1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2002-2019 Jeffrey Roberson <jeff@FreeBSD.org> 5 * Copyright (c) 2004, 2005 Bosko Milekic <bmilekic@FreeBSD.org> 6 * Copyright (c) 2004-2006 Robert N. M. Watson 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 1. Redistributions of source code must retain the above copyright 13 * notice unmodified, this list of conditions, and the following 14 * disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 20 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 21 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 24 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 28 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31 /* 32 * uma_core.c Implementation of the Universal Memory allocator 33 * 34 * This allocator is intended to replace the multitude of similar object caches 35 * in the standard FreeBSD kernel. The intent is to be flexible as well as 36 * efficient. A primary design goal is to return unused memory to the rest of 37 * the system. This will make the system as a whole more flexible due to the 38 * ability to move memory to subsystems which most need it instead of leaving 39 * pools of reserved memory unused. 40 * 41 * The basic ideas stem from similar slab/zone based allocators whose algorithms 42 * are well known. 43 * 44 */ 45 46 /* 47 * TODO: 48 * - Improve memory usage for large allocations 49 * - Investigate cache size adjustments 50 */ 51 52 #include <sys/cdefs.h> 53 #include "opt_ddb.h" 54 #include "opt_param.h" 55 #include "opt_vm.h" 56 57 #include <sys/param.h> 58 #include <sys/systm.h> 59 #include <sys/asan.h> 60 #include <sys/bitset.h> 61 #include <sys/domainset.h> 62 #include <sys/eventhandler.h> 63 #include <sys/kernel.h> 64 #include <sys/types.h> 65 #include <sys/limits.h> 66 #include <sys/queue.h> 67 #include <sys/malloc.h> 68 #include <sys/ktr.h> 69 #include <sys/lock.h> 70 #include <sys/msan.h> 71 #include <sys/mutex.h> 72 #include <sys/proc.h> 73 #include <sys/random.h> 74 #include <sys/rwlock.h> 75 #include <sys/sbuf.h> 76 #include <sys/sched.h> 77 #include <sys/sleepqueue.h> 78 #include <sys/smp.h> 79 #include <sys/smr.h> 80 #include <sys/sysctl.h> 81 #include <sys/taskqueue.h> 82 #include <sys/vmmeter.h> 83 84 #include <vm/vm.h> 85 #include <vm/vm_param.h> 86 #include <vm/vm_domainset.h> 87 #include <vm/vm_object.h> 88 #include <vm/vm_page.h> 89 #include <vm/vm_pageout.h> 90 #include <vm/vm_phys.h> 91 #include <vm/vm_pagequeue.h> 92 #include <vm/vm_map.h> 93 #include <vm/vm_kern.h> 94 #include <vm/vm_extern.h> 95 #include <vm/vm_dumpset.h> 96 #include <vm/uma.h> 97 #include <vm/uma_int.h> 98 #include <vm/uma_dbg.h> 99 100 #include <ddb/ddb.h> 101 102 #ifdef DEBUG_MEMGUARD 103 #include <vm/memguard.h> 104 #endif 105 106 #include <machine/md_var.h> 107 108 #ifdef INVARIANTS 109 #define UMA_ALWAYS_CTORDTOR 1 110 #else 111 #define UMA_ALWAYS_CTORDTOR 0 112 #endif 113 114 /* 115 * This is the zone and keg from which all zones are spawned. 116 */ 117 static uma_zone_t kegs; 118 static uma_zone_t zones; 119 120 /* 121 * On INVARIANTS builds, the slab contains a second bitset of the same size, 122 * "dbg_bits", which is laid out immediately after us_free. 123 */ 124 #ifdef INVARIANTS 125 #define SLAB_BITSETS 2 126 #else 127 #define SLAB_BITSETS 1 128 #endif 129 130 /* 131 * These are the two zones from which all offpage uma_slab_ts are allocated. 132 * 133 * One zone is for slab headers that can represent a larger number of items, 134 * making the slabs themselves more efficient, and the other zone is for 135 * headers that are smaller and represent fewer items, making the headers more 136 * efficient. 137 */ 138 #define SLABZONE_SIZE(setsize) \ 139 (sizeof(struct uma_hash_slab) + BITSET_SIZE(setsize) * SLAB_BITSETS) 140 #define SLABZONE0_SETSIZE (PAGE_SIZE / 16) 141 #define SLABZONE1_SETSIZE SLAB_MAX_SETSIZE 142 #define SLABZONE0_SIZE SLABZONE_SIZE(SLABZONE0_SETSIZE) 143 #define SLABZONE1_SIZE SLABZONE_SIZE(SLABZONE1_SETSIZE) 144 static uma_zone_t slabzones[2]; 145 146 /* 147 * The initial hash tables come out of this zone so they can be allocated 148 * prior to malloc coming up. 149 */ 150 static uma_zone_t hashzone; 151 152 /* The boot-time adjusted value for cache line alignment. */ 153 static unsigned int uma_cache_align_mask = 64 - 1; 154 155 static MALLOC_DEFINE(M_UMAHASH, "UMAHash", "UMA Hash Buckets"); 156 static MALLOC_DEFINE(M_UMA, "UMA", "UMA Misc"); 157 158 /* 159 * Are we allowed to allocate buckets? 160 */ 161 static int bucketdisable = 1; 162 163 /* Linked list of all kegs in the system */ 164 static LIST_HEAD(,uma_keg) uma_kegs = LIST_HEAD_INITIALIZER(uma_kegs); 165 166 /* Linked list of all cache-only zones in the system */ 167 static LIST_HEAD(,uma_zone) uma_cachezones = 168 LIST_HEAD_INITIALIZER(uma_cachezones); 169 170 /* 171 * Mutex for global lists: uma_kegs, uma_cachezones, and the per-keg list of 172 * zones. 173 */ 174 static struct rwlock_padalign __exclusive_cache_line uma_rwlock; 175 176 static struct sx uma_reclaim_lock; 177 178 /* 179 * First available virual address for boot time allocations. 180 */ 181 static vm_offset_t bootstart; 182 static vm_offset_t bootmem; 183 184 /* 185 * kmem soft limit, initialized by uma_set_limit(). Ensure that early 186 * allocations don't trigger a wakeup of the reclaim thread. 187 */ 188 unsigned long uma_kmem_limit = LONG_MAX; 189 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_limit, CTLFLAG_RD, &uma_kmem_limit, 0, 190 "UMA kernel memory soft limit"); 191 unsigned long uma_kmem_total; 192 SYSCTL_ULONG(_vm, OID_AUTO, uma_kmem_total, CTLFLAG_RD, &uma_kmem_total, 0, 193 "UMA kernel memory usage"); 194 195 /* Is the VM done starting up? */ 196 static enum { 197 BOOT_COLD, 198 BOOT_KVA, 199 BOOT_PCPU, 200 BOOT_RUNNING, 201 BOOT_SHUTDOWN, 202 } booted = BOOT_COLD; 203 204 /* 205 * This is the handle used to schedule events that need to happen 206 * outside of the allocation fast path. 207 */ 208 static struct timeout_task uma_timeout_task; 209 #define UMA_TIMEOUT 20 /* Seconds for callout interval. */ 210 211 /* 212 * This structure is passed as the zone ctor arg so that I don't have to create 213 * a special allocation function just for zones. 214 */ 215 struct uma_zctor_args { 216 const char *name; 217 size_t size; 218 uma_ctor ctor; 219 uma_dtor dtor; 220 uma_init uminit; 221 uma_fini fini; 222 uma_import import; 223 uma_release release; 224 void *arg; 225 uma_keg_t keg; 226 int align; 227 uint32_t flags; 228 }; 229 230 struct uma_kctor_args { 231 uma_zone_t zone; 232 size_t size; 233 uma_init uminit; 234 uma_fini fini; 235 int align; 236 uint32_t flags; 237 }; 238 239 struct uma_bucket_zone { 240 uma_zone_t ubz_zone; 241 const char *ubz_name; 242 int ubz_entries; /* Number of items it can hold. */ 243 int ubz_maxsize; /* Maximum allocation size per-item. */ 244 }; 245 246 /* 247 * Compute the actual number of bucket entries to pack them in power 248 * of two sizes for more efficient space utilization. 249 */ 250 #define BUCKET_SIZE(n) \ 251 (((sizeof(void *) * (n)) - sizeof(struct uma_bucket)) / sizeof(void *)) 252 253 #define BUCKET_MAX BUCKET_SIZE(256) 254 255 struct uma_bucket_zone bucket_zones[] = { 256 /* Literal bucket sizes. */ 257 { NULL, "2 Bucket", 2, 4096 }, 258 { NULL, "4 Bucket", 4, 3072 }, 259 { NULL, "8 Bucket", 8, 2048 }, 260 { NULL, "16 Bucket", 16, 1024 }, 261 /* Rounded down power of 2 sizes for efficiency. */ 262 { NULL, "32 Bucket", BUCKET_SIZE(32), 512 }, 263 { NULL, "64 Bucket", BUCKET_SIZE(64), 256 }, 264 { NULL, "128 Bucket", BUCKET_SIZE(128), 128 }, 265 { NULL, "256 Bucket", BUCKET_SIZE(256), 64 }, 266 { NULL, NULL, 0} 267 }; 268 269 /* 270 * Flags and enumerations to be passed to internal functions. 271 */ 272 enum zfreeskip { 273 SKIP_NONE = 0, 274 SKIP_CNT = 0x00000001, 275 SKIP_DTOR = 0x00010000, 276 SKIP_FINI = 0x00020000, 277 }; 278 279 /* Prototypes.. */ 280 281 void uma_startup1(vm_offset_t); 282 void uma_startup2(void); 283 284 static void *noobj_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 285 static void *page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 286 static void *pcpu_page_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 287 static void *startup_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 288 static void *contig_alloc(uma_zone_t, vm_size_t, int, uint8_t *, int); 289 static void page_free(void *, vm_size_t, uint8_t); 290 static void pcpu_page_free(void *, vm_size_t, uint8_t); 291 static uma_slab_t keg_alloc_slab(uma_keg_t, uma_zone_t, int, int, int); 292 static void cache_drain(uma_zone_t); 293 static void bucket_drain(uma_zone_t, uma_bucket_t); 294 static void bucket_cache_reclaim(uma_zone_t zone, bool, int); 295 static bool bucket_cache_reclaim_domain(uma_zone_t, bool, bool, int); 296 static int keg_ctor(void *, int, void *, int); 297 static void keg_dtor(void *, int, void *); 298 static void keg_drain(uma_keg_t keg, int domain); 299 static int zone_ctor(void *, int, void *, int); 300 static void zone_dtor(void *, int, void *); 301 static inline void item_dtor(uma_zone_t zone, void *item, int size, 302 void *udata, enum zfreeskip skip); 303 static int zero_init(void *, int, int); 304 static void zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 305 int itemdomain, bool ws); 306 static void zone_foreach(void (*zfunc)(uma_zone_t, void *), void *); 307 static void zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *), void *); 308 static void zone_timeout(uma_zone_t zone, void *); 309 static int hash_alloc(struct uma_hash *, u_int); 310 static int hash_expand(struct uma_hash *, struct uma_hash *); 311 static void hash_free(struct uma_hash *hash); 312 static void uma_timeout(void *, int); 313 static void uma_shutdown(void); 314 static void *zone_alloc_item(uma_zone_t, void *, int, int); 315 static void zone_free_item(uma_zone_t, void *, void *, enum zfreeskip); 316 static int zone_alloc_limit(uma_zone_t zone, int count, int flags); 317 static void zone_free_limit(uma_zone_t zone, int count); 318 static void bucket_enable(void); 319 static void bucket_init(void); 320 static uma_bucket_t bucket_alloc(uma_zone_t zone, void *, int); 321 static void bucket_free(uma_zone_t zone, uma_bucket_t, void *); 322 static void bucket_zone_drain(int domain); 323 static uma_bucket_t zone_alloc_bucket(uma_zone_t, void *, int, int); 324 static void *slab_alloc_item(uma_keg_t keg, uma_slab_t slab); 325 static void slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item); 326 static size_t slab_sizeof(int nitems); 327 static uma_keg_t uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, 328 uma_fini fini, int align, uint32_t flags); 329 static int zone_import(void *, void **, int, int, int); 330 static void zone_release(void *, void **, int); 331 static bool cache_alloc(uma_zone_t, uma_cache_t, void *, int); 332 static bool cache_free(uma_zone_t, uma_cache_t, void *, int); 333 334 static int sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS); 335 static int sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS); 336 static int sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS); 337 static int sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS); 338 static int sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS); 339 static int sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS); 340 static int sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS); 341 342 static uint64_t uma_zone_get_allocs(uma_zone_t zone); 343 344 static SYSCTL_NODE(_vm, OID_AUTO, debug, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, 345 "Memory allocation debugging"); 346 347 #ifdef INVARIANTS 348 static uint64_t uma_keg_get_allocs(uma_keg_t zone); 349 static inline struct noslabbits *slab_dbg_bits(uma_slab_t slab, uma_keg_t keg); 350 351 static bool uma_dbg_kskip(uma_keg_t keg, void *mem); 352 static bool uma_dbg_zskip(uma_zone_t zone, void *mem); 353 static void uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item); 354 static void uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item); 355 356 static u_int dbg_divisor = 1; 357 SYSCTL_UINT(_vm_debug, OID_AUTO, divisor, 358 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &dbg_divisor, 0, 359 "Debug & thrash every this item in memory allocator"); 360 361 static counter_u64_t uma_dbg_cnt = EARLY_COUNTER; 362 static counter_u64_t uma_skip_cnt = EARLY_COUNTER; 363 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, trashed, CTLFLAG_RD, 364 &uma_dbg_cnt, "memory items debugged"); 365 SYSCTL_COUNTER_U64(_vm_debug, OID_AUTO, skipped, CTLFLAG_RD, 366 &uma_skip_cnt, "memory items skipped, not debugged"); 367 #endif 368 369 SYSCTL_NODE(_vm, OID_AUTO, uma, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 370 "Universal Memory Allocator"); 371 372 SYSCTL_PROC(_vm, OID_AUTO, zone_count, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_INT, 373 0, 0, sysctl_vm_zone_count, "I", "Number of UMA zones"); 374 375 SYSCTL_PROC(_vm, OID_AUTO, zone_stats, CTLFLAG_RD|CTLFLAG_MPSAFE|CTLTYPE_STRUCT, 376 0, 0, sysctl_vm_zone_stats, "s,struct uma_type_header", "Zone Stats"); 377 378 static int zone_warnings = 1; 379 SYSCTL_INT(_vm, OID_AUTO, zone_warnings, CTLFLAG_RWTUN, &zone_warnings, 0, 380 "Warn when UMA zones becomes full"); 381 382 static int multipage_slabs = 1; 383 TUNABLE_INT("vm.debug.uma_multipage_slabs", &multipage_slabs); 384 SYSCTL_INT(_vm_debug, OID_AUTO, uma_multipage_slabs, 385 CTLFLAG_RDTUN | CTLFLAG_NOFETCH, &multipage_slabs, 0, 386 "UMA may choose larger slab sizes for better efficiency"); 387 388 /* 389 * Select the slab zone for an offpage slab with the given maximum item count. 390 */ 391 static inline uma_zone_t 392 slabzone(int ipers) 393 { 394 395 return (slabzones[ipers > SLABZONE0_SETSIZE]); 396 } 397 398 /* 399 * This routine checks to see whether or not it's safe to enable buckets. 400 */ 401 static void 402 bucket_enable(void) 403 { 404 405 KASSERT(booted >= BOOT_KVA, ("Bucket enable before init")); 406 bucketdisable = vm_page_count_min(); 407 } 408 409 /* 410 * Initialize bucket_zones, the array of zones of buckets of various sizes. 411 * 412 * For each zone, calculate the memory required for each bucket, consisting 413 * of the header and an array of pointers. 414 */ 415 static void 416 bucket_init(void) 417 { 418 struct uma_bucket_zone *ubz; 419 int size; 420 421 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) { 422 size = roundup(sizeof(struct uma_bucket), sizeof(void *)); 423 size += sizeof(void *) * ubz->ubz_entries; 424 ubz->ubz_zone = uma_zcreate(ubz->ubz_name, size, 425 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 426 UMA_ZONE_MTXCLASS | UMA_ZFLAG_BUCKET | 427 UMA_ZONE_FIRSTTOUCH); 428 } 429 } 430 431 /* 432 * Given a desired number of entries for a bucket, return the zone from which 433 * to allocate the bucket. 434 */ 435 static struct uma_bucket_zone * 436 bucket_zone_lookup(int entries) 437 { 438 struct uma_bucket_zone *ubz; 439 440 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 441 if (ubz->ubz_entries >= entries) 442 return (ubz); 443 ubz--; 444 return (ubz); 445 } 446 447 static int 448 bucket_select(int size) 449 { 450 struct uma_bucket_zone *ubz; 451 452 ubz = &bucket_zones[0]; 453 if (size > ubz->ubz_maxsize) 454 return MAX((ubz->ubz_maxsize * ubz->ubz_entries) / size, 1); 455 456 for (; ubz->ubz_entries != 0; ubz++) 457 if (ubz->ubz_maxsize < size) 458 break; 459 ubz--; 460 return (ubz->ubz_entries); 461 } 462 463 static uma_bucket_t 464 bucket_alloc(uma_zone_t zone, void *udata, int flags) 465 { 466 struct uma_bucket_zone *ubz; 467 uma_bucket_t bucket; 468 469 /* 470 * Don't allocate buckets early in boot. 471 */ 472 if (__predict_false(booted < BOOT_KVA)) 473 return (NULL); 474 475 /* 476 * To limit bucket recursion we store the original zone flags 477 * in a cookie passed via zalloc_arg/zfree_arg. This allows the 478 * NOVM flag to persist even through deep recursions. We also 479 * store ZFLAG_BUCKET once we have recursed attempting to allocate 480 * a bucket for a bucket zone so we do not allow infinite bucket 481 * recursion. This cookie will even persist to frees of unused 482 * buckets via the allocation path or bucket allocations in the 483 * free path. 484 */ 485 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 486 udata = (void *)(uintptr_t)zone->uz_flags; 487 else { 488 if ((uintptr_t)udata & UMA_ZFLAG_BUCKET) 489 return (NULL); 490 udata = (void *)((uintptr_t)udata | UMA_ZFLAG_BUCKET); 491 } 492 if (((uintptr_t)udata & UMA_ZONE_VM) != 0) 493 flags |= M_NOVM; 494 ubz = bucket_zone_lookup(atomic_load_16(&zone->uz_bucket_size)); 495 if (ubz->ubz_zone == zone && (ubz + 1)->ubz_entries != 0) 496 ubz++; 497 bucket = uma_zalloc_arg(ubz->ubz_zone, udata, flags); 498 if (bucket) { 499 #ifdef INVARIANTS 500 bzero(bucket->ub_bucket, sizeof(void *) * ubz->ubz_entries); 501 #endif 502 bucket->ub_cnt = 0; 503 bucket->ub_entries = min(ubz->ubz_entries, 504 zone->uz_bucket_size_max); 505 bucket->ub_seq = SMR_SEQ_INVALID; 506 CTR3(KTR_UMA, "bucket_alloc: zone %s(%p) allocated bucket %p", 507 zone->uz_name, zone, bucket); 508 } 509 510 return (bucket); 511 } 512 513 static void 514 bucket_free(uma_zone_t zone, uma_bucket_t bucket, void *udata) 515 { 516 struct uma_bucket_zone *ubz; 517 518 if (bucket->ub_cnt != 0) 519 bucket_drain(zone, bucket); 520 521 KASSERT(bucket->ub_cnt == 0, 522 ("bucket_free: Freeing a non free bucket.")); 523 KASSERT(bucket->ub_seq == SMR_SEQ_INVALID, 524 ("bucket_free: Freeing an SMR bucket.")); 525 if ((zone->uz_flags & UMA_ZFLAG_BUCKET) == 0) 526 udata = (void *)(uintptr_t)zone->uz_flags; 527 ubz = bucket_zone_lookup(bucket->ub_entries); 528 uma_zfree_arg(ubz->ubz_zone, bucket, udata); 529 } 530 531 static void 532 bucket_zone_drain(int domain) 533 { 534 struct uma_bucket_zone *ubz; 535 536 for (ubz = &bucket_zones[0]; ubz->ubz_entries != 0; ubz++) 537 uma_zone_reclaim_domain(ubz->ubz_zone, UMA_RECLAIM_DRAIN, 538 domain); 539 } 540 541 #ifdef KASAN 542 _Static_assert(UMA_SMALLEST_UNIT % KASAN_SHADOW_SCALE == 0, 543 "Base UMA allocation size not a multiple of the KASAN scale factor"); 544 545 static void 546 kasan_mark_item_valid(uma_zone_t zone, void *item) 547 { 548 void *pcpu_item; 549 size_t sz, rsz; 550 int i; 551 552 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 553 return; 554 555 sz = zone->uz_size; 556 rsz = roundup2(sz, KASAN_SHADOW_SCALE); 557 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 558 kasan_mark(item, sz, rsz, KASAN_GENERIC_REDZONE); 559 } else { 560 pcpu_item = zpcpu_base_to_offset(item); 561 for (i = 0; i <= mp_maxid; i++) 562 kasan_mark(zpcpu_get_cpu(pcpu_item, i), sz, rsz, 563 KASAN_GENERIC_REDZONE); 564 } 565 } 566 567 static void 568 kasan_mark_item_invalid(uma_zone_t zone, void *item) 569 { 570 void *pcpu_item; 571 size_t sz; 572 int i; 573 574 if ((zone->uz_flags & UMA_ZONE_NOKASAN) != 0) 575 return; 576 577 sz = roundup2(zone->uz_size, KASAN_SHADOW_SCALE); 578 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 579 kasan_mark(item, 0, sz, KASAN_UMA_FREED); 580 } else { 581 pcpu_item = zpcpu_base_to_offset(item); 582 for (i = 0; i <= mp_maxid; i++) 583 kasan_mark(zpcpu_get_cpu(pcpu_item, i), 0, sz, 584 KASAN_UMA_FREED); 585 } 586 } 587 588 static void 589 kasan_mark_slab_valid(uma_keg_t keg, void *mem) 590 { 591 size_t sz; 592 593 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 594 sz = keg->uk_ppera * PAGE_SIZE; 595 kasan_mark(mem, sz, sz, 0); 596 } 597 } 598 599 static void 600 kasan_mark_slab_invalid(uma_keg_t keg, void *mem) 601 { 602 size_t sz; 603 604 if ((keg->uk_flags & UMA_ZONE_NOKASAN) == 0) { 605 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 606 sz = keg->uk_ppera * PAGE_SIZE; 607 else 608 sz = keg->uk_pgoff; 609 kasan_mark(mem, 0, sz, KASAN_UMA_FREED); 610 } 611 } 612 #else /* !KASAN */ 613 static void 614 kasan_mark_item_valid(uma_zone_t zone __unused, void *item __unused) 615 { 616 } 617 618 static void 619 kasan_mark_item_invalid(uma_zone_t zone __unused, void *item __unused) 620 { 621 } 622 623 static void 624 kasan_mark_slab_valid(uma_keg_t keg __unused, void *mem __unused) 625 { 626 } 627 628 static void 629 kasan_mark_slab_invalid(uma_keg_t keg __unused, void *mem __unused) 630 { 631 } 632 #endif /* KASAN */ 633 634 #ifdef KMSAN 635 static inline void 636 kmsan_mark_item_uninitialized(uma_zone_t zone, void *item) 637 { 638 void *pcpu_item; 639 size_t sz; 640 int i; 641 642 if ((zone->uz_flags & 643 (UMA_ZFLAG_CACHE | UMA_ZONE_SECONDARY | UMA_ZONE_MALLOC)) != 0) { 644 /* 645 * Cache zones should not be instrumented by default, as UMA 646 * does not have enough information to do so correctly. 647 * Consumers can mark items themselves if it makes sense to do 648 * so. 649 * 650 * Items from secondary zones are initialized by the parent 651 * zone and thus cannot safely be marked by UMA. 652 * 653 * malloc zones are handled directly by malloc(9) and friends, 654 * since they can provide more precise origin tracking. 655 */ 656 return; 657 } 658 if (zone->uz_keg->uk_init != NULL) { 659 /* 660 * By definition, initialized items cannot be marked. The 661 * best we can do is mark items from these zones after they 662 * are freed to the keg. 663 */ 664 return; 665 } 666 667 sz = zone->uz_size; 668 if ((zone->uz_flags & UMA_ZONE_PCPU) == 0) { 669 kmsan_orig(item, sz, KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 670 kmsan_mark(item, sz, KMSAN_STATE_UNINIT); 671 } else { 672 pcpu_item = zpcpu_base_to_offset(item); 673 for (i = 0; i <= mp_maxid; i++) { 674 kmsan_orig(zpcpu_get_cpu(pcpu_item, i), sz, 675 KMSAN_TYPE_UMA, KMSAN_RET_ADDR); 676 kmsan_mark(zpcpu_get_cpu(pcpu_item, i), sz, 677 KMSAN_STATE_INITED); 678 } 679 } 680 } 681 #else /* !KMSAN */ 682 static inline void 683 kmsan_mark_item_uninitialized(uma_zone_t zone __unused, void *item __unused) 684 { 685 } 686 #endif /* KMSAN */ 687 688 /* 689 * Acquire the domain lock and record contention. 