1 /*- 2 * Copyright (c) 2002-2005, 2009 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * effecient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 63 #include <sys/param.h> 64 #include <sys/systm.h> 65 #include <sys/kernel.h> 66 #include <sys/types.h> 67 #include <sys/queue.h> 68 #include <sys/malloc.h> 69 #include <sys/ktr.h> 70 #include <sys/lock.h> 71 #include <sys/sysctl.h> 72 #include <sys/mutex.h> 73 #include <sys/proc.h> 74 #include <sys/sbuf.h> 75 #include <sys/smp.h> 76 #include <sys/vmmeter.h> 77 78 #include <vm/vm.h> 79 #include <vm/vm_object.h> 80 #include <vm/vm_page.h> 81 #include <vm/vm_param.h> 82 #include <vm/vm_map.h> 83 #include <vm/vm_kern.h> 84 #include <vm/vm_extern.h> 85 #include <vm/uma.h> 86 #include <vm/uma_int.h> 87 #include <vm/uma_dbg.h> 88 89 #include <machine/vmparam.h> 90 91 #include <ddb/ddb.h> 92 93 /* 94 * This is the zone and keg from which all zones are spawned. The idea is that 95 * even the zone & keg heads are allocated from the allocator, so we use the 96 * bss section to bootstrap us. 97 */ 98 static struct uma_keg masterkeg; 99 static struct uma_zone masterzone_k; 100 static struct uma_zone masterzone_z; 101 static uma_zone_t kegs = &masterzone_k; 102 static uma_zone_t zones = &masterzone_z; 103 104 /* This is the zone from which all of uma_slab_t's are allocated. */ 105 static uma_zone_t slabzone; 106 static uma_zone_t slabrefzone; /* With refcounters (for UMA_ZONE_REFCNT) */ 107 108 /* 109 * The initial hash tables come out of this zone so they can be allocated 110 * prior to malloc coming up. 111 */ 112 static uma_zone_t hashzone; 113 114 /* The boot-time adjusted value for cache line alignment. */ 115 static int uma_align_cache = 64 - 1; 116 117 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 118 119 /* 120 * Are we allowed to allocate buckets? 121 */ 122 static int bucketdisable = 1; 123 124 /* Linked list of all kegs in the system */ 125 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 126 127 /* This mutex protects the keg list */ 128 static struct mtx uma_mtx; 129 130 /* Linked list of boot time pages */ 131 static LIST_HEAD(,uma_slab) uma_boot_pages = 132 LIST_HEAD_INITIALIZER(uma_boot_pages); 133 134 /* This mutex protects the boot time pages list */ 135 static struct mtx uma_boot_pages_mtx; 136 137 /* Is the VM done starting up? */ 138 static int booted = 0; 139 140 /* Maximum number of allowed items-per-slab if the slab header is OFFPAGE */ 141 static u_int uma_max_ipers; 142 static u_int uma_max_ipers_ref; 143 144 /* 145 * This is the handle used to schedule events that need to happen 146 * outside of the allocation fast path. 147 */ 148 static struct callout uma_callout; 149 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 150 151 /* 152 * This structure is passed as the zone ctor arg so that I don't have to create 153 * a special allocation function just for zones. 154 */ 155 struct uma_zctor_args { 156 char *name; 157 size_t size; 158 uma_ctor ctor; 159 uma_dtor dtor; 160 uma_init uminit; 161 uma_fini fini; 162 uma_keg_t keg; 163 int align; 164 u_int32_t flags; 165 }; 166 167 struct uma_kctor_args { 168 uma_zone_t zone; 169 size_t size; 170 uma_init uminit; 171 uma_fini fini; 172 int align; 173 u_int32_t flags; 174 }; 175 176 struct uma_bucket_zone { 177 uma_zone_t ubz_zone; 178 char *ubz_name; 179 int ubz_entries; 180 }; 181 182 #define BUCKET_MAX 128 183 184 struct uma_bucket_zone bucket_zones[] = { 185 { NULL, "16 Bucket", 16 }, 186 { NULL, "32 Bucket", 32 }, 187 { NULL, "64 Bucket", 64 }, 188 { NULL, "128 Bucket", 128 }, 189 { NULL, NULL, 0} 190 }; 191 192 #define BUCKET_SHIFT 4 193 #define BUCKET_ZONES ((BUCKET_MAX >> BUCKET_SHIFT) + 1) 194 195 /* 196 * bucket_size[] maps requested bucket sizes to zones that allocate a bucket 197 * of approximately the right size. 198 */ 199 static uint8_t bucket_size[BUCKET_ZONES]; 200 201 /* 202 * Flags and enumerations to be passed to internal functions. 203 */ 204 enum zfreeskip { SKIP_NONE, SKIP_DTOR, SKIP_FINI }; 205 206 #define ZFREE_STATFAIL 0x00000001 /* Update zone failure statistic. */ 207 #define ZFREE_STATFREE 0x00000002 /* Update zone free statistic. */ 208 209 /* Prototypes.. */ 210 211 static void *obj_alloc(uma_zone_t, int, u_int8_t *, int); 212 static void *page_alloc(uma_zone_t, int, u_int8_t *, int); 213 static void *startup_alloc(uma_zone_t, int, u_int8_t *, int); 214 static void page_free(void *, int, u_int8_t); 215 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 216 static void cache_drain(uma_zone_t); 217 static void bucket_drain(uma_zone_t, uma_bucket_t); 218 static void bucket_cache_drain(uma_zone_t zone); 219 static int keg_ctor(void *, int, void *, int); 220 static void keg_dtor(void *, int, void *); 221 static int zone_ctor(void *, int, void *, int); 222 static void zone_dtor(void *, int, void *); 223 static int zero_init(void *, int, int); 224 static void keg_small_init(uma_keg_t keg); 225 static void keg_large_init(uma_keg_t keg); 226 static void zone_foreach(void (*zfunc)(uma_zone_t)); 227 static void zone_timeout(uma_zone_t zone); 228 static int hash_alloc(struct uma_hash *); 229 static int hash_expand(struct uma_hash *, struct uma_hash *); 230 static void hash_free(struct uma_hash *hash); 231 static void uma_timeout(void *); 232 static void uma_startup3(void); 233 static void *zone_alloc_item(uma_zone_t, void *, int); 234 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip, 235 int); 236 static void bucket_enable(void); 237 static void bucket_init(void); 238 static uma_bucket_t bucket_alloc(int, int); 239 static void bucket_free(uma_bucket_t); 240 static void bucket_zone_drain(void); 241 static int zone_alloc_bucket(uma_zone_t zone, int flags); 242 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 243 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 244 static void *slab_alloc_item(uma_zone_t zone, uma_slab_t slab); 245 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 246 uma_fini fini, int align, u_int32_t flags); 247 static inline void zone_relock(uma_zone_t zone, uma_keg_t keg); 248 static inline void keg_relock(uma_keg_t keg, uma_zone_t zone); 249 250 void uma_print_zone(uma_zone_t); 251 void uma_print_stats(void); 252 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 253 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 254 255 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 256 257 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 258 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 259 260 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 261 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 262 263 /* 264 * This routine checks to see whether or not it's safe to enable buckets. 265 */ 266 267 static void 268 bucket_enable(void) 269 { 270 if (cnt.v_free_count < cnt.v_free_min) 271 bucketdisable = 1; 272 else 273 bucketdisable = 0; 274 } 275 276 /* 277 * Initialize bucket_zones, the array of zones of buckets of various sizes. 278 * 279 * For each zone, calculate the memory required for each bucket, consisting 280 * of the header and an array of pointers. Initialize bucket_size[] to point 281 * the range of appropriate bucket sizes at the zone. 282 */ 283 static void 284 bucket_init(void) 285 { 286 struct uma_bucket_zone *ubz; 287 int i; 288 int j; 289 290 for (i = 0, j = 0; bucket_zones[j].ubz_entries != 0; j++) { 291 int size; 292 293 ubz = &bucket_zones[j]; 294 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 295 size += sizeof(void *) * ubz->ubz_entries; 296 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 297 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 298 UMA_ZFLAG_INTERNAL | UMA_ZFLAG_BUCKET); 299 for (; i <= ubz->ubz_entries; i += (1 << BUCKET_SHIFT)) 300 bucket_size[i >> BUCKET_SHIFT] = j; 301 } 302 } 303 304 /* 305 * Given a desired number of entries for a bucket, return the zone from which 306 * to allocate the bucket. 307 */ 308 static struct uma_bucket_zone * 309 bucket_zone_lookup(int entries) 310 { 311 int idx; 312 313 idx = howmany(entries, 1 << BUCKET_SHIFT); 314 return (&bucket_zones[bucket_size[idx]]); 315 } 316 317 static uma_bucket_t 318 bucket_alloc(int entries, int bflags) 319 { 320 struct uma_bucket_zone *ubz; 321 uma_bucket_t bucket; 322 323 /* 324 * This is to stop us from allocating per cpu buckets while we're 325 * running out of vm.boot_pages. Otherwise, we would exhaust the 326 * boot pages. This also prevents us from allocating buckets in 327 * low memory situations. 328 */ 329 if (bucketdisable) 330 return (NULL); 331 332 ubz = bucket_zone_lookup(entries); 333 bucket = zone_alloc_item(ubz->ubz_zone, NULL, bflags); 334 if (bucket) { 335 #ifdef INVARIANTS 336 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 337 #endif 338 bucket->ub_cnt = 0; 339 bucket->ub_entries = ubz->ubz_entries; 340 } 341 342 return (bucket); 343 } 344 345 static void 346 bucket_free(uma_bucket_t bucket) 347 { 348 struct uma_bucket_zone *ubz; 349 350 ubz = bucket_zone_lookup(bucket->ub_entries); 351 zone_free_item(ubz->ubz_zone, bucket, NULL, SKIP_NONE, 352 ZFREE_STATFREE); 353 } 354 355 static void 356 bucket_zone_drain(void) 357 { 358 struct uma_bucket_zone *ubz; 359 360 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 361 zone_drain(ubz->ubz_zone); 362 } 363 364 static inline uma_keg_t 365 zone_first_keg(uma_zone_t zone) 366 { 367 368 return (LIST_FIRST(&zone->uz_kegs)->kl_keg); 369 } 370 371 static void 372 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 373 { 374 uma_klink_t klink; 375 376 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 377 kegfn(klink->kl_keg); 378 } 379 380 /* 381 * Routine called by timeout which is used to fire off some time interval 382 * based calculations. (stats, hash size, etc.) 383 * 384 * Arguments: 385 * arg Unused 386 * 387 * Returns: 388 * Nothing 389 */ 390 static void 391 uma_timeout(void *unused) 392 { 393 bucket_enable(); 394 zone_foreach(zone_timeout); 395 396 /* Reschedule this event */ 397 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 398 } 399 400 /* 401 * Routine to perform timeout driven calculations. This expands the 402 * hashes and does per cpu statistics aggregation. 403 * 404 * Returns nothing. 405 */ 406 static void 407 keg_timeout(uma_keg_t keg) 408 { 409 410 KEG_LOCK(keg); 411 /* 412 * Expand the keg hash table. 413 * 414 * This is done if the number of slabs is larger than the hash size. 415 * What I'm trying to do here is completely reduce collisions. This 416 * may be a little aggressive. Should I allow for two collisions max? 417 */ 418 if (keg->uk_flags & UMA_ZONE_HASH && 419 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 420 struct uma_hash newhash; 421 struct uma_hash oldhash; 422 int ret; 423 424 /* 425 * This is so involved because allocating and freeing 426 * while the keg lock is held will lead to deadlock. 427 * I have to do everything in stages and check for 428 * races. 429 */ 430 newhash = keg->uk_hash; 431 KEG_UNLOCK(keg); 432 ret = hash_alloc(&newhash); 433 KEG_LOCK(keg); 434 if (ret) { 435 if (hash_expand(&keg->uk_hash, &newhash)) { 436 oldhash = keg->uk_hash; 437 keg->uk_hash = newhash; 438 } else 439 oldhash = newhash; 440 441 KEG_UNLOCK(keg); 442 hash_free(&oldhash); 443 KEG_LOCK(keg); 444 } 445 } 446 KEG_UNLOCK(keg); 447 } 448 449 static void 450 zone_timeout(uma_zone_t zone) 451 { 452 453 zone_foreach_keg(zone, &keg_timeout); 454 } 455 456 /* 457 * Allocate and zero fill the next sized hash table from the appropriate 458 * backing store. 