER(z, zone, uz_link); 1814 break; 1815 } 1816 } 1817 ZONE_UNLOCK(zone); 1818 rw_wunlock(&uma_rwlock); 1819 } else if (keg == NULL) { 1820 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1821 arg->align, arg->flags)) == NULL) 1822 return (ENOMEM); 1823 } else { 1824 struct uma_kctor_args karg; 1825 int error; 1826 1827 /* We should only be here from uma_startup() */ 1828 karg.size = arg->size; 1829 karg.uminit = arg->uminit; 1830 karg.fini = arg->fini; 1831 karg.align = arg->align; 1832 karg.flags = arg->flags; 1833 karg.zone = zone; 1834 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1835 flags); 1836 if (error) 1837 return (error); 1838 } 1839 1840 /* 1841 * Link in the first keg. 1842 */ 1843 zone->uz_klink.kl_keg = keg; 1844 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1845 zone->uz_lockptr = &keg->uk_lock; 1846 zone->uz_size = keg->uk_size; 1847 zone->uz_flags |= (keg->uk_flags & 1848 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1849 1850 /* 1851 * Some internal zones don't have room allocated for the per cpu 1852 * caches. If we're internal, bail out here. 1853 */ 1854 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1855 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1856 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1857 return (0); 1858 } 1859 1860 out: 1861 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 1862 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 1863 ("Invalid zone flag combination")); 1864 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 1865 zone->uz_count = BUCKET_MAX; 1866 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 1867 zone->uz_count = 0; 1868 else 1869 zone->uz_count = bucket_select(zone->uz_size); 1870 zone->uz_count_min = zone->uz_count; 1871 1872 return (0); 1873 } 1874 1875 /* 1876 * Keg header dtor. This frees all data, destroys locks, frees the hash 1877 * table and removes the keg from the global list. 1878 * 1879 * Arguments/Returns follow uma_dtor specifications 1880 * udata unused 1881 */ 1882 static void 1883 keg_dtor(void *arg, int size, void *udata) 1884 { 1885 uma_keg_t keg; 1886 1887 keg = (uma_keg_t)arg; 1888 KEG_LOCK(keg); 1889 if (keg->uk_free != 0) { 1890 printf("Freed UMA keg (%s) was not empty (%d items). " 1891 " Lost %d pages of memory.\n", 1892 keg->uk_name ? keg->uk_name : "", 1893 keg->uk_free, keg->uk_pages); 1894 } 1895 KEG_UNLOCK(keg); 1896 1897 hash_free(&keg->uk_hash); 1898 1899 KEG_LOCK_FINI(keg); 1900 } 1901 1902 /* 1903 * Zone header dtor. 1904 * 1905 * Arguments/Returns follow uma_dtor specifications 1906 * udata unused 1907 */ 1908 static void 1909 zone_dtor(void *arg, int size, void *udata) 1910 { 1911 uma_klink_t klink; 1912 uma_zone_t zone; 1913 uma_keg_t keg; 1914 1915 zone = (uma_zone_t)arg; 1916 keg = zone_first_keg(zone); 1917 1918 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1919 cache_drain(zone); 1920 1921 rw_wlock(&uma_rwlock); 1922 LIST_REMOVE(zone, uz_link); 1923 rw_wunlock(&uma_rwlock); 1924 /* 1925 * XXX there are some races here where 1926 * the zone can be drained but zone lock 1927 * released and then refilled before we 1928 * remove it... we dont care for now 1929 */ 1930 zone_drain_wait(zone, M_WAITOK); 1931 /* 1932 * Unlink all of our kegs. 1933 */ 1934 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1935 klink->kl_keg = NULL; 1936 LIST_REMOVE(klink, kl_link); 1937 if (klink == &zone->uz_klink) 1938 continue; 1939 free(klink, M_TEMP); 1940 } 1941 /* 1942 * We only destroy kegs from non secondary zones. 1943 */ 1944 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1945 rw_wlock(&uma_rwlock); 1946 LIST_REMOVE(keg, uk_link); 1947 rw_wunlock(&uma_rwlock); 1948 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1949 } 1950 ZONE_LOCK_FINI(zone); 1951 } 1952 1953 /* 1954 * Traverses every zone in the system and calls a callback 1955 * 1956 * Arguments: 1957 * zfunc A pointer to a function which accepts a zone 1958 * as an argument. 1959 * 1960 * Returns: 1961 * Nothing 1962 */ 1963 static void 1964 zone_foreach(void (*zfunc)(uma_zone_t)) 1965 { 1966 uma_keg_t keg; 1967 uma_zone_t zone; 1968 1969 rw_rlock(&uma_rwlock); 1970 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1971 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1972 zfunc(zone); 1973 } 1974 rw_runlock(&uma_rwlock); 1975 } 1976 1977 /* 1978 * Count how many pages do we need to bootstrap. VM supplies 1979 * its need in early zones in the argument, we add up our zones, 1980 * which consist of: UMA Slabs, UMA Hash and 9 Bucket zones. The 1981 * zone of zones and zone of kegs are accounted separately. 1982 */ 1983 #define UMA_BOOT_ZONES 11 1984 /* Zone of zones and zone of kegs have arbitrary alignment. */ 1985 #define UMA_BOOT_ALIGN 32 1986 static int zsize, ksize; 1987 int 1988 uma_startup_count(int vm_zones) 1989 { 1990 int zones, pages; 1991 1992 ksize = sizeof(struct uma_keg) + 1993 (sizeof(struct uma_domain) * vm_ndomains); 1994 zsize = sizeof(struct uma_zone) + 1995 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 1996 (sizeof(struct uma_zone_domain) * vm_ndomains); 1997 1998 /* 1999 * Memory for the zone of kegs and its keg, 2000 * and for zone of zones. 2001 */ 2002 pages = howmany(roundup(zsize, CACHE_LINE_SIZE) * 2 + 2003 roundup(ksize, CACHE_LINE_SIZE), PAGE_SIZE); 2004 2005 #ifdef UMA_MD_SMALL_ALLOC 2006 zones = UMA_BOOT_ZONES; 2007 #else 2008 zones = UMA_BOOT_ZONES + vm_zones; 2009 vm_zones = 0; 2010 #endif 2011 2012 /* Memory for the rest of startup zones, UMA and VM, ... */ 2013 if (zsize > UMA_SLAB_SPACE) 2014 pages += (zones + vm_zones) * 2015 howmany(roundup2(zsize, UMA_BOOT_ALIGN), UMA_SLAB_SIZE); 2016 else if (roundup2(zsize, UMA_BOOT_ALIGN) > UMA_SLAB_SPACE) 2017 pages += zones; 2018 else 2019 pages += howmany(zones, 2020 UMA_SLAB_SPACE / roundup2(zsize, UMA_BOOT_ALIGN)); 2021 2022 /* ... and their kegs. Note that zone of zones allocates a keg! */ 2023 pages += howmany(zones + 1, 2024 UMA_SLAB_SPACE / roundup2(ksize, UMA_BOOT_ALIGN)); 2025 2026 /* 2027 * Most of startup zones are not going to be offpages, that's 2028 * why we use UMA_SLAB_SPACE instead of UMA_SLAB_SIZE in all 2029 * calculations. Some large bucket zones will be offpage, and 2030 * thus will allocate hashes. We take conservative approach 2031 * and assume that all zones may allocate hash. This may give 2032 * us some positive inaccuracy, usually an extra single page. 2033 */ 2034 pages += howmany(zones, UMA_SLAB_SPACE / 2035 (sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT)); 2036 2037 return (pages); 2038 } 2039 2040 void 2041 uma_startup(void *mem, int npages) 2042 { 2043 struct uma_zctor_args args; 2044 uma_keg_t masterkeg; 2045 uintptr_t m; 2046 2047 #ifdef DIAGNOSTIC 2048 printf("Entering %s with %d boot pages configured\n", __func__, npages); 2049 #endif 2050 2051 rw_init(&uma_rwlock, "UMA lock"); 2052 2053 /* Use bootpages memory for the zone of zones and zone of kegs. */ 2054 m = (uintptr_t)mem; 2055 zones = (uma_zone_t)m; 2056 m += roundup(zsize, CACHE_LINE_SIZE); 2057 kegs = (uma_zone_t)m; 2058 m += roundup(zsize, CACHE_LINE_SIZE); 2059 masterkeg = (uma_keg_t)m; 2060 m += roundup(ksize, CACHE_LINE_SIZE); 2061 m = roundup(m, PAGE_SIZE); 2062 npages -= (m - (uintptr_t)mem) / PAGE_SIZE; 2063 mem = (void *)m; 2064 2065 /* "manually" create the initial zone */ 2066 memset(&args, 0, sizeof(args)); 2067 args.name = "UMA Kegs"; 2068 args.size = ksize; 2069 args.ctor = keg_ctor; 2070 args.dtor = keg_dtor; 2071 args.uminit = zero_init; 2072 args.fini = NULL; 2073 args.keg = masterkeg; 2074 args.align = UMA_BOOT_ALIGN - 1; 2075 args.flags = UMA_ZFLAG_INTERNAL; 2076 zone_ctor(kegs, zsize, &args, M_WAITOK); 2077 2078 bootmem = mem; 2079 boot_pages = npages; 2080 2081 args.name = "UMA Zones"; 2082 args.size = zsize; 2083 args.ctor = zone_ctor; 2084 args.dtor = zone_dtor; 2085 args.uminit = zero_init; 2086 args.fini = NULL; 2087 args.keg = NULL; 2088 args.align = UMA_BOOT_ALIGN - 1; 2089 args.flags = UMA_ZFLAG_INTERNAL; 2090 zone_ctor(zones, zsize, &args, M_WAITOK); 2091 2092 /* Now make a zone for slab headers */ 2093 slabzone = uma_zcreate("UMA Slabs", 2094 sizeof(struct uma_slab), 2095 NULL, NULL, NULL, NULL, 2096 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2097 2098 hashzone = uma_zcreate("UMA Hash", 2099 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2100 NULL, NULL, NULL, NULL, 2101 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2102 2103 bucket_init(); 2104 2105 booted = BOOT_STRAPPED; 2106 } 2107 2108 void 2109 uma_startup1(void) 2110 { 2111 