1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 __FBSDID("$FreeBSD$"); 54 55 #include "opt_ddb.h" 56 #include "opt_param.h" 57 #include "opt_vm.h" 58 59 #include <sys/param.h> 60 #include <sys/systm.h> 61 #include <sys/bitset.h> 62 #include <sys/domainset.h> 63 #include <sys/eventhandler.h> 64 #include <sys/kernel.h> 65 #include <sys/types.h> 66 #include <sys/limits.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/random.h> 75 #include <sys/rwlock.h> 76 #include <sys/sbuf.h> 77 #include <sys/sched.h> 78 #include <sys/sleepqueue.h> 79 #include <sys/smp.h> 80 #include <sys/smr.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_domainset.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/uma.h> 96 #include <vm/uma_int.h> 97 #include <vm/uma_dbg.h> 98 99 #include <ddb/ddb.h> 100 101 #ifdef DEBUG_MEMGUARD 102 #include <vm/memguard.h> 103 #endif 104 105 #include <machine/md_var.h> 106 107 #ifdef INVARIANTS 108 #define UMA_ALWAYS_CTORDTOR 1 109 #else 110 #define UMA_ALWAYS_CTORDTOR 0 111 #endif 112 113 /* 114 * This is the zone and keg from which all zones are spawned. 115 */ 116 static uma_zone_t kegs; 117 static uma_zone_t zones; 118 119 /* 120 * On INVARIANTS builds, the slab contains a second bitset of the same size, 121 * "dbg_bits", which is laid out immediately after us_free. 122 */ 123 #ifdef INVARIANTS 124 #define SLAB_BITSETS 2 125 #else 126 #define SLAB_BITSETS 1 127 #endif 128 129 /* 130 * These are the two zones from which all offpage uma_slab_ts are allocated. 131 * 132 * One zone is for slab headers that can represent a larger number of items, 133 * making the slabs themselves more efficient, and the other zone is for 134 * headers that are smaller and represent fewer items, making the headers more 135 * efficient. 136 */ 137 #define SLABZONE_SIZE(setsize) \ 138 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 139 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 140 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 141 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 142 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 143 static uma_zone_t slabzones[2]; 144 145 /* 146 * The initial hash tables come out of this zone so they can be allocated 147 * prior to malloc coming up. 148 */ 149 static uma_zone_t hashzone; 150 151 /* The boot-time adjusted value for cache line alignment. */ 152 int uma_align_cache = 64 - 1; 153 154 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 155 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 156 157 /* 158 * Are we allowed to allocate buckets? 159 */ 160 static int bucketdisable = 1; 161 162 /* Linked list of all kegs in the system */ 163 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 164 165 /* Linked list of all cache-only zones in the system */ 166 static LIST_HEAD(,uma_zone) uma_cachezones = 167 LIST_HEAD_INITIALIZER(uma_cachezones); 168 169 /* This RW lock protects the keg list */ 170 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 171 172 /* 173 * First available virual address for boot time allocations. 174 */ 175 static vm_offset_t bootstart; 176 static vm_offset_t bootmem; 177 178 static struct sx uma_reclaim_lock; 179 180 /* 181 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 182 * allocations don't trigger a wakeup of the reclaim thread. 183 */ 184 unsigned long uma_kmem_limit = LONG_MAX; 185 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 186 "UMA kernel memory soft limit"); 187 unsigned long uma_kmem_total; 188 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 189 "UMA kernel memory usage"); 190 191 /* Is the VM done starting up? */ 192 static enum { 193 BOOT_COLD, 194 BOOT_KVA, 195 BOOT_RUNNING, 196 BOOT_SHUTDOWN, 197 } booted = BOOT_COLD; 198 199 /* 200 * This is the handle used to schedule events that need to happen 201 * outside of the allocation fast path. 202 */ 203 static struct callout uma_callout; 204 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 205 206 /* 207 * This structure is passed as the zone ctor arg so that I don't have to create 208 * a special allocation function just for zones. 209 */ 210 struct uma_zctor_args { 211 const char *name; 212 size_t size; 213 uma_ctor ctor; 214 uma_dtor dtor; 215 uma_init uminit; 216 uma_fini fini; 217 uma_import import; 218 uma_release release; 219 void *arg; 220 uma_keg_t keg; 221 int align; 222 uint32_t flags; 223 }; 224 225 struct uma_kctor_args { 226 uma_zone_t zone; 227 size_t size; 228 uma_init uminit; 229 uma_fini fini; 230 int align; 231 uint32_t flags; 232 }; 233 234 struct uma_bucket_zone { 235 uma_zone_t ubz_zone; 236 const char *ubz_name; 237 int ubz_entries; /* Number of items it can hold. */ 238 int ubz_maxsize; /* Maximum allocation size per-item. */ 239 }; 240 241 /* 242 * Compute the actual number of bucket entries to pack them in power 243 * of two sizes for more efficient space utilization. 244 */ 245 #define BUCKET_SIZE(n) \ 246 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 247 248 #define BUCKET_MAX BUCKET_SIZE(256) 249 #define BUCKET_MIN 2 250 251 struct uma_bucket_zone bucket_zones[] = { 252 /* Literal bucket sizes. */ 253 { NULL, "2 Bucket", 2, 4096 }, 254 { NULL, "4 Bucket", 4, 3072 }, 255 { NULL, "8 Bucket", 8, 2048 }, 256 { NULL, "16 Bucket", 16, 1024 }, 257 /* Rounded down power of 2 sizes for efficiency. */ 258 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 259 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 260 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 261 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 262 { NULL, NULL, 0} 263 }; 264 265 /* 266 * Flags and enumerations to be passed to internal functions. 267 */ 268 enum zfreeskip { 269 SKIP_NONE = 0, 270 SKIP_CNT = 0x00000001, 271 SKIP_DTOR = 0x00010000, 272 SKIP_FINI = 0x00020000, 273 }; 274 275 /* Prototypes.. */ 276 277 void uma_startup1(vm_offset_t); 278 void uma_startup2(void); 279 280 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 281 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 282 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 283 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 284 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void page_free(void *, vm_size_t, uint8_t); 286 static void pcpu_page_free(void *, vm_size_t, uint8_t); 287 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 288 static void cache_drain(uma_zone_t); 289 static void bucket_drain(uma_zone_t, uma_bucket_t); 290 static void bucket_cache_reclaim(uma_zone_t zone, bool); 291 static int keg_ctor(void *, int, void *, int); 292 static void keg_dtor(void *, int, void *); 293 static int zone_ctor(void *, int, void *, int); 294 static void zone_dtor(void *, int, void *); 295 static inline void item_dtor(uma_zone_t zone, void *item, int size, 296 void *udata, enum zfreeskip skip); 297 static int zero_init(void *, int, int); 298 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 299 int itemdomain, bool ws); 300 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 301 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 302 static void zone_timeout(uma_zone_t zone, void *); 303 static int hash_alloc(struct uma_hash *, u_int); 304 static int hash_expand(struct uma_hash *, struct uma_hash *); 305 static void hash_free(struct uma_hash *hash); 306 static void uma_timeout(void *); 307 static void uma_startup3(void); 308 static void uma_shutdown(void); 309 static void *zone_alloc_item(uma_zone_t, void *, int, int); 310 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 311 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 312 static void zone_free_limit(uma_zone_t zone, int count); 313 static void bucket_enable(void); 314 static void bucket_init(void); 315 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 316 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 317 static void bucket_zone_drain(void); 318 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 319 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 320 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 321 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 322 uma_fini fini, int align, uint32_t flags); 323 static int zone_import(void *, void **, int, int, int); 324 static void zone_release(void *, void **, int); 325 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 326 static bool cache_free(uma_zone_t, uma_cache_t, void *, void *, int); 327 328 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 329 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 330 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 331 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 332 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 333 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 334 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 335 336 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 337 338 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 339 "Memory allocation debugging"); 340 341 #ifdef INVARIANTS 342 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 343 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 344 345 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 346 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 347 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 348 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 349 350 static u_int dbg_divisor = 1; 351 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 352 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 353 "Debug & thrash every this item in memory allocator"); 354 355 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 356 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 357 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 358 &uma_dbg_cnt, "memory items debugged"); 359 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 360 &uma_skip_cnt, "memory items skipped, not debugged"); 361 #endif 362 363 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 364 365 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 366 "Universal Memory Allocator"); 367 368 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 369 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 370 371 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 372 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 373 374 static int zone_warnings = 1; 375 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 376 "Warn when UMA zones becomes full"); 377 378 static int multipage_slabs = 1; 379 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 380 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 381 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 382 "UMA may choose larger slab sizes for better efficiency"); 383 384 /* 385 * Select the slab zone for an offpage slab with the given maximum item count. 386 */ 387 static inline uma_zone_t 388 slabzone(int ipers) 389 { 390 391 return (slabzones[ipers > SLABZONE0_SETSIZE]); 392 } 393 394 /* 395 * This routine checks to see whether or not it's safe to enable buckets. 396 */ 397 static void 398 bucket_enable(void) 399 { 400 401 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 402 bucketdisable = vm_page_count_min(); 403 } 404 405 /* 406 * Initialize bucket_zones, the array of zones of buckets of various sizes. 407 * 408 * For each zone, calculate the memory required for each bucket, consisting 409 * of the header and an array of pointers. 410 */ 411 static void 412 bucket_init(void) 413 { 414 struct uma_bucket_zone *ubz; 415 int size; 416 417 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 418 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 419 size += sizeof(void *) * ubz->ubz_entries; 420 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 421 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 422 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 423 UMA_ZONE_FIRSTTOUCH); 424 } 425 } 426 427 /* 428 * Given a desired number of entries for a bucket, return the zone from which 429 * to allocate the bucket. 430 */ 431 static struct uma_bucket_zone * 432 bucket_zone_lookup(int entries) 433 { 434 struct uma_bucket_zone *ubz; 435 436 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 437 if (ubz->ubz_entries >= entries) 438 return (ubz); 439 ubz--; 440 return (ubz); 441 } 442 443 static struct uma_bucket_zone * 444 bucket_zone_max(uma_zone_t zone, int nitems) 445 { 446 struct uma_bucket_zone *ubz; 447 int bpcpu; 448 449 bpcpu = 2; 450 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 451 /* Count the cross-domain bucket. */ 452 bpcpu++; 453 454 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 455 if (ubz->ubz_entries * bpcpu * mp_ncpus > nitems) 456 break; 457 if (ubz == &bucket_zones[0]) 458 ubz = NULL; 459 else 460 ubz--; 461 return (ubz); 462 } 463 464 static int 465 bucket_select(int size) 466 { 467 struct uma_bucket_zone *ubz; 468 469 ubz = &bucket_zones[0]; 470 if (size > ubz->ubz_maxsize) 471 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 472 473 for (; ubz->ubz_entries != 0; ubz++) 474 if (ubz->ubz_maxsize < size) 475 break; 476 ubz--; 477 return (ubz->ubz_entries); 478 } 479 480 static uma_bucket_t 481 bucket_alloc(uma_zone_t zone, void *udata, int flags) 482 { 483 struct uma_bucket_zone *ubz; 484 uma_bucket_t bucket; 485 486 /* 487 * Don't allocate buckets early in boot. 488 */ 489 if (__predict_false(booted < BOOT_KVA)) 490 return (NULL); 491 492 /* 493 * To limit bucket recursion we store the original zone flags 494 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 495 * NOVM flag to persist even through deep recursions. We also 496 * store ZFLAG_BUCKET once we have recursed attempting to allocate 497 * a bucket for a bucket zone so we do not allow infinite bucket 498 * recursion. This cookie will even persist to frees of unused 499 * buckets via the allocation path or bucket allocations in the 500 * free path. 501 */ 502 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 503 udata = (void *)(uintptr_t)zone->uz_flags; 504 else { 505 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 506 return (NULL); 507 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 508 } 509 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 510 flags |= M_NOVM; 511 ubz = bucket_zone_lookup(zone->uz_bucket_size); 512 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 513 ubz++; 514 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 515 if (bucket) { 516 #ifdef INVARIANTS 517 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 518 #endif 519 bucket->ub_cnt = 0; 520 bucket->ub_entries = ubz->ubz_entries; 521 bucket->ub_seq = SMR_SEQ_INVALID; 522 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 523 zone->uz_name, zone, bucket); 524 } 525 526 return (bucket); 527 } 528 529 static void 530 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 531 { 532 struct uma_bucket_zone *ubz; 533 534 if (bucket->ub_cnt != 0) 535 bucket_drain(zone, bucket); 536 537 KASSERT(bucket->ub_cnt == 0, 538 ("bucket_free: Freeing a non free bucket.")); 539 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 540 ("bucket_free: Freeing an SMR bucket.")); 541 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 542 udata = (void *)(uintptr_t)zone->uz_flags; 543 ubz = bucket_zone_lookup(bucket->ub_entries); 544 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 545 } 546 547 static void 548 bucket_zone_drain(void) 549 { 550 struct uma_bucket_zone *ubz; 551 552 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 553 uma_zone_reclaim(ubz->ubz_zone, UMA_RECLAIM_DRAIN); 554 } 555 556 /* 557 * Acquire the domain lock and record contention. 558 */ 559 static uma_zone_domain_t 560 zone_domain_lock(uma_zone_t zone, int domain) 561 { 562 uma_zone_domain_t zdom; 563 bool lockfail; 564 565 zdom = ZDOM_GET(zone, domain); 566 lockfail = false; 567 if (ZDOM_OWNED(zdom)) 568 lockfail = true; 569 ZDOM_LOCK(zdom); 570 /* This is unsynchronized. The counter does not need to be precise. */ 571 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 572 zone->uz_bucket_size++; 573 return (zdom); 574 } 575 576 /* 577 * Search for the domain with the least cached items and return it if it 578 * is out of balance with the preferred domain. 579 */ 580 static __noinline int 581 zone_domain_lowest(uma_zone_t zone, int pref) 582 { 583 long least, nitems, prefitems; 584 int domain; 585 int i; 586 587 prefitems = least = LONG_MAX; 588 domain = 0; 589 for (i = 0; i < vm_ndomains; i++) { 590 nitems = ZDOM_GET(zone, i)->uzd_nitems; 591 if (nitems < least) { 592 domain = i; 593 least = nitems; 594 } 595 if (domain == pref) 596 prefitems = nitems; 597 } 598 if (prefitems < least * 2) 599 return (pref); 600 601 return (domain); 602 } 603 604 /* 605 * Search for the domain with the most cached items and return it or the 606 * preferred domain if it has enough to proceed. 607 */ 608 static __noinline int 609 zone_domain_highest(uma_zone_t zone, int pref) 610 { 611 long most, nitems; 612 int domain; 613 int i; 614 615 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 616 return (pref); 617 618 most = 0; 619 domain = 0; 620 for (i = 0; i < vm_ndomains; i++) { 621 nitems = ZDOM_GET(zone, i)->uzd_nitems; 622 if (nitems > most) { 623 domain = i; 624 most = nitems; 625 } 626 } 627 628 return (domain); 629 } 630 631 /* 632 * Safely subtract cnt from imax. 633 */ 634 static void 635 zone_domain_imax_sub(uma_zone_domain_t zdom, int cnt) 636 { 637 long new; 638 long old; 639 640 old = zdom->uzd_imax; 641 do { 642 if (old <= cnt) 643 new = 0; 644 else 645 new = old - cnt; 646 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, new) == 0); 647 } 648 649 /* 650 * Set the maximum imax value. 651 */ 652 static void 653 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 654 { 655 long old; 656 657 old = zdom->uzd_imax; 658 do { 659 if (old >= nitems) 660 break; 661 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 662 } 663 664 /* 665 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 666 * zone's caches. If a bucket is found the zone is not locked on return. 667 */ 668 static uma_bucket_t 669 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 670 { 671 uma_bucket_t bucket; 672 int i; 673 bool dtor = false; 674 675 ZDOM_LOCK_ASSERT(zdom); 676 677 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 678 return (NULL); 679 680 /* SMR Buckets can not be re-used until readers expire. */ 681 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 682 bucket->ub_seq != SMR_SEQ_INVALID) { 683 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 684 return (NULL); 685 bucket->ub_seq = SMR_SEQ_INVALID; 686 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 687 if (STAILQ_NEXT(bucket, ub_link) != NULL) 688 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 689 } 690 MPASS(zdom->uzd_nitems >= bucket->ub_cnt); 691 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 692 zdom->uzd_nitems -= bucket->ub_cnt; 693 694 /* 695 * Shift the bounds of the current WSS interval to avoid 696 * perturbing the estimate. 697 */ 698 if (reclaim) { 699 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 700 zone_domain_imax_sub(zdom, bucket->ub_cnt); 701 } else if (zdom->uzd_imin > zdom->uzd_nitems) 702 zdom->uzd_imin = zdom->uzd_nitems; 703 704 ZDOM_UNLOCK(zdom); 705 if (dtor) 706 for (i = 0; i < bucket->ub_cnt; i++) 707 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 708 NULL, SKIP_NONE); 709 710 return (bucket); 711 } 712 713 /* 714 * Insert a full bucket into the specified cache. The "ws" parameter indicates 715 * whether the bucket's contents should be counted as part of the zone's working 716 * set. The bucket may be freed if it exceeds the bucket limit. 