459 * 460 * Arguments: 461 * hash A new hash structure with the old hash size in uh_hashsize 462 * 463 * Returns: 464 * 1 on sucess and 0 on failure. 465 */ 466 static int 467 hash_alloc(struct uma_hash *hash) 468 { 469 int oldsize; 470 int alloc; 471 472 oldsize = hash->uh_hashsize; 473 474 /* We're just going to go to a power of two greater */ 475 if (oldsize) { 476 hash->uh_hashsize = oldsize * 2; 477 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 478 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 479 M_UMAHASH, M_NOWAIT); 480 } else { 481 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 482 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 483 M_WAITOK); 484 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 485 } 486 if (hash->uh_slab_hash) { 487 bzero(hash->uh_slab_hash, alloc); 488 hash->uh_hashmask = hash->uh_hashsize - 1; 489 return (1); 490 } 491 492 return (0); 493 } 494 495 /* 496 * Expands the hash table for HASH zones. This is done from zone_timeout 497 * to reduce collisions. This must not be done in the regular allocation 498 * path, otherwise, we can recurse on the vm while allocating pages. 499 * 500 * Arguments: 501 * oldhash The hash you want to expand 502 * newhash The hash structure for the new table 503 * 504 * Returns: 505 * Nothing 506 * 507 * Discussion: 508 */ 509 static int 510 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 511 { 512 uma_slab_t slab; 513 int hval; 514 int i; 515 516 if (!newhash->uh_slab_hash) 517 return (0); 518 519 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 520 return (0); 521 522 /* 523 * I need to investigate hash algorithms for resizing without a 524 * full rehash. 525 */ 526 527 for (i = 0; i < oldhash->uh_hashsize; i++) 528 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 529 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 530 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 531 hval = UMA_HASH(newhash, slab->us_data); 532 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 533 slab, us_hlink); 534 } 535 536 return (1); 537 } 538 539 /* 540 * Free the hash bucket to the appropriate backing store. 541 * 542 * Arguments: 543 * slab_hash The hash bucket we're freeing 544 * hashsize The number of entries in that hash bucket 545 * 546 * Returns: 547 * Nothing 548 */ 549 static void 550 hash_free(struct uma_hash *hash) 551 { 552 if (hash->uh_slab_hash == NULL) 553 return; 554 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 555 zone_free_item(hashzone, 556 hash->uh_slab_hash, NULL, SKIP_NONE, ZFREE_STATFREE); 557 else 558 free(hash->uh_slab_hash, M_UMAHASH); 559 } 560 561 /* 562 * Frees all outstanding items in a bucket 563 * 564 * Arguments: 565 * zone The zone to free to, must be unlocked. 566 * bucket The free/alloc bucket with items, cpu queue must be locked. 567 * 568 * Returns: 569 * Nothing 570 */ 571 572 static void 573 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 574 { 575 void *item; 576 577 if (bucket == NULL) 578 return; 579 580 while (bucket->ub_cnt > 0) { 581 bucket->ub_cnt--; 582 item = bucket->ub_bucket[bucket->ub_cnt]; 583 #ifdef INVARIANTS 584 bucket->ub_bucket[bucket->ub_cnt] = NULL; 585 KASSERT(item != NULL, 586 ("bucket_drain: botched ptr, item is NULL")); 587 #endif 588 zone_free_item(zone, item, NULL, SKIP_DTOR, 0); 589 } 590 } 591 592 /* 593 * Drains the per cpu caches for a zone. 594 * 595 * NOTE: This may only be called while the zone is being turn down, and not 596 * during normal operation. This is necessary in order that we do not have 597 * to migrate CPUs to drain the per-CPU caches. 598 * 599 * Arguments: 600 * zone The zone to drain, must be unlocked. 601 * 602 * Returns: 603 * Nothing 604 */ 605 static void 606 cache_drain(uma_zone_t zone) 607 { 608 uma_cache_t cache; 609 int cpu; 610 611 /* 612 * XXX: It is safe to not lock the per-CPU caches, because we're 613 * tearing down the zone anyway. I.e., there will be no further use 614 * of the caches at this point. 615 * 616 * XXX: It would good to be able to assert that the zone is being 617 * torn down to prevent improper use of cache_drain(). 618 * 619 * XXX: We lock the zone before passing into bucket_cache_drain() as 620 * it is used elsewhere. Should the tear-down path be made special 621 * there in some form? 622 */ 623 CPU_FOREACH(cpu) { 624 cache = &zone->uz_cpu[cpu]; 625 bucket_drain(zone, cache->uc_allocbucket); 626 bucket_drain(zone, cache->uc_freebucket); 627 if (cache->uc_allocbucket != NULL) 628 bucket_free(cache->uc_allocbucket); 629 if (cache->uc_freebucket != NULL) 630 bucket_free(cache->uc_freebucket); 631 cache->uc_allocbucket = cache->uc_freebucket = NULL; 632 } 633 ZONE_LOCK(zone); 634 bucket_cache_drain(zone); 635 ZONE_UNLOCK(zone); 636 } 637 638 /* 639 * Drain the cached buckets from a zone. Expects a locked zone on entry. 640 */ 641 static void 642 bucket_cache_drain(uma_zone_t zone) 643 { 644 uma_bucket_t bucket; 645 646 /* 647 * Drain the bucket queues and free the buckets, we just keep two per 648 * cpu (alloc/free). 649 */ 650 while ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 651 LIST_REMOVE(bucket, ub_link); 652 ZONE_UNLOCK(zone); 653 bucket_drain(zone, bucket); 654 bucket_free(bucket); 655 ZONE_LOCK(zone); 656 } 657 658 /* Now we do the free queue.. */ 659 while ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 660 LIST_REMOVE(bucket, ub_link); 661 bucket_free(bucket); 662 } 663 } 664 665 /* 666 * Frees pages from a keg back to the system. This is done on demand from 667 * the pageout daemon. 668 * 669 * Returns nothing. 670 */ 671 static void 672 keg_drain(uma_keg_t keg) 673 { 674 struct slabhead freeslabs = { 0 }; 675 uma_slab_t slab; 676 uma_slab_t n; 677 u_int8_t flags; 678 u_int8_t *mem; 679 int i; 680 681 /* 682 * We don't want to take pages from statically allocated kegs at this 683 * time 684 */ 685 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 686 return; 687 688 #ifdef UMA_DEBUG 689 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 690 #endif 691 KEG_LOCK(keg); 692 if (keg->uk_free == 0) 693 goto finished; 694 695 slab = LIST_FIRST(&keg->uk_free_slab); 696 while (slab) { 697 n = LIST_NEXT(slab, us_link); 698 699 /* We have no where to free these to */ 700 if (slab->us_flags & UMA_SLAB_BOOT) { 701 slab = n; 702 continue; 703 } 704 705 LIST_REMOVE(slab, us_link); 706 keg->uk_pages -= keg->uk_ppera; 707 keg->uk_free -= keg->uk_ipers; 708 709 if (keg->uk_flags & UMA_ZONE_HASH) 710 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 711 712 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 713 714 slab = n; 715 } 716 finished: 717 KEG_UNLOCK(keg); 718 719 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 720 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 721 if (keg->uk_fini) 722 for (i = 0; i < keg->uk_ipers; i++) 723 keg->uk_fini( 724 slab->us_data + (keg->uk_rsize * i), 725 keg->uk_size); 726 flags = slab->us_flags; 727 mem = slab->us_data; 728 729 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 730 vm_object_t obj; 731 732 if (flags & UMA_SLAB_KMEM) 733 obj = kmem_object; 734 else if (flags & UMA_SLAB_KERNEL) 735 obj = kernel_object; 736 else 737 obj = NULL; 738 for (i = 0; i < keg->uk_ppera; i++) 739 vsetobj((vm_offset_t)mem + (i * PAGE_SIZE), 740 obj); 741 } 742 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 743 zone_free_item(keg->uk_slabzone, slab, NULL, 744 SKIP_NONE, ZFREE_STATFREE); 745 #ifdef UMA_DEBUG 746 printf("%s: Returning %d bytes.\n", 747 keg->uk_name, UMA_SLAB_SIZE * keg->uk_ppera); 748 #endif 749 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, flags); 750 } 751 } 752 753 static void 754 zone_drain_wait(uma_zone_t zone, int waitok) 755 { 756 757 /* 758 * Set draining to interlock with zone_dtor() so we can release our 759 * locks as we go. Only dtor() should do a WAITOK call since it 760 * is the only call that knows the structure will still be available 761 * when it wakes up. 762 */ 763 ZONE_LOCK(zone); 764 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 765 if (waitok == M_NOWAIT) 766 goto out; 767 mtx_unlock(&uma_mtx); 768 msleep(zone, zone->uz_lock, PVM, "zonedrain", 1); 769 mtx_lock(&uma_mtx); 770 } 771 zone->uz_flags |= UMA_ZFLAG_DRAINING; 772 bucket_cache_drain(zone); 773 ZONE_UNLOCK(zone); 774 /* 775 * The DRAINING flag protects us from being freed while 776 * we're running. Normally the uma_mtx would protect us but we 777 * must be able to release and acquire the right lock for each keg. 778 */ 779 zone_foreach_keg(zone, &keg_drain); 780 ZONE_LOCK(zone); 781 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 782 wakeup(zone); 783 out: 784 ZONE_UNLOCK(zone); 785 } 786 787 void 788 zone_drain(uma_zone_t zone) 789 { 790 791 zone_drain_wait(zone, M_NOWAIT); 792 } 793 794 /* 795 * Allocate a new slab for a keg. This does not insert the slab onto a list. 796 * 797 * Arguments: 798 * wait Shall we wait? 799 * 800 * Returns: 801 * The slab that was allocated or NULL if there is no memory and the 802 * caller specified M_NOWAIT. 803 */ 804 static uma_slab_t 805 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 806 { 807 uma_slabrefcnt_t slabref; 808 uma_alloc allocf; 809 uma_slab_t slab; 810 u_int8_t *mem; 811 u_int8_t flags; 812 int i; 813 814 mtx_assert(&keg->uk_lock, MA_OWNED); 815 slab = NULL; 816 817 #ifdef UMA_DEBUG 818 printf("slab_zalloc: Allocating a new slab for %s\n", keg->uk_name); 819 #endif 820 allocf = keg->uk_allocf; 821 KEG_UNLOCK(keg); 822 823 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 824 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 825 if (slab == NULL) { 826 KEG_LOCK(keg); 827 return NULL; 828 } 829 } 830 831 /* 832 * This reproduces the old vm_zone behavior of zero filling pages the 833 * first time they are added to a zone. 834 * 835 * Malloced items are zeroed in uma_zalloc. 836 */ 837 838 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 839 wait |= M_ZERO; 840 else 841 wait &= ~M_ZERO; 842 843 /* zone is passed for legacy reasons. */ 844 mem = allocf(zone, keg->uk_ppera * UMA_SLAB_SIZE, &flags, wait); 845 if (mem == NULL) { 846 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 847 zone_free_item(keg->uk_slabzone, slab, NULL, 848 SKIP_NONE, ZFREE_STATFREE); 849 KEG_LOCK(keg); 850 return (NULL); 851 } 852 853 /* Point the slab into the allocated memory */ 854 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 855 slab = (uma_slab_t )(mem + keg->uk_pgoff); 856 857 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 858 for (i = 0; i < keg->uk_ppera; i++) 859 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 860 861 slab->us_keg = keg; 862 slab->us_data = mem; 863 slab->us_freecount = keg->uk_ipers; 864 slab->us_firstfree = 0; 865 slab->us_flags = flags; 866 867 if (keg->uk_flags & UMA_ZONE_REFCNT) { 868 slabref = (uma_slabrefcnt_t)slab; 869 for (i = 0; i < keg->uk_ipers; i++) { 870 slabref->us_freelist[i].us_refcnt = 0; 871 slabref->us_freelist[i].us_item = i+1; 872 } 873 } else { 874 for (i = 0; i < keg->uk_ipers; i++) 875 slab->us_freelist[i].us_item = i+1; 876 } 877 878 if (keg->uk_init != NULL) { 879 for (i = 0; i < keg->uk_ipers; i++) 880 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 881 keg->uk_size, wait) != 0) 882 break; 883 if (i != keg->uk_ipers) { 884 if (keg->uk_fini != NULL) { 885 for (i--; i > -1; i--) 886 keg->uk_fini(slab->us_data + 887 (keg->uk_rsize * i), 888 keg->uk_size); 889 } 890 if (keg->uk_flags & UMA_ZONE_VTOSLAB) { 891 vm_object_t obj; 892 893 if (flags & UMA_SLAB_KMEM) 894 obj = kmem_object; 895 else if (flags & UMA_SLAB_KERNEL) 896 obj = kernel_object; 897 else 898 obj = NULL; 899 for (i = 0; i < keg->uk_ppera; i++) 900 vsetobj((vm_offset_t)mem + 901 (i * PAGE_SIZE), obj); 902 } 903 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 904 zone_free_item(keg->uk_slabzone, slab, 905 NULL, SKIP_NONE, ZFREE_STATFREE); 906 keg->uk_freef(mem, UMA_SLAB_SIZE * keg->uk_ppera, 907 flags); 908 KEG_LOCK(keg); 909 return (NULL); 910 } 911 } 912 KEG_LOCK(keg); 913 914 if (keg->uk_flags & UMA_ZONE_HASH) 915 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 916 917 keg->uk_pages += keg->uk_ppera; 918 keg->uk_free += keg->uk_ipers; 919 920 return (slab); 921 } 922 923 /* 924 * This function is intended to be used early on in place of page_alloc() so 925 * that we may use the boot time page cache to satisfy allocations before 926 * the VM is ready. 