690 */ 691 static uma_zone_domain_t 692 zone_domain_lock(uma_zone_t zone, int domain) 693 { 694 uma_zone_domain_t zdom; 695 bool lockfail; 696 697 zdom = ZDOM_GET(zone, domain); 698 lockfail = false; 699 if (ZDOM_OWNED(zdom)) 700 lockfail = true; 701 ZDOM_LOCK(zdom); 702 /* This is unsynchronized. The counter does not need to be precise. */ 703 if (lockfail && zone->uz_bucket_size < zone->uz_bucket_size_max) 704 zone->uz_bucket_size++; 705 return (zdom); 706 } 707 708 /* 709 * Search for the domain with the least cached items and return it if it 710 * is out of balance with the preferred domain. 711 */ 712 static __noinline int 713 zone_domain_lowest(uma_zone_t zone, int pref) 714 { 715 long least, nitems, prefitems; 716 int domain; 717 int i; 718 719 prefitems = least = LONG_MAX; 720 domain = 0; 721 for (i = 0; i < vm_ndomains; i++) { 722 nitems = ZDOM_GET(zone, i)->uzd_nitems; 723 if (nitems < least) { 724 domain = i; 725 least = nitems; 726 } 727 if (domain == pref) 728 prefitems = nitems; 729 } 730 if (prefitems < least * 2) 731 return (pref); 732 733 return (domain); 734 } 735 736 /* 737 * Search for the domain with the most cached items and return it or the 738 * preferred domain if it has enough to proceed. 739 */ 740 static __noinline int 741 zone_domain_highest(uma_zone_t zone, int pref) 742 { 743 long most, nitems; 744 int domain; 745 int i; 746 747 if (ZDOM_GET(zone, pref)->uzd_nitems > BUCKET_MAX) 748 return (pref); 749 750 most = 0; 751 domain = 0; 752 for (i = 0; i < vm_ndomains; i++) { 753 nitems = ZDOM_GET(zone, i)->uzd_nitems; 754 if (nitems > most) { 755 domain = i; 756 most = nitems; 757 } 758 } 759 760 return (domain); 761 } 762 763 /* 764 * Set the maximum imax value. 765 */ 766 static void 767 zone_domain_imax_set(uma_zone_domain_t zdom, int nitems) 768 { 769 long old; 770 771 old = zdom->uzd_imax; 772 do { 773 if (old >= nitems) 774 return; 775 } while (atomic_fcmpset_long(&zdom->uzd_imax, &old, nitems) == 0); 776 777 /* 778 * We are at new maximum, so do the last WSS update for the old 779 * bimin and prepare to measure next allocation batch. 780 */ 781 if (zdom->uzd_wss < old - zdom->uzd_bimin) 782 zdom->uzd_wss = old - zdom->uzd_bimin; 783 zdom->uzd_bimin = nitems; 784 } 785 786 /* 787 * Attempt to satisfy an allocation by retrieving a full bucket from one of the 788 * zone's caches. If a bucket is found the zone is not locked on return. 789 */ 790 static uma_bucket_t 791 zone_fetch_bucket(uma_zone_t zone, uma_zone_domain_t zdom, bool reclaim) 792 { 793 uma_bucket_t bucket; 794 long cnt; 795 int i; 796 bool dtor = false; 797 798 ZDOM_LOCK_ASSERT(zdom); 799 800 if ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) == NULL) 801 return (NULL); 802 803 /* SMR Buckets can not be re-used until readers expire. */ 804 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 805 bucket->ub_seq != SMR_SEQ_INVALID) { 806 if (!smr_poll(zone->uz_smr, bucket->ub_seq, false)) 807 return (NULL); 808 bucket->ub_seq = SMR_SEQ_INVALID; 809 dtor = (zone->uz_dtor != NULL) || UMA_ALWAYS_CTORDTOR; 810 if (STAILQ_NEXT(bucket, ub_link) != NULL) 811 zdom->uzd_seq = STAILQ_NEXT(bucket, ub_link)->ub_seq; 812 } 813 STAILQ_REMOVE_HEAD(&zdom->uzd_buckets, ub_link); 814 815 KASSERT(zdom->uzd_nitems >= bucket->ub_cnt, 816 ("%s: item count underflow (%ld, %d)", 817 __func__, zdom->uzd_nitems, bucket->ub_cnt)); 818 KASSERT(bucket->ub_cnt > 0, 819 ("%s: empty bucket in bucket cache", __func__)); 820 zdom->uzd_nitems -= bucket->ub_cnt; 821 822 if (reclaim) { 823 /* 824 * Shift the bounds of the current WSS interval to avoid 825 * perturbing the estimates. 826 */ 827 cnt = lmin(zdom->uzd_bimin, bucket->ub_cnt); 828 atomic_subtract_long(&zdom->uzd_imax, cnt); 829 zdom->uzd_bimin -= cnt; 830 zdom->uzd_imin -= lmin(zdom->uzd_imin, bucket->ub_cnt); 831 if (zdom->uzd_limin >= bucket->ub_cnt) { 832 zdom->uzd_limin -= bucket->ub_cnt; 833 } else { 834 zdom->uzd_limin = 0; 835 zdom->uzd_timin = 0; 836 } 837 } else if (zdom->uzd_bimin > zdom->uzd_nitems) { 838 zdom->uzd_bimin = zdom->uzd_nitems; 839 if (zdom->uzd_imin > zdom->uzd_nitems) 840 zdom->uzd_imin = zdom->uzd_nitems; 841 } 842 843 ZDOM_UNLOCK(zdom); 844 if (dtor) 845 for (i = 0; i < bucket->ub_cnt; i++) 846 item_dtor(zone, bucket->ub_bucket[i], zone->uz_size, 847 NULL, SKIP_NONE); 848 849 return (bucket); 850 } 851 852 /* 853 * Insert a full bucket into the specified cache. The "ws" parameter indicates 854 * whether the bucket's contents should be counted as part of the zone's working 855 * set. The bucket may be freed if it exceeds the bucket limit. 856 */ 857 static void 858 zone_put_bucket(uma_zone_t zone, int domain, uma_bucket_t bucket, void *udata, 859 const bool ws) 860 { 861 uma_zone_domain_t zdom; 862 863 /* We don't cache empty buckets. This can happen after a reclaim. */ 864 if (bucket->ub_cnt == 0) 865 goto out; 866 zdom = zone_domain_lock(zone, domain); 867 868 /* 869 * Conditionally set the maximum number of items. 870 */ 871 zdom->uzd_nitems += bucket->ub_cnt; 872 if (__predict_true(zdom->uzd_nitems < zone->uz_bucket_max)) { 873 if (ws) { 874 zone_domain_imax_set(zdom, zdom->uzd_nitems); 875 } else { 876 /* 877 * Shift the bounds of the current WSS interval to 878 * avoid perturbing the estimates. 879 */ 880 atomic_add_long(&zdom->uzd_imax, bucket->ub_cnt); 881 zdom->uzd_imin += bucket->ub_cnt; 882 zdom->uzd_bimin += bucket->ub_cnt; 883 zdom->uzd_limin += bucket->ub_cnt; 884 } 885 if (STAILQ_EMPTY(&zdom->uzd_buckets)) 886 zdom->uzd_seq = bucket->ub_seq; 887 888 /* 889 * Try to promote reuse of recently used items. For items 890 * protected by SMR, try to defer reuse to minimize polling. 891 */ 892 if (bucket->ub_seq == SMR_SEQ_INVALID) 893 STAILQ_INSERT_HEAD(&zdom->uzd_buckets, bucket, ub_link); 894 else 895 STAILQ_INSERT_TAIL(&zdom->uzd_buckets, bucket, ub_link); 896 ZDOM_UNLOCK(zdom); 897 return; 898 } 899 zdom->uzd_nitems -= bucket->ub_cnt; 900 ZDOM_UNLOCK(zdom); 901 out: 902 bucket_free(zone, bucket, udata); 903 } 904 905 /* Pops an item out of a per-cpu cache bucket. */ 906 static inline void * 907 cache_bucket_pop(uma_cache_t cache, uma_cache_bucket_t bucket) 908 { 909 void *item; 910 911 CRITICAL_ASSERT(curthread); 912 913 bucket->ucb_cnt--; 914 item = bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt]; 915 #ifdef INVARIANTS 916 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = NULL; 917 KASSERT(item != NULL, ("uma_zalloc: Bucket pointer mangled.")); 918 #endif 919 cache->uc_allocs++; 920 921 return (item); 922 } 923 924 /* Pushes an item into a per-cpu cache bucket. */ 925 static inline void 926 cache_bucket_push(uma_cache_t cache, uma_cache_bucket_t bucket, void *item) 927 { 928 929 CRITICAL_ASSERT(curthread); 930 KASSERT(bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] == NULL, 931 ("uma_zfree: Freeing to non free bucket index.")); 932 933 bucket->ucb_bucket->ub_bucket[bucket->ucb_cnt] = item; 934 bucket->ucb_cnt++; 935 cache->uc_frees++; 936 } 937 938 /* 939 * Unload a UMA bucket from a per-cpu cache. 940 */ 941 static inline uma_bucket_t 942 cache_bucket_unload(uma_cache_bucket_t bucket) 943 { 944 uma_bucket_t b; 945 946 b = bucket->ucb_bucket; 947 if (b != NULL) { 948 MPASS(b->ub_entries == bucket->ucb_entries); 949 b->ub_cnt = bucket->ucb_cnt; 950 bucket->ucb_bucket = NULL; 951 bucket->ucb_entries = bucket->ucb_cnt = 0; 952 } 953 954 return (b); 955 } 956 957 static inline uma_bucket_t 958 cache_bucket_unload_alloc(uma_cache_t cache) 959 { 960 961 return (cache_bucket_unload(&cache->uc_allocbucket)); 962 } 963 964 static inline uma_bucket_t 965 cache_bucket_unload_free(uma_cache_t cache) 966 { 967 968 return (cache_bucket_unload(&cache->uc_freebucket)); 969 } 970 971 static inline uma_bucket_t 972 cache_bucket_unload_cross(uma_cache_t cache) 973 { 974 975 return (cache_bucket_unload(&cache->uc_crossbucket)); 976 } 977 978 /* 979 * Load a bucket into a per-cpu cache bucket. 980 */ 981 static inline void 982 cache_bucket_load(uma_cache_bucket_t bucket, uma_bucket_t b) 983 { 984 985 CRITICAL_ASSERT(curthread); 986 MPASS(bucket->ucb_bucket == NULL); 987 MPASS(b->ub_seq == SMR_SEQ_INVALID); 988 989 bucket->ucb_bucket = b; 990 bucket->ucb_cnt = b->ub_cnt; 991 bucket->ucb_entries = b->ub_entries; 992 } 993 994 static inline void 995 cache_bucket_load_alloc(uma_cache_t cache, uma_bucket_t b) 996 { 997 998 cache_bucket_load(&cache->uc_allocbucket, b); 999 } 1000 1001 static inline void 1002 cache_bucket_load_free(uma_cache_t cache, uma_bucket_t b) 1003 { 1004 1005 cache_bucket_load(&cache->uc_freebucket, b); 1006 } 1007 1008 #ifdef NUMA 1009 static inline void 1010 cache_bucket_load_cross(uma_cache_t cache, uma_bucket_t b) 1011 { 1012 1013 cache_bucket_load(&cache->uc_crossbucket, b); 1014 } 1015 #endif 1016 1017 /* 1018 * Copy and preserve ucb_spare. 1019 */ 1020 static inline void 1021 cache_bucket_copy(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1022 { 1023 1024 b1->ucb_bucket = b2->ucb_bucket; 1025 b1->ucb_entries = b2->ucb_entries; 1026 b1->ucb_cnt = b2->ucb_cnt; 1027 } 1028 1029 /* 1030 * Swap two cache buckets. 1031 */ 1032 static inline void 1033 cache_bucket_swap(uma_cache_bucket_t b1, uma_cache_bucket_t b2) 1034 { 1035 struct uma_cache_bucket b3; 1036 1037 CRITICAL_ASSERT(curthread); 1038 1039 cache_bucket_copy(&b3, b1); 1040 cache_bucket_copy(b1, b2); 1041 cache_bucket_copy(b2, &b3); 1042 } 1043 1044 /* 1045 * Attempt to fetch a bucket from a zone on behalf of the current cpu cache. 1046 */ 1047 static uma_bucket_t 1048 cache_fetch_bucket(uma_zone_t zone, uma_cache_t cache, int domain) 1049 { 1050 uma_zone_domain_t zdom; 1051 uma_bucket_t bucket; 1052 smr_seq_t seq; 1053 1054 /* 1055 * Avoid the lock if possible. 1056 */ 1057 zdom = ZDOM_GET(zone, domain); 1058 if (zdom->uzd_nitems == 0) 1059 return (NULL); 1060 1061 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) != 0 && 1062 (seq = atomic_load_32(&zdom->uzd_seq)) != SMR_SEQ_INVALID && 1063 !smr_poll(zone->uz_smr, seq, false)) 1064 return (NULL); 1065 1066 /* 1067 * Check the zone's cache of buckets. 1068 */ 1069 zdom = zone_domain_lock(zone, domain); 1070 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) 1071 return (bucket); 1072 ZDOM_UNLOCK(zdom); 1073 1074 return (NULL); 1075 } 1076 1077 static void 1078 zone_log_warning(uma_zone_t zone) 1079 { 1080 static const struct timeval warninterval = { 300, 0 }; 1081 1082 if (!zone_warnings || zone->uz_warning == NULL) 1083 return; 1084 1085 if (ratecheck(&zone->uz_ratecheck, &warninterval)) 1086 printf("[zone: %s] %s\n", zone->uz_name, zone->uz_warning); 1087 } 1088 1089 static inline void 1090 zone_maxaction(uma_zone_t zone) 1091 { 1092 1093 if (zone->uz_maxaction.ta_func != NULL) 1094 taskqueue_enqueue(taskqueue_thread, &zone->uz_maxaction); 1095 } 1096 1097 /* 1098 * Routine called by timeout which is used to fire off some time interval 1099 * based calculations. (stats, hash size, etc.) 1100 * 1101 * Arguments: 1102 * arg Unused 1103 * 1104 * Returns: 1105 * Nothing 1106 */ 1107 static void 1108 uma_timeout(void *context __unused, int pending __unused) 1109 { 1110 bucket_enable(); 1111 zone_foreach(zone_timeout, NULL); 1112 1113 /* Reschedule this event */ 1114 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task, 1115 UMA_TIMEOUT * hz); 1116 } 1117 1118 /* 1119 * Update the working set size estimates for the zone's bucket cache. 1120 * The constants chosen here are somewhat arbitrary. 1121 */ 1122 static void 1123 zone_domain_update_wss(uma_zone_domain_t zdom) 1124 { 1125 long m; 1126 1127 ZDOM_LOCK_ASSERT(zdom); 1128 MPASS(zdom->uzd_imax >= zdom->uzd_nitems); 1129 MPASS(zdom->uzd_nitems >= zdom->uzd_bimin); 1130 MPASS(zdom->uzd_bimin >= zdom->uzd_imin); 1131 1132 /* 1133 * Estimate WSS as modified moving average of biggest allocation 1134 * batches for each period over few minutes (UMA_TIMEOUT of 20s). 1135 */ 1136 zdom->uzd_wss = lmax(zdom->uzd_wss * 3 / 4, 1137 zdom->uzd_imax - zdom->uzd_bimin); 1138 1139 /* 1140 * Estimate longtime minimum item count as a combination of recent 1141 * minimum item count, adjusted by WSS for safety, and the modified 1142 * moving average over the last several hours (UMA_TIMEOUT of 20s). 1143 * timin measures time since limin tried to go negative, that means 1144 * we were dangerously close to or got out of cache. 1145 */ 1146 m = zdom->uzd_imin - zdom->uzd_wss; 1147 if (m >= 0) { 1148 if (zdom->uzd_limin >= m) 1149 zdom->uzd_limin = m; 1150 else 1151 zdom->uzd_limin = (m + zdom->uzd_limin * 255) / 256; 1152 zdom->uzd_timin++; 1153 } else { 1154 zdom->uzd_limin = 0; 1155 zdom->uzd_timin = 0; 1156 } 1157 1158 /* To reduce period edge effects on WSS keep half of the imax. */ 1159 atomic_subtract_long(&zdom->uzd_imax, 1160 (zdom->uzd_imax - zdom->uzd_nitems + 1) / 2); 1161 zdom->uzd_imin = zdom->uzd_bimin = zdom->uzd_nitems; 1162 } 1163 1164 /* 1165 * Routine to perform timeout driven calculations. This expands the 1166 * hashes and does per cpu statistics aggregation. 1167 * 1168 * Returns nothing. 1169 */ 1170 static void 1171 zone_timeout(uma_zone_t zone, void *unused) 1172 { 1173 uma_keg_t keg; 1174 u_int slabs, pages; 1175 1176 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 1177 goto trim; 1178 1179 keg = zone->uz_keg; 1180 1181 /* 1182 * Hash zones are non-numa by definition so the first domain 1183 * is the only one present. 1184 */ 1185 KEG_LOCK(keg, 0); 1186 pages = keg->uk_domain[0].ud_pages; 1187 1188 /* 1189 * Expand the keg hash table. 1190 * 1191 * This is done if the number of slabs is larger than the hash size. 1192 * What I'm trying to do here is completely reduce collisions. This 1193 * may be a little aggressive. Should I allow for two collisions max? 1194 */ 1195 if ((slabs = pages / keg->uk_ppera) > keg->uk_hash.uh_hashsize) { 1196 struct uma_hash newhash; 1197 struct uma_hash oldhash; 1198 int ret; 1199 1200 /* 1201 * This is so involved because allocating and freeing 1202 * while the keg lock is held will lead to deadlock. 1203 * I have to do everything in stages and check for 1204 * races. 1205 */ 1206 KEG_UNLOCK(keg, 0); 1207 ret = hash_alloc(&newhash, 1 << fls(slabs)); 1208 KEG_LOCK(keg, 0); 1209 if (ret) { 1210 if (hash_expand(&keg->uk_hash, &newhash)) { 1211 oldhash = keg->uk_hash; 1212 keg->uk_hash = newhash; 1213 } else 1214 oldhash = newhash; 1215 1216 KEG_UNLOCK(keg, 0); 1217 hash_free(&oldhash); 1218 goto trim; 1219 } 1220 } 1221 KEG_UNLOCK(keg, 0); 1222 1223 trim: 1224 /* Trim caches not used for a long time. */ 1225 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) { 1226 for (int i = 0; i < vm_ndomains; i++) { 1227 if (bucket_cache_reclaim_domain(zone, false, false, i) && 1228 (zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1229 keg_drain(zone->uz_keg, i); 1230 } 1231 } 1232 } 1233 1234 /* 1235 * Allocate and zero fill the next sized hash table from the appropriate 1236 * backing store. 1237 * 1238 * Arguments: 1239 * hash A new hash structure with the old hash size in uh_hashsize 1240 * 1241 * Returns: 1242 * 1 on success and 0 on failure. 1243 */ 1244 static int 1245 hash_alloc(struct uma_hash *hash, u_int size) 1246 { 1247 size_t alloc; 1248 1249 KASSERT(powerof2(size), ("hash size must be power of 2")); 1250 if (size > UMA_HASH_SIZE_INIT) { 1251 hash->uh_hashsize = size; 1252 alloc = sizeof(hash->uh_slab_hash[0]) * hash->uh_hashsize; 1253 hash->uh_slab_hash = malloc(alloc, M_UMAHASH, M_NOWAIT); 1254 } else { 1255 alloc = sizeof(hash->uh_slab_hash[0]) * UMA_HASH_SIZE_INIT; 1256 hash->uh_slab_hash = zone_alloc_item(hashzone, NULL, 1257 UMA_ANYDOMAIN, M_WAITOK); 1258 hash->uh_hashsize = UMA_HASH_SIZE_INIT; 1259 } 1260 if (hash->uh_slab_hash) { 1261 bzero(hash->uh_slab_hash, alloc); 1262 hash->uh_hashmask = hash->uh_hashsize - 1; 1263 return (1); 1264 } 1265 1266 return (0); 1267 } 1268 1269 /* 1270 * Expands the hash table for HASH zones. This is done from zone_timeout 1271 * to reduce collisions. This must not be done in the regular allocation 1272 * path, otherwise, we can recurse on the vm while allocating pages. 1273 * 1274 * Arguments: 1275 * oldhash The hash you want to expand 1276 * newhash The hash structure for the new table 1277 * 1278 * Returns: 1279 * Nothing 1280 * 1281 * Discussion: 1282 */ 1283 static int 1284 hash_expand(struct uma_hash *oldhash, struct uma_hash *newhash) 1285 { 1286 uma_hash_slab_t slab; 1287 u_int hval; 1288 u_int idx; 1289 1290 if (!newhash->uh_slab_hash) 1291 return (0); 1292 1293 if (oldhash->uh_hashsize >= newhash->uh_hashsize) 1294 return (0); 1295 1296 /* 1297 * I need to investigate hash algorithms for resizing without a 1298 * full rehash. 1299 */ 1300 1301 for (idx = 0; idx < oldhash->uh_hashsize; idx++) 1302 while (!LIST_EMPTY(&oldhash->uh_slab_hash[idx])) { 1303 slab = LIST_FIRST(&oldhash->uh_slab_hash[idx]); 1304 LIST_REMOVE(slab, uhs_hlink); 1305 hval = UMA_HASH(newhash, slab->uhs_data); 1306 LIST_INSERT_HEAD(&newhash->uh_slab_hash[hval], 1307 slab, uhs_hlink); 1308 } 1309 1310 return (1); 1311 } 1312 1313 /* 1314 * Free the hash bucket to the appropriate backing store. 1315 * 1316 * Arguments: 1317 * slab_hash The hash bucket we're freeing 1318 * hashsize The number of entries in that hash bucket 1319 * 1320 * Returns: 1321 * Nothing 1322 */ 1323 static void 1324 hash_free(struct uma_hash *hash) 1325 { 1326 if (hash->uh_slab_hash == NULL) 1327 return; 1328 if (hash->uh_hashsize == UMA_HASH_SIZE_INIT) 1329 zone_free_item(hashzone, hash->uh_slab_hash, NULL, SKIP_NONE); 1330 else 1331 free(hash->uh_slab_hash, M_UMAHASH); 1332 } 1333 1334 /* 1335 * Frees all outstanding items in a bucket 1336 * 1337 * Arguments: 1338 * zone The zone to free to, must be unlocked. 1339 * bucket The free/alloc bucket with items. 1340 * 1341 * Returns: 1342 * Nothing 1343 */ 1344 static void 1345 bucket_drain(uma_zone_t zone, uma_bucket_t bucket) 1346 { 1347 int i; 1348 1349 if (bucket->ub_cnt == 0) 1350 return; 1351 1352 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && 1353 bucket->ub_seq != SMR_SEQ_INVALID) { 1354 smr_wait(zone->uz_smr, bucket->ub_seq); 1355 bucket->ub_seq = SMR_SEQ_INVALID; 1356 for (i = 0; i < bucket->ub_cnt; i++) 1357 item_dtor(zone, bucket->ub_bucket[i], 1358 zone->uz_size, NULL, SKIP_NONE); 1359 } 1360 if (zone->uz_fini) 1361 for (i = 0; i < bucket->ub_cnt; i++) { 1362 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 1363 zone->uz_fini(bucket->ub_bucket[i], zone->uz_size); 1364 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 1365 } 1366 zone->uz_release(zone->uz_arg, bucket->ub_bucket, bucket->ub_cnt); 1367 if (zone->uz_max_items > 0) 1368 zone_free_limit(zone, bucket->ub_cnt); 1369 #ifdef INVARIANTS 1370 bzero(bucket->ub_bucket, sizeof(void *) * bucket->ub_cnt); 1371 #endif 1372 bucket->ub_cnt = 0; 1373 } 1374 1375 /* 1376 * Drains the per cpu caches for a zone. 1377 * 1378 * NOTE: This may only be called while the zone is being torn down, and not 1379 * during normal operation. This is necessary in order that we do not have 1380 * to migrate CPUs to drain the per-CPU caches. 1381 * 1382 * Arguments: 1383 * zone The zone to drain, must be unlocked. 1384 * 1385 * Returns: 1386 * Nothing 1387 */ 1388 static void 1389 cache_drain(uma_zone_t zone) 1390 { 1391 uma_cache_t cache; 1392 uma_bucket_t bucket; 1393 smr_seq_t seq; 1394 int cpu; 1395 1396 /* 1397 * XXX: It is safe to not lock the per-CPU caches, because we're 1398 * tearing down the zone anyway. I.e., there will be no further use 1399 * of the caches at this point. 1400 * 1401 * XXX: It would good to be able to assert that the zone is being 1402 * torn down to prevent improper use of cache_drain(). 1403 */ 1404 seq = SMR_SEQ_INVALID; 1405 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 1406 seq = smr_advance(zone->uz_smr); 1407 CPU_FOREACH(cpu) { 1408 cache = &zone->uz_cpu[cpu]; 1409 bucket = cache_bucket_unload_alloc(cache); 1410 if (bucket != NULL) 1411 bucket_free(zone, bucket, NULL); 1412 bucket = cache_bucket_unload_free(cache); 1413 if (bucket != NULL) { 1414 bucket->ub_seq = seq; 1415 bucket_free(zone, bucket, NULL); 1416 } 1417 bucket = cache_bucket_unload_cross(cache); 1418 if (bucket != NULL) { 1419 bucket->ub_seq = seq; 1420 bucket_free(zone, bucket, NULL); 1421 } 1422 } 1423 bucket_cache_reclaim(zone, true, UMA_ANYDOMAIN); 1424 } 1425 1426 static void 1427 cache_shrink(uma_zone_t zone, void *unused) 1428 { 1429 1430 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1431 return; 1432 1433 ZONE_LOCK(zone); 1434 zone->uz_bucket_size = 1435 (zone->uz_bucket_size_min + zone->uz_bucket_size) / 2; 1436 ZONE_UNLOCK(zone); 1437 } 1438 1439 static void 1440 cache_drain_safe_cpu(uma_zone_t zone, void *unused) 1441 { 1442 uma_cache_t cache; 1443 uma_bucket_t b1, b2, b3; 1444 int domain; 1445 1446 if (zone->uz_flags & UMA_ZFLAG_INTERNAL) 1447 return; 1448 1449 b1 = b2 = b3 = NULL; 1450 critical_enter(); 1451 cache = &zone->uz_cpu[curcpu]; 1452 domain = PCPU_GET(domain); 1453 b1 = cache_bucket_unload_alloc(cache); 1454 1455 /* 1456 * Don't flush SMR zone buckets. This leaves the zone without a 1457 * bucket and forces every free to synchronize(). 1458 */ 1459 if ((zone->uz_flags & UMA_ZONE_SMR) == 0) { 1460 b2 = cache_bucket_unload_free(cache); 1461 b3 = cache_bucket_unload_cross(cache); 1462 } 1463 critical_exit(); 1464 1465 if (b1 != NULL) 1466 zone_free_bucket(zone, b1, NULL, domain, false); 1467 if (b2 != NULL) 1468 zone_free_bucket(zone, b2, NULL, domain, false); 1469 if (b3 != NULL) { 1470 /* Adjust the domain so it goes to zone_free_cross. */ 1471 domain = (domain + 1) % vm_ndomains; 1472 zone_free_bucket(zone, b3, NULL, domain, false); 1473 } 1474 } 1475 1476 /* 1477 * Safely drain per-CPU caches of a zone(s) to alloc bucket. 1478 * This is an expensive call because it needs to bind to all CPUs 1479 * one by one and enter a critical section on each of them in order 1480 * to safely access their cache buckets. 1481 * Zone lock must not be held on call this function. 