717 */ 718 static void 719 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 720 const bool ws) 721 { 722 uma_zone_domain_t zdom; 723 724 /* We don't cache empty buckets. This can happen after a reclaim. */ 725 if (bucket->ub_cnt == 0) 726 goto out; 727 zdom = zone_domain_lock(zone, domain); 728 729 /* 730 * Conditionally set the maximum number of items. 731 */ 732 zdom->uzd_nitems += bucket->ub_cnt; 733 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 734 if (ws) 735 zone_domain_imax_set(zdom, zdom->uzd_nitems); 736 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 737 zdom->uzd_seq = bucket->ub_seq; 738 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 739 ZDOM_UNLOCK(zdom); 740 return; 741 } 742 zdom->uzd_nitems -= bucket->ub_cnt; 743 ZDOM_UNLOCK(zdom); 744 out: 745 bucket_free(zone, bucket, udata); 746 } 747 748 /* Pops an item out of a per-cpu cache bucket. */ 749 static inline void * 750 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 751 { 752 void *item; 753 754 CRITICAL_ASSERT(curthread); 755 756 bucket->ucb_cnt--; 757 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 758 #ifdef INVARIANTS 759 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 760 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 761 #endif 762 cache->uc_allocs++; 763 764 return (item); 765 } 766 767 /* Pushes an item into a per-cpu cache bucket. */ 768 static inline void 769 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 770 { 771 772 CRITICAL_ASSERT(curthread); 773 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 774 ("uma_zfree: Freeing to non free bucket index.")); 775 776 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 777 bucket->ucb_cnt++; 778 cache->uc_frees++; 779 } 780 781 /* 782 * Unload a UMA bucket from a per-cpu cache. 783 */ 784 static inline uma_bucket_t 785 cache_bucket_unload(uma_cache_bucket_t bucket) 786 { 787 uma_bucket_t b; 788 789 b = bucket->ucb_bucket; 790 if (b != NULL) { 791 MPASS(b->ub_entries == bucket->ucb_entries); 792 b->ub_cnt = bucket->ucb_cnt; 793 bucket->ucb_bucket = NULL; 794 bucket->ucb_entries = bucket->ucb_cnt = 0; 795 } 796 797 return (b); 798 } 799 800 static inline uma_bucket_t 801 cache_bucket_unload_alloc(uma_cache_t cache) 802 { 803 804 return (cache_bucket_unload(&cache->uc_allocbucket)); 805 } 806 807 static inline uma_bucket_t 808 cache_bucket_unload_free(uma_cache_t cache) 809 { 810 811 return (cache_bucket_unload(&cache->uc_freebucket)); 812 } 813 814 static inline uma_bucket_t 815 cache_bucket_unload_cross(uma_cache_t cache) 816 { 817 818 return (cache_bucket_unload(&cache->uc_crossbucket)); 819 } 820 821 /* 822 * Load a bucket into a per-cpu cache bucket. 823 */ 824 static inline void 825 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 826 { 827 828 CRITICAL_ASSERT(curthread); 829 MPASS(bucket->ucb_bucket == NULL); 830 MPASS(b->ub_seq == SMR_SEQ_INVALID); 831 832 bucket->ucb_bucket = b; 833 bucket->ucb_cnt = b->ub_cnt; 834 bucket->ucb_entries = b->ub_entries; 835 } 836 837 static inline void 838 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 839 { 840 841 cache_bucket_load(&cache->uc_allocbucket, b); 842 } 843 844 static inline void 845 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 846 { 847 848 cache_bucket_load(&cache->uc_freebucket, b); 849 } 850 851 #ifdef NUMA 852 static inline void 853 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 854 { 855 856 cache_bucket_load(&cache->uc_crossbucket, b); 857 } 858 #endif 859 860 /* 861 * Copy and preserve ucb_spare. 862 */ 863 static inline void 864 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 865 { 866 867 b1->ucb_bucket = b2->ucb_bucket; 868 b1->ucb_entries = b2->ucb_entries; 869 b1->ucb_cnt = b2->ucb_cnt; 870 } 871 872 /* 873 * Swap two cache buckets. 874 */ 875 static inline void 876 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 877 { 878 struct uma_cache_bucket b3; 879 880 CRITICAL_ASSERT(curthread); 881 882 cache_bucket_copy(&b3, b1); 883 cache_bucket_copy(b1, b2); 884 cache_bucket_copy(b2, &b3); 885 } 886 887 /* 888 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 889 */ 890 static uma_bucket_t 891 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 892 { 893 uma_zone_domain_t zdom; 894 uma_bucket_t bucket; 895 896 /* 897 * Avoid the lock if possible. 898 */ 899 zdom = ZDOM_GET(zone, domain); 900 if (zdom->uzd_nitems == 0) 901 return (NULL); 902 903 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 904 !smr_poll(zone->uz_smr, zdom->uzd_seq, false)) 905 return (NULL); 906 907 /* 908 * Check the zone's cache of buckets. 909 */ 910 zdom = zone_domain_lock(zone, domain); 911 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 912 KASSERT(bucket->ub_cnt != 0, 913 ("cache_fetch_bucket: Returning an empty bucket.")); 914 return (bucket); 915 } 916 ZDOM_UNLOCK(zdom); 917 918 return (NULL); 919 } 920 921 static void 922 zone_log_warning(uma_zone_t zone) 923 { 924 static const struct timeval warninterval = { 300, 0 }; 925 926 if (!zone_warnings || zone->uz_warning == NULL) 927 return; 928 929 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 930 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 931 } 932 933 static inline void 934 zone_maxaction(uma_zone_t zone) 935 { 936 937 if (zone->uz_maxaction.ta_func != NULL) 938 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 939 } 940 941 /* 942 * Routine called by timeout which is used to fire off some time interval 943 * based calculations. (stats, hash size, etc.) 944 * 945 * Arguments: 946 * arg Unused 947 * 948 * Returns: 949 * Nothing 950 */ 951 static void 952 uma_timeout(void *unused) 953 { 954 bucket_enable(); 955 zone_foreach(zone_timeout, NULL); 956 957 /* Reschedule this event */ 958 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 959 } 960 961 /* 962 * Update the working set size estimate for the zone's bucket cache. 963 * The constants chosen here are somewhat arbitrary. With an update period of 964 * 20s (UMA_TIMEOUT), this estimate is dominated by zone activity over the 965 * last 100s. 966 */ 967 static void 968 zone_domain_update_wss(uma_zone_domain_t zdom) 969 { 970 long wss; 971 972 ZDOM_LOCK(zdom); 973 MPASS(zdom->uzd_imax >= zdom->uzd_imin); 974 wss = zdom->uzd_imax - zdom->uzd_imin; 975 zdom->uzd_imax = zdom->uzd_imin = zdom->uzd_nitems; 976 zdom->uzd_wss = (4 * wss + zdom->uzd_wss) / 5; 977 ZDOM_UNLOCK(zdom); 978 } 979 980 /* 981 * Routine to perform timeout driven calculations. This expands the 982 * hashes and does per cpu statistics aggregation. 983 * 984 * Returns nothing. 985 */ 986 static void 987 zone_timeout(uma_zone_t zone, void *unused) 988 { 989 uma_keg_t keg; 990 u_int slabs, pages; 991 992 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 993 goto update_wss; 994 995 keg = zone->uz_keg; 996 997 /* 998 * Hash zones are non-numa by definition so the first domain 999 * is the only one present. 1000 */ 1001 KEG_LOCK(keg, 0); 1002 pages = keg->uk_domain[0].ud_pages; 1003 1004 /* 1005 * Expand the keg hash table. 1006 * 1007 * This is done if the number of slabs is larger than the hash size. 1008 * What I'm trying to do here is completely reduce collisions. This 1009 * may be a little aggressive. Should I allow for two collisions max? 1010 */ 1011 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1012 struct uma_hash newhash; 1013 struct uma_hash oldhash; 1014 int ret; 1015 1016 /* 1017 * This is so involved because allocating and freeing 1018 * while the keg lock is held will lead to deadlock. 1019 * I have to do everything in stages and check for 1020 * races. 1021 */ 1022 KEG_UNLOCK(keg, 0); 1023 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1024 KEG_LOCK(keg, 0); 1025 if (ret) { 1026 if (hash_expand(&keg->uk_hash, &newhash)) { 1027 oldhash = keg->uk_hash; 1028 keg->uk_hash = newhash; 1029 } else 1030 oldhash = newhash; 1031 1032 KEG_UNLOCK(keg, 0); 1033 hash_free(&oldhash); 1034 goto update_wss; 1035 } 1036 } 1037 KEG_UNLOCK(keg, 0); 1038 1039 update_wss: 1040 for (int i = 0; i < vm_ndomains; i++) 1041 zone_domain_update_wss(ZDOM_GET(zone, i)); 1042 } 1043 1044 /* 1045 * Allocate and zero fill the next sized hash table from the appropriate 1046 * backing store. 1047 * 1048 * Arguments: 1049 * hash A new hash structure with the old hash size in uh_hashsize 1050 * 1051 * Returns: 1052 * 1 on success and 0 on failure. 1053 */ 1054 static int 1055 hash_alloc(struct uma_hash *hash, u_int size) 1056 { 1057 size_t alloc; 1058 1059 KASSERT(powerof2(size), ("hash size must be power of 2")); 1060 if (size > UMA_HASH_SIZE_INIT) { 1061 hash->uh_hashsize = size; 1062 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1063 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1064 } else { 1065 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1066 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1067 UMA_ANYDOMAIN, M_WAITOK); 1068 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1069 } 1070 if (hash->uh_slab_hash) { 1071 bzero(hash->uh_slab_hash, alloc); 1072 hash->uh_hashmask = hash->uh_hashsize - 1; 1073 return (1); 1074 } 1075 1076 return (0); 1077 } 1078 1079 /* 1080 * Expands the hash table for HASH zones. This is done from zone_timeout 1081 * to reduce collisions. This must not be done in the regular allocation 1082 * path, otherwise, we can recurse on the vm while allocating pages. 1083 * 1084 * Arguments: 1085 * oldhash The hash you want to expand 1086 * newhash The hash structure for the new table 1087 * 1088 * Returns: 1089 * Nothing 1090 * 1091 * Discussion: 1092 */ 1093 static int 1094 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1095 { 1096 uma_hash_slab_t slab; 1097 u_int hval; 1098 u_int idx; 1099 1100 if (!newhash->uh_slab_hash) 1101 return (0); 1102 1103 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1104 return (0); 1105 1106 /* 1107 * I need to investigate hash algorithms for resizing without a 1108 * full rehash. 1109 */ 1110 1111 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1112 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1113 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1114 LIST_REMOVE(slab, uhs_hlink); 1115 hval = UMA_HASH(newhash, slab->uhs_data); 1116 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1117 slab, uhs_hlink); 1118 } 1119 1120 return (1); 1121 } 1122 1123 /* 1124 * Free the hash bucket to the appropriate backing store. 1125 * 1126 * Arguments: 1127 * slab_hash The hash bucket we're freeing 1128 * hashsize The number of entries in that hash bucket 1129 * 1130 * Returns: 1131 * Nothing 1132 */ 1133 static void 1134 hash_free(struct uma_hash *hash) 1135 { 1136 if (hash->uh_slab_hash == NULL) 1137 return; 1138 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1139 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1140 else 1141 free(hash->uh_slab_hash, M_UMAHASH); 1142 } 1143 1144 /* 1145 * Frees all outstanding items in a bucket 1146 * 1147 * Arguments: 1148 * zone The zone to free to, must be unlocked. 1149 * bucket The free/alloc bucket with items. 1150 * 1151 * Returns: 1152 * Nothing 1153 */ 1154 static void 1155 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1156 { 1157 int i; 1158 1159 if (bucket->ub_cnt == 0) 1160 return; 1161 1162 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1163 bucket->ub_seq != SMR_SEQ_INVALID) { 1164 smr_wait(zone->uz_smr, bucket->ub_seq); 1165 bucket->ub_seq = SMR_SEQ_INVALID; 1166 for (i = 0; i < bucket->ub_cnt; i++) 1167 item_dtor(zone, bucket->ub_bucket[i], 1168 zone->uz_size, NULL, SKIP_NONE); 1169 } 1170 if (zone->uz_fini) 1171 for (i = 0; i < bucket->ub_cnt; i++) 1172 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1173 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1174 if (zone->uz_max_items > 0) 1175 zone_free_limit(zone, bucket->ub_cnt); 1176 #ifdef INVARIANTS 1177 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1178 #endif 1179 bucket->ub_cnt = 0; 1180 } 1181 1182 /* 1183 * Drains the per cpu caches for a zone. 1184 * 1185 * NOTE: This may only be called while the zone is being torn down, and not 1186 * during normal operation. This is necessary in order that we do not have 1187 * to migrate CPUs to drain the per-CPU caches. 1188 * 1189 * Arguments: 1190 * zone The zone to drain, must be unlocked. 1191 * 1192 * Returns: 1193 * Nothing 1194 */ 1195 static void 1196 cache_drain(uma_zone_t zone) 1197 { 1198 uma_cache_t cache; 1199 uma_bucket_t bucket; 1200 smr_seq_t seq; 1201 int cpu; 1202 1203 /* 1204 * XXX: It is safe to not lock the per-CPU caches, because we're 1205 * tearing down the zone anyway. I.e., there will be no further use 1206 * of the caches at this point. 1207 * 1208 * XXX: It would good to be able to assert that the zone is being 1209 * torn down to prevent improper use of cache_drain(). 1210 */ 1211 seq = SMR_SEQ_INVALID; 1212 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1213 seq = smr_advance(zone->uz_smr); 1214 CPU_FOREACH(cpu) { 1215 cache = &zone->uz_cpu[cpu]; 1216 bucket = cache_bucket_unload_alloc(cache); 1217 if (bucket != NULL) 1218 bucket_free(zone, bucket, NULL); 1219 bucket = cache_bucket_unload_free(cache); 1220 if (bucket != NULL) { 1221 bucket->ub_seq = seq; 1222 bucket_free(zone, bucket, NULL); 1223 } 1224 bucket = cache_bucket_unload_cross(cache); 1225 if (bucket != NULL) { 1226 bucket->ub_seq = seq; 1227 bucket_free(zone, bucket, NULL); 1228 } 1229 } 1230 bucket_cache_reclaim(zone, true); 1231 } 1232 1233 static void 1234 cache_shrink(uma_zone_t zone, void *unused) 1235 { 1236 1237 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1238 return; 1239 1240 zone->uz_bucket_size = 1241 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1242 } 1243 1244 static void 1245 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1246 { 1247 uma_cache_t cache; 1248 uma_bucket_t b1, b2, b3; 1249 int domain; 1250 1251 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1252 return; 1253 1254 b1 = b2 = b3 = NULL; 1255 critical_enter(); 1256 cache = &zone->uz_cpu[curcpu]; 1257 domain = PCPU_GET(domain); 1258 b1 = cache_bucket_unload_alloc(cache); 1259 1260 /* 1261 * Don't flush SMR zone buckets. This leaves the zone without a 1262 * bucket and forces every free to synchronize(). 1263 */ 1264 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1265 b2 = cache_bucket_unload_free(cache); 1266 b3 = cache_bucket_unload_cross(cache); 1267 } 1268 critical_exit(); 1269 1270 if (b1 != NULL) 1271 zone_free_bucket(zone, b1, NULL, domain, false); 1272 if (b2 != NULL) 1273 zone_free_bucket(zone, b2, NULL, domain, false); 1274 if (b3 != NULL) { 1275 /* Adjust the domain so it goes to zone_free_cross. */ 1276 domain = (domain + 1) % vm_ndomains; 1277 zone_free_bucket(zone, b3, NULL, domain, false); 1278 } 1279 } 1280 1281 /* 1282 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1283 * This is an expensive call because it needs to bind to all CPUs 1284 * one by one and enter a critical section on each of them in order 1285 * to safely access their cache buckets. 1286 * Zone lock must not be held on call this function. 1287 */ 1288 static void 1289 pcpu_cache_drain_safe(uma_zone_t zone) 1290 { 1291 int cpu; 1292 1293 /* 1294 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1295 */ 1296 if (zone) 1297 cache_shrink(zone, NULL); 1298 else 1299 zone_foreach(cache_shrink, NULL); 1300 1301 CPU_FOREACH(cpu) { 1302 thread_lock(curthread); 1303 sched_bind(curthread, cpu); 1304 thread_unlock(curthread); 1305 1306 if (zone) 1307 cache_drain_safe_cpu(zone, NULL); 1308 else 1309 zone_foreach(cache_drain_safe_cpu, NULL); 1310 } 1311 thread_lock(curthread); 1312 sched_unbind(curthread); 1313 thread_unlock(curthread); 1314 } 1315 1316 /* 1317 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1318 * requested a drain, otherwise the per-domain caches are trimmed to either 1319 * estimated working set size. 1320 */ 1321 static void 1322 bucket_cache_reclaim(uma_zone_t zone, bool drain) 1323 { 1324 uma_zone_domain_t zdom; 1325 uma_bucket_t bucket; 1326 long target; 1327 int i; 1328 1329 /* 1330 * Shrink the zone bucket size to ensure that the per-CPU caches 1331 * don't grow too large. 1332 */ 1333 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1334 zone->uz_bucket_size--; 1335 1336 for (i = 0; i < vm_ndomains; i++) { 1337 /* 1338 * The cross bucket is partially filled and not part of 1339 * the item count. Reclaim it individually here. 1340 */ 1341 zdom = ZDOM_GET(zone, i); 1342 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1343 ZONE_CROSS_LOCK(zone); 1344 bucket = zdom->uzd_cross; 1345 zdom->uzd_cross = NULL; 1346 ZONE_CROSS_UNLOCK(zone); 1347 if (bucket != NULL) 1348 bucket_free(zone, bucket, NULL); 1349 } 1350 1351 /* 1352 * If we were asked to drain the zone, we are done only once 1353 * this bucket cache is empty. Otherwise, we reclaim items in 1354 * excess of the zone's estimated working set size. If the 1355 * difference nitems - imin is larger than the WSS estimate, 1356 * then the estimate will grow at the end of this interval and 1357 * we ignore the historical average. 1358 */ 1359 ZDOM_LOCK(zdom); 1360 target = drain ? 0 : lmax(zdom->uzd_wss, zdom->uzd_nitems - 1361 zdom->uzd_imin); 1362 while (zdom->uzd_nitems > target) { 1363 bucket = zone_fetch_bucket(zone, zdom, true); 1364 if (bucket == NULL) 1365 break; 1366 bucket_free(zone, bucket, NULL); 1367 ZDOM_LOCK(zdom); 1368 } 1369 ZDOM_UNLOCK(zdom); 1370 } 1371 } 1372 1373 static void 1374 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1375 { 1376 uint8_t *mem; 1377 int i; 1378 uint8_t flags; 1379 1380 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1381 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1382 1383 mem = slab_data(slab, keg); 1384 flags = slab->us_flags; 1385 i = start; 1386 if (keg->uk_fini != NULL) { 1387 for (i--; i > -1; i--) 1388 #ifdef INVARIANTS 1389 /* 1390 * trash_fini implies that dtor was trash_dtor. trash_fini 1391 * would check that memory hasn't been modified since free, 1392 * which executed trash_dtor. 1393 * That's why we need to run uma_dbg_kskip() check here, 1394 * albeit we don't make skip check for other init/fini 1395 * invocations. 1396 */ 1397 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1398 keg->uk_fini != trash_fini) 1399 #endif 1400 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1401 } 1402 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1403 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1404 NULL, SKIP_NONE); 1405 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 1406 uma_total_dec(PAGE_SIZE * keg->uk_ppera); 1407 } 1408 1409 /* 1410 * Frees pages from a keg back to the system. This is done on demand from 1411 * the pageout daemon. 1412 * 1413 * Returns nothing. 