927 */ 928 static void * 929 startup_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 930 { 931 uma_keg_t keg; 932 uma_slab_t tmps; 933 934 keg = zone_first_keg(zone); 935 936 /* 937 * Check our small startup cache to see if it has pages remaining. 938 */ 939 mtx_lock(&uma_boot_pages_mtx); 940 if ((tmps = LIST_FIRST(&uma_boot_pages)) != NULL) { 941 LIST_REMOVE(tmps, us_link); 942 mtx_unlock(&uma_boot_pages_mtx); 943 *pflag = tmps->us_flags; 944 return (tmps->us_data); 945 } 946 mtx_unlock(&uma_boot_pages_mtx); 947 if (booted == 0) 948 panic("UMA: Increase vm.boot_pages"); 949 /* 950 * Now that we've booted reset these users to their real allocator. 951 */ 952 #ifdef UMA_MD_SMALL_ALLOC 953 keg->uk_allocf = uma_small_alloc; 954 #else 955 keg->uk_allocf = page_alloc; 956 #endif 957 return keg->uk_allocf(zone, bytes, pflag, wait); 958 } 959 960 /* 961 * Allocates a number of pages from the system 962 * 963 * Arguments: 964 * bytes The number of bytes requested 965 * wait Shall we wait? 966 * 967 * Returns: 968 * A pointer to the alloced memory or possibly 969 * NULL if M_NOWAIT is set. 970 */ 971 static void * 972 page_alloc(uma_zone_t zone, int bytes, u_int8_t *pflag, int wait) 973 { 974 void *p; /* Returned page */ 975 976 *pflag = UMA_SLAB_KMEM; 977 p = (void *) kmem_malloc(kmem_map, bytes, wait); 978 979 return (p); 980 } 981 982 /* 983 * Allocates a number of pages from within an object 984 * 985 * Arguments: 986 * bytes The number of bytes requested 987 * wait Shall we wait? 988 * 989 * Returns: 990 * A pointer to the alloced memory or possibly 991 * NULL if M_NOWAIT is set. 992 */ 993 static void * 994 obj_alloc(uma_zone_t zone, int bytes, u_int8_t *flags, int wait) 995 { 996 vm_object_t object; 997 vm_offset_t retkva, zkva; 998 vm_page_t p; 999 int pages, startpages; 1000 uma_keg_t keg; 1001 1002 keg = zone_first_keg(zone); 1003 object = keg->uk_obj; 1004 retkva = 0; 1005 1006 /* 1007 * This looks a little weird since we're getting one page at a time. 1008 */ 1009 VM_OBJECT_LOCK(object); 1010 p = TAILQ_LAST(&object->memq, pglist); 1011 pages = p != NULL ? p->pindex + 1 : 0; 1012 startpages = pages; 1013 zkva = keg->uk_kva + pages * PAGE_SIZE; 1014 for (; bytes > 0; bytes -= PAGE_SIZE) { 1015 p = vm_page_alloc(object, pages, 1016 VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED); 1017 if (p == NULL) { 1018 if (pages != startpages) 1019 pmap_qremove(retkva, pages - startpages); 1020 while (pages != startpages) { 1021 pages--; 1022 p = TAILQ_LAST(&object->memq, pglist); 1023 vm_page_unwire(p, 0); 1024 vm_page_free(p); 1025 } 1026 retkva = 0; 1027 goto done; 1028 } 1029 pmap_qenter(zkva, &p, 1); 1030 if (retkva == 0) 1031 retkva = zkva; 1032 zkva += PAGE_SIZE; 1033 pages += 1; 1034 } 1035 done: 1036 VM_OBJECT_UNLOCK(object); 1037 *flags = UMA_SLAB_PRIV; 1038 1039 return ((void *)retkva); 1040 } 1041 1042 /* 1043 * Frees a number of pages to the system 1044 * 1045 * Arguments: 1046 * mem A pointer to the memory to be freed 1047 * size The size of the memory being freed 1048 * flags The original p->us_flags field 1049 * 1050 * Returns: 1051 * Nothing 1052 */ 1053 static void 1054 page_free(void *mem, int size, u_int8_t flags) 1055 { 1056 vm_map_t map; 1057 1058 if (flags & UMA_SLAB_KMEM) 1059 map = kmem_map; 1060 else if (flags & UMA_SLAB_KERNEL) 1061 map = kernel_map; 1062 else 1063 panic("UMA: page_free used with invalid flags %d", flags); 1064 1065 kmem_free(map, (vm_offset_t)mem, size); 1066 } 1067 1068 /* 1069 * Zero fill initializer 1070 * 1071 * Arguments/Returns follow uma_init specifications 1072 */ 1073 static int 1074 zero_init(void *mem, int size, int flags) 1075 { 1076 bzero(mem, size); 1077 return (0); 1078 } 1079 1080 /* 1081 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1082 * 1083 * Arguments 1084 * keg The zone we should initialize 1085 * 1086 * Returns 1087 * Nothing 1088 */ 1089 static void 1090 keg_small_init(uma_keg_t keg) 1091 { 1092 u_int rsize; 1093 u_int memused; 1094 u_int wastedspace; 1095 u_int shsize; 1096 1097 KASSERT(keg != NULL, ("Keg is null in keg_small_init")); 1098 rsize = keg->uk_size; 1099 1100 if (rsize < UMA_SMALLEST_UNIT) 1101 rsize = UMA_SMALLEST_UNIT; 1102 if (rsize & keg->uk_align) 1103 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1104 1105 keg->uk_rsize = rsize; 1106 keg->uk_ppera = 1; 1107 1108 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1109 rsize += UMA_FRITMREF_SZ; /* linkage & refcnt */ 1110 shsize = sizeof(struct uma_slab_refcnt); 1111 } else { 1112 rsize += UMA_FRITM_SZ; /* Account for linkage */ 1113 shsize = sizeof(struct uma_slab); 1114 } 1115 1116 keg->uk_ipers = (UMA_SLAB_SIZE - shsize) / rsize; 1117 KASSERT(keg->uk_ipers != 0, ("keg_small_init: ipers is 0")); 1118 memused = keg->uk_ipers * rsize + shsize; 1119 wastedspace = UMA_SLAB_SIZE - memused; 1120 1121 /* 1122 * We can't do OFFPAGE if we're internal or if we've been 1123 * asked to not go to the VM for buckets. If we do this we 1124 * may end up going to the VM (kmem_map) for slabs which we 1125 * do not want to do if we're UMA_ZFLAG_CACHEONLY as a 1126 * result of UMA_ZONE_VM, which clearly forbids it. 1127 */ 1128 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1129 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1130 return; 1131 1132 if ((wastedspace >= UMA_MAX_WASTE) && 1133 (keg->uk_ipers < (UMA_SLAB_SIZE / keg->uk_rsize))) { 1134 keg->uk_ipers = UMA_SLAB_SIZE / keg->uk_rsize; 1135 KASSERT(keg->uk_ipers <= 255, 1136 ("keg_small_init: keg->uk_ipers too high!")); 1137 #ifdef UMA_DEBUG 1138 printf("UMA decided we need offpage slab headers for " 1139 "keg: %s, calculated wastedspace = %d, " 1140 "maximum wasted space allowed = %d, " 1141 "calculated ipers = %d, " 1142 "new wasted space = %d\n", keg->uk_name, wastedspace, 1143 UMA_MAX_WASTE, keg->uk_ipers, 1144 UMA_SLAB_SIZE - keg->uk_ipers * keg->uk_rsize); 1145 #endif 1146 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1147 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1148 keg->uk_flags |= UMA_ZONE_HASH; 1149 } 1150 } 1151 1152 /* 1153 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1154 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1155 * more complicated. 1156 * 1157 * Arguments 1158 * keg The keg we should initialize 1159 * 1160 * Returns 1161 * Nothing 1162 */ 1163 static void 1164 keg_large_init(uma_keg_t keg) 1165 { 1166 int pages; 1167 1168 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1169 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1170 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1171 1172 pages = keg->uk_size / UMA_SLAB_SIZE; 1173 1174 /* Account for remainder */ 1175 if ((pages * UMA_SLAB_SIZE) < keg->uk_size) 1176 pages++; 1177 1178 keg->uk_ppera = pages; 1179 keg->uk_ipers = 1; 1180 1181 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1182 if ((keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1183 keg->uk_flags |= UMA_ZONE_HASH; 1184 1185 keg->uk_rsize = keg->uk_size; 1186 } 1187 1188 static void 1189 keg_cachespread_init(uma_keg_t keg) 1190 { 1191 int alignsize; 1192 int trailer; 1193 int pages; 1194 int rsize; 1195 1196 alignsize = keg->uk_align + 1; 1197 rsize = keg->uk_size; 1198 /* 1199 * We want one item to start on every align boundary in a page. To 1200 * do this we will span pages. We will also extend the item by the 1201 * size of align if it is an even multiple of align. Otherwise, it 1202 * would fall on the same boundary every time. 1203 */ 1204 if (rsize & keg->uk_align) 1205 rsize = (rsize & ~keg->uk_align) + alignsize; 1206 if ((rsize & alignsize) == 0) 1207 rsize += alignsize; 1208 trailer = rsize - keg->uk_size; 1209 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1210 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1211 keg->uk_rsize = rsize; 1212 keg->uk_ppera = pages; 1213 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1214 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1215 KASSERT(keg->uk_ipers <= uma_max_ipers, 1216 ("keg_small_init: keg->uk_ipers too high(%d) increase max_ipers", 1217 keg->uk_ipers)); 1218 } 1219 1220 /* 1221 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1222 * the keg onto the global keg list. 1223 * 1224 * Arguments/Returns follow uma_ctor specifications 1225 * udata Actually uma_kctor_args 1226 */ 1227 static int 1228 keg_ctor(void *mem, int size, void *udata, int flags) 1229 { 1230 struct uma_kctor_args *arg = udata; 1231 uma_keg_t keg = mem; 1232 uma_zone_t zone; 1233 1234 bzero(keg, size); 1235 keg->uk_size = arg->size; 1236 keg->uk_init = arg->uminit; 1237 keg->uk_fini = arg->fini; 1238 keg->uk_align = arg->align; 1239 keg->uk_free = 0; 1240 keg->uk_pages = 0; 1241 keg->uk_flags = arg->flags; 1242 keg->uk_allocf = page_alloc; 1243 keg->uk_freef = page_free; 1244 keg->uk_recurse = 0; 1245 keg->uk_slabzone = NULL; 1246 1247 /* 1248 * The master zone is passed to us at keg-creation time. 1249 */ 1250 zone = arg->zone; 1251 keg->uk_name = zone->uz_name; 1252 1253 if (arg->flags & UMA_ZONE_VM) 1254 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1255 1256 if (arg->flags & UMA_ZONE_ZINIT) 1257 keg->uk_init = zero_init; 1258 1259 if (arg->flags & UMA_ZONE_REFCNT || arg->flags & UMA_ZONE_MALLOC) 1260 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1261 1262 /* 1263 * The +UMA_FRITM_SZ added to uk_size is to account for the 1264 * linkage that is added to the size in keg_small_init(). If 1265 * we don't account for this here then we may end up in 1266 * keg_small_init() with a calculated 'ipers' of 0. 1267 */ 1268 if (keg->uk_flags & UMA_ZONE_REFCNT) { 1269 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1270 keg_cachespread_init(keg); 1271 else if ((keg->uk_size+UMA_FRITMREF_SZ) > 1272 (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt))) 1273 keg_large_init(keg); 1274 else 1275 keg_small_init(keg); 1276 } else { 1277 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) 1278 keg_cachespread_init(keg); 1279 else if ((keg->uk_size+UMA_FRITM_SZ) > 1280 (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1281 keg_large_init(keg); 1282 else 1283 keg_small_init(keg); 1284 } 1285 1286 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 1287 if (keg->uk_flags & UMA_ZONE_REFCNT) 1288 keg->uk_slabzone = slabrefzone; 1289 else 1290 keg->uk_slabzone = slabzone; 1291 } 1292 1293 /* 1294 * If we haven't booted yet we need allocations to go through the 1295 * startup cache until the vm is ready. 