2112 #ifdef DIAGNOSTIC 2113 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2114 #endif 2115 booted = BOOT_PAGEALLOC; 2116 } 2117 2118 void 2119 uma_startup2(void) 2120 { 2121 2122 #ifdef DIAGNOSTIC 2123 printf("Entering %s with %d boot pages left\n", __func__, boot_pages); 2124 #endif 2125 booted = BOOT_BUCKETS; 2126 sx_init(&uma_drain_lock, "umadrain"); 2127 bucket_enable(); 2128 } 2129 2130 /* 2131 * Initialize our callout handle 2132 * 2133 */ 2134 static void 2135 uma_startup3(void) 2136 { 2137 2138 #ifdef INVARIANTS 2139 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2140 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2141 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2142 #endif 2143 callout_init(&uma_callout, 1); 2144 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2145 booted = BOOT_RUNNING; 2146 } 2147 2148 static uma_keg_t 2149 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2150 int align, uint32_t flags) 2151 { 2152 struct uma_kctor_args args; 2153 2154 args.size = size; 2155 args.uminit = uminit; 2156 args.fini = fini; 2157 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2158 args.flags = flags; 2159 args.zone = zone; 2160 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2161 } 2162 2163 /* Public functions */ 2164 /* See uma.h */ 2165 void 2166 uma_set_align(int align) 2167 { 2168 2169 if (align != UMA_ALIGN_CACHE) 2170 uma_align_cache = align; 2171 } 2172 2173 /* See uma.h */ 2174 uma_zone_t 2175 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2176 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2177 2178 { 2179 struct uma_zctor_args args; 2180 uma_zone_t res; 2181 bool locked; 2182 2183 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2184 align, name)); 2185 2186 /* This stuff is essential for the zone ctor */ 2187 memset(&args, 0, sizeof(args)); 2188 args.name = name; 2189 args.size = size; 2190 args.ctor = ctor; 2191 args.dtor = dtor; 2192 args.uminit = uminit; 2193 args.fini = fini; 2194 #ifdef INVARIANTS 2195 /* 2196 * If a zone is being created with an empty constructor and 2197 * destructor, pass UMA constructor/destructor which checks for 2198 * memory use after free. 2199 */ 2200 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 2201 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 2202 args.ctor = trash_ctor; 2203 args.dtor = trash_dtor; 2204 args.uminit = trash_init; 2205 args.fini = trash_fini; 2206 } 2207 #endif 2208 args.align = align; 2209 args.flags = flags; 2210 args.keg = NULL; 2211 2212 if (booted < BOOT_BUCKETS) { 2213 locked = false; 2214 } else { 2215 sx_slock(&uma_drain_lock); 2216 locked = true; 2217 } 2218 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2219 if (locked) 2220 sx_sunlock(&uma_drain_lock); 2221 return (res); 2222 } 2223 2224 /* See uma.h */ 2225 uma_zone_t 2226 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 2227 uma_init zinit, uma_fini zfini, uma_zone_t master) 2228 { 2229 struct uma_zctor_args args; 2230 uma_keg_t keg; 2231 uma_zone_t res; 2232 bool locked; 2233 2234 keg = zone_first_keg(master); 2235 memset(&args, 0, sizeof(args)); 2236 args.name = name; 2237 args.size = keg->uk_size; 2238 args.ctor = ctor; 2239 args.dtor = dtor; 2240 args.uminit = zinit; 2241 args.fini = zfini; 2242 args.align = keg->uk_align; 2243 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 2244 args.keg = keg; 2245 2246 if (booted < BOOT_BUCKETS) { 2247 locked = false; 2248 } else { 2249 sx_slock(&uma_drain_lock); 2250 locked = true; 2251 } 2252 /* XXX Attaches only one keg of potentially many. */ 2253 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 2254 if (locked) 2255 sx_sunlock(&uma_drain_lock); 2256 return (res); 2257 } 2258 2259 /* See uma.h */ 2260 uma_zone_t 2261 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 2262 uma_init zinit, uma_fini zfini, uma_import zimport, 2263 uma_release zrelease, void *arg, int flags) 2264 { 2265 struct uma_zctor_args args; 2266 2267 memset(&args, 0, sizeof(args)); 2268 args.name = name; 2269 args.size = size; 2270 args.ctor = ctor; 2271 args.dtor = dtor; 2272 args.uminit = zinit; 2273 args.fini = zfini; 2274 args.import = zimport; 2275 args.release = zrelease; 2276 args.arg = arg; 2277 args.align = 0; 2278 args.flags = flags; 2279 2280 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 2281 } 2282 2283 static void 2284 zone_lock_pair(uma_zone_t a, uma_zone_t b) 2285 { 2286 if (a < b) { 2287 ZONE_LOCK(a); 2288 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 2289 } else { 2290 ZONE_LOCK(b); 2291 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2292 } 2293 } 2294 2295 static void 2296 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2297 { 2298 2299 ZONE_UNLOCK(a); 2300 ZONE_UNLOCK(b); 2301 } 2302 2303 int 2304 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2305 { 2306 uma_klink_t klink; 2307 uma_klink_t kl; 2308 int error; 2309 2310 error = 0; 2311 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2312 2313 zone_lock_pair(zone, master); 2314 /* 2315 * zone must use vtoslab() to resolve objects and must already be 2316 * a secondary. 2317 */ 2318 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2319 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2320 error = EINVAL; 2321 goto out; 2322 } 2323 /* 2324 * The new master must also use vtoslab(). 2325 */ 2326 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2327 error = EINVAL; 2328 goto out; 2329 } 2330 2331 /* 2332 * The underlying object must be the same size. rsize 2333 * may be different. 2334 */ 2335 if (master->uz_size != zone->uz_size) { 2336 error = E2BIG; 2337 goto out; 2338 } 2339 /* 2340 * Put it at the end of the list. 2341 */ 2342 klink->kl_keg = zone_first_keg(master); 2343 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2344 if (LIST_NEXT(kl, kl_link) == NULL) { 2345 LIST_INSERT_AFTER(kl, klink, kl_link); 2346 break; 2347 } 2348 } 2349 klink = NULL; 2350 zone->uz_flags |= UMA_ZFLAG_MULTI; 2351 zone->uz_slab = zone_fetch_slab_multi; 2352 2353 out: 2354 zone_unlock_pair(zone, master); 2355 if (klink != NULL) 2356 free(klink, M_TEMP); 2357 2358 return (error); 2359 } 2360 2361 2362 /* See uma.h */ 2363 void 2364 uma_zdestroy(uma_zone_t zone) 2365 { 2366 2367 sx_slock(&uma_drain_lock); 2368 zone_free_item(zones, zone, NULL, SKIP_NONE); 2369 sx_sunlock(&uma_drain_lock); 2370 } 2371 2372 void 2373 uma_zwait(uma_zone_t zone) 2374 { 2375 void *item; 2376 2377 item = uma_zalloc_arg(zone, NULL, M_WAITOK); 2378 uma_zfree(zone, item); 2379 } 2380 2381 void * 2382 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 2383 { 2384 void *item; 2385 #ifdef SMP 2386 int i; 2387 2388 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2389 #endif 2390 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 2391 if (item != NULL && (flags & M_ZERO)) { 2392 #ifdef SMP 2393 for (i = 0; i <= mp_maxid; i++) 2394 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 2395 #else 2396 bzero(item, zone->uz_size); 2397 #endif 2398 } 2399 return (item); 2400 } 2401 2402 /* 2403 * A stub while both regular and pcpu cases are identical. 2404 */ 2405 void 2406 uma_zfree_pcpu_arg(uma_zone_t zone, void *item, void *udata) 2407 { 2408 2409 #ifdef SMP 2410 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 2411 #endif 2412 uma_zfree_arg(zone, item, udata); 2413 } 2414 2415 /* See uma.h */ 2416 void * 2417 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2418 { 2419 uma_zone_domain_t zdom; 2420 uma_bucket_t bucket; 2421 uma_cache_t cache; 2422 void *item; 2423 int cpu, domain, lockfail; 2424 #ifdef INVARIANTS 2425 bool skipdbg; 2426 #endif 2427 2428 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2429 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2430 2431 /* This is the fast path allocation */ 2432 CTR4(KTR_UMA, "uma_zalloc_arg thread %x zone %s(%p) flags %d", 2433 curthread, zone->uz_name, zone, flags); 2434 2435 if (flags & M_WAITOK) { 2436 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2437 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2438 } 2439 KASSERT((flags & M_EXEC) == 0, ("uma_zalloc_arg: called with M_EXEC")); 2440 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2441 ("uma_zalloc_arg: called with spinlock or critical section held")); 2442 if (zone->uz_flags & UMA_ZONE_PCPU) 2443 KASSERT((flags & M_ZERO) == 0, ("allocating from a pcpu zone " 2444 "with M_ZERO passed")); 2445 2446 #ifdef DEBUG_MEMGUARD 2447 if (memguard_cmp_zone(zone)) { 2448 item = memguard_alloc(zone->uz_size, flags); 2449 if (item != NULL) { 2450 if (zone->uz_init != NULL && 2451 zone->uz_init(item, zone->uz_size, flags) != 0) 2452 return (NULL); 2453 if (zone->uz_ctor != NULL && 2454 zone->uz_ctor(item, zone->uz_size, udata, 2455 flags) != 0) { 2456 zone->uz_fini(item, zone->uz_size); 2457 return (NULL); 2458 } 2459 return (item); 2460 } 2461 /* This is unfortunate but should not be fatal. */ 2462 } 2463 #endif 2464 /* 2465 * If possible, allocate from the per-CPU cache. There are two 2466 * requirements for safe access to the per-CPU cache: (1) the thread 2467 * accessing the cache must not be preempted or yield during access, 2468 * and (2) the thread must not migrate CPUs without switching which 2469 * cache it accesses. We rely on a critical section to prevent 2470 * preemption and migration. We release the critical section in 2471 * order to acquire the zone mutex if we are unable to allocate from 2472 * the current cache; when we re-acquire the critical section, we 2473 * must detect and handle migration if it has occurred. 