1482 */ 1483 static void 1484 pcpu_cache_drain_safe(uma_zone_t zone) 1485 { 1486 int cpu; 1487 1488 /* 1489 * Polite bucket sizes shrinking was not enough, shrink aggressively. 1490 */ 1491 if (zone) 1492 cache_shrink(zone, NULL); 1493 else 1494 zone_foreach(cache_shrink, NULL); 1495 1496 CPU_FOREACH(cpu) { 1497 thread_lock(curthread); 1498 sched_bind(curthread, cpu); 1499 thread_unlock(curthread); 1500 1501 if (zone) 1502 cache_drain_safe_cpu(zone, NULL); 1503 else 1504 zone_foreach(cache_drain_safe_cpu, NULL); 1505 } 1506 thread_lock(curthread); 1507 sched_unbind(curthread); 1508 thread_unlock(curthread); 1509 } 1510 1511 /* 1512 * Reclaim cached buckets from a zone. All buckets are reclaimed if the caller 1513 * requested a drain, otherwise the per-domain caches are trimmed to either 1514 * estimated working set size. 1515 */ 1516 static bool 1517 bucket_cache_reclaim_domain(uma_zone_t zone, bool drain, bool trim, int domain) 1518 { 1519 uma_zone_domain_t zdom; 1520 uma_bucket_t bucket; 1521 long target; 1522 bool done = false; 1523 1524 /* 1525 * The cross bucket is partially filled and not part of 1526 * the item count. Reclaim it individually here. 1527 */ 1528 zdom = ZDOM_GET(zone, domain); 1529 if ((zone->uz_flags & UMA_ZONE_SMR) == 0 || drain) { 1530 ZONE_CROSS_LOCK(zone); 1531 bucket = zdom->uzd_cross; 1532 zdom->uzd_cross = NULL; 1533 ZONE_CROSS_UNLOCK(zone); 1534 if (bucket != NULL) 1535 bucket_free(zone, bucket, NULL); 1536 } 1537 1538 /* 1539 * If we were asked to drain the zone, we are done only once 1540 * this bucket cache is empty. If trim, we reclaim items in 1541 * excess of the zone's estimated working set size. Multiple 1542 * consecutive calls will shrink the WSS and so reclaim more. 1543 * If neither drain nor trim, then voluntarily reclaim 1/4 1544 * (to reduce first spike) of items not used for a long time. 1545 */ 1546 ZDOM_LOCK(zdom); 1547 zone_domain_update_wss(zdom); 1548 if (drain) 1549 target = 0; 1550 else if (trim) 1551 target = zdom->uzd_wss; 1552 else if (zdom->uzd_timin > 900 / UMA_TIMEOUT) 1553 target = zdom->uzd_nitems - zdom->uzd_limin / 4; 1554 else { 1555 ZDOM_UNLOCK(zdom); 1556 return (done); 1557 } 1558 while ((bucket = STAILQ_FIRST(&zdom->uzd_buckets)) != NULL && 1559 zdom->uzd_nitems >= target + bucket->ub_cnt) { 1560 bucket = zone_fetch_bucket(zone, zdom, true); 1561 if (bucket == NULL) 1562 break; 1563 bucket_free(zone, bucket, NULL); 1564 done = true; 1565 ZDOM_LOCK(zdom); 1566 } 1567 ZDOM_UNLOCK(zdom); 1568 return (done); 1569 } 1570 1571 static void 1572 bucket_cache_reclaim(uma_zone_t zone, bool drain, int domain) 1573 { 1574 int i; 1575 1576 /* 1577 * Shrink the zone bucket size to ensure that the per-CPU caches 1578 * don't grow too large. 1579 */ 1580 if (zone->uz_bucket_size > zone->uz_bucket_size_min) 1581 zone->uz_bucket_size--; 1582 1583 if (domain != UMA_ANYDOMAIN && 1584 (zone->uz_flags & UMA_ZONE_ROUNDROBIN) == 0) { 1585 bucket_cache_reclaim_domain(zone, drain, true, domain); 1586 } else { 1587 for (i = 0; i < vm_ndomains; i++) 1588 bucket_cache_reclaim_domain(zone, drain, true, i); 1589 } 1590 } 1591 1592 static void 1593 keg_free_slab(uma_keg_t keg, uma_slab_t slab, int start) 1594 { 1595 uint8_t *mem; 1596 size_t size; 1597 int i; 1598 uint8_t flags; 1599 1600 CTR4(KTR_UMA, "keg_free_slab keg %s(%p) slab %p, returning %d bytes", 1601 keg->uk_name, keg, slab, PAGE_SIZE * keg->uk_ppera); 1602 1603 mem = slab_data(slab, keg); 1604 size = PAGE_SIZE * keg->uk_ppera; 1605 1606 kasan_mark_slab_valid(keg, mem); 1607 if (keg->uk_fini != NULL) { 1608 for (i = start - 1; i > -1; i--) 1609 #ifdef INVARIANTS 1610 /* 1611 * trash_fini implies that dtor was trash_dtor. trash_fini 1612 * would check that memory hasn't been modified since free, 1613 * which executed trash_dtor. 1614 * That's why we need to run uma_dbg_kskip() check here, 1615 * albeit we don't make skip check for other init/fini 1616 * invocations. 1617 */ 1618 if (!uma_dbg_kskip(keg, slab_item(slab, keg, i)) || 1619 keg->uk_fini != trash_fini) 1620 #endif 1621 keg->uk_fini(slab_item(slab, keg, i), keg->uk_size); 1622 } 1623 flags = slab->us_flags; 1624 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1625 zone_free_item(slabzone(keg->uk_ipers), slab_tohashslab(slab), 1626 NULL, SKIP_NONE); 1627 } 1628 keg->uk_freef(mem, size, flags); 1629 uma_total_dec(size); 1630 } 1631 1632 static void 1633 keg_drain_domain(uma_keg_t keg, int domain) 1634 { 1635 struct slabhead freeslabs; 1636 uma_domain_t dom; 1637 uma_slab_t slab, tmp; 1638 uint32_t i, stofree, stokeep, partial; 1639 1640 dom = &keg->uk_domain[domain]; 1641 LIST_INIT(&freeslabs); 1642 1643 CTR4(KTR_UMA, "keg_drain %s(%p) domain %d free items: %u", 1644 keg->uk_name, keg, domain, dom->ud_free_items); 1645 1646 KEG_LOCK(keg, domain); 1647 1648 /* 1649 * Are the free items in partially allocated slabs sufficient to meet 1650 * the reserve? If not, compute the number of fully free slabs that must 1651 * be kept. 1652 */ 1653 partial = dom->ud_free_items - dom->ud_free_slabs * keg->uk_ipers; 1654 if (partial < keg->uk_reserve) { 1655 stokeep = min(dom->ud_free_slabs, 1656 howmany(keg->uk_reserve - partial, keg->uk_ipers)); 1657 } else { 1658 stokeep = 0; 1659 } 1660 stofree = dom->ud_free_slabs - stokeep; 1661 1662 /* 1663 * Partition the free slabs into two sets: those that must be kept in 1664 * order to maintain the reserve, and those that may be released back to 1665 * the system. Since one set may be much larger than the other, 1666 * populate the smaller of the two sets and swap them if necessary. 1667 */ 1668 for (i = min(stofree, stokeep); i > 0; i--) { 1669 slab = LIST_FIRST(&dom->ud_free_slab); 1670 LIST_REMOVE(slab, us_link); 1671 LIST_INSERT_HEAD(&freeslabs, slab, us_link); 1672 } 1673 if (stofree > stokeep) 1674 LIST_SWAP(&freeslabs, &dom->ud_free_slab, uma_slab, us_link); 1675 1676 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) { 1677 LIST_FOREACH(slab, &freeslabs, us_link) 1678 UMA_HASH_REMOVE(&keg->uk_hash, slab); 1679 } 1680 dom->ud_free_items -= stofree * keg->uk_ipers; 1681 dom->ud_free_slabs -= stofree; 1682 dom->ud_pages -= stofree * keg->uk_ppera; 1683 KEG_UNLOCK(keg, domain); 1684 1685 LIST_FOREACH_SAFE(slab, &freeslabs, us_link, tmp) 1686 keg_free_slab(keg, slab, keg->uk_ipers); 1687 } 1688 1689 /* 1690 * Frees pages from a keg back to the system. This is done on demand from 1691 * the pageout daemon. 1692 * 1693 * Returns nothing. 1694 */ 1695 static void 1696 keg_drain(uma_keg_t keg, int domain) 1697 { 1698 int i; 1699 1700 if ((keg->uk_flags & UMA_ZONE_NOFREE) != 0) 1701 return; 1702 if (domain != UMA_ANYDOMAIN) { 1703 keg_drain_domain(keg, domain); 1704 } else { 1705 for (i = 0; i < vm_ndomains; i++) 1706 keg_drain_domain(keg, i); 1707 } 1708 } 1709 1710 static void 1711 zone_reclaim(uma_zone_t zone, int domain, int waitok, bool drain) 1712 { 1713 /* 1714 * Count active reclaim operations in order to interlock with 1715 * zone_dtor(), which removes the zone from global lists before 1716 * attempting to reclaim items itself. 1717 * 1718 * The zone may be destroyed while sleeping, so only zone_dtor() should 1719 * specify M_WAITOK. 1720 */ 1721 ZONE_LOCK(zone); 1722 if (waitok == M_WAITOK) { 1723 while (zone->uz_reclaimers > 0) 1724 msleep(zone, ZONE_LOCKPTR(zone), PVM, "zonedrain", 1); 1725 } 1726 zone->uz_reclaimers++; 1727 ZONE_UNLOCK(zone); 1728 bucket_cache_reclaim(zone, drain, domain); 1729 1730 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) 1731 keg_drain(zone->uz_keg, domain); 1732 ZONE_LOCK(zone); 1733 zone->uz_reclaimers--; 1734 if (zone->uz_reclaimers == 0) 1735 wakeup(zone); 1736 ZONE_UNLOCK(zone); 1737 } 1738 1739 /* 1740 * Allocate a new slab for a keg and inserts it into the partial slab list. 1741 * The keg should be unlocked on entry. If the allocation succeeds it will 1742 * be locked on return. 1743 * 1744 * Arguments: 1745 * flags Wait flags for the item initialization routine 1746 * aflags Wait flags for the slab allocation 1747 * 1748 * Returns: 1749 * The slab that was allocated or NULL if there is no memory and the 1750 * caller specified M_NOWAIT. 1751 */ 1752 static uma_slab_t 1753 keg_alloc_slab(uma_keg_t keg, uma_zone_t zone, int domain, int flags, 1754 int aflags) 1755 { 1756 uma_domain_t dom; 1757 uma_slab_t slab; 1758 unsigned long size; 1759 uint8_t *mem; 1760 uint8_t sflags; 1761 int i; 1762 1763 TSENTER(); 1764 1765 KASSERT(domain >= 0 && domain < vm_ndomains, 1766 ("keg_alloc_slab: domain %d out of range", domain)); 1767 1768 slab = NULL; 1769 mem = NULL; 1770 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) { 1771 uma_hash_slab_t hslab; 1772 hslab = zone_alloc_item(slabzone(keg->uk_ipers), NULL, 1773 domain, aflags); 1774 if (hslab == NULL) 1775 goto fail; 1776 slab = &hslab->uhs_slab; 1777 } 1778 1779 /* 1780 * This reproduces the old vm_zone behavior of zero filling pages the 1781 * first time they are added to a zone. 1782 * 1783 * Malloced items are zeroed in uma_zalloc. 1784 */ 1785 1786 if ((keg->uk_flags & UMA_ZONE_MALLOC) == 0) 1787 aflags |= M_ZERO; 1788 else 1789 aflags &= ~M_ZERO; 1790 1791 if (keg->uk_flags & UMA_ZONE_NODUMP) 1792 aflags |= M_NODUMP; 1793 1794 /* zone is passed for legacy reasons. */ 1795 size = keg->uk_ppera * PAGE_SIZE; 1796 mem = keg->uk_allocf(zone, size, domain, &sflags, aflags); 1797 if (mem == NULL) { 1798 if (keg->uk_flags & UMA_ZFLAG_OFFPAGE) 1799 zone_free_item(slabzone(keg->uk_ipers), 1800 slab_tohashslab(slab), NULL, SKIP_NONE); 1801 goto fail; 1802 } 1803 uma_total_inc(size); 1804 1805 /* For HASH zones all pages go to the same uma_domain. */ 1806 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 1807 domain = 0; 1808 1809 kmsan_mark(mem, size, 1810 (aflags & M_ZERO) != 0 ? KMSAN_STATE_INITED : KMSAN_STATE_UNINIT); 1811 1812 /* Point the slab into the allocated memory */ 1813 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) 1814 slab = (uma_slab_t)(mem + keg->uk_pgoff); 1815 else 1816 slab_tohashslab(slab)->uhs_data = mem; 1817 1818 if (keg->uk_flags & UMA_ZFLAG_VTOSLAB) 1819 for (i = 0; i < keg->uk_ppera; i++) 1820 vsetzoneslab((vm_offset_t)mem + (i * PAGE_SIZE), 1821 zone, slab); 1822 1823 slab->us_freecount = keg->uk_ipers; 1824 slab->us_flags = sflags; 1825 slab->us_domain = domain; 1826 1827 BIT_FILL(keg->uk_ipers, &slab->us_free); 1828 #ifdef INVARIANTS 1829 BIT_ZERO(keg->uk_ipers, slab_dbg_bits(slab, keg)); 1830 #endif 1831 1832 if (keg->uk_init != NULL) { 1833 for (i = 0; i < keg->uk_ipers; i++) 1834 if (keg->uk_init(slab_item(slab, keg, i), 1835 keg->uk_size, flags) != 0) 1836 break; 1837 if (i != keg->uk_ipers) { 1838 keg_free_slab(keg, slab, i); 1839 goto fail; 1840 } 1841 } 1842 kasan_mark_slab_invalid(keg, mem); 1843 KEG_LOCK(keg, domain); 1844 1845 CTR3(KTR_UMA, "keg_alloc_slab: allocated slab %p for %s(%p)", 1846 slab, keg->uk_name, keg); 1847 1848 if (keg->uk_flags & UMA_ZFLAG_HASH) 1849 UMA_HASH_INSERT(&keg->uk_hash, slab, mem); 1850 1851 /* 1852 * If we got a slab here it's safe to mark it partially used 1853 * and return. We assume that the caller is going to remove 1854 * at least one item. 1855 */ 1856 dom = &keg->uk_domain[domain]; 1857 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 1858 dom->ud_pages += keg->uk_ppera; 1859 dom->ud_free_items += keg->uk_ipers; 1860 1861 TSEXIT(); 1862 return (slab); 1863 1864 fail: 1865 return (NULL); 1866 } 1867 1868 /* 1869 * This function is intended to be used early on in place of page_alloc(). It 1870 * performs contiguous physical memory allocations and uses a bump allocator for 1871 * KVA, so is usable before the kernel map is initialized. 1872 */ 1873 static void * 1874 startup_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1875 int wait) 1876 { 1877 vm_paddr_t pa; 1878 vm_page_t m; 1879 int i, pages; 1880 1881 pages = howmany(bytes, PAGE_SIZE); 1882 KASSERT(pages > 0, ("%s can't reserve 0 pages", __func__)); 1883 1884 *pflag = UMA_SLAB_BOOT; 1885 m = vm_page_alloc_noobj_contig_domain(domain, malloc2vm_flags(wait) | 1886 VM_ALLOC_WIRED, pages, (vm_paddr_t)0, ~(vm_paddr_t)0, 1, 0, 1887 VM_MEMATTR_DEFAULT); 1888 if (m == NULL) 1889 return (NULL); 1890 1891 pa = VM_PAGE_TO_PHYS(m); 1892 for (i = 0; i < pages; i++, pa += PAGE_SIZE) { 1893 #if defined(__aarch64__) || defined(__amd64__) || \ 1894 defined(__riscv) || defined(__powerpc64__) 1895 if ((wait & M_NODUMP) == 0) 1896 dump_add_page(pa); 1897 #endif 1898 } 1899 1900 /* Allocate KVA and indirectly advance bootmem. */ 1901 return ((void *)pmap_map(&bootmem, m->phys_addr, 1902 m->phys_addr + (pages * PAGE_SIZE), VM_PROT_READ | VM_PROT_WRITE)); 1903 } 1904 1905 static void 1906 startup_free(void *mem, vm_size_t bytes) 1907 { 1908 vm_offset_t va; 1909 vm_page_t m; 1910 1911 va = (vm_offset_t)mem; 1912 m = PHYS_TO_VM_PAGE(pmap_kextract(va)); 1913 1914 /* 1915 * startup_alloc() returns direct-mapped slabs on some platforms. Avoid 1916 * unmapping ranges of the direct map. 1917 */ 1918 if (va >= bootstart && va + bytes <= bootmem) 1919 pmap_remove(kernel_pmap, va, va + bytes); 1920 for (; bytes != 0; bytes -= PAGE_SIZE, m++) { 1921 #if defined(__aarch64__) || defined(__amd64__) || \ 1922 defined(__riscv) || defined(__powerpc64__) 1923 dump_drop_page(VM_PAGE_TO_PHYS(m)); 1924 #endif 1925 vm_page_unwire_noq(m); 1926 vm_page_free(m); 1927 } 1928 } 1929 1930 /* 1931 * Allocates a number of pages from the system 1932 * 1933 * Arguments: 1934 * bytes The number of bytes requested 1935 * wait Shall we wait? 1936 * 1937 * Returns: 1938 * A pointer to the alloced memory or possibly 1939 * NULL if M_NOWAIT is set. 1940 */ 1941 static void * 1942 page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1943 int wait) 1944 { 1945 void *p; /* Returned page */ 1946 1947 *pflag = UMA_SLAB_KERNEL; 1948 p = kmem_malloc_domainset(DOMAINSET_FIXED(domain), bytes, wait); 1949 1950 return (p); 1951 } 1952 1953 static void * 1954 pcpu_page_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 1955 int wait) 1956 { 1957 struct pglist alloctail; 1958 vm_offset_t addr, zkva; 1959 int cpu, flags; 1960 vm_page_t p, p_next; 1961 #ifdef NUMA 1962 struct pcpu *pc; 1963 #endif 1964 1965 MPASS(bytes == (mp_maxid + 1) * PAGE_SIZE); 1966 1967 TAILQ_INIT(&alloctail); 1968 flags = VM_ALLOC_SYSTEM | VM_ALLOC_WIRED | malloc2vm_flags(wait); 1969 *pflag = UMA_SLAB_KERNEL; 1970 for (cpu = 0; cpu <= mp_maxid; cpu++) { 1971 if (CPU_ABSENT(cpu)) { 1972 p = vm_page_alloc_noobj(flags); 1973 } else { 1974 #ifndef NUMA 1975 p = vm_page_alloc_noobj(flags); 1976 #else 1977 pc = pcpu_find(cpu); 1978 if (__predict_false(VM_DOMAIN_EMPTY(pc->pc_domain))) 1979 p = NULL; 1980 else 1981 p = vm_page_alloc_noobj_domain(pc->pc_domain, 1982 flags); 1983 if (__predict_false(p == NULL)) 1984 p = vm_page_alloc_noobj(flags); 1985 #endif 1986 } 1987 if (__predict_false(p == NULL)) 1988 goto fail; 1989 TAILQ_INSERT_TAIL(&alloctail, p, listq); 1990 } 1991 if ((addr = kva_alloc(bytes)) == 0) 1992 goto fail; 1993 zkva = addr; 1994 TAILQ_FOREACH(p, &alloctail, listq) { 1995 pmap_qenter(zkva, &p, 1); 1996 zkva += PAGE_SIZE; 1997 } 1998 return ((void*)addr); 1999 fail: 2000 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2001 vm_page_unwire_noq(p); 2002 vm_page_free(p); 2003 } 2004 return (NULL); 2005 } 2006 2007 /* 2008 * Allocates a number of pages not belonging to a VM object 2009 * 2010 * Arguments: 2011 * bytes The number of bytes requested 2012 * wait Shall we wait? 2013 * 2014 * Returns: 2015 * A pointer to the alloced memory or possibly 2016 * NULL if M_NOWAIT is set. 2017 */ 2018 static void * 2019 noobj_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *flags, 2020 int wait) 2021 { 2022 TAILQ_HEAD(, vm_page) alloctail; 2023 u_long npages; 2024 vm_offset_t retkva, zkva; 2025 vm_page_t p, p_next; 2026 uma_keg_t keg; 2027 int req; 2028 2029 TAILQ_INIT(&alloctail); 2030 keg = zone->uz_keg; 2031 req = VM_ALLOC_INTERRUPT | VM_ALLOC_WIRED; 2032 if ((wait & M_WAITOK) != 0) 2033 req |= VM_ALLOC_WAITOK; 2034 2035 npages = howmany(bytes, PAGE_SIZE); 2036 while (npages > 0) { 2037 p = vm_page_alloc_noobj_domain(domain, req); 2038 if (p != NULL) { 2039 /* 2040 * Since the page does not belong to an object, its 2041 * listq is unused. 2042 */ 2043 TAILQ_INSERT_TAIL(&alloctail, p, listq); 2044 npages--; 2045 continue; 2046 } 2047 /* 2048 * Page allocation failed, free intermediate pages and 2049 * exit. 2050 */ 2051 TAILQ_FOREACH_SAFE(p, &alloctail, listq, p_next) { 2052 vm_page_unwire_noq(p); 2053 vm_page_free(p); 2054 } 2055 return (NULL); 2056 } 2057 *flags = UMA_SLAB_PRIV; 2058 zkva = keg->uk_kva + 2059 atomic_fetchadd_long(&keg->uk_offset, round_page(bytes)); 2060 retkva = zkva; 2061 TAILQ_FOREACH(p, &alloctail, listq) { 2062 pmap_qenter(zkva, &p, 1); 2063 zkva += PAGE_SIZE; 2064 } 2065 2066 return ((void *)retkva); 2067 } 2068 2069 /* 2070 * Allocate physically contiguous pages. 2071 */ 2072 static void * 2073 contig_alloc(uma_zone_t zone, vm_size_t bytes, int domain, uint8_t *pflag, 2074 int wait) 2075 { 2076 2077 *pflag = UMA_SLAB_KERNEL; 2078 return ((void *)kmem_alloc_contig_domainset(DOMAINSET_FIXED(domain), 2079 bytes, wait, 0, ~(vm_paddr_t)0, 1, 0, VM_MEMATTR_DEFAULT)); 2080 } 2081 2082 /* 2083 * Frees a number of pages to the system 2084 * 2085 * Arguments: 2086 * mem A pointer to the memory to be freed 2087 * size The size of the memory being freed 2088 * flags The original p->us_flags field 2089 * 2090 * Returns: 2091 * Nothing 2092 */ 2093 static void 2094 page_free(void *mem, vm_size_t size, uint8_t flags) 2095 { 2096 2097 if ((flags & UMA_SLAB_BOOT) != 0) { 2098 startup_free(mem, size); 2099 return; 2100 } 2101 2102 KASSERT((flags & UMA_SLAB_KERNEL) != 0, 2103 ("UMA: page_free used with invalid flags %x", flags)); 2104 2105 kmem_free(mem, size); 2106 } 2107 2108 /* 2109 * Frees pcpu zone allocations 2110 * 2111 * Arguments: 2112 * mem A pointer to the memory to be freed 2113 * size The size of the memory being freed 2114 * flags The original p->us_flags field 2115 * 2116 * Returns: 2117 * Nothing 2118 */ 2119 static void 2120 pcpu_page_free(void *mem, vm_size_t size, uint8_t flags) 2121 { 2122 vm_offset_t sva, curva; 2123 vm_paddr_t paddr; 2124 vm_page_t m; 2125 2126 MPASS(size == (mp_maxid+1)*PAGE_SIZE); 2127 2128 if ((flags & UMA_SLAB_BOOT) != 0) { 2129 startup_free(mem, size); 2130 return; 2131 } 2132 2133 sva = (vm_offset_t)mem; 2134 for (curva = sva; curva < sva + size; curva += PAGE_SIZE) { 2135 paddr = pmap_kextract(curva); 2136 m = PHYS_TO_VM_PAGE(paddr); 2137 vm_page_unwire_noq(m); 2138 vm_page_free(m); 2139 } 2140 pmap_qremove(sva, size >> PAGE_SHIFT); 2141 kva_free(sva, size); 2142 } 2143 2144 /* 2145 * Zero fill initializer 2146 * 2147 * Arguments/Returns follow uma_init specifications 2148 */ 2149 static int 2150 zero_init(void *mem, int size, int flags) 2151 { 2152 bzero(mem, size); 2153 return (0); 2154 } 2155 2156 #ifdef INVARIANTS 2157 static struct noslabbits * 2158 slab_dbg_bits(uma_slab_t slab, uma_keg_t keg) 2159 { 2160 2161 return ((void *)((char *)&slab->us_free + BITSET_SIZE(keg->uk_ipers))); 2162 } 2163 #endif 2164 2165 /* 2166 * Actual size of embedded struct slab (!OFFPAGE). 2167 */ 2168 static size_t 2169 slab_sizeof(int nitems) 2170 { 2171 size_t s; 2172 2173 s = sizeof(struct uma_slab) + BITSET_SIZE(nitems) * SLAB_BITSETS; 2174 return (roundup(s, UMA_ALIGN_PTR + 1)); 2175 } 2176 2177 #define UMA_FIXPT_SHIFT 31 2178 #define UMA_FRAC_FIXPT(n, d) \ 2179 ((uint32_t)(((uint64_t)(n) << UMA_FIXPT_SHIFT) / (d))) 2180 #define UMA_FIXPT_PCT(f) \ 2181 ((u_int)(((uint64_t)100 * (f)) >> UMA_FIXPT_SHIFT)) 2182 #define UMA_PCT_FIXPT(pct) UMA_FRAC_FIXPT((pct), 100) 2183 #define UMA_MIN_EFF UMA_PCT_FIXPT(100 - UMA_MAX_WASTE) 2184 2185 /* 2186 * Compute the number of items that will fit in a slab. If hdr is true, the 2187 * item count may be limited to provide space in the slab for an inline slab 2188 * header. Otherwise, all slab space will be provided for item storage. 2189 */ 2190 static u_int 2191 slab_ipers_hdr(u_int size, u_int rsize, u_int slabsize, bool hdr) 2192 { 2193 u_int ipers; 2194 u_int padpi; 2195 2196 /* The padding between items is not needed after the last item. */ 2197 padpi = rsize - size; 2198 2199 if (hdr) { 2200 /* 2201 * Start with the maximum item count and remove items until 2202 * the slab header first alongside the allocatable memory. 2203 */ 2204 for (ipers = MIN(SLAB_MAX_SETSIZE, 2205 (slabsize + padpi - slab_sizeof(1)) / rsize); 2206 ipers > 0 && 2207 ipers * rsize - padpi + slab_sizeof(ipers) > slabsize; 2208 ipers--) 2209 continue; 2210 } else { 2211 ipers = MIN((slabsize + padpi) / rsize, SLAB_MAX_SETSIZE); 2212 } 2213 2214 return (ipers); 2215 } 2216 2217 struct keg_layout_result { 2218 u_int format; 2219 u_int slabsize; 2220 u_int ipers; 2221 u_int eff; 2222 }; 2223 2224 static void 2225 keg_layout_one(uma_keg_t keg, u_int rsize, u_int slabsize, u_int fmt, 2226 struct keg_layout_result *kl) 2227 { 2228 u_int total; 2229 2230 kl->format = fmt; 2231 kl->slabsize = slabsize; 2232 2233 /* Handle INTERNAL as inline with an extra page. */ 2234 if ((fmt & UMA_ZFLAG_INTERNAL) != 0) { 2235 kl->format &= ~UMA_ZFLAG_INTERNAL; 2236 kl->slabsize += PAGE_SIZE; 2237 } 2238 2239 kl->ipers = slab_ipers_hdr(keg->uk_size, rsize, kl->slabsize, 2240 (fmt & UMA_ZFLAG_OFFPAGE) == 0); 2241 2242 /* Account for memory used by an offpage slab header. */ 2243 total = kl->slabsize; 2244 if ((fmt & UMA_ZFLAG_OFFPAGE) != 0) 2245 total += slabzone(kl->ipers)->uz_keg->uk_rsize; 2246 2247 kl->eff = UMA_FRAC_FIXPT(kl->ipers * rsize, total); 2248 } 2249 2250 /* 2251 * Determine the format of a uma keg. This determines where the slab header 2252 * will be placed (inline or offpage) and calculates ipers, rsize, and ppera. 