xref: /freebsd/sys/vm/swap_pager.c (revision b9f654b163bce26de79705e77b872427c9f2afa1)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/eventhandler.h>
83 #include <sys/fcntl.h>
84 #include <sys/lock.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/malloc.h>
89 #include <sys/pctrie.h>
90 #include <sys/priv.h>
91 #include <sys/proc.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/systm.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 
119 #include <geom/geom.h>
120 
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define	MAX_PAGEOUT_CLUSTER	32
127 #endif
128 
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
131 #endif
132 
133 #define	SWAP_META_PAGES		PCTRIE_COUNT
134 
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142 	vm_pindex_t	p;
143 	daddr_t		d[SWAP_META_PAGES];
144 };
145 
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;	/* Allocate from here next */
150 static int nswapdev;		/* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
153 
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A",
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A",
162     "Total amount of available swap storage.");
163 
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174 
175 /* bits from overcommit */
176 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
177 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
178 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
179 
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183 	uint64_t newval;
184 	u_long value = *(u_long *)arg1;
185 
186 	newval = ((uint64_t)value) << PAGE_SHIFT;
187 	return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189 
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193 
194 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196 
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200 	u_long r, s, prev, pincr;
201 	int res, error;
202 	static int curfail;
203 	static struct timeval lastfail;
204 	struct uidinfo *uip;
205 
206 	uip = cred->cr_ruidinfo;
207 
208 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209 	    (uintmax_t)incr));
210 
211 #ifdef RACCT
212 	if (racct_enable) {
213 		PROC_LOCK(curproc);
214 		error = racct_add(curproc, RACCT_SWAP, incr);
215 		PROC_UNLOCK(curproc);
216 		if (error != 0)
217 			return (0);
218 	}
219 #endif
220 
221 	pincr = atop(incr);
222 	res = 0;
223 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
224 	r = prev + pincr;
225 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227 		    vm_wire_count();
228 	} else
229 		s = 0;
230 	s += swap_total;
231 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233 		res = 1;
234 	} else {
235 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236 		if (prev < pincr)
237 			panic("swap_reserved < incr on overcommit fail");
238 	}
239 	if (res) {
240 		prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242 		    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244 			res = 0;
245 			prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246 			if (prev < pincr)
247 				panic("uip->ui_vmsize < incr on overcommit fail");
248 		}
249 	}
250 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252 		    uip->ui_uid, curproc->p_pid, incr);
253 	}
254 
255 #ifdef RACCT
256 	if (racct_enable && !res) {
257 		PROC_LOCK(curproc);
258 		racct_sub(curproc, RACCT_SWAP, incr);
259 		PROC_UNLOCK(curproc);
260 	}
261 #endif
262 
263 	return (res);
264 }
265 
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269 	struct uidinfo *uip;
270 	u_long pincr;
271 
272 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273 	    (uintmax_t)incr));
274 
275 	PROC_LOCK(curproc);
276 #ifdef RACCT
277 	if (racct_enable)
278 		racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280 	pincr = atop(incr);
281 	atomic_add_long(&swap_reserved, pincr);
282 	uip = curproc->p_ucred->cr_ruidinfo;
283 	atomic_add_long(&uip->ui_vmsize, pincr);
284 	PROC_UNLOCK(curproc);
285 }
286 
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290 	struct ucred *cred;
291 
292 	PROC_LOCK(curproc);
293 	cred = curproc->p_ucred;
294 	swap_release_by_cred(decr, cred);
295 	PROC_UNLOCK(curproc);
296 }
297 
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301 	u_long prev, pdecr;
302  	struct uidinfo *uip;
303 
304 	uip = cred->cr_ruidinfo;
305 
306 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307 	    (uintmax_t)decr));
308 
309 	pdecr = atop(decr);
310 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311 	if (prev < pdecr)
312 		panic("swap_reserved < decr");
313 
314 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315 	if (prev < pdecr)
316 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318 	if (racct_enable)
319 		racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322 
323 #define SWM_POP		0x01	/* pop out			*/
324 
325 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
328 static int nsw_wcount_async;	/* limit async write buffers */
329 static int nsw_wcount_async_max;/* assigned maximum			*/
330 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
331 
332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
334     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
335     "Maximum running async swap ops");
336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
338     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
339     "Swap Fragmentation Info");
340 
341 static struct sx sw_alloc_sx;
342 
343 /*
344  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
345  * of searching a named list by hashing it just a little.