2474 */ 2475 zalloc_restart: 2476 critical_enter(); 2477 cpu = curcpu; 2478 cache = &zone->uz_cpu[cpu]; 2479 2480 zalloc_start: 2481 bucket = cache->uc_allocbucket; 2482 if (bucket != NULL && bucket->ub_cnt > 0) { 2483 bucket->ub_cnt--; 2484 item = bucket->ub_bucket[bucket->ub_cnt]; 2485 #ifdef INVARIANTS 2486 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2487 #endif 2488 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2489 cache->uc_allocs++; 2490 critical_exit(); 2491 #ifdef INVARIANTS 2492 skipdbg = uma_dbg_zskip(zone, item); 2493 #endif 2494 if (zone->uz_ctor != NULL && 2495 #ifdef INVARIANTS 2496 (!skipdbg || zone->uz_ctor != trash_ctor || 2497 zone->uz_dtor != trash_dtor) && 2498 #endif 2499 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2500 atomic_add_long(&zone->uz_fails, 1); 2501 zone_free_item(zone, item, udata, SKIP_DTOR); 2502 return (NULL); 2503 } 2504 #ifdef INVARIANTS 2505 if (!skipdbg) 2506 uma_dbg_alloc(zone, NULL, item); 2507 #endif 2508 if (flags & M_ZERO) 2509 uma_zero_item(item, zone); 2510 return (item); 2511 } 2512 2513 /* 2514 * We have run out of items in our alloc bucket. 2515 * See if we can switch with our free bucket. 2516 */ 2517 bucket = cache->uc_freebucket; 2518 if (bucket != NULL && bucket->ub_cnt > 0) { 2519 CTR2(KTR_UMA, 2520 "uma_zalloc: zone %s(%p) swapping empty with alloc", 2521 zone->uz_name, zone); 2522 cache->uc_freebucket = cache->uc_allocbucket; 2523 cache->uc_allocbucket = bucket; 2524 goto zalloc_start; 2525 } 2526 2527 /* 2528 * Discard any empty allocation bucket while we hold no locks. 2529 */ 2530 bucket = cache->uc_allocbucket; 2531 cache->uc_allocbucket = NULL; 2532 critical_exit(); 2533 if (bucket != NULL) 2534 bucket_free(zone, bucket, udata); 2535 2536 if (zone->uz_flags & UMA_ZONE_NUMA) { 2537 domain = PCPU_GET(domain); 2538 if (VM_DOMAIN_EMPTY(domain)) 2539 domain = UMA_ANYDOMAIN; 2540 } else 2541 domain = UMA_ANYDOMAIN; 2542 2543 /* Short-circuit for zones without buckets and low memory. */ 2544 if (zone->uz_count == 0 || bucketdisable) 2545 goto zalloc_item; 2546 2547 /* 2548 * Attempt to retrieve the item from the per-CPU cache has failed, so 2549 * we must go back to the zone. This requires the zone lock, so we 2550 * must drop the critical section, then re-acquire it when we go back 2551 * to the cache. Since the critical section is released, we may be 2552 * preempted or migrate. As such, make sure not to maintain any 2553 * thread-local state specific to the cache from prior to releasing 2554 * the critical section. 2555 */ 2556 lockfail = 0; 2557 if (ZONE_TRYLOCK(zone) == 0) { 2558 /* Record contention to size the buckets. */ 2559 ZONE_LOCK(zone); 2560 lockfail = 1; 2561 } 2562 critical_enter(); 2563 cpu = curcpu; 2564 cache = &zone->uz_cpu[cpu]; 2565 2566 /* See if we lost the race to fill the cache. */ 2567 if (cache->uc_allocbucket != NULL) { 2568 ZONE_UNLOCK(zone); 2569 goto zalloc_start; 2570 } 2571 2572 /* 2573 * Check the zone's cache of buckets. 2574 */ 2575 if (domain == UMA_ANYDOMAIN) 2576 zdom = &zone->uz_domain[0]; 2577 else 2578 zdom = &zone->uz_domain[domain]; 2579 if ((bucket = zone_try_fetch_bucket(zone, zdom, true)) != NULL) { 2580 KASSERT(bucket->ub_cnt != 0, 2581 ("uma_zalloc_arg: Returning an empty bucket.")); 2582 cache->uc_allocbucket = bucket; 2583 ZONE_UNLOCK(zone); 2584 goto zalloc_start; 2585 } 2586 /* We are no longer associated with this CPU. */ 2587 critical_exit(); 2588 2589 /* 2590 * We bump the uz count when the cache size is insufficient to 2591 * handle the working set. 2592 */ 2593 if (lockfail && zone->uz_count < BUCKET_MAX) 2594 zone->uz_count++; 2595 ZONE_UNLOCK(zone); 2596 2597 /* 2598 * Now lets just fill a bucket and put it on the free list. If that 2599 * works we'll restart the allocation from the beginning and it 2600 * will use the just filled bucket. 2601 */ 2602 bucket = zone_alloc_bucket(zone, udata, domain, flags); 2603 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 2604 zone->uz_name, zone, bucket); 2605 if (bucket != NULL) { 2606 ZONE_LOCK(zone); 2607 critical_enter(); 2608 cpu = curcpu; 2609 cache = &zone->uz_cpu[cpu]; 2610 2611 /* 2612 * See if we lost the race or were migrated. Cache the 2613 * initialized bucket to make this less likely or claim 2614 * the memory directly. 2615 */ 2616 if (cache->uc_allocbucket == NULL && 2617 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 2618 domain == PCPU_GET(domain))) { 2619 cache->uc_allocbucket = bucket; 2620 zdom->uzd_imax += bucket->ub_cnt; 2621 } else if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 2622 critical_exit(); 2623 ZONE_UNLOCK(zone); 2624 bucket_drain(zone, bucket); 2625 bucket_free(zone, bucket, udata); 2626 goto zalloc_restart; 2627 } else 2628 zone_put_bucket(zone, zdom, bucket, false); 2629 ZONE_UNLOCK(zone); 2630 goto zalloc_start; 2631 } 2632 2633 /* 2634 * We may not be able to get a bucket so return an actual item. 2635 */ 2636 zalloc_item: 2637 item = zone_alloc_item(zone, udata, domain, flags); 2638 2639 return (item); 2640 } 2641 2642 void * 2643 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 2644 { 2645 2646 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2647 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 2648 2649 /* This is the fast path allocation */ 2650 CTR5(KTR_UMA, 2651 "uma_zalloc_domain thread %x zone %s(%p) domain %d flags %d", 2652 curthread, zone->uz_name, zone, domain, flags); 2653 2654 if (flags & M_WAITOK) { 2655 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2656 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 2657 } 2658 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2659 ("uma_zalloc_domain: called with spinlock or critical section held")); 2660 2661 return (zone_alloc_item(zone, udata, domain, flags)); 2662 } 2663 2664 /* 2665 * Find a slab with some space. Prefer slabs that are partially used over those 2666 * that are totally full. This helps to reduce fragmentation. 2667 * 2668 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 2669 * only 'domain'. 2670 */ 2671 static uma_slab_t 2672 keg_first_slab(uma_keg_t keg, int domain, bool rr) 2673 { 2674 uma_domain_t dom; 2675 uma_slab_t slab; 2676 int start; 2677 2678 KASSERT(domain >= 0 && domain < vm_ndomains, 2679 ("keg_first_slab: domain %d out of range", domain)); 2680 2681 slab = NULL; 2682 start = domain; 2683 do { 2684 dom = &keg->uk_domain[domain]; 2685 if (!LIST_EMPTY(&dom->ud_part_slab)) 2686 return (LIST_FIRST(&dom->ud_part_slab)); 2687 if (!LIST_EMPTY(&dom->ud_free_slab)) { 2688 slab = LIST_FIRST(&dom->ud_free_slab); 2689 LIST_REMOVE(slab, us_link); 2690 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2691 return (slab); 2692 } 2693 if (rr) 2694 domain = (domain + 1) % vm_ndomains; 2695 } while (domain != start); 2696 2697 return (NULL); 2698 } 2699 2700 static uma_slab_t 2701 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 2702 { 2703 uint32_t reserve; 2704 2705 mtx_assert(&keg->uk_lock, MA_OWNED); 2706 2707 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 2708 if (keg->uk_free <= reserve) 2709 return (NULL); 2710 return (keg_first_slab(keg, domain, rr)); 2711 } 2712 2713 static uma_slab_t 2714 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 2715 { 2716 struct vm_domainset_iter di; 2717 uma_domain_t dom; 2718 uma_slab_t slab; 2719 int aflags, domain; 2720 bool rr; 2721 2722 restart: 2723 mtx_assert(&keg->uk_lock, MA_OWNED); 2724 2725 /* 2726 * Use the keg's policy if upper layers haven't already specified a 2727 * domain (as happens with first-touch zones). 