1 /*- 2 * Copyright (c) 2002-2005, 2009, 2013 Jeffrey Roberson <jeff@FreeBSD.org> 3 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 4 * Copyright (c) 2004-2006 Robert N. M. Watson 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice unmodified, this list of conditions, and the following 12 * disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 /* 30 * uma_core.c Implementation of the Universal Memory allocator 31 * 32 * This allocator is intended to replace the multitude of similar object caches 33 * in the standard FreeBSD kernel. The intent is to be flexible as well as 34 * efficient. A primary design goal is to return unused memory to the rest of 35 * the system. This will make the system as a whole more flexible due to the 36 * ability to move memory to subsystems which most need it instead of leaving 37 * pools of reserved memory unused. 38 * 39 * The basic ideas stem from similar slab/zone based allocators whose algorithms 40 * are well known. 41 * 42 */ 43 44 /* 45 * TODO: 46 * - Improve memory usage for large allocations 47 * - Investigate cache size adjustments 48 */ 49 50 #include <sys/cdefs.h> 51 __FBSDID("$FreeBSD$"); 52 53 /* I should really use ktr.. */ 54 /* 55 #define UMA_DEBUG 1 56 #define UMA_DEBUG_ALLOC 1 57 #define UMA_DEBUG_ALLOC_1 1 58 */ 59 60 #include "opt_ddb.h" 61 #include "opt_param.h" 62 #include "opt_vm.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/bitset.h> 67 #include <sys/eventhandler.h> 68 #include <sys/kernel.h> 69 #include <sys/types.h> 70 #include <sys/queue.h> 71 #include <sys/malloc.h> 72 #include <sys/ktr.h> 73 #include <sys/lock.h> 74 #include <sys/sysctl.h> 75 #include <sys/mutex.h> 76 #include <sys/proc.h> 77 #include <sys/random.h> 78 #include <sys/rwlock.h> 79 #include <sys/sbuf.h> 80 #include <sys/sched.h> 81 #include <sys/smp.h> 82 #include <sys/taskqueue.h> 83 #include <sys/vmmeter.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_object.h> 87 #include <vm/vm_page.h> 88 #include <vm/vm_pageout.h> 89 #include <vm/vm_param.h> 90 #include <vm/vm_map.h> 91 #include <vm/vm_kern.h> 92 #include <vm/vm_extern.h> 93 #include <vm/uma.h> 94 #include <vm/uma_int.h> 95 #include <vm/uma_dbg.h> 96 97 #include <ddb/ddb.h> 98 99 #ifdef DEBUG_MEMGUARD 100 #include <vm/memguard.h> 101 #endif 102 103 /* 104 * This is the zone and keg from which all zones are spawned. The idea is that 105 * even the zone & keg heads are allocated from the allocator, so we use the 106 * bss section to bootstrap us. 107 */ 108 static struct uma_keg masterkeg; 109 static struct uma_zone masterzone_k; 110 static struct uma_zone masterzone_z; 111 static uma_zone_t kegs = &masterzone_k; 112 static uma_zone_t zones = &masterzone_z; 113 114 /* This is the zone from which all of uma_slab_t's are allocated. */ 115 static uma_zone_t slabzone; 116 117 /* 118 * The initial hash tables come out of this zone so they can be allocated 119 * prior to malloc coming up. 120 */ 121 static uma_zone_t hashzone; 122 123 /* The boot-time adjusted value for cache line alignment. */ 124 int uma_align_cache = 64 - 1; 125 126 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 127 128 /* 129 * Are we allowed to allocate buckets? 130 */ 131 static int bucketdisable = 1; 132 133 /* Linked list of all kegs in the system */ 134 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 135 136 /* Linked list of all cache-only zones in the system */ 137 static LIST_HEAD(,uma_zone) uma_cachezones = 138 LIST_HEAD_INITIALIZER(uma_cachezones); 139 140 /* This RW lock protects the keg list */ 141 static struct rwlock_padalign uma_rwlock; 142 143 /* Linked list of boot time pages */ 144 static LIST_HEAD(,uma_slab) uma_boot_pages = 145 LIST_HEAD_INITIALIZER(uma_boot_pages); 146 147 /* This mutex protects the boot time pages list */ 148 static struct mtx_padalign uma_boot_pages_mtx; 149 150 static struct sx uma_drain_lock; 151 152 /* Is the VM done starting up? */ 153 static int booted = 0; 154 #define UMA_STARTUP 1 155 #define UMA_STARTUP2 2 156 157 /* 158 * This is the handle used to schedule events that need to happen 159 * outside of the allocation fast path. 160 */ 161 static struct callout uma_callout; 162 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 163 164 /* 165 * This structure is passed as the zone ctor arg so that I don't have to create 166 * a special allocation function just for zones. 167 */ 168 struct uma_zctor_args { 169 const char *name; 170 size_t size; 171 uma_ctor ctor; 172 uma_dtor dtor; 173 uma_init uminit; 174 uma_fini fini; 175 uma_import import; 176 uma_release release; 177 void *arg; 178 uma_keg_t keg; 179 int align; 180 uint32_t flags; 181 }; 182 183 struct uma_kctor_args { 184 uma_zone_t zone; 185 size_t size; 186 uma_init uminit; 187 uma_fini fini; 188 int align; 189 uint32_t flags; 190 }; 191 192 struct uma_bucket_zone { 193 uma_zone_t ubz_zone; 194 char *ubz_name; 195 int ubz_entries; /* Number of items it can hold. */ 196 int ubz_maxsize; /* Maximum allocation size per-item. */ 197 }; 198 199 /* 200 * Compute the actual number of bucket entries to pack them in power 201 * of two sizes for more efficient space utilization. 202 */ 203 #define BUCKET_SIZE(n) \ 204 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 205 206 #define BUCKET_MAX BUCKET_SIZE(256) 207 208 struct uma_bucket_zone bucket_zones[] = { 209 { NULL, "4 Bucket", BUCKET_SIZE(4), 4096 }, 210 { NULL, "6 Bucket", BUCKET_SIZE(6), 3072 }, 211 { NULL, "8 Bucket", BUCKET_SIZE(8), 2048 }, 212 { NULL, "12 Bucket", BUCKET_SIZE(12), 1536 }, 213 { NULL, "16 Bucket", BUCKET_SIZE(16), 1024 }, 214 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 215 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 216 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 217 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 218 { NULL, NULL, 0} 219 }; 220 221 /* 222 * Flags and enumerations to be passed to internal functions. 223 */ 224 enum zfreeskip { SKIP_NONE = 0, SKIP_DTOR, SKIP_FINI }; 225 226 /* Prototypes.. */ 227 228 static void *noobj_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 229 static void *page_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 230 static void *startup_alloc(uma_zone_t, vm_size_t, uint8_t *, int); 231 static void page_free(void *, vm_size_t, uint8_t); 232 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int); 233 static void cache_drain(uma_zone_t); 234 static void bucket_drain(uma_zone_t, uma_bucket_t); 235 static void bucket_cache_drain(uma_zone_t zone); 236 static int keg_ctor(void *, int, void *, int); 237 static void keg_dtor(void *, int, void *); 238 static int zone_ctor(void *, int, void *, int); 239 static void zone_dtor(void *, int, void *); 240 static int zero_init(void *, int, int); 241 static void keg_small_init(uma_keg_t keg); 242 static void keg_large_init(uma_keg_t keg); 243 static void zone_foreach(void (*zfunc)(uma_zone_t)); 244 static void zone_timeout(uma_zone_t zone); 245 static int hash_alloc(struct uma_hash *); 246 static int hash_expand(struct uma_hash *, struct uma_hash *); 247 static void hash_free(struct uma_hash *hash); 248 static void uma_timeout(void *); 249 static void uma_startup3(void); 250 static void *zone_alloc_item(uma_zone_t, void *, int); 251 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 252 static void bucket_enable(void); 253 static void bucket_init(void); 254 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 255 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 256 static void bucket_zone_drain(void); 257 static uma_bucket_t zone_alloc_bucket(uma_zone_t zone, void *, int flags); 258 static uma_slab_t zone_fetch_slab(uma_zone_t zone, uma_keg_t last, int flags); 259 static uma_slab_t zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int flags); 260 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 261 static void slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item); 262 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 263 uma_fini fini, int align, uint32_t flags); 264 static int zone_import(uma_zone_t zone, void **bucket, int max, int flags); 265 static void zone_release(uma_zone_t zone, void **bucket, int cnt); 266 static void uma_zero_item(void *item, uma_zone_t zone); 267 268 void uma_print_zone(uma_zone_t); 269 void uma_print_stats(void); 270 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 271 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 272 273 #ifdef INVARIANTS 274 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 275 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 276 #endif 277 278 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 279 280 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLTYPE_INT, 281 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 282 283 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLTYPE_STRUCT, 284 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 285 286 static int zone_warnings = 1; 287 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 288 "Warn when UMA zones becomes full"); 289 290 /* 291 * This routine checks to see whether or not it's safe to enable buckets. 292 */ 293 static void 294 bucket_enable(void) 295 { 296 bucketdisable = vm_page_count_min(); 297 } 298 299 /* 300 * Initialize bucket_zones, the array of zones of buckets of various sizes. 301 * 302 * For each zone, calculate the memory required for each bucket, consisting 303 * of the header and an array of pointers. 304 */ 305 static void 306 bucket_init(void) 307 { 308 struct uma_bucket_zone *ubz; 309 int size; 310 311 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 312 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 313 size += sizeof(void *) * ubz->ubz_entries; 314 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 315 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 316 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET); 317 } 318 } 319 320 /* 321 * Given a desired number of entries for a bucket, return the zone from which 322 * to allocate the bucket. 323 */ 324 static struct uma_bucket_zone * 325 bucket_zone_lookup(int entries) 326 { 327 struct uma_bucket_zone *ubz; 328 329 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 330 if (ubz->ubz_entries >= entries) 331 return (ubz); 332 ubz--; 333 return (ubz); 334 } 335 336 static int 337 bucket_select(int size) 338 { 339 struct uma_bucket_zone *ubz; 340 341 ubz = &bucket_zones[0]; 342 if (size > ubz->ubz_maxsize) 343 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 344 345 for (; ubz->ubz_entries != 0; ubz++) 346 if (ubz->ubz_maxsize < size) 347 break; 348 ubz--; 349 return (ubz->ubz_entries); 350 } 351 352 static uma_bucket_t 353 bucket_alloc(uma_zone_t zone, void *udata, int flags) 354 { 355 struct uma_bucket_zone *ubz; 356 uma_bucket_t bucket; 357 358 /* 359 * This is to stop us from allocating per cpu buckets while we're 360 * running out of vm.boot_pages. Otherwise, we would exhaust the 361 * boot pages. This also prevents us from allocating buckets in 362 * low memory situations. 363 */ 364 if (bucketdisable) 365 return (NULL); 366 /* 367 * To limit bucket recursion we store the original zone flags 368 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 369 * NOVM flag to persist even through deep recursions. We also 370 * store ZFLAG_BUCKET once we have recursed attempting to allocate 371 * a bucket for a bucket zone so we do not allow infinite bucket 372 * recursion. This cookie will even persist to frees of unused 373 * buckets via the allocation path or bucket allocations in the 374 * free path. 375 */ 376 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 377 udata = (void *)(uintptr_t)zone->uz_flags; 378 else { 379 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 380 return (NULL); 381 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 382 } 383 if ((uintptr_t)udata & UMA_ZFLAG_CACHEONLY) 384 flags |= M_NOVM; 385 ubz = bucket_zone_lookup(zone->uz_count); 386 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 387 ubz++; 388 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 389 if (bucket) { 390 #ifdef INVARIANTS 391 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 392 #endif 393 bucket->ub_cnt = 0; 394 bucket->ub_entries = ubz->ubz_entries; 395 } 396 397 return (bucket); 398 } 399 400 static void 401 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 402 { 403 struct uma_bucket_zone *ubz; 404 405 KASSERT(bucket->ub_cnt == 0, 406 ("bucket_free: Freeing a non free bucket.")); 407 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 408 udata = (void *)(uintptr_t)zone->uz_flags; 409 ubz = bucket_zone_lookup(bucket->ub_entries); 410 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 411 } 412 413 static void 414 bucket_zone_drain(void) 415 { 416 struct uma_bucket_zone *ubz; 417 418 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 419 zone_drain(ubz->ubz_zone); 420 } 421 422 static void 423 zone_log_warning(uma_zone_t zone) 424 { 425 static const struct timeval warninterval = { 300, 0 }; 426 427 if (!zone_warnings || zone->uz_warning == NULL) 428 return; 429 430 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 431 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 432 } 433 434 static inline void 435 zone_maxaction(uma_zone_t zone) 436 { 437 438 if (zone->uz_maxaction.ta_func != NULL) 439 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 440 } 441 442 static void 443 zone_foreach_keg(uma_zone_t zone, void (*kegfn)(uma_keg_t)) 444 { 445 uma_klink_t klink; 446 447 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) 448 kegfn(klink->kl_keg); 449 } 450 451 /* 452 * Routine called by timeout which is used to fire off some time interval 453 * based calculations. (stats, hash size, etc.) 454 * 455 * Arguments: 456 * arg Unused 457 * 458 * Returns: 459 * Nothing 460 */ 461 static void 462 uma_timeout(void *unused) 463 { 464 bucket_enable(); 465 zone_foreach(zone_timeout); 466 467 /* Reschedule this event */ 468 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 469 } 470 471 /* 472 * Routine to perform timeout driven calculations. This expands the 473 * hashes and does per cpu statistics aggregation. 