346  */
347 
348 #define NOBJLISTS		8
349 
350 #define NOBJLIST(handle)	\
351 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
352 
353 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
354 static uma_zone_t swwbuf_zone;
355 static uma_zone_t swrbuf_zone;
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358 
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365 		swap_pager_alloc(void *handle, vm_ooffset_t size,
366 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void	swap_pager_dealloc(vm_object_t object);
368 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void	swap_pager_init(void);
376 static void	swap_pager_unswapped(vm_page_t);
377 static void	swap_pager_swapoff(struct swdevt *sp);
378 
379 struct pagerops swappagerops = {
380 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
381 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
382 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
383 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
384 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
385 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
386 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
387 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
388 };
389 
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
396 
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399 
400 static void	swp_sizecheck(void);
401 static void	swp_pager_async_iodone(struct buf *bp);
402 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int	swapongeom(struct vnode *);
404 static int	swaponvp(struct thread *, struct vnode *, u_long);
405 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
406 
407 /*
408  * Swap bitmap functions
409  */
410 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t	swp_pager_getswapspace(int *npages, int limit);
412 
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420 
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424 
425 	*start = SWAPBLK_NONE;
426 	*num = 0;
427 }
428 
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432 
433 	if (*start + *num == addr) {
434 		(*num)++;
435 	} else {
436 		swp_pager_freeswapspace(*start, *num);
437 		*start = addr;
438 		*num = 1;
439 	}
440 }
441 
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445 
446 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447 	    M_USE_RESERVE : 0)));
448 }
449 
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453 
454 	uma_zfree(swpctrie_zone, node);
455 }
456 
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458 
459 /*
460  * SWP_SIZECHECK() -	update swap_pager_full indication
461  *
462  *	update the swap_pager_almost_full indication and warn when we are
463  *	about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *	No restrictions on call
468  *	This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473 
474 	if (swap_pager_avail < nswap_lowat) {
475 		if (swap_pager_almost_full == 0) {
476 			printf("swap_pager: out of swap space\n");
477 			swap_pager_almost_full = 1;
478 		}
479 	} else {
480 		swap_pager_full = 0;
481 		if (swap_pager_avail > nswap_hiwat)
482 			swap_pager_almost_full = 0;
483 	}
484 }
485 
486 /*
487  * SWAP_PAGER_INIT() -	initialize the swap pager!
488  *
489  *	Expected to be started from system init.  NOTE:  This code is run
490  *	before much else so be careful what you depend on.  Most of the VM
491  *	system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496 	/*
497 	 * Initialize object lists
498 	 */
499 	int i;
500 
501 	for (i = 0; i < NOBJLISTS; ++i)
502 		TAILQ_INIT(&swap_pager_object_list[i]);
503 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504 	sx_init(&sw_alloc_sx, "swspsx");
505 	sx_init(&swdev_syscall_lock, "swsysc");
506 }
507 
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *	Expected to be started from pageout process once, prior to entering
512  *	its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517 	unsigned long n, n2;
518 
519 	/*
520 	 * Number of in-transit swap bp operations.  Don't
521 	 * exhaust the pbufs completely.  Make sure we
522 	 * initialize workable values (0 will work for hysteresis
523 	 * but it isn't very efficient).
524 	 *
525 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
526 	 * array (MAXPHYS/PAGE_SIZE) and our locally defined
527 	 * MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528 	 * constrained by the swap device interleave stripe size.
529 	 *
530 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
531 	 * designed to prevent other I/O from having high latencies due to
532 	 * our pageout I/O.  The value 4 works well for one or two active swap
533 	 * devices but is probably a little low if you have more.  Even so,
534 	 * a higher value would probably generate only a limited improvement
535 	 * with three or four active swap devices since the system does not
536 	 * typically have to pageout at extreme bandwidths.   We will want
537 	 * at least 2 per swap devices, and 4 is a pretty good value if you
538 	 * have one NFS swap device due to the command/ack latency over NFS.