2728 * 2729 * To avoid races we run the iterator with the keg lock held, but that 2730 * means that we cannot allow the vm_domainset layer to sleep. Thus, 2731 * clear M_WAITOK and handle low memory conditions locally. 2732 */ 2733 rr = rdomain == UMA_ANYDOMAIN; 2734 if (rr) { 2735 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 2736 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 2737 &aflags); 2738 } else { 2739 aflags = flags; 2740 domain = rdomain; 2741 } 2742 2743 for (;;) { 2744 slab = keg_fetch_free_slab(keg, domain, rr, flags); 2745 if (slab != NULL) { 2746 MPASS(slab->us_keg == keg); 2747 return (slab); 2748 } 2749 2750 /* 2751 * M_NOVM means don't ask at all! 2752 */ 2753 if (flags & M_NOVM) 2754 break; 2755 2756 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2757 keg->uk_flags |= UMA_ZFLAG_FULL; 2758 /* 2759 * If this is not a multi-zone, set the FULL bit. 2760 * Otherwise slab_multi() takes care of it. 2761 */ 2762 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2763 zone->uz_flags |= UMA_ZFLAG_FULL; 2764 zone_log_warning(zone); 2765 zone_maxaction(zone); 2766 } 2767 if (flags & M_NOWAIT) 2768 return (NULL); 2769 zone->uz_sleeps++; 2770 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2771 continue; 2772 } 2773 slab = keg_alloc_slab(keg, zone, domain, aflags); 2774 /* 2775 * If we got a slab here it's safe to mark it partially used 2776 * and return. We assume that the caller is going to remove 2777 * at least one item. 2778 */ 2779 if (slab) { 2780 MPASS(slab->us_keg == keg); 2781 dom = &keg->uk_domain[slab->us_domain]; 2782 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 2783 return (slab); 2784 } 2785 KEG_LOCK(keg); 2786 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 2787 if ((flags & M_WAITOK) != 0) { 2788 KEG_UNLOCK(keg); 2789 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 2790 KEG_LOCK(keg); 2791 goto restart; 2792 } 2793 break; 2794 } 2795 } 2796 2797 /* 2798 * We might not have been able to get a slab but another cpu 2799 * could have while we were unlocked. Check again before we 2800 * fail. 2801 */ 2802 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) { 2803 MPASS(slab->us_keg == keg); 2804 return (slab); 2805 } 2806 return (NULL); 2807 } 2808 2809 static uma_slab_t 2810 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int domain, int flags) 2811 { 2812 uma_slab_t slab; 2813 2814 if (keg == NULL) { 2815 keg = zone_first_keg(zone); 2816 KEG_LOCK(keg); 2817 } 2818 2819 for (;;) { 2820 slab = keg_fetch_slab(keg, zone, domain, flags); 2821 if (slab) 2822 return (slab); 2823 if (flags & (M_NOWAIT | M_NOVM)) 2824 break; 2825 } 2826 KEG_UNLOCK(keg); 2827 return (NULL); 2828 } 2829 2830 /* 2831 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2832 * with the keg locked. On NULL no lock is held. 2833 * 2834 * The last pointer is used to seed the search. It is not required. 2835 */ 2836 static uma_slab_t 2837 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int domain, int rflags) 2838 { 2839 uma_klink_t klink; 2840 uma_slab_t slab; 2841 uma_keg_t keg; 2842 int flags; 2843 int empty; 2844 int full; 2845 2846 /* 2847 * Don't wait on the first pass. This will skip limit tests 2848 * as well. We don't want to block if we can find a provider 2849 * without blocking. 2850 */ 2851 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2852 /* 2853 * Use the last slab allocated as a hint for where to start 2854 * the search. 2855 */ 2856 if (last != NULL) { 2857 slab = keg_fetch_slab(last, zone, domain, flags); 2858 if (slab) 2859 return (slab); 2860 KEG_UNLOCK(last); 2861 } 2862 /* 2863 * Loop until we have a slab incase of transient failures 2864 * while M_WAITOK is specified. I'm not sure this is 100% 2865 * required but we've done it for so long now. 2866 */ 2867 for (;;) { 2868 empty = 0; 2869 full = 0; 2870 /* 2871 * Search the available kegs for slabs. Be careful to hold the 2872 * correct lock while calling into the keg layer. 2873 */ 2874 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2875 keg = klink->kl_keg; 2876 KEG_LOCK(keg); 2877 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2878 slab = keg_fetch_slab(keg, zone, domain, flags); 2879 if (slab) 2880 return (slab); 2881 } 2882 if (keg->uk_flags & UMA_ZFLAG_FULL) 2883 full++; 2884 else 2885 empty++; 2886 KEG_UNLOCK(keg); 2887 } 2888 if (rflags & (M_NOWAIT | M_NOVM)) 2889 break; 2890 flags = rflags; 2891 /* 2892 * All kegs are full. XXX We can't atomically check all kegs 2893 * and sleep so just sleep for a short period and retry. 2894 */ 2895 if (full && !empty) { 2896 ZONE_LOCK(zone); 2897 zone->uz_flags |= UMA_ZFLAG_FULL; 2898 zone->uz_sleeps++; 2899 zone_log_warning(zone); 2900 zone_maxaction(zone); 2901 msleep(zone, zone->uz_lockptr, PVM, 2902 "zonelimit", hz/100); 2903 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2904 ZONE_UNLOCK(zone); 2905 continue; 2906 } 2907 } 2908 return (NULL); 2909 } 2910 2911 static void * 2912 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2913 { 2914 uma_domain_t dom; 2915 void *item; 2916 uint8_t freei; 2917 2918 MPASS(keg == slab->us_keg); 2919 mtx_assert(&keg->uk_lock, MA_OWNED); 2920 2921 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2922 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2923 item = slab->us_data + (keg->uk_rsize * freei); 2924 slab->us_freecount--; 2925 keg->uk_free--; 2926 2927 /* Move this slab to the full list */ 2928 if (slab->us_freecount == 0) { 2929 LIST_REMOVE(slab, us_link); 2930 dom = &keg->uk_domain[slab->us_domain]; 2931 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 2932 } 2933 2934 return (item); 2935 } 2936 2937 static int 2938 zone_import(uma_zone_t zone, void **bucket, int max, int domain, int flags) 2939 { 2940 uma_slab_t slab; 2941 uma_keg_t keg; 2942 #ifdef NUMA 2943 int stripe; 2944 #endif 2945 int i; 2946 2947 slab = NULL; 2948 keg = NULL; 2949 /* Try to keep the buckets totally full */ 2950 for (i = 0; i < max; ) { 2951 if ((slab = zone->uz_slab(zone, keg, domain, flags)) == NULL) 2952 break; 2953 keg = slab->us_keg; 2954 #ifdef NUMA 2955 stripe = howmany(max, vm_ndomains); 2956 #endif 2957 while (slab->us_freecount && i < max) { 2958 bucket[i++] = slab_alloc_item(keg, slab); 2959 if (keg->uk_free <= keg->uk_reserve) 2960 break; 2961 #ifdef NUMA 2962 /* 2963 * If the zone is striped we pick a new slab for every 2964 * N allocations. Eliminating this conditional will 2965 * instead pick a new domain for each bucket rather 2966 * than stripe within each bucket. The current option 2967 * produces more fragmentation and requires more cpu 2968 * time but yields better distribution. 2969 */ 2970 if ((zone->uz_flags & UMA_ZONE_NUMA) == 0 && 2971 vm_ndomains > 1 && --stripe == 0) 2972 break; 2973 #endif 2974 } 2975 /* Don't block if we allocated any successfully. */ 2976 flags &= ~M_WAITOK; 2977 flags |= M_NOWAIT; 2978 } 2979 if (slab != NULL) 2980 KEG_UNLOCK(keg); 2981 2982 return i; 2983 } 2984 2985 static uma_bucket_t 2986 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 2987 { 2988 uma_bucket_t bucket; 2989 int max; 2990 2991 CTR1(KTR_UMA, "zone_alloc:_bucket domain %d)", domain); 2992 2993 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2994 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2995 if (bucket == NULL) 2996 return (NULL); 2997 2998 max = MIN(bucket->ub_entries, zone->uz_count); 2999 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3000 max, domain, flags); 3001 3002 /* 3003 * Initialize the memory if necessary. 3004 */ 3005 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3006 int i; 3007 3008 for (i = 0; i < bucket->ub_cnt; i++) 3009 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3010 flags) != 0) 3011 break; 3012 /* 3013 * If we couldn't initialize the whole bucket, put the 3014 * rest back onto the freelist. 3015 */ 3016 if (i != bucket->ub_cnt) { 3017 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3018 bucket->ub_cnt - i); 3019 #ifdef INVARIANTS 3020 bzero(&bucket->ub_bucket[i], 3021 sizeof(void *) * (bucket->ub_cnt - i)); 3022 #endif 3023 bucket->ub_cnt = i; 3024 } 3025 } 3026 3027 if (bucket->ub_cnt == 0) { 3028 bucket_free(zone, bucket, udata); 3029 atomic_add_long(&zone->uz_fails, 1); 3030 return (NULL); 3031 } 3032 3033 return (bucket); 3034 } 3035 3036 /* 3037 * Allocates a single item from a zone. 3038 * 3039 * Arguments 3040 * zone The zone to alloc for. 3041 * udata The data to be passed to the constructor. 3042 * domain The domain to allocate from or UMA_ANYDOMAIN. 