2253 * 2254 * Arguments 2255 * keg The zone we should initialize 2256 * 2257 * Returns 2258 * Nothing 2259 */ 2260 static void 2261 keg_layout(uma_keg_t keg) 2262 { 2263 struct keg_layout_result kl = {}, kl_tmp; 2264 u_int fmts[2]; 2265 u_int alignsize; 2266 u_int nfmt; 2267 u_int pages; 2268 u_int rsize; 2269 u_int slabsize; 2270 u_int i, j; 2271 2272 KASSERT((keg->uk_flags & UMA_ZONE_PCPU) == 0 || 2273 (keg->uk_size <= UMA_PCPU_ALLOC_SIZE && 2274 (keg->uk_flags & UMA_ZONE_CACHESPREAD) == 0), 2275 ("%s: cannot configure for PCPU: keg=%s, size=%u, flags=0x%b", 2276 __func__, keg->uk_name, keg->uk_size, keg->uk_flags, 2277 PRINT_UMA_ZFLAGS)); 2278 KASSERT((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) == 0 || 2279 (keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0, 2280 ("%s: incompatible flags 0x%b", __func__, keg->uk_flags, 2281 PRINT_UMA_ZFLAGS)); 2282 2283 alignsize = keg->uk_align + 1; 2284 #ifdef KASAN 2285 /* 2286 * ASAN requires that each allocation be aligned to the shadow map 2287 * scale factor. 2288 */ 2289 if (alignsize < KASAN_SHADOW_SCALE) 2290 alignsize = KASAN_SHADOW_SCALE; 2291 #endif 2292 2293 /* 2294 * Calculate the size of each allocation (rsize) according to 2295 * alignment. If the requested size is smaller than we have 2296 * allocation bits for we round it up. 2297 */ 2298 rsize = MAX(keg->uk_size, UMA_SMALLEST_UNIT); 2299 rsize = roundup2(rsize, alignsize); 2300 2301 if ((keg->uk_flags & UMA_ZONE_CACHESPREAD) != 0) { 2302 /* 2303 * We want one item to start on every align boundary in a page. 2304 * To do this we will span pages. We will also extend the item 2305 * by the size of align if it is an even multiple of align. 2306 * Otherwise, it would fall on the same boundary every time. 2307 */ 2308 if ((rsize & alignsize) == 0) 2309 rsize += alignsize; 2310 slabsize = rsize * (PAGE_SIZE / alignsize); 2311 slabsize = MIN(slabsize, rsize * SLAB_MAX_SETSIZE); 2312 slabsize = MIN(slabsize, UMA_CACHESPREAD_MAX_SIZE); 2313 slabsize = round_page(slabsize); 2314 } else { 2315 /* 2316 * Start with a slab size of as many pages as it takes to 2317 * represent a single item. We will try to fit as many 2318 * additional items into the slab as possible. 2319 */ 2320 slabsize = round_page(keg->uk_size); 2321 } 2322 2323 /* Build a list of all of the available formats for this keg. */ 2324 nfmt = 0; 2325 2326 /* Evaluate an inline slab layout. */ 2327 if ((keg->uk_flags & (UMA_ZONE_NOTOUCH | UMA_ZONE_PCPU)) == 0) 2328 fmts[nfmt++] = 0; 2329 2330 /* TODO: vm_page-embedded slab. */ 2331 2332 /* 2333 * We can't do OFFPAGE if we're internal or if we've been 2334 * asked to not go to the VM for buckets. If we do this we 2335 * may end up going to the VM for slabs which we do not want 2336 * to do if we're UMA_ZONE_VM, which clearly forbids it. 2337 * In those cases, evaluate a pseudo-format called INTERNAL 2338 * which has an inline slab header and one extra page to 2339 * guarantee that it fits. 2340 * 2341 * Otherwise, see if using an OFFPAGE slab will improve our 2342 * efficiency. 2343 */ 2344 if ((keg->uk_flags & (UMA_ZFLAG_INTERNAL | UMA_ZONE_VM)) != 0) 2345 fmts[nfmt++] = UMA_ZFLAG_INTERNAL; 2346 else 2347 fmts[nfmt++] = UMA_ZFLAG_OFFPAGE; 2348 2349 /* 2350 * Choose a slab size and format which satisfy the minimum efficiency. 2351 * Prefer the smallest slab size that meets the constraints. 2352 * 2353 * Start with a minimum slab size, to accommodate CACHESPREAD. Then, 2354 * for small items (up to PAGE_SIZE), the iteration increment is one 2355 * page; and for large items, the increment is one item. 2356 */ 2357 i = (slabsize + rsize - keg->uk_size) / MAX(PAGE_SIZE, rsize); 2358 KASSERT(i >= 1, ("keg %s(%p) flags=0x%b slabsize=%u, rsize=%u, i=%u", 2359 keg->uk_name, keg, keg->uk_flags, PRINT_UMA_ZFLAGS, slabsize, 2360 rsize, i)); 2361 for ( ; ; i++) { 2362 slabsize = (rsize <= PAGE_SIZE) ? ptoa(i) : 2363 round_page(rsize * (i - 1) + keg->uk_size); 2364 2365 for (j = 0; j < nfmt; j++) { 2366 /* Only if we have no viable format yet. */ 2367 if ((fmts[j] & UMA_ZFLAG_INTERNAL) != 0 && 2368 kl.ipers > 0) 2369 continue; 2370 2371 keg_layout_one(keg, rsize, slabsize, fmts[j], &kl_tmp); 2372 if (kl_tmp.eff <= kl.eff) 2373 continue; 2374 2375 kl = kl_tmp; 2376 2377 CTR6(KTR_UMA, "keg %s layout: format %#x " 2378 "(ipers %u * rsize %u) / slabsize %#x = %u%% eff", 2379 keg->uk_name, kl.format, kl.ipers, rsize, 2380 kl.slabsize, UMA_FIXPT_PCT(kl.eff)); 2381 2382 /* Stop when we reach the minimum efficiency. */ 2383 if (kl.eff >= UMA_MIN_EFF) 2384 break; 2385 } 2386 2387 if (kl.eff >= UMA_MIN_EFF || !multipage_slabs || 2388 slabsize >= SLAB_MAX_SETSIZE * rsize || 2389 (keg->uk_flags & (UMA_ZONE_PCPU | UMA_ZONE_CONTIG)) != 0) 2390 break; 2391 } 2392 2393 pages = atop(kl.slabsize); 2394 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 2395 pages *= mp_maxid + 1; 2396 2397 keg->uk_rsize = rsize; 2398 keg->uk_ipers = kl.ipers; 2399 keg->uk_ppera = pages; 2400 keg->uk_flags |= kl.format; 2401 2402 /* 2403 * How do we find the slab header if it is offpage or if not all item 2404 * start addresses are in the same page? We could solve the latter 2405 * case with vaddr alignment, but we don't. 2406 */ 2407 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0 || 2408 (keg->uk_ipers - 1) * rsize >= PAGE_SIZE) { 2409 if ((keg->uk_flags & UMA_ZONE_NOTPAGE) != 0) 2410 keg->uk_flags |= UMA_ZFLAG_HASH; 2411 else 2412 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2413 } 2414 2415 CTR6(KTR_UMA, "%s: keg=%s, flags=%#x, rsize=%u, ipers=%u, ppera=%u", 2416 __func__, keg->uk_name, keg->uk_flags, rsize, keg->uk_ipers, 2417 pages); 2418 KASSERT(keg->uk_ipers > 0 && keg->uk_ipers <= SLAB_MAX_SETSIZE, 2419 ("%s: keg=%s, flags=0x%b, rsize=%u, ipers=%u, ppera=%u", __func__, 2420 keg->uk_name, keg->uk_flags, PRINT_UMA_ZFLAGS, rsize, 2421 keg->uk_ipers, pages)); 2422 } 2423 2424 /* 2425 * Keg header ctor. This initializes all fields, locks, etc. And inserts 2426 * the keg onto the global keg list. 2427 * 2428 * Arguments/Returns follow uma_ctor specifications 2429 * udata Actually uma_kctor_args 2430 */ 2431 static int 2432 keg_ctor(void *mem, int size, void *udata, int flags) 2433 { 2434 struct uma_kctor_args *arg = udata; 2435 uma_keg_t keg = mem; 2436 uma_zone_t zone; 2437 int i; 2438 2439 bzero(keg, size); 2440 keg->uk_size = arg->size; 2441 keg->uk_init = arg->uminit; 2442 keg->uk_fini = arg->fini; 2443 keg->uk_align = arg->align; 2444 keg->uk_reserve = 0; 2445 keg->uk_flags = arg->flags; 2446 2447 /* 2448 * We use a global round-robin policy by default. Zones with 2449 * UMA_ZONE_FIRSTTOUCH set will use first-touch instead, in which 2450 * case the iterator is never run. 2451 */ 2452 keg->uk_dr.dr_policy = DOMAINSET_RR(); 2453 keg->uk_dr.dr_iter = 0; 2454 2455 /* 2456 * The primary zone is passed to us at keg-creation time. 2457 */ 2458 zone = arg->zone; 2459 keg->uk_name = zone->uz_name; 2460 2461 if (arg->flags & UMA_ZONE_ZINIT) 2462 keg->uk_init = zero_init; 2463 2464 if (arg->flags & UMA_ZONE_MALLOC) 2465 keg->uk_flags |= UMA_ZFLAG_VTOSLAB; 2466 2467 #ifndef SMP 2468 keg->uk_flags &= ~UMA_ZONE_PCPU; 2469 #endif 2470 2471 keg_layout(keg); 2472 2473 /* 2474 * Use a first-touch NUMA policy for kegs that pmap_extract() will 2475 * work on. Use round-robin for everything else. 2476 * 2477 * Zones may override the default by specifying either. 2478 */ 2479 #ifdef NUMA 2480 if ((keg->uk_flags & 2481 (UMA_ZONE_ROUNDROBIN | UMA_ZFLAG_CACHE | UMA_ZONE_NOTPAGE)) == 0) 2482 keg->uk_flags |= UMA_ZONE_FIRSTTOUCH; 2483 else if ((keg->uk_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2484 keg->uk_flags |= UMA_ZONE_ROUNDROBIN; 2485 #endif 2486 2487 /* 2488 * If we haven't booted yet we need allocations to go through the 2489 * startup cache until the vm is ready. 2490 */ 2491 #ifdef UMA_MD_SMALL_ALLOC 2492 if (keg->uk_ppera == 1) 2493 keg->uk_allocf = uma_small_alloc; 2494 else 2495 #endif 2496 if (booted < BOOT_KVA) 2497 keg->uk_allocf = startup_alloc; 2498 else if (keg->uk_flags & UMA_ZONE_PCPU) 2499 keg->uk_allocf = pcpu_page_alloc; 2500 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && keg->uk_ppera > 1) 2501 keg->uk_allocf = contig_alloc; 2502 else 2503 keg->uk_allocf = page_alloc; 2504 #ifdef UMA_MD_SMALL_ALLOC 2505 if (keg->uk_ppera == 1) 2506 keg->uk_freef = uma_small_free; 2507 else 2508 #endif 2509 if (keg->uk_flags & UMA_ZONE_PCPU) 2510 keg->uk_freef = pcpu_page_free; 2511 else 2512 keg->uk_freef = page_free; 2513 2514 /* 2515 * Initialize keg's locks. 2516 */ 2517 for (i = 0; i < vm_ndomains; i++) 2518 KEG_LOCK_INIT(keg, i, (arg->flags & UMA_ZONE_MTXCLASS)); 2519 2520 /* 2521 * If we're putting the slab header in the actual page we need to 2522 * figure out where in each page it goes. See slab_sizeof 2523 * definition. 2524 */ 2525 if (!(keg->uk_flags & UMA_ZFLAG_OFFPAGE)) { 2526 size_t shsize; 2527 2528 shsize = slab_sizeof(keg->uk_ipers); 2529 keg->uk_pgoff = (PAGE_SIZE * keg->uk_ppera) - shsize; 2530 /* 2531 * The only way the following is possible is if with our 2532 * UMA_ALIGN_PTR adjustments we are now bigger than 2533 * UMA_SLAB_SIZE. I haven't checked whether this is 2534 * mathematically possible for all cases, so we make 2535 * sure here anyway. 2536 */ 2537 KASSERT(keg->uk_pgoff + shsize <= PAGE_SIZE * keg->uk_ppera, 2538 ("zone %s ipers %d rsize %d size %d slab won't fit", 2539 zone->uz_name, keg->uk_ipers, keg->uk_rsize, keg->uk_size)); 2540 } 2541 2542 if (keg->uk_flags & UMA_ZFLAG_HASH) 2543 hash_alloc(&keg->uk_hash, 0); 2544 2545 CTR3(KTR_UMA, "keg_ctor %p zone %s(%p)", keg, zone->uz_name, zone); 2546 2547 LIST_INSERT_HEAD(&keg->uk_zones, zone, uz_link); 2548 2549 rw_wlock(&uma_rwlock); 2550 LIST_INSERT_HEAD(&uma_kegs, keg, uk_link); 2551 rw_wunlock(&uma_rwlock); 2552 return (0); 2553 } 2554 2555 static void 2556 zone_kva_available(uma_zone_t zone, void *unused) 2557 { 2558 uma_keg_t keg; 2559 2560 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 2561 return; 2562 KEG_GET(zone, keg); 2563 2564 if (keg->uk_allocf == startup_alloc) { 2565 /* Switch to the real allocator. */ 2566 if (keg->uk_flags & UMA_ZONE_PCPU) 2567 keg->uk_allocf = pcpu_page_alloc; 2568 else if ((keg->uk_flags & UMA_ZONE_CONTIG) != 0 && 2569 keg->uk_ppera > 1) 2570 keg->uk_allocf = contig_alloc; 2571 else 2572 keg->uk_allocf = page_alloc; 2573 } 2574 } 2575 2576 static void 2577 zone_alloc_counters(uma_zone_t zone, void *unused) 2578 { 2579 2580 zone->uz_allocs = counter_u64_alloc(M_WAITOK); 2581 zone->uz_frees = counter_u64_alloc(M_WAITOK); 2582 zone->uz_fails = counter_u64_alloc(M_WAITOK); 2583 zone->uz_xdomain = counter_u64_alloc(M_WAITOK); 2584 } 2585 2586 static void 2587 zone_alloc_sysctl(uma_zone_t zone, void *unused) 2588 { 2589 uma_zone_domain_t zdom; 2590 uma_domain_t dom; 2591 uma_keg_t keg; 2592 struct sysctl_oid *oid, *domainoid; 2593 int domains, i, cnt; 2594 static const char *nokeg = "cache zone"; 2595 char *c; 2596 2597 /* 2598 * Make a sysctl safe copy of the zone name by removing 2599 * any special characters and handling dups by appending 2600 * an index. 2601 */ 2602 if (zone->uz_namecnt != 0) { 2603 /* Count the number of decimal digits and '_' separator. */ 2604 for (i = 1, cnt = zone->uz_namecnt; cnt != 0; i++) 2605 cnt /= 10; 2606 zone->uz_ctlname = malloc(strlen(zone->uz_name) + i + 1, 2607 M_UMA, M_WAITOK); 2608 sprintf(zone->uz_ctlname, "%s_%d", zone->uz_name, 2609 zone->uz_namecnt); 2610 } else 2611 zone->uz_ctlname = strdup(zone->uz_name, M_UMA); 2612 for (c = zone->uz_ctlname; *c != '\0'; c++) 2613 if (strchr("./\\ -", *c) != NULL) 2614 *c = '_'; 2615 2616 /* 2617 * Basic parameters at the root. 2618 */ 2619 zone->uz_oid = SYSCTL_ADD_NODE(NULL, SYSCTL_STATIC_CHILDREN(_vm_uma), 2620 OID_AUTO, zone->uz_ctlname, CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2621 oid = zone->uz_oid; 2622 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2623 "size", CTLFLAG_RD, &zone->uz_size, 0, "Allocation size"); 2624 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2625 "flags", CTLFLAG_RD | CTLTYPE_STRING | CTLFLAG_MPSAFE, 2626 zone, 0, sysctl_handle_uma_zone_flags, "A", 2627 "Allocator configuration flags"); 2628 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2629 "bucket_size", CTLFLAG_RD, &zone->uz_bucket_size, 0, 2630 "Desired per-cpu cache size"); 2631 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2632 "bucket_size_max", CTLFLAG_RD, &zone->uz_bucket_size_max, 0, 2633 "Maximum allowed per-cpu cache size"); 2634 2635 /* 2636 * keg if present. 2637 */ 2638 if ((zone->uz_flags & UMA_ZFLAG_HASH) == 0) 2639 domains = vm_ndomains; 2640 else 2641 domains = 1; 2642 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2643 "keg", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2644 keg = zone->uz_keg; 2645 if ((zone->uz_flags & UMA_ZFLAG_CACHE) == 0) { 2646 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2647 "name", CTLFLAG_RD, keg->uk_name, "Keg name"); 2648 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2649 "rsize", CTLFLAG_RD, &keg->uk_rsize, 0, 2650 "Real object size with alignment"); 2651 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2652 "ppera", CTLFLAG_RD, &keg->uk_ppera, 0, 2653 "pages per-slab allocation"); 2654 SYSCTL_ADD_U16(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2655 "ipers", CTLFLAG_RD, &keg->uk_ipers, 0, 2656 "items available per-slab"); 2657 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2658 "align", CTLFLAG_RD, &keg->uk_align, 0, 2659 "item alignment mask"); 2660 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2661 "reserve", CTLFLAG_RD, &keg->uk_reserve, 0, 2662 "number of reserved items"); 2663 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2664 "efficiency", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2665 keg, 0, sysctl_handle_uma_slab_efficiency, "I", 2666 "Slab utilization (100 - internal fragmentation %)"); 2667 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(oid), 2668 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2669 for (i = 0; i < domains; i++) { 2670 dom = &keg->uk_domain[i]; 2671 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2672 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2673 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2674 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2675 "pages", CTLFLAG_RD, &dom->ud_pages, 0, 2676 "Total pages currently allocated from VM"); 2677 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2678 "free_items", CTLFLAG_RD, &dom->ud_free_items, 0, 2679 "Items free in the slab layer"); 2680 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2681 "free_slabs", CTLFLAG_RD, &dom->ud_free_slabs, 0, 2682 "Unused slabs"); 2683 } 2684 } else 2685 SYSCTL_ADD_CONST_STRING(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2686 "name", CTLFLAG_RD, nokeg, "Keg name"); 2687 2688 /* 2689 * Information about zone limits. 2690 */ 2691 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2692 "limit", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2693 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2694 "items", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2695 zone, 0, sysctl_handle_uma_zone_items, "QU", 2696 "Current number of allocated items if limit is set"); 2697 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2698 "max_items", CTLFLAG_RD, &zone->uz_max_items, 0, 2699 "Maximum number of allocated and cached items"); 2700 SYSCTL_ADD_U32(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2701 "sleepers", CTLFLAG_RD, &zone->uz_sleepers, 0, 2702 "Number of threads sleeping at limit"); 2703 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2704 "sleeps", CTLFLAG_RD, &zone->uz_sleeps, 0, 2705 "Total zone limit sleeps"); 2706 SYSCTL_ADD_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2707 "bucket_max", CTLFLAG_RD, &zone->uz_bucket_max, 0, 2708 "Maximum number of items in each domain's bucket cache"); 2709 2710 /* 2711 * Per-domain zone information. 2712 */ 2713 domainoid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), 2714 OID_AUTO, "domain", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2715 for (i = 0; i < domains; i++) { 2716 zdom = ZDOM_GET(zone, i); 2717 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(domainoid), 2718 OID_AUTO, VM_DOMAIN(i)->vmd_name, 2719 CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2720 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2721 "nitems", CTLFLAG_RD, &zdom->uzd_nitems, 2722 "number of items in this domain"); 2723 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2724 "imax", CTLFLAG_RD, &zdom->uzd_imax, 2725 "maximum item count in this period"); 2726 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2727 "imin", CTLFLAG_RD, &zdom->uzd_imin, 2728 "minimum item count in this period"); 2729 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2730 "bimin", CTLFLAG_RD, &zdom->uzd_bimin, 2731 "Minimum item count in this batch"); 2732 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2733 "wss", CTLFLAG_RD, &zdom->uzd_wss, 2734 "Working set size"); 2735 SYSCTL_ADD_LONG(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2736 "limin", CTLFLAG_RD, &zdom->uzd_limin, 2737 "Long time minimum item count"); 2738 SYSCTL_ADD_INT(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2739 "timin", CTLFLAG_RD, &zdom->uzd_timin, 0, 2740 "Time since zero long time minimum item count"); 2741 } 2742 2743 /* 2744 * General statistics. 2745 */ 2746 oid = SYSCTL_ADD_NODE(NULL, SYSCTL_CHILDREN(zone->uz_oid), OID_AUTO, 2747 "stats", CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, ""); 2748 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2749 "current", CTLFLAG_RD | CTLTYPE_INT | CTLFLAG_MPSAFE, 2750 zone, 1, sysctl_handle_uma_zone_cur, "I", 2751 "Current number of allocated items"); 2752 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2753 "allocs", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2754 zone, 0, sysctl_handle_uma_zone_allocs, "QU", 2755 "Total allocation calls"); 2756 SYSCTL_ADD_PROC(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2757 "frees", CTLFLAG_RD | CTLTYPE_U64 | CTLFLAG_MPSAFE, 2758 zone, 0, sysctl_handle_uma_zone_frees, "QU", 2759 "Total free calls"); 2760 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2761 "fails", CTLFLAG_RD, &zone->uz_fails, 2762 "Number of allocation failures"); 2763 SYSCTL_ADD_COUNTER_U64(NULL, SYSCTL_CHILDREN(oid), OID_AUTO, 2764 "xdomain", CTLFLAG_RD, &zone->uz_xdomain, 2765 "Free calls from the wrong domain"); 2766 } 2767 2768 struct uma_zone_count { 2769 const char *name; 2770 int count; 2771 }; 2772 2773 static void 2774 zone_count(uma_zone_t zone, void *arg) 2775 { 2776 struct uma_zone_count *cnt; 2777 2778 cnt = arg; 2779 /* 2780 * Some zones are rapidly created with identical names and 2781 * destroyed out of order. This can lead to gaps in the count. 2782 * Use one greater than the maximum observed for this name. 2783 */ 2784 if (strcmp(zone->uz_name, cnt->name) == 0) 2785 cnt->count = MAX(cnt->count, 2786 zone->uz_namecnt + 1); 2787 } 2788 2789 static void 2790 zone_update_caches(uma_zone_t zone) 2791 { 2792 int i; 2793 2794 for (i = 0; i <= mp_maxid; i++) { 2795 cache_set_uz_size(&zone->uz_cpu[i], zone->uz_size); 2796 cache_set_uz_flags(&zone->uz_cpu[i], zone->uz_flags); 2797 } 2798 } 2799 2800 /* 2801 * Zone header ctor. This initializes all fields, locks, etc. 2802 * 2803 * Arguments/Returns follow uma_ctor specifications 2804 * udata Actually uma_zctor_args 2805 */ 2806 static int 2807 zone_ctor(void *mem, int size, void *udata, int flags) 2808 { 2809 struct uma_zone_count cnt; 2810 struct uma_zctor_args *arg = udata; 2811 uma_zone_domain_t zdom; 2812 uma_zone_t zone = mem; 2813 uma_zone_t z; 2814 uma_keg_t keg; 2815 int i; 2816 2817 bzero(zone, size); 2818 zone->uz_name = arg->name; 2819 zone->uz_ctor = arg->ctor; 2820 zone->uz_dtor = arg->dtor; 2821 zone->uz_init = NULL; 2822 zone->uz_fini = NULL; 2823 zone->uz_sleeps = 0; 2824 zone->uz_bucket_size = 0; 2825 zone->uz_bucket_size_min = 0; 2826 zone->uz_bucket_size_max = BUCKET_MAX; 2827 zone->uz_flags = (arg->flags & UMA_ZONE_SMR); 2828 zone->uz_warning = NULL; 2829 /* The domain structures follow the cpu structures. */ 2830 zone->uz_bucket_max = ULONG_MAX; 2831 timevalclear(&zone->uz_ratecheck); 2832 2833 /* Count the number of duplicate names. */ 2834 cnt.name = arg->name; 2835 cnt.count = 0; 2836 zone_foreach(zone_count, &cnt); 2837 zone->uz_namecnt = cnt.count; 2838 ZONE_CROSS_LOCK_INIT(zone); 2839 2840 for (i = 0; i < vm_ndomains; i++) { 2841 zdom = ZDOM_GET(zone, i); 2842 ZDOM_LOCK_INIT(zone, zdom, (arg->flags & UMA_ZONE_MTXCLASS)); 2843 STAILQ_INIT(&zdom->uzd_buckets); 2844 } 2845 2846 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 2847 if (arg->uminit == trash_init && arg->fini == trash_fini) 2848 zone->uz_flags |= UMA_ZFLAG_TRASH | UMA_ZFLAG_CTORDTOR; 2849 #elif defined(KASAN) 2850 if ((arg->flags & (UMA_ZONE_NOFREE | UMA_ZFLAG_CACHE)) != 0) 2851 arg->flags |= UMA_ZONE_NOKASAN; 2852 #endif 2853 2854 /* 2855 * This is a pure cache zone, no kegs. 2856 */ 2857 if (arg->import) { 2858 KASSERT((arg->flags & UMA_ZFLAG_CACHE) != 0, 2859 ("zone_ctor: Import specified for non-cache zone.")); 2860 zone->uz_flags = arg->flags; 2861 zone->uz_size = arg->size; 2862 zone->uz_import = arg->import; 2863 zone->uz_release = arg->release; 2864 zone->uz_arg = arg->arg; 2865 #ifdef NUMA 2866 /* 2867 * Cache zones are round-robin unless a policy is 2868 * specified because they may have incompatible 2869 * constraints. 2870 */ 2871 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) == 0) 2872 zone->uz_flags |= UMA_ZONE_ROUNDROBIN; 2873 #endif 2874 rw_wlock(&uma_rwlock); 2875 LIST_INSERT_HEAD(&uma_cachezones, zone, uz_link); 2876 rw_wunlock(&uma_rwlock); 2877 goto out; 2878 } 2879 2880 /* 2881 * Use the regular zone/keg/slab allocator. 