474 * 475 * Returns nothing. 476 */ 477 static void 478 keg_timeout(uma_keg_t keg) 479 { 480 481 KEG_LOCK(keg); 482 /* 483 * Expand the keg hash table. 484 * 485 * This is done if the number of slabs is larger than the hash size. 486 * What I'm trying to do here is completely reduce collisions. This 487 * may be a little aggressive. Should I allow for two collisions max? 488 */ 489 if (keg->uk_flags & UMA_ZONE_HASH && 490 keg->uk_pages / keg->uk_ppera >= keg->uk_hash.uh_hashsize) { 491 struct uma_hash newhash; 492 struct uma_hash oldhash; 493 int ret; 494 495 /* 496 * This is so involved because allocating and freeing 497 * while the keg lock is held will lead to deadlock. 498 * I have to do everything in stages and check for 499 * races. 500 */ 501 newhash = keg->uk_hash; 502 KEG_UNLOCK(keg); 503 ret = hash_alloc(&newhash); 504 KEG_LOCK(keg); 505 if (ret) { 506 if (hash_expand(&keg->uk_hash, &newhash)) { 507 oldhash = keg->uk_hash; 508 keg->uk_hash = newhash; 509 } else 510 oldhash = newhash; 511 512 KEG_UNLOCK(keg); 513 hash_free(&oldhash); 514 return; 515 } 516 } 517 KEG_UNLOCK(keg); 518 } 519 520 static void 521 zone_timeout(uma_zone_t zone) 522 { 523 524 zone_foreach_keg(zone, &keg_timeout); 525 } 526 527 /* 528 * Allocate and zero fill the next sized hash table from the appropriate 529 * backing store. 530 * 531 * Arguments: 532 * hash A new hash structure with the old hash size in uh_hashsize 533 * 534 * Returns: 535 * 1 on success and 0 on failure. 536 */ 537 static int 538 hash_alloc(struct uma_hash *hash) 539 { 540 int oldsize; 541 int alloc; 542 543 oldsize = hash->uh_hashsize; 544 545 /* We're just going to go to a power of two greater */ 546 if (oldsize) { 547 hash->uh_hashsize = oldsize * 2; 548 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 549 hash->uh_slab_hash = (struct slabhead *)malloc(alloc, 550 M_UMAHASH, M_NOWAIT); 551 } else { 552 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 553 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 554 M_WAITOK); 555 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 556 } 557 if (hash->uh_slab_hash) { 558 bzero(hash->uh_slab_hash, alloc); 559 hash->uh_hashmask = hash->uh_hashsize - 1; 560 return (1); 561 } 562 563 return (0); 564 } 565 566 /* 567 * Expands the hash table for HASH zones. This is done from zone_timeout 568 * to reduce collisions. This must not be done in the regular allocation 569 * path, otherwise, we can recurse on the vm while allocating pages. 570 * 571 * Arguments: 572 * oldhash The hash you want to expand 573 * newhash The hash structure for the new table 574 * 575 * Returns: 576 * Nothing 577 * 578 * Discussion: 579 */ 580 static int 581 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 582 { 583 uma_slab_t slab; 584 int hval; 585 int i; 586 587 if (!newhash->uh_slab_hash) 588 return (0); 589 590 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 591 return (0); 592 593 /* 594 * I need to investigate hash algorithms for resizing without a 595 * full rehash. 596 */ 597 598 for (i = 0; i < oldhash->uh_hashsize; i++) 599 while (!SLIST_EMPTY(&oldhash->uh_slab_hash[i])) { 600 slab = SLIST_FIRST(&oldhash->uh_slab_hash[i]); 601 SLIST_REMOVE_HEAD(&oldhash->uh_slab_hash[i], us_hlink); 602 hval = UMA_HASH(newhash, slab->us_data); 603 SLIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 604 slab, us_hlink); 605 } 606 607 return (1); 608 } 609 610 /* 611 * Free the hash bucket to the appropriate backing store. 612 * 613 * Arguments: 614 * slab_hash The hash bucket we're freeing 615 * hashsize The number of entries in that hash bucket 616 * 617 * Returns: 618 * Nothing 619 */ 620 static void 621 hash_free(struct uma_hash *hash) 622 { 623 if (hash->uh_slab_hash == NULL) 624 return; 625 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 626 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 627 else 628 free(hash->uh_slab_hash, M_UMAHASH); 629 } 630 631 /* 632 * Frees all outstanding items in a bucket 633 * 634 * Arguments: 635 * zone The zone to free to, must be unlocked. 636 * bucket The free/alloc bucket with items, cpu queue must be locked. 637 * 638 * Returns: 639 * Nothing 640 */ 641 642 static void 643 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 644 { 645 int i; 646 647 if (bucket == NULL) 648 return; 649 650 if (zone->uz_fini) 651 for (i = 0; i < bucket->ub_cnt; i++) 652 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 653 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 654 bucket->ub_cnt = 0; 655 } 656 657 /* 658 * Drains the per cpu caches for a zone. 659 * 660 * NOTE: This may only be called while the zone is being turn down, and not 661 * during normal operation. This is necessary in order that we do not have 662 * to migrate CPUs to drain the per-CPU caches. 663 * 664 * Arguments: 665 * zone The zone to drain, must be unlocked. 666 * 667 * Returns: 668 * Nothing 669 */ 670 static void 671 cache_drain(uma_zone_t zone) 672 { 673 uma_cache_t cache; 674 int cpu; 675 676 /* 677 * XXX: It is safe to not lock the per-CPU caches, because we're 678 * tearing down the zone anyway. I.e., there will be no further use 679 * of the caches at this point. 680 * 681 * XXX: It would good to be able to assert that the zone is being 682 * torn down to prevent improper use of cache_drain(). 683 * 684 * XXX: We lock the zone before passing into bucket_cache_drain() as 685 * it is used elsewhere. Should the tear-down path be made special 686 * there in some form? 687 */ 688 CPU_FOREACH(cpu) { 689 cache = &zone->uz_cpu[cpu]; 690 bucket_drain(zone, cache->uc_allocbucket); 691 bucket_drain(zone, cache->uc_freebucket); 692 if (cache->uc_allocbucket != NULL) 693 bucket_free(zone, cache->uc_allocbucket, NULL); 694 if (cache->uc_freebucket != NULL) 695 bucket_free(zone, cache->uc_freebucket, NULL); 696 cache->uc_allocbucket = cache->uc_freebucket = NULL; 697 } 698 ZONE_LOCK(zone); 699 bucket_cache_drain(zone); 700 ZONE_UNLOCK(zone); 701 } 702 703 static void 704 cache_shrink(uma_zone_t zone) 705 { 706 707 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 708 return; 709 710 ZONE_LOCK(zone); 711 zone->uz_count = (zone->uz_count_min + zone->uz_count) / 2; 712 ZONE_UNLOCK(zone); 713 } 714 715 static void 716 cache_drain_safe_cpu(uma_zone_t zone) 717 { 718 uma_cache_t cache; 719 uma_bucket_t b1, b2; 720 721 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 722 return; 723 724 b1 = b2 = NULL; 725 ZONE_LOCK(zone); 726 critical_enter(); 727 cache = &zone->uz_cpu[curcpu]; 728 if (cache->uc_allocbucket) { 729 if (cache->uc_allocbucket->ub_cnt != 0) 730 LIST_INSERT_HEAD(&zone->uz_buckets, 731 cache->uc_allocbucket, ub_link); 732 else 733 b1 = cache->uc_allocbucket; 734 cache->uc_allocbucket = NULL; 735 } 736 if (cache->uc_freebucket) { 737 if (cache->uc_freebucket->ub_cnt != 0) 738 LIST_INSERT_HEAD(&zone->uz_buckets, 739 cache->uc_freebucket, ub_link); 740 else 741 b2 = cache->uc_freebucket; 742 cache->uc_freebucket = NULL; 743 } 744 critical_exit(); 745 ZONE_UNLOCK(zone); 746 if (b1) 747 bucket_free(zone, b1, NULL); 748 if (b2) 749 bucket_free(zone, b2, NULL); 750 } 751 752 /* 753 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 754 * This is an expensive call because it needs to bind to all CPUs 755 * one by one and enter a critical section on each of them in order 756 * to safely access their cache buckets. 757 * Zone lock must not be held on call this function. 758 */ 759 static void 760 cache_drain_safe(uma_zone_t zone) 761 { 762 int cpu; 763 764 /* 765 * Polite bucket sizes shrinking was not enouth, shrink aggressively. 766 */ 767 if (zone) 768 cache_shrink(zone); 769 else 770 zone_foreach(cache_shrink); 771 772 CPU_FOREACH(cpu) { 773 thread_lock(curthread); 774 sched_bind(curthread, cpu); 775 thread_unlock(curthread); 776 777 if (zone) 778 cache_drain_safe_cpu(zone); 779 else 780 zone_foreach(cache_drain_safe_cpu); 781 } 782 thread_lock(curthread); 783 sched_unbind(curthread); 784 thread_unlock(curthread); 785 } 786 787 /* 788 * Drain the cached buckets from a zone. Expects a locked zone on entry. 789 */ 790 static void 791 bucket_cache_drain(uma_zone_t zone) 792 { 793 uma_bucket_t bucket; 794 795 /* 796 * Drain the bucket queues and free the buckets, we just keep two per 797 * cpu (alloc/free). 798 */ 799 while ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 800 LIST_REMOVE(bucket, ub_link); 801 ZONE_UNLOCK(zone); 802 bucket_drain(zone, bucket); 803 bucket_free(zone, bucket, NULL); 804 ZONE_LOCK(zone); 805 } 806 807 /* 808 * Shrink further bucket sizes. Price of single zone lock collision 809 * is probably lower then price of global cache drain. 810 */ 811 if (zone->uz_count > zone->uz_count_min) 812 zone->uz_count--; 813 } 814 815 static void 816 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 817 { 818 uint8_t *mem; 819 int i; 820 uint8_t flags; 821 822 mem = slab->us_data; 823 flags = slab->us_flags; 824 i = start; 825 if (keg->uk_fini != NULL) { 826 for (i--; i > -1; i--) 827 keg->uk_fini(slab->us_data + (keg->uk_rsize * i), 828 keg->uk_size); 829 } 830 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 831 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 832 #ifdef UMA_DEBUG 833 printf("%s: Returning %d bytes.\n", keg->uk_name, 834 PAGE_SIZE * keg->uk_ppera); 835 #endif 836 keg->uk_freef(mem, PAGE_SIZE * keg->uk_ppera, flags); 837 } 838 839 /* 840 * Frees pages from a keg back to the system. This is done on demand from 841 * the pageout daemon. 842 * 843 * Returns nothing. 844 */ 845 static void 846 keg_drain(uma_keg_t keg) 847 { 848 struct slabhead freeslabs = { 0 }; 849 uma_slab_t slab, tmp; 850 851 /* 852 * We don't want to take pages from statically allocated kegs at this 853 * time 854 */ 855 if (keg->uk_flags & UMA_ZONE_NOFREE || keg->uk_freef == NULL) 856 return; 857 858 #ifdef UMA_DEBUG 859 printf("%s free items: %u\n", keg->uk_name, keg->uk_free); 860 #endif 861 KEG_LOCK(keg); 862 if (keg->uk_free == 0) 863 goto finished; 864 865 LIST_FOREACH_SAFE(slab, &keg->uk_free_slab, us_link, tmp) { 866 /* We have nowhere to free these to. */ 867 if (slab->us_flags & UMA_SLAB_BOOT) 868 continue; 869 870 LIST_REMOVE(slab, us_link); 871 keg->uk_pages -= keg->uk_ppera; 872 keg->uk_free -= keg->uk_ipers; 873 874 if (keg->uk_flags & UMA_ZONE_HASH) 875 UMA_HASH_REMOVE(&keg->uk_hash, slab, slab->us_data); 876 877 SLIST_INSERT_HEAD(&freeslabs, slab, us_hlink); 878 } 879 finished: 880 KEG_UNLOCK(keg); 881 882 while ((slab = SLIST_FIRST(&freeslabs)) != NULL) { 883 SLIST_REMOVE(&freeslabs, slab, uma_slab, us_hlink); 884 keg_free_slab(keg, slab, keg->uk_ipers); 885 } 886 } 887 888 static void 889 zone_drain_wait(uma_zone_t zone, int waitok) 890 { 891 892 /* 893 * Set draining to interlock with zone_dtor() so we can release our 894 * locks as we go. Only dtor() should do a WAITOK call since it 895 * is the only call that knows the structure will still be available 896 * when it wakes up. 897 */ 898 ZONE_LOCK(zone); 899 while (zone->uz_flags & UMA_ZFLAG_DRAINING) { 900 if (waitok == M_NOWAIT) 901 goto out; 902 msleep(zone, zone->uz_lockptr, PVM, "zonedrain", 1); 903 } 904 zone->uz_flags |= UMA_ZFLAG_DRAINING; 905 bucket_cache_drain(zone); 906 ZONE_UNLOCK(zone); 907 /* 908 * The DRAINING flag protects us from being freed while 909 * we're running. Normally the uma_rwlock would protect us but we 910 * must be able to release and acquire the right lock for each keg. 911 */ 912 zone_foreach_keg(zone, &keg_drain); 913 ZONE_LOCK(zone); 914 zone->uz_flags &= ~UMA_ZFLAG_DRAINING; 915 wakeup(zone); 916 out: 917 ZONE_UNLOCK(zone); 918 } 919 920 void 921 zone_drain(uma_zone_t zone) 922 { 923 924 zone_drain_wait(zone, M_NOWAIT); 925 } 926 927 /* 928 * Allocate a new slab for a keg. This does not insert the slab onto a list. 929 * 930 * Arguments: 931 * wait Shall we wait? 932 * 933 * Returns: 934 * The slab that was allocated or NULL if there is no memory and the 935 * caller specified M_NOWAIT. 