539 	 * So it all works out pretty well.
540 	 */
541 	nsw_cluster_max = min((MAXPHYS/PAGE_SIZE), MAX_PAGEOUT_CLUSTER);
542 
543 	nsw_wcount_async = 4;
544 	nsw_wcount_async_max = nsw_wcount_async;
545 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
546 
547 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
548 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
549 
550 	/*
551 	 * Initialize our zone, taking the user's requested size or
552 	 * estimating the number we need based on the number of pages
553 	 * in the system.
554 	 */
555 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556 	    vm_cnt.v_page_count / 2;
557 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559 	if (swpctrie_zone == NULL)
560 		panic("failed to create swap pctrie zone.");
561 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562 	    NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563 	if (swblk_zone == NULL)
564 		panic("failed to create swap blk zone.");
565 	n2 = n;
566 	do {
567 		if (uma_zone_reserve_kva(swblk_zone, n))
568 			break;
569 		/*
570 		 * if the allocation failed, try a zone two thirds the
571 		 * size of the previous attempt.
572 		 */
573 		n -= ((n + 2) / 3);
574 	} while (n > 0);
575 
576 	/*
577 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
578 	 * requested size.  Account for the difference when
579 	 * calculating swap_maxpages.
580 	 */
581 	n = uma_zone_get_max(swblk_zone);
582 
583 	if (n < n2)
584 		printf("Swap blk zone entries changed from %lu to %lu.\n",
585 		    n2, n);
586 	swap_maxpages = n * SWAP_META_PAGES;
587 	swzone = n * sizeof(struct swblk);
588 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
589 		printf("Cannot reserve swap pctrie zone, "
590 		    "reduce kern.maxswzone.\n");
591 }
592 
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597 	vm_object_t object;
598 
599 	if (cred != NULL) {
600 		if (!swap_reserve_by_cred(size, cred))
601 			return (NULL);
602 		crhold(cred);
603 	}
604 
605 	/*
606 	 * The un_pager.swp.swp_blks trie is initialized by
607 	 * vm_object_allocate() to ensure the correct order of
608 	 * visibility to other threads.
609 	 */
610 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611 	    PAGE_MASK + size));
612 
613 	object->handle = handle;
614 	if (cred != NULL) {
615 		object->cred = cred;
616 		object->charge = size;
617 	}
618 	return (object);
619 }
620 
621 /*
622  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
623  *			its metadata structures.
624  *
625  *	This routine is called from the mmap and fork code to create a new
626  *	OBJT_SWAP object.
627  *
628  *	This routine must ensure that no live duplicate is created for
629  *	the named object request, which is protected against by
630  *	holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636 	vm_object_t object;
637 
638 	if (handle != NULL) {
639 		/*
640 		 * Reference existing named region or allocate new one.  There
641 		 * should not be a race here against swp_pager_meta_build()
642 		 * as called from vm_page_remove() in regards to the lookup
643 		 * of the handle.
644 		 */
645 		sx_xlock(&sw_alloc_sx);
646 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647 		if (object == NULL) {
648 			object = swap_pager_alloc_init(handle, cred, size,
649 			    offset);
650 			if (object != NULL) {
651 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652 				    object, pager_object_list);
653 			}
654 		}
655 		sx_xunlock(&sw_alloc_sx);
656 	} else {
657 		object = swap_pager_alloc_init(handle, cred, size, offset);
658 	}
659 	return (object);
660 }
661 
662 /*
663  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
664  *
665  *	The swap backing for the object is destroyed.  The code is
666  *	designed such that we can reinstantiate it later, but this
667  *	routine is typically called only when the entire object is
668  *	about to be destroyed.
669  *
670  *	The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675 
676 	VM_OBJECT_ASSERT_WLOCKED(object);
677 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678 
679 	/*
680 	 * Remove from list right away so lookups will fail if we block for
681 	 * pageout completion.