2882 */ 2883 zone->uz_import = zone_import; 2884 zone->uz_release = zone_release; 2885 zone->uz_arg = zone; 2886 keg = arg->keg; 2887 2888 if (arg->flags & UMA_ZONE_SECONDARY) { 2889 KASSERT((zone->uz_flags & UMA_ZONE_SECONDARY) == 0, 2890 ("Secondary zone requested UMA_ZFLAG_INTERNAL")); 2891 KASSERT(arg->keg != NULL, ("Secondary zone on zero'd keg")); 2892 zone->uz_init = arg->uminit; 2893 zone->uz_fini = arg->fini; 2894 zone->uz_flags |= UMA_ZONE_SECONDARY; 2895 rw_wlock(&uma_rwlock); 2896 ZONE_LOCK(zone); 2897 LIST_FOREACH(z, &keg->uk_zones, uz_link) { 2898 if (LIST_NEXT(z, uz_link) == NULL) { 2899 LIST_INSERT_AFTER(z, zone, uz_link); 2900 break; 2901 } 2902 } 2903 ZONE_UNLOCK(zone); 2904 rw_wunlock(&uma_rwlock); 2905 } else if (keg == NULL) { 2906 if ((keg = uma_kcreate(zone, arg->size, arg->uminit, arg->fini, 2907 arg->align, arg->flags)) == NULL) 2908 return (ENOMEM); 2909 } else { 2910 struct uma_kctor_args karg; 2911 int error; 2912 2913 /* We should only be here from uma_startup() */ 2914 karg.size = arg->size; 2915 karg.uminit = arg->uminit; 2916 karg.fini = arg->fini; 2917 karg.align = arg->align; 2918 karg.flags = (arg->flags & ~UMA_ZONE_SMR); 2919 karg.zone = zone; 2920 error = keg_ctor(arg->keg, sizeof(struct uma_keg), &karg, 2921 flags); 2922 if (error) 2923 return (error); 2924 } 2925 2926 /* Inherit properties from the keg. */ 2927 zone->uz_keg = keg; 2928 zone->uz_size = keg->uk_size; 2929 zone->uz_flags |= (keg->uk_flags & 2930 (UMA_ZONE_INHERIT | UMA_ZFLAG_INHERIT)); 2931 2932 out: 2933 if (booted >= BOOT_PCPU) { 2934 zone_alloc_counters(zone, NULL); 2935 if (booted >= BOOT_RUNNING) 2936 zone_alloc_sysctl(zone, NULL); 2937 } else { 2938 zone->uz_allocs = EARLY_COUNTER; 2939 zone->uz_frees = EARLY_COUNTER; 2940 zone->uz_fails = EARLY_COUNTER; 2941 } 2942 2943 /* Caller requests a private SMR context. */ 2944 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 2945 zone->uz_smr = smr_create(zone->uz_name, 0, 0); 2946 2947 KASSERT((arg->flags & (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET)) != 2948 (UMA_ZONE_MAXBUCKET | UMA_ZONE_NOBUCKET), 2949 ("Invalid zone flag combination")); 2950 if (arg->flags & UMA_ZFLAG_INTERNAL) 2951 zone->uz_bucket_size_max = zone->uz_bucket_size = 0; 2952 if ((arg->flags & UMA_ZONE_MAXBUCKET) != 0) 2953 zone->uz_bucket_size = BUCKET_MAX; 2954 else if ((arg->flags & UMA_ZONE_NOBUCKET) != 0) 2955 zone->uz_bucket_size = 0; 2956 else 2957 zone->uz_bucket_size = bucket_select(zone->uz_size); 2958 zone->uz_bucket_size_min = zone->uz_bucket_size; 2959 if (zone->uz_dtor != NULL || zone->uz_ctor != NULL) 2960 zone->uz_flags |= UMA_ZFLAG_CTORDTOR; 2961 zone_update_caches(zone); 2962 2963 return (0); 2964 } 2965 2966 /* 2967 * Keg header dtor. This frees all data, destroys locks, frees the hash 2968 * table and removes the keg from the global list. 2969 * 2970 * Arguments/Returns follow uma_dtor specifications 2971 * udata unused 2972 */ 2973 static void 2974 keg_dtor(void *arg, int size, void *udata) 2975 { 2976 uma_keg_t keg; 2977 uint32_t free, pages; 2978 int i; 2979 2980 keg = (uma_keg_t)arg; 2981 free = pages = 0; 2982 for (i = 0; i < vm_ndomains; i++) { 2983 free += keg->uk_domain[i].ud_free_items; 2984 pages += keg->uk_domain[i].ud_pages; 2985 KEG_LOCK_FINI(keg, i); 2986 } 2987 if (pages != 0) 2988 printf("Freed UMA keg (%s) was not empty (%u items). " 2989 " Lost %u pages of memory.\n", 2990 keg->uk_name ? keg->uk_name : "", 2991 pages / keg->uk_ppera * keg->uk_ipers - free, pages); 2992 2993 hash_free(&keg->uk_hash); 2994 } 2995 2996 /* 2997 * Zone header dtor. 2998 * 2999 * Arguments/Returns follow uma_dtor specifications 3000 * udata unused 3001 */ 3002 static void 3003 zone_dtor(void *arg, int size, void *udata) 3004 { 3005 uma_zone_t zone; 3006 uma_keg_t keg; 3007 int i; 3008 3009 zone = (uma_zone_t)arg; 3010 3011 sysctl_remove_oid(zone->uz_oid, 1, 1); 3012 3013 if (!(zone->uz_flags & UMA_ZFLAG_INTERNAL)) 3014 cache_drain(zone); 3015 3016 rw_wlock(&uma_rwlock); 3017 LIST_REMOVE(zone, uz_link); 3018 rw_wunlock(&uma_rwlock); 3019 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3020 keg = zone->uz_keg; 3021 keg->uk_reserve = 0; 3022 } 3023 zone_reclaim(zone, UMA_ANYDOMAIN, M_WAITOK, true); 3024 3025 /* 3026 * We only destroy kegs from non secondary/non cache zones. 3027 */ 3028 if ((zone->uz_flags & (UMA_ZONE_SECONDARY | UMA_ZFLAG_CACHE)) == 0) { 3029 keg = zone->uz_keg; 3030 rw_wlock(&uma_rwlock); 3031 LIST_REMOVE(keg, uk_link); 3032 rw_wunlock(&uma_rwlock); 3033 zone_free_item(kegs, keg, NULL, SKIP_NONE); 3034 } 3035 counter_u64_free(zone->uz_allocs); 3036 counter_u64_free(zone->uz_frees); 3037 counter_u64_free(zone->uz_fails); 3038 counter_u64_free(zone->uz_xdomain); 3039 free(zone->uz_ctlname, M_UMA); 3040 for (i = 0; i < vm_ndomains; i++) 3041 ZDOM_LOCK_FINI(ZDOM_GET(zone, i)); 3042 ZONE_CROSS_LOCK_FINI(zone); 3043 } 3044 3045 static void 3046 zone_foreach_unlocked(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3047 { 3048 uma_keg_t keg; 3049 uma_zone_t zone; 3050 3051 LIST_FOREACH(keg, &uma_kegs, uk_link) { 3052 LIST_FOREACH(zone, &keg->uk_zones, uz_link) 3053 zfunc(zone, arg); 3054 } 3055 LIST_FOREACH(zone, &uma_cachezones, uz_link) 3056 zfunc(zone, arg); 3057 } 3058 3059 /* 3060 * Traverses every zone in the system and calls a callback 3061 * 3062 * Arguments: 3063 * zfunc A pointer to a function which accepts a zone 3064 * as an argument. 3065 * 3066 * Returns: 3067 * Nothing 3068 */ 3069 static void 3070 zone_foreach(void (*zfunc)(uma_zone_t, void *arg), void *arg) 3071 { 3072 3073 rw_rlock(&uma_rwlock); 3074 zone_foreach_unlocked(zfunc, arg); 3075 rw_runlock(&uma_rwlock); 3076 } 3077 3078 /* 3079 * Initialize the kernel memory allocator. This is done after pages can be 3080 * allocated but before general KVA is available. 3081 */ 3082 void 3083 uma_startup1(vm_offset_t virtual_avail) 3084 { 3085 struct uma_zctor_args args; 3086 size_t ksize, zsize, size; 3087 uma_keg_t primarykeg; 3088 uintptr_t m; 3089 int domain; 3090 uint8_t pflag; 3091 3092 bootstart = bootmem = virtual_avail; 3093 3094 rw_init(&uma_rwlock, "UMA lock"); 3095 sx_init(&uma_reclaim_lock, "umareclaim"); 3096 3097 ksize = sizeof(struct uma_keg) + 3098 (sizeof(struct uma_domain) * vm_ndomains); 3099 ksize = roundup(ksize, UMA_SUPER_ALIGN); 3100 zsize = sizeof(struct uma_zone) + 3101 (sizeof(struct uma_cache) * (mp_maxid + 1)) + 3102 (sizeof(struct uma_zone_domain) * vm_ndomains); 3103 zsize = roundup(zsize, UMA_SUPER_ALIGN); 3104 3105 /* Allocate the zone of zones, zone of kegs, and zone of zones keg. */ 3106 size = (zsize * 2) + ksize; 3107 for (domain = 0; domain < vm_ndomains; domain++) { 3108 m = (uintptr_t)startup_alloc(NULL, size, domain, &pflag, 3109 M_NOWAIT | M_ZERO); 3110 if (m != 0) 3111 break; 3112 } 3113 zones = (uma_zone_t)m; 3114 m += zsize; 3115 kegs = (uma_zone_t)m; 3116 m += zsize; 3117 primarykeg = (uma_keg_t)m; 3118 3119 /* "manually" create the initial zone */ 3120 memset(&args, 0, sizeof(args)); 3121 args.name = "UMA Kegs"; 3122 args.size = ksize; 3123 args.ctor = keg_ctor; 3124 args.dtor = keg_dtor; 3125 args.uminit = zero_init; 3126 args.fini = NULL; 3127 args.keg = primarykeg; 3128 args.align = UMA_SUPER_ALIGN - 1; 3129 args.flags = UMA_ZFLAG_INTERNAL; 3130 zone_ctor(kegs, zsize, &args, M_WAITOK); 3131 3132 args.name = "UMA Zones"; 3133 args.size = zsize; 3134 args.ctor = zone_ctor; 3135 args.dtor = zone_dtor; 3136 args.uminit = zero_init; 3137 args.fini = NULL; 3138 args.keg = NULL; 3139 args.align = UMA_SUPER_ALIGN - 1; 3140 args.flags = UMA_ZFLAG_INTERNAL; 3141 zone_ctor(zones, zsize, &args, M_WAITOK); 3142 3143 /* Now make zones for slab headers */ 3144 slabzones[0] = uma_zcreate("UMA Slabs 0", SLABZONE0_SIZE, 3145 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3146 slabzones[1] = uma_zcreate("UMA Slabs 1", SLABZONE1_SIZE, 3147 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3148 3149 hashzone = uma_zcreate("UMA Hash", 3150 sizeof(struct slabhead *) * UMA_HASH_SIZE_INIT, 3151 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZFLAG_INTERNAL); 3152 3153 bucket_init(); 3154 smr_init(); 3155 } 3156 3157 #ifndef UMA_MD_SMALL_ALLOC 3158 extern void vm_radix_reserve_kva(void); 3159 #endif 3160 3161 /* 3162 * Advertise the availability of normal kva allocations and switch to 3163 * the default back-end allocator. Marks the KVA we consumed on startup 3164 * as used in the map. 3165 */ 3166 void 3167 uma_startup2(void) 3168 { 3169 3170 if (bootstart != bootmem) { 3171 vm_map_lock(kernel_map); 3172 (void)vm_map_insert(kernel_map, NULL, 0, bootstart, bootmem, 3173 VM_PROT_RW, VM_PROT_RW, MAP_NOFAULT); 3174 vm_map_unlock(kernel_map); 3175 } 3176 3177 #ifndef UMA_MD_SMALL_ALLOC 3178 /* Set up radix zone to use noobj_alloc. */ 3179 vm_radix_reserve_kva(); 3180 #endif 3181 3182 booted = BOOT_KVA; 3183 zone_foreach_unlocked(zone_kva_available, NULL); 3184 bucket_enable(); 3185 } 3186 3187 /* 3188 * Allocate counters as early as possible so that boot-time allocations are 3189 * accounted more precisely. 3190 */ 3191 static void 3192 uma_startup_pcpu(void *arg __unused) 3193 { 3194 3195 zone_foreach_unlocked(zone_alloc_counters, NULL); 3196 booted = BOOT_PCPU; 3197 } 3198 SYSINIT(uma_startup_pcpu, SI_SUB_COUNTER, SI_ORDER_ANY, uma_startup_pcpu, NULL); 3199 3200 /* 3201 * Finish our initialization steps. 3202 */ 3203 static void 3204 uma_startup3(void *arg __unused) 3205 { 3206 3207 #ifdef INVARIANTS 3208 TUNABLE_INT_FETCH("vm.debug.divisor", &dbg_divisor); 3209 uma_dbg_cnt = counter_u64_alloc(M_WAITOK); 3210 uma_skip_cnt = counter_u64_alloc(M_WAITOK); 3211 #endif 3212 zone_foreach_unlocked(zone_alloc_sysctl, NULL); 3213 booted = BOOT_RUNNING; 3214 3215 EVENTHANDLER_REGISTER(shutdown_post_sync, uma_shutdown, NULL, 3216 EVENTHANDLER_PRI_FIRST); 3217 } 3218 SYSINIT(uma_startup3, SI_SUB_VM_CONF, SI_ORDER_SECOND, uma_startup3, NULL); 3219 3220 static void 3221 uma_startup4(void *arg __unused) 3222 { 3223 TIMEOUT_TASK_INIT(taskqueue_thread, &uma_timeout_task, 0, uma_timeout, 3224 NULL); 3225 taskqueue_enqueue_timeout(taskqueue_thread, &uma_timeout_task, 3226 UMA_TIMEOUT * hz); 3227 } 3228 SYSINIT(uma_startup4, SI_SUB_TASKQ, SI_ORDER_ANY, uma_startup4, NULL); 3229 3230 static void 3231 uma_shutdown(void) 3232 { 3233 3234 booted = BOOT_SHUTDOWN; 3235 } 3236 3237 static uma_keg_t 3238 uma_kcreate(uma_zone_t zone, size_t size, uma_init uminit, uma_fini fini, 3239 int align, uint32_t flags) 3240 { 3241 struct uma_kctor_args args; 3242 3243 args.size = size; 3244 args.uminit = uminit; 3245 args.fini = fini; 3246 args.align = align; 3247 args.flags = flags; 3248 args.zone = zone; 3249 return (zone_alloc_item(kegs, &args, UMA_ANYDOMAIN, M_WAITOK)); 3250 } 3251 3252 3253 static void 3254 check_align_mask(unsigned int mask) 3255 { 3256 3257 KASSERT(powerof2(mask + 1), 3258 ("UMA: %s: Not the mask of a power of 2 (%#x)", __func__, mask)); 3259 /* 3260 * Make sure the stored align mask doesn't have its highest bit set, 3261 * which would cause implementation-defined behavior when passing it as 3262 * the 'align' argument of uma_zcreate(). Such very large alignments do 3263 * not make sense anyway. 3264 */ 3265 KASSERT(mask <= INT_MAX, 3266 ("UMA: %s: Mask too big (%#x)", __func__, mask)); 3267 } 3268 3269 /* Public functions */ 3270 /* See uma.h */ 3271 void 3272 uma_set_cache_align_mask(unsigned int mask) 3273 { 3274 3275 check_align_mask(mask); 3276 uma_cache_align_mask = mask; 3277 } 3278 3279 /* Returns the alignment mask to use to request cache alignment. */ 3280 unsigned int 3281 uma_get_cache_align_mask(void) 3282 { 3283 return (uma_cache_align_mask); 3284 } 3285 3286 /* See uma.h */ 3287 uma_zone_t 3288 uma_zcreate(const char *name, size_t size, uma_ctor ctor, uma_dtor dtor, 3289 uma_init uminit, uma_fini fini, int align, uint32_t flags) 3290 3291 { 3292 struct uma_zctor_args args; 3293 uma_zone_t res; 3294 3295 check_align_mask(align); 3296 3297 /* This stuff is essential for the zone ctor */ 3298 memset(&args, 0, sizeof(args)); 3299 args.name = name; 3300 args.size = size; 3301 args.ctor = ctor; 3302 args.dtor = dtor; 3303 args.uminit = uminit; 3304 args.fini = fini; 3305 #if defined(INVARIANTS) && !defined(KASAN) && !defined(KMSAN) 3306 /* 3307 * Inject procedures which check for memory use after free if we are 3308 * allowed to scramble the memory while it is not allocated. This 3309 * requires that: UMA is actually able to access the memory, no init 3310 * or fini procedures, no dependency on the initial value of the 3311 * memory, and no (legitimate) use of the memory after free. Note, 3312 * the ctor and dtor do not need to be empty. 3313 */ 3314 if ((!(flags & (UMA_ZONE_ZINIT | UMA_ZONE_NOTOUCH | 3315 UMA_ZONE_NOFREE))) && uminit == NULL && fini == NULL) { 3316 args.uminit = trash_init; 3317 args.fini = trash_fini; 3318 } 3319 #endif 3320 args.align = align; 3321 args.flags = flags; 3322 args.keg = NULL; 3323 3324 sx_xlock(&uma_reclaim_lock); 3325 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3326 sx_xunlock(&uma_reclaim_lock); 3327 3328 return (res); 3329 } 3330 3331 /* See uma.h */ 3332 uma_zone_t 3333 uma_zsecond_create(const char *name, uma_ctor ctor, uma_dtor dtor, 3334 uma_init zinit, uma_fini zfini, uma_zone_t primary) 3335 { 3336 struct uma_zctor_args args; 3337 uma_keg_t keg; 3338 uma_zone_t res; 3339 3340 keg = primary->uz_keg; 3341 memset(&args, 0, sizeof(args)); 3342 args.name = name; 3343 args.size = keg->uk_size; 3344 args.ctor = ctor; 3345 args.dtor = dtor; 3346 args.uminit = zinit; 3347 args.fini = zfini; 3348 args.align = keg->uk_align; 3349 args.flags = keg->uk_flags | UMA_ZONE_SECONDARY; 3350 args.keg = keg; 3351 3352 sx_xlock(&uma_reclaim_lock); 3353 res = zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK); 3354 sx_xunlock(&uma_reclaim_lock); 3355 3356 return (res); 3357 } 3358 3359 /* See uma.h */ 3360 uma_zone_t 3361 uma_zcache_create(const char *name, int size, uma_ctor ctor, uma_dtor dtor, 3362 uma_init zinit, uma_fini zfini, uma_import zimport, uma_release zrelease, 3363 void *arg, int flags) 3364 { 3365 struct uma_zctor_args args; 3366 3367 memset(&args, 0, sizeof(args)); 3368 args.name = name; 3369 args.size = size; 3370 args.ctor = ctor; 3371 args.dtor = dtor; 3372 args.uminit = zinit; 3373 args.fini = zfini; 3374 args.import = zimport; 3375 args.release = zrelease; 3376 args.arg = arg; 3377 args.align = 0; 3378 args.flags = flags | UMA_ZFLAG_CACHE; 3379 3380 return (zone_alloc_item(zones, &args, UMA_ANYDOMAIN, M_WAITOK)); 3381 } 3382 3383 /* See uma.h */ 3384 void 3385 uma_zdestroy(uma_zone_t zone) 3386 { 3387 3388 /* 3389 * Large slabs are expensive to reclaim, so don't bother doing 3390 * unnecessary work if we're shutting down. 3391 */ 3392 if (booted == BOOT_SHUTDOWN && 3393 zone->uz_fini == NULL && zone->uz_release == zone_release) 3394 return; 3395 sx_xlock(&uma_reclaim_lock); 3396 zone_free_item(zones, zone, NULL, SKIP_NONE); 3397 sx_xunlock(&uma_reclaim_lock); 3398 } 3399 3400 void 3401 uma_zwait(uma_zone_t zone) 3402 { 3403 3404 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 3405 uma_zfree_smr(zone, uma_zalloc_smr(zone, M_WAITOK)); 3406 else if ((zone->uz_flags & UMA_ZONE_PCPU) != 0) 3407 uma_zfree_pcpu(zone, uma_zalloc_pcpu(zone, M_WAITOK)); 3408 else 3409 uma_zfree(zone, uma_zalloc(zone, M_WAITOK)); 3410 } 3411 3412 void * 3413 uma_zalloc_pcpu_arg(uma_zone_t zone, void *udata, int flags) 3414 { 3415 void *item, *pcpu_item; 3416 #ifdef SMP 3417 int i; 3418 3419 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3420 #endif 3421 item = uma_zalloc_arg(zone, udata, flags & ~M_ZERO); 3422 if (item == NULL) 3423 return (NULL); 3424 pcpu_item = zpcpu_base_to_offset(item); 3425 if (flags & M_ZERO) { 3426 #ifdef SMP 3427 for (i = 0; i <= mp_maxid; i++) 3428 bzero(zpcpu_get_cpu(pcpu_item, i), zone->uz_size); 3429 #else 3430 bzero(item, zone->uz_size); 3431 #endif 3432 } 3433 return (pcpu_item); 3434 } 3435 3436 /* 3437 * A stub while both regular and pcpu cases are identical. 3438 */ 3439 void 3440 uma_zfree_pcpu_arg(uma_zone_t zone, void *pcpu_item, void *udata) 3441 { 3442 void *item; 3443 3444 #ifdef SMP 3445 MPASS(zone->uz_flags & UMA_ZONE_PCPU); 3446 #endif 3447 3448 /* uma_zfree_pcu_*(..., NULL) does nothing, to match free(9). */ 3449 if (pcpu_item == NULL) 3450 return; 3451 3452 item = zpcpu_offset_to_base(pcpu_item); 3453 uma_zfree_arg(zone, item, udata); 3454 } 3455 3456 static inline void * 3457 item_ctor(uma_zone_t zone, int uz_flags, int size, void *udata, int flags, 3458 void *item) 3459 { 3460 #ifdef INVARIANTS 3461 bool skipdbg; 3462 #endif 3463 3464 kasan_mark_item_valid(zone, item); 3465 kmsan_mark_item_uninitialized(zone, item); 3466 3467 #ifdef INVARIANTS 3468 skipdbg = uma_dbg_zskip(zone, item); 3469 if (!skipdbg && (uz_flags & UMA_ZFLAG_TRASH) != 0 && 3470 zone->uz_ctor != trash_ctor) 3471 trash_ctor(item, size, zone, flags); 3472 #endif 3473 3474 /* Check flags before loading ctor pointer. */ 3475 if (__predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0) && 3476 __predict_false(zone->uz_ctor != NULL) && 3477 zone->uz_ctor(item, size, udata, flags) != 0) { 3478 counter_u64_add(zone->uz_fails, 1); 3479 zone_free_item(zone, item, udata, SKIP_DTOR | SKIP_CNT); 3480 return (NULL); 3481 } 3482 #ifdef INVARIANTS 3483 if (!skipdbg) 3484 uma_dbg_alloc(zone, NULL, item); 3485 #endif 3486 if (__predict_false(flags & M_ZERO)) 3487 return (memset(item, 0, size)); 3488 3489 return (item); 3490 } 3491 3492 static inline void 3493 item_dtor(uma_zone_t zone, void *item, int size, void *udata, 3494 enum zfreeskip skip) 3495 { 3496 #ifdef INVARIANTS 3497 bool skipdbg; 3498 3499 skipdbg = uma_dbg_zskip(zone, item); 3500 if (skip == SKIP_NONE && !skipdbg) { 3501 if ((zone->uz_flags & UMA_ZONE_MALLOC) != 0) 3502 uma_dbg_free(zone, udata, item); 3503 else 3504 uma_dbg_free(zone, NULL, item); 3505 } 3506 #endif 3507 if (__predict_true(skip < SKIP_DTOR)) { 3508 if (zone->uz_dtor != NULL) 3509 zone->uz_dtor(item, size, udata); 3510 #ifdef INVARIANTS 3511 if (!skipdbg && (zone->uz_flags & UMA_ZFLAG_TRASH) != 0 && 3512 zone->uz_dtor != trash_dtor) 3513 trash_dtor(item, size, zone); 3514 #endif 3515 } 3516 kasan_mark_item_invalid(zone, item); 3517 } 3518 3519 #ifdef NUMA 3520 static int 3521 item_domain(void *item) 3522 { 3523 int domain; 3524 3525 domain = vm_phys_domain(vtophys(item)); 3526 KASSERT(domain >= 0 && domain < vm_ndomains, 3527 ("%s: unknown domain for item %p", __func__, item)); 3528 return (domain); 3529 } 3530 #endif 3531 3532 #if defined(INVARIANTS) || defined(DEBUG_MEMGUARD) || defined(WITNESS) 3533 #if defined(INVARIANTS) && (defined(DDB) || defined(STACK)) 3534 #include <sys/stack.h> 3535 #endif 3536 #define UMA_ZALLOC_DEBUG 3537 static int 3538 uma_zalloc_debug(uma_zone_t zone, void **itemp, void *udata, int flags) 3539 { 3540 int error; 3541 3542 error = 0; 3543 #ifdef WITNESS 3544 if (flags & M_WAITOK) { 3545 WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, 3546 "uma_zalloc_debug: zone \"%s\"", zone->uz_name); 3547 } 3548 #endif 3549 3550 #ifdef INVARIANTS 3551 KASSERT((flags & M_EXEC) == 0, 3552 ("uma_zalloc_debug: called with M_EXEC")); 3553 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3554 ("uma_zalloc_debug: called within spinlock or critical section")); 3555 KASSERT((zone->uz_flags & UMA_ZONE_PCPU) == 0 || (flags & M_ZERO) == 0, 3556 ("uma_zalloc_debug: allocating from a pcpu zone with M_ZERO")); 3557 3558 _Static_assert(M_NOWAIT != 0 && M_WAITOK != 0, 3559 "M_NOWAIT and M_WAITOK must be non-zero for this assertion:"); 3560 #if 0 3561 /* 3562 * Give the #elif clause time to find problems, then remove it 3563 * and enable this. (Remove <sys/stack.h> above, too.) 3564 */ 3565 KASSERT((flags & (M_NOWAIT|M_WAITOK)) == M_NOWAIT || 3566 (flags & (M_NOWAIT|M_WAITOK)) == M_WAITOK, 3567 ("uma_zalloc_debug: must pass one of M_NOWAIT or M_WAITOK")); 3568 #elif defined(DDB) || defined(STACK) 3569 if (__predict_false((flags & (M_NOWAIT|M_WAITOK)) != M_NOWAIT && 3570 (flags & (M_NOWAIT|M_WAITOK)) != M_WAITOK)) { 3571 static int stack_count; 3572 struct stack st; 3573 3574 if (stack_count < 10) { 3575 ++stack_count; 3576 printf("uma_zalloc* called with bad WAIT flags:\n"); 3577 stack_save(&st); 3578 stack_print(&st); 3579 } 3580 } 3581 #endif 3582 #endif 3583 3584 #ifdef DEBUG_MEMGUARD 3585 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 && 3586 memguard_cmp_zone(zone)) { 3587 void *item; 3588 item = memguard_alloc(zone->uz_size, flags); 3589 if (item != NULL) { 3590 error = EJUSTRETURN; 3591 if (zone->uz_init != NULL && 3592 zone->uz_init(item, zone->uz_size, flags) != 0) { 3593 *itemp = NULL; 3594 return (error); 3595 } 3596 if (zone->uz_ctor != NULL && 3597 zone->uz_ctor(item, zone->uz_size, udata, 3598 flags) != 0) { 3599 counter_u64_add(zone->uz_fails, 1); 3600 if (zone->uz_fini != NULL) 3601 zone->uz_fini(item, zone->uz_size); 3602 *itemp = NULL; 3603 return (error); 3604 } 3605 *itemp = item; 3606 return (error); 3607 } 3608 /* This is unfortunate but should not be fatal. */ 3609 } 3610 #endif 3611 return (error); 3612 } 3613 3614 static int 3615 uma_zfree_debug(uma_zone_t zone, void *item, void *udata) 3616 { 3617 KASSERT(curthread->td_critnest == 0 || SCHEDULER_STOPPED(), 3618 ("uma_zfree_debug: called with spinlock or critical section held")); 3619 3620 #ifdef DEBUG_MEMGUARD 3621 if ((zone->uz_flags & (UMA_ZONE_SMR | UMA_ZFLAG_CACHE)) == 0 && 3622 is_memguard_addr(item)) { 3623 if (zone->uz_dtor != NULL) 3624 zone->uz_dtor(item, zone->uz_size, udata); 3625 if (zone->uz_fini != NULL) 3626 zone->uz_fini(item, zone->uz_size); 3627 memguard_free(item); 3628 return (EJUSTRETURN); 3629 } 3630 #endif 3631 return (0); 3632 } 3633 #endif 3634 3635 static inline void * 3636 cache_alloc_item(uma_zone_t zone, uma_cache_t cache, uma_cache_bucket_t bucket, 3637 void *udata, int flags) 3638 { 3639 void *item; 3640 int size, uz_flags; 3641 3642 item = cache_bucket_pop(cache, bucket); 3643 size = cache_uz_size(cache); 3644 uz_flags = cache_uz_flags(cache); 3645 critical_exit(); 3646 return (item_ctor(zone, uz_flags, size, udata, flags, item)); 3647 } 3648 3649 static __noinline void * 3650 cache_alloc_retry(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3651 { 3652 uma_cache_bucket_t bucket; 3653 int domain; 3654 3655 while (cache_alloc(zone, cache, udata, flags)) { 3656 cache = &zone->uz_cpu[curcpu]; 3657 bucket = &cache->uc_allocbucket; 3658 if (__predict_false(bucket->ucb_cnt == 0)) 3659 continue; 3660 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3661 } 3662 critical_exit(); 3663 3664 /* 3665 * We can not get a bucket so try to return a single item. 3666 */ 3667 if (zone->uz_flags & UMA_ZONE_FIRSTTOUCH) 3668 domain = PCPU_GET(domain); 3669 else 3670 domain = UMA_ANYDOMAIN; 3671 return (zone_alloc_item(zone, udata, domain, flags)); 3672 } 3673 3674 /* See uma.h */ 3675 void * 3676 uma_zalloc_smr(uma_zone_t zone, int flags) 3677 { 3678 uma_cache_bucket_t bucket; 3679 uma_cache_t cache; 3680 3681 CTR3(KTR_UMA, "uma_zalloc_smr zone %s(%p) flags %d", zone->uz_name, 3682 zone, flags); 3683 3684 #ifdef UMA_ZALLOC_DEBUG 3685 void *item; 3686 3687 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 3688 ("uma_zalloc_arg: called with non-SMR zone.")); 3689 if (uma_zalloc_debug(zone, &item, NULL, flags) == EJUSTRETURN) 3690 return (item); 3691 #endif 3692 3693 critical_enter(); 3694 cache = &zone->uz_cpu[curcpu]; 3695 bucket = &cache->uc_allocbucket; 3696 if (__predict_false(bucket->ucb_cnt == 0)) 3697 return (cache_alloc_retry(zone, cache, NULL, flags)); 3698 return (cache_alloc_item(zone, cache, bucket, NULL, flags)); 3699 } 3700 3701 /* See uma.h */ 3702 void * 3703 uma_zalloc_arg(uma_zone_t zone, void *udata, int flags) 3704 { 3705 uma_cache_bucket_t bucket; 3706 uma_cache_t cache; 3707 3708 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3709 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3710 3711 /* This is the fast path allocation */ 3712 CTR3(KTR_UMA, "uma_zalloc_arg zone %s(%p) flags %d", zone->uz_name, 3713 zone, flags); 3714 3715 #ifdef UMA_ZALLOC_DEBUG 3716 void *item; 3717 3718 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3719 ("uma_zalloc_arg: called with SMR zone.")); 3720 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3721 return (item); 3722 #endif 3723 3724 /* 3725 * If possible, allocate from the per-CPU cache. There are two 3726 * requirements for safe access to the per-CPU cache: (1) the thread 3727 * accessing the cache must not be preempted or yield during access, 3728 * and (2) the thread must not migrate CPUs without switching which 3729 * cache it accesses. We rely on a critical section to prevent 3730 * preemption and migration. We release the critical section in 3731 * order to acquire the zone mutex if we are unable to allocate from 3732 * the current cache; when we re-acquire the critical section, we 3733 * must detect and handle migration if it has occurred. 