936 */ 937 static uma_slab_t 938 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int wait) 939 { 940 uma_alloc allocf; 941 uma_slab_t slab; 942 uint8_t *mem; 943 uint8_t flags; 944 int i; 945 946 mtx_assert(&keg->uk_lock, MA_OWNED); 947 slab = NULL; 948 mem = NULL; 949 950 #ifdef UMA_DEBUG 951 printf("alloc_slab: Allocating a new slab for %s\n", keg->uk_name); 952 #endif 953 allocf = keg->uk_allocf; 954 KEG_UNLOCK(keg); 955 956 if (keg->uk_flags & UMA_ZONE_OFFPAGE) { 957 slab = zone_alloc_item(keg->uk_slabzone, NULL, wait); 958 if (slab == NULL) 959 goto out; 960 } 961 962 /* 963 * This reproduces the old vm_zone behavior of zero filling pages the 964 * first time they are added to a zone. 965 * 966 * Malloced items are zeroed in uma_zalloc. 967 */ 968 969 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 970 wait |= M_ZERO; 971 else 972 wait &= ~M_ZERO; 973 974 if (keg->uk_flags & UMA_ZONE_NODUMP) 975 wait |= M_NODUMP; 976 977 /* zone is passed for legacy reasons. */ 978 mem = allocf(zone, keg->uk_ppera * PAGE_SIZE, &flags, wait); 979 if (mem == NULL) { 980 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 981 zone_free_item(keg->uk_slabzone, slab, NULL, SKIP_NONE); 982 slab = NULL; 983 goto out; 984 } 985 986 /* Point the slab into the allocated memory */ 987 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) 988 slab = (uma_slab_t )(mem + keg->uk_pgoff); 989 990 if (keg->uk_flags & UMA_ZONE_VTOSLAB) 991 for (i = 0; i < keg->uk_ppera; i++) 992 vsetslab((vm_offset_t)mem + (i * PAGE_SIZE), slab); 993 994 slab->us_keg = keg; 995 slab->us_data = mem; 996 slab->us_freecount = keg->uk_ipers; 997 slab->us_flags = flags; 998 BIT_FILL(SLAB_SETSIZE, &slab->us_free); 999 #ifdef INVARIANTS 1000 BIT_ZERO(SLAB_SETSIZE, &slab->us_debugfree); 1001 #endif 1002 1003 if (keg->uk_init != NULL) { 1004 for (i = 0; i < keg->uk_ipers; i++) 1005 if (keg->uk_init(slab->us_data + (keg->uk_rsize * i), 1006 keg->uk_size, wait) != 0) 1007 break; 1008 if (i != keg->uk_ipers) { 1009 keg_free_slab(keg, slab, i); 1010 slab = NULL; 1011 goto out; 1012 } 1013 } 1014 out: 1015 KEG_LOCK(keg); 1016 1017 if (slab != NULL) { 1018 if (keg->uk_flags & UMA_ZONE_HASH) 1019 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1020 1021 keg->uk_pages += keg->uk_ppera; 1022 keg->uk_free += keg->uk_ipers; 1023 } 1024 1025 return (slab); 1026 } 1027 1028 /* 1029 * This function is intended to be used early on in place of page_alloc() so 1030 * that we may use the boot time page cache to satisfy allocations before 1031 * the VM is ready. 1032 */ 1033 static void * 1034 startup_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1035 { 1036 uma_keg_t keg; 1037 uma_slab_t tmps; 1038 int pages, check_pages; 1039 1040 keg = zone_first_keg(zone); 1041 pages = howmany(bytes, PAGE_SIZE); 1042 check_pages = pages - 1; 1043 KASSERT(pages > 0, ("startup_alloc can't reserve 0 pages\n")); 1044 1045 /* 1046 * Check our small startup cache to see if it has pages remaining. 1047 */ 1048 mtx_lock(&uma_boot_pages_mtx); 1049 1050 /* First check if we have enough room. */ 1051 tmps = LIST_FIRST(&uma_boot_pages); 1052 while (tmps != NULL && check_pages-- > 0) 1053 tmps = LIST_NEXT(tmps, us_link); 1054 if (tmps != NULL) { 1055 /* 1056 * It's ok to lose tmps references. The last one will 1057 * have tmps->us_data pointing to the start address of 1058 * "pages" contiguous pages of memory. 1059 */ 1060 while (pages-- > 0) { 1061 tmps = LIST_FIRST(&uma_boot_pages); 1062 LIST_REMOVE(tmps, us_link); 1063 } 1064 mtx_unlock(&uma_boot_pages_mtx); 1065 *pflag = tmps->us_flags; 1066 return (tmps->us_data); 1067 } 1068 mtx_unlock(&uma_boot_pages_mtx); 1069 if (booted < UMA_STARTUP2) 1070 panic("UMA: Increase vm.boot_pages"); 1071 /* 1072 * Now that we've booted reset these users to their real allocator. 1073 */ 1074 #ifdef UMA_MD_SMALL_ALLOC 1075 keg->uk_allocf = (keg->uk_ppera > 1) ? page_alloc : uma_small_alloc; 1076 #else 1077 keg->uk_allocf = page_alloc; 1078 #endif 1079 return keg->uk_allocf(zone, bytes, pflag, wait); 1080 } 1081 1082 /* 1083 * Allocates a number of pages from the system 1084 * 1085 * Arguments: 1086 * bytes The number of bytes requested 1087 * wait Shall we wait? 1088 * 1089 * Returns: 1090 * A pointer to the alloced memory or possibly 1091 * NULL if M_NOWAIT is set. 1092 */ 1093 static void * 1094 page_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait) 1095 { 1096 void *p; /* Returned page */ 1097 1098 *pflag = UMA_SLAB_KMEM; 1099 p = (void *) kmem_malloc(kmem_arena, bytes, wait); 1100 1101 return (p); 1102 } 1103 1104 /* 1105 * Allocates a number of pages from within an object 1106 * 1107 * Arguments: 1108 * bytes The number of bytes requested 1109 * wait Shall we wait? 1110 * 1111 * Returns: 1112 * A pointer to the alloced memory or possibly 1113 * NULL if M_NOWAIT is set. 1114 */ 1115 static void * 1116 noobj_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *flags, int wait) 1117 { 1118 TAILQ_HEAD(, vm_page) alloctail; 1119 u_long npages; 1120 vm_offset_t retkva, zkva; 1121 vm_page_t p, p_next; 1122 uma_keg_t keg; 1123 1124 TAILQ_INIT(&alloctail); 1125 keg = zone_first_keg(zone); 1126 1127 npages = howmany(bytes, PAGE_SIZE); 1128 while (npages > 0) { 1129 p = vm_page_alloc(NULL, 0, VM_ALLOC_INTERRUPT | 1130 VM_ALLOC_WIRED | VM_ALLOC_NOOBJ); 1131 if (p != NULL) { 1132 /* 1133 * Since the page does not belong to an object, its 1134 * listq is unused. 1135 */ 1136 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1137 npages--; 1138 continue; 1139 } 1140 if (wait & M_WAITOK) { 1141 VM_WAIT; 1142 continue; 1143 } 1144 1145 /* 1146 * Page allocation failed, free intermediate pages and 1147 * exit. 1148 */ 1149 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 1150 vm_page_unwire(p, PQ_NONE); 1151 vm_page_free(p); 1152 } 1153 return (NULL); 1154 } 1155 *flags = UMA_SLAB_PRIV; 1156 zkva = keg->uk_kva + 1157 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 1158 retkva = zkva; 1159 TAILQ_FOREACH(p, &alloctail, listq) { 1160 pmap_qenter(zkva, &p, 1); 1161 zkva += PAGE_SIZE; 1162 } 1163 1164 return ((void *)retkva); 1165 } 1166 1167 /* 1168 * Frees a number of pages to the system 1169 * 1170 * Arguments: 1171 * mem A pointer to the memory to be freed 1172 * size The size of the memory being freed 1173 * flags The original p->us_flags field 1174 * 1175 * Returns: 1176 * Nothing 1177 */ 1178 static void 1179 page_free(void *mem, vm_size_t size, uint8_t flags) 1180 { 1181 struct vmem *vmem; 1182 1183 if (flags & UMA_SLAB_KMEM) 1184 vmem = kmem_arena; 1185 else if (flags & UMA_SLAB_KERNEL) 1186 vmem = kernel_arena; 1187 else 1188 panic("UMA: page_free used with invalid flags %x", flags); 1189 1190 kmem_free(vmem, (vm_offset_t)mem, size); 1191 } 1192 1193 /* 1194 * Zero fill initializer 1195 * 1196 * Arguments/Returns follow uma_init specifications 1197 */ 1198 static int 1199 zero_init(void *mem, int size, int flags) 1200 { 1201 bzero(mem, size); 1202 return (0); 1203 } 1204 1205 /* 1206 * Finish creating a small uma keg. This calculates ipers, and the keg size. 1207 * 1208 * Arguments 1209 * keg The zone we should initialize 1210 * 1211 * Returns 1212 * Nothing 1213 */ 1214 static void 1215 keg_small_init(uma_keg_t keg) 1216 { 1217 u_int rsize; 1218 u_int memused; 1219 u_int wastedspace; 1220 u_int shsize; 1221 u_int slabsize; 1222 1223 if (keg->uk_flags & UMA_ZONE_PCPU) { 1224 u_int ncpus = (mp_maxid + 1) ? (mp_maxid + 1) : MAXCPU; 1225 1226 slabsize = sizeof(struct pcpu); 1227 keg->uk_ppera = howmany(ncpus * sizeof(struct pcpu), 1228 PAGE_SIZE); 1229 } else { 1230 slabsize = UMA_SLAB_SIZE; 1231 keg->uk_ppera = 1; 1232 } 1233 1234 /* 1235 * Calculate the size of each allocation (rsize) according to 1236 * alignment. If the requested size is smaller than we have 1237 * allocation bits for we round it up. 1238 */ 1239 rsize = keg->uk_size; 1240 if (rsize < slabsize / SLAB_SETSIZE) 1241 rsize = slabsize / SLAB_SETSIZE; 1242 if (rsize & keg->uk_align) 1243 rsize = (rsize & ~keg->uk_align) + (keg->uk_align + 1); 1244 keg->uk_rsize = rsize; 1245 1246 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 1247 keg->uk_rsize < sizeof(struct pcpu), 1248 ("%s: size %u too large", __func__, keg->uk_rsize)); 1249 1250 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1251 shsize = 0; 1252 else 1253 shsize = sizeof(struct uma_slab); 1254 1255 keg->uk_ipers = (slabsize - shsize) / rsize; 1256 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1257 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1258 1259 memused = keg->uk_ipers * rsize + shsize; 1260 wastedspace = slabsize - memused; 1261 1262 /* 1263 * We can't do OFFPAGE if we're internal or if we've been 1264 * asked to not go to the VM for buckets. If we do this we 1265 * may end up going to the VM for slabs which we do not 1266 * want to do if we're UMA_ZFLAG_CACHEONLY as a result 1267 * of UMA_ZONE_VM, which clearly forbids it. 1268 */ 1269 if ((keg->uk_flags & UMA_ZFLAG_INTERNAL) || 1270 (keg->uk_flags & UMA_ZFLAG_CACHEONLY)) 1271 return; 1272 1273 /* 1274 * See if using an OFFPAGE slab will limit our waste. Only do 1275 * this if it permits more items per-slab. 1276 * 1277 * XXX We could try growing slabsize to limit max waste as well. 1278 * Historically this was not done because the VM could not 1279 * efficiently handle contiguous allocations. 1280 */ 1281 if ((wastedspace >= slabsize / UMA_MAX_WASTE) && 1282 (keg->uk_ipers < (slabsize / keg->uk_rsize))) { 1283 keg->uk_ipers = slabsize / keg->uk_rsize; 1284 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_SETSIZE, 1285 ("%s: keg->uk_ipers %u", __func__, keg->uk_ipers)); 1286 #ifdef UMA_DEBUG 1287 printf("UMA decided we need offpage slab headers for " 1288 "keg: %s, calculated wastedspace = %d, " 1289 "maximum wasted space allowed = %d, " 1290 "calculated ipers = %d, " 1291 "new wasted space = %d\n", keg->uk_name, wastedspace, 1292 slabsize / UMA_MAX_WASTE, keg->uk_ipers, 1293 slabsize - keg->uk_ipers * keg->uk_rsize); 1294 #endif 1295 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1296 } 1297 1298 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1299 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1300 keg->uk_flags |= UMA_ZONE_HASH; 1301 } 1302 1303 /* 1304 * Finish creating a large (> UMA_SLAB_SIZE) uma kegs. Just give in and do 1305 * OFFPAGE for now. When I can allow for more dynamic slab sizes this will be 1306 * more complicated. 