1296 */ 1297 if (keg->uk_ppera == 1) { 1298 #ifdef UMA_MD_SMALL_ALLOC 1299 keg->uk_allocf = uma_small_alloc; 1300 keg->uk_freef = uma_small_free; 1301 #endif 1302 if (booted == 0) 1303 keg->uk_allocf = startup_alloc; 1304 } 1305 1306 /* 1307 * Initialize keg's lock (shared among zones). 1308 */ 1309 if (arg->flags & UMA_ZONE_MTXCLASS) 1310 KEG_LOCK_INIT(keg, 1); 1311 else 1312 KEG_LOCK_INIT(keg, 0); 1313 1314 /* 1315 * If we're putting the slab header in the actual page we need to 1316 * figure out where in each page it goes. This calculates a right 1317 * justified offset into the memory on an ALIGN_PTR boundary. 1318 */ 1319 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1320 u_int totsize; 1321 1322 /* Size of the slab struct and free list */ 1323 if (keg->uk_flags & UMA_ZONE_REFCNT) 1324 totsize = sizeof(struct uma_slab_refcnt) + 1325 keg->uk_ipers * UMA_FRITMREF_SZ; 1326 else 1327 totsize = sizeof(struct uma_slab) + 1328 keg->uk_ipers * UMA_FRITM_SZ; 1329 1330 if (totsize & UMA_ALIGN_PTR) 1331 totsize = (totsize & ~UMA_ALIGN_PTR) + 1332 (UMA_ALIGN_PTR + 1); 1333 keg->uk_pgoff = UMA_SLAB_SIZE - totsize; 1334 1335 if (keg->uk_flags & UMA_ZONE_REFCNT) 1336 totsize = keg->uk_pgoff + sizeof(struct uma_slab_refcnt) 1337 + keg->uk_ipers * UMA_FRITMREF_SZ; 1338 else 1339 totsize = keg->uk_pgoff + sizeof(struct uma_slab) 1340 + keg->uk_ipers * UMA_FRITM_SZ; 1341 1342 /* 1343 * The only way the following is possible is if with our 1344 * UMA_ALIGN_PTR adjustments we are now bigger than 1345 * UMA_SLAB_SIZE. I haven't checked whether this is 1346 * mathematically possible for all cases, so we make 1347 * sure here anyway. 1348 */ 1349 if (totsize > UMA_SLAB_SIZE) { 1350 printf("zone %s ipers %d rsize %d size %d\n", 1351 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1352 keg->uk_size); 1353 panic("UMA slab won't fit."); 1354 } 1355 } 1356 1357 if (keg->uk_flags & UMA_ZONE_HASH) 1358 hash_alloc(&keg->uk_hash); 1359 1360 #ifdef UMA_DEBUG 1361 printf("UMA: %s(%p) size %d(%d) flags %d ipers %d ppera %d out %d free %d\n", 1362 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1363 keg->uk_ipers, keg->uk_ppera, 1364 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free); 1365 #endif 1366 1367 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1368 1369 mtx_lock(&uma_mtx); 1370 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1371 mtx_unlock(&uma_mtx); 1372 return (0); 1373 } 1374 1375 /* 1376 * Zone header ctor. This initializes all fields, locks, etc. 1377 * 1378 * Arguments/Returns follow uma_ctor specifications 1379 * udata Actually uma_zctor_args 1380 */ 1381 static int 1382 zone_ctor(void *mem, int size, void *udata, int flags) 1383 { 1384 struct uma_zctor_args *arg = udata; 1385 uma_zone_t zone = mem; 1386 uma_zone_t z; 1387 uma_keg_t keg; 1388 1389 bzero(zone, size); 1390 zone->uz_name = arg->name; 1391 zone->uz_ctor = arg->ctor; 1392 zone->uz_dtor = arg->dtor; 1393 zone->uz_slab = zone_fetch_slab; 1394 zone->uz_init = NULL; 1395 zone->uz_fini = NULL; 1396 zone->uz_allocs = 0; 1397 zone->uz_frees = 0; 1398 zone->uz_fails = 0; 1399 zone->uz_sleeps = 0; 1400 zone->uz_fills = zone->uz_count = 0; 1401 zone->uz_flags = 0; 1402 keg = arg->keg; 1403 1404 if (arg->flags & UMA_ZONE_SECONDARY) { 1405 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1406 zone->uz_init = arg->uminit; 1407 zone->uz_fini = arg->fini; 1408 zone->uz_lock = &keg->uk_lock; 1409 zone->uz_flags |= UMA_ZONE_SECONDARY; 1410 mtx_lock(&uma_mtx); 1411 ZONE_LOCK(zone); 1412 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1413 if (LIST_NEXT(z, uz_link) == NULL) { 1414 LIST_INSERT_AFTER(z, zone, uz_link); 1415 break; 1416 } 1417 } 1418 ZONE_UNLOCK(zone); 1419 mtx_unlock(&uma_mtx); 1420 } else if (keg == NULL) { 1421 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1422 arg->align, arg->flags)) == NULL) 1423 return (ENOMEM); 1424 } else { 1425 struct uma_kctor_args karg; 1426 int error; 1427 1428 /* We should only be here from uma_startup() */ 1429 karg.size = arg->size; 1430 karg.uminit = arg->uminit; 1431 karg.fini = arg->fini; 1432 karg.align = arg->align; 1433 karg.flags = arg->flags; 1434 karg.zone = zone; 1435 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1436 flags); 1437 if (error) 1438 return (error); 1439 } 1440 /* 1441 * Link in the first keg. 1442 */ 1443 zone->uz_klink.kl_keg = keg; 1444 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1445 zone->uz_lock = &keg->uk_lock; 1446 zone->uz_size = keg->uk_size; 1447 zone->uz_flags |= (keg->uk_flags & 1448 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1449 1450 /* 1451 * Some internal zones don't have room allocated for the per cpu 1452 * caches. If we're internal, bail out here. 1453 */ 1454 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1455 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1456 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1457 return (0); 1458 } 1459 1460 if (keg->uk_flags & UMA_ZONE_MAXBUCKET) 1461 zone->uz_count = BUCKET_MAX; 1462 else if (keg->uk_ipers <= BUCKET_MAX) 1463 zone->uz_count = keg->uk_ipers; 1464 else 1465 zone->uz_count = BUCKET_MAX; 1466 return (0); 1467 } 1468 1469 /* 1470 * Keg header dtor. This frees all data, destroys locks, frees the hash 1471 * table and removes the keg from the global list. 1472 * 1473 * Arguments/Returns follow uma_dtor specifications 1474 * udata unused 1475 */ 1476 static void 1477 keg_dtor(void *arg, int size, void *udata) 1478 { 1479 uma_keg_t keg; 1480 1481 keg = (uma_keg_t)arg; 1482 KEG_LOCK(keg); 1483 if (keg->uk_free != 0) { 1484 printf("Freed UMA keg was not empty (%d items). " 1485 " Lost %d pages of memory.\n", 1486 keg->uk_free, keg->uk_pages); 1487 } 1488 KEG_UNLOCK(keg); 1489 1490 hash_free(&keg->uk_hash); 1491 1492 KEG_LOCK_FINI(keg); 1493 } 1494 1495 /* 1496 * Zone header dtor. 1497 * 1498 * Arguments/Returns follow uma_dtor specifications 1499 * udata unused 1500 */ 1501 static void 1502 zone_dtor(void *arg, int size, void *udata) 1503 { 1504 uma_klink_t klink; 1505 uma_zone_t zone; 1506 uma_keg_t keg; 1507 1508 zone = (uma_zone_t)arg; 1509 keg = zone_first_keg(zone); 1510 1511 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1512 cache_drain(zone); 1513 1514 mtx_lock(&uma_mtx); 1515 LIST_REMOVE(zone, uz_link); 1516 mtx_unlock(&uma_mtx); 1517 /* 1518 * XXX there are some races here where 1519 * the zone can be drained but zone lock 1520 * released and then refilled before we 1521 * remove it... we dont care for now 1522 */ 1523 zone_drain_wait(zone, M_WAITOK); 1524 /* 1525 * Unlink all of our kegs. 1526 */ 1527 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1528 klink->kl_keg = NULL; 1529 LIST_REMOVE(klink, kl_link); 1530 if (klink == &zone->uz_klink) 1531 continue; 1532 free(klink, M_TEMP); 1533 } 1534 /* 1535 * We only destroy kegs from non secondary zones. 1536 */ 1537 if ((zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1538 mtx_lock(&uma_mtx); 1539 LIST_REMOVE(keg, uk_link); 1540 mtx_unlock(&uma_mtx); 1541 zone_free_item(kegs, keg, NULL, SKIP_NONE, 1542 ZFREE_STATFREE); 1543 } 1544 } 1545 1546 /* 1547 * Traverses every zone in the system and calls a callback 1548 * 1549 * Arguments: 1550 * zfunc A pointer to a function which accepts a zone 1551 * as an argument. 1552 * 1553 * Returns: 1554 * Nothing 1555 */ 1556 static void 1557 zone_foreach(void (*zfunc)(uma_zone_t)) 1558 { 1559 uma_keg_t keg; 1560 uma_zone_t zone; 1561 1562 mtx_lock(&uma_mtx); 1563 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1564 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1565 zfunc(zone); 1566 } 1567 mtx_unlock(&uma_mtx); 1568 } 1569 1570 /* Public functions */ 1571 /* See uma.h */ 1572 void 1573 uma_startup(void *bootmem, int boot_pages) 1574 { 1575 struct uma_zctor_args args; 1576 uma_slab_t slab; 1577 u_int slabsize; 1578 u_int objsize, totsize, wsize; 1579 int i; 1580 1581 #ifdef UMA_DEBUG 1582 printf("Creating uma keg headers zone and keg.\n"); 1583 #endif 1584 mtx_init(&uma_mtx, "UMA lock", NULL, MTX_DEF); 1585 1586 /* 1587 * Figure out the maximum number of items-per-slab we'll have if 1588 * we're using the OFFPAGE slab header to track free items, given 1589 * all possible object sizes and the maximum desired wastage 1590 * (UMA_MAX_WASTE). 1591 * 1592 * We iterate until we find an object size for 1593 * which the calculated wastage in keg_small_init() will be 1594 * enough to warrant OFFPAGE. Since wastedspace versus objsize 1595 * is an overall increasing see-saw function, we find the smallest 1596 * objsize such that the wastage is always acceptable for objects 1597 * with that objsize or smaller. Since a smaller objsize always 1598 * generates a larger possible uma_max_ipers, we use this computed 1599 * objsize to calculate the largest ipers possible. Since the 1600 * ipers calculated for OFFPAGE slab headers is always larger than 1601 * the ipers initially calculated in keg_small_init(), we use 1602 * the former's equation (UMA_SLAB_SIZE / keg->uk_rsize) to 1603 * obtain the maximum ipers possible for offpage slab headers. 1604 * 1605 * It should be noted that ipers versus objsize is an inversly 1606 * proportional function which drops off rather quickly so as 1607 * long as our UMA_MAX_WASTE is such that the objsize we calculate 1608 * falls into the portion of the inverse relation AFTER the steep 1609 * falloff, then uma_max_ipers shouldn't be too high (~10 on i386). 1610 * 1611 * Note that we have 8-bits (1 byte) to use as a freelist index 1612 * inside the actual slab header itself and this is enough to 1613 * accomodate us. In the worst case, a UMA_SMALLEST_UNIT sized 1614 * object with offpage slab header would have ipers = 1615 * UMA_SLAB_SIZE / UMA_SMALLEST_UNIT (currently = 256), which is 1616 * 1 greater than what our byte-integer freelist index can 1617 * accomodate, but we know that this situation never occurs as 1618 * for UMA_SMALLEST_UNIT-sized objects, we will never calculate 1619 * that we need to go to offpage slab headers. Or, if we do, 1620 * then we trap that condition below and panic in the INVARIANTS case. 1621 */ 1622 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab) - UMA_MAX_WASTE; 1623 totsize = wsize; 1624 objsize = UMA_SMALLEST_UNIT; 1625 while (totsize >= wsize) { 1626 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab)) / 1627 (objsize + UMA_FRITM_SZ); 1628 totsize *= (UMA_FRITM_SZ + objsize); 1629 objsize++; 1630 } 1631 if (objsize > UMA_SMALLEST_UNIT) 1632 objsize--; 1633 uma_max_ipers = MAX(UMA_SLAB_SIZE / objsize, 64); 1634 1635 wsize = UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt) - UMA_MAX_WASTE; 1636 totsize = wsize; 1637 objsize = UMA_SMALLEST_UNIT; 1638 while (totsize >= wsize) { 1639 totsize = (UMA_SLAB_SIZE - sizeof(struct uma_slab_refcnt)) / 1640 (objsize + UMA_FRITMREF_SZ); 1641 totsize *= (UMA_FRITMREF_SZ + objsize); 1642 objsize++; 1643 } 1644 if (objsize > UMA_SMALLEST_UNIT) 1645 objsize--; 1646 uma_max_ipers_ref = MAX(UMA_SLAB_SIZE / objsize, 64); 1647 1648 KASSERT((uma_max_ipers_ref <= 255) && (uma_max_ipers <= 255), 1649 ("uma_startup: calculated uma_max_ipers values too large!")); 1650 1651 #ifdef UMA_DEBUG 1652 printf("Calculated uma_max_ipers (for OFFPAGE) is %d\n", uma_max_ipers); 1653 printf("Calculated uma_max_ipers_slab (for OFFPAGE) is %d\n", 1654 uma_max_ipers_ref); 1655 #endif 1656 1657 /* "manually" create the initial zone */ 1658 args.name = "UMA Kegs"; 1659 args.size = sizeof(struct uma_keg); 1660 args.ctor = keg_ctor; 1661 args.dtor = keg_dtor; 1662 args.uminit = zero_init; 1663 args.fini = NULL; 1664 args.keg = &masterkeg; 1665 args.align = 32 - 1; 1666 args.flags = UMA_ZFLAG_INTERNAL; 1667 /* The initial zone has no Per cpu queues so it's smaller */ 1668 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1669 1670 #ifdef UMA_DEBUG 1671 printf("Filling boot free list.