1414 */ 1415 static void 1416 keg_drain(uma_keg_t keg) 1417 { 1418 struct slabhead freeslabs; 1419 uma_domain_t dom; 1420 uma_slab_t slab, tmp; 1421 int i, n; 1422 1423 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 1424 return; 1425 1426 for (i = 0; i < vm_ndomains; i++) { 1427 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1428 keg->uk_name, keg, i, dom->ud_free_items); 1429 dom = &keg->uk_domain[i]; 1430 LIST_INIT(&freeslabs); 1431 1432 KEG_LOCK(keg, i); 1433 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1434 LIST_FOREACH(slab, &dom->ud_free_slab, us_link) 1435 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1436 } 1437 n = dom->ud_free_slabs; 1438 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1439 dom->ud_free_slabs = 0; 1440 dom->ud_free_items -= n * keg->uk_ipers; 1441 dom->ud_pages -= n * keg->uk_ppera; 1442 KEG_UNLOCK(keg, i); 1443 1444 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1445 keg_free_slab(keg, slab, keg->uk_ipers); 1446 } 1447 } 1448 1449 static void 1450 zone_reclaim(uma_zone_t zone, int waitok, bool drain) 1451 { 1452 1453 /* 1454 * Set draining to interlock with zone_dtor() so we can release our 1455 * locks as we go. Only dtor() should do a WAITOK call since it 1456 * is the only call that knows the structure will still be available 1457 * when it wakes up. 1458 */ 1459 ZONE_LOCK(zone); 1460 while (zone->uz_flags & UMA_ZFLAG_RECLAIMING) { 1461 if (waitok == M_NOWAIT) 1462 goto out; 1463 msleep(zone, &ZDOM_GET(zone, 0)->uzd_lock, PVM, "zonedrain", 1464 1); 1465 } 1466 zone->uz_flags |= UMA_ZFLAG_RECLAIMING; 1467 ZONE_UNLOCK(zone); 1468 bucket_cache_reclaim(zone, drain); 1469 1470 /* 1471 * The DRAINING flag protects us from being freed while 1472 * we're running. Normally the uma_rwlock would protect us but we 1473 * must be able to release and acquire the right lock for each keg. 1474 */ 1475 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1476 keg_drain(zone->uz_keg); 1477 ZONE_LOCK(zone); 1478 zone->uz_flags &= ~UMA_ZFLAG_RECLAIMING; 1479 wakeup(zone); 1480 out: 1481 ZONE_UNLOCK(zone); 1482 } 1483 1484 static void 1485 zone_drain(uma_zone_t zone, void *unused) 1486 { 1487 1488 zone_reclaim(zone, M_NOWAIT, true); 1489 } 1490 1491 static void 1492 zone_trim(uma_zone_t zone, void *unused) 1493 { 1494 1495 zone_reclaim(zone, M_NOWAIT, false); 1496 } 1497 1498 /* 1499 * Allocate a new slab for a keg and inserts it into the partial slab list. 1500 * The keg should be unlocked on entry. If the allocation succeeds it will 1501 * be locked on return. 1502 * 1503 * Arguments: 1504 * flags Wait flags for the item initialization routine 1505 * aflags Wait flags for the slab allocation 1506 * 1507 * Returns: 1508 * The slab that was allocated or NULL if there is no memory and the 1509 * caller specified M_NOWAIT. 1510 */ 1511 static uma_slab_t 1512 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1513 int aflags) 1514 { 1515 uma_domain_t dom; 1516 uma_alloc allocf; 1517 uma_slab_t slab; 1518 unsigned long size; 1519 uint8_t *mem; 1520 uint8_t sflags; 1521 int i; 1522 1523 KASSERT(domain >= 0 && domain < vm_ndomains, 1524 ("keg_alloc_slab: domain %d out of range", domain)); 1525 1526 allocf = keg->uk_allocf; 1527 slab = NULL; 1528 mem = NULL; 1529 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1530 uma_hash_slab_t hslab; 1531 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1532 domain, aflags); 1533 if (hslab == NULL) 1534 goto fail; 1535 slab = &hslab->uhs_slab; 1536 } 1537 1538 /* 1539 * This reproduces the old vm_zone behavior of zero filling pages the 1540 * first time they are added to a zone. 1541 * 1542 * Malloced items are zeroed in uma_zalloc. 1543 */ 1544 1545 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1546 aflags |= M_ZERO; 1547 else 1548 aflags &= ~M_ZERO; 1549 1550 if (keg->uk_flags & UMA_ZONE_NODUMP) 1551 aflags |= M_NODUMP; 1552 1553 /* zone is passed for legacy reasons. */ 1554 size = keg->uk_ppera * PAGE_SIZE; 1555 mem = allocf(zone, size, domain, &sflags, aflags); 1556 if (mem == NULL) { 1557 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1558 zone_free_item(slabzone(keg->uk_ipers), 1559 slab_tohashslab(slab), NULL, SKIP_NONE); 1560 goto fail; 1561 } 1562 uma_total_inc(size); 1563 1564 /* For HASH zones all pages go to the same uma_domain. */ 1565 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1566 domain = 0; 1567 1568 /* Point the slab into the allocated memory */ 1569 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1570 slab = (uma_slab_t )(mem + keg->uk_pgoff); 1571 else 1572 slab_tohashslab(slab)->uhs_data = mem; 1573 1574 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1575 for (i = 0; i < keg->uk_ppera; i++) 1576 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1577 zone, slab); 1578 1579 slab->us_freecount = keg->uk_ipers; 1580 slab->us_flags = sflags; 1581 slab->us_domain = domain; 1582 1583 BIT_FILL(keg->uk_ipers, &slab->us_free); 1584 #ifdef INVARIANTS 1585 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1586 #endif 1587 1588 if (keg->uk_init != NULL) { 1589 for (i = 0; i < keg->uk_ipers; i++) 1590 if (keg->uk_init(slab_item(slab, keg, i), 1591 keg->uk_size, flags) != 0) 1592 break; 1593 if (i != keg->uk_ipers) { 1594 keg_free_slab(keg, slab, i); 1595 goto fail; 1596 } 1597 } 1598 KEG_LOCK(keg, domain); 1599 1600 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1601 slab, keg->uk_name, keg); 1602 1603 if (keg->uk_flags & UMA_ZFLAG_HASH) 1604 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1605 1606 /* 1607 * If we got a slab here it's safe to mark it partially used 1608 * and return. We assume that the caller is going to remove 1609 * at least one item. 1610 */ 1611 dom = &keg->uk_domain[domain]; 1612 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1613 dom->ud_pages += keg->uk_ppera; 1614 dom->ud_free_items += keg->uk_ipers; 1615 1616 return (slab); 1617 1618 fail: 1619 return (NULL); 1620 } 1621 1622 /* 1623 * This function is intended to be used early on in place of page_alloc() so 1624 * that we may use the boot time page cache to satisfy allocations before 1625 * the VM is ready. 1626 */ 1627 static void * 1628 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1629 int wait) 1630 { 1631 vm_paddr_t pa; 1632 vm_page_t m; 1633 void *mem; 1634 int pages; 1635 int i; 1636 1637 pages = howmany(bytes, PAGE_SIZE); 1638 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1639 1640 *pflag = UMA_SLAB_BOOT; 1641 m = vm_page_alloc_contig_domain(NULL, 0, domain, 1642 malloc2vm_flags(wait) | VM_ALLOC_NOOBJ | VM_ALLOC_WIRED, pages, 1643 (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT); 1644 if (m == NULL) 1645 return (NULL); 1646 1647 pa = VM_PAGE_TO_PHYS(m); 1648 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1649 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1650 defined(__riscv) || defined(__powerpc64__) 1651 if ((wait & M_NODUMP) == 0) 1652 dump_add_page(pa); 1653 #endif 1654 } 1655 /* Allocate KVA and indirectly advance bootmem. */ 1656 mem = (void *)pmap_map(&bootmem, m->phys_addr, 1657 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE); 1658 if ((wait & M_ZERO) != 0) 1659 bzero(mem, pages * PAGE_SIZE); 1660 1661 return (mem); 1662 } 1663 1664 static void 1665 startup_free(void *mem, vm_size_t bytes) 1666 { 1667 vm_offset_t va; 1668 vm_page_t m; 1669 1670 va = (vm_offset_t)mem; 1671 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1672 pmap_remove(kernel_pmap, va, va + bytes); 1673 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1674 #if defined(__aarch64__) || defined(__amd64__) || defined(__mips__) || \ 1675 defined(__riscv) || defined(__powerpc64__) 1676 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1677 #endif 1678 vm_page_unwire_noq(m); 1679 vm_page_free(m); 1680 } 1681 } 1682 1683 /* 1684 * Allocates a number of pages from the system 1685 * 1686 * Arguments: 1687 * bytes The number of bytes requested 1688 * wait Shall we wait? 1689 * 1690 * Returns: 1691 * A pointer to the alloced memory or possibly 1692 * NULL if M_NOWAIT is set. 1693 */ 1694 static void * 1695 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1696 int wait) 1697 { 1698 void *p; /* Returned page */ 1699 1700 *pflag = UMA_SLAB_KERNEL; 1701 p = (void *)kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1702 1703 return (p); 1704 } 1705 1706 static void * 1707 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1708 int wait) 1709 { 1710 struct pglist alloctail; 1711 vm_offset_t addr, zkva; 1712 int cpu, flags; 1713 vm_page_t p, p_next; 1714 #ifdef NUMA 1715 struct pcpu *pc; 1716 #endif 1717 1718 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1719 1720 TAILQ_INIT(&alloctail); 1721 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1722 malloc2vm_flags(wait); 1723 *pflag = UMA_SLAB_KERNEL; 1724 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1725 if (CPU_ABSENT(cpu)) { 1726 p = vm_page_alloc(NULL, 0, flags); 1727 } else { 1728 #ifndef NUMA 1729 p = vm_page_alloc(NULL, 0, flags); 1730 #else 1731 pc = pcpu_find(cpu); 1732 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1733 p = NULL; 1734 else 1735 p = vm_page_alloc_domain(NULL, 0, 1736 pc->pc_domain, flags); 1737 if (__predict_false(p == NULL)) 1738 p = vm_page_alloc(NULL, 0, flags); 1739 #endif 1740 } 1741 if (__predict_false(p == NULL)) 1742 goto fail; 1743 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1744 } 1745 if ((addr = kva_alloc(bytes)) == 0) 1746 goto fail; 1747 zkva = addr; 1748 TAILQ_FOREACH(p, &alloctail, listq) { 1749 pmap_qenter(zkva, &p, 1); 1750 zkva += PAGE_SIZE; 1751 } 1752 return ((void*)addr); 1753 fail: 1754 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1755 vm_page_unwire_noq(p); 1756 vm_page_free(p); 1757 } 1758 return (NULL); 1759 } 1760 1761 /* 1762 * Allocates a number of pages from within an object 1763 * 1764 * Arguments: 1765 * bytes The number of bytes requested 1766 * wait Shall we wait? 1767 * 1768 * Returns: 1769 * A pointer to the alloced memory or possibly 1770 * NULL if M_NOWAIT is set. 1771 */ 1772 static void * 1773 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 1774 int wait) 1775 { 1776 TAILQ_HEAD(, vm_page) alloctail; 1777 u_long npages; 1778 vm_offset_t retkva, zkva; 1779 vm_page_t p, p_next; 1780 uma_keg_t keg; 1781 1782 TAILQ_INIT(&alloctail); 1783 keg = zone->uz_keg; 1784 1785 npages = howmany(bytes, PAGE_SIZE); 1786 while (npages > 0) { 1787 p = vm_page_alloc_domain(NULL, 0, domain, VM_ALLOC_INTERRUPT | 1788 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ | 1789 ((wait & M_WAITOK) != 0 ? VM_ALLOC_WAITOK : 1790 VM_ALLOC_NOWAIT)); 1791 if (p != NULL) { 1792 /* 1793 * Since the page does not belong to an object, its 1794 * listq is unused. 1795 */ 1796 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1797 npages--; 1798 continue; 1799 } 1800 /* 1801 * Page allocation failed, free intermediate pages and 1802 * exit. 1803 */ 1804 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1805 vm_page_unwire_noq(p); 1806 vm_page_free(p); 1807 } 1808 return (NULL); 1809 } 1810 *flags = UMA_SLAB_PRIV; 1811 zkva = keg->uk_kva + 1812 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1813 retkva = zkva; 1814 TAILQ_FOREACH(p, &alloctail, listq) { 1815 pmap_qenter(zkva, &p, 1); 1816 zkva += PAGE_SIZE; 1817 } 1818 1819 return ((void *)retkva); 1820 } 1821 1822 /* 1823 * Allocate physically contiguous pages. 1824 */ 1825 static void * 1826 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1827 int wait) 1828 { 1829 1830 *pflag = UMA_SLAB_KERNEL; 1831 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 1832 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 1833 } 1834 1835 /* 1836 * Frees a number of pages to the system 1837 * 1838 * Arguments: 1839 * mem A pointer to the memory to be freed 1840 * size The size of the memory being freed 1841 * flags The original p->us_flags field 1842 * 1843 * Returns: 1844 * Nothing 1845 */ 1846 static void 1847 page_free(void *mem, vm_size_t size, uint8_t flags) 1848 { 1849 1850 if ((flags & UMA_SLAB_BOOT) != 0) { 1851 startup_free(mem, size); 1852 return; 1853 } 1854 1855 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 1856 ("UMA: page_free used with invalid flags %x", flags)); 1857 1858 kmem_free((vm_offset_t)mem, size); 1859 } 1860 1861 /* 1862 * Frees pcpu zone allocations 1863 * 1864 * Arguments: 1865 * mem A pointer to the memory to be freed 1866 * size The size of the memory being freed 1867 * flags The original p->us_flags field 1868 * 1869 * Returns: 1870 * Nothing 1871 */ 1872 static void 1873 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 1874 { 1875 vm_offset_t sva, curva; 1876 vm_paddr_t paddr; 1877 vm_page_t m; 1878 1879 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 1880 1881 if ((flags & UMA_SLAB_BOOT) != 0) { 1882 startup_free(mem, size); 1883 return; 1884 } 1885 1886 sva = (vm_offset_t)mem; 1887 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 1888 paddr = pmap_kextract(curva); 1889 m = PHYS_TO_VM_PAGE(paddr); 1890 vm_page_unwire_noq(m); 1891 vm_page_free(m); 1892 } 1893 pmap_qremove(sva, size >> PAGE_SHIFT); 1894 kva_free(sva, size); 1895 } 1896 1897 1898 /* 1899 * Zero fill initializer 1900 * 1901 * Arguments/Returns follow uma_init specifications 1902 */ 1903 static int 1904 zero_init(void *mem, int size, int flags) 1905 { 1906 bzero(mem, size); 1907 return (0); 1908 } 1909 1910 #ifdef INVARIANTS 1911 static struct noslabbits * 1912 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 1913 { 1914 1915 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 1916 } 1917 #endif 1918 1919 /* 1920 * Actual size of embedded struct slab (!OFFPAGE). 1921 */ 1922 static size_t 1923 slab_sizeof(int nitems) 1924 { 1925 size_t s; 1926 1927 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 1928 return (roundup(s, UMA_ALIGN_PTR + 1)); 1929 } 1930 1931 #define UMA_FIXPT_SHIFT 31 1932 #define UMA_FRAC_FIXPT(n, d) \ 1933 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 1934 #define UMA_FIXPT_PCT(f) \ 1935 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 1936 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 1937 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 1938 1939 /* 1940 * Compute the number of items that will fit in a slab. If hdr is true, the 1941 * item count may be limited to provide space in the slab for an inline slab 1942 * header. Otherwise, all slab space will be provided for item storage. 1943 */ 1944 static u_int 1945 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 1946 { 1947 u_int ipers; 1948 u_int padpi; 1949 1950 /* The padding between items is not needed after the last item. */ 1951 padpi = rsize - size; 1952 1953 if (hdr) { 1954 /* 1955 * Start with the maximum item count and remove items until 1956 * the slab header first alongside the allocatable memory. 1957 */ 1958 for (ipers = MIN(SLAB_MAX_SETSIZE, 1959 (slabsize + padpi - slab_sizeof(1)) / rsize); 1960 ipers > 0 && 1961 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 1962 ipers--) 1963 continue; 1964 } else { 1965 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 1966 } 1967 1968 return (ipers); 1969 } 1970 1971 struct keg_layout_result { 1972 u_int format; 1973 u_int slabsize; 1974 u_int ipers; 1975 u_int eff; 1976 }; 1977 1978 static void 1979 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 1980 struct keg_layout_result *kl) 1981 { 1982 u_int total; 1983 1984 kl->format = fmt; 1985 kl->slabsize = slabsize; 1986 1987 /* Handle INTERNAL as inline with an extra page. */ 1988 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 1989 kl->format &= ~UMA_ZFLAG_INTERNAL; 1990 kl->slabsize += PAGE_SIZE; 1991 } 1992 1993 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 1994 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 1995 1996 /* Account for memory used by an offpage slab header. */ 1997 total = kl->slabsize; 1998 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 1999 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2000 2001 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2002 } 2003 2004 /* 2005 * Determine the format of a uma keg. This determines where the slab header 2006 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2007 * 2008 * Arguments 2009 * keg The zone we should initialize 2010 * 2011 * Returns 2012 * Nothing 2013 */ 2014 static void 2015 keg_layout(uma_keg_t keg) 2016 { 2017 struct keg_layout_result kl = {}, kl_tmp; 2018 u_int fmts[2]; 2019 u_int alignsize; 2020 u_int nfmt; 2021 u_int pages; 2022 u_int rsize; 2023 u_int slabsize; 2024 u_int i, j; 2025 2026 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2027 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2028 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2029 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2030 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2031 PRINT_UMA_ZFLAGS)); 2032 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2033 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2034 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2035 PRINT_UMA_ZFLAGS)); 2036 2037 alignsize = keg->uk_align + 1; 2038 2039 /* 2040 * Calculate the size of each allocation (rsize) according to 2041 * alignment. If the requested size is smaller than we have 2042 * allocation bits for we round it up. 2043 */ 2044 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2045 rsize = roundup2(rsize, alignsize); 2046 2047 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2048 /* 2049 * We want one item to start on every align boundary in a page. 2050 * To do this we will span pages. We will also extend the item 2051 * by the size of align if it is an even multiple of align. 2052 * Otherwise, it would fall on the same boundary every time. 2053 */ 2054 if ((rsize & alignsize) == 0) 2055 rsize += alignsize; 2056 slabsize = rsize * (PAGE_SIZE / alignsize); 2057 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2058 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2059 slabsize = round_page(slabsize); 2060 } else { 2061 /* 2062 * Start with a slab size of as many pages as it takes to 2063 * represent a single item. We will try to fit as many 2064 * additional items into the slab as possible. 2065 */ 2066 slabsize = round_page(keg->uk_size); 2067 } 2068 2069 /* Build a list of all of the available formats for this keg. */ 2070 nfmt = 0; 2071 2072 /* Evaluate an inline slab layout. */ 2073 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2074 fmts[nfmt++] = 0; 2075 2076 /* TODO: vm_page-embedded slab. */ 2077 2078 /* 2079 * We can't do OFFPAGE if we're internal or if we've been 2080 * asked to not go to the VM for buckets. If we do this we 2081 * may end up going to the VM for slabs which we do not want 2082 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2083 * In those cases, evaluate a pseudo-format called INTERNAL 2084 * which has an inline slab header and one extra page to 2085 * guarantee that it fits. 2086 * 2087 * Otherwise, see if using an OFFPAGE slab will improve our 2088 * efficiency. 2089 */ 2090 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2091 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2092 else 2093 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2094 2095 /* 2096 * Choose a slab size and format which satisfy the minimum efficiency. 2097 * Prefer the smallest slab size that meets the constraints. 