3043 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3044 * 3045 * Returns 3046 * NULL if there is no memory and M_NOWAIT is set 3047 * An item if successful 3048 */ 3049 3050 static void * 3051 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3052 { 3053 void *item; 3054 #ifdef INVARIANTS 3055 bool skipdbg; 3056 #endif 3057 3058 item = NULL; 3059 3060 if (domain != UMA_ANYDOMAIN) { 3061 /* avoid allocs targeting empty domains */ 3062 if (VM_DOMAIN_EMPTY(domain)) 3063 domain = UMA_ANYDOMAIN; 3064 } 3065 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3066 goto fail; 3067 atomic_add_long(&zone->uz_allocs, 1); 3068 3069 #ifdef INVARIANTS 3070 skipdbg = uma_dbg_zskip(zone, item); 3071 #endif 3072 /* 3073 * We have to call both the zone's init (not the keg's init) 3074 * and the zone's ctor. This is because the item is going from 3075 * a keg slab directly to the user, and the user is expecting it 3076 * to be both zone-init'd as well as zone-ctor'd. 3077 */ 3078 if (zone->uz_init != NULL) { 3079 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3080 zone_free_item(zone, item, udata, SKIP_FINI); 3081 goto fail; 3082 } 3083 } 3084 if (zone->uz_ctor != NULL && 3085 #ifdef INVARIANTS 3086 (!skipdbg || zone->uz_ctor != trash_ctor || 3087 zone->uz_dtor != trash_dtor) && 3088 #endif 3089 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 3090 zone_free_item(zone, item, udata, SKIP_DTOR); 3091 goto fail; 3092 } 3093 #ifdef INVARIANTS 3094 if (!skipdbg) 3095 uma_dbg_alloc(zone, NULL, item); 3096 #endif 3097 if (flags & M_ZERO) 3098 uma_zero_item(item, zone); 3099 3100 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3101 zone->uz_name, zone); 3102 3103 return (item); 3104 3105 fail: 3106 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3107 zone->uz_name, zone); 3108 atomic_add_long(&zone->uz_fails, 1); 3109 return (NULL); 3110 } 3111 3112 /* See uma.h */ 3113 void 3114 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 3115 { 3116 uma_cache_t cache; 3117 uma_bucket_t bucket; 3118 uma_zone_domain_t zdom; 3119 int cpu, domain, lockfail; 3120 #ifdef INVARIANTS 3121 bool skipdbg; 3122 #endif 3123 3124 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3125 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3126 3127 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 3128 zone->uz_name); 3129 3130 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3131 ("uma_zfree_arg: called with spinlock or critical section held")); 3132 3133 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3134 if (item == NULL) 3135 return; 3136 #ifdef DEBUG_MEMGUARD 3137 if (is_memguard_addr(item)) { 3138 if (zone->uz_dtor != NULL) 3139 zone->uz_dtor(item, zone->uz_size, udata); 3140 if (zone->uz_fini != NULL) 3141 zone->uz_fini(item, zone->uz_size); 3142 memguard_free(item); 3143 return; 3144 } 3145 #endif 3146 #ifdef INVARIANTS 3147 skipdbg = uma_dbg_zskip(zone, item); 3148 if (skipdbg == false) { 3149 if (zone->uz_flags & UMA_ZONE_MALLOC) 3150 uma_dbg_free(zone, udata, item); 3151 else 3152 uma_dbg_free(zone, NULL, item); 3153 } 3154 if (zone->uz_dtor != NULL && (!skipdbg || 3155 zone->uz_dtor != trash_dtor || zone->uz_ctor != trash_ctor)) 3156 #else 3157 if (zone->uz_dtor != NULL) 3158 #endif 3159 zone->uz_dtor(item, zone->uz_size, udata); 3160 3161 /* 3162 * The race here is acceptable. If we miss it we'll just have to wait 3163 * a little longer for the limits to be reset. 3164 */ 3165 if (zone->uz_flags & UMA_ZFLAG_FULL) 3166 goto zfree_item; 3167 3168 /* 3169 * If possible, free to the per-CPU cache. There are two 3170 * requirements for safe access to the per-CPU cache: (1) the thread 3171 * accessing the cache must not be preempted or yield during access, 3172 * and (2) the thread must not migrate CPUs without switching which 3173 * cache it accesses. We rely on a critical section to prevent 3174 * preemption and migration. We release the critical section in 3175 * order to acquire the zone mutex if we are unable to free to the 3176 * current cache; when we re-acquire the critical section, we must 3177 * detect and handle migration if it has occurred. 3178 */ 3179 zfree_restart: 3180 critical_enter(); 3181 cpu = curcpu; 3182 cache = &zone->uz_cpu[cpu]; 3183 3184 zfree_start: 3185 /* 3186 * Try to free into the allocbucket first to give LIFO ordering 3187 * for cache-hot datastructures. Spill over into the freebucket 3188 * if necessary. Alloc will swap them if one runs dry. 3189 */ 3190 bucket = cache->uc_allocbucket; 3191 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 3192 bucket = cache->uc_freebucket; 3193 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3194 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 3195 ("uma_zfree: Freeing to non free bucket index.")); 3196 bucket->ub_bucket[bucket->ub_cnt] = item; 3197 bucket->ub_cnt++; 3198 cache->uc_frees++; 3199 critical_exit(); 3200 return; 3201 } 3202 3203 /* 3204 * We must go back the zone, which requires acquiring the zone lock, 3205 * which in turn means we must release and re-acquire the critical 3206 * section. Since the critical section is released, we may be 3207 * preempted or migrate. As such, make sure not to maintain any 3208 * thread-local state specific to the cache from prior to releasing 3209 * the critical section. 3210 */ 3211 critical_exit(); 3212 if (zone->uz_count == 0 || bucketdisable) 3213 goto zfree_item; 3214 3215 lockfail = 0; 3216 if (ZONE_TRYLOCK(zone) == 0) { 3217 /* Record contention to size the buckets. */ 3218 ZONE_LOCK(zone); 3219 lockfail = 1; 3220 } 3221 critical_enter(); 3222 cpu = curcpu; 3223 cache = &zone->uz_cpu[cpu]; 3224 3225 bucket = cache->uc_freebucket; 3226 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 3227 ZONE_UNLOCK(zone); 3228 goto zfree_start; 3229 } 3230 cache->uc_freebucket = NULL; 3231 /* We are no longer associated with this CPU. */ 3232 critical_exit(); 3233 3234 if ((zone->uz_flags & UMA_ZONE_NUMA) != 0) { 3235 domain = PCPU_GET(domain); 3236 if (VM_DOMAIN_EMPTY(domain)) 3237 domain = UMA_ANYDOMAIN; 3238 } else 3239 domain = 0; 3240 zdom = &zone->uz_domain[0]; 3241 3242 /* Can we throw this on the zone full list? */ 3243 if (bucket != NULL) { 3244 CTR3(KTR_UMA, 3245 "uma_zfree: zone %s(%p) putting bucket %p on free list", 3246 zone->uz_name, zone, bucket); 3247 /* ub_cnt is pointing to the last free item */ 3248 KASSERT(bucket->ub_cnt != 0, 3249 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 3250 if ((zone->uz_flags & UMA_ZONE_NOBUCKETCACHE) != 0) { 3251 ZONE_UNLOCK(zone); 3252 bucket_drain(zone, bucket); 3253 bucket_free(zone, bucket, udata); 3254 goto zfree_restart; 3255 } else 3256 zone_put_bucket(zone, zdom, bucket, true); 3257 } 3258 3259 /* 3260 * We bump the uz count when the cache size is insufficient to 3261 * handle the working set. 3262 */ 3263 if (lockfail && zone->uz_count < BUCKET_MAX) 3264 zone->uz_count++; 3265 ZONE_UNLOCK(zone); 3266 3267 bucket = bucket_alloc(zone, udata, M_NOWAIT); 3268 CTR3(KTR_UMA, "uma_zfree: zone %s(%p) allocated bucket %p", 3269 zone->uz_name, zone, bucket); 3270 if (bucket) { 3271 critical_enter(); 3272 cpu = curcpu; 3273 cache = &zone->uz_cpu[cpu]; 3274 if (cache->uc_freebucket == NULL && 3275 ((zone->uz_flags & UMA_ZONE_NUMA) == 0 || 3276 domain == PCPU_GET(domain))) { 3277 cache->uc_freebucket = bucket; 3278 goto zfree_start; 3279 } 3280 /* 3281 * We lost the race, start over. We have to drop our 3282 * critical section to free the bucket. 