1307 * 1308 * Arguments 1309 * keg The keg we should initialize 1310 * 1311 * Returns 1312 * Nothing 1313 */ 1314 static void 1315 keg_large_init(uma_keg_t keg) 1316 { 1317 u_int shsize; 1318 1319 KASSERT(keg != NULL, ("Keg is null in keg_large_init")); 1320 KASSERT((keg->uk_flags & UMA_ZFLAG_CACHEONLY) == 0, 1321 ("keg_large_init: Cannot large-init a UMA_ZFLAG_CACHEONLY keg")); 1322 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1323 ("%s: Cannot large-init a UMA_ZONE_PCPU keg", __func__)); 1324 1325 keg->uk_ppera = howmany(keg->uk_size, PAGE_SIZE); 1326 keg->uk_ipers = 1; 1327 keg->uk_rsize = keg->uk_size; 1328 1329 /* We can't do OFFPAGE if we're internal, bail out here. */ 1330 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) 1331 return; 1332 1333 /* Check whether we have enough space to not do OFFPAGE. */ 1334 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) == 0) { 1335 shsize = sizeof(struct uma_slab); 1336 if (shsize & UMA_ALIGN_PTR) 1337 shsize = (shsize & ~UMA_ALIGN_PTR) + 1338 (UMA_ALIGN_PTR + 1); 1339 1340 if ((PAGE_SIZE * keg->uk_ppera) - keg->uk_rsize < shsize) 1341 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1342 } 1343 1344 if ((keg->uk_flags & UMA_ZONE_OFFPAGE) && 1345 (keg->uk_flags & UMA_ZONE_VTOSLAB) == 0) 1346 keg->uk_flags |= UMA_ZONE_HASH; 1347 } 1348 1349 static void 1350 keg_cachespread_init(uma_keg_t keg) 1351 { 1352 int alignsize; 1353 int trailer; 1354 int pages; 1355 int rsize; 1356 1357 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0, 1358 ("%s: Cannot cachespread-init a UMA_ZONE_PCPU keg", __func__)); 1359 1360 alignsize = keg->uk_align + 1; 1361 rsize = keg->uk_size; 1362 /* 1363 * We want one item to start on every align boundary in a page. To 1364 * do this we will span pages. We will also extend the item by the 1365 * size of align if it is an even multiple of align. Otherwise, it 1366 * would fall on the same boundary every time. 1367 */ 1368 if (rsize & keg->uk_align) 1369 rsize = (rsize & ~keg->uk_align) + alignsize; 1370 if ((rsize & alignsize) == 0) 1371 rsize += alignsize; 1372 trailer = rsize - keg->uk_size; 1373 pages = (rsize * (PAGE_SIZE / alignsize)) / PAGE_SIZE; 1374 pages = MIN(pages, (128 * 1024) / PAGE_SIZE); 1375 keg->uk_rsize = rsize; 1376 keg->uk_ppera = pages; 1377 keg->uk_ipers = ((pages * PAGE_SIZE) + trailer) / rsize; 1378 keg->uk_flags |= UMA_ZONE_OFFPAGE | UMA_ZONE_VTOSLAB; 1379 KASSERT(keg->uk_ipers <= SLAB_SETSIZE, 1380 ("%s: keg->uk_ipers too high(%d) increase max_ipers", __func__, 1381 keg->uk_ipers)); 1382 } 1383 1384 /* 1385 * Keg header ctor. This initializes all fields, locks, etc. And inserts 1386 * the keg onto the global keg list. 1387 * 1388 * Arguments/Returns follow uma_ctor specifications 1389 * udata Actually uma_kctor_args 1390 */ 1391 static int 1392 keg_ctor(void *mem, int size, void *udata, int flags) 1393 { 1394 struct uma_kctor_args *arg = udata; 1395 uma_keg_t keg = mem; 1396 uma_zone_t zone; 1397 1398 bzero(keg, size); 1399 keg->uk_size = arg->size; 1400 keg->uk_init = arg->uminit; 1401 keg->uk_fini = arg->fini; 1402 keg->uk_align = arg->align; 1403 keg->uk_free = 0; 1404 keg->uk_reserve = 0; 1405 keg->uk_pages = 0; 1406 keg->uk_flags = arg->flags; 1407 keg->uk_allocf = page_alloc; 1408 keg->uk_freef = page_free; 1409 keg->uk_slabzone = NULL; 1410 1411 /* 1412 * The master zone is passed to us at keg-creation time. 1413 */ 1414 zone = arg->zone; 1415 keg->uk_name = zone->uz_name; 1416 1417 if (arg->flags & UMA_ZONE_VM) 1418 keg->uk_flags |= UMA_ZFLAG_CACHEONLY; 1419 1420 if (arg->flags & UMA_ZONE_ZINIT) 1421 keg->uk_init = zero_init; 1422 1423 if (arg->flags & UMA_ZONE_MALLOC) 1424 keg->uk_flags |= UMA_ZONE_VTOSLAB; 1425 1426 if (arg->flags & UMA_ZONE_PCPU) 1427 #ifdef SMP 1428 keg->uk_flags |= UMA_ZONE_OFFPAGE; 1429 #else 1430 keg->uk_flags &= ~UMA_ZONE_PCPU; 1431 #endif 1432 1433 if (keg->uk_flags & UMA_ZONE_CACHESPREAD) { 1434 keg_cachespread_init(keg); 1435 } else { 1436 if (keg->uk_size > (UMA_SLAB_SIZE - sizeof(struct uma_slab))) 1437 keg_large_init(keg); 1438 else 1439 keg_small_init(keg); 1440 } 1441 1442 if (keg->uk_flags & UMA_ZONE_OFFPAGE) 1443 keg->uk_slabzone = slabzone; 1444 1445 /* 1446 * If we haven't booted yet we need allocations to go through the 1447 * startup cache until the vm is ready. 1448 */ 1449 if (keg->uk_ppera == 1) { 1450 #ifdef UMA_MD_SMALL_ALLOC 1451 keg->uk_allocf = uma_small_alloc; 1452 keg->uk_freef = uma_small_free; 1453 1454 if (booted < UMA_STARTUP) 1455 keg->uk_allocf = startup_alloc; 1456 #else 1457 if (booted < UMA_STARTUP2) 1458 keg->uk_allocf = startup_alloc; 1459 #endif 1460 } else if (booted < UMA_STARTUP2 && 1461 (keg->uk_flags & UMA_ZFLAG_INTERNAL)) 1462 keg->uk_allocf = startup_alloc; 1463 1464 /* 1465 * Initialize keg's lock 1466 */ 1467 KEG_LOCK_INIT(keg, (arg->flags & UMA_ZONE_MTXCLASS)); 1468 1469 /* 1470 * If we're putting the slab header in the actual page we need to 1471 * figure out where in each page it goes. This calculates a right 1472 * justified offset into the memory on an ALIGN_PTR boundary. 1473 */ 1474 if (!(keg->uk_flags & UMA_ZONE_OFFPAGE)) { 1475 u_int totsize; 1476 1477 /* Size of the slab struct and free list */ 1478 totsize = sizeof(struct uma_slab); 1479 1480 if (totsize & UMA_ALIGN_PTR) 1481 totsize = (totsize & ~UMA_ALIGN_PTR) + 1482 (UMA_ALIGN_PTR + 1); 1483 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - totsize; 1484 1485 /* 1486 * The only way the following is possible is if with our 1487 * UMA_ALIGN_PTR adjustments we are now bigger than 1488 * UMA_SLAB_SIZE. I haven't checked whether this is 1489 * mathematically possible for all cases, so we make 1490 * sure here anyway. 1491 */ 1492 totsize = keg->uk_pgoff + sizeof(struct uma_slab); 1493 if (totsize > PAGE_SIZE * keg->uk_ppera) { 1494 printf("zone %s ipers %d rsize %d size %d\n", 1495 zone->uz_name, keg->uk_ipers, keg->uk_rsize, 1496 keg->uk_size); 1497 panic("UMA slab won't fit."); 1498 } 1499 } 1500 1501 if (keg->uk_flags & UMA_ZONE_HASH) 1502 hash_alloc(&keg->uk_hash); 1503 1504 #ifdef UMA_DEBUG 1505 printf("UMA: %s(%p) size %d(%d) flags %#x ipers %d ppera %d out %d free %d\n", 1506 zone->uz_name, zone, keg->uk_size, keg->uk_rsize, keg->uk_flags, 1507 keg->uk_ipers, keg->uk_ppera, 1508 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 1509 keg->uk_free); 1510 #endif 1511 1512 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 1513 1514 rw_wlock(&uma_rwlock); 1515 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 1516 rw_wunlock(&uma_rwlock); 1517 return (0); 1518 } 1519 1520 /* 1521 * Zone header ctor. This initializes all fields, locks, etc. 1522 * 1523 * Arguments/Returns follow uma_ctor specifications 1524 * udata Actually uma_zctor_args 1525 */ 1526 static int 1527 zone_ctor(void *mem, int size, void *udata, int flags) 1528 { 1529 struct uma_zctor_args *arg = udata; 1530 uma_zone_t zone = mem; 1531 uma_zone_t z; 1532 uma_keg_t keg; 1533 1534 bzero(zone, size); 1535 zone->uz_name = arg->name; 1536 zone->uz_ctor = arg->ctor; 1537 zone->uz_dtor = arg->dtor; 1538 zone->uz_slab = zone_fetch_slab; 1539 zone->uz_init = NULL; 1540 zone->uz_fini = NULL; 1541 zone->uz_allocs = 0; 1542 zone->uz_frees = 0; 1543 zone->uz_fails = 0; 1544 zone->uz_sleeps = 0; 1545 zone->uz_count = 0; 1546 zone->uz_count_min = 0; 1547 zone->uz_flags = 0; 1548 zone->uz_warning = NULL; 1549 timevalclear(&zone->uz_ratecheck); 1550 keg = arg->keg; 1551 1552 ZONE_LOCK_INIT(zone, (arg->flags & UMA_ZONE_MTXCLASS)); 1553 1554 /* 1555 * This is a pure cache zone, no kegs. 1556 */ 1557 if (arg->import) { 1558 if (arg->flags & UMA_ZONE_VM) 1559 arg->flags |= UMA_ZFLAG_CACHEONLY; 1560 zone->uz_flags = arg->flags; 1561 zone->uz_size = arg->size; 1562 zone->uz_import = arg->import; 1563 zone->uz_release = arg->release; 1564 zone->uz_arg = arg->arg; 1565 zone->uz_lockptr = &zone->uz_lock; 1566 rw_wlock(&uma_rwlock); 1567 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 1568 rw_wunlock(&uma_rwlock); 1569 goto out; 1570 } 1571 1572 /* 1573 * Use the regular zone/keg/slab allocator. 1574 */ 1575 zone->uz_import = (uma_import)zone_import; 1576 zone->uz_release = (uma_release)zone_release; 1577 zone->uz_arg = zone; 1578 1579 if (arg->flags & UMA_ZONE_SECONDARY) { 1580 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 1581 zone->uz_init = arg->uminit; 1582 zone->uz_fini = arg->fini; 1583 zone->uz_lockptr = &keg->uk_lock; 1584 zone->uz_flags |= UMA_ZONE_SECONDARY; 1585 rw_wlock(&uma_rwlock); 1586 ZONE_LOCK(zone); 1587 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 1588 if (LIST_NEXT(z, uz_link) == NULL) { 1589 LIST_INSERT_AFTER(z, zone, uz_link); 1590 break; 1591 } 1592 } 1593 ZONE_UNLOCK(zone); 1594 rw_wunlock(&uma_rwlock); 1595 } else if (keg == NULL) { 1596 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 1597 arg->align, arg->flags)) == NULL) 1598 return (ENOMEM); 1599 } else { 1600 struct uma_kctor_args karg; 1601 int error; 1602 1603 /* We should only be here from uma_startup() */ 1604 karg.size = arg->size; 1605 karg.uminit = arg->uminit; 1606 karg.fini = arg->fini; 1607 karg.align = arg->align; 1608 karg.flags = arg->flags; 1609 karg.zone = zone; 1610 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 1611 flags); 1612 if (error) 1613 return (error); 1614 } 1615 1616 /* 1617 * Link in the first keg. 1618 */ 1619 zone->uz_klink.kl_keg = keg; 1620 LIST_INSERT_HEAD(&zone->uz_kegs, &zone->uz_klink, kl_link); 1621 zone->uz_lockptr = &keg->uk_lock; 1622 zone->uz_size = keg->uk_size; 1623 zone->uz_flags |= (keg->uk_flags & 1624 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 1625 1626 /* 1627 * Some internal zones don't have room allocated for the per cpu 1628 * caches. If we're internal, bail out here. 1629 */ 1630 if (keg->uk_flags & UMA_ZFLAG_INTERNAL) { 1631 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 1632 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 1633 return (0); 1634 } 1635 1636 out: 1637 if ((arg->flags & UMA_ZONE_MAXBUCKET) == 0) 1638 zone->uz_count = bucket_select(zone->uz_size); 1639 else 1640 zone->uz_count = BUCKET_MAX; 1641 zone->uz_count_min = zone->uz_count; 1642 1643 return (0); 1644 } 1645 1646 /* 1647 * Keg header dtor. This frees all data, destroys locks, frees the hash 1648 * table and removes the keg from the global list. 1649 * 1650 * Arguments/Returns follow uma_dtor specifications 1651 * udata unused 1652 */ 1653 static void 1654 keg_dtor(void *arg, int size, void *udata) 1655 { 1656 uma_keg_t keg; 1657 1658 keg = (uma_keg_t)arg; 1659 KEG_LOCK(keg); 1660 if (keg->uk_free != 0) { 1661 printf("Freed UMA keg (%s) was not empty (%d items). " 1662 " Lost %d pages of memory.\n", 1663 keg->uk_name ? keg->uk_name : "", 1664 keg->uk_free, keg->uk_pages); 1665 } 1666 KEG_UNLOCK(keg); 1667 1668 hash_free(&keg->uk_hash); 1669 1670 KEG_LOCK_FINI(keg); 1671 } 1672 1673 /* 1674 * Zone header dtor. 1675 * 1676 * Arguments/Returns follow uma_dtor specifications 1677 * udata unused 1678 */ 1679 static void 1680 zone_dtor(void *arg, int size, void *udata) 1681 { 1682 uma_klink_t klink; 1683 uma_zone_t zone; 1684 uma_keg_t keg; 1685 1686 zone = (uma_zone_t)arg; 1687 keg = zone_first_keg(zone); 1688 1689 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 1690 cache_drain(zone); 1691 1692 rw_wlock(&uma_rwlock); 1693 LIST_REMOVE(zone, uz_link); 1694 rw_wunlock(&uma_rwlock); 1695 /* 1696 * XXX there are some races here where 1697 * the zone can be drained but zone lock 1698 * released and then refilled before we 1699 * remove it... we dont care for now 1700 */ 1701 zone_drain_wait(zone, M_WAITOK); 1702 /* 1703 * Unlink all of our kegs. 1704 */ 1705 while ((klink = LIST_FIRST(&zone->uz_kegs)) != NULL) { 1706 klink->kl_keg = NULL; 1707 LIST_REMOVE(klink, kl_link); 1708 if (klink == &zone->uz_klink) 1709 continue; 1710 free(klink, M_TEMP); 1711 } 1712 /* 1713 * We only destroy kegs from non secondary zones. 1714 */ 1715 if (keg != NULL && (zone->uz_flags & UMA_ZONE_SECONDARY) == 0) { 1716 rw_wlock(&uma_rwlock); 1717 LIST_REMOVE(keg, uk_link); 1718 rw_wunlock(&uma_rwlock); 1719 zone_free_item(kegs, keg, NULL, SKIP_NONE); 1720 } 1721 ZONE_LOCK_FINI(zone); 1722 } 1723 1724 /* 1725 * Traverses every zone in the system and calls a callback 1726 * 1727 * Arguments: 1728 * zfunc A pointer to a function which accepts a zone 1729 * as an argument. 1730 * 1731 * Returns: 1732 * Nothing 1733 */ 1734 static void 1735 zone_foreach(void (*zfunc)(uma_zone_t)) 1736 { 1737 uma_keg_t keg; 1738 uma_zone_t zone; 1739 1740 rw_rlock(&uma_rwlock); 1741 LIST_FOREACH(keg, &uma_kegs, uk_link) { 1742 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 1743 zfunc(zone); 1744 } 1745 rw_runlock(&uma_rwlock); 1746 } 1747 1748 /* Public functions */ 1749 /* See uma.h */ 1750 void 1751 uma_startup(void *bootmem, int boot_pages) 1752 { 1753 struct uma_zctor_args args; 1754 uma_slab_t slab; 1755 int i; 1756 1757 #ifdef UMA_DEBUG 1758 printf("Creating uma keg headers zone and keg.\n"); 1759 #endif 1760 rw_init(&uma_rwlock, "UMA lock"); 1761 1762 /* "manually" create the initial zone */ 1763 memset(&args, 0, sizeof(args)); 1764 args.name = "UMA Kegs"; 1765 args.size = sizeof(struct uma_keg); 1766 args.ctor = keg_ctor; 1767 args.dtor = keg_dtor; 1768 args.uminit = zero_init; 1769 args.fini = NULL; 1770 args.keg = &masterkeg; 1771 args.align = 32 - 1; 1772 args.flags = UMA_ZFLAG_INTERNAL; 1773 /* The initial zone has no Per cpu queues so it's smaller */ 1774 zone_ctor(kegs, sizeof(struct uma_zone), &args, M_WAITOK); 1775 1776 #ifdef UMA_DEBUG 1777 printf("Filling boot free list.\n"); 1778 #endif 1779 for (i = 0; i < boot_pages; i++) { 1780 slab = (uma_slab_t)((uint8_t *)bootmem + (i * UMA_SLAB_SIZE)); 1781 slab->us_data = (uint8_t *)slab; 1782 slab->us_flags = UMA_SLAB_BOOT; 1783 LIST_INSERT_HEAD(&uma_boot_pages, slab, us_link); 1784 } 1785 mtx_init(&uma_boot_pages_mtx, "UMA boot pages", NULL, MTX_DEF); 1786 1787 #ifdef UMA_DEBUG 1788 printf("Creating uma zone headers zone and keg.\n"); 1789 #endif 1790 args.name = "UMA Zones"; 1791 args.size = sizeof(struct uma_zone) + 1792 (sizeof(struct uma_cache) * (mp_maxid + 1)); 1793 args.ctor = zone_ctor; 1794 args.dtor = zone_dtor; 1795 args.uminit = zero_init; 1796 args.fini = NULL; 1797 args.keg = NULL; 1798 args.align = 32 - 1; 1799 args.flags = UMA_ZFLAG_INTERNAL; 1800 /* The initial zone has no Per cpu queues so it's smaller */ 1801 zone_ctor(zones, sizeof(struct uma_zone), &args, M_WAITOK); 1802 1803 #ifdef UMA_DEBUG 1804 printf("Creating slab and hash zones.