2098 * 2099 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2100 * for small items (up to PAGE_SIZE), the iteration increment is one 2101 * page; and for large items, the increment is one item. 2102 */ 2103 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2104 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2105 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2106 rsize, i)); 2107 for ( ; ; i++) { 2108 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2109 round_page(rsize * (i - 1) + keg->uk_size); 2110 2111 for (j = 0; j < nfmt; j++) { 2112 /* Only if we have no viable format yet. */ 2113 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2114 kl.ipers > 0) 2115 continue; 2116 2117 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2118 if (kl_tmp.eff <= kl.eff) 2119 continue; 2120 2121 kl = kl_tmp; 2122 2123 CTR6(KTR_UMA, "keg %s layout: format %#x " 2124 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2125 keg->uk_name, kl.format, kl.ipers, rsize, 2126 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2127 2128 /* Stop when we reach the minimum efficiency. */ 2129 if (kl.eff >= UMA_MIN_EFF) 2130 break; 2131 } 2132 2133 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2134 slabsize >= SLAB_MAX_SETSIZE * rsize || 2135 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2136 break; 2137 } 2138 2139 pages = atop(kl.slabsize); 2140 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2141 pages *= mp_maxid + 1; 2142 2143 keg->uk_rsize = rsize; 2144 keg->uk_ipers = kl.ipers; 2145 keg->uk_ppera = pages; 2146 keg->uk_flags |= kl.format; 2147 2148 /* 2149 * How do we find the slab header if it is offpage or if not all item 2150 * start addresses are in the same page? We could solve the latter 2151 * case with vaddr alignment, but we don't. 2152 */ 2153 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2154 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2155 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2156 keg->uk_flags |= UMA_ZFLAG_HASH; 2157 else 2158 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2159 } 2160 2161 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2162 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2163 pages); 2164 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2165 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2166 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2167 keg->uk_ipers, pages)); 2168 } 2169 2170 /* 2171 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2172 * the keg onto the global keg list. 2173 * 2174 * Arguments/Returns follow uma_ctor specifications 2175 * udata Actually uma_kctor_args 2176 */ 2177 static int 2178 keg_ctor(void *mem, int size, void *udata, int flags) 2179 { 2180 struct uma_kctor_args *arg = udata; 2181 uma_keg_t keg = mem; 2182 uma_zone_t zone; 2183 int i; 2184 2185 bzero(keg, size); 2186 keg->uk_size = arg->size; 2187 keg->uk_init = arg->uminit; 2188 keg->uk_fini = arg->fini; 2189 keg->uk_align = arg->align; 2190 keg->uk_reserve = 0; 2191 keg->uk_flags = arg->flags; 2192 2193 /* 2194 * We use a global round-robin policy by default. Zones with 2195 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2196 * case the iterator is never run. 2197 */ 2198 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2199 keg->uk_dr.dr_iter = 0; 2200 2201 /* 2202 * The master zone is passed to us at keg-creation time. 2203 */ 2204 zone = arg->zone; 2205 keg->uk_name = zone->uz_name; 2206 2207 if (arg->flags & UMA_ZONE_ZINIT) 2208 keg->uk_init = zero_init; 2209 2210 if (arg->flags & UMA_ZONE_MALLOC) 2211 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2212 2213 #ifndef SMP 2214 keg->uk_flags &= ~UMA_ZONE_PCPU; 2215 #endif 2216 2217 keg_layout(keg); 2218 2219 /* 2220 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2221 * work on. Use round-robin for everything else. 2222 * 2223 * Zones may override the default by specifying either. 2224 */ 2225 #ifdef NUMA 2226 if ((keg->uk_flags & 2227 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2228 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2229 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2230 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2231 #endif 2232 2233 /* 2234 * If we haven't booted yet we need allocations to go through the 2235 * startup cache until the vm is ready. 2236 */ 2237 #ifdef UMA_MD_SMALL_ALLOC 2238 if (keg->uk_ppera == 1) 2239 keg->uk_allocf = uma_small_alloc; 2240 else 2241 #endif 2242 if (booted < BOOT_KVA) 2243 keg->uk_allocf = startup_alloc; 2244 else if (keg->uk_flags & UMA_ZONE_PCPU) 2245 keg->uk_allocf = pcpu_page_alloc; 2246 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2247 keg->uk_allocf = contig_alloc; 2248 else 2249 keg->uk_allocf = page_alloc; 2250 #ifdef UMA_MD_SMALL_ALLOC 2251 if (keg->uk_ppera == 1) 2252 keg->uk_freef = uma_small_free; 2253 else 2254 #endif 2255 if (keg->uk_flags & UMA_ZONE_PCPU) 2256 keg->uk_freef = pcpu_page_free; 2257 else 2258 keg->uk_freef = page_free; 2259 2260 /* 2261 * Initialize keg's locks. 2262 */ 2263 for (i = 0; i < vm_ndomains; i++) 2264 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2265 2266 /* 2267 * If we're putting the slab header in the actual page we need to 2268 * figure out where in each page it goes. See slab_sizeof 2269 * definition. 2270 */ 2271 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2272 size_t shsize; 2273 2274 shsize = slab_sizeof(keg->uk_ipers); 2275 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2276 /* 2277 * The only way the following is possible is if with our 2278 * UMA_ALIGN_PTR adjustments we are now bigger than 2279 * UMA_SLAB_SIZE. I haven't checked whether this is 2280 * mathematically possible for all cases, so we make 2281 * sure here anyway. 2282 */ 2283 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2284 ("zone %s ipers %d rsize %d size %d slab won't fit", 2285 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2286 } 2287 2288 if (keg->uk_flags & UMA_ZFLAG_HASH) 2289 hash_alloc(&keg->uk_hash, 0); 2290 2291 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2292 2293 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2294 2295 rw_wlock(&uma_rwlock); 2296 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2297 rw_wunlock(&uma_rwlock); 2298 return (0); 2299 } 2300 2301 static void 2302 zone_kva_available(uma_zone_t zone, void *unused) 2303 { 2304 uma_keg_t keg; 2305 2306 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2307 return; 2308 KEG_GET(zone, keg); 2309 2310 if (keg->uk_allocf == startup_alloc) { 2311 /* Switch to the real allocator. */ 2312 if (keg->uk_flags & UMA_ZONE_PCPU) 2313 keg->uk_allocf = pcpu_page_alloc; 2314 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2315 keg->uk_ppera > 1) 2316 keg->uk_allocf = contig_alloc; 2317 else 2318 keg->uk_allocf = page_alloc; 2319 } 2320 } 2321 2322 static void 2323 zone_alloc_counters(uma_zone_t zone, void *unused) 2324 { 2325 2326 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2327 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2328 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2329 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2330 } 2331 2332 static void 2333 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2334 { 2335 uma_zone_domain_t zdom; 2336 uma_domain_t dom; 2337 uma_keg_t keg; 2338 struct sysctl_oid *oid, *domainoid; 2339 int domains, i, cnt; 2340 static const char *nokeg = "cache zone"; 2341 char *c; 2342 2343 /* 2344 * Make a sysctl safe copy of the zone name by removing 2345 * any special characters and handling dups by appending 2346 * an index. 2347 */ 2348 if (zone->uz_namecnt != 0) { 2349 /* Count the number of decimal digits and '_' separator. */ 2350 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2351 cnt /= 10; 2352 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2353 M_UMA, M_WAITOK); 2354 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2355 zone->uz_namecnt); 2356 } else 2357 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2358 for (c = zone->uz_ctlname; *c != '\0'; c++) 2359 if (strchr("./\\ -", *c) != NULL) 2360 *c = '_'; 2361 2362 /* 2363 * Basic parameters at the root. 2364 */ 2365 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2366 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2367 oid = zone->uz_oid; 2368 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2369 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2370 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2371 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2372 zone, 0, sysctl_handle_uma_zone_flags, "A", 2373 "Allocator configuration flags"); 2374 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2375 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2376 "Desired per-cpu cache size"); 2377 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2378 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2379 "Maximum allowed per-cpu cache size"); 2380 2381 /* 2382 * keg if present. 2383 */ 2384 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2385 domains = vm_ndomains; 2386 else 2387 domains = 1; 2388 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2389 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2390 keg = zone->uz_keg; 2391 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2392 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2393 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2394 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2395 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2396 "Real object size with alignment"); 2397 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2398 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2399 "pages per-slab allocation"); 2400 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2401 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2402 "items available per-slab"); 2403 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2404 "align", CTLFLAG_RD, &keg->uk_align, 0, 2405 "item alignment mask"); 2406 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2407 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2408 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2409 "Slab utilization (100 - internal fragmentation %)"); 2410 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2411 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2412 for (i = 0; i < domains; i++) { 2413 dom = &keg->uk_domain[i]; 2414 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2415 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2416 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2417 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2418 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2419 "Total pages currently allocated from VM"); 2420 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2421 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2422 "items free in the slab layer"); 2423 } 2424 } else 2425 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2426 "name", CTLFLAG_RD, nokeg, "Keg name"); 2427 2428 /* 2429 * Information about zone limits. 2430 */ 2431 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2432 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2433 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2434 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2435 zone, 0, sysctl_handle_uma_zone_items, "QU", 2436 "current number of allocated items if limit is set"); 2437 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2438 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2439 "Maximum number of cached items"); 2440 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2441 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2442 "Number of threads sleeping at limit"); 2443 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2444 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2445 "Total zone limit sleeps"); 2446 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2447 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2448 "Maximum number of items in each domain's bucket cache"); 2449 2450 /* 2451 * Per-domain zone information. 2452 */ 2453 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2454 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2455 for (i = 0; i < domains; i++) { 2456 zdom = ZDOM_GET(zone, i); 2457 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2458 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2459 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2460 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2461 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2462 "number of items in this domain"); 2463 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2464 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2465 "maximum item count in this period"); 2466 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2467 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2468 "minimum item count in this period"); 2469 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2470 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2471 "Working set size"); 2472 } 2473 2474 /* 2475 * General statistics. 2476 */ 2477 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2478 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2479 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2480 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2481 zone, 1, sysctl_handle_uma_zone_cur, "I", 2482 "Current number of allocated items"); 2483 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2484 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2485 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2486 "Total allocation calls"); 2487 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2488 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2489 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2490 "Total free calls"); 2491 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2492 "fails", CTLFLAG_RD, &zone->uz_fails, 2493 "Number of allocation failures"); 2494 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2495 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2496 "Free calls from the wrong domain"); 2497 } 2498 2499 struct uma_zone_count { 2500 const char *name; 2501 int count; 2502 }; 2503 2504 static void 2505 zone_count(uma_zone_t zone, void *arg) 2506 { 2507 struct uma_zone_count *cnt; 2508 2509 cnt = arg; 2510 /* 2511 * Some zones are rapidly created with identical names and 2512 * destroyed out of order. This can lead to gaps in the count. 2513 * Use one greater than the maximum observed for this name. 2514 */ 2515 if (strcmp(zone->uz_name, cnt->name) == 0) 2516 cnt->count = MAX(cnt->count, 2517 zone->uz_namecnt + 1); 2518 } 2519 2520 static void 2521 zone_update_caches(uma_zone_t zone) 2522 { 2523 int i; 2524 2525 for (i = 0; i <= mp_maxid; i++) { 2526 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2527 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2528 } 2529 } 2530 2531 /* 2532 * Zone header ctor. This initializes all fields, locks, etc. 2533 * 2534 * Arguments/Returns follow uma_ctor specifications 2535 * udata Actually uma_zctor_args 2536 */ 2537 static int 2538 zone_ctor(void *mem, int size, void *udata, int flags) 2539 { 2540 struct uma_zone_count cnt; 2541 struct uma_zctor_args *arg = udata; 2542 uma_zone_domain_t zdom; 2543 uma_zone_t zone = mem; 2544 uma_zone_t z; 2545 uma_keg_t keg; 2546 int i; 2547 2548 bzero(zone, size); 2549 zone->uz_name = arg->name; 2550 zone->uz_ctor = arg->ctor; 2551 zone->uz_dtor = arg->dtor; 2552 zone->uz_init = NULL; 2553 zone->uz_fini = NULL; 2554 zone->uz_sleeps = 0; 2555 zone->uz_bucket_size = 0; 2556 zone->uz_bucket_size_min = 0; 2557 zone->uz_bucket_size_max = BUCKET_MAX; 2558 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2559 zone->uz_warning = NULL; 2560 /* The domain structures follow the cpu structures. */ 2561 zone->uz_bucket_max = ULONG_MAX; 2562 timevalclear(&zone->uz_ratecheck); 2563 2564 /* Count the number of duplicate names. */ 2565 cnt.name = arg->name; 2566 cnt.count = 0; 2567 zone_foreach(zone_count, &cnt); 2568 zone->uz_namecnt = cnt.count; 2569 ZONE_CROSS_LOCK_INIT(zone); 2570 2571 for (i = 0; i < vm_ndomains; i++) { 2572 zdom = ZDOM_GET(zone, i); 2573 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2574 STAILQ_INIT(&zdom->uzd_buckets); 2575 } 2576 2577 #ifdef INVARIANTS 2578 if (arg->uminit == trash_init && arg->fini == trash_fini) 2579 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2580 #endif 2581 2582 /* 2583 * This is a pure cache zone, no kegs. 2584 */ 2585 if (arg->import) { 2586 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2587 ("zone_ctor: Import specified for non-cache zone.")); 2588 zone->uz_flags = arg->flags; 2589 zone->uz_size = arg->size; 2590 zone->uz_import = arg->import; 2591 zone->uz_release = arg->release; 2592 zone->uz_arg = arg->arg; 2593 #ifdef NUMA 2594 /* 2595 * Cache zones are round-robin unless a policy is 2596 * specified because they may have incompatible 2597 * constraints. 2598 */ 2599 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2600 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2601 #endif 2602 rw_wlock(&uma_rwlock); 2603 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2604 rw_wunlock(&uma_rwlock); 2605 goto out; 2606 } 2607 2608 /* 2609 * Use the regular zone/keg/slab allocator. 2610 */ 2611 zone->uz_import = zone_import; 2612 zone->uz_release = zone_release; 2613 zone->uz_arg = zone; 2614 keg = arg->keg; 2615 2616 if (arg->flags & UMA_ZONE_SECONDARY) { 2617 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2618 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2619 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2620 zone->uz_init = arg->uminit; 2621 zone->uz_fini = arg->fini; 2622 zone->uz_flags |= UMA_ZONE_SECONDARY; 2623 rw_wlock(&uma_rwlock); 2624 ZONE_LOCK(zone); 2625 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2626 if (LIST_NEXT(z, uz_link) == NULL) { 2627 LIST_INSERT_AFTER(z, zone, uz_link); 2628 break; 2629 } 2630 } 2631 ZONE_UNLOCK(zone); 2632 rw_wunlock(&uma_rwlock); 2633 } else if (keg == NULL) { 2634 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2635 arg->align, arg->flags)) == NULL) 2636 return (ENOMEM); 2637 } else { 2638 struct uma_kctor_args karg; 2639 int error; 2640 2641 /* We should only be here from uma_startup() */ 2642 karg.size = arg->size; 2643 karg.uminit = arg->uminit; 2644 karg.fini = arg->fini; 2645 karg.align = arg->align; 2646 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2647 karg.zone = zone; 2648 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2649 flags); 2650 if (error) 2651 return (error); 2652 } 2653 2654 /* Inherit properties from the keg. */ 2655 zone->uz_keg = keg; 2656 zone->uz_size = keg->uk_size; 2657 zone->uz_flags |= (keg->uk_flags & 2658 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2659 2660 out: 2661 if (__predict_true(booted >= BOOT_RUNNING)) { 2662 zone_alloc_counters(zone, NULL); 2663 zone_alloc_sysctl(zone, NULL); 2664 } else { 2665 zone->uz_allocs = EARLY_COUNTER; 2666 zone->uz_frees = EARLY_COUNTER; 2667 zone->uz_fails = EARLY_COUNTER; 2668 } 2669 2670 /* Caller requests a private SMR context. */ 2671 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2672 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2673 2674 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2675 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2676 ("Invalid zone flag combination")); 2677 if (arg->flags & UMA_ZFLAG_INTERNAL) 2678 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2679 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2680 zone->uz_bucket_size = BUCKET_MAX; 2681 else if ((arg->flags & UMA_ZONE_MINBUCKET) != 0) 2682 zone->uz_bucket_size_max = zone->uz_bucket_size = BUCKET_MIN; 2683 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2684 zone->uz_bucket_size = 0; 2685 else 2686 zone->uz_bucket_size = bucket_select(zone->uz_size); 2687 zone->uz_bucket_size_min = zone->uz_bucket_size; 2688 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2689 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2690 zone_update_caches(zone); 2691 2692 return (0); 2693 } 2694 2695 /* 2696 * Keg header dtor. This frees all data, destroys locks, frees the hash 2697 * table and removes the keg from the global list. 2698 * 2699 * Arguments/Returns follow uma_dtor specifications 2700 * udata unused 2701 */ 2702 static void 2703 keg_dtor(void *arg, int size, void *udata) 2704 { 2705 uma_keg_t keg; 2706 uint32_t free, pages; 2707 int i; 2708 2709 keg = (uma_keg_t)arg; 2710 free = pages = 0; 2711 for (i = 0; i < vm_ndomains; i++) { 2712 free += keg->uk_domain[i].ud_free_items; 2713 pages += keg->uk_domain[i].ud_pages; 2714 KEG_LOCK_FINI(keg, i); 2715 } 2716 if (pages != 0) 2717 printf("Freed UMA keg (%s) was not empty (%u items). " 2718 " Lost %u pages of memory.