682 	 */
683 	if (object->handle != NULL) {
684 		VM_OBJECT_WUNLOCK(object);
685 		sx_xlock(&sw_alloc_sx);
686 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
687 		    pager_object_list);
688 		sx_xunlock(&sw_alloc_sx);
689 		VM_OBJECT_WLOCK(object);
690 	}
691 
692 	vm_object_pip_wait(object, "swpdea");
693 
694 	/*
695 	 * Free all remaining metadata.  We only bother to free it from
696 	 * the swap meta data.  We do not attempt to free swapblk's still
697 	 * associated with vm_page_t's for this object.  We do not care
698 	 * if paging is still in progress on some objects.
699 	 */
700 	swp_pager_meta_free_all(object);
701 	object->handle = NULL;
702 	object->type = OBJT_DEAD;
703 }
704 
705 /************************************************************************
706  *			SWAP PAGER BITMAP ROUTINES			*
707  ************************************************************************/
708 
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
711  *
712  *	Allocate swap for up to the requested number of pages, and at
713  *	least a minimum number of pages.  The starting swap block number
714  *	(a page index) is returned or SWAPBLK_NONE if the allocation
715  *	failed.
716  *
717  *	Also has the side effect of advising that somebody made a mistake
718  *	when they configured swap and didn't configure enough.
719  *
720  *	This routine may not sleep.
721  *
722  *	We allocate in round-robin fashion from the configured devices.
723  */
724 static daddr_t
725 swp_pager_getswapspace(int *io_npages, int limit)
726 {
727 	daddr_t blk;
728 	struct swdevt *sp;
729 	int mpages, npages;
730 
731 	blk = SWAPBLK_NONE;
732 	npages = mpages = *io_npages;
733 	mtx_lock(&sw_dev_mtx);
734 	sp = swdevhd;
735 	while (!TAILQ_EMPTY(&swtailq)) {
736 		if (sp == NULL)
737 			sp = TAILQ_FIRST(&swtailq);
738 		if ((sp->sw_flags & SW_CLOSING) == 0)
739 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
740 		if (blk != SWAPBLK_NONE)
741 			break;
742 		sp = TAILQ_NEXT(sp, sw_list);
743 		if (swdevhd == sp) {
744 			if (npages <= limit)
745 				break;
746 			mpages = npages - 1;
747 			npages >>= 1;
748 		}
749 	}
750 	if (blk != SWAPBLK_NONE) {
751 		*io_npages = npages;
752 		blk += sp->sw_first;
753 		sp->sw_used += npages;
754 		swap_pager_avail -= npages;
755 		swp_sizecheck();
756 		swdevhd = TAILQ_NEXT(sp, sw_list);
757 	} else {
758 		if (swap_pager_full != 2) {
759 			printf("swp_pager_getswapspace(%d): failed\n",
760 			    *io_npages);
761 			swap_pager_full = 2;
762 			swap_pager_almost_full = 1;
763 		}
764 		swdevhd = NULL;
765 	}
766 	mtx_unlock(&sw_dev_mtx);
767 	return (blk);
768 }
769 
770 static bool
771 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
772 {
773 
774 	return (blk >= sp->sw_first && blk < sp->sw_end);
775 }
776 
777 static void
778 swp_pager_strategy(struct buf *bp)
779 {
780 	struct swdevt *sp;
781 
782 	mtx_lock(&sw_dev_mtx);
783 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
784 		if (swp_pager_isondev(bp->b_blkno, sp)) {
785 			mtx_unlock(&sw_dev_mtx);
786 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
787 			    unmapped_buf_allowed) {
788 				bp->b_data = unmapped_buf;
789 				bp->b_offset = 0;
790 			} else {
791 				pmap_qenter((vm_offset_t)bp->b_data,
792 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
793 			}
794 			sp->sw_strategy(bp, sp);
795 			return;
796 		}
797 	}
798 	panic("Swapdev not found");
799 }
800 
801 
802 /*
803  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
804  *
805  *	This routine returns the specified swap blocks back to the bitmap.