3734 */ 3735 critical_enter(); 3736 cache = &zone->uz_cpu[curcpu]; 3737 bucket = &cache->uc_allocbucket; 3738 if (__predict_false(bucket->ucb_cnt == 0)) 3739 return (cache_alloc_retry(zone, cache, udata, flags)); 3740 return (cache_alloc_item(zone, cache, bucket, udata, flags)); 3741 } 3742 3743 /* 3744 * Replenish an alloc bucket and possibly restore an old one. Called in 3745 * a critical section. Returns in a critical section. 3746 * 3747 * A false return value indicates an allocation failure. 3748 * A true return value indicates success and the caller should retry. 3749 */ 3750 static __noinline bool 3751 cache_alloc(uma_zone_t zone, uma_cache_t cache, void *udata, int flags) 3752 { 3753 uma_bucket_t bucket; 3754 int curdomain, domain; 3755 bool new; 3756 3757 CRITICAL_ASSERT(curthread); 3758 3759 /* 3760 * If we have run out of items in our alloc bucket see 3761 * if we can switch with the free bucket. 3762 * 3763 * SMR Zones can't re-use the free bucket until the sequence has 3764 * expired. 3765 */ 3766 if ((cache_uz_flags(cache) & UMA_ZONE_SMR) == 0 && 3767 cache->uc_freebucket.ucb_cnt != 0) { 3768 cache_bucket_swap(&cache->uc_freebucket, 3769 &cache->uc_allocbucket); 3770 return (true); 3771 } 3772 3773 /* 3774 * Discard any empty allocation bucket while we hold no locks. 3775 */ 3776 bucket = cache_bucket_unload_alloc(cache); 3777 critical_exit(); 3778 3779 if (bucket != NULL) { 3780 KASSERT(bucket->ub_cnt == 0, 3781 ("cache_alloc: Entered with non-empty alloc bucket.")); 3782 bucket_free(zone, bucket, udata); 3783 } 3784 3785 /* 3786 * Attempt to retrieve the item from the per-CPU cache has failed, so 3787 * we must go back to the zone. This requires the zdom lock, so we 3788 * must drop the critical section, then re-acquire it when we go back 3789 * to the cache. Since the critical section is released, we may be 3790 * preempted or migrate. As such, make sure not to maintain any 3791 * thread-local state specific to the cache from prior to releasing 3792 * the critical section. 3793 */ 3794 domain = PCPU_GET(domain); 3795 if ((cache_uz_flags(cache) & UMA_ZONE_ROUNDROBIN) != 0 || 3796 VM_DOMAIN_EMPTY(domain)) 3797 domain = zone_domain_highest(zone, domain); 3798 bucket = cache_fetch_bucket(zone, cache, domain); 3799 if (bucket == NULL && zone->uz_bucket_size != 0 && !bucketdisable) { 3800 bucket = zone_alloc_bucket(zone, udata, domain, flags); 3801 new = true; 3802 } else { 3803 new = false; 3804 } 3805 3806 CTR3(KTR_UMA, "uma_zalloc: zone %s(%p) bucket zone returned %p", 3807 zone->uz_name, zone, bucket); 3808 if (bucket == NULL) { 3809 critical_enter(); 3810 return (false); 3811 } 3812 3813 /* 3814 * See if we lost the race or were migrated. Cache the 3815 * initialized bucket to make this less likely or claim 3816 * the memory directly. 3817 */ 3818 critical_enter(); 3819 cache = &zone->uz_cpu[curcpu]; 3820 if (cache->uc_allocbucket.ucb_bucket == NULL && 3821 ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) == 0 || 3822 (curdomain = PCPU_GET(domain)) == domain || 3823 VM_DOMAIN_EMPTY(curdomain))) { 3824 if (new) 3825 atomic_add_long(&ZDOM_GET(zone, domain)->uzd_imax, 3826 bucket->ub_cnt); 3827 cache_bucket_load_alloc(cache, bucket); 3828 return (true); 3829 } 3830 3831 /* 3832 * We lost the race, release this bucket and start over. 3833 */ 3834 critical_exit(); 3835 zone_put_bucket(zone, domain, bucket, udata, !new); 3836 critical_enter(); 3837 3838 return (true); 3839 } 3840 3841 void * 3842 uma_zalloc_domain(uma_zone_t zone, void *udata, int domain, int flags) 3843 { 3844 #ifdef NUMA 3845 uma_bucket_t bucket; 3846 uma_zone_domain_t zdom; 3847 void *item; 3848 #endif 3849 3850 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 3851 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 3852 3853 /* This is the fast path allocation */ 3854 CTR4(KTR_UMA, "uma_zalloc_domain zone %s(%p) domain %d flags %d", 3855 zone->uz_name, zone, domain, flags); 3856 3857 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 3858 ("uma_zalloc_domain: called with SMR zone.")); 3859 #ifdef NUMA 3860 KASSERT((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0, 3861 ("uma_zalloc_domain: called with non-FIRSTTOUCH zone.")); 3862 3863 if (vm_ndomains == 1) 3864 return (uma_zalloc_arg(zone, udata, flags)); 3865 3866 #ifdef UMA_ZALLOC_DEBUG 3867 if (uma_zalloc_debug(zone, &item, udata, flags) == EJUSTRETURN) 3868 return (item); 3869 #endif 3870 3871 /* 3872 * Try to allocate from the bucket cache before falling back to the keg. 3873 * We could try harder and attempt to allocate from per-CPU caches or 3874 * the per-domain cross-domain buckets, but the complexity is probably 3875 * not worth it. It is more important that frees of previous 3876 * cross-domain allocations do not blow up the cache. 3877 */ 3878 zdom = zone_domain_lock(zone, domain); 3879 if ((bucket = zone_fetch_bucket(zone, zdom, false)) != NULL) { 3880 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 3881 #ifdef INVARIANTS 3882 bucket->ub_bucket[bucket->ub_cnt - 1] = NULL; 3883 #endif 3884 bucket->ub_cnt--; 3885 zone_put_bucket(zone, domain, bucket, udata, true); 3886 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, 3887 flags, item); 3888 if (item != NULL) { 3889 KASSERT(item_domain(item) == domain, 3890 ("%s: bucket cache item %p from wrong domain", 3891 __func__, item)); 3892 counter_u64_add(zone->uz_allocs, 1); 3893 } 3894 return (item); 3895 } 3896 ZDOM_UNLOCK(zdom); 3897 return (zone_alloc_item(zone, udata, domain, flags)); 3898 #else 3899 return (uma_zalloc_arg(zone, udata, flags)); 3900 #endif 3901 } 3902 3903 /* 3904 * Find a slab with some space. Prefer slabs that are partially used over those 3905 * that are totally full. This helps to reduce fragmentation. 3906 * 3907 * If 'rr' is 1, search all domains starting from 'domain'. Otherwise check 3908 * only 'domain'. 3909 */ 3910 static uma_slab_t 3911 keg_first_slab(uma_keg_t keg, int domain, bool rr) 3912 { 3913 uma_domain_t dom; 3914 uma_slab_t slab; 3915 int start; 3916 3917 KASSERT(domain >= 0 && domain < vm_ndomains, 3918 ("keg_first_slab: domain %d out of range", domain)); 3919 KEG_LOCK_ASSERT(keg, domain); 3920 3921 slab = NULL; 3922 start = domain; 3923 do { 3924 dom = &keg->uk_domain[domain]; 3925 if ((slab = LIST_FIRST(&dom->ud_part_slab)) != NULL) 3926 return (slab); 3927 if ((slab = LIST_FIRST(&dom->ud_free_slab)) != NULL) { 3928 LIST_REMOVE(slab, us_link); 3929 dom->ud_free_slabs--; 3930 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 3931 return (slab); 3932 } 3933 if (rr) 3934 domain = (domain + 1) % vm_ndomains; 3935 } while (domain != start); 3936 3937 return (NULL); 3938 } 3939 3940 /* 3941 * Fetch an existing slab from a free or partial list. Returns with the 3942 * keg domain lock held if a slab was found or unlocked if not. 3943 */ 3944 static uma_slab_t 3945 keg_fetch_free_slab(uma_keg_t keg, int domain, bool rr, int flags) 3946 { 3947 uma_slab_t slab; 3948 uint32_t reserve; 3949 3950 /* HASH has a single free list. */ 3951 if ((keg->uk_flags & UMA_ZFLAG_HASH) != 0) 3952 domain = 0; 3953 3954 KEG_LOCK(keg, domain); 3955 reserve = (flags & M_USE_RESERVE) != 0 ? 0 : keg->uk_reserve; 3956 if (keg->uk_domain[domain].ud_free_items <= reserve || 3957 (slab = keg_first_slab(keg, domain, rr)) == NULL) { 3958 KEG_UNLOCK(keg, domain); 3959 return (NULL); 3960 } 3961 return (slab); 3962 } 3963 3964 static uma_slab_t 3965 keg_fetch_slab(uma_keg_t keg, uma_zone_t zone, int rdomain, const int flags) 3966 { 3967 struct vm_domainset_iter di; 3968 uma_slab_t slab; 3969 int aflags, domain; 3970 bool rr; 3971 3972 KASSERT((flags & (M_WAITOK | M_NOVM)) != (M_WAITOK | M_NOVM), 3973 ("%s: invalid flags %#x", __func__, flags)); 3974 3975 restart: 3976 /* 3977 * Use the keg's policy if upper layers haven't already specified a 3978 * domain (as happens with first-touch zones). 3979 * 3980 * To avoid races we run the iterator with the keg lock held, but that 3981 * means that we cannot allow the vm_domainset layer to sleep. Thus, 3982 * clear M_WAITOK and handle low memory conditions locally. 3983 */ 3984 rr = rdomain == UMA_ANYDOMAIN; 3985 if (rr) { 3986 aflags = (flags & ~M_WAITOK) | M_NOWAIT; 3987 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 3988 &aflags); 3989 } else { 3990 aflags = flags; 3991 domain = rdomain; 3992 } 3993 3994 for (;;) { 3995 slab = keg_fetch_free_slab(keg, domain, rr, flags); 3996 if (slab != NULL) 3997 return (slab); 3998 3999 /* 4000 * M_NOVM is used to break the recursion that can otherwise 4001 * occur if low-level memory management routines use UMA. 4002 */ 4003 if ((flags & M_NOVM) == 0) { 4004 slab = keg_alloc_slab(keg, zone, domain, flags, aflags); 4005 if (slab != NULL) 4006 return (slab); 4007 } 4008 4009 if (!rr) { 4010 if ((flags & M_USE_RESERVE) != 0) { 4011 /* 4012 * Drain reserves from other domains before 4013 * giving up or sleeping. It may be useful to 4014 * support per-domain reserves eventually. 4015 */ 4016 rdomain = UMA_ANYDOMAIN; 4017 goto restart; 4018 } 4019 if ((flags & M_WAITOK) == 0) 4020 break; 4021 vm_wait_domain(domain); 4022 } else if (vm_domainset_iter_policy(&di, &domain) != 0) { 4023 if ((flags & M_WAITOK) != 0) { 4024 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 4025 goto restart; 4026 } 4027 break; 4028 } 4029 } 4030 4031 /* 4032 * We might not have been able to get a slab but another cpu 4033 * could have while we were unlocked. Check again before we 4034 * fail. 4035 */ 4036 if ((slab = keg_fetch_free_slab(keg, domain, rr, flags)) != NULL) 4037 return (slab); 4038 4039 return (NULL); 4040 } 4041 4042 static void * 4043 slab_alloc_item(uma_keg_t keg, uma_slab_t slab) 4044 { 4045 uma_domain_t dom; 4046 void *item; 4047 int freei; 4048 4049 KEG_LOCK_ASSERT(keg, slab->us_domain); 4050 4051 dom = &keg->uk_domain[slab->us_domain]; 4052 freei = BIT_FFS(keg->uk_ipers, &slab->us_free) - 1; 4053 BIT_CLR(keg->uk_ipers, freei, &slab->us_free); 4054 item = slab_item(slab, keg, freei); 4055 slab->us_freecount--; 4056 dom->ud_free_items--; 4057 4058 /* 4059 * Move this slab to the full list. It must be on the partial list, so 4060 * we do not need to update the free slab count. In particular, 4061 * keg_fetch_slab() always returns slabs on the partial list. 4062 */ 4063 if (slab->us_freecount == 0) { 4064 LIST_REMOVE(slab, us_link); 4065 LIST_INSERT_HEAD(&dom->ud_full_slab, slab, us_link); 4066 } 4067 4068 return (item); 4069 } 4070 4071 static int 4072 zone_import(void *arg, void **bucket, int max, int domain, int flags) 4073 { 4074 uma_domain_t dom; 4075 uma_zone_t zone; 4076 uma_slab_t slab; 4077 uma_keg_t keg; 4078 #ifdef NUMA 4079 int stripe; 4080 #endif 4081 int i; 4082 4083 zone = arg; 4084 slab = NULL; 4085 keg = zone->uz_keg; 4086 /* Try to keep the buckets totally full */ 4087 for (i = 0; i < max; ) { 4088 if ((slab = keg_fetch_slab(keg, zone, domain, flags)) == NULL) 4089 break; 4090 #ifdef NUMA 4091 stripe = howmany(max, vm_ndomains); 4092 #endif 4093 dom = &keg->uk_domain[slab->us_domain]; 4094 do { 4095 bucket[i++] = slab_alloc_item(keg, slab); 4096 if (keg->uk_reserve > 0 && 4097 dom->ud_free_items <= keg->uk_reserve) { 4098 /* 4099 * Avoid depleting the reserve after a 4100 * successful item allocation, even if 4101 * M_USE_RESERVE is specified. 4102 */ 4103 KEG_UNLOCK(keg, slab->us_domain); 4104 goto out; 4105 } 4106 #ifdef NUMA 4107 /* 4108 * If the zone is striped we pick a new slab for every 4109 * N allocations. Eliminating this conditional will 4110 * instead pick a new domain for each bucket rather 4111 * than stripe within each bucket. The current option 4112 * produces more fragmentation and requires more cpu 4113 * time but yields better distribution. 4114 */ 4115 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0 && 4116 vm_ndomains > 1 && --stripe == 0) 4117 break; 4118 #endif 4119 } while (slab->us_freecount != 0 && i < max); 4120 KEG_UNLOCK(keg, slab->us_domain); 4121 4122 /* Don't block if we allocated any successfully. */ 4123 flags &= ~M_WAITOK; 4124 flags |= M_NOWAIT; 4125 } 4126 out: 4127 return i; 4128 } 4129 4130 static int 4131 zone_alloc_limit_hard(uma_zone_t zone, int count, int flags) 4132 { 4133 uint64_t old, new, total, max; 4134 4135 /* 4136 * The hard case. We're going to sleep because there were existing 4137 * sleepers or because we ran out of items. This routine enforces 4138 * fairness by keeping fifo order. 4139 * 4140 * First release our ill gotten gains and make some noise. 4141 */ 4142 for (;;) { 4143 zone_free_limit(zone, count); 4144 zone_log_warning(zone); 4145 zone_maxaction(zone); 4146 if (flags & M_NOWAIT) 4147 return (0); 4148 4149 /* 4150 * We need to allocate an item or set ourself as a sleeper 4151 * while the sleepq lock is held to avoid wakeup races. This 4152 * is essentially a home rolled semaphore. 4153 */ 4154 sleepq_lock(&zone->uz_max_items); 4155 old = zone->uz_items; 4156 do { 4157 MPASS(UZ_ITEMS_SLEEPERS(old) < UZ_ITEMS_SLEEPERS_MAX); 4158 /* Cache the max since we will evaluate twice. */ 4159 max = zone->uz_max_items; 4160 if (UZ_ITEMS_SLEEPERS(old) != 0 || 4161 UZ_ITEMS_COUNT(old) >= max) 4162 new = old + UZ_ITEMS_SLEEPER; 4163 else 4164 new = old + MIN(count, max - old); 4165 } while (atomic_fcmpset_64(&zone->uz_items, &old, new) == 0); 4166 4167 /* We may have successfully allocated under the sleepq lock. */ 4168 if (UZ_ITEMS_SLEEPERS(new) == 0) { 4169 sleepq_release(&zone->uz_max_items); 4170 return (new - old); 4171 } 4172 4173 /* 4174 * This is in a different cacheline from uz_items so that we 4175 * don't constantly invalidate the fastpath cacheline when we 4176 * adjust item counts. This could be limited to toggling on 4177 * transitions. 4178 */ 4179 atomic_add_32(&zone->uz_sleepers, 1); 4180 atomic_add_64(&zone->uz_sleeps, 1); 4181 4182 /* 4183 * We have added ourselves as a sleeper. The sleepq lock 4184 * protects us from wakeup races. Sleep now and then retry. 4185 */ 4186 sleepq_add(&zone->uz_max_items, NULL, "zonelimit", 0, 0); 4187 sleepq_wait(&zone->uz_max_items, PVM); 4188 4189 /* 4190 * After wakeup, remove ourselves as a sleeper and try 4191 * again. We no longer have the sleepq lock for protection. 4192 * 4193 * Subract ourselves as a sleeper while attempting to add 4194 * our count. 4195 */ 4196 atomic_subtract_32(&zone->uz_sleepers, 1); 4197 old = atomic_fetchadd_64(&zone->uz_items, 4198 -(UZ_ITEMS_SLEEPER - count)); 4199 /* We're no longer a sleeper. */ 4200 old -= UZ_ITEMS_SLEEPER; 4201 4202 /* 4203 * If we're still at the limit, restart. Notably do not 4204 * block on other sleepers. Cache the max value to protect 4205 * against changes via sysctl. 4206 */ 4207 total = UZ_ITEMS_COUNT(old); 4208 max = zone->uz_max_items; 4209 if (total >= max) 4210 continue; 4211 /* Truncate if necessary, otherwise wake other sleepers. */ 4212 if (total + count > max) { 4213 zone_free_limit(zone, total + count - max); 4214 count = max - total; 4215 } else if (total + count < max && UZ_ITEMS_SLEEPERS(old) != 0) 4216 wakeup_one(&zone->uz_max_items); 4217 4218 return (count); 4219 } 4220 } 4221 4222 /* 4223 * Allocate 'count' items from our max_items limit. Returns the number 4224 * available. If M_NOWAIT is not specified it will sleep until at least 4225 * one item can be allocated. 4226 */ 4227 static int 4228 zone_alloc_limit(uma_zone_t zone, int count, int flags) 4229 { 4230 uint64_t old; 4231 uint64_t max; 4232 4233 max = zone->uz_max_items; 4234 MPASS(max > 0); 4235 4236 /* 4237 * We expect normal allocations to succeed with a simple 4238 * fetchadd. 4239 */ 4240 old = atomic_fetchadd_64(&zone->uz_items, count); 4241 if (__predict_true(old + count <= max)) 4242 return (count); 4243 4244 /* 4245 * If we had some items and no sleepers just return the 4246 * truncated value. We have to release the excess space 4247 * though because that may wake sleepers who weren't woken 4248 * because we were temporarily over the limit. 4249 */ 4250 if (old < max) { 4251 zone_free_limit(zone, (old + count) - max); 4252 return (max - old); 4253 } 4254 return (zone_alloc_limit_hard(zone, count, flags)); 4255 } 4256 4257 /* 4258 * Free a number of items back to the limit. 4259 */ 4260 static void 4261 zone_free_limit(uma_zone_t zone, int count) 4262 { 4263 uint64_t old; 4264 4265 MPASS(count > 0); 4266 4267 /* 4268 * In the common case we either have no sleepers or 4269 * are still over the limit and can just return. 4270 */ 4271 old = atomic_fetchadd_64(&zone->uz_items, -count); 4272 if (__predict_true(UZ_ITEMS_SLEEPERS(old) == 0 || 4273 UZ_ITEMS_COUNT(old) - count >= zone->uz_max_items)) 4274 return; 4275 4276 /* 4277 * Moderate the rate of wakeups. Sleepers will continue 4278 * to generate wakeups if necessary. 4279 */ 4280 wakeup_one(&zone->uz_max_items); 4281 } 4282 4283 static uma_bucket_t 4284 zone_alloc_bucket(uma_zone_t zone, void *udata, int domain, int flags) 4285 { 4286 uma_bucket_t bucket; 4287 int error, maxbucket, cnt; 4288 4289 CTR3(KTR_UMA, "zone_alloc_bucket zone %s(%p) domain %d", zone->uz_name, 4290 zone, domain); 4291 4292 /* Avoid allocs targeting empty domains. */ 4293 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4294 domain = UMA_ANYDOMAIN; 4295 else if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4296 domain = UMA_ANYDOMAIN; 4297 4298 if (zone->uz_max_items > 0) 4299 maxbucket = zone_alloc_limit(zone, zone->uz_bucket_size, 4300 M_NOWAIT); 4301 else 4302 maxbucket = zone->uz_bucket_size; 4303 if (maxbucket == 0) 4304 return (NULL); 4305 4306 /* Don't wait for buckets, preserve caller's NOVM setting. */ 4307 bucket = bucket_alloc(zone, udata, M_NOWAIT | (flags & M_NOVM)); 4308 if (bucket == NULL) { 4309 cnt = 0; 4310 goto out; 4311 } 4312 4313 bucket->ub_cnt = zone->uz_import(zone->uz_arg, bucket->ub_bucket, 4314 MIN(maxbucket, bucket->ub_entries), domain, flags); 4315 4316 /* 4317 * Initialize the memory if necessary. 4318 */ 4319 if (bucket->ub_cnt != 0 && zone->uz_init != NULL) { 4320 int i; 4321 4322 for (i = 0; i < bucket->ub_cnt; i++) { 4323 kasan_mark_item_valid(zone, bucket->ub_bucket[i]); 4324 error = zone->uz_init(bucket->ub_bucket[i], 4325 zone->uz_size, flags); 4326 kasan_mark_item_invalid(zone, bucket->ub_bucket[i]); 4327 if (error != 0) 4328 break; 4329 } 4330 4331 /* 4332 * If we couldn't initialize the whole bucket, put the 4333 * rest back onto the freelist. 4334 */ 4335 if (i != bucket->ub_cnt) { 4336 zone->uz_release(zone->uz_arg, &bucket->ub_bucket[i], 4337 bucket->ub_cnt - i); 4338 #ifdef INVARIANTS 4339 bzero(&bucket->ub_bucket[i], 4340 sizeof(void *) * (bucket->ub_cnt - i)); 4341 #endif 4342 bucket->ub_cnt = i; 4343 } 4344 } 4345 4346 cnt = bucket->ub_cnt; 4347 if (bucket->ub_cnt == 0) { 4348 bucket_free(zone, bucket, udata); 4349 counter_u64_add(zone->uz_fails, 1); 4350 bucket = NULL; 4351 } 4352 out: 4353 if (zone->uz_max_items > 0 && cnt < maxbucket) 4354 zone_free_limit(zone, maxbucket - cnt); 4355 4356 return (bucket); 4357 } 4358 4359 /* 4360 * Allocates a single item from a zone. 4361 * 4362 * Arguments 4363 * zone The zone to alloc for. 4364 * udata The data to be passed to the constructor. 4365 * domain The domain to allocate from or UMA_ANYDOMAIN. 