\n"); 1805 #endif 1806 1807 /* Now make a zone for slab headers */ 1808 slabzone = uma_zcreate("UMA Slabs", 1809 sizeof(struct uma_slab), 1810 NULL, NULL, NULL, NULL, 1811 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1812 1813 hashzone = uma_zcreate("UMA Hash", 1814 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 1815 NULL, NULL, NULL, NULL, 1816 UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 1817 1818 bucket_init(); 1819 1820 booted = UMA_STARTUP; 1821 1822 #ifdef UMA_DEBUG 1823 printf("UMA startup complete.\n"); 1824 #endif 1825 } 1826 1827 /* see uma.h */ 1828 void 1829 uma_startup2(void) 1830 { 1831 booted = UMA_STARTUP2; 1832 bucket_enable(); 1833 sx_init(&uma_drain_lock, "umadrain"); 1834 #ifdef UMA_DEBUG 1835 printf("UMA startup2 complete.\n"); 1836 #endif 1837 } 1838 1839 /* 1840 * Initialize our callout handle 1841 * 1842 */ 1843 1844 static void 1845 uma_startup3(void) 1846 { 1847 #ifdef UMA_DEBUG 1848 printf("Starting callout.\n"); 1849 #endif 1850 callout_init(&uma_callout, 1); 1851 callout_reset(&uma_callout, UMA_TIMEOUT * hz, uma_timeout, NULL); 1852 #ifdef UMA_DEBUG 1853 printf("UMA startup3 complete.\n"); 1854 #endif 1855 } 1856 1857 static uma_keg_t 1858 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 1859 int align, uint32_t flags) 1860 { 1861 struct uma_kctor_args args; 1862 1863 args.size = size; 1864 args.uminit = uminit; 1865 args.fini = fini; 1866 args.align = (align == UMA_ALIGN_CACHE) ? uma_align_cache : align; 1867 args.flags = flags; 1868 args.zone = zone; 1869 return (zone_alloc_item(kegs, &args, M_WAITOK)); 1870 } 1871 1872 /* See uma.h */ 1873 void 1874 uma_set_align(int align) 1875 { 1876 1877 if (align != UMA_ALIGN_CACHE) 1878 uma_align_cache = align; 1879 } 1880 1881 /* See uma.h */ 1882 uma_zone_t 1883 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 1884 uma_init uminit, uma_fini fini, int align, uint32_t flags) 1885 1886 { 1887 struct uma_zctor_args args; 1888 uma_zone_t res; 1889 bool locked; 1890 1891 KASSERT(powerof2(align + 1), ("invalid zone alignment %d for \"%s\"", 1892 align, name)); 1893 1894 /* This stuff is essential for the zone ctor */ 1895 memset(&args, 0, sizeof(args)); 1896 args.name = name; 1897 args.size = size; 1898 args.ctor = ctor; 1899 args.dtor = dtor; 1900 args.uminit = uminit; 1901 args.fini = fini; 1902 #ifdef INVARIANTS 1903 /* 1904 * If a zone is being created with an empty constructor and 1905 * destructor, pass UMA constructor/destructor which checks for 1906 * memory use after free. 1907 */ 1908 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOFREE))) && 1909 ctor == NULL && dtor == NULL && uminit == NULL && fini == NULL) { 1910 args.ctor = trash_ctor; 1911 args.dtor = trash_dtor; 1912 args.uminit = trash_init; 1913 args.fini = trash_fini; 1914 } 1915 #endif 1916 args.align = align; 1917 args.flags = flags; 1918 args.keg = NULL; 1919 1920 if (booted < UMA_STARTUP2) { 1921 locked = false; 1922 } else { 1923 sx_slock(&uma_drain_lock); 1924 locked = true; 1925 } 1926 res = zone_alloc_item(zones, &args, M_WAITOK); 1927 if (locked) 1928 sx_sunlock(&uma_drain_lock); 1929 return (res); 1930 } 1931 1932 /* See uma.h */ 1933 uma_zone_t 1934 uma_zsecond_create(char *name, uma_ctor ctor, uma_dtor dtor, 1935 uma_init zinit, uma_fini zfini, uma_zone_t master) 1936 { 1937 struct uma_zctor_args args; 1938 uma_keg_t keg; 1939 uma_zone_t res; 1940 bool locked; 1941 1942 keg = zone_first_keg(master); 1943 memset(&args, 0, sizeof(args)); 1944 args.name = name; 1945 args.size = keg->uk_size; 1946 args.ctor = ctor; 1947 args.dtor = dtor; 1948 args.uminit = zinit; 1949 args.fini = zfini; 1950 args.align = keg->uk_align; 1951 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 1952 args.keg = keg; 1953 1954 if (booted < UMA_STARTUP2) { 1955 locked = false; 1956 } else { 1957 sx_slock(&uma_drain_lock); 1958 locked = true; 1959 } 1960 /* XXX Attaches only one keg of potentially many. */ 1961 res = zone_alloc_item(zones, &args, M_WAITOK); 1962 if (locked) 1963 sx_sunlock(&uma_drain_lock); 1964 return (res); 1965 } 1966 1967 /* See uma.h */ 1968 uma_zone_t 1969 uma_zcache_create(char *name, int size, uma_ctor ctor, uma_dtor dtor, 1970 uma_init zinit, uma_fini zfini, uma_import zimport, 1971 uma_release zrelease, void *arg, int flags) 1972 { 1973 struct uma_zctor_args args; 1974 1975 memset(&args, 0, sizeof(args)); 1976 args.name = name; 1977 args.size = size; 1978 args.ctor = ctor; 1979 args.dtor = dtor; 1980 args.uminit = zinit; 1981 args.fini = zfini; 1982 args.import = zimport; 1983 args.release = zrelease; 1984 args.arg = arg; 1985 args.align = 0; 1986 args.flags = flags; 1987 1988 return (zone_alloc_item(zones, &args, M_WAITOK)); 1989 } 1990 1991 static void 1992 zone_lock_pair(uma_zone_t a, uma_zone_t b) 1993 { 1994 if (a < b) { 1995 ZONE_LOCK(a); 1996 mtx_lock_flags(b->uz_lockptr, MTX_DUPOK); 1997 } else { 1998 ZONE_LOCK(b); 1999 mtx_lock_flags(a->uz_lockptr, MTX_DUPOK); 2000 } 2001 } 2002 2003 static void 2004 zone_unlock_pair(uma_zone_t a, uma_zone_t b) 2005 { 2006 2007 ZONE_UNLOCK(a); 2008 ZONE_UNLOCK(b); 2009 } 2010 2011 int 2012 uma_zsecond_add(uma_zone_t zone, uma_zone_t master) 2013 { 2014 uma_klink_t klink; 2015 uma_klink_t kl; 2016 int error; 2017 2018 error = 0; 2019 klink = malloc(sizeof(*klink), M_TEMP, M_WAITOK | M_ZERO); 2020 2021 zone_lock_pair(zone, master); 2022 /* 2023 * zone must use vtoslab() to resolve objects and must already be 2024 * a secondary. 2025 */ 2026 if ((zone->uz_flags & (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) 2027 != (UMA_ZONE_VTOSLAB | UMA_ZONE_SECONDARY)) { 2028 error = EINVAL; 2029 goto out; 2030 } 2031 /* 2032 * The new master must also use vtoslab(). 2033 */ 2034 if ((zone->uz_flags & UMA_ZONE_VTOSLAB) != UMA_ZONE_VTOSLAB) { 2035 error = EINVAL; 2036 goto out; 2037 } 2038 2039 /* 2040 * The underlying object must be the same size. rsize 2041 * may be different. 2042 */ 2043 if (master->uz_size != zone->uz_size) { 2044 error = E2BIG; 2045 goto out; 2046 } 2047 /* 2048 * Put it at the end of the list. 2049 */ 2050 klink->kl_keg = zone_first_keg(master); 2051 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) { 2052 if (LIST_NEXT(kl, kl_link) == NULL) { 2053 LIST_INSERT_AFTER(kl, klink, kl_link); 2054 break; 2055 } 2056 } 2057 klink = NULL; 2058 zone->uz_flags |= UMA_ZFLAG_MULTI; 2059 zone->uz_slab = zone_fetch_slab_multi; 2060 2061 out: 2062 zone_unlock_pair(zone, master); 2063 if (klink != NULL) 2064 free(klink, M_TEMP); 2065 2066 return (error); 2067 } 2068 2069 2070 /* See uma.h */ 2071 void 2072 uma_zdestroy(uma_zone_t zone) 2073 { 2074 2075 sx_slock(&uma_drain_lock); 2076 zone_free_item(zones, zone, NULL, SKIP_NONE); 2077 sx_sunlock(&uma_drain_lock); 2078 } 2079 2080 /* See uma.h */ 2081 void * 2082 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 2083 { 2084 void *item; 2085 uma_cache_t cache; 2086 uma_bucket_t bucket; 2087 int lockfail; 2088 int cpu; 2089 2090 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2091 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2092 2093 /* This is the fast path allocation */ 2094 #ifdef UMA_DEBUG_ALLOC_1 2095 printf("Allocating one item from %s(%p)\n", zone->uz_name, zone); 2096 #endif 2097 CTR3(KTR_UMA, "uma_zalloc_arg thread %x zone %s flags %d", curthread, 2098 zone->uz_name, flags); 2099 2100 if (flags & M_WAITOK) { 2101 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 2102 "uma_zalloc_arg: zone \"%s\"", zone->uz_name); 2103 } 2104 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2105 ("uma_zalloc_arg: called with spinlock or critical section held")); 2106 2107 #ifdef DEBUG_MEMGUARD 2108 if (memguard_cmp_zone(zone)) { 2109 item = memguard_alloc(zone->uz_size, flags); 2110 if (item != NULL) { 2111 if (zone->uz_init != NULL && 2112 zone->uz_init(item, zone->uz_size, flags) != 0) 2113 return (NULL); 2114 if (zone->uz_ctor != NULL && 2115 zone->uz_ctor(item, zone->uz_size, udata, 2116 flags) != 0) { 2117 zone->uz_fini(item, zone->uz_size); 2118 return (NULL); 2119 } 2120 return (item); 2121 } 2122 /* This is unfortunate but should not be fatal. */ 2123 } 2124 #endif 2125 /* 2126 * If possible, allocate from the per-CPU cache. There are two 2127 * requirements for safe access to the per-CPU cache: (1) the thread 2128 * accessing the cache must not be preempted or yield during access, 2129 * and (2) the thread must not migrate CPUs without switching which 2130 * cache it accesses. We rely on a critical section to prevent 2131 * preemption and migration. We release the critical section in 2132 * order to acquire the zone mutex if we are unable to allocate from 2133 * the current cache; when we re-acquire the critical section, we 2134 * must detect and handle migration if it has occurred. 2135 */ 2136 critical_enter(); 2137 cpu = curcpu; 2138 cache = &zone->uz_cpu[cpu]; 2139 2140 zalloc_start: 2141 bucket = cache->uc_allocbucket; 2142 if (bucket != NULL && bucket->ub_cnt > 0) { 2143 bucket->ub_cnt--; 2144 item = bucket->ub_bucket[bucket->ub_cnt]; 2145 #ifdef INVARIANTS 2146 bucket->ub_bucket[bucket->ub_cnt] = NULL; 2147 #endif 2148 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 2149 cache->uc_allocs++; 2150 critical_exit(); 2151 if (zone->uz_ctor != NULL && 2152 zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2153 atomic_add_long(&zone->uz_fails, 1); 2154 zone_free_item(zone, item, udata, SKIP_DTOR); 2155 return (NULL); 2156 } 2157 #ifdef INVARIANTS 2158 uma_dbg_alloc(zone, NULL, item); 2159 #endif 2160 if (flags & M_ZERO) 2161 uma_zero_item(item, zone); 2162 return (item); 2163 } 2164 2165 /* 2166 * We have run out of items in our alloc bucket. 2167 * See if we can switch with our free bucket. 2168 */ 2169 bucket = cache->uc_freebucket; 2170 if (bucket != NULL && bucket->ub_cnt > 0) { 2171 #ifdef UMA_DEBUG_ALLOC 2172 printf("uma_zalloc: Swapping empty with alloc.\n"); 2173 #endif 2174 cache->uc_freebucket = cache->uc_allocbucket; 2175 cache->uc_allocbucket = bucket; 2176 goto zalloc_start; 2177 } 2178 2179 /* 2180 * Discard any empty allocation bucket while we hold no locks. 2181 */ 2182 bucket = cache->uc_allocbucket; 2183 cache->uc_allocbucket = NULL; 2184 critical_exit(); 2185 if (bucket != NULL) 2186 bucket_free(zone, bucket, udata); 2187 2188 /* Short-circuit for zones without buckets and low memory. */ 2189 if (zone->uz_count == 0 || bucketdisable) 2190 goto zalloc_item; 2191 2192 /* 2193 * Attempt to retrieve the item from the per-CPU cache has failed, so 2194 * we must go back to the zone. This requires the zone lock, so we 2195 * must drop the critical section, then re-acquire it when we go back 2196 * to the cache. Since the critical section is released, we may be 2197 * preempted or migrate. As such, make sure not to maintain any 2198 * thread-local state specific to the cache from prior to releasing 2199 * the critical section. 2200 */ 2201 lockfail = 0; 2202 if (ZONE_TRYLOCK(zone) == 0) { 2203 /* Record contention to size the buckets. */ 2204 ZONE_LOCK(zone); 2205 lockfail = 1; 2206 } 2207 critical_enter(); 2208 cpu = curcpu; 2209 cache = &zone->uz_cpu[cpu]; 2210 2211 /* 2212 * Since we have locked the zone we may as well send back our stats. 2213 */ 2214 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2215 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2216 cache->uc_allocs = 0; 2217 cache->uc_frees = 0; 2218 2219 /* See if we lost the race to fill the cache. */ 2220 if (cache->uc_allocbucket != NULL) { 2221 ZONE_UNLOCK(zone); 2222 goto zalloc_start; 2223 } 2224 2225 /* 2226 * Check the zone's cache of buckets. 2227 */ 2228 if ((bucket = LIST_FIRST(&zone->uz_buckets)) != NULL) { 2229 KASSERT(bucket->ub_cnt != 0, 2230 ("uma_zalloc_arg: Returning an empty bucket.")); 2231 2232 LIST_REMOVE(bucket, ub_link); 2233 cache->uc_allocbucket = bucket; 2234 ZONE_UNLOCK(zone); 2235 goto zalloc_start; 2236 } 2237 /* We are no longer associated with this CPU. */ 2238 critical_exit(); 2239 2240 /* 2241 * We bump the uz count when the cache size is insufficient to 2242 * handle the working set. 2243 */ 2244 if (lockfail && zone->uz_count < BUCKET_MAX) 2245 zone->uz_count++; 2246 ZONE_UNLOCK(zone); 2247 2248 /* 2249 * Now lets just fill a bucket and put it on the free list. If that 2250 * works we'll restart the allocation from the beginning and it 2251 * will use the just filled bucket. 2252 */ 2253 bucket = zone_alloc_bucket(zone, udata, flags); 2254 if (bucket != NULL) { 2255 ZONE_LOCK(zone); 2256 critical_enter(); 2257 cpu = curcpu; 2258 cache = &zone->uz_cpu[cpu]; 2259 /* 2260 * See if we lost the race or were migrated. Cache the 2261 * initialized bucket to make this less likely or claim 2262 * the memory directly. 