806  *
807  *	This routine may not sleep.
808  */
809 static void
810 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
811 {
812 	struct swdevt *sp;
813 
814 	if (npages == 0)
815 		return;
816 	mtx_lock(&sw_dev_mtx);
817 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
818 		if (swp_pager_isondev(blk, sp)) {
819 			sp->sw_used -= npages;
820 			/*
821 			 * If we are attempting to stop swapping on
822 			 * this device, we don't want to mark any
823 			 * blocks free lest they be reused.
824 			 */
825 			if ((sp->sw_flags & SW_CLOSING) == 0) {
826 				blist_free(sp->sw_blist, blk - sp->sw_first,
827 				    npages);
828 				swap_pager_avail += npages;
829 				swp_sizecheck();
830 			}
831 			mtx_unlock(&sw_dev_mtx);
832 			return;
833 		}
834 	}
835 	panic("Swapdev not found");
836 }
837 
838 /*
839  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
840  */
841 static int
842 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
843 {
844 	struct sbuf sbuf;
845 	struct swdevt *sp;
846 	const char *devname;
847 	int error;
848 
849 	error = sysctl_wire_old_buffer(req, 0);
850 	if (error != 0)
851 		return (error);
852 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
853 	mtx_lock(&sw_dev_mtx);
854 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
855 		if (vn_isdisk(sp->sw_vp, NULL))
856 			devname = devtoname(sp->sw_vp->v_rdev);
857 		else
858 			devname = "[file]";
859 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
860 		blist_stats(sp->sw_blist, &sbuf);
861 	}
862 	mtx_unlock(&sw_dev_mtx);
863 	error = sbuf_finish(&sbuf);
864 	sbuf_delete(&sbuf);
865 	return (error);
866 }
867 
868 /*
869  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
870  *				range within an object.
871  *
872  *	This is a globally accessible routine.
873  *
874  *	This routine removes swapblk assignments from swap metadata.
875  *
876  *	The external callers of this routine typically have already destroyed
877  *	or renamed vm_page_t's associated with this range in the object so
878  *	we should be ok.
879  *
880  *	The object must be locked.
881  */
882 void
883 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
884 {
885 
886 	swp_pager_meta_free(object, start, size);
887 }
888 
889 /*
890  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
891  *
892  *	Assigns swap blocks to the specified range within the object.  The
893  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
894  *
895  *	Returns 0 on success, -1 on failure.
896  */
897 int
898 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
899 {
900 	daddr_t addr, blk, n_free, s_free;
901 	int i, j, n;
902 
903 	swp_pager_init_freerange(&s_free, &n_free);
904 	VM_OBJECT_WLOCK(object);
905 	for (i = 0; i < size; i += n) {
906 		n = min(BLIST_MAX_ALLOC, size - i);
907 		blk = swp_pager_getswapspace(&n, 1);
908 		if (blk == SWAPBLK_NONE) {
909 			swp_pager_meta_free(object, start, i);
910 			VM_OBJECT_WUNLOCK(object);
911 			return (-1);
912 		}
913 		for (j = 0; j < n; ++j) {
914 			addr = swp_pager_meta_build(object,
915 			    start + i + j, blk + j);
916 			if (addr != SWAPBLK_NONE)
917 				swp_pager_update_freerange(&s_free, &n_free,
918 				    addr);
919 		}
920 	}
921 	swp_pager_freeswapspace(s_free, n_free);
922 	VM_OBJECT_WUNLOCK(object);
923 	return (0);
924 }
925 
926 /*
927  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
928  *			and destroy the source.
929  *
930  *	Copy any valid swapblks from the source to the destination.  In
931  *	cases where both the source and destination have a valid swapblk,
932  *	we keep the destination's.
933  *
934  *	This routine is allowed to sleep.  It may sleep allocating metadata
935  *	indirectly through swp_pager_meta_build() or if paging is still in
936  *	progress on the source.
937  *
938  *	The source object contains no vm_page_t's (which is just as well)
939  *
940  *	The source object is of type OBJT_SWAP.