4366 * flags M_WAITOK, M_NOWAIT, M_ZERO. 4367 * 4368 * Returns 4369 * NULL if there is no memory and M_NOWAIT is set 4370 * An item if successful 4371 */ 4372 4373 static void * 4374 zone_alloc_item(uma_zone_t zone, void *udata, int domain, int flags) 4375 { 4376 void *item; 4377 4378 if (zone->uz_max_items > 0 && zone_alloc_limit(zone, 1, flags) == 0) { 4379 counter_u64_add(zone->uz_fails, 1); 4380 return (NULL); 4381 } 4382 4383 /* Avoid allocs targeting empty domains. */ 4384 if (domain != UMA_ANYDOMAIN && VM_DOMAIN_EMPTY(domain)) 4385 domain = UMA_ANYDOMAIN; 4386 4387 if (zone->uz_import(zone->uz_arg, &item, 1, domain, flags) != 1) 4388 goto fail_cnt; 4389 4390 /* 4391 * We have to call both the zone's init (not the keg's init) 4392 * and the zone's ctor. This is because the item is going from 4393 * a keg slab directly to the user, and the user is expecting it 4394 * to be both zone-init'd as well as zone-ctor'd. 4395 */ 4396 if (zone->uz_init != NULL) { 4397 int error; 4398 4399 kasan_mark_item_valid(zone, item); 4400 error = zone->uz_init(item, zone->uz_size, flags); 4401 kasan_mark_item_invalid(zone, item); 4402 if (error != 0) { 4403 zone_free_item(zone, item, udata, SKIP_FINI | SKIP_CNT); 4404 goto fail_cnt; 4405 } 4406 } 4407 item = item_ctor(zone, zone->uz_flags, zone->uz_size, udata, flags, 4408 item); 4409 if (item == NULL) 4410 goto fail; 4411 4412 counter_u64_add(zone->uz_allocs, 1); 4413 CTR3(KTR_UMA, "zone_alloc_item item %p from %s(%p)", item, 4414 zone->uz_name, zone); 4415 4416 return (item); 4417 4418 fail_cnt: 4419 counter_u64_add(zone->uz_fails, 1); 4420 fail: 4421 if (zone->uz_max_items > 0) 4422 zone_free_limit(zone, 1); 4423 CTR2(KTR_UMA, "zone_alloc_item failed from %s(%p)", 4424 zone->uz_name, zone); 4425 4426 return (NULL); 4427 } 4428 4429 /* See uma.h */ 4430 void 4431 uma_zfree_smr(uma_zone_t zone, void *item) 4432 { 4433 uma_cache_t cache; 4434 uma_cache_bucket_t bucket; 4435 int itemdomain; 4436 #ifdef NUMA 4437 int uz_flags; 4438 #endif 4439 4440 CTR3(KTR_UMA, "uma_zfree_smr zone %s(%p) item %p", 4441 zone->uz_name, zone, item); 4442 4443 #ifdef UMA_ZALLOC_DEBUG 4444 KASSERT((zone->uz_flags & UMA_ZONE_SMR) != 0, 4445 ("uma_zfree_smr: called with non-SMR zone.")); 4446 KASSERT(item != NULL, ("uma_zfree_smr: Called with NULL pointer.")); 4447 SMR_ASSERT_NOT_ENTERED(zone->uz_smr); 4448 if (uma_zfree_debug(zone, item, NULL) == EJUSTRETURN) 4449 return; 4450 #endif 4451 cache = &zone->uz_cpu[curcpu]; 4452 itemdomain = 0; 4453 #ifdef NUMA 4454 uz_flags = cache_uz_flags(cache); 4455 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4456 itemdomain = item_domain(item); 4457 #endif 4458 critical_enter(); 4459 do { 4460 cache = &zone->uz_cpu[curcpu]; 4461 /* SMR Zones must free to the free bucket. */ 4462 bucket = &cache->uc_freebucket; 4463 #ifdef NUMA 4464 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4465 PCPU_GET(domain) != itemdomain) { 4466 bucket = &cache->uc_crossbucket; 4467 } 4468 #endif 4469 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4470 cache_bucket_push(cache, bucket, item); 4471 critical_exit(); 4472 return; 4473 } 4474 } while (cache_free(zone, cache, NULL, itemdomain)); 4475 critical_exit(); 4476 4477 /* 4478 * If nothing else caught this, we'll just do an internal free. 4479 */ 4480 zone_free_item(zone, item, NULL, SKIP_NONE); 4481 } 4482 4483 /* See uma.h */ 4484 void 4485 uma_zfree_arg(uma_zone_t zone, void *item, void *udata) 4486 { 4487 uma_cache_t cache; 4488 uma_cache_bucket_t bucket; 4489 int itemdomain, uz_flags; 4490 4491 /* Enable entropy collection for RANDOM_ENABLE_UMA kernel option */ 4492 random_harvest_fast_uma(&zone, sizeof(zone), RANDOM_UMA); 4493 4494 CTR3(KTR_UMA, "uma_zfree_arg zone %s(%p) item %p", 4495 zone->uz_name, zone, item); 4496 4497 #ifdef UMA_ZALLOC_DEBUG 4498 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 4499 ("uma_zfree_arg: called with SMR zone.")); 4500 if (uma_zfree_debug(zone, item, udata) == EJUSTRETURN) 4501 return; 4502 #endif 4503 /* uma_zfree(..., NULL) does nothing, to match free(9). */ 4504 if (item == NULL) 4505 return; 4506 4507 /* 4508 * We are accessing the per-cpu cache without a critical section to 4509 * fetch size and flags. This is acceptable, if we are preempted we 4510 * will simply read another cpu's line. 4511 */ 4512 cache = &zone->uz_cpu[curcpu]; 4513 uz_flags = cache_uz_flags(cache); 4514 if (UMA_ALWAYS_CTORDTOR || 4515 __predict_false((uz_flags & UMA_ZFLAG_CTORDTOR) != 0)) 4516 item_dtor(zone, item, cache_uz_size(cache), udata, SKIP_NONE); 4517 4518 /* 4519 * The race here is acceptable. If we miss it we'll just have to wait 4520 * a little longer for the limits to be reset. 4521 */ 4522 if (__predict_false(uz_flags & UMA_ZFLAG_LIMIT)) { 4523 if (atomic_load_32(&zone->uz_sleepers) > 0) 4524 goto zfree_item; 4525 } 4526 4527 /* 4528 * If possible, free to the per-CPU cache. There are two 4529 * requirements for safe access to the per-CPU cache: (1) the thread 4530 * accessing the cache must not be preempted or yield during access, 4531 * and (2) the thread must not migrate CPUs without switching which 4532 * cache it accesses. We rely on a critical section to prevent 4533 * preemption and migration. We release the critical section in 4534 * order to acquire the zone mutex if we are unable to free to the 4535 * current cache; when we re-acquire the critical section, we must 4536 * detect and handle migration if it has occurred. 4537 */ 4538 itemdomain = 0; 4539 #ifdef NUMA 4540 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0) 4541 itemdomain = item_domain(item); 4542 #endif 4543 critical_enter(); 4544 do { 4545 cache = &zone->uz_cpu[curcpu]; 4546 /* 4547 * Try to free into the allocbucket first to give LIFO 4548 * ordering for cache-hot datastructures. Spill over 4549 * into the freebucket if necessary. Alloc will swap 4550 * them if one runs dry. 4551 */ 4552 bucket = &cache->uc_allocbucket; 4553 #ifdef NUMA 4554 if ((uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4555 PCPU_GET(domain) != itemdomain) { 4556 bucket = &cache->uc_crossbucket; 4557 } else 4558 #endif 4559 if (bucket->ucb_cnt == bucket->ucb_entries && 4560 cache->uc_freebucket.ucb_cnt < 4561 cache->uc_freebucket.ucb_entries) 4562 cache_bucket_swap(&cache->uc_freebucket, 4563 &cache->uc_allocbucket); 4564 if (__predict_true(bucket->ucb_cnt < bucket->ucb_entries)) { 4565 cache_bucket_push(cache, bucket, item); 4566 critical_exit(); 4567 return; 4568 } 4569 } while (cache_free(zone, cache, udata, itemdomain)); 4570 critical_exit(); 4571 4572 /* 4573 * If nothing else caught this, we'll just do an internal free. 4574 */ 4575 zfree_item: 4576 zone_free_item(zone, item, udata, SKIP_DTOR); 4577 } 4578 4579 #ifdef NUMA 4580 /* 4581 * sort crossdomain free buckets to domain correct buckets and cache 4582 * them. 4583 */ 4584 static void 4585 zone_free_cross(uma_zone_t zone, uma_bucket_t bucket, void *udata) 4586 { 4587 struct uma_bucketlist emptybuckets, fullbuckets; 4588 uma_zone_domain_t zdom; 4589 uma_bucket_t b; 4590 smr_seq_t seq; 4591 void *item; 4592 int domain; 4593 4594 CTR3(KTR_UMA, 4595 "uma_zfree: zone %s(%p) draining cross bucket %p", 4596 zone->uz_name, zone, bucket); 4597 4598 /* 4599 * It is possible for buckets to arrive here out of order so we fetch 4600 * the current smr seq rather than accepting the bucket's. 4601 */ 4602 seq = SMR_SEQ_INVALID; 4603 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) 4604 seq = smr_advance(zone->uz_smr); 4605 4606 /* 4607 * To avoid having ndomain * ndomain buckets for sorting we have a 4608 * lock on the current crossfree bucket. A full matrix with 4609 * per-domain locking could be used if necessary. 4610 */ 4611 STAILQ_INIT(&emptybuckets); 4612 STAILQ_INIT(&fullbuckets); 4613 ZONE_CROSS_LOCK(zone); 4614 for (; bucket->ub_cnt > 0; bucket->ub_cnt--) { 4615 item = bucket->ub_bucket[bucket->ub_cnt - 1]; 4616 domain = item_domain(item); 4617 zdom = ZDOM_GET(zone, domain); 4618 if (zdom->uzd_cross == NULL) { 4619 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4620 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4621 zdom->uzd_cross = b; 4622 } else { 4623 /* 4624 * Avoid allocating a bucket with the cross lock 4625 * held, since allocation can trigger a 4626 * cross-domain free and bucket zones may 4627 * allocate from each other. 4628 */ 4629 ZONE_CROSS_UNLOCK(zone); 4630 b = bucket_alloc(zone, udata, M_NOWAIT); 4631 if (b == NULL) 4632 goto out; 4633 ZONE_CROSS_LOCK(zone); 4634 if (zdom->uzd_cross != NULL) { 4635 STAILQ_INSERT_HEAD(&emptybuckets, b, 4636 ub_link); 4637 } else { 4638 zdom->uzd_cross = b; 4639 } 4640 } 4641 } 4642 b = zdom->uzd_cross; 4643 b->ub_bucket[b->ub_cnt++] = item; 4644 b->ub_seq = seq; 4645 if (b->ub_cnt == b->ub_entries) { 4646 STAILQ_INSERT_HEAD(&fullbuckets, b, ub_link); 4647 if ((b = STAILQ_FIRST(&emptybuckets)) != NULL) 4648 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4649 zdom->uzd_cross = b; 4650 } 4651 } 4652 ZONE_CROSS_UNLOCK(zone); 4653 out: 4654 if (bucket->ub_cnt == 0) 4655 bucket->ub_seq = SMR_SEQ_INVALID; 4656 bucket_free(zone, bucket, udata); 4657 4658 while ((b = STAILQ_FIRST(&emptybuckets)) != NULL) { 4659 STAILQ_REMOVE_HEAD(&emptybuckets, ub_link); 4660 bucket_free(zone, b, udata); 4661 } 4662 while ((b = STAILQ_FIRST(&fullbuckets)) != NULL) { 4663 STAILQ_REMOVE_HEAD(&fullbuckets, ub_link); 4664 domain = item_domain(b->ub_bucket[0]); 4665 zone_put_bucket(zone, domain, b, udata, true); 4666 } 4667 } 4668 #endif 4669 4670 static void 4671 zone_free_bucket(uma_zone_t zone, uma_bucket_t bucket, void *udata, 4672 int itemdomain, bool ws) 4673 { 4674 4675 #ifdef NUMA 4676 /* 4677 * Buckets coming from the wrong domain will be entirely for the 4678 * only other domain on two domain systems. In this case we can 4679 * simply cache them. Otherwise we need to sort them back to 4680 * correct domains. 4681 */ 4682 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && 4683 vm_ndomains > 2 && PCPU_GET(domain) != itemdomain) { 4684 zone_free_cross(zone, bucket, udata); 4685 return; 4686 } 4687 #endif 4688 4689 /* 4690 * Attempt to save the bucket in the zone's domain bucket cache. 4691 */ 4692 CTR3(KTR_UMA, 4693 "uma_zfree: zone %s(%p) putting bucket %p on free list", 4694 zone->uz_name, zone, bucket); 4695 /* ub_cnt is pointing to the last free item */ 4696 if ((zone->uz_flags & UMA_ZONE_ROUNDROBIN) != 0) 4697 itemdomain = zone_domain_lowest(zone, itemdomain); 4698 zone_put_bucket(zone, itemdomain, bucket, udata, ws); 4699 } 4700 4701 /* 4702 * Populate a free or cross bucket for the current cpu cache. Free any 4703 * existing full bucket either to the zone cache or back to the slab layer. 4704 * 4705 * Enters and returns in a critical section. false return indicates that 4706 * we can not satisfy this free in the cache layer. true indicates that 4707 * the caller should retry. 4708 */ 4709 static __noinline bool 4710 cache_free(uma_zone_t zone, uma_cache_t cache, void *udata, int itemdomain) 4711 { 4712 uma_cache_bucket_t cbucket; 4713 uma_bucket_t newbucket, bucket; 4714 4715 CRITICAL_ASSERT(curthread); 4716 4717 if (zone->uz_bucket_size == 0) 4718 return false; 4719 4720 cache = &zone->uz_cpu[curcpu]; 4721 newbucket = NULL; 4722 4723 /* 4724 * FIRSTTOUCH domains need to free to the correct zdom. When 4725 * enabled this is the zdom of the item. The bucket is the 4726 * cross bucket if the current domain and itemdomain do not match. 4727 */ 4728 cbucket = &cache->uc_freebucket; 4729 #ifdef NUMA 4730 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4731 if (PCPU_GET(domain) != itemdomain) { 4732 cbucket = &cache->uc_crossbucket; 4733 if (cbucket->ucb_cnt != 0) 4734 counter_u64_add(zone->uz_xdomain, 4735 cbucket->ucb_cnt); 4736 } 4737 } 4738 #endif 4739 bucket = cache_bucket_unload(cbucket); 4740 KASSERT(bucket == NULL || bucket->ub_cnt == bucket->ub_entries, 4741 ("cache_free: Entered with non-full free bucket.")); 4742 4743 /* We are no longer associated with this CPU. */ 4744 critical_exit(); 4745 4746 /* 4747 * Don't let SMR zones operate without a free bucket. Force 4748 * a synchronize and re-use this one. We will only degrade 4749 * to a synchronize every bucket_size items rather than every 4750 * item if we fail to allocate a bucket. 4751 */ 4752 if ((zone->uz_flags & UMA_ZONE_SMR) != 0) { 4753 if (bucket != NULL) 4754 bucket->ub_seq = smr_advance(zone->uz_smr); 4755 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4756 if (newbucket == NULL && bucket != NULL) { 4757 bucket_drain(zone, bucket); 4758 newbucket = bucket; 4759 bucket = NULL; 4760 } 4761 } else if (!bucketdisable) 4762 newbucket = bucket_alloc(zone, udata, M_NOWAIT); 4763 4764 if (bucket != NULL) 4765 zone_free_bucket(zone, bucket, udata, itemdomain, true); 4766 4767 critical_enter(); 4768 if ((bucket = newbucket) == NULL) 4769 return (false); 4770 cache = &zone->uz_cpu[curcpu]; 4771 #ifdef NUMA 4772 /* 4773 * Check to see if we should be populating the cross bucket. If it 4774 * is already populated we will fall through and attempt to populate 4775 * the free bucket. 4776 */ 4777 if ((cache_uz_flags(cache) & UMA_ZONE_FIRSTTOUCH) != 0) { 4778 if (PCPU_GET(domain) != itemdomain && 4779 cache->uc_crossbucket.ucb_bucket == NULL) { 4780 cache_bucket_load_cross(cache, bucket); 4781 return (true); 4782 } 4783 } 4784 #endif 4785 /* 4786 * We may have lost the race to fill the bucket or switched CPUs. 4787 */ 4788 if (cache->uc_freebucket.ucb_bucket != NULL) { 4789 critical_exit(); 4790 bucket_free(zone, bucket, udata); 4791 critical_enter(); 4792 } else 4793 cache_bucket_load_free(cache, bucket); 4794 4795 return (true); 4796 } 4797 4798 static void 4799 slab_free_item(uma_zone_t zone, uma_slab_t slab, void *item) 4800 { 4801 uma_keg_t keg; 4802 uma_domain_t dom; 4803 int freei; 4804 4805 keg = zone->uz_keg; 4806 KEG_LOCK_ASSERT(keg, slab->us_domain); 4807 4808 /* Do we need to remove from any lists? */ 4809 dom = &keg->uk_domain[slab->us_domain]; 4810 if (slab->us_freecount + 1 == keg->uk_ipers) { 4811 LIST_REMOVE(slab, us_link); 4812 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, us_link); 4813 dom->ud_free_slabs++; 4814 } else if (slab->us_freecount == 0) { 4815 LIST_REMOVE(slab, us_link); 4816 LIST_INSERT_HEAD(&dom->ud_part_slab, slab, us_link); 4817 } 4818 4819 /* Slab management. */ 4820 freei = slab_item_index(slab, keg, item); 4821 BIT_SET(keg->uk_ipers, freei, &slab->us_free); 4822 slab->us_freecount++; 4823 4824 /* Keg statistics. */ 4825 dom->ud_free_items++; 4826 } 4827 4828 static void 4829 zone_release(void *arg, void **bucket, int cnt) 4830 { 4831 struct mtx *lock; 4832 uma_zone_t zone; 4833 uma_slab_t slab; 4834 uma_keg_t keg; 4835 uint8_t *mem; 4836 void *item; 4837 int i; 4838 4839 zone = arg; 4840 keg = zone->uz_keg; 4841 lock = NULL; 4842 if (__predict_false((zone->uz_flags & UMA_ZFLAG_HASH) != 0)) 4843 lock = KEG_LOCK(keg, 0); 4844 for (i = 0; i < cnt; i++) { 4845 item = bucket[i]; 4846 if (__predict_true((zone->uz_flags & UMA_ZFLAG_VTOSLAB) != 0)) { 4847 slab = vtoslab((vm_offset_t)item); 4848 } else { 4849 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 4850 if ((zone->uz_flags & UMA_ZFLAG_HASH) != 0) 4851 slab = hash_sfind(&keg->uk_hash, mem); 4852 else 4853 slab = (uma_slab_t)(mem + keg->uk_pgoff); 4854 } 4855 if (lock != KEG_LOCKPTR(keg, slab->us_domain)) { 4856 if (lock != NULL) 4857 mtx_unlock(lock); 4858 lock = KEG_LOCK(keg, slab->us_domain); 4859 } 4860 slab_free_item(zone, slab, item); 4861 } 4862 if (lock != NULL) 4863 mtx_unlock(lock); 4864 } 4865 4866 /* 4867 * Frees a single item to any zone. 4868 * 4869 * Arguments: 4870 * zone The zone to free to 4871 * item The item we're freeing 4872 * udata User supplied data for the dtor 4873 * skip Skip dtors and finis 4874 */ 4875 static __noinline void 4876 zone_free_item(uma_zone_t zone, void *item, void *udata, enum zfreeskip skip) 4877 { 4878 4879 /* 4880 * If a free is sent directly to an SMR zone we have to 4881 * synchronize immediately because the item can instantly 4882 * be reallocated. This should only happen in degenerate 4883 * cases when no memory is available for per-cpu caches. 4884 */ 4885 if ((zone->uz_flags & UMA_ZONE_SMR) != 0 && skip == SKIP_NONE) 4886 smr_synchronize(zone->uz_smr); 4887 4888 item_dtor(zone, item, zone->uz_size, udata, skip); 4889 4890 if (skip < SKIP_FINI && zone->uz_fini) { 4891 kasan_mark_item_valid(zone, item); 4892 zone->uz_fini(item, zone->uz_size); 4893 kasan_mark_item_invalid(zone, item); 4894 } 4895 4896 zone->uz_release(zone->uz_arg, &item, 1); 4897 4898 if (skip & SKIP_CNT) 4899 return; 4900 4901 counter_u64_add(zone->uz_frees, 1); 4902 4903 if (zone->uz_max_items > 0) 4904 zone_free_limit(zone, 1); 4905 } 4906 4907 /* See uma.h */ 4908 int 4909 uma_zone_set_max(uma_zone_t zone, int nitems) 4910 { 4911 4912 /* 4913 * If the limit is small, we may need to constrain the maximum per-CPU 4914 * cache size, or disable caching entirely. 4915 */ 4916 uma_zone_set_maxcache(zone, nitems); 4917 4918 /* 4919 * XXX This can misbehave if the zone has any allocations with 4920 * no limit and a limit is imposed. There is currently no 4921 * way to clear a limit. 4922 */ 4923 ZONE_LOCK(zone); 4924 if (zone->uz_max_items == 0) 4925 ZONE_ASSERT_COLD(zone); 4926 zone->uz_max_items = nitems; 4927 zone->uz_flags |= UMA_ZFLAG_LIMIT; 4928 zone_update_caches(zone); 4929 /* We may need to wake waiters. */ 4930 wakeup(&zone->uz_max_items); 4931 ZONE_UNLOCK(zone); 4932 4933 return (nitems); 4934 } 4935 4936 /* See uma.h */ 4937 void 4938 uma_zone_set_maxcache(uma_zone_t zone, int nitems) 4939 { 4940 int bpcpu, bpdom, bsize, nb; 4941 4942 ZONE_LOCK(zone); 4943 4944 /* 4945 * Compute a lower bound on the number of items that may be cached in 4946 * the zone. Each CPU gets at least two buckets, and for cross-domain 4947 * frees we use an additional bucket per CPU and per domain. Select the 4948 * largest bucket size that does not exceed half of the requested limit, 4949 * with the left over space given to the full bucket cache. 4950 */ 4951 bpdom = 0; 4952 bpcpu = 2; 4953 #ifdef NUMA 4954 if ((zone->uz_flags & UMA_ZONE_FIRSTTOUCH) != 0 && vm_ndomains > 1) { 4955 bpcpu++; 4956 bpdom++; 4957 } 4958 #endif 4959 nb = bpcpu * mp_ncpus + bpdom * vm_ndomains; 4960 bsize = nitems / nb / 2; 4961 if (bsize > BUCKET_MAX) 4962 bsize = BUCKET_MAX; 4963 else if (bsize == 0 && nitems / nb > 0) 4964 bsize = 1; 4965 zone->uz_bucket_size_max = zone->uz_bucket_size = bsize; 4966 if (zone->uz_bucket_size_min > zone->uz_bucket_size_max) 4967 zone->uz_bucket_size_min = zone->uz_bucket_size_max; 4968 zone->uz_bucket_max = nitems - nb * bsize; 4969 ZONE_UNLOCK(zone); 4970 } 4971 4972 /* See uma.h */ 4973 int 4974 uma_zone_get_max(uma_zone_t zone) 4975 { 4976 int nitems; 4977 4978 nitems = atomic_load_64(&zone->uz_max_items); 4979 4980 return (nitems); 4981 } 4982 4983 /* See uma.h */ 4984 void 4985 uma_zone_set_warning(uma_zone_t zone, const char *warning) 4986 { 4987 4988 ZONE_ASSERT_COLD(zone); 4989 zone->uz_warning = warning; 4990 } 4991 4992 /* See uma.h */ 4993 void 4994 uma_zone_set_maxaction(uma_zone_t zone, uma_maxaction_t maxaction) 4995 { 4996 4997 ZONE_ASSERT_COLD(zone); 4998 TASK_INIT(&zone->uz_maxaction, 0, (task_fn_t *)maxaction, zone); 4999 } 5000 5001 /* See uma.h */ 5002 int 5003 uma_zone_get_cur(uma_zone_t zone) 5004 { 5005 int64_t nitems; 5006 u_int i; 5007 5008 nitems = 0; 5009 if (zone->uz_allocs != EARLY_COUNTER && zone->uz_frees != EARLY_COUNTER) 5010 nitems = counter_u64_fetch(zone->uz_allocs) - 5011 counter_u64_fetch(zone->uz_frees); 5012 CPU_FOREACH(i) 5013 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs) - 5014 atomic_load_64(&zone->uz_cpu[i].uc_frees); 5015 5016 return (nitems < 0 ? 