2263 */ 2264 if (cache->uc_allocbucket == NULL) 2265 cache->uc_allocbucket = bucket; 2266 else 2267 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2268 ZONE_UNLOCK(zone); 2269 goto zalloc_start; 2270 } 2271 2272 /* 2273 * We may not be able to get a bucket so return an actual item. 2274 */ 2275 #ifdef UMA_DEBUG 2276 printf("uma_zalloc_arg: Bucketzone returned NULL\n"); 2277 #endif 2278 2279 zalloc_item: 2280 item = zone_alloc_item(zone, udata, flags); 2281 2282 return (item); 2283 } 2284 2285 static uma_slab_t 2286 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int flags) 2287 { 2288 uma_slab_t slab; 2289 int reserve; 2290 2291 mtx_assert(&keg->uk_lock, MA_OWNED); 2292 slab = NULL; 2293 reserve = 0; 2294 if ((flags & M_USE_RESERVE) == 0) 2295 reserve = keg->uk_reserve; 2296 2297 for (;;) { 2298 /* 2299 * Find a slab with some space. Prefer slabs that are partially 2300 * used over those that are totally full. This helps to reduce 2301 * fragmentation. 2302 */ 2303 if (keg->uk_free > reserve) { 2304 if (!LIST_EMPTY(&keg->uk_part_slab)) { 2305 slab = LIST_FIRST(&keg->uk_part_slab); 2306 } else { 2307 slab = LIST_FIRST(&keg->uk_free_slab); 2308 LIST_REMOVE(slab, us_link); 2309 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, 2310 us_link); 2311 } 2312 MPASS(slab->us_keg == keg); 2313 return (slab); 2314 } 2315 2316 /* 2317 * M_NOVM means don't ask at all! 2318 */ 2319 if (flags & M_NOVM) 2320 break; 2321 2322 if (keg->uk_maxpages && keg->uk_pages >= keg->uk_maxpages) { 2323 keg->uk_flags |= UMA_ZFLAG_FULL; 2324 /* 2325 * If this is not a multi-zone, set the FULL bit. 2326 * Otherwise slab_multi() takes care of it. 2327 */ 2328 if ((zone->uz_flags & UMA_ZFLAG_MULTI) == 0) { 2329 zone->uz_flags |= UMA_ZFLAG_FULL; 2330 zone_log_warning(zone); 2331 zone_maxaction(zone); 2332 } 2333 if (flags & M_NOWAIT) 2334 break; 2335 zone->uz_sleeps++; 2336 msleep(keg, &keg->uk_lock, PVM, "keglimit", 0); 2337 continue; 2338 } 2339 slab = keg_alloc_slab(keg, zone, flags); 2340 /* 2341 * If we got a slab here it's safe to mark it partially used 2342 * and return. We assume that the caller is going to remove 2343 * at least one item. 2344 */ 2345 if (slab) { 2346 MPASS(slab->us_keg == keg); 2347 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2348 return (slab); 2349 } 2350 /* 2351 * We might not have been able to get a slab but another cpu 2352 * could have while we were unlocked. Check again before we 2353 * fail. 2354 */ 2355 flags |= M_NOVM; 2356 } 2357 return (slab); 2358 } 2359 2360 static uma_slab_t 2361 zone_fetch_slab(uma_zone_t zone, uma_keg_t keg, int flags) 2362 { 2363 uma_slab_t slab; 2364 2365 if (keg == NULL) { 2366 keg = zone_first_keg(zone); 2367 KEG_LOCK(keg); 2368 } 2369 2370 for (;;) { 2371 slab = keg_fetch_slab(keg, zone, flags); 2372 if (slab) 2373 return (slab); 2374 if (flags & (M_NOWAIT | M_NOVM)) 2375 break; 2376 } 2377 KEG_UNLOCK(keg); 2378 return (NULL); 2379 } 2380 2381 /* 2382 * uma_zone_fetch_slab_multi: Fetches a slab from one available keg. Returns 2383 * with the keg locked. On NULL no lock is held. 2384 * 2385 * The last pointer is used to seed the search. It is not required. 2386 */ 2387 static uma_slab_t 2388 zone_fetch_slab_multi(uma_zone_t zone, uma_keg_t last, int rflags) 2389 { 2390 uma_klink_t klink; 2391 uma_slab_t slab; 2392 uma_keg_t keg; 2393 int flags; 2394 int empty; 2395 int full; 2396 2397 /* 2398 * Don't wait on the first pass. This will skip limit tests 2399 * as well. We don't want to block if we can find a provider 2400 * without blocking. 2401 */ 2402 flags = (rflags & ~M_WAITOK) | M_NOWAIT; 2403 /* 2404 * Use the last slab allocated as a hint for where to start 2405 * the search. 2406 */ 2407 if (last != NULL) { 2408 slab = keg_fetch_slab(last, zone, flags); 2409 if (slab) 2410 return (slab); 2411 KEG_UNLOCK(last); 2412 } 2413 /* 2414 * Loop until we have a slab incase of transient failures 2415 * while M_WAITOK is specified. I'm not sure this is 100% 2416 * required but we've done it for so long now. 2417 */ 2418 for (;;) { 2419 empty = 0; 2420 full = 0; 2421 /* 2422 * Search the available kegs for slabs. Be careful to hold the 2423 * correct lock while calling into the keg layer. 2424 */ 2425 LIST_FOREACH(klink, &zone->uz_kegs, kl_link) { 2426 keg = klink->kl_keg; 2427 KEG_LOCK(keg); 2428 if ((keg->uk_flags & UMA_ZFLAG_FULL) == 0) { 2429 slab = keg_fetch_slab(keg, zone, flags); 2430 if (slab) 2431 return (slab); 2432 } 2433 if (keg->uk_flags & UMA_ZFLAG_FULL) 2434 full++; 2435 else 2436 empty++; 2437 KEG_UNLOCK(keg); 2438 } 2439 if (rflags & (M_NOWAIT | M_NOVM)) 2440 break; 2441 flags = rflags; 2442 /* 2443 * All kegs are full. XXX We can't atomically check all kegs 2444 * and sleep so just sleep for a short period and retry. 2445 */ 2446 if (full && !empty) { 2447 ZONE_LOCK(zone); 2448 zone->uz_flags |= UMA_ZFLAG_FULL; 2449 zone->uz_sleeps++; 2450 zone_log_warning(zone); 2451 zone_maxaction(zone); 2452 msleep(zone, zone->uz_lockptr, PVM, 2453 "zonelimit", hz/100); 2454 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2455 ZONE_UNLOCK(zone); 2456 continue; 2457 } 2458 } 2459 return (NULL); 2460 } 2461 2462 static void * 2463 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 2464 { 2465 void *item; 2466 uint8_t freei; 2467 2468 MPASS(keg == slab->us_keg); 2469 mtx_assert(&keg->uk_lock, MA_OWNED); 2470 2471 freei = BIT_FFS(SLAB_SETSIZE, &slab->us_free) - 1; 2472 BIT_CLR(SLAB_SETSIZE, freei, &slab->us_free); 2473 item = slab->us_data + (keg->uk_rsize * freei); 2474 slab->us_freecount--; 2475 keg->uk_free--; 2476 2477 /* Move this slab to the full list */ 2478 if (slab->us_freecount == 0) { 2479 LIST_REMOVE(slab, us_link); 2480 LIST_INSERT_HEAD(&keg->uk_full_slab, slab, us_link); 2481 } 2482 2483 return (item); 2484 } 2485 2486 static int 2487 zone_import(uma_zone_t zone, void **bucket, int max, int flags) 2488 { 2489 uma_slab_t slab; 2490 uma_keg_t keg; 2491 int i; 2492 2493 slab = NULL; 2494 keg = NULL; 2495 /* Try to keep the buckets totally full */ 2496 for (i = 0; i < max; ) { 2497 if ((slab = zone->uz_slab(zone, keg, flags)) == NULL) 2498 break; 2499 keg = slab->us_keg; 2500 while (slab->us_freecount && i < max) { 2501 bucket[i++] = slab_alloc_item(keg, slab); 2502 if (keg->uk_free <= keg->uk_reserve) 2503 break; 2504 } 2505 /* Don't grab more than one slab at a time. */ 2506 flags &= ~M_WAITOK; 2507 flags |= M_NOWAIT; 2508 } 2509 if (slab != NULL) 2510 KEG_UNLOCK(keg); 2511 2512 return i; 2513 } 2514 2515 static uma_bucket_t 2516 zone_alloc_bucket(uma_zone_t zone, void *udata, int flags) 2517 { 2518 uma_bucket_t bucket; 2519 int max; 2520 2521 /* Don't wait for buckets, preserve caller's NOVM setting. */ 2522 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 2523 if (bucket == NULL) 2524 return (NULL); 2525 2526 max = MIN(bucket->ub_entries, zone->uz_count); 2527 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 2528 max, flags); 2529 2530 /* 2531 * Initialize the memory if necessary. 2532 */ 2533 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 2534 int i; 2535 2536 for (i = 0; i < bucket->ub_cnt; i++) 2537 if (zone->uz_init(bucket->ub_bucket[i], zone->uz_size, 2538 flags) != 0) 2539 break; 2540 /* 2541 * If we couldn't initialize the whole bucket, put the 2542 * rest back onto the freelist. 2543 */ 2544 if (i != bucket->ub_cnt) { 2545 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 2546 bucket->ub_cnt - i); 2547 #ifdef INVARIANTS 2548 bzero(&bucket->ub_bucket[i], 2549 sizeof(void *) * (bucket->ub_cnt - i)); 2550 #endif 2551 bucket->ub_cnt = i; 2552 } 2553 } 2554 2555 if (bucket->ub_cnt == 0) { 2556 bucket_free(zone, bucket, udata); 2557 atomic_add_long(&zone->uz_fails, 1); 2558 return (NULL); 2559 } 2560 2561 return (bucket); 2562 } 2563 2564 /* 2565 * Allocates a single item from a zone. 2566 * 2567 * Arguments 2568 * zone The zone to alloc for. 2569 * udata The data to be passed to the constructor. 2570 * flags M_WAITOK, M_NOWAIT, M_ZERO. 2571 * 2572 * Returns 2573 * NULL if there is no memory and M_NOWAIT is set 2574 * An item if successful 2575 */ 2576 2577 static void * 2578 zone_alloc_item(uma_zone_t zone, void *udata, int flags) 2579 { 2580 void *item; 2581 2582 item = NULL; 2583 2584 #ifdef UMA_DEBUG_ALLOC 2585 printf("INTERNAL: Allocating one item from %s(%p)\n", zone->uz_name, zone); 2586 #endif 2587 if (zone->uz_import(zone->uz_arg, &item, 1, flags) != 1) 2588 goto fail; 2589 atomic_add_long(&zone->uz_allocs, 1); 2590 2591 /* 2592 * We have to call both the zone's init (not the keg's init) 2593 * and the zone's ctor. This is because the item is going from 2594 * a keg slab directly to the user, and the user is expecting it 2595 * to be both zone-init'd as well as zone-ctor'd. 2596 */ 2597 if (zone->uz_init != NULL) { 2598 if (zone->uz_init(item, zone->uz_size, flags) != 0) { 2599 zone_free_item(zone, item, udata, SKIP_FINI); 2600 goto fail; 2601 } 2602 } 2603 if (zone->uz_ctor != NULL) { 2604 if (zone->uz_ctor(item, zone->uz_size, udata, flags) != 0) { 2605 zone_free_item(zone, item, udata, SKIP_DTOR); 2606 goto fail; 2607 } 2608 } 2609 #ifdef INVARIANTS 2610 uma_dbg_alloc(zone, NULL, item); 2611 #endif 2612 if (flags & M_ZERO) 2613 uma_zero_item(item, zone); 2614 2615 return (item); 2616 2617 fail: 2618 atomic_add_long(&zone->uz_fails, 1); 2619 return (NULL); 2620 } 2621 2622 /* See uma.h */ 2623 void 2624 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 2625 { 2626 uma_cache_t cache; 2627 uma_bucket_t bucket; 2628 int lockfail; 2629 int cpu; 2630 2631 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 2632 random_harvest_fast_uma(&zone, sizeof(zone), 1, RANDOM_UMA); 2633 2634 #ifdef UMA_DEBUG_ALLOC_1 2635 printf("Freeing item %p to %s(%p)\n", item, zone->uz_name, zone); 2636 #endif 2637 CTR2(KTR_UMA, "uma_zfree_arg thread %x zone %s", curthread, 2638 zone->uz_name); 2639 2640 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 2641 ("uma_zfree_arg: called with spinlock or critical section held")); 2642 2643 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 2644 if (item == NULL) 2645 return; 2646 #ifdef DEBUG_MEMGUARD 2647 if (is_memguard_addr(item)) { 2648 if (zone->uz_dtor != NULL) 2649 zone->uz_dtor(item, zone->uz_size, udata); 2650 if (zone->uz_fini != NULL) 2651 zone->uz_fini(item, zone->uz_size); 2652 memguard_free(item); 2653 return; 2654 } 2655 #endif 2656 #ifdef INVARIANTS 2657 if (zone->uz_flags & UMA_ZONE_MALLOC) 2658 uma_dbg_free(zone, udata, item); 2659 else 2660 uma_dbg_free(zone, NULL, item); 2661 #endif 2662 if (zone->uz_dtor != NULL) 2663 zone->uz_dtor(item, zone->uz_size, udata); 2664 2665 /* 2666 * The race here is acceptable. If we miss it we'll just have to wait 2667 * a little longer for the limits to be reset. 2668 */ 2669 if (zone->uz_flags & UMA_ZFLAG_FULL) 2670 goto zfree_item; 2671 2672 /* 2673 * If possible, free to the per-CPU cache. There are two 2674 * requirements for safe access to the per-CPU cache: (1) the thread 2675 * accessing the cache must not be preempted or yield during access, 2676 * and (2) the thread must not migrate CPUs without switching which 2677 * cache it accesses. We rely on a critical section to prevent 2678 * preemption and migration. We release the critical section in 2679 * order to acquire the zone mutex if we are unable to free to the 2680 * current cache; when we re-acquire the critical section, we must 2681 * detect and handle migration if it has occurred. 2682 */ 2683 zfree_restart: 2684 critical_enter(); 2685 cpu = curcpu; 2686 cache = &zone->uz_cpu[cpu]; 2687 2688 zfree_start: 2689 /* 2690 * Try to free into the allocbucket first to give LIFO ordering 2691 * for cache-hot datastructures. Spill over into the freebucket 2692 * if necessary. Alloc will swap them if one runs dry. 2693 */ 2694 bucket = cache->uc_allocbucket; 2695 if (bucket == NULL || bucket->ub_cnt >= bucket->ub_entries) 2696 bucket = cache->uc_freebucket; 2697 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2698 KASSERT(bucket->ub_bucket[bucket->ub_cnt] == NULL, 2699 ("uma_zfree: Freeing to non free bucket index.")); 2700 bucket->ub_bucket[bucket->ub_cnt] = item; 2701 bucket->ub_cnt++; 2702 cache->uc_frees++; 2703 critical_exit(); 2704 return; 2705 } 2706 2707 /* 2708 * We must go back the zone, which requires acquiring the zone lock, 2709 * which in turn means we must release and re-acquire the critical 2710 * section. Since the critical section is released, we may be 2711 * preempted or migrate. As such, make sure not to maintain any 2712 * thread-local state specific to the cache from prior to releasing 2713 * the critical section. 