\n", 2719 keg->uk_name ? keg->uk_name : "", 2720 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2721 2722 hash_free(&keg->uk_hash); 2723 } 2724 2725 /* 2726 * Zone header dtor. 2727 * 2728 * Arguments/Returns follow uma_dtor specifications 2729 * udata unused 2730 */ 2731 static void 2732 zone_dtor(void *arg, int size, void *udata) 2733 { 2734 uma_zone_t zone; 2735 uma_keg_t keg; 2736 int i; 2737 2738 zone = (uma_zone_t)arg; 2739 2740 sysctl_remove_oid(zone->uz_oid, 1, 1); 2741 2742 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 2743 cache_drain(zone); 2744 2745 rw_wlock(&uma_rwlock); 2746 LIST_REMOVE(zone, uz_link); 2747 rw_wunlock(&uma_rwlock); 2748 zone_reclaim(zone, M_WAITOK, true); 2749 2750 /* 2751 * We only destroy kegs from non secondary/non cache zones. 2752 */ 2753 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 2754 keg = zone->uz_keg; 2755 rw_wlock(&uma_rwlock); 2756 LIST_REMOVE(keg, uk_link); 2757 rw_wunlock(&uma_rwlock); 2758 zone_free_item(kegs, keg, NULL, SKIP_NONE); 2759 } 2760 counter_u64_free(zone->uz_allocs); 2761 counter_u64_free(zone->uz_frees); 2762 counter_u64_free(zone->uz_fails); 2763 counter_u64_free(zone->uz_xdomain); 2764 free(zone->uz_ctlname, M_UMA); 2765 for (i = 0; i < vm_ndomains; i++) 2766 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 2767 ZONE_CROSS_LOCK_FINI(zone); 2768 } 2769 2770 static void 2771 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2772 { 2773 uma_keg_t keg; 2774 uma_zone_t zone; 2775 2776 LIST_FOREACH(keg, &uma_kegs, uk_link) { 2777 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 2778 zfunc(zone, arg); 2779 } 2780 LIST_FOREACH(zone, &uma_cachezones, uz_link) 2781 zfunc(zone, arg); 2782 } 2783 2784 /* 2785 * Traverses every zone in the system and calls a callback 2786 * 2787 * Arguments: 2788 * zfunc A pointer to a function which accepts a zone 2789 * as an argument. 2790 * 2791 * Returns: 2792 * Nothing 2793 */ 2794 static void 2795 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 2796 { 2797 2798 rw_rlock(&uma_rwlock); 2799 zone_foreach_unlocked(zfunc, arg); 2800 rw_runlock(&uma_rwlock); 2801 } 2802 2803 /* 2804 * Initialize the kernel memory allocator. This is done after pages can be 2805 * allocated but before general KVA is available. 2806 */ 2807 void 2808 uma_startup1(vm_offset_t virtual_avail) 2809 { 2810 struct uma_zctor_args args; 2811 size_t ksize, zsize, size; 2812 uma_keg_t masterkeg; 2813 uintptr_t m; 2814 uint8_t pflag; 2815 2816 bootstart = bootmem = virtual_avail; 2817 2818 rw_init(&uma_rwlock, "UMA lock"); 2819 sx_init(&uma_reclaim_lock, "umareclaim"); 2820 2821 ksize = sizeof(struct uma_keg) + 2822 (sizeof(struct uma_domain) * vm_ndomains); 2823 ksize = roundup(ksize, UMA_SUPER_ALIGN); 2824 zsize = sizeof(struct uma_zone) + 2825 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 2826 (sizeof(struct uma_zone_domain) * vm_ndomains); 2827 zsize = roundup(zsize, UMA_SUPER_ALIGN); 2828 2829 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 2830 size = (zsize * 2) + ksize; 2831 m = (uintptr_t)startup_alloc(NULL, size, 0, &pflag, M_NOWAIT | M_ZERO); 2832 zones = (uma_zone_t)m; 2833 m += zsize; 2834 kegs = (uma_zone_t)m; 2835 m += zsize; 2836 masterkeg = (uma_keg_t)m; 2837 2838 /* "manually" create the initial zone */ 2839 memset(&args, 0, sizeof(args)); 2840 args.name = "UMA Kegs"; 2841 args.size = ksize; 2842 args.ctor = keg_ctor; 2843 args.dtor = keg_dtor; 2844 args.uminit = zero_init; 2845 args.fini = NULL; 2846 args.keg = masterkeg; 2847 args.align = UMA_SUPER_ALIGN - 1; 2848 args.flags = UMA_ZFLAG_INTERNAL; 2849 zone_ctor(kegs, zsize, &args, M_WAITOK); 2850 2851 args.name = "UMA Zones"; 2852 args.size = zsize; 2853 args.ctor = zone_ctor; 2854 args.dtor = zone_dtor; 2855 args.uminit = zero_init; 2856 args.fini = NULL; 2857 args.keg = NULL; 2858 args.align = UMA_SUPER_ALIGN - 1; 2859 args.flags = UMA_ZFLAG_INTERNAL; 2860 zone_ctor(zones, zsize, &args, M_WAITOK); 2861 2862 /* Now make zones for slab headers */ 2863 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 2864 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2865 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 2866 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2867 2868 hashzone = uma_zcreate("UMA Hash", 2869 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 2870 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 2871 2872 bucket_init(); 2873 smr_init(); 2874 } 2875 2876 #ifndef UMA_MD_SMALL_ALLOC 2877 extern void vm_radix_reserve_kva(void); 2878 #endif 2879 2880 /* 2881 * Advertise the availability of normal kva allocations and switch to 2882 * the default back-end allocator. Marks the KVA we consumed on startup 2883 * as used in the map. 2884 */ 2885 void 2886 uma_startup2(void) 2887 { 2888 2889 if (bootstart != bootmem) { 2890 vm_map_lock(kernel_map); 2891 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 2892 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 2893 vm_map_unlock(kernel_map); 2894 } 2895 2896 #ifndef UMA_MD_SMALL_ALLOC 2897 /* Set up radix zone to use noobj_alloc. */ 2898 vm_radix_reserve_kva(); 2899 #endif 2900 2901 booted = BOOT_KVA; 2902 zone_foreach_unlocked(zone_kva_available, NULL); 2903 bucket_enable(); 2904 } 2905 2906 /* 2907 * Finish our initialization steps. 2908 */ 2909 static void 2910 uma_startup3(void) 2911 { 2912 2913 #ifdef INVARIANTS 2914 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 2915 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 2916 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 2917 #endif 2918 zone_foreach_unlocked(zone_alloc_counters, NULL); 2919 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 2920 callout_init(&uma_callout, 1); 2921 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 2922 booted = BOOT_RUNNING; 2923 2924 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 2925 EVENTHANDLER_PRI_FIRST); 2926 } 2927 2928 static void 2929 uma_shutdown(void) 2930 { 2931 2932 booted = BOOT_SHUTDOWN; 2933 } 2934 2935 static uma_keg_t 2936 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 2937 int align, uint32_t flags) 2938 { 2939 struct uma_kctor_args args; 2940 2941 args.size = size; 2942 args.uminit = uminit; 2943 args.fini = fini; 2944 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 2945 args.flags = flags; 2946 args.zone = zone; 2947 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 2948 } 2949 2950 /* Public functions */ 2951 /* See uma.h */ 2952 void 2953 uma_set_align(int align) 2954 { 2955 2956 if (align != UMA_ALIGN_CACHE) 2957 uma_align_cache = align; 2958 } 2959 2960 /* See uma.h */ 2961 uma_zone_t 2962 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 2963 uma_init uminit, uma_fini fini, int align, uint32_t flags) 2964 2965 { 2966 struct uma_zctor_args args; 2967 uma_zone_t res; 2968 2969 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 2970 align, name)); 2971 2972 /* This stuff is essential for the zone ctor */ 2973 memset(&args, 0, sizeof(args)); 2974 args.name = name; 2975 args.size = size; 2976 args.ctor = ctor; 2977 args.dtor = dtor; 2978 args.uminit = uminit; 2979 args.fini = fini; 2980 #ifdef INVARIANTS 2981 /* 2982 * Inject procedures which check for memory use after free if we are 2983 * allowed to scramble the memory while it is not allocated. This 2984 * requires that: UMA is actually able to access the memory, no init 2985 * or fini procedures, no dependency on the initial value of the 2986 * memory, and no (legitimate) use of the memory after free. Note, 2987 * the ctor and dtor do not need to be empty. 2988 */ 2989 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 2990 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 2991 args.uminit = trash_init; 2992 args.fini = trash_fini; 2993 } 2994 #endif 2995 args.align = align; 2996 args.flags = flags; 2997 args.keg = NULL; 2998 2999 sx_slock(&uma_reclaim_lock); 3000 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3001 sx_sunlock(&uma_reclaim_lock); 3002 3003 return (res); 3004 } 3005 3006 /* See uma.h */ 3007 uma_zone_t 3008 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3009 uma_init zinit, uma_fini zfini, uma_zone_t master) 3010 { 3011 struct uma_zctor_args args; 3012 uma_keg_t keg; 3013 uma_zone_t res; 3014 3015 keg = master->uz_keg; 3016 memset(&args, 0, sizeof(args)); 3017 args.name = name; 3018 args.size = keg->uk_size; 3019 args.ctor = ctor; 3020 args.dtor = dtor; 3021 args.uminit = zinit; 3022 args.fini = zfini; 3023 args.align = keg->uk_align; 3024 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3025 args.keg = keg; 3026 3027 sx_slock(&uma_reclaim_lock); 3028 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3029 sx_sunlock(&uma_reclaim_lock); 3030 3031 return (res); 3032 } 3033 3034 /* See uma.h */ 3035 uma_zone_t 3036 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3037 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3038 void *arg, int flags) 3039 { 3040 struct uma_zctor_args args; 3041 3042 memset(&args, 0, sizeof(args)); 3043 args.name = name; 3044 args.size = size; 3045 args.ctor = ctor; 3046 args.dtor = dtor; 3047 args.uminit = zinit; 3048 args.fini = zfini; 3049 args.import = zimport; 3050 args.release = zrelease; 3051 args.arg = arg; 3052 args.align = 0; 3053 args.flags = flags | UMA_ZFLAG_CACHE; 3054 3055 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3056 } 3057 3058 /* See uma.h */ 3059 void 3060 uma_zdestroy(uma_zone_t zone) 3061 { 3062 3063 /* 3064 * Large slabs are expensive to reclaim, so don't bother doing 3065 * unnecessary work if we're shutting down. 3066 */ 3067 if (booted == BOOT_SHUTDOWN && 3068 zone->uz_fini == NULL && zone->uz_release == zone_release) 3069 return; 3070 sx_slock(&uma_reclaim_lock); 3071 zone_free_item(zones, zone, NULL, SKIP_NONE); 3072 sx_sunlock(&uma_reclaim_lock); 3073 } 3074 3075 void 3076 uma_zwait(uma_zone_t zone) 3077 { 3078 3079 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3080 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3081 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3082 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3083 else 3084 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3085 } 3086 3087 void * 3088 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3089 { 3090 void *item, *pcpu_item; 3091 #ifdef SMP 3092 int i; 3093 3094 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3095 #endif 3096 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3097 if (item == NULL) 3098 return (NULL); 3099 pcpu_item = zpcpu_base_to_offset(item); 3100 if (flags & M_ZERO) { 3101 #ifdef SMP 3102 for (i = 0; i <= mp_maxid; i++) 3103 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3104 #else 3105 bzero(item, zone->uz_size); 3106 #endif 3107 } 3108 return (pcpu_item); 3109 } 3110 3111 /* 3112 * A stub while both regular and pcpu cases are identical. 3113 */ 3114 void 3115 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3116 { 3117 void *item; 3118 3119 #ifdef SMP 3120 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3121 #endif 3122 item = zpcpu_offset_to_base(pcpu_item); 3123 uma_zfree_arg(zone, item, udata); 3124 } 3125 3126 static inline void * 3127 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3128 void *item) 3129 { 3130 #ifdef INVARIANTS 3131 bool skipdbg; 3132 3133 skipdbg = uma_dbg_zskip(zone, item); 3134 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3135 zone->uz_ctor != trash_ctor) 3136 trash_ctor(item, size, udata, flags); 3137 #endif 3138 /* Check flags before loading ctor pointer. */ 3139 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3140 __predict_false(zone->uz_ctor != NULL) && 3141 zone->uz_ctor(item, size, udata, flags) != 0) { 3142 counter_u64_add(zone->uz_fails, 1); 3143 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3144 return (NULL); 3145 } 3146 #ifdef INVARIANTS 3147 if (!skipdbg) 3148 uma_dbg_alloc(zone, NULL, item); 3149 #endif 3150 if (__predict_false(flags & M_ZERO)) 3151 return (memset(item, 0, size)); 3152 3153 return (item); 3154 } 3155 3156 static inline void 3157 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3158 enum zfreeskip skip) 3159 { 3160 #ifdef INVARIANTS 3161 bool skipdbg; 3162 3163 skipdbg = uma_dbg_zskip(zone, item); 3164 if (skip == SKIP_NONE && !skipdbg) { 3165 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3166 uma_dbg_free(zone, udata, item); 3167 else 3168 uma_dbg_free(zone, NULL, item); 3169 } 3170 #endif 3171 if (__predict_true(skip < SKIP_DTOR)) { 3172 if (zone->uz_dtor != NULL) 3173 zone->uz_dtor(item, size, udata); 3174 #ifdef INVARIANTS 3175 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3176 zone->uz_dtor != trash_dtor) 3177 trash_dtor(item, size, udata); 3178 #endif 3179 } 3180 } 3181 3182 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3183 #define UMA_ZALLOC_DEBUG 3184 static int 3185 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3186 { 3187 int error; 3188 3189 error = 0; 3190 #ifdef WITNESS 3191 if (flags & M_WAITOK) { 3192 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3193 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3194 } 3195 #endif 3196 3197 #ifdef INVARIANTS 3198 KASSERT((flags & M_EXEC) == 0, 3199 ("uma_zalloc_debug: called with M_EXEC")); 3200 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3201 ("uma_zalloc_debug: called within spinlock or critical section")); 3202 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3203 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3204 #endif 3205 3206 #ifdef DEBUG_MEMGUARD 3207 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && memguard_cmp_zone(zone)) { 3208 void *item; 3209 item = memguard_alloc(zone->uz_size, flags); 3210 if (item != NULL) { 3211 error = EJUSTRETURN; 3212 if (zone->uz_init != NULL && 3213 zone->uz_init(item, zone->uz_size, flags) != 0) { 3214 *itemp = NULL; 3215 return (error); 3216 } 3217 if (zone->uz_ctor != NULL && 3218 zone->uz_ctor(item, zone->uz_size, udata, 3219 flags) != 0) { 3220 counter_u64_add(zone->uz_fails, 1); 3221 zone->uz_fini(item, zone->uz_size); 3222 *itemp = NULL; 3223 return (error); 3224 } 3225 *itemp = item; 3226 return (error); 3227 } 3228 /* This is unfortunate but should not be fatal. */ 3229 } 3230 #endif 3231 return (error); 3232 } 3233 3234 static int 3235 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3236 { 3237 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3238 ("uma_zfree_debug: called with spinlock or critical section held")); 3239 3240 #ifdef DEBUG_MEMGUARD 3241 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 && is_memguard_addr(item)) { 3242 if (zone->uz_dtor != NULL) 3243 zone->uz_dtor(item, zone->uz_size, udata); 3244 if (zone->uz_fini != NULL) 3245 zone->uz_fini(item, zone->uz_size); 3246 memguard_free(item); 3247 return (EJUSTRETURN); 3248 } 3249 #endif 3250 return (0); 3251 } 3252 #endif 3253 3254 static inline void * 3255 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3256 void *udata, int flags) 3257 { 3258 void *item; 3259 int size, uz_flags; 3260 3261 item = cache_bucket_pop(cache, bucket); 3262 size = cache_uz_size(cache); 3263 uz_flags = cache_uz_flags(cache); 3264 critical_exit(); 3265 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3266 } 3267 3268 static __noinline void * 3269 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3270 { 3271 uma_cache_bucket_t bucket; 3272 int domain; 3273 3274 while (cache_alloc(zone, cache, udata, flags)) { 3275 cache = &zone->uz_cpu[curcpu]; 3276 bucket = &cache->uc_allocbucket; 3277 if (__predict_false(bucket->ucb_cnt == 0)) 3278 continue; 3279 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3280 } 3281 critical_exit(); 3282 3283 /* 3284 * We can not get a bucket so try to return a single item. 3285 */ 3286 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3287 domain = PCPU_GET(domain); 3288 else 3289 domain = UMA_ANYDOMAIN; 3290 return (zone_alloc_item(zone, udata, domain, flags)); 3291 } 3292 3293 /* See uma.h */ 3294 void * 3295 uma_zalloc_smr(uma_zone_t zone, int flags) 3296 { 3297 uma_cache_bucket_t bucket; 3298 uma_cache_t cache; 3299 3300 #ifdef UMA_ZALLOC_DEBUG 3301 void *item; 3302 3303 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3304 ("uma_zalloc_arg: called with non-SMR zone.\n")); 3305 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3306 return (item); 3307 #endif 3308 3309 critical_enter(); 3310 cache = &zone->uz_cpu[curcpu]; 3311 bucket = &cache->uc_allocbucket; 3312 if (__predict_false(bucket->ucb_cnt == 0)) 3313 return (cache_alloc_retry(zone, cache, NULL, flags)); 3314 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3315 } 3316 3317 /* See uma.h */ 3318 void * 3319 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3320 { 3321 uma_cache_bucket_t bucket; 3322 uma_cache_t cache; 3323 3324 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3325 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3326 3327 /* This is the fast path allocation */ 3328 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3329 zone, flags); 3330 3331 #ifdef UMA_ZALLOC_DEBUG 3332 void *item; 3333 3334 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3335 ("uma_zalloc_arg: called with SMR zone.\n")); 3336 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3337 return (item); 3338 #endif 3339 3340 /* 3341 * If possible, allocate from the per-CPU cache. There are two 3342 * requirements for safe access to the per-CPU cache: (1) the thread 3343 * accessing the cache must not be preempted or yield during access, 3344 * and (2) the thread must not migrate CPUs without switching which 3345 * cache it accesses. We rely on a critical section to prevent 3346 * preemption and migration. We release the critical section in 3347 * order to acquire the zone mutex if we are unable to allocate from 3348 * the current cache; when we re-acquire the critical section, we 3349 * must detect and handle migration if it has occurred. 3350 */ 3351 critical_enter(); 3352 cache = &zone->uz_cpu[curcpu]; 3353 bucket = &cache->uc_allocbucket; 3354 if (__predict_false(bucket->ucb_cnt == 0)) 3355 return (cache_alloc_retry(zone, cache, udata, flags)); 3356 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3357 } 3358 3359 /* 3360 * Replenish an alloc bucket and possibly restore an old one. Called in 3361 * a critical section. Returns in a critical section. 3362 * 3363 * A false return value indicates an allocation failure. 3364 * A true return value indicates success and the caller should retry. 