0 : nitems); 5017 } 5018 5019 static uint64_t 5020 uma_zone_get_allocs(uma_zone_t zone) 5021 { 5022 uint64_t nitems; 5023 u_int i; 5024 5025 nitems = 0; 5026 if (zone->uz_allocs != EARLY_COUNTER) 5027 nitems = counter_u64_fetch(zone->uz_allocs); 5028 CPU_FOREACH(i) 5029 nitems += atomic_load_64(&zone->uz_cpu[i].uc_allocs); 5030 5031 return (nitems); 5032 } 5033 5034 static uint64_t 5035 uma_zone_get_frees(uma_zone_t zone) 5036 { 5037 uint64_t nitems; 5038 u_int i; 5039 5040 nitems = 0; 5041 if (zone->uz_frees != EARLY_COUNTER) 5042 nitems = counter_u64_fetch(zone->uz_frees); 5043 CPU_FOREACH(i) 5044 nitems += atomic_load_64(&zone->uz_cpu[i].uc_frees); 5045 5046 return (nitems); 5047 } 5048 5049 #ifdef INVARIANTS 5050 /* Used only for KEG_ASSERT_COLD(). */ 5051 static uint64_t 5052 uma_keg_get_allocs(uma_keg_t keg) 5053 { 5054 uma_zone_t z; 5055 uint64_t nitems; 5056 5057 nitems = 0; 5058 LIST_FOREACH(z, &keg->uk_zones, uz_link) 5059 nitems += uma_zone_get_allocs(z); 5060 5061 return (nitems); 5062 } 5063 #endif 5064 5065 /* See uma.h */ 5066 void 5067 uma_zone_set_init(uma_zone_t zone, uma_init uminit) 5068 { 5069 uma_keg_t keg; 5070 5071 KEG_GET(zone, keg); 5072 KEG_ASSERT_COLD(keg); 5073 keg->uk_init = uminit; 5074 } 5075 5076 /* See uma.h */ 5077 void 5078 uma_zone_set_fini(uma_zone_t zone, uma_fini fini) 5079 { 5080 uma_keg_t keg; 5081 5082 KEG_GET(zone, keg); 5083 KEG_ASSERT_COLD(keg); 5084 keg->uk_fini = fini; 5085 } 5086 5087 /* See uma.h */ 5088 void 5089 uma_zone_set_zinit(uma_zone_t zone, uma_init zinit) 5090 { 5091 5092 ZONE_ASSERT_COLD(zone); 5093 zone->uz_init = zinit; 5094 } 5095 5096 /* See uma.h */ 5097 void 5098 uma_zone_set_zfini(uma_zone_t zone, uma_fini zfini) 5099 { 5100 5101 ZONE_ASSERT_COLD(zone); 5102 zone->uz_fini = zfini; 5103 } 5104 5105 /* See uma.h */ 5106 void 5107 uma_zone_set_freef(uma_zone_t zone, uma_free freef) 5108 { 5109 uma_keg_t keg; 5110 5111 KEG_GET(zone, keg); 5112 KEG_ASSERT_COLD(keg); 5113 keg->uk_freef = freef; 5114 } 5115 5116 /* See uma.h */ 5117 void 5118 uma_zone_set_allocf(uma_zone_t zone, uma_alloc allocf) 5119 { 5120 uma_keg_t keg; 5121 5122 KEG_GET(zone, keg); 5123 KEG_ASSERT_COLD(keg); 5124 keg->uk_allocf = allocf; 5125 } 5126 5127 /* See uma.h */ 5128 void 5129 uma_zone_set_smr(uma_zone_t zone, smr_t smr) 5130 { 5131 5132 ZONE_ASSERT_COLD(zone); 5133 5134 KASSERT(smr != NULL, ("Got NULL smr")); 5135 KASSERT((zone->uz_flags & UMA_ZONE_SMR) == 0, 5136 ("zone %p (%s) already uses SMR", zone, zone->uz_name)); 5137 zone->uz_flags |= UMA_ZONE_SMR; 5138 zone->uz_smr = smr; 5139 zone_update_caches(zone); 5140 } 5141 5142 smr_t 5143 uma_zone_get_smr(uma_zone_t zone) 5144 { 5145 5146 return (zone->uz_smr); 5147 } 5148 5149 /* See uma.h */ 5150 void 5151 uma_zone_reserve(uma_zone_t zone, int items) 5152 { 5153 uma_keg_t keg; 5154 5155 KEG_GET(zone, keg); 5156 KEG_ASSERT_COLD(keg); 5157 keg->uk_reserve = items; 5158 } 5159 5160 /* See uma.h */ 5161 int 5162 uma_zone_reserve_kva(uma_zone_t zone, int count) 5163 { 5164 uma_keg_t keg; 5165 vm_offset_t kva; 5166 u_int pages; 5167 5168 KEG_GET(zone, keg); 5169 KEG_ASSERT_COLD(keg); 5170 ZONE_ASSERT_COLD(zone); 5171 5172 pages = howmany(count, keg->uk_ipers) * keg->uk_ppera; 5173 5174 #ifdef UMA_MD_SMALL_ALLOC 5175 if (keg->uk_ppera > 1) { 5176 #else 5177 if (1) { 5178 #endif 5179 kva = kva_alloc((vm_size_t)pages * PAGE_SIZE); 5180 if (kva == 0) 5181 return (0); 5182 } else 5183 kva = 0; 5184 5185 MPASS(keg->uk_kva == 0); 5186 keg->uk_kva = kva; 5187 keg->uk_offset = 0; 5188 zone->uz_max_items = pages * keg->uk_ipers; 5189 #ifdef UMA_MD_SMALL_ALLOC 5190 keg->uk_allocf = (keg->uk_ppera > 1) ? noobj_alloc : uma_small_alloc; 5191 #else 5192 keg->uk_allocf = noobj_alloc; 5193 #endif 5194 keg->uk_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5195 zone->uz_flags |= UMA_ZFLAG_LIMIT | UMA_ZONE_NOFREE; 5196 zone_update_caches(zone); 5197 5198 return (1); 5199 } 5200 5201 /* See uma.h */ 5202 void 5203 uma_prealloc(uma_zone_t zone, int items) 5204 { 5205 struct vm_domainset_iter di; 5206 uma_domain_t dom; 5207 uma_slab_t slab; 5208 uma_keg_t keg; 5209 int aflags, domain, slabs; 5210 5211 KEG_GET(zone, keg); 5212 slabs = howmany(items, keg->uk_ipers); 5213 while (slabs-- > 0) { 5214 aflags = M_NOWAIT; 5215 vm_domainset_iter_policy_ref_init(&di, &keg->uk_dr, &domain, 5216 &aflags); 5217 for (;;) { 5218 slab = keg_alloc_slab(keg, zone, domain, M_WAITOK, 5219 aflags); 5220 if (slab != NULL) { 5221 dom = &keg->uk_domain[slab->us_domain]; 5222 /* 5223 * keg_alloc_slab() always returns a slab on the 5224 * partial list. 5225 */ 5226 LIST_REMOVE(slab, us_link); 5227 LIST_INSERT_HEAD(&dom->ud_free_slab, slab, 5228 us_link); 5229 dom->ud_free_slabs++; 5230 KEG_UNLOCK(keg, slab->us_domain); 5231 break; 5232 } 5233 if (vm_domainset_iter_policy(&di, &domain) != 0) 5234 vm_wait_doms(&keg->uk_dr.dr_policy->ds_mask, 0); 5235 } 5236 } 5237 } 5238 5239 /* 5240 * Returns a snapshot of memory consumption in bytes. 5241 */ 5242 size_t 5243 uma_zone_memory(uma_zone_t zone) 5244 { 5245 size_t sz; 5246 int i; 5247 5248 sz = 0; 5249 if (zone->uz_flags & UMA_ZFLAG_CACHE) { 5250 for (i = 0; i < vm_ndomains; i++) 5251 sz += ZDOM_GET(zone, i)->uzd_nitems; 5252 return (sz * zone->uz_size); 5253 } 5254 for (i = 0; i < vm_ndomains; i++) 5255 sz += zone->uz_keg->uk_domain[i].ud_pages; 5256 5257 return (sz * PAGE_SIZE); 5258 } 5259 5260 struct uma_reclaim_args { 5261 int domain; 5262 int req; 5263 }; 5264 5265 static void 5266 uma_reclaim_domain_cb(uma_zone_t zone, void *arg) 5267 { 5268 struct uma_reclaim_args *args; 5269 5270 args = arg; 5271 if ((zone->uz_flags & UMA_ZONE_UNMANAGED) == 0) 5272 uma_zone_reclaim_domain(zone, args->req, args->domain); 5273 } 5274 5275 /* See uma.h */ 5276 void 5277 uma_reclaim(int req) 5278 { 5279 uma_reclaim_domain(req, UMA_ANYDOMAIN); 5280 } 5281 5282 void 5283 uma_reclaim_domain(int req, int domain) 5284 { 5285 struct uma_reclaim_args args; 5286 5287 bucket_enable(); 5288 5289 args.domain = domain; 5290 args.req = req; 5291 5292 sx_slock(&uma_reclaim_lock); 5293 switch (req) { 5294 case UMA_RECLAIM_TRIM: 5295 case UMA_RECLAIM_DRAIN: 5296 zone_foreach(uma_reclaim_domain_cb, &args); 5297 break; 5298 case UMA_RECLAIM_DRAIN_CPU: 5299 zone_foreach(uma_reclaim_domain_cb, &args); 5300 pcpu_cache_drain_safe(NULL); 5301 zone_foreach(uma_reclaim_domain_cb, &args); 5302 break; 5303 default: 5304 panic("unhandled reclamation request %d", req); 5305 } 5306 5307 /* 5308 * Some slabs may have been freed but this zone will be visited early 5309 * we visit again so that we can free pages that are empty once other 5310 * zones are drained. We have to do the same for buckets. 5311 */ 5312 uma_zone_reclaim_domain(slabzones[0], UMA_RECLAIM_DRAIN, domain); 5313 uma_zone_reclaim_domain(slabzones[1], UMA_RECLAIM_DRAIN, domain); 5314 bucket_zone_drain(domain); 5315 sx_sunlock(&uma_reclaim_lock); 5316 } 5317 5318 static volatile int uma_reclaim_needed; 5319 5320 void 5321 uma_reclaim_wakeup(void) 5322 { 5323 5324 if (atomic_fetchadd_int(&uma_reclaim_needed, 1) == 0) 5325 wakeup(uma_reclaim); 5326 } 5327 5328 void 5329 uma_reclaim_worker(void *arg __unused) 5330 { 5331 5332 for (;;) { 5333 sx_xlock(&uma_reclaim_lock); 5334 while (atomic_load_int(&uma_reclaim_needed) == 0) 5335 sx_sleep(uma_reclaim, &uma_reclaim_lock, PVM, "umarcl", 5336 hz); 5337 sx_xunlock(&uma_reclaim_lock); 5338 EVENTHANDLER_INVOKE(vm_lowmem, VM_LOW_KMEM); 5339 uma_reclaim(UMA_RECLAIM_DRAIN_CPU); 5340 atomic_store_int(&uma_reclaim_needed, 0); 5341 /* Don't fire more than once per-second. */ 5342 pause("umarclslp", hz); 5343 } 5344 } 5345 5346 /* See uma.h */ 5347 void 5348 uma_zone_reclaim(uma_zone_t zone, int req) 5349 { 5350 uma_zone_reclaim_domain(zone, req, UMA_ANYDOMAIN); 5351 } 5352 5353 void 5354 uma_zone_reclaim_domain(uma_zone_t zone, int req, int domain) 5355 { 5356 switch (req) { 5357 case UMA_RECLAIM_TRIM: 5358 zone_reclaim(zone, domain, M_NOWAIT, false); 5359 break; 5360 case UMA_RECLAIM_DRAIN: 5361 zone_reclaim(zone, domain, M_NOWAIT, true); 5362 break; 5363 case UMA_RECLAIM_DRAIN_CPU: 5364 pcpu_cache_drain_safe(zone); 5365 zone_reclaim(zone, domain, M_NOWAIT, true); 5366 break; 5367 default: 5368 panic("unhandled reclamation request %d", req); 5369 } 5370 } 5371 5372 /* See uma.h */ 5373 int 5374 uma_zone_exhausted(uma_zone_t zone) 5375 { 5376 5377 return (atomic_load_32(&zone->uz_sleepers) > 0); 5378 } 5379 5380 unsigned long 5381 uma_limit(void) 5382 { 5383 5384 return (uma_kmem_limit); 5385 } 5386 5387 void 5388 uma_set_limit(unsigned long limit) 5389 { 5390 5391 uma_kmem_limit = limit; 5392 } 5393 5394 unsigned long 5395 uma_size(void) 5396 { 5397 5398 return (atomic_load_long(&uma_kmem_total)); 5399 } 5400 5401 long 5402 uma_avail(void) 5403 { 5404 5405 return (uma_kmem_limit - uma_size()); 5406 } 5407 5408 #ifdef DDB 5409 /* 5410 * Generate statistics across both the zone and its per-cpu cache's. Return 5411 * desired statistics if the pointer is non-NULL for that statistic. 5412 * 5413 * Note: does not update the zone statistics, as it can't safely clear the 5414 * per-CPU cache statistic. 5415 * 5416 */ 5417 static void 5418 uma_zone_sumstat(uma_zone_t z, long *cachefreep, uint64_t *allocsp, 5419 uint64_t *freesp, uint64_t *sleepsp, uint64_t *xdomainp) 5420 { 5421 uma_cache_t cache; 5422 uint64_t allocs, frees, sleeps, xdomain; 5423 int cachefree, cpu; 5424 5425 allocs = frees = sleeps = xdomain = 0; 5426 cachefree = 0; 5427 CPU_FOREACH(cpu) { 5428 cache = &z->uz_cpu[cpu]; 5429 cachefree += cache->uc_allocbucket.ucb_cnt; 5430 cachefree += cache->uc_freebucket.ucb_cnt; 5431 xdomain += cache->uc_crossbucket.ucb_cnt; 5432 cachefree += cache->uc_crossbucket.ucb_cnt; 5433 allocs += cache->uc_allocs; 5434 frees += cache->uc_frees; 5435 } 5436 allocs += counter_u64_fetch(z->uz_allocs); 5437 frees += counter_u64_fetch(z->uz_frees); 5438 xdomain += counter_u64_fetch(z->uz_xdomain); 5439 sleeps += z->uz_sleeps; 5440 if (cachefreep != NULL) 5441 *cachefreep = cachefree; 5442 if (allocsp != NULL) 5443 *allocsp = allocs; 5444 if (freesp != NULL) 5445 *freesp = frees; 5446 if (sleepsp != NULL) 5447 *sleepsp = sleeps; 5448 if (xdomainp != NULL) 5449 *xdomainp = xdomain; 5450 } 5451 #endif /* DDB */ 5452 5453 static int 5454 sysctl_vm_zone_count(SYSCTL_HANDLER_ARGS) 5455 { 5456 uma_keg_t kz; 5457 uma_zone_t z; 5458 int count; 5459 5460 count = 0; 5461 rw_rlock(&uma_rwlock); 5462 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5463 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5464 count++; 5465 } 5466 LIST_FOREACH(z, &uma_cachezones, uz_link) 5467 count++; 5468 5469 rw_runlock(&uma_rwlock); 5470 return (sysctl_handle_int(oidp, &count, 0, req)); 5471 } 5472 5473 static void 5474 uma_vm_zone_stats(struct uma_type_header *uth, uma_zone_t z, struct sbuf *sbuf, 5475 struct uma_percpu_stat *ups, bool internal) 5476 { 5477 uma_zone_domain_t zdom; 5478 uma_cache_t cache; 5479 int i; 5480 5481 for (i = 0; i < vm_ndomains; i++) { 5482 zdom = ZDOM_GET(z, i); 5483 uth->uth_zone_free += zdom->uzd_nitems; 5484 } 5485 uth->uth_allocs = counter_u64_fetch(z->uz_allocs); 5486 uth->uth_frees = counter_u64_fetch(z->uz_frees); 5487 uth->uth_fails = counter_u64_fetch(z->uz_fails); 5488 uth->uth_xdomain = counter_u64_fetch(z->uz_xdomain); 5489 uth->uth_sleeps = z->uz_sleeps; 5490 5491 for (i = 0; i < mp_maxid + 1; i++) { 5492 bzero(&ups[i], sizeof(*ups)); 5493 if (internal || CPU_ABSENT(i)) 5494 continue; 5495 cache = &z->uz_cpu[i]; 5496 ups[i].ups_cache_free += cache->uc_allocbucket.ucb_cnt; 5497 ups[i].ups_cache_free += cache->uc_freebucket.ucb_cnt; 5498 ups[i].ups_cache_free += cache->uc_crossbucket.ucb_cnt; 5499 ups[i].ups_allocs = cache->uc_allocs; 5500 ups[i].ups_frees = cache->uc_frees; 5501 } 5502 } 5503 5504 static int 5505 sysctl_vm_zone_stats(SYSCTL_HANDLER_ARGS) 5506 { 5507 struct uma_stream_header ush; 5508 struct uma_type_header uth; 5509 struct uma_percpu_stat *ups; 5510 struct sbuf sbuf; 5511 uma_keg_t kz; 5512 uma_zone_t z; 5513 uint64_t items; 5514 uint32_t kfree, pages; 5515 int count, error, i; 5516 5517 error = sysctl_wire_old_buffer(req, 0); 5518 if (error != 0) 5519 return (error); 5520 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 5521 sbuf_clear_flags(&sbuf, SBUF_INCLUDENUL); 5522 ups = malloc((mp_maxid + 1) * sizeof(*ups), M_TEMP, M_WAITOK); 5523 5524 count = 0; 5525 rw_rlock(&uma_rwlock); 5526 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5527 LIST_FOREACH(z, &kz->uk_zones, uz_link) 5528 count++; 5529 } 5530 5531 LIST_FOREACH(z, &uma_cachezones, uz_link) 5532 count++; 5533 5534 /* 5535 * Insert stream header. 5536 */ 5537 bzero(&ush, sizeof(ush)); 5538 ush.ush_version = UMA_STREAM_VERSION; 5539 ush.ush_maxcpus = (mp_maxid + 1); 5540 ush.ush_count = count; 5541 (void)sbuf_bcat(&sbuf, &ush, sizeof(ush)); 5542 5543 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5544 kfree = pages = 0; 5545 for (i = 0; i < vm_ndomains; i++) { 5546 kfree += kz->uk_domain[i].ud_free_items; 5547 pages += kz->uk_domain[i].ud_pages; 5548 } 5549 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5550 bzero(&uth, sizeof(uth)); 5551 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5552 uth.uth_align = kz->uk_align; 5553 uth.uth_size = kz->uk_size; 5554 uth.uth_rsize = kz->uk_rsize; 5555 if (z->uz_max_items > 0) { 5556 items = UZ_ITEMS_COUNT(z->uz_items); 5557 uth.uth_pages = (items / kz->uk_ipers) * 5558 kz->uk_ppera; 5559 } else 5560 uth.uth_pages = pages; 5561 uth.uth_maxpages = (z->uz_max_items / kz->uk_ipers) * 5562 kz->uk_ppera; 5563 uth.uth_limit = z->uz_max_items; 5564 uth.uth_keg_free = kfree; 5565 5566 /* 5567 * A zone is secondary is it is not the first entry 5568 * on the keg's zone list. 5569 */ 5570 if ((z->uz_flags & UMA_ZONE_SECONDARY) && 5571 (LIST_FIRST(&kz->uk_zones) != z)) 5572 uth.uth_zone_flags = UTH_ZONE_SECONDARY; 5573 uma_vm_zone_stats(&uth, z, &sbuf, ups, 5574 kz->uk_flags & UMA_ZFLAG_INTERNAL); 5575 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5576 for (i = 0; i < mp_maxid + 1; i++) 5577 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5578 } 5579 } 5580 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5581 bzero(&uth, sizeof(uth)); 5582 strlcpy(uth.uth_name, z->uz_name, UTH_MAX_NAME); 5583 uth.uth_size = z->uz_size; 5584 uma_vm_zone_stats(&uth, z, &sbuf, ups, false); 5585 (void)sbuf_bcat(&sbuf, &uth, sizeof(uth)); 5586 for (i = 0; i < mp_maxid + 1; i++) 5587 (void)sbuf_bcat(&sbuf, &ups[i], sizeof(ups[i])); 5588 } 5589 5590 rw_runlock(&uma_rwlock); 5591 error = sbuf_finish(&sbuf); 5592 sbuf_delete(&sbuf); 5593 free(ups, M_TEMP); 5594 return (error); 5595 } 5596 5597 int 5598 sysctl_handle_uma_zone_max(SYSCTL_HANDLER_ARGS) 5599 { 5600 uma_zone_t zone = *(uma_zone_t *)arg1; 5601 int error, max; 5602 5603 max = uma_zone_get_max(zone); 5604 error = sysctl_handle_int(oidp, &max, 0, req); 5605 if (error || !req->newptr) 5606 return (error); 5607 5608 uma_zone_set_max(zone, max); 5609 5610 return (0); 5611 } 5612 5613 int 5614 sysctl_handle_uma_zone_cur(SYSCTL_HANDLER_ARGS) 5615 { 5616 uma_zone_t zone; 5617 int cur; 5618 5619 /* 5620 * Some callers want to add sysctls for global zones that 5621 * may not yet exist so they pass a pointer to a pointer. 5622 */ 5623 if (arg2 == 0) 5624 zone = *(uma_zone_t *)arg1; 5625 else 5626 zone = arg1; 5627 cur = uma_zone_get_cur(zone); 5628 return (sysctl_handle_int(oidp, &cur, 0, req)); 5629 } 5630 5631 static int 5632 sysctl_handle_uma_zone_allocs(SYSCTL_HANDLER_ARGS) 5633 { 5634 uma_zone_t zone = arg1; 5635 uint64_t cur; 5636 5637 cur = uma_zone_get_allocs(zone); 5638 return (sysctl_handle_64(oidp, &cur, 0, req)); 5639 } 5640 5641 static int 5642 sysctl_handle_uma_zone_frees(SYSCTL_HANDLER_ARGS) 5643 { 5644 uma_zone_t zone = arg1; 5645 uint64_t cur; 5646 5647 cur = uma_zone_get_frees(zone); 5648 return (sysctl_handle_64(oidp, &cur, 0, req)); 5649 } 5650 5651 static int 5652 sysctl_handle_uma_zone_flags(SYSCTL_HANDLER_ARGS) 5653 { 5654 struct sbuf sbuf; 5655 uma_zone_t zone = arg1; 5656 int error; 5657 5658 sbuf_new_for_sysctl(&sbuf, NULL, 0, req); 5659 if (zone->uz_flags != 0) 5660 sbuf_printf(&sbuf, "0x%b", zone->uz_flags, PRINT_UMA_ZFLAGS); 5661 else 5662 sbuf_printf(&sbuf, "0"); 5663 error = sbuf_finish(&sbuf); 5664 sbuf_delete(&sbuf); 5665 5666 return (error); 5667 } 5668 5669 static int 5670 sysctl_handle_uma_slab_efficiency(SYSCTL_HANDLER_ARGS) 5671 { 5672 uma_keg_t keg = arg1; 5673 int avail, effpct, total; 5674 5675 total = keg->uk_ppera * PAGE_SIZE; 5676 if ((keg->uk_flags & UMA_ZFLAG_OFFPAGE) != 0) 5677 total += slabzone(keg->uk_ipers)->uz_keg->uk_rsize; 5678 /* 5679 * We consider the client's requested size and alignment here, not the 5680 * real size determination uk_rsize, because we also adjust the real 5681 * size for internal implementation reasons (max bitset size). 5682 */ 5683 avail = keg->uk_ipers * roundup2(keg->uk_size, keg->uk_align + 1); 5684 if ((keg->uk_flags & UMA_ZONE_PCPU) != 0) 5685 avail *= mp_maxid + 1; 5686 effpct = 100 * avail / total; 5687 return (sysctl_handle_int(oidp, &effpct, 0, req)); 5688 } 5689 5690 static int 5691 sysctl_handle_uma_zone_items(SYSCTL_HANDLER_ARGS) 5692 { 5693 uma_zone_t zone = arg1; 5694 uint64_t cur; 5695 5696 cur = UZ_ITEMS_COUNT(atomic_load_64(&zone->uz_items)); 5697 return (sysctl_handle_64(oidp, &cur, 0, req)); 5698 } 5699 5700 #ifdef INVARIANTS 5701 static uma_slab_t 5702 uma_dbg_getslab(uma_zone_t zone, void *item) 5703 { 5704 uma_slab_t slab; 5705 uma_keg_t keg; 5706 uint8_t *mem; 5707 5708 /* 5709 * It is safe to return the slab here even though the 5710 * zone is unlocked because the item's allocation state 5711 * essentially holds a reference. 5712 */ 5713 mem = (uint8_t *)((uintptr_t)item & (~UMA_SLAB_MASK)); 5714 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5715 return (NULL); 5716 if (zone->uz_flags & UMA_ZFLAG_VTOSLAB) 5717 return (vtoslab((vm_offset_t)mem)); 5718 keg = zone->uz_keg; 5719 if ((keg->uk_flags & UMA_ZFLAG_HASH) == 0) 5720 return ((uma_slab_t)(mem + keg->uk_pgoff)); 5721 KEG_LOCK(keg, 0); 5722 slab = hash_sfind(&keg->uk_hash, mem); 5723 KEG_UNLOCK(keg, 0); 5724 5725 return (slab); 5726 } 5727 5728 static bool 5729 uma_dbg_zskip(uma_zone_t zone, void *mem) 5730 { 5731 5732 if ((zone->uz_flags & UMA_ZFLAG_CACHE) != 0) 5733 return (true); 5734 5735 return (uma_dbg_kskip(zone->uz_keg, mem)); 5736 } 5737 5738 static bool 5739 uma_dbg_kskip(uma_keg_t keg, void *mem) 5740 { 5741 uintptr_t idx; 5742 5743 if (dbg_divisor == 0) 5744 return (true); 5745 5746 if (dbg_divisor == 1) 5747 return (false); 5748 5749 idx = (uintptr_t)mem >> PAGE_SHIFT; 5750 if (keg->uk_ipers > 1) { 5751 idx *= keg->uk_ipers; 5752 idx += ((uintptr_t)mem & PAGE_MASK) / keg->uk_rsize; 5753 } 5754 5755 if ((idx / dbg_divisor) * dbg_divisor != idx) { 5756 counter_u64_add(uma_skip_cnt, 1); 5757 return (true); 5758 } 5759 counter_u64_add(uma_dbg_cnt, 1); 5760 5761 return (false); 5762 } 5763 5764 /* 5765 * Set up the slab's freei data such that uma_dbg_free can function. 5766 * 5767 */ 5768 static void 5769 uma_dbg_alloc(uma_zone_t zone, uma_slab_t slab, void *item) 5770 { 5771 uma_keg_t keg; 5772 int freei; 5773 5774 if (slab == NULL) { 5775 slab = uma_dbg_getslab(zone, item); 5776 if (slab == NULL) 5777 panic("uma: item %p did not belong to zone %s", 5778 item, zone->uz_name); 5779 } 5780 keg = zone->uz_keg; 5781 freei = slab_item_index(slab, keg, item); 5782 5783 if (BIT_TEST_SET_ATOMIC(keg->uk_ipers, freei, 5784 slab_dbg_bits(slab, keg))) 5785 panic("Duplicate alloc of %p from zone %p(%s) slab %p(%d)", 5786 item, zone, zone->uz_name, slab, freei); 5787 } 5788 5789 /* 5790 * Verifies freed addresses. Checks for alignment, valid slab membership 5791 * and duplicate frees. 5792 * 5793 */ 5794 static void 5795 uma_dbg_free(uma_zone_t zone, uma_slab_t slab, void *item) 5796 { 5797 uma_keg_t keg; 5798 int freei; 5799 5800 if (slab == NULL) { 5801 slab = uma_dbg_getslab(zone, item); 5802 if (slab == NULL) 5803 panic("uma: Freed item %p did not belong to zone %s", 5804 item, zone->uz_name); 5805 } 5806 keg = zone->uz_keg; 5807 freei = slab_item_index(slab, keg, item); 5808 5809 if (freei >= keg->uk_ipers) 5810 panic("Invalid free of %p from zone %p(%s) slab %p(%d)", 5811 item, zone, zone->uz_name, slab, freei); 5812 5813 if (slab_item(slab, keg, freei) != item) 5814 panic("Unaligned free of %p from zone %p(%s) slab %p(%d)", 5815 item, zone, zone->uz_name, slab, freei); 5816 5817 if (!BIT_TEST_CLR_ATOMIC(keg->uk_ipers, freei, 5818 slab_dbg_bits(slab, keg))) 5819 panic("Duplicate free of %p from zone %p(%s) slab %p(%d)", 5820 item, zone, zone->uz_name, slab, freei); 5821 } 5822 #endif /* INVARIANTS */ 5823 5824 #ifdef DDB 5825 static int64_t 5826 get_uma_stats(uma_keg_t kz, uma_zone_t z, uint64_t *allocs, uint64_t *used, 5827 uint64_t *sleeps, long *cachefree, uint64_t *xdomain) 5828 { 5829 uint64_t frees; 5830 int i; 5831 5832 if (kz->uk_flags & UMA_ZFLAG_INTERNAL) { 5833 *allocs = counter_u64_fetch(z->uz_allocs); 5834 frees = counter_u64_fetch(z->uz_frees); 5835 *sleeps = z->uz_sleeps; 5836 *cachefree = 0; 5837 *xdomain = 0; 5838 } else 5839 uma_zone_sumstat(z, cachefree, allocs, &frees, sleeps, 5840 xdomain); 5841 for (i = 0; i < vm_ndomains; i++) { 5842 *cachefree += ZDOM_GET(z, i)->uzd_nitems; 5843 if (!((z->uz_flags & UMA_ZONE_SECONDARY) && 5844 (LIST_FIRST(&kz->uk_zones) != z))) 5845 *cachefree += kz->uk_domain[i].ud_free_items; 5846 } 5847 *used = *allocs - frees; 5848 return (((int64_t)*used + *cachefree) * kz->uk_size); 5849 } 5850 5851 DB_SHOW_COMMAND_FLAGS(uma, db_show_uma, DB_CMD_MEMSAFE) 5852 { 5853 const char *fmt_hdr, *fmt_entry; 5854 uma_keg_t kz; 5855 uma_zone_t z; 5856 uint64_t allocs, used, sleeps, xdomain; 5857 long cachefree; 5858 /* variables for sorting */ 5859 uma_keg_t cur_keg; 5860 uma_zone_t cur_zone, last_zone; 5861 int64_t cur_size, last_size, size; 5862 int ties; 5863 5864 /* /i option produces machine-parseable CSV output */ 5865 if (modif[0] == 'i') { 5866 fmt_hdr = "%s,%s,%s,%s,%s,%s,%s,%s,%s\n"; 5867 fmt_entry = "\"%s\",%ju,%jd,%ld,%ju,%ju,%u,%jd,%ju\n"; 5868 } else { 5869 fmt_hdr = "%18s %6s %7s %7s %11s %7s %7s %10s %8s\n"; 5870 fmt_entry = "%18s %6ju %7jd %7ld %11ju %7ju %7u %10jd %8ju\n"; 5871 } 5872 5873 db_printf(fmt_hdr, "Zone", "Size", "Used", "Free", "Requests", 5874 "Sleeps", "Bucket", "Total Mem", "XFree"); 5875 5876 /* Sort the zones with largest size first. */ 5877 last_zone = NULL; 5878 last_size = INT64_MAX; 5879 for (;;) { 5880 cur_zone = NULL; 5881 cur_size = -1; 5882 ties = 0; 5883 LIST_FOREACH(kz, &uma_kegs, uk_link) { 5884 LIST_FOREACH(z, &kz->uk_zones, uz_link) { 5885 /* 5886 * In the case of size ties, print out zones 5887 * in the order they are encountered. That is, 5888 * when we encounter the most recently output 5889 * zone, we have already printed all preceding 5890 * ties, and we must print all following ties. 5891 */ 5892 if (z == last_zone) { 5893 ties = 1; 5894 continue; 5895 } 5896 size = get_uma_stats(kz, z, &allocs, &used, 5897 &sleeps, &cachefree, &xdomain); 5898 if (size > cur_size && size < last_size + ties) 5899 { 5900 cur_size = size; 5901 cur_zone = z; 5902 cur_keg = kz; 5903 } 5904 } 5905 } 5906 if (cur_zone == NULL) 5907 break; 5908 5909 size = get_uma_stats(cur_keg, cur_zone, &allocs, &used, 5910 &sleeps, &cachefree, &xdomain); 5911 db_printf(fmt_entry, cur_zone->uz_name, 5912 (uintmax_t)cur_keg->uk_size, (intmax_t)used, cachefree, 5913 (uintmax_t)allocs, (uintmax_t)sleeps, 5914 (unsigned)cur_zone->uz_bucket_size, (intmax_t)size, 5915 xdomain); 5916 5917 if (db_pager_quit) 5918 return; 5919 last_zone = cur_zone; 5920 last_size = cur_size; 5921 } 5922 } 5923 5924 DB_SHOW_COMMAND_FLAGS(umacache, db_show_umacache, DB_CMD_MEMSAFE) 5925 { 5926 uma_zone_t z; 5927 uint64_t allocs, frees; 5928 long cachefree; 5929 int i; 5930 5931 db_printf("%18s %8s %8s %8s %12s %8s\n", "Zone", "Size", "Used", "Free", 5932 "Requests", "Bucket"); 5933 LIST_FOREACH(z, &uma_cachezones, uz_link) { 5934 uma_zone_sumstat(z, &cachefree, &allocs, &frees, NULL, NULL); 5935 for (i = 0; i < vm_ndomains; i++) 5936 cachefree += ZDOM_GET(z, i)->uzd_nitems; 5937 db_printf("%18s %8ju %8jd %8ld %12ju %8u\n", 5938 z->uz_name, (uintmax_t)z->uz_size, 5939 (intmax_t)(allocs - frees), cachefree, 5940 (uintmax_t)allocs, z->uz_bucket_size); 5941 if (db_pager_quit) 5942 return; 5943 } 5944 } 5945 #endif /* DDB */ 5946