941  *
942  *	The source and destination objects must be locked.
943  *	Both object locks may temporarily be released.
944  */
945 void
946 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
947     vm_pindex_t offset, int destroysource)
948 {
949 	vm_pindex_t i;
950 	daddr_t dstaddr, n_free, s_free, srcaddr;
951 
952 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
953 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
954 
955 	/*
956 	 * If destroysource is set, we remove the source object from the
957 	 * swap_pager internal queue now.
958 	 */
959 	if (destroysource && srcobject->handle != NULL) {
960 		vm_object_pip_add(srcobject, 1);
961 		VM_OBJECT_WUNLOCK(srcobject);
962 		vm_object_pip_add(dstobject, 1);
963 		VM_OBJECT_WUNLOCK(dstobject);
964 		sx_xlock(&sw_alloc_sx);
965 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
966 		    pager_object_list);
967 		sx_xunlock(&sw_alloc_sx);
968 		VM_OBJECT_WLOCK(dstobject);
969 		vm_object_pip_wakeup(dstobject);
970 		VM_OBJECT_WLOCK(srcobject);
971 		vm_object_pip_wakeup(srcobject);
972 	}
973 
974 	/*
975 	 * Transfer source to destination.
976 	 */
977 	swp_pager_init_freerange(&s_free, &n_free);
978 	for (i = 0; i < dstobject->size; ++i) {
979 		srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
980 		if (srcaddr == SWAPBLK_NONE)
981 			continue;
982 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
983 		if (dstaddr != SWAPBLK_NONE) {
984 			/*
985 			 * Destination has valid swapblk or it is represented
986 			 * by a resident page.  We destroy the source block.
987 			 */
988 			swp_pager_update_freerange(&s_free, &n_free, srcaddr);
989 			continue;
990 		}
991 
992 		/*
993 		 * Destination has no swapblk and is not resident,
994 		 * copy source.
995 		 *
996 		 * swp_pager_meta_build() can sleep.
997 		 */
998 		vm_object_pip_add(srcobject, 1);
999 		VM_OBJECT_WUNLOCK(srcobject);
1000 		vm_object_pip_add(dstobject, 1);
1001 		dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1002 		KASSERT(dstaddr == SWAPBLK_NONE,
1003 		    ("Unexpected destination swapblk"));
1004 		vm_object_pip_wakeup(dstobject);
1005 		VM_OBJECT_WLOCK(srcobject);
1006 		vm_object_pip_wakeup(srcobject);
1007 	}
1008 	swp_pager_freeswapspace(s_free, n_free);
1009 
1010 	/*
1011 	 * Free left over swap blocks in source.
1012 	 *
1013 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1014 	 * double-remove the object from the swap queues.
1015 	 */
1016 	if (destroysource) {
1017 		swp_pager_meta_free_all(srcobject);
1018 		/*
1019 		 * Reverting the type is not necessary, the caller is going
1020 		 * to destroy srcobject directly, but I'm doing it here
1021 		 * for consistency since we've removed the object from its
1022 		 * queues.
1023 		 */
1024 		srcobject->type = OBJT_DEFAULT;
1025 	}
1026 }
1027 
1028 /*
1029  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1030  *				the requested page.
1031  *
1032  *	We determine whether good backing store exists for the requested
1033  *	page and return TRUE if it does, FALSE if it doesn't.
1034  *
1035  *	If TRUE, we also try to determine how much valid, contiguous backing
1036  *	store exists before and after the requested page.
1037  */
1038 static boolean_t
1039 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1040     int *after)
1041 {
1042 	daddr_t blk, blk0;
1043 	int i;
1044 
1045 	VM_OBJECT_ASSERT_LOCKED(object);
1046 
1047 	/*
1048 	 * do we have good backing store at the requested index ?