\n"); 1672 #endif 1673 for (i = 0; i < boot_pages; i++) { 1674 slab = (uma_slab_t)((u_int8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1675 slab->us_data = (u_int8_t *)slab; 1676 slab->us_flags = UMA_SLAB_BOOT; 1677 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1678 } 1679 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1680 1681 #ifdef UMA_DEBUG 1682 printf("Creating uma zone headers zone and keg.\n"); 1683 #endif 1684 args.name = "UMA Zones"; 1685 args.size = sizeof(struct uma_zone) + 1686 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1687 args.ctor = zone_ctor; 1688 args.dtor = zone_dtor; 1689 args.uminit = zero_init; 1690 args.fini = NULL; 1691 args.keg = NULL; 1692 args.align = 32 - 1; 1693 args.flags = UMA_ZFLAG_INTERNAL; 1694 /* The initial zone has no Per cpu queues so it's smaller */ 1695 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1696 1697 #ifdef UMA_DEBUG 1698 printf("Initializing pcpu cache locks.\n"); 1699 #endif 1700 #ifdef UMA_DEBUG 1701 printf("Creating slab and hash zones.\n"); 1702 #endif 1703 1704 /* 1705 * This is the max number of free list items we'll have with 1706 * offpage slabs. 1707 */ 1708 slabsize = uma_max_ipers * UMA_FRITM_SZ; 1709 slabsize += sizeof(struct uma_slab); 1710 1711 /* Now make a zone for slab headers */ 1712 slabzone = uma_zcreate("UMA Slabs", 1713 slabsize, 1714 NULL, NULL, NULL, NULL, 1715 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1716 1717 /* 1718 * We also create a zone for the bigger slabs with reference 1719 * counts in them, to accomodate UMA_ZONE_REFCNT zones. 1720 */ 1721 slabsize = uma_max_ipers_ref * UMA_FRITMREF_SZ; 1722 slabsize += sizeof(struct uma_slab_refcnt); 1723 slabrefzone = uma_zcreate("UMA RCntSlabs", 1724 slabsize, 1725 NULL, NULL, NULL, NULL, 1726 UMA_ALIGN_PTR, 1727 UMA_ZFLAG_INTERNAL); 1728 1729 hashzone = uma_zcreate("UMA Hash", 1730 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1731 NULL, NULL, NULL, NULL, 1732 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1733 1734 bucket_init(); 1735 1736 #if defined(UMA_MD_SMALL_ALLOC) && !defined(UMA_MD_SMALL_ALLOC_NEEDS_VM) 1737 booted = 1; 1738 #endif 1739 1740 #ifdef UMA_DEBUG 1741 printf("UMA startup complete.\n"); 1742 #endif 1743 } 1744 1745 /* see uma.h */ 1746 void 1747 uma_startup2(void) 1748 { 1749 booted = 1; 1750 bucket_enable(); 1751 #ifdef UMA_DEBUG 1752 printf("UMA startup2 complete.\n"); 1753 #endif 1754 } 1755 1756 /* 1757 * Initialize our callout handle 1758 * 1759 */ 1760 1761 static void 1762 uma_startup3(void) 1763 { 1764 #ifdef UMA_DEBUG 1765 printf("Starting callout.\n"); 1766 #endif 1767 callout_init(&uma_callout, CALLOUT_MPSAFE); 1768 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1769 #ifdef UMA_DEBUG 1770 printf("UMA startup3 complete.\n"); 1771 #endif 1772 } 1773 1774 static uma_keg_t 1775 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1776 int align, u_int32_t flags) 1777 { 1778 struct uma_kctor_args args; 1779 1780 args.size = size; 1781 args.uminit = uminit; 1782 args.fini = fini; 1783 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1784 args.flags = flags; 1785 args.zone = zone; 1786 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1787 } 1788 1789 /* See uma.h */ 1790 void 1791 uma_set_align(int align) 1792 { 1793 1794 if (align != UMA_ALIGN_CACHE) 1795 uma_align_cache = align; 1796 } 1797 1798 /* See uma.h */ 1799 uma_zone_t 1800 uma_zcreate(char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1801 uma_init uminit, uma_fini fini, int align, u_int32_t flags) 1802 1803 { 1804 struct uma_zctor_args args; 1805 1806 /* This stuff is essential for the zone ctor */ 1807 args.name = name; 1808 args.size = size; 1809 args.ctor = ctor; 1810 args.dtor = dtor; 1811 args.uminit = uminit; 1812 args.fini = fini; 1813 args.align = align; 1814 args.flags = flags; 1815 args.keg = NULL; 1816 1817 return (zone_alloc_item(zones, &args, M_WAITOK)); 1818 } 1819 1820 /* See uma.h */ 1821 uma_zone_t 1822 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1823 uma_init zinit, uma_fini zfini, uma_zone_t master) 1824 { 1825 struct uma_zctor_args args; 1826 uma_keg_t keg; 1827 1828 keg = zone_first_keg(master); 1829 args.name = name; 1830 args.size = keg->uk_size; 1831 args.ctor = ctor; 1832 args.dtor = dtor; 1833 args.uminit = zinit; 1834 args.fini = zfini; 1835 args.align = keg->uk_align; 1836 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1837 args.keg = keg; 1838 1839 /* XXX Attaches only one keg of potentially many. */ 1840 return (zone_alloc_item(zones, &args, M_WAITOK)); 1841 } 1842 1843 static void 1844 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1845 { 1846 if (a < b) { 1847 ZONE_LOCK(a); 1848 mtx_lock_flags(b->uz_lock, MTX_DUPOK); 1849 } else { 1850 ZONE_LOCK(b); 1851 mtx_lock_flags(a->uz_lock, MTX_DUPOK); 1852 } 1853 } 1854 1855 static void 1856 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 1857 { 1858 1859 ZONE_UNLOCK(a); 1860 ZONE_UNLOCK(b); 1861 } 1862 1863 int 1864 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 1865 { 1866 uma_klink_t klink; 1867 uma_klink_t kl; 1868 int error; 1869 1870 error = 0; 1871 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 1872 1873 zone_lock_pair(zone, master); 1874 /* 1875 * zone must use vtoslab() to resolve objects and must already be 1876 * a secondary. 1877 */ 1878 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 1879 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 1880 error = EINVAL; 1881 goto out; 1882 } 1883 /* 1884 * The new master must also use vtoslab(). 1885 */ 1886 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 1887 error = EINVAL; 1888 goto out; 1889 } 1890 /* 1891 * Both must either be refcnt, or not be refcnt. 1892 */ 1893 if ((zone->uz_flags & UMA_ZONE_REFCNT) != 1894 (master->uz_flags & UMA_ZONE_REFCNT)) { 1895 error = EINVAL; 1896 goto out; 1897 } 1898 /* 1899 * The underlying object must be the same size. rsize 1900 * may be different. 1901 */ 1902 if (master->uz_size != zone->uz_size) { 1903 error = E2BIG; 1904 goto out; 1905 } 1906 /* 1907 * Put it at the end of the list. 1908 */ 1909 klink->kl_keg = zone_first_keg(master); 1910 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 1911 if (LIST_NEXT(kl, kl_link) == NULL) { 1912 LIST_INSERT_AFTER(kl, klink, kl_link); 1913 break; 1914 } 1915 } 1916 klink = NULL; 1917 zone->uz_flags |= UMA_ZFLAG_MULTI; 1918 zone->uz_slab = zone_fetch_slab_multi; 1919 1920 out: 1921 zone_unlock_pair(zone, master); 1922 if (klink != NULL) 1923 free(klink, M_TEMP); 1924 1925 return (error); 1926 } 1927 1928 1929 /* See uma.h */ 1930 void 1931 uma_zdestroy(uma_zone_t zone) 1932 { 1933 1934 zone_free_item(zones, zone, NULL, SKIP_NONE, ZFREE_STATFREE); 1935 } 1936 1937 /* See uma.h */ 1938 void * 1939 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 1940 { 1941 void *item; 1942 uma_cache_t cache; 1943 uma_bucket_t bucket; 1944 int cpu; 1945 1946 /* This is the fast path allocation */ 1947 #ifdef UMA_DEBUG_ALLOC_1 1948 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 1949 #endif 1950 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 1951 zone->uz_name, flags); 1952 1953 if (flags & M_WAITOK) { 1954 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 1955 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 1956 } 1957 1958 /* 1959 * If possible, allocate from the per-CPU cache. There are two 1960 * requirements for safe access to the per-CPU cache: (1) the thread 1961 * accessing the cache must not be preempted or yield during access, 1962 * and (2) the thread must not migrate CPUs without switching which 1963 * cache it accesses. We rely on a critical section to prevent 1964 * preemption and migration. We release the critical section in 1965 * order to acquire the zone mutex if we are unable to allocate from 1966 * the current cache; when we re-acquire the critical section, we 1967 * must detect and handle migration if it has occurred. 1968 */ 1969 zalloc_restart: 1970 critical_enter(); 1971 cpu = curcpu; 1972 cache = &zone->uz_cpu[cpu]; 1973 1974 zalloc_start: 1975 bucket = cache->uc_allocbucket; 1976 1977 if (bucket) { 1978 if (bucket->ub_cnt > 0) { 1979 bucket->ub_cnt--; 1980 item = bucket->ub_bucket[bucket->ub_cnt]; 1981 #ifdef INVARIANTS 1982 bucket->ub_bucket[bucket->ub_cnt] = NULL; 1983 #endif 1984 KASSERT(item != NULL, 1985 ("uma_zalloc: Bucket pointer mangled.")); 1986 cache->uc_allocs++; 1987 critical_exit(); 1988 #ifdef INVARIANTS 1989 ZONE_LOCK(zone); 1990 uma_dbg_alloc(zone, NULL, item); 1991 ZONE_UNLOCK(zone); 1992 #endif 1993 if (zone->uz_ctor != NULL) { 1994 if (zone->uz_ctor(item, zone->uz_size, 1995 udata, flags) != 0) { 1996 zone_free_item(zone, item, udata, 1997 SKIP_DTOR, ZFREE_STATFAIL | 1998 ZFREE_STATFREE); 1999 return (NULL); 2000 } 2001 } 2002 if (flags & M_ZERO) 2003 bzero(item, zone->uz_size); 2004 return (item); 2005 } else if (cache->uc_freebucket) { 2006 /* 2007 * We have run out of items in our allocbucket. 2008 * See if we can switch with our free bucket. 2009 */ 2010 if (cache->uc_freebucket->ub_cnt > 0) { 2011 #ifdef UMA_DEBUG_ALLOC 2012 printf("uma_zalloc: Swapping empty with" 2013 " alloc.\n"); 2014 #endif 2015 bucket = cache->uc_freebucket; 2016 cache->uc_freebucket = cache->uc_allocbucket; 2017 cache->uc_allocbucket = bucket; 2018 2019 goto zalloc_start; 2020 } 2021 } 2022 } 2023 /* 2024 * Attempt to retrieve the item from the per-CPU cache has failed, so 2025 * we must go back to the zone. This requires the zone lock, so we 2026 * must drop the critical section, then re-acquire it when we go back 2027 * to the cache. Since the critical section is released, we may be 2028 * preempted or migrate. As such, make sure not to maintain any 2029 * thread-local state specific to the cache from prior to releasing 2030 * the critical section. 2031 */ 2032 critical_exit(); 2033 ZONE_LOCK(zone); 2034 critical_enter(); 2035 cpu = curcpu; 2036 cache = &zone->uz_cpu[cpu]; 2037 bucket = cache->uc_allocbucket; 2038 if (bucket != NULL) { 2039 if (bucket->ub_cnt > 0) { 2040 ZONE_UNLOCK(zone); 2041 goto zalloc_start; 2042 } 2043 bucket = cache->uc_freebucket; 2044 if (bucket != NULL && bucket->ub_cnt > 0) { 2045 ZONE_UNLOCK(zone); 2046 goto zalloc_start; 2047 } 2048 } 2049 2050 /* Since we have locked the zone we may as well send back our stats */ 2051 zone->uz_allocs += cache->uc_allocs; 2052 cache->uc_allocs = 0; 2053 zone->uz_frees += cache->uc_frees; 2054 cache->uc_frees = 0; 2055 2056 /* Our old one is now a free bucket */ 2057 if (cache->uc_allocbucket) { 2058 KASSERT(cache->uc_allocbucket->ub_cnt == 0, 2059 ("uma_zalloc_arg: Freeing a non free bucket.")); 2060 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2061 cache->uc_allocbucket, ub_link); 2062 cache->uc_allocbucket = NULL; 2063 } 2064 2065 /* Check the free list for a new alloc bucket */ 2066 if ((bucket = LIST_FIRST(&zone->uz_full_bucket)) != NULL) { 2067 KASSERT(bucket->ub_cnt != 0, 2068 ("uma_zalloc_arg: Returning an empty bucket.")); 2069 2070 LIST_REMOVE(bucket, ub_link); 2071 cache->uc_allocbucket = bucket; 2072 ZONE_UNLOCK(zone); 2073 goto zalloc_start; 2074 } 2075 /* We are no longer associated with this CPU. */ 2076 critical_exit(); 2077 2078 /* Bump up our uz_count so we get here less */ 2079 if (zone->uz_count < BUCKET_MAX) 2080 zone->uz_count++; 2081 2082 /* 2083 * Now lets just fill a bucket and put it on the free list. If that 2084 * works we'll restart the allocation from the begining. 