2714 */ 2715 critical_exit(); 2716 if (zone->uz_count == 0 || bucketdisable) 2717 goto zfree_item; 2718 2719 lockfail = 0; 2720 if (ZONE_TRYLOCK(zone) == 0) { 2721 /* Record contention to size the buckets. */ 2722 ZONE_LOCK(zone); 2723 lockfail = 1; 2724 } 2725 critical_enter(); 2726 cpu = curcpu; 2727 cache = &zone->uz_cpu[cpu]; 2728 2729 /* 2730 * Since we have locked the zone we may as well send back our stats. 2731 */ 2732 atomic_add_long(&zone->uz_allocs, cache->uc_allocs); 2733 atomic_add_long(&zone->uz_frees, cache->uc_frees); 2734 cache->uc_allocs = 0; 2735 cache->uc_frees = 0; 2736 2737 bucket = cache->uc_freebucket; 2738 if (bucket != NULL && bucket->ub_cnt < bucket->ub_entries) { 2739 ZONE_UNLOCK(zone); 2740 goto zfree_start; 2741 } 2742 cache->uc_freebucket = NULL; 2743 /* We are no longer associated with this CPU. */ 2744 critical_exit(); 2745 2746 /* Can we throw this on the zone full list? */ 2747 if (bucket != NULL) { 2748 #ifdef UMA_DEBUG_ALLOC 2749 printf("uma_zfree: Putting old bucket on the free list.\n"); 2750 #endif 2751 /* ub_cnt is pointing to the last free item */ 2752 KASSERT(bucket->ub_cnt != 0, 2753 ("uma_zfree: Attempting to insert an empty bucket onto the full list.\n")); 2754 LIST_INSERT_HEAD(&zone->uz_buckets, bucket, ub_link); 2755 } 2756 2757 /* 2758 * We bump the uz count when the cache size is insufficient to 2759 * handle the working set. 2760 */ 2761 if (lockfail && zone->uz_count < BUCKET_MAX) 2762 zone->uz_count++; 2763 ZONE_UNLOCK(zone); 2764 2765 #ifdef UMA_DEBUG_ALLOC 2766 printf("uma_zfree: Allocating new free bucket.\n"); 2767 #endif 2768 bucket = bucket_alloc(zone, udata, M_NOWAIT); 2769 if (bucket) { 2770 critical_enter(); 2771 cpu = curcpu; 2772 cache = &zone->uz_cpu[cpu]; 2773 if (cache->uc_freebucket == NULL) { 2774 cache->uc_freebucket = bucket; 2775 goto zfree_start; 2776 } 2777 /* 2778 * We lost the race, start over. We have to drop our 2779 * critical section to free the bucket. 2780 */ 2781 critical_exit(); 2782 bucket_free(zone, bucket, udata); 2783 goto zfree_restart; 2784 } 2785 2786 /* 2787 * If nothing else caught this, we'll just do an internal free. 2788 */ 2789 zfree_item: 2790 zone_free_item(zone, item, udata, SKIP_DTOR); 2791 2792 return; 2793 } 2794 2795 static void 2796 slab_free_item(uma_keg_t keg, uma_slab_t slab, void *item) 2797 { 2798 uint8_t freei; 2799 2800 mtx_assert(&keg->uk_lock, MA_OWNED); 2801 MPASS(keg == slab->us_keg); 2802 2803 /* Do we need to remove from any lists? */ 2804 if (slab->us_freecount+1 == keg->uk_ipers) { 2805 LIST_REMOVE(slab, us_link); 2806 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 2807 } else if (slab->us_freecount == 0) { 2808 LIST_REMOVE(slab, us_link); 2809 LIST_INSERT_HEAD(&keg->uk_part_slab, slab, us_link); 2810 } 2811 2812 /* Slab management. */ 2813 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 2814 BIT_SET(SLAB_SETSIZE, freei, &slab->us_free); 2815 slab->us_freecount++; 2816 2817 /* Keg statistics. */ 2818 keg->uk_free++; 2819 } 2820 2821 static void 2822 zone_release(uma_zone_t zone, void **bucket, int cnt) 2823 { 2824 void *item; 2825 uma_slab_t slab; 2826 uma_keg_t keg; 2827 uint8_t *mem; 2828 int clearfull; 2829 int i; 2830 2831 clearfull = 0; 2832 keg = zone_first_keg(zone); 2833 KEG_LOCK(keg); 2834 for (i = 0; i < cnt; i++) { 2835 item = bucket[i]; 2836 if (!(zone->uz_flags & UMA_ZONE_VTOSLAB)) { 2837 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 2838 if (zone->uz_flags & UMA_ZONE_HASH) { 2839 slab = hash_sfind(&keg->uk_hash, mem); 2840 } else { 2841 mem += keg->uk_pgoff; 2842 slab = (uma_slab_t)mem; 2843 } 2844 } else { 2845 slab = vtoslab((vm_offset_t)item); 2846 if (slab->us_keg != keg) { 2847 KEG_UNLOCK(keg); 2848 keg = slab->us_keg; 2849 KEG_LOCK(keg); 2850 } 2851 } 2852 slab_free_item(keg, slab, item); 2853 if (keg->uk_flags & UMA_ZFLAG_FULL) { 2854 if (keg->uk_pages < keg->uk_maxpages) { 2855 keg->uk_flags &= ~UMA_ZFLAG_FULL; 2856 clearfull = 1; 2857 } 2858 2859 /* 2860 * We can handle one more allocation. Since we're 2861 * clearing ZFLAG_FULL, wake up all procs blocked 2862 * on pages. This should be uncommon, so keeping this 2863 * simple for now (rather than adding count of blocked 2864 * threads etc). 2865 */ 2866 wakeup(keg); 2867 } 2868 } 2869 KEG_UNLOCK(keg); 2870 if (clearfull) { 2871 ZONE_LOCK(zone); 2872 zone->uz_flags &= ~UMA_ZFLAG_FULL; 2873 wakeup(zone); 2874 ZONE_UNLOCK(zone); 2875 } 2876 2877 } 2878 2879 /* 2880 * Frees a single item to any zone. 2881 * 2882 * Arguments: 2883 * zone The zone to free to 2884 * item The item we're freeing 2885 * udata User supplied data for the dtor 2886 * skip Skip dtors and finis 2887 */ 2888 static void 2889 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 2890 { 2891 2892 #ifdef INVARIANTS 2893 if (skip == SKIP_NONE) { 2894 if (zone->uz_flags & UMA_ZONE_MALLOC) 2895 uma_dbg_free(zone, udata, item); 2896 else 2897 uma_dbg_free(zone, NULL, item); 2898 } 2899 #endif 2900 if (skip < SKIP_DTOR && zone->uz_dtor) 2901 zone->uz_dtor(item, zone->uz_size, udata); 2902 2903 if (skip < SKIP_FINI && zone->uz_fini) 2904 zone->uz_fini(item, zone->uz_size); 2905 2906 atomic_add_long(&zone->uz_frees, 1); 2907 zone->uz_release(zone->uz_arg, &item, 1); 2908 } 2909 2910 /* See uma.h */ 2911 int 2912 uma_zone_set_max(uma_zone_t zone, int nitems) 2913 { 2914 uma_keg_t keg; 2915 2916 keg = zone_first_keg(zone); 2917 if (keg == NULL) 2918 return (0); 2919 KEG_LOCK(keg); 2920 keg->uk_maxpages = (nitems / keg->uk_ipers) * keg->uk_ppera; 2921 if (keg->uk_maxpages * keg->uk_ipers < nitems) 2922 keg->uk_maxpages += keg->uk_ppera; 2923 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2924 KEG_UNLOCK(keg); 2925 2926 return (nitems); 2927 } 2928 2929 /* See uma.h */ 2930 int 2931 uma_zone_get_max(uma_zone_t zone) 2932 { 2933 int nitems; 2934 uma_keg_t keg; 2935 2936 keg = zone_first_keg(zone); 2937 if (keg == NULL) 2938 return (0); 2939 KEG_LOCK(keg); 2940 nitems = (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers; 2941 KEG_UNLOCK(keg); 2942 2943 return (nitems); 2944 } 2945 2946 /* See uma.h */ 2947 void 2948 uma_zone_set_warning(uma_zone_t zone, const char *warning) 2949 { 2950 2951 ZONE_LOCK(zone); 2952 zone->uz_warning = warning; 2953 ZONE_UNLOCK(zone); 2954 } 2955 2956 /* See uma.h */ 2957 void 2958 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 2959 { 2960 2961 ZONE_LOCK(zone); 2962 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 2963 ZONE_UNLOCK(zone); 2964 } 2965 2966 /* See uma.h */ 2967 int 2968 uma_zone_get_cur(uma_zone_t zone) 2969 { 2970 int64_t nitems; 2971 u_int i; 2972 2973 ZONE_LOCK(zone); 2974 nitems = zone->uz_allocs - zone->uz_frees; 2975 CPU_FOREACH(i) { 2976 /* 2977 * See the comment in sysctl_vm_zone_stats() regarding the 2978 * safety of accessing the per-cpu caches. With the zone lock 2979 * held, it is safe, but can potentially result in stale data. 2980 */ 2981 nitems += zone->uz_cpu[i].uc_allocs - 2982 zone->uz_cpu[i].uc_frees; 2983 } 2984 ZONE_UNLOCK(zone); 2985 2986 return (nitems < 0 ? 0 : nitems); 2987 } 2988 2989 /* See uma.h */ 2990 void 2991 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 2992 { 2993 uma_keg_t keg; 2994 2995 keg = zone_first_keg(zone); 2996 KASSERT(keg != NULL, ("uma_zone_set_init: Invalid zone type")); 2997 KEG_LOCK(keg); 2998 KASSERT(keg->uk_pages == 0, 2999 ("uma_zone_set_init on non-empty keg")); 3000 keg->uk_init = uminit; 3001 KEG_UNLOCK(keg); 3002 } 3003 3004 /* See uma.h */ 3005 void 3006 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 3007 { 3008 uma_keg_t keg; 3009 3010 keg = zone_first_keg(zone); 3011 KASSERT(keg != NULL, ("uma_zone_set_fini: Invalid zone type")); 3012 KEG_LOCK(keg); 3013 KASSERT(keg->uk_pages == 0, 3014 ("uma_zone_set_fini on non-empty keg")); 3015 keg->uk_fini = fini; 3016 KEG_UNLOCK(keg); 3017 } 3018 3019 /* See uma.h */ 3020 void 3021 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 3022 { 3023 3024 ZONE_LOCK(zone); 3025 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3026 ("uma_zone_set_zinit on non-empty keg")); 3027 zone->uz_init = zinit; 3028 ZONE_UNLOCK(zone); 3029 } 3030 3031 /* See uma.h */ 3032 void 3033 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 3034 { 3035 3036 ZONE_LOCK(zone); 3037 KASSERT(zone_first_keg(zone)->uk_pages == 0, 3038 ("uma_zone_set_zfini on non-empty keg")); 3039 zone->uz_fini = zfini; 3040 ZONE_UNLOCK(zone); 3041 } 3042 3043 /* See uma.h */ 3044 /* XXX uk_freef is not actually used with the zone locked */ 3045 void 3046 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 3047 { 3048 uma_keg_t keg; 3049 3050 keg = zone_first_keg(zone); 3051 KASSERT(keg != NULL, ("uma_zone_set_freef: Invalid zone type")); 3052 KEG_LOCK(keg); 3053 keg->uk_freef = freef; 3054 KEG_UNLOCK(keg); 3055 } 3056 3057 /* See uma.h */ 3058 /* XXX uk_allocf is not actually used with the zone locked */ 3059 void 3060 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 3061 { 3062 uma_keg_t keg; 3063 3064 keg = zone_first_keg(zone); 3065 KEG_LOCK(keg); 3066 keg->uk_allocf = allocf; 3067 KEG_UNLOCK(keg); 3068 } 3069 3070 /* See uma.h */ 3071 void 3072 uma_zone_reserve(uma_zone_t zone, int items) 3073 { 3074 uma_keg_t keg; 3075 3076 keg = zone_first_keg(zone); 3077 if (keg == NULL) 3078 return; 3079 KEG_LOCK(keg); 3080 keg->uk_reserve = items; 3081 KEG_UNLOCK(keg); 3082 3083 return; 3084 } 3085 3086 /* See uma.h */ 3087 int 3088 uma_zone_reserve_kva(uma_zone_t zone, int count) 3089 { 3090 uma_keg_t keg; 3091 vm_offset_t kva; 3092 u_int pages; 3093 3094 keg = zone_first_keg(zone); 3095 if (keg == NULL) 3096 return (0); 3097 pages = count / keg->uk_ipers; 3098 3099 if (pages * keg->uk_ipers < count) 3100 pages++; 3101 pages *= keg->uk_ppera; 3102 3103 #ifdef UMA_MD_SMALL_ALLOC 3104 if (keg->uk_ppera > 1) { 3105 #else 3106 if (1) { 3107 #endif 3108 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 3109 if (kva == 0) 3110 return (0); 3111 } else 3112 kva = 0; 3113 KEG_LOCK(keg); 3114 keg->uk_kva = kva; 3115 keg->uk_offset = 0; 3116 keg->uk_maxpages = pages; 3117 #ifdef UMA_MD_SMALL_ALLOC 3118 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 3119 #else 3120 keg->uk_allocf = noobj_alloc; 3121 #endif 3122 keg->uk_flags |= UMA_ZONE_NOFREE; 3123 KEG_UNLOCK(keg); 3124 3125 return (1); 3126 } 3127 3128 /* See uma.h */ 3129 void 3130 uma_prealloc(uma_zone_t zone, int items) 3131 { 3132 int slabs; 3133 uma_slab_t slab; 3134 uma_keg_t keg; 3135 3136 keg = zone_first_keg(zone); 3137 if (keg == NULL) 3138 return; 3139 KEG_LOCK(keg); 3140 slabs = items / keg->uk_ipers; 3141 if (slabs * keg->uk_ipers < items) 3142 slabs++; 3143 while (slabs > 0) { 3144 slab = keg_alloc_slab(keg, zone, M_WAITOK); 3145 if (slab == NULL) 3146 break; 3147 MPASS(slab->us_keg == keg); 3148 LIST_INSERT_HEAD(&keg->uk_free_slab, slab, us_link); 3149 slabs--; 3150 } 3151 KEG_UNLOCK(keg); 3152 } 3153 3154 /* See uma.h */ 3155 static void 3156 uma_reclaim_locked(bool kmem_danger) 3157 { 3158 3159 #ifdef UMA_DEBUG 3160 printf("UMA: vm asked us to release pages!\n"); 3161 #endif 3162 sx_assert(&uma_drain_lock, SA_XLOCKED); 3163 bucket_enable(); 3164 zone_foreach(zone_drain); 3165 if (vm_page_count_min() || kmem_danger) { 3166 cache_drain_safe(NULL); 3167 zone_foreach(zone_drain); 3168 } 3169 /* 3170 * Some slabs may have been freed but this zone will be visited early 3171 * we visit again so that we can free pages that are empty once other 3172 * zones are drained. We have to do the same for buckets. 