3283 */ 3284 critical_exit(); 3285 bucket_free(zone, bucket, udata); 3286 goto zfree_restart; 3287 } 3288 3289 /* 3290 * If nothing else caught this, we'll just do an internal free. 3291 */ 3292 zfree_item: 3293 zone_free_item(zone, item, udata, SKIP_DTOR); 3294 3295 return; 3296 } 3297 3298 void 3299 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 3300 { 3301 3302 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3303 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3304 3305 CTR2(KTR_UMA, "uma_zfree_domain thread %x zone %s", curthread, 3306 zone->uz_name); 3307 3308 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3309 ("uma_zfree_domain: called with spinlock or critical section held")); 3310 3311 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 3312 if (item == NULL) 3313 return; 3314 zone_free_item(zone, item, udata, SKIP_NONE); 3315 } 3316 3317 static void 3318 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 3319 { 3320 uma_domain_t dom; 3321 uint8_t freei; 3322 3323 mtx_assert(&keg->uk_lock, MA_OWNED); 3324 MPASS(keg == slab->us_keg); 3325 3326 dom = &keg->uk_domain[slab->us_domain]; 3327 3328 /* Do we need to remove from any lists? */ 3329 if (slab->us_freecount+1 == keg->uk_ipers) { 3330 LIST_REMOVE(slab, us_link); 3331 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3332 } else if (slab->us_freecount == 0) { 3333 LIST_REMOVE(slab, us_link); 3334 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3335 } 3336 3337 /* Slab management. */ 3338 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3339 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 3340 slab->us_freecount++; 3341 3342 /* Keg statistics. */ 3343 keg->uk_free++; 3344 } 3345 3346 static void 3347 zone_release(uma_zone_t zone, void **bucket, int cnt) 3348 { 3349 void *item; 3350 uma_slab_t slab; 3351 uma_keg_t keg; 3352 uint8_t *mem; 3353 int clearfull; 3354 int i; 3355 3356 clearfull = 0; 3357 keg = zone_first_keg(zone); 3358 KEG_LOCK(keg); 3359 for (i = 0; i < cnt; i++) { 3360 item = bucket[i]; 3361 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 3362 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3363 if (zone->uz_flags & UMA_ZONE_HASH) { 3364 slab = hash_sfind(&keg->uk_hash, mem); 3365 } else { 3366 mem += keg->uk_pgoff; 3367 slab = (uma_slab_t)mem; 3368 } 3369 } else { 3370 slab = vtoslab((vm_offset_t)item); 3371 if (slab->us_keg != keg) { 3372 KEG_UNLOCK(keg); 3373 keg = slab->us_keg; 3374 KEG_LOCK(keg); 3375 } 3376 } 3377 slab_free_item(keg, slab, item); 3378 if (keg->uk_flags & UMA_ZFLAG_FULL) { 3379 if (keg->uk_pages < keg->uk_maxpages) { 3380 keg->uk_flags &= ~UMA_ZFLAG_FULL; 3381 clearfull = 1; 3382 } 3383 3384 /* 3385 * We can handle one more allocation. Since we're 3386 * clearing ZFLAG_FULL, wake up all procs blocked 3387 * on pages. This should be uncommon, so keeping this 3388 * simple for now (rather than adding count of blocked 3389 * threads etc). 3390 */ 3391 wakeup(keg); 3392 } 3393 } 3394 KEG_UNLOCK(keg); 3395 if (clearfull) { 3396 ZONE_LOCK(zone); 3397 zone->uz_flags &= ~UMA_ZFLAG_FULL; 3398 wakeup(zone); 3399 ZONE_UNLOCK(zone); 3400 } 3401 3402 } 3403 3404 /* 3405 * Frees a single item to any zone. 3406 * 3407 * Arguments: 3408 * zone The zone to free to 3409 * item The item we're freeing 3410 * udata User supplied data for the dtor 3411 * skip Skip dtors and finis 3412 */ 3413 static void 3414 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 3415 { 3416 #ifdef INVARIANTS 3417 bool skipdbg; 3418 3419 skipdbg = uma_dbg_zskip(zone, item); 3420 if (skip == SKIP_NONE && !skipdbg) { 3421 if (zone->uz_flags & UMA_ZONE_MALLOC) 3422 uma_dbg_free(zone, udata, item); 3423 else 3424 uma_dbg_free(zone, NULL, item); 3425 } 3426 3427 if (skip < SKIP_DTOR && zone->uz_dtor != NULL && 3428 (!skipdbg || zone->uz_dtor != trash_dtor || 3429 zone->uz_ctor != trash_ctor)) 3430 #else 3431 if (skip < SKIP_DTOR && zone->uz_dtor != NULL) 3432 #endif 3433 zone->uz_dtor(item, zone->uz_size, udata); 3434 3435 if (skip < SKIP_FINI && zone->uz_fini) 3436 zone->uz_fini(item, zone->uz_size); 3437 3438 atomic_add_long(&zone->uz_frees, 1); 3439 zone->uz_release(zone->uz_arg, &item, 1); 3440 } 3441 3442 /* See uma.h */ 3443 int 3444 uma_zone_set_max(uma_zone_t zone, int nitems) 3445 { 3446 uma_keg_t keg; 3447 3448 keg = zone_first_keg(zone); 3449 if (keg == NULL) 3450 return (0); 3451 KEG_LOCK(keg); 3452 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 3453 if (keg->uk_maxpages * keg->uk_ipers < nitems) 3454 keg->uk_maxpages += keg->uk_ppera; 3455 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3456 KEG_UNLOCK(keg); 3457 3458 return (nitems); 3459 } 3460 3461 /* See uma.h */ 3462 int 3463 uma_zone_get_max(uma_zone_t zone) 3464 { 3465 int nitems; 3466 uma_keg_t keg; 3467 3468 keg = zone_first_keg(zone); 3469 if (keg == NULL) 3470 return (0); 3471 KEG_LOCK(keg); 3472 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 3473 KEG_UNLOCK(keg); 3474 3475 return (nitems); 3476 } 3477 3478 /* See uma.h */ 3479 void 3480 uma_zone_set_warning(uma_zone_t zone, const char *warning) 3481 { 3482 3483 ZONE_LOCK(zone); 3484 zone->uz_warning = warning; 3485 ZONE_UNLOCK(zone); 3486 } 3487 3488 /* See uma.h */ 3489 void 3490 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 3491 { 3492 3493 ZONE_LOCK(zone); 3494 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 3495 ZONE_UNLOCK(zone); 3496 } 3497 3498 /* See uma.h */ 3499 int 3500 uma_zone_get_cur(uma_zone_t zone) 3501 { 3502 int64_t nitems; 3503 u_int i; 3504 3505 ZONE_LOCK(zone); 3506 nitems = zone->uz_allocs - zone->uz_frees; 3507 CPU_FOREACH(i) { 3508 /* 3509 * See the comment in sysctl_vm_zone_stats() regarding the 3510 * safety of accessing the per-cpu caches. With the zone lock 3511 * held, it is safe, but can potentially result in stale data. 3512 */ 3513 nitems += zone->uz_cpu[i].uc_allocs - 3514 zone->uz_cpu[i].uc_frees; 3515 } 3516 ZONE_UNLOCK(zone); 3517 3518 return (nitems < 0 ? 0 : nitems); 3519 } 3520 3521 /* See uma.h */ 3522 void 3523 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 3524 { 3525 uma_keg_t keg; 3526 3527 keg = zone_first_keg(zone); 3528 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 3529 KEG_LOCK(keg); 3530 KASSERT(keg->uk_pages == 0, 3531 ("uma_zone_set_init on non-empty keg")); 3532 keg->uk_init = uminit; 3533 KEG_UNLOCK(keg); 3534 } 3535 3536 /* See uma.h */ 3537 void 3538 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3539 { 3540 uma_keg_t keg; 3541 3542 keg = zone_first_keg(zone); 3543 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3544 KEG_LOCK(keg); 3545 KASSERT(keg->uk_pages == 0, 3546 ("uma_zone_set_fini on non-empty keg")); 3547 keg->uk_fini = fini; 3548 KEG_UNLOCK(keg); 3549 } 3550 3551 /* See uma.h */ 3552 void 3553 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3554 { 3555 3556 ZONE_LOCK(zone); 3557 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3558 ("uma_zone_set_zinit on non-empty keg")); 3559 zone->uz_init = zinit; 3560 ZONE_UNLOCK(zone); 3561 } 3562 3563 /* See uma.h */ 3564 void 3565 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3566 { 3567 3568 ZONE_LOCK(zone); 3569 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3570 ("uma_zone_set_zfini on non-empty keg")); 3571 zone->uz_fini = zfini; 3572 ZONE_UNLOCK(zone); 3573 } 3574 3575 /* See uma.h */ 3576 /* XXX uk_freef is not actually used with the zone locked */ 3577 void 3578 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3579 { 3580 uma_keg_t keg; 3581 3582 keg = zone_first_keg(zone); 3583 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3584 KEG_LOCK(keg); 3585 keg->uk_freef = freef; 3586 KEG_UNLOCK(keg); 3587 } 3588 3589 /* See uma.h */ 3590 /* XXX uk_allocf is not actually used with the zone locked */ 3591 void 3592 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3593 { 3594 uma_keg_t keg; 3595 3596 keg = zone_first_keg(zone); 3597 KEG_LOCK(keg); 3598 keg->uk_allocf = allocf; 3599 KEG_UNLOCK(keg); 3600 } 3601 3602 /* See uma.h */ 3603 void 3604 uma_zone_reserve(uma_zone_t zone, int items) 3605 { 3606 uma_keg_t keg; 3607 3608 keg = zone_first_keg(zone); 3609 if (keg == NULL) 3610 return; 3611 KEG_LOCK(keg); 3612 keg->uk_reserve = items; 3613 KEG_UNLOCK(keg); 3614 3615 return; 3616 } 3617 3618 /* See uma.h */ 3619 int 3620 uma_zone_reserve_kva(uma_zone_t zone, int count) 3621 { 3622 uma_keg_t keg; 3623 vm_offset_t kva; 3624 u_int pages; 3625 3626 keg = zone_first_keg(zone); 3627 if (keg == NULL) 3628 return (0); 3629 pages = count / keg->uk_ipers; 3630 3631 if (pages * keg->uk_ipers < count) 3632 pages++; 3633 pages *= keg->uk_ppera; 3634 3635 #ifdef UMA_MD_SMALL_ALLOC 3636 if (keg->uk_ppera > 1) { 3637 #else 3638 if (1) { 3639 #endif 3640 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3641 if (kva == 0) 3642 return (0); 3643 } else 3644 kva = 0; 3645 KEG_LOCK(keg); 3646 keg->uk_kva = kva; 3647 keg->uk_offset = 0; 3648 keg->uk_maxpages = pages; 3649 #ifdef UMA_MD_SMALL_ALLOC 3650 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3651 #else 3652 keg->uk_allocf = noobj_alloc; 3653 #endif 3654 keg->uk_flags |= UMA_ZONE_NOFREE; 3655 KEG_UNLOCK(keg); 3656 3657 return (1); 3658 } 3659 3660 /* See uma.h */ 3661 void 3662 uma_prealloc(uma_zone_t zone, int items) 3663 { 3664 struct vm_domainset_iter di; 3665 uma_domain_t dom; 3666 uma_slab_t slab; 3667 uma_keg_t keg; 3668 int domain, flags, slabs; 3669 3670 keg = zone_first_keg(zone); 3671 if (keg == NULL) 3672 return; 3673 KEG_LOCK(keg); 3674 slabs = items / keg->uk_ipers; 3675 if (slabs * keg->uk_ipers < items) 3676 slabs++; 3677 flags = M_WAITOK; 3678 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, &flags); 3679 while (slabs-- > 0) { 3680 slab = keg_alloc_slab(keg, zone, domain, flags); 3681 if (slab == NULL) 3682 return; 3683 MPASS(slab->us_keg == keg); 3684 dom = &keg->uk_domain[slab->us_domain]; 3685 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 3686 if (vm_domainset_iter_policy(&di, &domain) != 0) 3687 break; 3688 } 3689 KEG_UNLOCK(keg); 3690 } 3691 3692 /* See uma.h */ 3693 static void 3694 uma_reclaim_locked(bool kmem_danger) 3695 { 3696 3697 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 3698 sx_assert(&uma_drain_lock, SA_XLOCKED); 3699 bucket_enable(); 3700 zone_foreach(zone_drain); 3701 if (vm_page_count_min() || kmem_danger) { 3702 cache_drain_safe(NULL); 3703 zone_foreach(zone_drain); 3704 } 3705 3706 /* 3707 * Some slabs may have been freed but this zone will be visited early 3708 * we visit again so that we can free pages that are empty once other 3709 * zones are drained. We have to do the same for buckets. 