3365 */ 3366 static __noinline bool 3367 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3368 { 3369 uma_bucket_t bucket; 3370 int domain; 3371 bool new; 3372 3373 CRITICAL_ASSERT(curthread); 3374 3375 /* 3376 * If we have run out of items in our alloc bucket see 3377 * if we can switch with the free bucket. 3378 * 3379 * SMR Zones can't re-use the free bucket until the sequence has 3380 * expired. 3381 */ 3382 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3383 cache->uc_freebucket.ucb_cnt != 0) { 3384 cache_bucket_swap(&cache->uc_freebucket, 3385 &cache->uc_allocbucket); 3386 return (true); 3387 } 3388 3389 /* 3390 * Discard any empty allocation bucket while we hold no locks. 3391 */ 3392 bucket = cache_bucket_unload_alloc(cache); 3393 critical_exit(); 3394 3395 if (bucket != NULL) { 3396 KASSERT(bucket->ub_cnt == 0, 3397 ("cache_alloc: Entered with non-empty alloc bucket.")); 3398 bucket_free(zone, bucket, udata); 3399 } 3400 3401 /* Short-circuit for zones without buckets and low memory. */ 3402 if (zone->uz_bucket_size == 0 || bucketdisable) { 3403 critical_enter(); 3404 return (false); 3405 } 3406 3407 /* 3408 * Attempt to retrieve the item from the per-CPU cache has failed, so 3409 * we must go back to the zone. This requires the zdom lock, so we 3410 * must drop the critical section, then re-acquire it when we go back 3411 * to the cache. Since the critical section is released, we may be 3412 * preempted or migrate. As such, make sure not to maintain any 3413 * thread-local state specific to the cache from prior to releasing 3414 * the critical section. 3415 */ 3416 domain = PCPU_GET(domain); 3417 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0) 3418 domain = zone_domain_highest(zone, domain); 3419 bucket = cache_fetch_bucket(zone, cache, domain); 3420 if (bucket == NULL) { 3421 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3422 new = true; 3423 } else 3424 new = false; 3425 3426 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3427 zone->uz_name, zone, bucket); 3428 if (bucket == NULL) { 3429 critical_enter(); 3430 return (false); 3431 } 3432 3433 /* 3434 * See if we lost the race or were migrated. Cache the 3435 * initialized bucket to make this less likely or claim 3436 * the memory directly. 3437 */ 3438 critical_enter(); 3439 cache = &zone->uz_cpu[curcpu]; 3440 if (cache->uc_allocbucket.ucb_bucket == NULL && 3441 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3442 domain == PCPU_GET(domain))) { 3443 if (new) 3444 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3445 bucket->ub_cnt); 3446 cache_bucket_load_alloc(cache, bucket); 3447 return (true); 3448 } 3449 3450 /* 3451 * We lost the race, release this bucket and start over. 3452 */ 3453 critical_exit(); 3454 zone_put_bucket(zone, domain, bucket, udata, false); 3455 critical_enter(); 3456 3457 return (true); 3458 } 3459 3460 void * 3461 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3462 { 3463 3464 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3465 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3466 3467 /* This is the fast path allocation */ 3468 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3469 zone->uz_name, zone, domain, flags); 3470 3471 if (flags & M_WAITOK) { 3472 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3473 "uma_zalloc_domain: zone \"%s\"", zone->uz_name); 3474 } 3475 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3476 ("uma_zalloc_domain: called with spinlock or critical section held")); 3477 3478 return (zone_alloc_item(zone, udata, domain, flags)); 3479 } 3480 3481 /* 3482 * Find a slab with some space. Prefer slabs that are partially used over those 3483 * that are totally full. This helps to reduce fragmentation. 3484 * 3485 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3486 * only 'domain'. 3487 */ 3488 static uma_slab_t 3489 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3490 { 3491 uma_domain_t dom; 3492 uma_slab_t slab; 3493 int start; 3494 3495 KASSERT(domain >= 0 && domain < vm_ndomains, 3496 ("keg_first_slab: domain %d out of range", domain)); 3497 KEG_LOCK_ASSERT(keg, domain); 3498 3499 slab = NULL; 3500 start = domain; 3501 do { 3502 dom = &keg->uk_domain[domain]; 3503 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3504 return (slab); 3505 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3506 LIST_REMOVE(slab, us_link); 3507 dom->ud_free_slabs--; 3508 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3509 return (slab); 3510 } 3511 if (rr) 3512 domain = (domain + 1) % vm_ndomains; 3513 } while (domain != start); 3514 3515 return (NULL); 3516 } 3517 3518 /* 3519 * Fetch an existing slab from a free or partial list. Returns with the 3520 * keg domain lock held if a slab was found or unlocked if not. 3521 */ 3522 static uma_slab_t 3523 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3524 { 3525 uma_slab_t slab; 3526 uint32_t reserve; 3527 3528 /* HASH has a single free list. */ 3529 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3530 domain = 0; 3531 3532 KEG_LOCK(keg, domain); 3533 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3534 if (keg->uk_domain[domain].ud_free_items <= reserve || 3535 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3536 KEG_UNLOCK(keg, domain); 3537 return (NULL); 3538 } 3539 return (slab); 3540 } 3541 3542 static uma_slab_t 3543 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3544 { 3545 struct vm_domainset_iter di; 3546 uma_slab_t slab; 3547 int aflags, domain; 3548 bool rr; 3549 3550 restart: 3551 /* 3552 * Use the keg's policy if upper layers haven't already specified a 3553 * domain (as happens with first-touch zones). 3554 * 3555 * To avoid races we run the iterator with the keg lock held, but that 3556 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3557 * clear M_WAITOK and handle low memory conditions locally. 3558 */ 3559 rr = rdomain == UMA_ANYDOMAIN; 3560 if (rr) { 3561 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3562 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3563 &aflags); 3564 } else { 3565 aflags = flags; 3566 domain = rdomain; 3567 } 3568 3569 for (;;) { 3570 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3571 if (slab != NULL) 3572 return (slab); 3573 3574 /* 3575 * M_NOVM means don't ask at all! 3576 */ 3577 if (flags & M_NOVM) 3578 break; 3579 3580 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 3581 if (slab != NULL) 3582 return (slab); 3583 if (!rr && (flags & M_WAITOK) == 0) 3584 break; 3585 if (rr && vm_domainset_iter_policy(&di, &domain) != 0) { 3586 if ((flags & M_WAITOK) != 0) { 3587 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 3588 goto restart; 3589 } 3590 break; 3591 } 3592 } 3593 3594 /* 3595 * We might not have been able to get a slab but another cpu 3596 * could have while we were unlocked. Check again before we 3597 * fail. 3598 */ 3599 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 3600 return (slab); 3601 3602 return (NULL); 3603 } 3604 3605 static void * 3606 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 3607 { 3608 uma_domain_t dom; 3609 void *item; 3610 int freei; 3611 3612 KEG_LOCK_ASSERT(keg, slab->us_domain); 3613 3614 dom = &keg->uk_domain[slab->us_domain]; 3615 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 3616 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 3617 item = slab_item(slab, keg, freei); 3618 slab->us_freecount--; 3619 dom->ud_free_items--; 3620 3621 /* 3622 * Move this slab to the full list. It must be on the partial list, so 3623 * we do not need to update the free slab count. In particular, 3624 * keg_fetch_slab() always returns slabs on the partial list. 3625 */ 3626 if (slab->us_freecount == 0) { 3627 LIST_REMOVE(slab, us_link); 3628 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 3629 } 3630 3631 return (item); 3632 } 3633 3634 static int 3635 zone_import(void *arg, void **bucket, int max, int domain, int flags) 3636 { 3637 uma_domain_t dom; 3638 uma_zone_t zone; 3639 uma_slab_t slab; 3640 uma_keg_t keg; 3641 #ifdef NUMA 3642 int stripe; 3643 #endif 3644 int i; 3645 3646 zone = arg; 3647 slab = NULL; 3648 keg = zone->uz_keg; 3649 /* Try to keep the buckets totally full */ 3650 for (i = 0; i < max; ) { 3651 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 3652 break; 3653 #ifdef NUMA 3654 stripe = howmany(max, vm_ndomains); 3655 #endif 3656 dom = &keg->uk_domain[slab->us_domain]; 3657 while (slab->us_freecount && i < max) { 3658 bucket[i++] = slab_alloc_item(keg, slab); 3659 if (dom->ud_free_items <= keg->uk_reserve) 3660 break; 3661 #ifdef NUMA 3662 /* 3663 * If the zone is striped we pick a new slab for every 3664 * N allocations. Eliminating this conditional will 3665 * instead pick a new domain for each bucket rather 3666 * than stripe within each bucket. The current option 3667 * produces more fragmentation and requires more cpu 3668 * time but yields better distribution. 3669 */ 3670 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 3671 vm_ndomains > 1 && --stripe == 0) 3672 break; 3673 #endif 3674 } 3675 KEG_UNLOCK(keg, slab->us_domain); 3676 /* Don't block if we allocated any successfully. */ 3677 flags &= ~M_WAITOK; 3678 flags |= M_NOWAIT; 3679 } 3680 3681 return i; 3682 } 3683 3684 static int 3685 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 3686 { 3687 uint64_t old, new, total, max; 3688 3689 /* 3690 * The hard case. We're going to sleep because there were existing 3691 * sleepers or because we ran out of items. This routine enforces 3692 * fairness by keeping fifo order. 3693 * 3694 * First release our ill gotten gains and make some noise. 3695 */ 3696 for (;;) { 3697 zone_free_limit(zone, count); 3698 zone_log_warning(zone); 3699 zone_maxaction(zone); 3700 if (flags & M_NOWAIT) 3701 return (0); 3702 3703 /* 3704 * We need to allocate an item or set ourself as a sleeper 3705 * while the sleepq lock is held to avoid wakeup races. This 3706 * is essentially a home rolled semaphore. 3707 */ 3708 sleepq_lock(&zone->uz_max_items); 3709 old = zone->uz_items; 3710 do { 3711 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 3712 /* Cache the max since we will evaluate twice. */ 3713 max = zone->uz_max_items; 3714 if (UZ_ITEMS_SLEEPERS(old) != 0 || 3715 UZ_ITEMS_COUNT(old) >= max) 3716 new = old + UZ_ITEMS_SLEEPER; 3717 else 3718 new = old + MIN(count, max - old); 3719 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 3720 3721 /* We may have successfully allocated under the sleepq lock. */ 3722 if (UZ_ITEMS_SLEEPERS(new) == 0) { 3723 sleepq_release(&zone->uz_max_items); 3724 return (new - old); 3725 } 3726 3727 /* 3728 * This is in a different cacheline from uz_items so that we 3729 * don't constantly invalidate the fastpath cacheline when we 3730 * adjust item counts. This could be limited to toggling on 3731 * transitions. 3732 */ 3733 atomic_add_32(&zone->uz_sleepers, 1); 3734 atomic_add_64(&zone->uz_sleeps, 1); 3735 3736 /* 3737 * We have added ourselves as a sleeper. The sleepq lock 3738 * protects us from wakeup races. Sleep now and then retry. 3739 */ 3740 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 3741 sleepq_wait(&zone->uz_max_items, PVM); 3742 3743 /* 3744 * After wakeup, remove ourselves as a sleeper and try 3745 * again. We no longer have the sleepq lock for protection. 3746 * 3747 * Subract ourselves as a sleeper while attempting to add 3748 * our count. 3749 */ 3750 atomic_subtract_32(&zone->uz_sleepers, 1); 3751 old = atomic_fetchadd_64(&zone->uz_items, 3752 -(UZ_ITEMS_SLEEPER - count)); 3753 /* We're no longer a sleeper. */ 3754 old -= UZ_ITEMS_SLEEPER; 3755 3756 /* 3757 * If we're still at the limit, restart. Notably do not 3758 * block on other sleepers. Cache the max value to protect 3759 * against changes via sysctl. 3760 */ 3761 total = UZ_ITEMS_COUNT(old); 3762 max = zone->uz_max_items; 3763 if (total >= max) 3764 continue; 3765 /* Truncate if necessary, otherwise wake other sleepers. */ 3766 if (total + count > max) { 3767 zone_free_limit(zone, total + count - max); 3768 count = max - total; 3769 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 3770 wakeup_one(&zone->uz_max_items); 3771 3772 return (count); 3773 } 3774 } 3775 3776 /* 3777 * Allocate 'count' items from our max_items limit. Returns the number 3778 * available. If M_NOWAIT is not specified it will sleep until at least 3779 * one item can be allocated. 3780 */ 3781 static int 3782 zone_alloc_limit(uma_zone_t zone, int count, int flags) 3783 { 3784 uint64_t old; 3785 uint64_t max; 3786 3787 max = zone->uz_max_items; 3788 MPASS(max > 0); 3789 3790 /* 3791 * We expect normal allocations to succeed with a simple 3792 * fetchadd. 3793 */ 3794 old = atomic_fetchadd_64(&zone->uz_items, count); 3795 if (__predict_true(old + count <= max)) 3796 return (count); 3797 3798 /* 3799 * If we had some items and no sleepers just return the 3800 * truncated value. We have to release the excess space 3801 * though because that may wake sleepers who weren't woken 3802 * because we were temporarily over the limit. 3803 */ 3804 if (old < max) { 3805 zone_free_limit(zone, (old + count) - max); 3806 return (max - old); 3807 } 3808 return (zone_alloc_limit_hard(zone, count, flags)); 3809 } 3810 3811 /* 3812 * Free a number of items back to the limit. 3813 */ 3814 static void 3815 zone_free_limit(uma_zone_t zone, int count) 3816 { 3817 uint64_t old; 3818 3819 MPASS(count > 0); 3820 3821 /* 3822 * In the common case we either have no sleepers or 3823 * are still over the limit and can just return. 3824 */ 3825 old = atomic_fetchadd_64(&zone->uz_items, -count); 3826 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 3827 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 3828 return; 3829 3830 /* 3831 * Moderate the rate of wakeups. Sleepers will continue 3832 * to generate wakeups if necessary. 3833 */ 3834 wakeup_one(&zone->uz_max_items); 3835 } 3836 3837 static uma_bucket_t 3838 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 3839 { 3840 uma_bucket_t bucket; 3841 int maxbucket, cnt; 3842 3843 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 3844 zone, domain); 3845 3846 /* Avoid allocs targeting empty domains. */ 3847 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3848 domain = UMA_ANYDOMAIN; 3849 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 3850 domain = UMA_ANYDOMAIN; 3851 3852 if (zone->uz_max_items > 0) 3853 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 3854 M_NOWAIT); 3855 else 3856 maxbucket = zone->uz_bucket_size; 3857 if (maxbucket == 0) 3858 return (false); 3859 3860 /* Don't wait for buckets, preserve caller's NOVM setting. */ 3861 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 3862 if (bucket == NULL) { 3863 cnt = 0; 3864 goto out; 3865 } 3866 3867 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 3868 MIN(maxbucket, bucket->ub_entries), domain, flags); 3869 3870 /* 3871 * Initialize the memory if necessary. 3872 */ 3873 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 3874 int i; 3875 3876 for (i = 0; i < bucket->ub_cnt; i++) 3877 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 3878 flags) != 0) 3879 break; 3880 /* 3881 * If we couldn't initialize the whole bucket, put the 3882 * rest back onto the freelist. 3883 */ 3884 if (i != bucket->ub_cnt) { 3885 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 3886 bucket->ub_cnt - i); 3887 #ifdef INVARIANTS 3888 bzero(&bucket->ub_bucket[i], 3889 sizeof(void *) * (bucket->ub_cnt - i)); 3890 #endif 3891 bucket->ub_cnt = i; 3892 } 3893 } 3894 3895 cnt = bucket->ub_cnt; 3896 if (bucket->ub_cnt == 0) { 3897 bucket_free(zone, bucket, udata); 3898 counter_u64_add(zone->uz_fails, 1); 3899 bucket = NULL; 3900 } 3901 out: 3902 if (zone->uz_max_items > 0 && cnt < maxbucket) 3903 zone_free_limit(zone, maxbucket - cnt); 3904 3905 return (bucket); 3906 } 3907 3908 /* 3909 * Allocates a single item from a zone. 3910 * 3911 * Arguments 3912 * zone The zone to alloc for. 3913 * udata The data to be passed to the constructor. 3914 * domain The domain to allocate from or UMA_ANYDOMAIN. 3915 * flags M_WAITOK, M_NOWAIT, M_ZERO. 3916 * 3917 * Returns 3918 * NULL if there is no memory and M_NOWAIT is set 3919 * An item if successful 3920 */ 3921 3922 static void * 3923 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 3924 { 3925 void *item; 3926 3927 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) 3928 return (NULL); 3929 3930 /* Avoid allocs targeting empty domains. */ 3931 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 3932 domain = UMA_ANYDOMAIN; 3933 3934 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 3935 goto fail_cnt; 3936 3937 /* 3938 * We have to call both the zone's init (not the keg's init) 3939 * and the zone's ctor. This is because the item is going from 3940 * a keg slab directly to the user, and the user is expecting it 3941 * to be both zone-init'd as well as zone-ctor'd. 3942 */ 3943 if (zone->uz_init != NULL) { 3944 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 3945 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 3946 goto fail_cnt; 3947 } 3948 } 3949 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 3950 item); 3951 if (item == NULL) 3952 goto fail; 3953 3954 counter_u64_add(zone->uz_allocs, 1); 3955 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 3956 zone->uz_name, zone); 3957 3958 return (item); 3959 3960 fail_cnt: 3961 counter_u64_add(zone->uz_fails, 1); 3962 fail: 3963 if (zone->uz_max_items > 0) 3964 zone_free_limit(zone, 1); 3965 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 3966 zone->uz_name, zone); 3967 3968 return (NULL); 3969 } 3970 3971 /* See uma.h */ 3972 void 3973 uma_zfree_smr(uma_zone_t zone, void *item) 3974 { 3975 uma_cache_t cache; 3976 uma_cache_bucket_t bucket; 3977 int itemdomain, uz_flags; 3978 3979 #ifdef UMA_ZALLOC_DEBUG 3980 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3981 ("uma_zfree_smr: called with non-SMR zone.\n")); 3982 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 3983 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 3984 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 3985 return; 3986 #endif 3987 cache = &zone->uz_cpu[curcpu]; 3988 uz_flags = cache_uz_flags(cache); 3989 itemdomain = 0; 3990 #ifdef NUMA 3991 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 3992 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 3993 #endif 3994 critical_enter(); 3995 do { 3996 cache = &zone->uz_cpu[curcpu]; 3997 /* SMR Zones must free to the free bucket. */ 3998 bucket = &cache->uc_freebucket; 3999 #ifdef NUMA 4000 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4001 PCPU_GET(domain) != itemdomain) { 4002 bucket = &cache->uc_crossbucket; 4003 } 4004 #endif 4005 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4006 cache_bucket_push(cache, bucket, item); 4007 critical_exit(); 4008 return; 4009 } 4010 } while (cache_free(zone, cache, NULL, item, itemdomain)); 4011 critical_exit(); 4012 4013 /* 4014 * If nothing else caught this, we'll just do an internal free. 4015 */ 4016 zone_free_item(zone, item, NULL, SKIP_NONE); 4017 } 4018 4019 /* See uma.h */ 4020 void 4021 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4022 { 4023 uma_cache_t cache; 4024 uma_cache_bucket_t bucket; 4025 int itemdomain, uz_flags; 4026 4027 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4028 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4029 4030 CTR2(KTR_UMA, "uma_zfree_arg zone %s(%p)", zone->uz_name, zone); 4031 4032 #ifdef UMA_ZALLOC_DEBUG 4033 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4034 ("uma_zfree_arg: called with SMR zone.