2085 */ 2086 if (zone_alloc_bucket(zone, flags)) { 2087 ZONE_UNLOCK(zone); 2088 goto zalloc_restart; 2089 } 2090 ZONE_UNLOCK(zone); 2091 /* 2092 * We may not be able to get a bucket so return an actual item. 2093 */ 2094 #ifdef UMA_DEBUG 2095 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2096 #endif 2097 2098 item = zone_alloc_item(zone, udata, flags); 2099 return (item); 2100 } 2101 2102 static uma_slab_t 2103 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2104 { 2105 uma_slab_t slab; 2106 2107 mtx_assert(&keg->uk_lock, MA_OWNED); 2108 slab = NULL; 2109 2110 for (;;) { 2111 /* 2112 * Find a slab with some space. Prefer slabs that are partially 2113 * used over those that are totally full. This helps to reduce 2114 * fragmentation. 2115 */ 2116 if (keg->uk_free != 0) { 2117 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2118 slab = LIST_FIRST(&keg->uk_part_slab); 2119 } else { 2120 slab = LIST_FIRST(&keg->uk_free_slab); 2121 LIST_REMOVE(slab, us_link); 2122 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2123 us_link); 2124 } 2125 MPASS(slab->us_keg == keg); 2126 return (slab); 2127 } 2128 2129 /* 2130 * M_NOVM means don't ask at all! 2131 */ 2132 if (flags & M_NOVM) 2133 break; 2134 2135 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2136 keg->uk_flags |= UMA_ZFLAG_FULL; 2137 /* 2138 * If this is not a multi-zone, set the FULL bit. 2139 * Otherwise slab_multi() takes care of it. 2140 */ 2141 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) 2142 zone->uz_flags |= UMA_ZFLAG_FULL; 2143 if (flags & M_NOWAIT) 2144 break; 2145 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2146 continue; 2147 } 2148 keg->uk_recurse++; 2149 slab = keg_alloc_slab(keg, zone, flags); 2150 keg->uk_recurse--; 2151 /* 2152 * If we got a slab here it's safe to mark it partially used 2153 * and return. We assume that the caller is going to remove 2154 * at least one item. 2155 */ 2156 if (slab) { 2157 MPASS(slab->us_keg == keg); 2158 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2159 return (slab); 2160 } 2161 /* 2162 * We might not have been able to get a slab but another cpu 2163 * could have while we were unlocked. Check again before we 2164 * fail. 2165 */ 2166 flags |= M_NOVM; 2167 } 2168 return (slab); 2169 } 2170 2171 static inline void 2172 zone_relock(uma_zone_t zone, uma_keg_t keg) 2173 { 2174 if (zone->uz_lock != &keg->uk_lock) { 2175 KEG_UNLOCK(keg); 2176 ZONE_LOCK(zone); 2177 } 2178 } 2179 2180 static inline void 2181 keg_relock(uma_keg_t keg, uma_zone_t zone) 2182 { 2183 if (zone->uz_lock != &keg->uk_lock) { 2184 ZONE_UNLOCK(zone); 2185 KEG_LOCK(keg); 2186 } 2187 } 2188 2189 static uma_slab_t 2190 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2191 { 2192 uma_slab_t slab; 2193 2194 if (keg == NULL) 2195 keg = zone_first_keg(zone); 2196 /* 2197 * This is to prevent us from recursively trying to allocate 2198 * buckets. The problem is that if an allocation forces us to 2199 * grab a new bucket we will call page_alloc, which will go off 2200 * and cause the vm to allocate vm_map_entries. If we need new 2201 * buckets there too we will recurse in kmem_alloc and bad 2202 * things happen. So instead we return a NULL bucket, and make 2203 * the code that allocates buckets smart enough to deal with it 2204 */ 2205 if (keg->uk_flags & UMA_ZFLAG_BUCKET && keg->uk_recurse != 0) 2206 return (NULL); 2207 2208 for (;;) { 2209 slab = keg_fetch_slab(keg, zone, flags); 2210 if (slab) 2211 return (slab); 2212 if (flags & (M_NOWAIT | M_NOVM)) 2213 break; 2214 } 2215 return (NULL); 2216 } 2217 2218 /* 2219 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2220 * with the keg locked. Caller must call zone_relock() afterwards if the 2221 * zone lock is required. On NULL the zone lock is held. 2222 * 2223 * The last pointer is used to seed the search. It is not required. 2224 */ 2225 static uma_slab_t 2226 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2227 { 2228 uma_klink_t klink; 2229 uma_slab_t slab; 2230 uma_keg_t keg; 2231 int flags; 2232 int empty; 2233 int full; 2234 2235 /* 2236 * Don't wait on the first pass. This will skip limit tests 2237 * as well. We don't want to block if we can find a provider 2238 * without blocking. 2239 */ 2240 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2241 /* 2242 * Use the last slab allocated as a hint for where to start 2243 * the search. 2244 */ 2245 if (last) { 2246 slab = keg_fetch_slab(last, zone, flags); 2247 if (slab) 2248 return (slab); 2249 zone_relock(zone, last); 2250 last = NULL; 2251 } 2252 /* 2253 * Loop until we have a slab incase of transient failures 2254 * while M_WAITOK is specified. I'm not sure this is 100% 2255 * required but we've done it for so long now. 2256 */ 2257 for (;;) { 2258 empty = 0; 2259 full = 0; 2260 /* 2261 * Search the available kegs for slabs. Be careful to hold the 2262 * correct lock while calling into the keg layer. 2263 */ 2264 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2265 keg = klink->kl_keg; 2266 keg_relock(keg, zone); 2267 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2268 slab = keg_fetch_slab(keg, zone, flags); 2269 if (slab) 2270 return (slab); 2271 } 2272 if (keg->uk_flags & UMA_ZFLAG_FULL) 2273 full++; 2274 else 2275 empty++; 2276 zone_relock(zone, keg); 2277 } 2278 if (rflags & (M_NOWAIT | M_NOVM)) 2279 break; 2280 flags = rflags; 2281 /* 2282 * All kegs are full. XXX We can't atomically check all kegs 2283 * and sleep so just sleep for a short period and retry. 2284 */ 2285 if (full && !empty) { 2286 zone->uz_flags |= UMA_ZFLAG_FULL; 2287 zone->uz_sleeps++; 2288 msleep(zone, zone->uz_lock, PVM, "zonelimit", hz/100); 2289 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2290 continue; 2291 } 2292 } 2293 return (NULL); 2294 } 2295 2296 static void * 2297 slab_alloc_item(uma_zone_t zone, uma_slab_t slab) 2298 { 2299 uma_keg_t keg; 2300 uma_slabrefcnt_t slabref; 2301 void *item; 2302 u_int8_t freei; 2303 2304 keg = slab->us_keg; 2305 mtx_assert(&keg->uk_lock, MA_OWNED); 2306 2307 freei = slab->us_firstfree; 2308 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2309 slabref = (uma_slabrefcnt_t)slab; 2310 slab->us_firstfree = slabref->us_freelist[freei].us_item; 2311 } else { 2312 slab->us_firstfree = slab->us_freelist[freei].us_item; 2313 } 2314 item = slab->us_data + (keg->uk_rsize * freei); 2315 2316 slab->us_freecount--; 2317 keg->uk_free--; 2318 #ifdef INVARIANTS 2319 uma_dbg_alloc(zone, slab, item); 2320 #endif 2321 /* Move this slab to the full list */ 2322 if (slab->us_freecount == 0) { 2323 LIST_REMOVE(slab, us_link); 2324 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2325 } 2326 2327 return (item); 2328 } 2329 2330 static int 2331 zone_alloc_bucket(uma_zone_t zone, int flags) 2332 { 2333 uma_bucket_t bucket; 2334 uma_slab_t slab; 2335 uma_keg_t keg; 2336 int16_t saved; 2337 int max, origflags = flags; 2338 2339 /* 2340 * Try this zone's free list first so we don't allocate extra buckets. 2341 */ 2342 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2343 KASSERT(bucket->ub_cnt == 0, 2344 ("zone_alloc_bucket: Bucket on free list is not empty.")); 2345 LIST_REMOVE(bucket, ub_link); 2346 } else { 2347 int bflags; 2348 2349 bflags = (flags & ~M_ZERO); 2350 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2351 bflags |= M_NOVM; 2352 2353 ZONE_UNLOCK(zone); 2354 bucket = bucket_alloc(zone->uz_count, bflags); 2355 ZONE_LOCK(zone); 2356 } 2357 2358 if (bucket == NULL) { 2359 return (0); 2360 } 2361 2362 #ifdef SMP 2363 /* 2364 * This code is here to limit the number of simultaneous bucket fills 2365 * for any given zone to the number of per cpu caches in this zone. This 2366 * is done so that we don't allocate more memory than we really need. 2367 */ 2368 if (zone->uz_fills >= mp_ncpus) 2369 goto done; 2370 2371 #endif 2372 zone->uz_fills++; 2373 2374 max = MIN(bucket->ub_entries, zone->uz_count); 2375 /* Try to keep the buckets totally full */ 2376 saved = bucket->ub_cnt; 2377 slab = NULL; 2378 keg = NULL; 2379 while (bucket->ub_cnt < max && 2380 (slab = zone->uz_slab(zone, keg, flags)) != NULL) { 2381 keg = slab->us_keg; 2382 while (slab->us_freecount && bucket->ub_cnt < max) { 2383 bucket->ub_bucket[bucket->ub_cnt++] = 2384 slab_alloc_item(zone, slab); 2385 } 2386 2387 /* Don't block on the next fill */ 2388 flags |= M_NOWAIT; 2389 } 2390 if (slab) 2391 zone_relock(zone, keg); 2392 2393 /* 2394 * We unlock here because we need to call the zone's init. 2395 * It should be safe to unlock because the slab dealt with 2396 * above is already on the appropriate list within the keg 2397 * and the bucket we filled is not yet on any list, so we 2398 * own it. 2399 */ 2400 if (zone->uz_init != NULL) { 2401 int i; 2402 2403 ZONE_UNLOCK(zone); 2404 for (i = saved; i < bucket->ub_cnt; i++) 2405 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2406 origflags) != 0) 2407 break; 2408 /* 2409 * If we couldn't initialize the whole bucket, put the 2410 * rest back onto the freelist. 2411 */ 2412 if (i != bucket->ub_cnt) { 2413 int j; 2414 2415 for (j = i; j < bucket->ub_cnt; j++) { 2416 zone_free_item(zone, bucket->ub_bucket[j], 2417 NULL, SKIP_FINI, 0); 2418 #ifdef INVARIANTS 2419 bucket->ub_bucket[j] = NULL; 2420 #endif 2421 } 2422 bucket->ub_cnt = i; 2423 } 2424 ZONE_LOCK(zone); 2425 } 2426 2427 zone->uz_fills--; 2428 if (bucket->ub_cnt != 0) { 2429 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2430 bucket, ub_link); 2431 return (1); 2432 } 2433 #ifdef SMP 2434 done: 2435 #endif 2436 bucket_free(bucket); 2437 2438 return (0); 2439 } 2440 /* 2441 * Allocates an item for an internal zone 2442 * 2443 * Arguments 2444 * zone The zone to alloc for. 2445 * udata The data to be passed to the constructor. 