3710 */ 3711 zone_drain(slabzone); 3712 bucket_zone_drain(); 3713 } 3714 3715 void 3716 uma_reclaim(void) 3717 { 3718 3719 sx_xlock(&uma_drain_lock); 3720 uma_reclaim_locked(false); 3721 sx_xunlock(&uma_drain_lock); 3722 } 3723 3724 static volatile int uma_reclaim_needed; 3725 3726 void 3727 uma_reclaim_wakeup(void) 3728 { 3729 3730 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 3731 wakeup(uma_reclaim); 3732 } 3733 3734 void 3735 uma_reclaim_worker(void *arg __unused) 3736 { 3737 3738 for (;;) { 3739 sx_xlock(&uma_drain_lock); 3740 while (atomic_load_int(&uma_reclaim_needed) == 0) 3741 sx_sleep(uma_reclaim, &uma_drain_lock, PVM, "umarcl", 3742 hz); 3743 sx_xunlock(&uma_drain_lock); 3744 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3745 sx_xlock(&uma_drain_lock); 3746 uma_reclaim_locked(true); 3747 atomic_store_int(&uma_reclaim_needed, 0); 3748 sx_xunlock(&uma_drain_lock); 3749 /* Don't fire more than once per-second. */ 3750 pause("umarclslp", hz); 3751 } 3752 } 3753 3754 /* See uma.h */ 3755 int 3756 uma_zone_exhausted(uma_zone_t zone) 3757 { 3758 int full; 3759 3760 ZONE_LOCK(zone); 3761 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3762 ZONE_UNLOCK(zone); 3763 return (full); 3764 } 3765 3766 int 3767 uma_zone_exhausted_nolock(uma_zone_t zone) 3768 { 3769 return (zone->uz_flags & UMA_ZFLAG_FULL); 3770 } 3771 3772 void * 3773 uma_large_malloc_domain(vm_size_t size, int domain, int wait) 3774 { 3775 struct domainset *policy; 3776 vm_offset_t addr; 3777 uma_slab_t slab; 3778 3779 if (domain != UMA_ANYDOMAIN) { 3780 /* avoid allocs targeting empty domains */ 3781 if (VM_DOMAIN_EMPTY(domain)) 3782 domain = UMA_ANYDOMAIN; 3783 } 3784 slab = zone_alloc_item(slabzone, NULL, domain, wait); 3785 if (slab == NULL) 3786 return (NULL); 3787 policy = (domain == UMA_ANYDOMAIN) ? DOMAINSET_RR() : 3788 DOMAINSET_FIXED(domain); 3789 addr = kmem_malloc_domainset(policy, size, wait); 3790 if (addr != 0) { 3791 vsetslab(addr, slab); 3792 slab->us_data = (void *)addr; 3793 slab->us_flags = UMA_SLAB_KERNEL | UMA_SLAB_MALLOC; 3794 slab->us_size = size; 3795 slab->us_domain = vm_phys_domain(PHYS_TO_VM_PAGE( 3796 pmap_kextract(addr))); 3797 uma_total_inc(size); 3798 } else { 3799 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3800 } 3801 3802 return ((void *)addr); 3803 } 3804 3805 void * 3806 uma_large_malloc(vm_size_t size, int wait) 3807 { 3808 3809 return uma_large_malloc_domain(size, UMA_ANYDOMAIN, wait); 3810 } 3811 3812 void 3813 uma_large_free(uma_slab_t slab) 3814 { 3815 3816 KASSERT((slab->us_flags & UMA_SLAB_KERNEL) != 0, 3817 ("uma_large_free: Memory not allocated with uma_large_malloc.")); 3818 kmem_free((vm_offset_t)slab->us_data, slab->us_size); 3819 uma_total_dec(slab->us_size); 3820 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3821 } 3822 3823 static void 3824 uma_zero_item(void *item, uma_zone_t zone) 3825 { 3826 3827 bzero(item, zone->uz_size); 3828 } 3829 3830 unsigned long 3831 uma_limit(void) 3832 { 3833 3834 return (uma_kmem_limit); 3835 } 3836 3837 void 3838 uma_set_limit(unsigned long limit) 3839 { 3840 3841 uma_kmem_limit = limit; 3842 } 3843 3844 unsigned long 3845 uma_size(void) 3846 { 3847 3848 return (uma_kmem_total); 3849 } 3850 3851 long 3852 uma_avail(void) 3853 { 3854 3855 return (uma_kmem_limit - uma_kmem_total); 3856 } 3857 3858 void 3859 uma_print_stats(void) 3860 { 3861 zone_foreach(uma_print_zone); 3862 } 3863 3864 static void 3865 slab_print(uma_slab_t slab) 3866 { 3867 printf("slab: keg %p, data %p, freecount %d\n", 3868 slab->us_keg, slab->us_data, slab->us_freecount); 3869 } 3870 3871 static void 3872 cache_print(uma_cache_t cache) 3873 { 3874 printf("alloc: %p(%d), free: %p(%d)\n", 3875 cache->uc_allocbucket, 3876 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3877 cache->uc_freebucket, 3878 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3879 } 3880 3881 static void 3882 uma_print_keg(uma_keg_t keg) 3883 { 3884 uma_domain_t dom; 3885 uma_slab_t slab; 3886 int i; 3887 3888 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3889 "out %d free %d limit %d\n", 3890 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3891 keg->uk_ipers, keg->uk_ppera, 3892 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3893 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3894 for (i = 0; i < vm_ndomains; i++) { 3895 dom = &keg->uk_domain[i]; 3896 printf("Part slabs:\n"); 3897 LIST_FOREACH(slab, &dom->ud_part_slab, us_link) 3898 slab_print(slab); 3899 printf("Free slabs:\n"); 3900 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 3901 slab_print(slab); 3902 printf("Full slabs:\n"); 3903 LIST_FOREACH(slab, &dom->ud_full_slab, us_link) 3904 slab_print(slab); 3905 } 3906 } 3907 3908 void 3909 uma_print_zone(uma_zone_t zone) 3910 { 3911 uma_cache_t cache; 3912 uma_klink_t kl; 3913 int i; 3914 3915 printf("zone: %s(%p) size %d flags %#x\n", 3916 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3917 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3918 uma_print_keg(kl->kl_keg); 3919 CPU_FOREACH(i) { 3920 cache = &zone->uz_cpu[i]; 3921 printf("CPU %d Cache:\n", i); 3922 cache_print(cache); 3923 } 3924 } 3925 3926 #ifdef DDB 3927 /* 3928 * Generate statistics across both the zone and its per-cpu cache's. Return 3929 * desired statistics if the pointer is non-NULL for that statistic. 3930 * 3931 * Note: does not update the zone statistics, as it can't safely clear the 3932 * per-CPU cache statistic. 3933 * 3934 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3935 * safe from off-CPU; we should modify the caches to track this information 3936 * directly so that we don't have to. 3937 */ 3938 static void 3939 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 3940 uint64_t *freesp, uint64_t *sleepsp) 3941 { 3942 uma_cache_t cache; 3943 uint64_t allocs, frees, sleeps; 3944 int cachefree, cpu; 3945 3946 allocs = frees = sleeps = 0; 3947 cachefree = 0; 3948 CPU_FOREACH(cpu) { 3949 cache = &z->uz_cpu[cpu]; 3950 if (cache->uc_allocbucket != NULL) 3951 cachefree += cache->uc_allocbucket->ub_cnt; 3952 if (cache->uc_freebucket != NULL) 3953 cachefree += cache->uc_freebucket->ub_cnt; 3954 allocs += cache->uc_allocs; 3955 frees += cache->uc_frees; 3956 } 3957 allocs += z->uz_allocs; 3958 frees += z->uz_frees; 3959 sleeps += z->uz_sleeps; 3960 if (cachefreep != NULL) 3961 *cachefreep = cachefree; 3962 if (allocsp != NULL) 3963 *allocsp = allocs; 3964 if (freesp != NULL) 3965 *freesp = frees; 3966 if (sleepsp != NULL) 3967 *sleepsp = sleeps; 3968 } 3969 #endif /* DDB */ 3970 3971 static int 3972 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3973 { 3974 uma_keg_t kz; 3975 uma_zone_t z; 3976 int count; 3977 3978 count = 0; 3979 rw_rlock(&uma_rwlock); 3980 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3981 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3982 count++; 3983 } 3984 rw_runlock(&uma_rwlock); 3985 return (sysctl_handle_int(oidp, &count, 0, req)); 3986 } 3987 3988 static int 3989 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3990 { 3991 struct uma_stream_header ush; 3992 struct uma_type_header uth; 3993 struct uma_percpu_stat *ups; 3994 uma_zone_domain_t zdom; 3995 struct sbuf sbuf; 3996 uma_cache_t cache; 3997 uma_klink_t kl; 3998 uma_keg_t kz; 3999 uma_zone_t z; 4000 uma_keg_t k; 4001 int count, error, i; 4002 4003 error = sysctl_wire_old_buffer(req, 0); 4004 if (error != 0) 4005 return (error); 4006 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 4007 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 4008 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 4009 4010 count = 0; 4011 rw_rlock(&uma_rwlock); 4012 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4013 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4014 count++; 4015 } 4016 4017 /* 4018 * Insert stream header. 