\n")); 4035 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4036 return; 4037 #endif 4038 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4039 if (item == NULL) 4040 return; 4041 4042 /* 4043 * We are accessing the per-cpu cache without a critical section to 4044 * fetch size and flags. This is acceptable, if we are preempted we 4045 * will simply read another cpu's line. 4046 */ 4047 cache = &zone->uz_cpu[curcpu]; 4048 uz_flags = cache_uz_flags(cache); 4049 if (UMA_ALWAYS_CTORDTOR || 4050 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4051 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4052 4053 /* 4054 * The race here is acceptable. If we miss it we'll just have to wait 4055 * a little longer for the limits to be reset. 4056 */ 4057 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4058 if (zone->uz_sleepers > 0) 4059 goto zfree_item; 4060 } 4061 4062 /* 4063 * If possible, free to the per-CPU cache. There are two 4064 * requirements for safe access to the per-CPU cache: (1) the thread 4065 * accessing the cache must not be preempted or yield during access, 4066 * and (2) the thread must not migrate CPUs without switching which 4067 * cache it accesses. We rely on a critical section to prevent 4068 * preemption and migration. We release the critical section in 4069 * order to acquire the zone mutex if we are unable to free to the 4070 * current cache; when we re-acquire the critical section, we must 4071 * detect and handle migration if it has occurred. 4072 */ 4073 itemdomain = 0; 4074 #ifdef NUMA 4075 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4076 itemdomain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4077 #endif 4078 critical_enter(); 4079 do { 4080 cache = &zone->uz_cpu[curcpu]; 4081 /* 4082 * Try to free into the allocbucket first to give LIFO 4083 * ordering for cache-hot datastructures. Spill over 4084 * into the freebucket if necessary. Alloc will swap 4085 * them if one runs dry. 4086 */ 4087 bucket = &cache->uc_allocbucket; 4088 #ifdef NUMA 4089 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4090 PCPU_GET(domain) != itemdomain) { 4091 bucket = &cache->uc_crossbucket; 4092 } else 4093 #endif 4094 if (bucket->ucb_cnt == bucket->ucb_entries && 4095 cache->uc_freebucket.ucb_cnt < 4096 cache->uc_freebucket.ucb_entries) 4097 cache_bucket_swap(&cache->uc_freebucket, 4098 &cache->uc_allocbucket); 4099 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4100 cache_bucket_push(cache, bucket, item); 4101 critical_exit(); 4102 return; 4103 } 4104 } while (cache_free(zone, cache, udata, item, itemdomain)); 4105 critical_exit(); 4106 4107 /* 4108 * If nothing else caught this, we'll just do an internal free. 4109 */ 4110 zfree_item: 4111 zone_free_item(zone, item, udata, SKIP_DTOR); 4112 } 4113 4114 #ifdef NUMA 4115 /* 4116 * sort crossdomain free buckets to domain correct buckets and cache 4117 * them. 4118 */ 4119 static void 4120 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4121 { 4122 struct uma_bucketlist fullbuckets; 4123 uma_zone_domain_t zdom; 4124 uma_bucket_t b; 4125 smr_seq_t seq; 4126 void *item; 4127 int domain; 4128 4129 CTR3(KTR_UMA, 4130 "uma_zfree: zone %s(%p) draining cross bucket %p", 4131 zone->uz_name, zone, bucket); 4132 4133 /* 4134 * It is possible for buckets to arrive here out of order so we fetch 4135 * the current smr seq rather than accepting the bucket's. 4136 */ 4137 seq = SMR_SEQ_INVALID; 4138 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4139 seq = smr_advance(zone->uz_smr); 4140 4141 /* 4142 * To avoid having ndomain * ndomain buckets for sorting we have a 4143 * lock on the current crossfree bucket. A full matrix with 4144 * per-domain locking could be used if necessary. 4145 */ 4146 STAILQ_INIT(&fullbuckets); 4147 ZONE_CROSS_LOCK(zone); 4148 while (bucket->ub_cnt > 0) { 4149 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4150 domain = _vm_phys_domain(pmap_kextract((vm_offset_t)item)); 4151 zdom = ZDOM_GET(zone, domain); 4152 if (zdom->uzd_cross == NULL) { 4153 zdom->uzd_cross = bucket_alloc(zone, udata, M_NOWAIT); 4154 if (zdom->uzd_cross == NULL) 4155 break; 4156 } 4157 b = zdom->uzd_cross; 4158 b->ub_bucket[b->ub_cnt++] = item; 4159 b->ub_seq = seq; 4160 if (b->ub_cnt == b->ub_entries) { 4161 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4162 zdom->uzd_cross = NULL; 4163 } 4164 bucket->ub_cnt--; 4165 } 4166 ZONE_CROSS_UNLOCK(zone); 4167 if (bucket->ub_cnt == 0) 4168 bucket->ub_seq = SMR_SEQ_INVALID; 4169 bucket_free(zone, bucket, udata); 4170 4171 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4172 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4173 domain = _vm_phys_domain(pmap_kextract( 4174 (vm_offset_t)b->ub_bucket[0])); 4175 zone_put_bucket(zone, domain, b, udata, true); 4176 } 4177 } 4178 #endif 4179 4180 static void 4181 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4182 int itemdomain, bool ws) 4183 { 4184 4185 #ifdef NUMA 4186 /* 4187 * Buckets coming from the wrong domain will be entirely for the 4188 * only other domain on two domain systems. In this case we can 4189 * simply cache them. Otherwise we need to sort them back to 4190 * correct domains. 4191 */ 4192 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4193 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4194 zone_free_cross(zone, bucket, udata); 4195 return; 4196 } 4197 #endif 4198 4199 /* 4200 * Attempt to save the bucket in the zone's domain bucket cache. 4201 */ 4202 CTR3(KTR_UMA, 4203 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4204 zone->uz_name, zone, bucket); 4205 /* ub_cnt is pointing to the last free item */ 4206 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4207 itemdomain = zone_domain_lowest(zone, itemdomain); 4208 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4209 } 4210 4211 /* 4212 * Populate a free or cross bucket for the current cpu cache. Free any 4213 * existing full bucket either to the zone cache or back to the slab layer. 4214 * 4215 * Enters and returns in a critical section. false return indicates that 4216 * we can not satisfy this free in the cache layer. true indicates that 4217 * the caller should retry. 4218 */ 4219 static __noinline bool 4220 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, void *item, 4221 int itemdomain) 4222 { 4223 uma_cache_bucket_t cbucket; 4224 uma_bucket_t newbucket, bucket; 4225 4226 CRITICAL_ASSERT(curthread); 4227 4228 if (zone->uz_bucket_size == 0) 4229 return false; 4230 4231 cache = &zone->uz_cpu[curcpu]; 4232 newbucket = NULL; 4233 4234 /* 4235 * FIRSTTOUCH domains need to free to the correct zdom. When 4236 * enabled this is the zdom of the item. The bucket is the 4237 * cross bucket if the current domain and itemdomain do not match. 4238 */ 4239 cbucket = &cache->uc_freebucket; 4240 #ifdef NUMA 4241 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4242 if (PCPU_GET(domain) != itemdomain) { 4243 cbucket = &cache->uc_crossbucket; 4244 if (cbucket->ucb_cnt != 0) 4245 counter_u64_add(zone->uz_xdomain, 4246 cbucket->ucb_cnt); 4247 } 4248 } 4249 #endif 4250 bucket = cache_bucket_unload(cbucket); 4251 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4252 ("cache_free: Entered with non-full free bucket.")); 4253 4254 /* We are no longer associated with this CPU. */ 4255 critical_exit(); 4256 4257 /* 4258 * Don't let SMR zones operate without a free bucket. Force 4259 * a synchronize and re-use this one. We will only degrade 4260 * to a synchronize every bucket_size items rather than every 4261 * item if we fail to allocate a bucket. 4262 */ 4263 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4264 if (bucket != NULL) 4265 bucket->ub_seq = smr_advance(zone->uz_smr); 4266 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4267 if (newbucket == NULL && bucket != NULL) { 4268 bucket_drain(zone, bucket); 4269 newbucket = bucket; 4270 bucket = NULL; 4271 } 4272 } else if (!bucketdisable) 4273 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4274 4275 if (bucket != NULL) 4276 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4277 4278 critical_enter(); 4279 if ((bucket = newbucket) == NULL) 4280 return (false); 4281 cache = &zone->uz_cpu[curcpu]; 4282 #ifdef NUMA 4283 /* 4284 * Check to see if we should be populating the cross bucket. If it 4285 * is already populated we will fall through and attempt to populate 4286 * the free bucket. 4287 */ 4288 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4289 if (PCPU_GET(domain) != itemdomain && 4290 cache->uc_crossbucket.ucb_bucket == NULL) { 4291 cache_bucket_load_cross(cache, bucket); 4292 return (true); 4293 } 4294 } 4295 #endif 4296 /* 4297 * We may have lost the race to fill the bucket or switched CPUs. 4298 */ 4299 if (cache->uc_freebucket.ucb_bucket != NULL) { 4300 critical_exit(); 4301 bucket_free(zone, bucket, udata); 4302 critical_enter(); 4303 } else 4304 cache_bucket_load_free(cache, bucket); 4305 4306 return (true); 4307 } 4308 4309 void 4310 uma_zfree_domain(uma_zone_t zone, void *item, void *udata) 4311 { 4312 4313 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4314 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4315 4316 CTR2(KTR_UMA, "uma_zfree_domain zone %s(%p)", zone->uz_name, zone); 4317 4318 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 4319 ("uma_zfree_domain: called with spinlock or critical section held")); 4320 4321 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4322 if (item == NULL) 4323 return; 4324 zone_free_item(zone, item, udata, SKIP_NONE); 4325 } 4326 4327 static void 4328 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4329 { 4330 uma_keg_t keg; 4331 uma_domain_t dom; 4332 int freei; 4333 4334 keg = zone->uz_keg; 4335 KEG_LOCK_ASSERT(keg, slab->us_domain); 4336 4337 /* Do we need to remove from any lists? */ 4338 dom = &keg->uk_domain[slab->us_domain]; 4339 if (slab->us_freecount + 1 == keg->uk_ipers) { 4340 LIST_REMOVE(slab, us_link); 4341 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4342 dom->ud_free_slabs++; 4343 } else if (slab->us_freecount == 0) { 4344 LIST_REMOVE(slab, us_link); 4345 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4346 } 4347 4348 /* Slab management. */ 4349 freei = slab_item_index(slab, keg, item); 4350 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4351 slab->us_freecount++; 4352 4353 /* Keg statistics. */ 4354 dom->ud_free_items++; 4355 } 4356 4357 static void 4358 zone_release(void *arg, void **bucket, int cnt) 4359 { 4360 struct mtx *lock; 4361 uma_zone_t zone; 4362 uma_slab_t slab; 4363 uma_keg_t keg; 4364 uint8_t *mem; 4365 void *item; 4366 int i; 4367 4368 zone = arg; 4369 keg = zone->uz_keg; 4370 lock = NULL; 4371 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4372 lock = KEG_LOCK(keg, 0); 4373 for (i = 0; i < cnt; i++) { 4374 item = bucket[i]; 4375 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4376 slab = vtoslab((vm_offset_t)item); 4377 } else { 4378 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4379 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4380 slab = hash_sfind(&keg->uk_hash, mem); 4381 else 4382 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4383 } 4384 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4385 if (lock != NULL) 4386 mtx_unlock(lock); 4387 lock = KEG_LOCK(keg, slab->us_domain); 4388 } 4389 slab_free_item(zone, slab, item); 4390 } 4391 if (lock != NULL) 4392 mtx_unlock(lock); 4393 } 4394 4395 /* 4396 * Frees a single item to any zone. 4397 * 4398 * Arguments: 4399 * zone The zone to free to 4400 * item The item we're freeing 4401 * udata User supplied data for the dtor 4402 * skip Skip dtors and finis 4403 */ 4404 static __noinline void 4405 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4406 { 4407 4408 /* 4409 * If a free is sent directly to an SMR zone we have to 4410 * synchronize immediately because the item can instantly 4411 * be reallocated. This should only happen in degenerate 4412 * cases when no memory is available for per-cpu caches. 4413 */ 4414 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4415 smr_synchronize(zone->uz_smr); 4416 4417 item_dtor(zone, item, zone->uz_size, udata, skip); 4418 4419 if (skip < SKIP_FINI && zone->uz_fini) 4420 zone->uz_fini(item, zone->uz_size); 4421 4422 zone->uz_release(zone->uz_arg, &item, 1); 4423 4424 if (skip & SKIP_CNT) 4425 return; 4426 4427 counter_u64_add(zone->uz_frees, 1); 4428 4429 if (zone->uz_max_items > 0) 4430 zone_free_limit(zone, 1); 4431 } 4432 4433 /* See uma.h */ 4434 int 4435 uma_zone_set_max(uma_zone_t zone, int nitems) 4436 { 4437 struct uma_bucket_zone *ubz; 4438 int count; 4439 4440 /* 4441 * XXX This can misbehave if the zone has any allocations with 4442 * no limit and a limit is imposed. There is currently no 4443 * way to clear a limit. 4444 */ 4445 ZONE_LOCK(zone); 4446 ubz = bucket_zone_max(zone, nitems); 4447 count = ubz != NULL ? ubz->ubz_entries : 0; 4448 zone->uz_bucket_size_max = zone->uz_bucket_size = count; 4449 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4450 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4451 zone->uz_max_items = nitems; 4452 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4453 zone_update_caches(zone); 4454 /* We may need to wake waiters. */ 4455 wakeup(&zone->uz_max_items); 4456 ZONE_UNLOCK(zone); 4457 4458 return (nitems); 4459 } 4460 4461 /* See uma.h */ 4462 void 4463 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4464 { 4465 struct uma_bucket_zone *ubz; 4466 int bpcpu; 4467 4468 ZONE_LOCK(zone); 4469 ubz = bucket_zone_max(zone, nitems); 4470 if (ubz != NULL) { 4471 bpcpu = 2; 4472 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4473 /* Count the cross-domain bucket. */ 4474 bpcpu++; 4475 nitems -= ubz->ubz_entries * bpcpu * mp_ncpus; 4476 zone->uz_bucket_size_max = ubz->ubz_entries; 4477 } else { 4478 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 4479 } 4480 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4481 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4482 zone->uz_bucket_max = nitems / vm_ndomains; 4483 ZONE_UNLOCK(zone); 4484 } 4485 4486 /* See uma.h */ 4487 int 4488 uma_zone_get_max(uma_zone_t zone) 4489 { 4490 int nitems; 4491 4492 nitems = atomic_load_64(&zone->uz_max_items); 4493 4494 return (nitems); 4495 } 4496 4497 /* See uma.h */ 4498 void 4499 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4500 { 4501 4502 ZONE_ASSERT_COLD(zone); 4503 zone->uz_warning = warning; 4504 } 4505 4506 /* See uma.h */ 4507 void 4508 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4509 { 4510 4511 ZONE_ASSERT_COLD(zone); 4512 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4513 } 4514 4515 /* See uma.h */ 4516 int 4517 uma_zone_get_cur(uma_zone_t zone) 4518 { 4519 int64_t nitems; 4520 u_int i; 4521 4522 nitems = 0; 4523 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 4524 nitems = counter_u64_fetch(zone->uz_allocs) - 4525 counter_u64_fetch(zone->uz_frees); 4526 CPU_FOREACH(i) 4527 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 4528 atomic_load_64(&zone->uz_cpu[i].uc_frees); 4529 4530 return (nitems < 0 ? 0 : nitems); 4531 } 4532 4533 static uint64_t 4534 uma_zone_get_allocs(uma_zone_t zone) 4535 { 4536 uint64_t nitems; 4537 u_int i; 4538 4539 nitems = 0; 4540 if (zone->uz_allocs != EARLY_COUNTER) 4541 nitems = counter_u64_fetch(zone->uz_allocs); 4542 CPU_FOREACH(i) 4543 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 4544 4545 return (nitems); 4546 } 4547 4548 static uint64_t 4549 uma_zone_get_frees(uma_zone_t zone) 4550 { 4551 uint64_t nitems; 4552 u_int i; 4553 4554 nitems = 0; 4555 if (zone->uz_frees != EARLY_COUNTER) 4556 nitems = counter_u64_fetch(zone->uz_frees); 4557 CPU_FOREACH(i) 4558 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 4559 4560 return (nitems); 4561 } 4562 4563 #ifdef INVARIANTS 4564 /* Used only for KEG_ASSERT_COLD(). */ 4565 static uint64_t 4566 uma_keg_get_allocs(uma_keg_t keg) 4567 { 4568 uma_zone_t z; 4569 uint64_t nitems; 4570 4571 nitems = 0; 4572 LIST_FOREACH(z, &keg->uk_zones, uz_link) 4573 nitems += uma_zone_get_allocs(z); 4574 4575 return (nitems); 4576 } 4577 #endif 4578 4579 /* See uma.h */ 4580 void 4581 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 4582 { 4583 uma_keg_t keg; 4584 4585 KEG_GET(zone, keg); 4586 KEG_ASSERT_COLD(keg); 4587 keg->uk_init = uminit; 4588 } 4589 4590 /* See uma.h */ 4591 void 4592 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 4593 { 4594 uma_keg_t keg; 4595 4596 KEG_GET(zone, keg); 4597 KEG_ASSERT_COLD(keg); 4598 keg->uk_fini = fini; 4599 } 4600 4601 /* See uma.h */ 4602 void 4603 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 4604 { 4605 4606 ZONE_ASSERT_COLD(zone); 4607 zone->uz_init = zinit; 4608 } 4609 4610 /* See uma.h */ 4611 void 4612 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 4613 { 4614 4615 ZONE_ASSERT_COLD(zone); 4616 zone->uz_fini = zfini; 4617 } 4618 4619 /* See uma.h */ 4620 void 4621 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 4622 { 4623 uma_keg_t keg; 4624 4625 KEG_GET(zone, keg); 4626 KEG_ASSERT_COLD(keg); 4627 keg->uk_freef = freef; 4628 } 4629 4630 /* See uma.h */ 4631 void 4632 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 4633 { 4634 uma_keg_t keg; 4635 4636 KEG_GET(zone, keg); 4637 KEG_ASSERT_COLD(keg); 4638 keg->uk_allocf = allocf; 4639 } 4640 4641 /* See uma.h */ 4642 void 4643 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 4644 { 4645 4646 ZONE_ASSERT_COLD(zone); 4647 4648 KASSERT(smr != NULL, ("Got NULL smr")); 4649 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4650 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 4651 zone->uz_flags |= UMA_ZONE_SMR; 4652 zone->uz_smr = smr; 4653 zone_update_caches(zone); 4654 } 4655 4656 smr_t 4657 uma_zone_get_smr(uma_zone_t zone) 4658 { 4659 4660 return (zone->uz_smr); 4661 } 4662 4663 /* See uma.h */ 4664 void 4665 uma_zone_reserve(uma_zone_t zone, int items) 4666 { 4667 uma_keg_t keg; 4668 4669 KEG_GET(zone, keg); 4670 KEG_ASSERT_COLD(keg); 4671 keg->uk_reserve = items; 4672 } 4673 4674 /* See uma.h */ 4675 int 4676 uma_zone_reserve_kva(uma_zone_t zone, int count) 4677 { 4678 uma_keg_t keg; 4679 vm_offset_t kva; 4680 u_int pages; 4681 4682 KEG_GET(zone, keg); 4683 KEG_ASSERT_COLD(keg); 4684 ZONE_ASSERT_COLD(zone); 4685 4686 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 4687 4688 #ifdef UMA_MD_SMALL_ALLOC 4689 if (keg->uk_ppera > 1) { 4690 #else 4691 if (1) { 4692 #endif 4693 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 4694 if (kva == 0) 4695 return (0); 4696 } else 4697 kva = 0; 4698 4699 MPASS(keg->uk_kva == 0); 4700 keg->uk_kva = kva; 4701 keg->uk_offset = 0; 4702 zone->uz_max_items = pages * keg->uk_ipers; 4703 #ifdef UMA_MD_SMALL_ALLOC 4704 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 4705 #else 4706 keg->uk_allocf = noobj_alloc; 4707 #endif 4708 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4709 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 4710 zone_update_caches(zone); 4711 4712 return (1); 4713 } 4714 4715 /* See uma.h */ 4716 void 4717 uma_prealloc(uma_zone_t zone, int items) 4718 { 4719 struct vm_domainset_iter di; 4720 uma_domain_t dom; 4721 uma_slab_t slab; 4722 uma_keg_t keg; 4723 int aflags, domain, slabs; 4724 4725 KEG_GET(zone, keg); 4726 slabs = howmany(items, keg->uk_ipers); 4727 while (slabs-- > 0) { 4728 aflags = M_NOWAIT; 4729 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 4730 &aflags); 4731 for (;;) { 4732 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 4733 aflags); 4734 if (slab != NULL) { 4735 dom = &keg->uk_domain[slab->us_domain]; 4736 /* 4737 * keg_alloc_slab() always returns a slab on the 4738 * partial list. 4739 */ 4740 LIST_REMOVE(slab, us_link); 4741 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 4742 us_link); 4743 dom->ud_free_slabs++; 4744 KEG_UNLOCK(keg, slab->us_domain); 4745 break; 4746 } 4747 if (vm_domainset_iter_policy(&di, &domain) != 0) 4748 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask); 4749 } 4750 } 4751 } 4752 4753 /* 4754 * Returns a snapshot of memory consumption in bytes. 