2446 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2447 * 2448 * Returns 2449 * NULL if there is no memory and M_NOWAIT is set 2450 * An item if successful 2451 */ 2452 2453 static void * 2454 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2455 { 2456 uma_slab_t slab; 2457 void *item; 2458 2459 item = NULL; 2460 2461 #ifdef UMA_DEBUG_ALLOC 2462 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2463 #endif 2464 ZONE_LOCK(zone); 2465 2466 slab = zone->uz_slab(zone, NULL, flags); 2467 if (slab == NULL) { 2468 zone->uz_fails++; 2469 ZONE_UNLOCK(zone); 2470 return (NULL); 2471 } 2472 2473 item = slab_alloc_item(zone, slab); 2474 2475 zone_relock(zone, slab->us_keg); 2476 zone->uz_allocs++; 2477 ZONE_UNLOCK(zone); 2478 2479 /* 2480 * We have to call both the zone's init (not the keg's init) 2481 * and the zone's ctor. This is because the item is going from 2482 * a keg slab directly to the user, and the user is expecting it 2483 * to be both zone-init'd as well as zone-ctor'd. 2484 */ 2485 if (zone->uz_init != NULL) { 2486 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2487 zone_free_item(zone, item, udata, SKIP_FINI, 2488 ZFREE_STATFAIL | ZFREE_STATFREE); 2489 return (NULL); 2490 } 2491 } 2492 if (zone->uz_ctor != NULL) { 2493 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2494 zone_free_item(zone, item, udata, SKIP_DTOR, 2495 ZFREE_STATFAIL | ZFREE_STATFREE); 2496 return (NULL); 2497 } 2498 } 2499 if (flags & M_ZERO) 2500 bzero(item, zone->uz_size); 2501 2502 return (item); 2503 } 2504 2505 /* See uma.h */ 2506 void 2507 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2508 { 2509 uma_cache_t cache; 2510 uma_bucket_t bucket; 2511 int bflags; 2512 int cpu; 2513 2514 #ifdef UMA_DEBUG_ALLOC_1 2515 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2516 #endif 2517 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2518 zone->uz_name); 2519 2520 if (zone->uz_dtor) 2521 zone->uz_dtor(item, zone->uz_size, udata); 2522 2523 #ifdef INVARIANTS 2524 ZONE_LOCK(zone); 2525 if (zone->uz_flags & UMA_ZONE_MALLOC) 2526 uma_dbg_free(zone, udata, item); 2527 else 2528 uma_dbg_free(zone, NULL, item); 2529 ZONE_UNLOCK(zone); 2530 #endif 2531 /* 2532 * The race here is acceptable. If we miss it we'll just have to wait 2533 * a little longer for the limits to be reset. 2534 */ 2535 if (zone->uz_flags & UMA_ZFLAG_FULL) 2536 goto zfree_internal; 2537 2538 /* 2539 * If possible, free to the per-CPU cache. There are two 2540 * requirements for safe access to the per-CPU cache: (1) the thread 2541 * accessing the cache must not be preempted or yield during access, 2542 * and (2) the thread must not migrate CPUs without switching which 2543 * cache it accesses. We rely on a critical section to prevent 2544 * preemption and migration. We release the critical section in 2545 * order to acquire the zone mutex if we are unable to free to the 2546 * current cache; when we re-acquire the critical section, we must 2547 * detect and handle migration if it has occurred. 2548 */ 2549 zfree_restart: 2550 critical_enter(); 2551 cpu = curcpu; 2552 cache = &zone->uz_cpu[cpu]; 2553 2554 zfree_start: 2555 bucket = cache->uc_freebucket; 2556 2557 if (bucket) { 2558 /* 2559 * Do we have room in our bucket? It is OK for this uz count 2560 * check to be slightly out of sync. 2561 */ 2562 2563 if (bucket->ub_cnt < bucket->ub_entries) { 2564 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2565 ("uma_zfree: Freeing to non free bucket index.")); 2566 bucket->ub_bucket[bucket->ub_cnt] = item; 2567 bucket->ub_cnt++; 2568 cache->uc_frees++; 2569 critical_exit(); 2570 return; 2571 } else if (cache->uc_allocbucket) { 2572 #ifdef UMA_DEBUG_ALLOC 2573 printf("uma_zfree: Swapping buckets.\n"); 2574 #endif 2575 /* 2576 * We have run out of space in our freebucket. 2577 * See if we can switch with our alloc bucket. 2578 */ 2579 if (cache->uc_allocbucket->ub_cnt < 2580 cache->uc_freebucket->ub_cnt) { 2581 bucket = cache->uc_freebucket; 2582 cache->uc_freebucket = cache->uc_allocbucket; 2583 cache->uc_allocbucket = bucket; 2584 goto zfree_start; 2585 } 2586 } 2587 } 2588 /* 2589 * We can get here for two reasons: 2590 * 2591 * 1) The buckets are NULL 2592 * 2) The alloc and free buckets are both somewhat full. 2593 * 2594 * We must go back the zone, which requires acquiring the zone lock, 2595 * which in turn means we must release and re-acquire the critical 2596 * section. Since the critical section is released, we may be 2597 * preempted or migrate. As such, make sure not to maintain any 2598 * thread-local state specific to the cache from prior to releasing 2599 * the critical section. 2600 */ 2601 critical_exit(); 2602 ZONE_LOCK(zone); 2603 critical_enter(); 2604 cpu = curcpu; 2605 cache = &zone->uz_cpu[cpu]; 2606 if (cache->uc_freebucket != NULL) { 2607 if (cache->uc_freebucket->ub_cnt < 2608 cache->uc_freebucket->ub_entries) { 2609 ZONE_UNLOCK(zone); 2610 goto zfree_start; 2611 } 2612 if (cache->uc_allocbucket != NULL && 2613 (cache->uc_allocbucket->ub_cnt < 2614 cache->uc_freebucket->ub_cnt)) { 2615 ZONE_UNLOCK(zone); 2616 goto zfree_start; 2617 } 2618 } 2619 2620 /* Since we have locked the zone we may as well send back our stats */ 2621 zone->uz_allocs += cache->uc_allocs; 2622 cache->uc_allocs = 0; 2623 zone->uz_frees += cache->uc_frees; 2624 cache->uc_frees = 0; 2625 2626 bucket = cache->uc_freebucket; 2627 cache->uc_freebucket = NULL; 2628 2629 /* Can we throw this on the zone full list? */ 2630 if (bucket != NULL) { 2631 #ifdef UMA_DEBUG_ALLOC 2632 printf("uma_zfree: Putting old bucket on the free list.\n"); 2633 #endif 2634 /* ub_cnt is pointing to the last free item */ 2635 KASSERT(bucket->ub_cnt != 0, 2636 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2637 LIST_INSERT_HEAD(&zone->uz_full_bucket, 2638 bucket, ub_link); 2639 } 2640 if ((bucket = LIST_FIRST(&zone->uz_free_bucket)) != NULL) { 2641 LIST_REMOVE(bucket, ub_link); 2642 ZONE_UNLOCK(zone); 2643 cache->uc_freebucket = bucket; 2644 goto zfree_start; 2645 } 2646 /* We are no longer associated with this CPU. */ 2647 critical_exit(); 2648 2649 /* And the zone.. */ 2650 ZONE_UNLOCK(zone); 2651 2652 #ifdef UMA_DEBUG_ALLOC 2653 printf("uma_zfree: Allocating new free bucket.\n"); 2654 #endif 2655 bflags = M_NOWAIT; 2656 2657 if (zone->uz_flags & UMA_ZFLAG_CACHEONLY) 2658 bflags |= M_NOVM; 2659 bucket = bucket_alloc(zone->uz_count, bflags); 2660 if (bucket) { 2661 ZONE_LOCK(zone); 2662 LIST_INSERT_HEAD(&zone->uz_free_bucket, 2663 bucket, ub_link); 2664 ZONE_UNLOCK(zone); 2665 goto zfree_restart; 2666 } 2667 2668 /* 2669 * If nothing else caught this, we'll just do an internal free. 2670 */ 2671 zfree_internal: 2672 zone_free_item(zone, item, udata, SKIP_DTOR, ZFREE_STATFREE); 2673 2674 return; 2675 } 2676 2677 /* 2678 * Frees an item to an INTERNAL zone or allocates a free bucket 2679 * 2680 * Arguments: 2681 * zone The zone to free to 2682 * item The item we're freeing 2683 * udata User supplied data for the dtor 2684 * skip Skip dtors and finis 2685 */ 2686 static void 2687 zone_free_item(uma_zone_t zone, void *item, void *udata, 2688 enum zfreeskip skip, int flags) 2689 { 2690 uma_slab_t slab; 2691 uma_slabrefcnt_t slabref; 2692 uma_keg_t keg; 2693 u_int8_t *mem; 2694 u_int8_t freei; 2695 int clearfull; 2696 2697 if (skip < SKIP_DTOR && zone->uz_dtor) 2698 zone->uz_dtor(item, zone->uz_size, udata); 2699 2700 if (skip < SKIP_FINI && zone->uz_fini) 2701 zone->uz_fini(item, zone->uz_size); 2702 2703 ZONE_LOCK(zone); 2704 2705 if (flags & ZFREE_STATFAIL) 2706 zone->uz_fails++; 2707 if (flags & ZFREE_STATFREE) 2708 zone->uz_frees++; 2709 2710 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2711 mem = (u_int8_t *)((unsigned long)item & (~UMA_SLAB_MASK)); 2712 keg = zone_first_keg(zone); /* Must only be one. */ 2713 if (zone->uz_flags & UMA_ZONE_HASH) { 2714 slab = hash_sfind(&keg->uk_hash, mem); 2715 } else { 2716 mem += keg->uk_pgoff; 2717 slab = (uma_slab_t)mem; 2718 } 2719 } else { 2720 /* This prevents redundant lookups via free(). */ 2721 if ((zone->uz_flags & UMA_ZONE_MALLOC) && udata != NULL) 2722 slab = (uma_slab_t)udata; 2723 else 2724 slab = vtoslab((vm_offset_t)item); 2725 keg = slab->us_keg; 2726 keg_relock(keg, zone); 2727 } 2728 MPASS(keg == slab->us_keg); 2729 2730 /* Do we need to remove from any lists? */ 2731 if (slab->us_freecount+1 == keg->uk_ipers) { 2732 LIST_REMOVE(slab, us_link); 2733 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2734 } else if (slab->us_freecount == 0) { 2735 LIST_REMOVE(slab, us_link); 2736 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2737 } 2738 2739 /* Slab management stuff */ 2740 freei = ((unsigned long)item - (unsigned long)slab->us_data) 2741 / keg->uk_rsize; 2742 2743 #ifdef INVARIANTS 2744 if (!skip) 2745 uma_dbg_free(zone, slab, item); 2746 #endif 2747 2748 if (keg->uk_flags & UMA_ZONE_REFCNT) { 2749 slabref = (uma_slabrefcnt_t)slab; 2750 slabref->us_freelist[freei].us_item = slab->us_firstfree; 2751 } else { 2752 slab->us_freelist[freei].us_item = slab->us_firstfree; 2753 } 2754 slab->us_firstfree = freei; 2755 slab->us_freecount++; 2756 2757 /* Zone statistics */ 2758 keg->uk_free++; 2759 2760 clearfull = 0; 2761 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2762 if (keg->uk_pages < keg->uk_maxpages) { 2763 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2764 clearfull = 1; 2765 } 2766 2767 /* 2768 * We can handle one more allocation. Since we're clearing ZFLAG_FULL, 2769 * wake up all procs blocked on pages. This should be uncommon, so 2770 * keeping this simple for now (rather than adding count of blocked 2771 * threads etc). 2772 */ 2773 wakeup(keg); 2774 } 2775 if (clearfull) { 2776 zone_relock(zone, keg); 2777 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2778 wakeup(zone); 2779 ZONE_UNLOCK(zone); 2780 } else 2781 KEG_UNLOCK(keg); 2782 } 2783 2784 /* See uma.h */ 2785 void 2786 uma_zone_set_max(uma_zone_t zone, int nitems) 2787 { 2788 uma_keg_t keg; 2789 2790 ZONE_LOCK(zone); 2791 keg = zone_first_keg(zone); 2792 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2793 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2794 keg->uk_maxpages += keg->uk_ppera; 2795 2796 ZONE_UNLOCK(zone); 2797 } 2798 2799 /* See uma.h */ 2800 int 2801 uma_zone_get_max(uma_zone_t zone) 2802 { 2803 int nitems; 2804 uma_keg_t keg; 2805 2806 ZONE_LOCK(zone); 2807 keg = zone_first_keg(zone); 2808 if (keg->uk_maxpages) 2809 nitems = keg->uk_maxpages * keg->uk_ipers; 2810 else 2811 nitems = 0; 2812 ZONE_UNLOCK(zone); 2813 2814 return (nitems); 2815 } 2816 2817 /* See uma.h */ 2818 void 2819 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2820 { 2821 uma_keg_t keg; 2822 2823 ZONE_LOCK(zone); 2824 keg = zone_first_keg(zone); 2825 KASSERT(keg->uk_pages == 0, 2826 ("uma_zone_set_init on non-empty keg")); 2827 keg->uk_init = uminit; 2828 ZONE_UNLOCK(zone); 2829 } 2830 2831 /* See uma.h */ 2832 void 2833 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 2834 { 2835 uma_keg_t keg; 2836 2837 ZONE_LOCK(zone); 2838 keg = zone_first_keg(zone); 2839 KASSERT(keg->uk_pages == 0, 2840 ("uma_zone_set_fini on non-empty keg")); 2841 keg->uk_fini = fini; 2842 ZONE_UNLOCK(zone); 2843 } 2844 2845 /* See uma.h */ 2846 void 2847 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 2848 { 2849 ZONE_LOCK(zone); 2850 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2851 ("uma_zone_set_zinit on non-empty keg")); 2852 zone->uz_init = zinit; 2853 ZONE_UNLOCK(zone); 2854 } 2855 2856 /* See uma.h */ 2857 void 2858 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 2859 { 2860 ZONE_LOCK(zone); 2861 KASSERT(zone_first_keg(zone)->uk_pages == 0, 2862 ("uma_zone_set_zfini on non-empty keg")); 2863 zone->uz_fini = zfini; 2864 ZONE_UNLOCK(zone); 2865 } 2866 2867 /* See uma.h */ 2868 /* XXX uk_freef is not actually used with the zone locked */ 2869 void 2870 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 2871 { 2872 2873 ZONE_LOCK(zone); 2874 zone_first_keg(zone)->uk_freef = freef; 2875 ZONE_UNLOCK(zone); 2876 } 2877 2878 /* See uma.h */ 2879 /* XXX uk_allocf is not actually used with the zone locked */ 2880 void 2881 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 2882 { 2883 uma_keg_t keg; 2884 2885 ZONE_LOCK(zone); 2886 keg = zone_first_keg(zone); 2887 keg->uk_flags |= UMA_ZFLAG_PRIVALLOC; 2888 keg->uk_allocf = allocf; 2889 ZONE_UNLOCK(zone); 2890 } 2891 2892 /* See uma.h */ 2893 int 2894 