4019 */ 4020 bzero(&ush, sizeof(ush)); 4021 ush.ush_version = UMA_STREAM_VERSION; 4022 ush.ush_maxcpus = (mp_maxid + 1); 4023 ush.ush_count = count; 4024 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 4025 4026 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4027 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4028 bzero(&uth, sizeof(uth)); 4029 ZONE_LOCK(z); 4030 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 4031 uth.uth_align = kz->uk_align; 4032 uth.uth_size = kz->uk_size; 4033 uth.uth_rsize = kz->uk_rsize; 4034 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 4035 k = kl->kl_keg; 4036 uth.uth_maxpages += k->uk_maxpages; 4037 uth.uth_pages += k->uk_pages; 4038 uth.uth_keg_free += k->uk_free; 4039 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 4040 * k->uk_ipers; 4041 } 4042 4043 /* 4044 * A zone is secondary is it is not the first entry 4045 * on the keg's zone list. 4046 */ 4047 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 4048 (LIST_FIRST(&kz->uk_zones) != z)) 4049 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 4050 4051 for (i = 0; i < vm_ndomains; i++) { 4052 zdom = &z->uz_domain[i]; 4053 uth.uth_zone_free += zdom->uzd_nitems; 4054 } 4055 uth.uth_allocs = z->uz_allocs; 4056 uth.uth_frees = z->uz_frees; 4057 uth.uth_fails = z->uz_fails; 4058 uth.uth_sleeps = z->uz_sleeps; 4059 /* 4060 * While it is not normally safe to access the cache 4061 * bucket pointers while not on the CPU that owns the 4062 * cache, we only allow the pointers to be exchanged 4063 * without the zone lock held, not invalidated, so 4064 * accept the possible race associated with bucket 4065 * exchange during monitoring. 4066 */ 4067 for (i = 0; i < mp_maxid + 1; i++) { 4068 bzero(&ups[i], sizeof(*ups)); 4069 if (kz->uk_flags & UMA_ZFLAG_INTERNAL || 4070 CPU_ABSENT(i)) 4071 continue; 4072 cache = &z->uz_cpu[i]; 4073 if (cache->uc_allocbucket != NULL) 4074 ups[i].ups_cache_free += 4075 cache->uc_allocbucket->ub_cnt; 4076 if (cache->uc_freebucket != NULL) 4077 ups[i].ups_cache_free += 4078 cache->uc_freebucket->ub_cnt; 4079 ups[i].ups_allocs = cache->uc_allocs; 4080 ups[i].ups_frees = cache->uc_frees; 4081 } 4082 ZONE_UNLOCK(z); 4083 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 4084 for (i = 0; i < mp_maxid + 1; i++) 4085 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 4086 } 4087 } 4088 rw_runlock(&uma_rwlock); 4089 error = sbuf_finish(&sbuf); 4090 sbuf_delete(&sbuf); 4091 free(ups, M_TEMP); 4092 return (error); 4093 } 4094 4095 int 4096 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 4097 { 4098 uma_zone_t zone = *(uma_zone_t *)arg1; 4099 int error, max; 4100 4101 max = uma_zone_get_max(zone); 4102 error = sysctl_handle_int(oidp, &max, 0, req); 4103 if (error || !req->newptr) 4104 return (error); 4105 4106 uma_zone_set_max(zone, max); 4107 4108 return (0); 4109 } 4110 4111 int 4112 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 4113 { 4114 uma_zone_t zone = *(uma_zone_t *)arg1; 4115 int cur; 4116 4117 cur = uma_zone_get_cur(zone); 4118 return (sysctl_handle_int(oidp, &cur, 0, req)); 4119 } 4120 4121 #ifdef INVARIANTS 4122 static uma_slab_t 4123 uma_dbg_getslab(uma_zone_t zone, void *item) 4124 { 4125 uma_slab_t slab; 4126 uma_keg_t keg; 4127 uint8_t *mem; 4128 4129 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4130 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 4131 slab = vtoslab((vm_offset_t)mem); 4132 } else { 4133 /* 4134 * It is safe to return the slab here even though the 4135 * zone is unlocked because the item's allocation state 4136 * essentially holds a reference. 4137 */ 4138 ZONE_LOCK(zone); 4139 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 4140 if (keg->uk_flags & UMA_ZONE_HASH) 4141 slab = hash_sfind(&keg->uk_hash, mem); 4142 else 4143 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4144 ZONE_UNLOCK(zone); 4145 } 4146 4147 return (slab); 4148 } 4149 4150 static bool 4151 uma_dbg_zskip(uma_zone_t zone, void *mem) 4152 { 4153 uma_keg_t keg; 4154 4155 if ((keg = zone_first_keg(zone)) == NULL) 4156 return (true); 4157 4158 return (uma_dbg_kskip(keg, mem)); 4159 } 4160 4161 static bool 4162 uma_dbg_kskip(uma_keg_t keg, void *mem) 4163 { 4164 uintptr_t idx; 4165 4166 if (dbg_divisor == 0) 4167 return (true); 4168 4169 if (dbg_divisor == 1) 4170 return (false); 4171 4172 idx = (uintptr_t)mem >> PAGE_SHIFT; 4173 if (keg->uk_ipers > 1) { 4174 idx *= keg->uk_ipers; 4175 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 4176 } 4177 4178 if ((idx / dbg_divisor) * dbg_divisor != idx) { 4179 counter_u64_add(uma_skip_cnt, 1); 4180 return (true); 4181 } 4182 counter_u64_add(uma_dbg_cnt, 1); 4183 4184 return (false); 4185 } 4186 4187 /* 4188 * Set up the slab's freei data such that uma_dbg_free can function. 4189 * 4190 */ 4191 static void 4192 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 4193 { 4194 uma_keg_t keg; 4195 int freei; 4196 4197 if (slab == NULL) { 4198 slab = uma_dbg_getslab(zone, item); 4199 if (slab == NULL) 4200 panic("uma: item %p did not belong to zone %s\n", 4201 item, zone->uz_name); 4202 } 4203 keg = slab->us_keg; 4204 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4205 4206 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4207 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 4208 item, zone, zone->uz_name, slab, freei); 4209 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4210 4211 return; 4212 } 4213 4214 /* 4215 * Verifies freed addresses. Checks for alignment, valid slab membership 4216 * and duplicate frees. 4217 * 4218 */ 4219 static void 4220 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 4221 { 4222 uma_keg_t keg; 4223 int freei; 4224 4225 if (slab == NULL) { 4226 slab = uma_dbg_getslab(zone, item); 4227 if (slab == NULL) 4228 panic("uma: Freed item %p did not belong to zone %s\n", 4229 item, zone->uz_name); 4230 } 4231 keg = slab->us_keg; 4232 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 4233 4234 if (freei >= keg->uk_ipers) 4235 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 4236 item, zone, zone->uz_name, slab, freei); 4237 4238 if (((freei * keg->uk_rsize) + slab->us_data) != item) 4239 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 4240 item, zone, zone->uz_name, slab, freei); 4241 4242 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 4243 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 4244 item, zone, zone->uz_name, slab, freei); 4245 4246 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 4247 } 4248 #endif /* INVARIANTS */ 4249 4250 #ifdef DDB 4251 DB_SHOW_COMMAND(uma, db_show_uma) 4252 { 4253 uma_keg_t kz; 4254 uma_zone_t z; 4255 uint64_t allocs, frees, sleeps; 4256 long cachefree; 4257 int i; 4258 4259 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 4260 "Free", "Requests", "Sleeps", "Bucket"); 4261 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4262 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 4263 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 4264 allocs = z->uz_allocs; 4265 frees = z->uz_frees; 4266 sleeps = z->uz_sleeps; 4267 cachefree = 0; 4268 } else 4269 uma_zone_sumstat(z, &cachefree, &allocs, 4270 &frees, &sleeps); 4271 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 4272 (LIST_FIRST(&kz->uk_zones) != z))) 4273 cachefree += kz->uk_free; 4274 for (i = 0; i < vm_ndomains; i++) 4275 cachefree += z->uz_domain[i].uzd_nitems; 4276 4277 db_printf("%18s %8ju %8jd %8ld %12ju %8ju %8u\n", 4278 z->uz_name, (uintmax_t)kz->uk_size, 4279 (intmax_t)(allocs - frees), cachefree, 4280 (uintmax_t)allocs, sleeps, z->uz_count); 4281 if (db_pager_quit) 4282 return; 4283 } 4284 } 4285 } 4286 4287 DB_SHOW_COMMAND(umacache, db_show_umacache) 4288 { 4289 uma_zone_t z; 4290 uint64_t allocs, frees; 4291 long cachefree; 4292 int i; 4293 4294 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 4295 "Requests", "Bucket"); 4296 LIST_FOREACH(z, &uma_cachezones, uz_link) { 4297 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 4298 for (i = 0; i < vm_ndomains; i++) 4299 cachefree += z->uz_domain[i].uzd_nitems; 4300 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 4301 z->uz_name, (uintmax_t)z->uz_size, 4302 (intmax_t)(allocs - frees), cachefree, 4303 (uintmax_t)allocs, z->uz_count); 4304 if (db_pager_quit) 4305 return; 4306 } 4307 } 4308 #endif /* DDB */ 4309