3173 */ 3174 zone_drain(slabzone); 3175 bucket_zone_drain(); 3176 } 3177 3178 void 3179 uma_reclaim(void) 3180 { 3181 3182 sx_xlock(&uma_drain_lock); 3183 uma_reclaim_locked(false); 3184 sx_xunlock(&uma_drain_lock); 3185 } 3186 3187 static int uma_reclaim_needed; 3188 3189 void 3190 uma_reclaim_wakeup(void) 3191 { 3192 3193 uma_reclaim_needed = 1; 3194 wakeup(&uma_reclaim_needed); 3195 } 3196 3197 void 3198 uma_reclaim_worker(void *arg __unused) 3199 { 3200 3201 sx_xlock(&uma_drain_lock); 3202 for (;;) { 3203 sx_sleep(&uma_reclaim_needed, &uma_drain_lock, PVM, 3204 "umarcl", 0); 3205 if (uma_reclaim_needed) { 3206 uma_reclaim_needed = 0; 3207 sx_xunlock(&uma_drain_lock); 3208 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 3209 sx_xlock(&uma_drain_lock); 3210 uma_reclaim_locked(true); 3211 } 3212 } 3213 } 3214 3215 /* See uma.h */ 3216 int 3217 uma_zone_exhausted(uma_zone_t zone) 3218 { 3219 int full; 3220 3221 ZONE_LOCK(zone); 3222 full = (zone->uz_flags & UMA_ZFLAG_FULL); 3223 ZONE_UNLOCK(zone); 3224 return (full); 3225 } 3226 3227 int 3228 uma_zone_exhausted_nolock(uma_zone_t zone) 3229 { 3230 return (zone->uz_flags & UMA_ZFLAG_FULL); 3231 } 3232 3233 void * 3234 uma_large_malloc(vm_size_t size, int wait) 3235 { 3236 void *mem; 3237 uma_slab_t slab; 3238 uint8_t flags; 3239 3240 slab = zone_alloc_item(slabzone, NULL, wait); 3241 if (slab == NULL) 3242 return (NULL); 3243 mem = page_alloc(NULL, size, &flags, wait); 3244 if (mem) { 3245 vsetslab((vm_offset_t)mem, slab); 3246 slab->us_data = mem; 3247 slab->us_flags = flags | UMA_SLAB_MALLOC; 3248 slab->us_size = size; 3249 } else { 3250 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3251 } 3252 3253 return (mem); 3254 } 3255 3256 void 3257 uma_large_free(uma_slab_t slab) 3258 { 3259 3260 page_free(slab->us_data, slab->us_size, slab->us_flags); 3261 zone_free_item(slabzone, slab, NULL, SKIP_NONE); 3262 } 3263 3264 static void 3265 uma_zero_item(void *item, uma_zone_t zone) 3266 { 3267 int i; 3268 3269 if (zone->uz_flags & UMA_ZONE_PCPU) { 3270 CPU_FOREACH(i) 3271 bzero(zpcpu_get_cpu(item, i), zone->uz_size); 3272 } else 3273 bzero(item, zone->uz_size); 3274 } 3275 3276 void 3277 uma_print_stats(void) 3278 { 3279 zone_foreach(uma_print_zone); 3280 } 3281 3282 static void 3283 slab_print(uma_slab_t slab) 3284 { 3285 printf("slab: keg %p, data %p, freecount %d\n", 3286 slab->us_keg, slab->us_data, slab->us_freecount); 3287 } 3288 3289 static void 3290 cache_print(uma_cache_t cache) 3291 { 3292 printf("alloc: %p(%d), free: %p(%d)\n", 3293 cache->uc_allocbucket, 3294 cache->uc_allocbucket?cache->uc_allocbucket->ub_cnt:0, 3295 cache->uc_freebucket, 3296 cache->uc_freebucket?cache->uc_freebucket->ub_cnt:0); 3297 } 3298 3299 static void 3300 uma_print_keg(uma_keg_t keg) 3301 { 3302 uma_slab_t slab; 3303 3304 printf("keg: %s(%p) size %d(%d) flags %#x ipers %d ppera %d " 3305 "out %d free %d limit %d\n", 3306 keg->uk_name, keg, keg->uk_size, keg->uk_rsize, keg->uk_flags, 3307 keg->uk_ipers, keg->uk_ppera, 3308 (keg->uk_pages / keg->uk_ppera) * keg->uk_ipers - keg->uk_free, 3309 keg->uk_free, (keg->uk_maxpages / keg->uk_ppera) * keg->uk_ipers); 3310 printf("Part slabs:\n"); 3311 LIST_FOREACH(slab, &keg->uk_part_slab, us_link) 3312 slab_print(slab); 3313 printf("Free slabs:\n"); 3314 LIST_FOREACH(slab, &keg->uk_free_slab, us_link) 3315 slab_print(slab); 3316 printf("Full slabs:\n"); 3317 LIST_FOREACH(slab, &keg->uk_full_slab, us_link) 3318 slab_print(slab); 3319 } 3320 3321 void 3322 uma_print_zone(uma_zone_t zone) 3323 { 3324 uma_cache_t cache; 3325 uma_klink_t kl; 3326 int i; 3327 3328 printf("zone: %s(%p) size %d flags %#x\n", 3329 zone->uz_name, zone, zone->uz_size, zone->uz_flags); 3330 LIST_FOREACH(kl, &zone->uz_kegs, kl_link) 3331 uma_print_keg(kl->kl_keg); 3332 CPU_FOREACH(i) { 3333 cache = &zone->uz_cpu[i]; 3334 printf("CPU %d Cache:\n", i); 3335 cache_print(cache); 3336 } 3337 } 3338 3339 #ifdef DDB 3340 /* 3341 * Generate statistics across both the zone and its per-cpu cache's. Return 3342 * desired statistics if the pointer is non-NULL for that statistic. 3343 * 3344 * Note: does not update the zone statistics, as it can't safely clear the 3345 * per-CPU cache statistic. 3346 * 3347 * XXXRW: Following the uc_allocbucket and uc_freebucket pointers here isn't 3348 * safe from off-CPU; we should modify the caches to track this information 3349 * directly so that we don't have to. 3350 */ 3351 static void 3352 uma_zone_sumstat(uma_zone_t z, int *cachefreep, uint64_t *allocsp, 3353 uint64_t *freesp, uint64_t *sleepsp) 3354 { 3355 uma_cache_t cache; 3356 uint64_t allocs, frees, sleeps; 3357 int cachefree, cpu; 3358 3359 allocs = frees = sleeps = 0; 3360 cachefree = 0; 3361 CPU_FOREACH(cpu) { 3362 cache = &z->uz_cpu[cpu]; 3363 if (cache->uc_allocbucket != NULL) 3364 cachefree += cache->uc_allocbucket->ub_cnt; 3365 if (cache->uc_freebucket != NULL) 3366 cachefree += cache->uc_freebucket->ub_cnt; 3367 allocs += cache->uc_allocs; 3368 frees += cache->uc_frees; 3369 } 3370 allocs += z->uz_allocs; 3371 frees += z->uz_frees; 3372 sleeps += z->uz_sleeps; 3373 if (cachefreep != NULL) 3374 *cachefreep = cachefree; 3375 if (allocsp != NULL) 3376 *allocsp = allocs; 3377 if (freesp != NULL) 3378 *freesp = frees; 3379 if (sleepsp != NULL) 3380 *sleepsp = sleeps; 3381 } 3382 #endif /* DDB */ 3383 3384 static int 3385 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 3386 { 3387 uma_keg_t kz; 3388 uma_zone_t z; 3389 int count; 3390 3391 count = 0; 3392 rw_rlock(&uma_rwlock); 3393 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3394 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3395 count++; 3396 } 3397 rw_runlock(&uma_rwlock); 3398 return (sysctl_handle_int(oidp, &count, 0, req)); 3399 } 3400 3401 static int 3402 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 3403 { 3404 struct uma_stream_header ush; 3405 struct uma_type_header uth; 3406 struct uma_percpu_stat ups; 3407 uma_bucket_t bucket; 3408 struct sbuf sbuf; 3409 uma_cache_t cache; 3410 uma_klink_t kl; 3411 uma_keg_t kz; 3412 uma_zone_t z; 3413 uma_keg_t k; 3414 int count, error, i; 3415 3416 error = sysctl_wire_old_buffer(req, 0); 3417 if (error != 0) 3418 return (error); 3419 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 3420 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 3421 3422 count = 0; 3423 rw_rlock(&uma_rwlock); 3424 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3425 LIST_FOREACH(z, &kz->uk_zones, uz_link) 3426 count++; 3427 } 3428 3429 /* 3430 * Insert stream header. 3431 */ 3432 bzero(&ush, sizeof(ush)); 3433 ush.ush_version = UMA_STREAM_VERSION; 3434 ush.ush_maxcpus = (mp_maxid + 1); 3435 ush.ush_count = count; 3436 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 3437 3438 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3439 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3440 bzero(&uth, sizeof(uth)); 3441 ZONE_LOCK(z); 3442 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 3443 uth.uth_align = kz->uk_align; 3444 uth.uth_size = kz->uk_size; 3445 uth.uth_rsize = kz->uk_rsize; 3446 LIST_FOREACH(kl, &z->uz_kegs, kl_link) { 3447 k = kl->kl_keg; 3448 uth.uth_maxpages += k->uk_maxpages; 3449 uth.uth_pages += k->uk_pages; 3450 uth.uth_keg_free += k->uk_free; 3451 uth.uth_limit = (k->uk_maxpages / k->uk_ppera) 3452 * k->uk_ipers; 3453 } 3454 3455 /* 3456 * A zone is secondary is it is not the first entry 3457 * on the keg's zone list. 3458 */ 3459 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 3460 (LIST_FIRST(&kz->uk_zones) != z)) 3461 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 3462 3463 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3464 uth.uth_zone_free += bucket->ub_cnt; 3465 uth.uth_allocs = z->uz_allocs; 3466 uth.uth_frees = z->uz_frees; 3467 uth.uth_fails = z->uz_fails; 3468 uth.uth_sleeps = z->uz_sleeps; 3469 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 3470 /* 3471 * While it is not normally safe to access the cache 3472 * bucket pointers while not on the CPU that owns the 3473 * cache, we only allow the pointers to be exchanged 3474 * without the zone lock held, not invalidated, so 3475 * accept the possible race associated with bucket 3476 * exchange during monitoring. 3477 */ 3478 for (i = 0; i < (mp_maxid + 1); i++) { 3479 bzero(&ups, sizeof(ups)); 3480 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) 3481 goto skip; 3482 if (CPU_ABSENT(i)) 3483 goto skip; 3484 cache = &z->uz_cpu[i]; 3485 if (cache->uc_allocbucket != NULL) 3486 ups.ups_cache_free += 3487 cache->uc_allocbucket->ub_cnt; 3488 if (cache->uc_freebucket != NULL) 3489 ups.ups_cache_free += 3490 cache->uc_freebucket->ub_cnt; 3491 ups.ups_allocs = cache->uc_allocs; 3492 ups.ups_frees = cache->uc_frees; 3493 skip: 3494 (void)sbuf_bcat(&sbuf, &ups, sizeof(ups)); 3495 } 3496 ZONE_UNLOCK(z); 3497 } 3498 } 3499 rw_runlock(&uma_rwlock); 3500 error = sbuf_finish(&sbuf); 3501 sbuf_delete(&sbuf); 3502 return (error); 3503 } 3504 3505 int 3506 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 3507 { 3508 uma_zone_t zone = *(uma_zone_t *)arg1; 3509 int error, max; 3510 3511 max = uma_zone_get_max(zone); 3512 error = sysctl_handle_int(oidp, &max, 0, req); 3513 if (error || !req->newptr) 3514 return (error); 3515 3516 uma_zone_set_max(zone, max); 3517 3518 return (0); 3519 } 3520 3521 int 3522 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 3523 { 3524 uma_zone_t zone = *(uma_zone_t *)arg1; 3525 int cur; 3526 3527 cur = uma_zone_get_cur(zone); 3528 return (sysctl_handle_int(oidp, &cur, 0, req)); 3529 } 3530 3531 #ifdef INVARIANTS 3532 static uma_slab_t 3533 uma_dbg_getslab(uma_zone_t zone, void *item) 3534 { 3535 uma_slab_t slab; 3536 uma_keg_t keg; 3537 uint8_t *mem; 3538 3539 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 3540 if (zone->uz_flags & UMA_ZONE_VTOSLAB) { 3541 slab = vtoslab((vm_offset_t)mem); 3542 } else { 3543 /* 3544 * It is safe to return the slab here even though the 3545 * zone is unlocked because the item's allocation state 3546 * essentially holds a reference. 3547 */ 3548 ZONE_LOCK(zone); 3549 keg = LIST_FIRST(&zone->uz_kegs)->kl_keg; 3550 if (keg->uk_flags & UMA_ZONE_HASH) 3551 slab = hash_sfind(&keg->uk_hash, mem); 3552 else 3553 slab = (uma_slab_t)(mem + keg->uk_pgoff); 3554 ZONE_UNLOCK(zone); 3555 } 3556 3557 return (slab); 3558 } 3559 3560 /* 3561 * Set up the slab's freei data such that uma_dbg_free can function. 3562 * 3563 */ 3564 static void 3565 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 3566 { 3567 uma_keg_t keg; 3568 int freei; 3569 3570 if (zone_first_keg(zone) == NULL) 3571 return; 3572 if (slab == NULL) { 3573 slab = uma_dbg_getslab(zone, item); 3574 if (slab == NULL) 3575 panic("uma: item %p did not belong to zone %s\n", 3576 item, zone->uz_name); 3577 } 3578 keg = slab->us_keg; 3579 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3580 3581 if (BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3582 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)\n", 3583 item, zone, zone->uz_name, slab, freei); 3584 BIT_SET_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3585 3586 return; 3587 } 3588 3589 /* 3590 * Verifies freed addresses. Checks for alignment, valid slab membership 3591 * and duplicate frees. 3592 * 3593 */ 3594 static void 3595 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 3596 { 3597 uma_keg_t keg; 3598 int freei; 3599 3600 if (zone_first_keg(zone) == NULL) 3601 return; 3602 if (slab == NULL) { 3603 slab = uma_dbg_getslab(zone, item); 3604 if (slab == NULL) 3605 panic("uma: Freed item %p did not belong to zone %s\n", 3606 item, zone->uz_name); 3607 } 3608 keg = slab->us_keg; 3609 freei = ((uintptr_t)item - (uintptr_t)slab->us_data) / keg->uk_rsize; 3610 3611 if (freei >= keg->uk_ipers) 3612 panic("Invalid free of %p from zone %p(%s) slab %p(%d)\n", 3613 item, zone, zone->uz_name, slab, freei); 3614 3615 if (((freei * keg->uk_rsize) + slab->us_data) != item) 3616 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)\n", 3617 item, zone, zone->uz_name, slab, freei); 3618 3619 if (!BIT_ISSET(SLAB_SETSIZE, freei, &slab->us_debugfree)) 3620 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)\n", 3621 item, zone, zone->uz_name, slab, freei); 3622 3623 BIT_CLR_ATOMIC(SLAB_SETSIZE, freei, &slab->us_debugfree); 3624 } 3625 #endif /* INVARIANTS */ 3626 3627 #ifdef DDB 3628 DB_SHOW_COMMAND(uma, db_show_uma) 3629 { 3630 uint64_t allocs, frees, sleeps; 3631 uma_bucket_t bucket; 3632 uma_keg_t kz; 3633 uma_zone_t z; 3634 int cachefree; 3635 3636 db_printf("%18s %8s %8s %8s %12s %8s %8s\n", "Zone", "Size", "Used", 3637 "Free", "Requests", "Sleeps", "Bucket"); 3638 LIST_FOREACH(kz, &uma_kegs, uk_link) { 3639 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 3640 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 3641 allocs = z->uz_allocs; 3642 frees = z->uz_frees; 3643 sleeps = z->uz_sleeps; 3644 cachefree = 0; 3645 } else 3646 uma_zone_sumstat(z, &cachefree, &allocs, 3647 &frees, &sleeps); 3648 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 3649 (LIST_FIRST(&kz->uk_zones) != z))) 3650 cachefree += kz->uk_free; 3651 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3652 cachefree += bucket->ub_cnt; 3653 db_printf("%18s %8ju %8jd %8d %12ju %8ju %8u\n", 3654 z->uz_name, (uintmax_t)kz->uk_size, 3655 (intmax_t)(allocs - frees), cachefree, 3656 (uintmax_t)allocs, sleeps, z->uz_count); 3657 if (db_pager_quit) 3658 return; 3659 } 3660 } 3661 } 3662 3663 DB_SHOW_COMMAND(umacache, db_show_umacache) 3664 { 3665 uint64_t allocs, frees; 3666 uma_bucket_t bucket; 3667 uma_zone_t z; 3668 int cachefree; 3669 3670 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 3671 "Requests", "Bucket"); 3672 LIST_FOREACH(z, &uma_cachezones, uz_link) { 3673 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL); 3674 LIST_FOREACH(bucket, &z->uz_buckets, ub_link) 3675 cachefree += bucket->ub_cnt; 3676 db_printf("%18s %8ju %8jd %8d %12ju %8u\n", 3677 z->uz_name, (uintmax_t)z->uz_size, 3678 (intmax_t)(allocs - frees), cachefree, 3679 (uintmax_t)allocs, z->uz_count); 3680 if (db_pager_quit) 3681 return; 3682 } 3683 } 3684 #endif /* DDB */ 3685