4755 */ 4756 size_t 4757 uma_zone_memory(uma_zone_t zone) 4758 { 4759 size_t sz; 4760 int i; 4761 4762 sz = 0; 4763 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 4764 for (i = 0; i < vm_ndomains; i++) 4765 sz += ZDOM_GET(zone, i)->uzd_nitems; 4766 return (sz * zone->uz_size); 4767 } 4768 for (i = 0; i < vm_ndomains; i++) 4769 sz += zone->uz_keg->uk_domain[i].ud_pages; 4770 4771 return (sz * PAGE_SIZE); 4772 } 4773 4774 /* See uma.h */ 4775 void 4776 uma_reclaim(int req) 4777 { 4778 4779 CTR0(KTR_UMA, "UMA: vm asked us to release pages!"); 4780 sx_xlock(&uma_reclaim_lock); 4781 bucket_enable(); 4782 4783 switch (req) { 4784 case UMA_RECLAIM_TRIM: 4785 zone_foreach(zone_trim, NULL); 4786 break; 4787 case UMA_RECLAIM_DRAIN: 4788 case UMA_RECLAIM_DRAIN_CPU: 4789 zone_foreach(zone_drain, NULL); 4790 if (req == UMA_RECLAIM_DRAIN_CPU) { 4791 pcpu_cache_drain_safe(NULL); 4792 zone_foreach(zone_drain, NULL); 4793 } 4794 break; 4795 default: 4796 panic("unhandled reclamation request %d", req); 4797 } 4798 4799 /* 4800 * Some slabs may have been freed but this zone will be visited early 4801 * we visit again so that we can free pages that are empty once other 4802 * zones are drained. We have to do the same for buckets. 4803 */ 4804 zone_drain(slabzones[0], NULL); 4805 zone_drain(slabzones[1], NULL); 4806 bucket_zone_drain(); 4807 sx_xunlock(&uma_reclaim_lock); 4808 } 4809 4810 static volatile int uma_reclaim_needed; 4811 4812 void 4813 uma_reclaim_wakeup(void) 4814 { 4815 4816 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 4817 wakeup(uma_reclaim); 4818 } 4819 4820 void 4821 uma_reclaim_worker(void *arg __unused) 4822 { 4823 4824 for (;;) { 4825 sx_xlock(&uma_reclaim_lock); 4826 while (atomic_load_int(&uma_reclaim_needed) == 0) 4827 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 4828 hz); 4829 sx_xunlock(&uma_reclaim_lock); 4830 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 4831 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 4832 atomic_store_int(&uma_reclaim_needed, 0); 4833 /* Don't fire more than once per-second. */ 4834 pause("umarclslp", hz); 4835 } 4836 } 4837 4838 /* See uma.h */ 4839 void 4840 uma_zone_reclaim(uma_zone_t zone, int req) 4841 { 4842 4843 switch (req) { 4844 case UMA_RECLAIM_TRIM: 4845 zone_trim(zone, NULL); 4846 break; 4847 case UMA_RECLAIM_DRAIN: 4848 zone_drain(zone, NULL); 4849 break; 4850 case UMA_RECLAIM_DRAIN_CPU: 4851 pcpu_cache_drain_safe(zone); 4852 zone_drain(zone, NULL); 4853 break; 4854 default: 4855 panic("unhandled reclamation request %d", req); 4856 } 4857 } 4858 4859 /* See uma.h */ 4860 int 4861 uma_zone_exhausted(uma_zone_t zone) 4862 { 4863 4864 return (atomic_load_32(&zone->uz_sleepers) > 0); 4865 } 4866 4867 unsigned long 4868 uma_limit(void) 4869 { 4870 4871 return (uma_kmem_limit); 4872 } 4873 4874 void 4875 uma_set_limit(unsigned long limit) 4876 { 4877 4878 uma_kmem_limit = limit; 4879 } 4880 4881 unsigned long 4882 uma_size(void) 4883 { 4884 4885 return (atomic_load_long(&uma_kmem_total)); 4886 } 4887 4888 long 4889 uma_avail(void) 4890 { 4891 4892 return (uma_kmem_limit - uma_size()); 4893 } 4894 4895 #ifdef DDB 4896 /* 4897 * Generate statistics across both the zone and its per-cpu cache's. Return 4898 * desired statistics if the pointer is non-NULL for that statistic. 4899 * 4900 * Note: does not update the zone statistics, as it can't safely clear the 4901 * per-CPU cache statistic. 4902 * 4903 */ 4904 static void 4905 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 4906 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 4907 { 4908 uma_cache_t cache; 4909 uint64_t allocs, frees, sleeps, xdomain; 4910 int cachefree, cpu; 4911 4912 allocs = frees = sleeps = xdomain = 0; 4913 cachefree = 0; 4914 CPU_FOREACH(cpu) { 4915 cache = &z->uz_cpu[cpu]; 4916 cachefree += cache->uc_allocbucket.ucb_cnt; 4917 cachefree += cache->uc_freebucket.ucb_cnt; 4918 xdomain += cache->uc_crossbucket.ucb_cnt; 4919 cachefree += cache->uc_crossbucket.ucb_cnt; 4920 allocs += cache->uc_allocs; 4921 frees += cache->uc_frees; 4922 } 4923 allocs += counter_u64_fetch(z->uz_allocs); 4924 frees += counter_u64_fetch(z->uz_frees); 4925 xdomain += counter_u64_fetch(z->uz_xdomain); 4926 sleeps += z->uz_sleeps; 4927 if (cachefreep != NULL) 4928 *cachefreep = cachefree; 4929 if (allocsp != NULL) 4930 *allocsp = allocs; 4931 if (freesp != NULL) 4932 *freesp = frees; 4933 if (sleepsp != NULL) 4934 *sleepsp = sleeps; 4935 if (xdomainp != NULL) 4936 *xdomainp = xdomain; 4937 } 4938 #endif /* DDB */ 4939 4940 static int 4941 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 4942 { 4943 uma_keg_t kz; 4944 uma_zone_t z; 4945 int count; 4946 4947 count = 0; 4948 rw_rlock(&uma_rwlock); 4949 LIST_FOREACH(kz, &uma_kegs, uk_link) { 4950 LIST_FOREACH(z, &kz->uk_zones, uz_link) 4951 count++; 4952 } 4953 LIST_FOREACH(z, &uma_cachezones, uz_link) 4954 count++; 4955 4956 rw_runlock(&uma_rwlock); 4957 return (sysctl_handle_int(oidp, &count, 0, req)); 4958 } 4959 4960 static void 4961 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 4962 struct uma_percpu_stat *ups, bool internal) 4963 { 4964 uma_zone_domain_t zdom; 4965 uma_cache_t cache; 4966 int i; 4967 4968 4969 for (i = 0; i < vm_ndomains; i++) { 4970 zdom = ZDOM_GET(z, i); 4971 uth->uth_zone_free += zdom->uzd_nitems; 4972 } 4973 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 4974 uth->uth_frees = counter_u64_fetch(z->uz_frees); 4975 uth->uth_fails = counter_u64_fetch(z->uz_fails); 4976 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 4977 uth->uth_sleeps = z->uz_sleeps; 4978 4979 for (i = 0; i < mp_maxid + 1; i++) { 4980 bzero(&ups[i], sizeof(*ups)); 4981 if (internal || CPU_ABSENT(i)) 4982 continue; 4983 cache = &z->uz_cpu[i]; 4984 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 4985 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 4986 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 4987 ups[i].ups_allocs = cache->uc_allocs; 4988 ups[i].ups_frees = cache->uc_frees; 4989 } 4990 } 4991 4992 static int 4993 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 4994 { 4995 struct uma_stream_header ush; 4996 struct uma_type_header uth; 4997 struct uma_percpu_stat *ups; 4998 struct sbuf sbuf; 4999 uma_keg_t kz; 5000 uma_zone_t z; 5001 uint64_t items; 5002 uint32_t kfree, pages; 5003 int count, error, i; 5004 5005 error = sysctl_wire_old_buffer(req, 0); 5006 if (error != 0) 5007 return (error); 5008 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5009 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5010 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5011 5012 count = 0; 5013 rw_rlock(&uma_rwlock); 5014 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5015 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5016 count++; 5017 } 5018 5019 LIST_FOREACH(z, &uma_cachezones, uz_link) 5020 count++; 5021 5022 /* 5023 * Insert stream header. 5024 */ 5025 bzero(&ush, sizeof(ush)); 5026 ush.ush_version = UMA_STREAM_VERSION; 5027 ush.ush_maxcpus = (mp_maxid + 1); 5028 ush.ush_count = count; 5029 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5030 5031 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5032 kfree = pages = 0; 5033 for (i = 0; i < vm_ndomains; i++) { 5034 kfree += kz->uk_domain[i].ud_free_items; 5035 pages += kz->uk_domain[i].ud_pages; 5036 } 5037 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5038 bzero(&uth, sizeof(uth)); 5039 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5040 uth.uth_align = kz->uk_align; 5041 uth.uth_size = kz->uk_size; 5042 uth.uth_rsize = kz->uk_rsize; 5043 if (z->uz_max_items > 0) { 5044 items = UZ_ITEMS_COUNT(z->uz_items); 5045 uth.uth_pages = (items / kz->uk_ipers) * 5046 kz->uk_ppera; 5047 } else 5048 uth.uth_pages = pages; 5049 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5050 kz->uk_ppera; 5051 uth.uth_limit = z->uz_max_items; 5052 uth.uth_keg_free = kfree; 5053 5054 /* 5055 * A zone is secondary is it is not the first entry 5056 * on the keg's zone list. 5057 */ 5058 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5059 (LIST_FIRST(&kz->uk_zones) != z)) 5060 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5061 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5062 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5063 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5064 for (i = 0; i < mp_maxid + 1; i++) 5065 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5066 } 5067 } 5068 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5069 bzero(&uth, sizeof(uth)); 5070 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5071 uth.uth_size = z->uz_size; 5072 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5073 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5074 for (i = 0; i < mp_maxid + 1; i++) 5075 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5076 } 5077 5078 rw_runlock(&uma_rwlock); 5079 error = sbuf_finish(&sbuf); 5080 sbuf_delete(&sbuf); 5081 free(ups, M_TEMP); 5082 return (error); 5083 } 5084 5085 int 5086 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5087 { 5088 uma_zone_t zone = *(uma_zone_t *)arg1; 5089 int error, max; 5090 5091 max = uma_zone_get_max(zone); 5092 error = sysctl_handle_int(oidp, &max, 0, req); 5093 if (error || !req->newptr) 5094 return (error); 5095 5096 uma_zone_set_max(zone, max); 5097 5098 return (0); 5099 } 5100 5101 int 5102 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5103 { 5104 uma_zone_t zone; 5105 int cur; 5106 5107 /* 5108 * Some callers want to add sysctls for global zones that 5109 * may not yet exist so they pass a pointer to a pointer. 5110 */ 5111 if (arg2 == 0) 5112 zone = *(uma_zone_t *)arg1; 5113 else 5114 zone = arg1; 5115 cur = uma_zone_get_cur(zone); 5116 return (sysctl_handle_int(oidp, &cur, 0, req)); 5117 } 5118 5119 static int 5120 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5121 { 5122 uma_zone_t zone = arg1; 5123 uint64_t cur; 5124 5125 cur = uma_zone_get_allocs(zone); 5126 return (sysctl_handle_64(oidp, &cur, 0, req)); 5127 } 5128 5129 static int 5130 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5131 { 5132 uma_zone_t zone = arg1; 5133 uint64_t cur; 5134 5135 cur = uma_zone_get_frees(zone); 5136 return (sysctl_handle_64(oidp, &cur, 0, req)); 5137 } 5138 5139 static int 5140 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5141 { 5142 struct sbuf sbuf; 5143 uma_zone_t zone = arg1; 5144 int error; 5145 5146 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5147 if (zone->uz_flags != 0) 5148 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5149 else 5150 sbuf_printf(&sbuf, "0"); 5151 error = sbuf_finish(&sbuf); 5152 sbuf_delete(&sbuf); 5153 5154 return (error); 5155 } 5156 5157 static int 5158 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5159 { 5160 uma_keg_t keg = arg1; 5161 int avail, effpct, total; 5162 5163 total = keg->uk_ppera * PAGE_SIZE; 5164 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5165 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5166 /* 5167 * We consider the client's requested size and alignment here, not the 5168 * real size determination uk_rsize, because we also adjust the real 5169 * size for internal implementation reasons (max bitset size). 5170 */ 5171 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5172 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5173 avail *= mp_maxid + 1; 5174 effpct = 100 * avail / total; 5175 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5176 } 5177 5178 static int 5179 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5180 { 5181 uma_zone_t zone = arg1; 5182 uint64_t cur; 5183 5184 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5185 return (sysctl_handle_64(oidp, &cur, 0, req)); 5186 } 5187 5188 #ifdef INVARIANTS 5189 static uma_slab_t 5190 uma_dbg_getslab(uma_zone_t zone, void *item) 5191 { 5192 uma_slab_t slab; 5193 uma_keg_t keg; 5194 uint8_t *mem; 5195 5196 /* 5197 * It is safe to return the slab here even though the 5198 * zone is unlocked because the item's allocation state 5199 * essentially holds a reference. 5200 */ 5201 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5202 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5203 return (NULL); 5204 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5205 return (vtoslab((vm_offset_t)mem)); 5206 keg = zone->uz_keg; 5207 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5208 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5209 KEG_LOCK(keg, 0); 5210 slab = hash_sfind(&keg->uk_hash, mem); 5211 KEG_UNLOCK(keg, 0); 5212 5213 return (slab); 5214 } 5215 5216 static bool 5217 uma_dbg_zskip(uma_zone_t zone, void *mem) 5218 { 5219 5220 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5221 return (true); 5222 5223 return (uma_dbg_kskip(zone->uz_keg, mem)); 5224 } 5225 5226 static bool 5227 uma_dbg_kskip(uma_keg_t keg, void *mem) 5228 { 5229 uintptr_t idx; 5230 5231 if (dbg_divisor == 0) 5232 return (true); 5233 5234 if (dbg_divisor == 1) 5235 return (false); 5236 5237 idx = (uintptr_t)mem >> PAGE_SHIFT; 5238 if (keg->uk_ipers > 1) { 5239 idx *= keg->uk_ipers; 5240 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5241 } 5242 5243 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5244 counter_u64_add(uma_skip_cnt, 1); 5245 return (true); 5246 } 5247 counter_u64_add(uma_dbg_cnt, 1); 5248 5249 return (false); 5250 } 5251 5252 /* 5253 * Set up the slab's freei data such that uma_dbg_free can function. 5254 * 5255 */ 5256 static void 5257 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5258 { 5259 uma_keg_t keg; 5260 int freei; 5261 5262 if (slab == NULL) { 5263 slab = uma_dbg_getslab(zone, item); 5264 if (slab == NULL) 5265 panic("uma: item %p did not belong to zone %s\n", 5266 item, zone->uz_name); 5267 } 5268 keg = zone->uz_keg; 5269 freei = slab_item_index(slab, keg, item); 5270 5271 if (BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5272 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 5273 item, zone, zone->uz_name, slab, freei); 5274 BIT_SET_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5275 } 5276 5277 /* 5278 * Verifies freed addresses. Checks for alignment, valid slab membership 5279 * and duplicate frees. 5280 * 5281 */ 5282 static void 5283 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5284 { 5285 uma_keg_t keg; 5286 int freei; 5287 5288 if (slab == NULL) { 5289 slab = uma_dbg_getslab(zone, item); 5290 if (slab == NULL) 5291 panic("uma: Freed item %p did not belong to zone %s\n", 5292 item, zone->uz_name); 5293 } 5294 keg = zone->uz_keg; 5295 freei = slab_item_index(slab, keg, item); 5296 5297 if (freei >= keg->uk_ipers) 5298 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 5299 item, zone, zone->uz_name, slab, freei); 5300 5301 if (slab_item(slab, keg, freei) != item) 5302 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 5303 item, zone, zone->uz_name, slab, freei); 5304 5305 if (!BIT_ISSET(keg->uk_ipers, freei, slab_dbg_bits(slab, keg))) 5306 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 5307 item, zone, zone->uz_name, slab, freei); 5308 5309 BIT_CLR_ATOMIC(keg->uk_ipers, freei, slab_dbg_bits(slab, keg)); 5310 } 5311 #endif /* INVARIANTS */ 5312 5313 #ifdef DDB 5314 static int64_t 5315 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5316 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5317 { 5318 uint64_t frees; 5319 int i; 5320 5321 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5322 *allocs = counter_u64_fetch(z->uz_allocs); 5323 frees = counter_u64_fetch(z->uz_frees); 5324 *sleeps = z->uz_sleeps; 5325 *cachefree = 0; 5326 *xdomain = 0; 5327 } else 5328 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5329 xdomain); 5330 for (i = 0; i < vm_ndomains; i++) { 5331 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5332 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5333 (LIST_FIRST(&kz->uk_zones) != z))) 5334 *cachefree += kz->uk_domain[i].ud_free_items; 5335 } 5336 *used = *allocs - frees; 5337 return (((int64_t)*used + *cachefree) * kz->uk_size); 5338 } 5339 5340 DB_SHOW_COMMAND(uma, db_show_uma) 5341 { 5342 const char *fmt_hdr, *fmt_entry; 5343 uma_keg_t kz; 5344 uma_zone_t z; 5345 uint64_t allocs, used, sleeps, xdomain; 5346 long cachefree; 5347 /* variables for sorting */ 5348 uma_keg_t cur_keg; 5349 uma_zone_t cur_zone, last_zone; 5350 int64_t cur_size, last_size, size; 5351 int ties; 5352 5353 /* /i option produces machine-parseable CSV output */ 5354 if (modif[0] == 'i') { 5355 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5356 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5357 } else { 5358 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5359 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5360 } 5361 5362 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5363 "Sleeps", "Bucket", "Total Mem", "XFree"); 5364 5365 /* Sort the zones with largest size first. */ 5366 last_zone = NULL; 5367 last_size = INT64_MAX; 5368 for (;;) { 5369 cur_zone = NULL; 5370 cur_size = -1; 5371 ties = 0; 5372 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5373 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5374 /* 5375 * In the case of size ties, print out zones 5376 * in the order they are encountered. That is, 5377 * when we encounter the most recently output 5378 * zone, we have already printed all preceding 5379 * ties, and we must print all following ties. 5380 */ 5381 if (z == last_zone) { 5382 ties = 1; 5383 continue; 5384 } 5385 size = get_uma_stats(kz, z, &allocs, &used, 5386 &sleeps, &cachefree, &xdomain); 5387 if (size > cur_size && size < last_size + ties) 5388 { 5389 cur_size = size; 5390 cur_zone = z; 5391 cur_keg = kz; 5392 } 5393 } 5394 } 5395 if (cur_zone == NULL) 5396 break; 5397 5398 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5399 &sleeps, &cachefree, &xdomain); 5400 db_printf(fmt_entry, cur_zone->uz_name, 5401 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5402 (uintmax_t)allocs, (uintmax_t)sleeps, 5403 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5404 xdomain); 5405 5406 if (db_pager_quit) 5407 return; 5408 last_zone = cur_zone; 5409 last_size = cur_size; 5410 } 5411 } 5412 5413 DB_SHOW_COMMAND(umacache, db_show_umacache) 5414 { 5415 uma_zone_t z; 5416 uint64_t allocs, frees; 5417 long cachefree; 5418 int i; 5419 5420 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5421 "Requests", "Bucket"); 5422 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5423 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5424 for (i = 0; i < vm_ndomains; i++) 5425 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5426 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5427 z->uz_name, (uintmax_t)z->uz_size, 5428 (intmax_t)(allocs - frees), cachefree, 5429 (uintmax_t)allocs, z->uz_bucket_size); 5430 if (db_pager_quit) 5431 return; 5432 } 5433 } 5434 #endif /* DDB */ 5435