uma_zone_set_obj(uma_zone_t zone, struct vm_object *obj, int count) 2895 { 2896 uma_keg_t keg; 2897 vm_offset_t kva; 2898 int pages; 2899 2900 keg = zone_first_keg(zone); 2901 pages = count / keg->uk_ipers; 2902 2903 if (pages * keg->uk_ipers < count) 2904 pages++; 2905 2906 kva = kmem_alloc_nofault(kernel_map, pages * UMA_SLAB_SIZE); 2907 2908 if (kva == 0) 2909 return (0); 2910 if (obj == NULL) 2911 obj = vm_object_allocate(OBJT_PHYS, pages); 2912 else { 2913 VM_OBJECT_LOCK_INIT(obj, "uma object"); 2914 _vm_object_allocate(OBJT_PHYS, pages, obj); 2915 } 2916 ZONE_LOCK(zone); 2917 keg->uk_kva = kva; 2918 keg->uk_obj = obj; 2919 keg->uk_maxpages = pages; 2920 keg->uk_allocf = obj_alloc; 2921 keg->uk_flags |= UMA_ZONE_NOFREE | UMA_ZFLAG_PRIVALLOC; 2922 ZONE_UNLOCK(zone); 2923 return (1); 2924 } 2925 2926 /* See uma.h */ 2927 void 2928 uma_prealloc(uma_zone_t zone, int items) 2929 { 2930 int slabs; 2931 uma_slab_t slab; 2932 uma_keg_t keg; 2933 2934 keg = zone_first_keg(zone); 2935 ZONE_LOCK(zone); 2936 slabs = items / keg->uk_ipers; 2937 if (slabs * keg->uk_ipers < items) 2938 slabs++; 2939 while (slabs > 0) { 2940 slab = keg_alloc_slab(keg, zone, M_WAITOK); 2941 if (slab == NULL) 2942 break; 2943 MPASS(slab->us_keg == keg); 2944 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2945 slabs--; 2946 } 2947 ZONE_UNLOCK(zone); 2948 } 2949 2950 /* See uma.h */ 2951 u_int32_t * 2952 uma_find_refcnt(uma_zone_t zone, void *item) 2953 { 2954 uma_slabrefcnt_t slabref; 2955 uma_keg_t keg; 2956 u_int32_t *refcnt; 2957 int idx; 2958 2959 slabref = (uma_slabrefcnt_t)vtoslab((vm_offset_t)item & 2960 (~UMA_SLAB_MASK)); 2961 keg = slabref->us_keg; 2962 KASSERT(slabref != NULL && slabref->us_keg->uk_flags & UMA_ZONE_REFCNT, 2963 ("uma_find_refcnt(): zone possibly not UMA_ZONE_REFCNT")); 2964 idx = ((unsigned long)item - (unsigned long)slabref->us_data) 2965 / keg->uk_rsize; 2966 refcnt = &slabref->us_freelist[idx].us_refcnt; 2967 return refcnt; 2968 } 2969 2970 /* See uma.h */ 2971 void 2972 uma_reclaim(void) 2973 { 2974 #ifdef UMA_DEBUG 2975 printf("UMA: vm asked us to release pages!\n"); 2976 #endif 2977 bucket_enable(); 2978 zone_foreach(zone_drain); 2979 /* 2980 * Some slabs may have been freed but this zone will be visited early 2981 * we visit again so that we can free pages that are empty once other 2982 * zones are drained. We have to do the same for buckets. 2983 */ 2984 zone_drain(slabzone); 2985 zone_drain(slabrefzone); 2986 bucket_zone_drain(); 2987 } 2988 2989 /* See uma.h */ 2990 int 2991 uma_zone_exhausted(uma_zone_t zone) 2992 { 2993 int full; 2994 2995 ZONE_LOCK(zone); 2996 full = (zone->uz_flags & UMA_ZFLAG_FULL); 2997 ZONE_UNLOCK(zone); 2998 return (full); 2999 } 3000 3001 int 3002 uma_zone_exhausted_nolock(uma_zone_t zone) 3003 { 3004 return (zone->uz_flags & UMA_ZFLAG_FULL); 3005 } 3006 3007 void * 3008 uma_large_malloc(int size, int wait) 3009 { 3010 void *mem; 3011 uma_slab_t slab; 3012 u_int8_t flags; 3013 3014 slab = zone_alloc_item(slabzone, NULL, wait); 3015 if (slab == NULL) 3016 return (NULL); 3017 mem = page_alloc(NULL, size, &flags, wait); 3018 if (mem) { 3019 vsetslab((vm_offset_t)mem, slab); 3020 slab->us_data = mem; 3021 slab->us_flags = flags | UMA_SLAB_MALLOC; 3022 slab->us_size = size; 3023 } else { 3024 zone_free_item(slabzone, slab, NULL, SKIP_NONE, 3025 ZFREE_STATFAIL | ZFREE_STATFREE); 3026 } 3027 3028 return (mem); 3029 } 3030 3031 void 3032 uma_large_free(uma_slab_t slab) 3033 { 3034 vsetobj((vm_offset_t)slab->us_data, kmem_object); 3035 page_free(slab->us_data, slab->us_size, slab->us_flags); 3036 zone_free_item(slabzone, slab, NULL, SKIP_NONE, ZFREE_STATFREE); 3037 } 3038 3039 void 3040 uma_print_stats(void) 3041 { 3042 zone_foreach(uma_print_zone); 3043 } 3044 3045 static void 3046 slab_print(uma_slab_t slab) 3047 { 3048 printf("slab: keg %p, data %p, freecount %d, firstfree %d\n", 3049 slab->us_keg, slab->us_data, slab->us_freecount, 3050 slab->us_firstfree); 3051 } 3052 3053 static void 3054 cache_print(uma_cache_t cache) 3055 { 3056 printf("alloc: %p(%d), free: %p(%d)\n", 3057 cache->uc_allocbucket, 3058 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3059 cache->uc_freebucket, 3060 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3061 } 3062 3063 static void 3064 uma_print_keg(uma_keg_t keg) 3065 { 3066 uma_slab_t slab; 3067 3068 printf("keg: %s(%p) size %d(%d) flags %d ipers %d ppera %d " 3069 "out %d free %d limit %d\n", 3070 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3071 keg->uk_ipers, keg->uk_ppera, 3072 (keg->uk_ipers * keg->uk_pages) - keg->uk_free, keg->uk_free, 3073 (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3074 printf("Part slabs:\n"); 3075 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3076 slab_print(slab); 3077 printf("Free slabs:\n"); 3078 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3079 slab_print(slab); 3080 printf("Full slabs:\n"); 3081 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3082 slab_print(slab); 3083 } 3084 3085 void 3086 uma_print_zone(uma_zone_t zone) 3087 { 3088 uma_cache_t cache; 3089 uma_klink_t kl; 3090 int i; 3091 3092 printf("zone: %s(%p) size %d flags %d\n", 3093 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3094 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3095 uma_print_keg(kl->kl_keg); 3096 CPU_FOREACH(i) { 3097 cache = &zone->uz_cpu[i]; 3098 printf("CPU %d Cache:\n", i); 3099 cache_print(cache); 3100 } 3101 } 3102 3103 #ifdef DDB 3104 /* 3105 * Generate statistics across both the zone and its per-cpu cache's. Return 3106 * desired statistics if the pointer is non-NULL for that statistic. 3107 * 3108 * Note: does not update the zone statistics, as it can't safely clear the 3109 * per-CPU cache statistic. 3110 * 3111 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3112 * safe from off-CPU; we should modify the caches to track this information 3113 * directly so that we don't have to. 3114 */ 3115 static void 3116 uma_zone_sumstat(uma_zone_t z, int *cachefreep, u_int64_t *allocsp, 3117 u_int64_t *freesp, u_int64_t *sleepsp) 3118 { 3119 uma_cache_t cache; 3120 u_int64_t allocs, frees, sleeps; 3121 int cachefree, cpu; 3122 3123 allocs = frees = sleeps = 0; 3124 cachefree = 0; 3125 CPU_FOREACH(cpu) { 3126 cache = &z->uz_cpu[cpu]; 3127 if (cache->uc_allocbucket != NULL) 3128 cachefree += cache->uc_allocbucket->ub_cnt; 3129 if (cache->uc_freebucket != NULL) 3130 cachefree += cache->uc_freebucket->ub_cnt; 3131 allocs += cache->uc_allocs; 3132 frees += cache->uc_frees; 3133 } 3134 allocs += z->uz_allocs; 3135 frees += z->uz_frees; 3136 sleeps += z->uz_sleeps; 3137 if (cachefreep != NULL) 3138 *cachefreep = cachefree; 3139 if (allocsp != NULL) 3140 *allocsp = allocs; 3141 if (freesp != NULL) 3142 *freesp = frees; 3143 if (sleepsp != NULL) 3144 *sleepsp = sleeps; 3145 } 3146 #endif /* DDB */ 3147 3148 static int 3149 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3150 { 3151 uma_keg_t kz; 3152 uma_zone_t z; 3153 int count; 3154 3155 count = 0; 3156 mtx_lock(&uma_mtx); 3157 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3158 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3159 count++; 3160 } 3161 mtx_unlock(&uma_mtx); 3162 return (sysctl_handle_int(oidp, &count, 0, req)); 3163 } 3164 3165 static int 3166 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3167 { 3168 struct uma_stream_header ush; 3169 struct uma_type_header uth; 3170 struct uma_percpu_stat ups; 3171 uma_bucket_t bucket; 3172 struct sbuf sbuf; 3173 uma_cache_t cache; 3174 uma_klink_t kl; 3175 uma_keg_t kz; 3176 uma_zone_t z; 3177 uma_keg_t k; 3178 int count, error, i; 3179 3180 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3181 3182 count = 0; 3183 mtx_lock(&uma_mtx); 3184 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3185 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3186 count++; 3187 } 3188 3189 /* 3190 * Insert stream header. 3191 */ 3192 bzero(&ush, sizeof(ush)); 3193 ush.ush_version = UMA_STREAM_VERSION; 3194 ush.ush_maxcpus = (mp_maxid + 1); 3195 ush.ush_count = count; 3196 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3197 3198 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3199 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3200 bzero(&uth, sizeof(uth)); 3201 ZONE_LOCK(z); 3202 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3203 uth.uth_align = kz->uk_align; 3204 uth.uth_size = kz->uk_size; 3205 uth.uth_rsize = kz->uk_rsize; 3206 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3207 k = kl->kl_keg; 3208 uth.uth_maxpages += k->uk_maxpages; 3209 uth.uth_pages += k->uk_pages; 3210 uth.uth_keg_free += k->uk_free; 3211 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3212 * k->uk_ipers; 3213 } 3214 3215 /* 3216 * A zone is secondary is it is not the first entry 3217 * on the keg's zone list. 3218 */ 3219 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3220 (LIST_FIRST(&kz->uk_zones) != z)) 3221 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3222 3223 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3224 uth.uth_zone_free += bucket->ub_cnt; 3225 uth.uth_allocs = z->uz_allocs; 3226 uth.uth_frees = z->uz_frees; 3227 uth.uth_fails = z->uz_fails; 3228 uth.uth_sleeps = z->uz_sleeps; 3229 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3230 /* 3231 * While it is not normally safe to access the cache 3232 * bucket pointers while not on the CPU that owns the 3233 * cache, we only allow the pointers to be exchanged 3234 * without the zone lock held, not invalidated, so 3235 * accept the possible race associated with bucket 3236 * exchange during monitoring. 3237 */ 3238 for (i = 0; i < (mp_maxid + 1); i++) { 3239 bzero(&ups, sizeof(ups)); 3240 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3241 goto skip; 3242 if (CPU_ABSENT(i)) 3243 goto skip; 3244 cache = &z->uz_cpu[i]; 3245 if (cache->uc_allocbucket != NULL) 3246 ups.ups_cache_free += 3247 cache->uc_allocbucket->ub_cnt; 3248 if (cache->uc_freebucket != NULL) 3249 ups.ups_cache_free += 3250 cache->uc_freebucket->ub_cnt; 3251 ups.ups_allocs = cache->uc_allocs; 3252 ups.ups_frees = cache->uc_frees; 3253 skip: 3254 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3255 } 3256 ZONE_UNLOCK(z); 3257 } 3258 } 3259 mtx_unlock(&uma_mtx); 3260 error = sbuf_finish(&sbuf); 3261 sbuf_delete(&sbuf); 3262 return (error); 3263 } 3264 3265 #ifdef DDB 3266 DB_SHOW_COMMAND(uma, db_show_uma) 3267 { 3268 u_int64_t allocs, frees, sleeps; 3269 uma_bucket_t bucket; 3270 uma_keg_t kz; 3271 uma_zone_t z; 3272 int cachefree; 3273 3274 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3275 "Requests", "Sleeps"); 3276 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3277 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3278 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3279 allocs = z->uz_allocs; 3280 frees = z->uz_frees; 3281 sleeps = z->uz_sleeps; 3282 cachefree = 0; 3283 } else 3284 uma_zone_sumstat(z, &cachefree, &allocs, 3285 &frees, &sleeps); 3286 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3287 (LIST_FIRST(&kz->uk_zones) != z))) 3288 cachefree += kz->uk_free; 3289 LIST_FOREACH(bucket, &z->uz_full_bucket, ub_link) 3290 cachefree += bucket->ub_cnt; 3291 db_printf("%18s %8ju %8jd %8d %12ju %8ju\n", z->uz_name, 3292 (uintmax_t)kz->uk_size, 3293 (intmax_t)(allocs - frees), cachefree, 3294 (uintmax_t)allocs, sleeps); 3295 } 3296 } 3297 } 3298 #endif 3299