1049 	 */
1050 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1051 	if (blk0 == SWAPBLK_NONE) {
1052 		if (before)
1053 			*before = 0;
1054 		if (after)
1055 			*after = 0;
1056 		return (FALSE);
1057 	}
1058 
1059 	/*
1060 	 * find backwards-looking contiguous good backing store
1061 	 */
1062 	if (before != NULL) {
1063 		for (i = 1; i < SWB_NPAGES; i++) {
1064 			if (i > pindex)
1065 				break;
1066 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1067 			if (blk != blk0 - i)
1068 				break;
1069 		}
1070 		*before = i - 1;
1071 	}
1072 
1073 	/*
1074 	 * find forward-looking contiguous good backing store
1075 	 */
1076 	if (after != NULL) {
1077 		for (i = 1; i < SWB_NPAGES; i++) {
1078 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1079 			if (blk != blk0 + i)
1080 				break;
1081 		}
1082 		*after = i - 1;
1083 	}
1084 	return (TRUE);
1085 }
1086 
1087 /*
1088  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1089  *
1090  *	This removes any associated swap backing store, whether valid or
1091  *	not, from the page.
1092  *
1093  *	This routine is typically called when a page is made dirty, at
1094  *	which point any associated swap can be freed.  MADV_FREE also
1095  *	calls us in a special-case situation
1096  *
1097  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1098  *	should make the page dirty before calling this routine.  This routine
1099  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1100  *	depends on it.
1101  *
1102  *	This routine may not sleep.
1103  *
1104  *	The object containing the page must be locked.
1105  */
1106 static void
1107 swap_pager_unswapped(vm_page_t m)
1108 {
1109 	daddr_t srcaddr;
1110 
1111 	srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1112 	if (srcaddr != SWAPBLK_NONE)
1113 		swp_pager_freeswapspace(srcaddr, 1);
1114 }
1115 
1116 /*
1117  * swap_pager_getpages() - bring pages in from swap
1118  *
1119  *	Attempt to page in the pages in array "ma" of length "count".  The
1120  *	caller may optionally specify that additional pages preceding and
1121  *	succeeding the specified range be paged in.  The number of such pages
1122  *	is returned in the "rbehind" and "rahead" parameters, and they will
1123  *	be in the inactive queue upon return.
1124  *
1125  *	The pages in "ma" must be busied and will remain busied upon return.
1126  */
1127 static int
1128 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1129     int *rahead)
1130 {
1131 	struct buf *bp;
1132 	vm_page_t bm, mpred, msucc, p;
1133 	vm_pindex_t pindex;
1134 	daddr_t blk;
1135 	int i, maxahead, maxbehind, reqcount;
1136 
1137 	reqcount = count;
1138 
1139 	/*
1140 	 * Determine the final number of read-behind pages and
1141 	 * allocate them BEFORE releasing the object lock.  Otherwise,
1142 	 * there can be a problematic race with vm_object_split().
1143 	 * Specifically, vm_object_split() might first transfer pages
1144 	 * that precede ma[0] in the current object to a new object,
1145 	 * and then this function incorrectly recreates those pages as
1146 	 * read-behind pages in the current object.
1147 	 */
1148 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1149 		return (VM_PAGER_FAIL);
1150 
1151 	/*
1152 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1153 	 */
1154 	if (rahead != NULL) {
1155 		KASSERT(reqcount - 1 <= maxahead,
1156 		    ("page count %d extends beyond swap block", reqcount));
1157 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1158 		pindex = ma[reqcount - 1]->pindex;
1159 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1160 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1161 			*rahead = msucc->pindex - pindex - 1;
1162 	}
1163 	if (rbehind != NULL) {
1164 		*rbehind = imin(*rbehind, maxbehind);
1165 		pindex = ma[0]->pindex;
1166 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1167 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1168 			*rbehind = pindex - mpred->pindex - 1;
1169 	}
1170 
1171 	bm = ma[0];
1172 	for (i = 0; i < count; i++)
1173 		ma[i]->oflags |= VPO_SWAPINPROG;
1174 
1175 	/*
1176 	 * Allocate readahead and readbehind pages.
1177 	 */
1178 	if (rbehind != NULL) {
1179 		for (i = 1; i <= *rbehind; i++) {
1180 			p = vm_page_alloc(object, ma[0]->pindex - i,
1181 			    VM_ALLOC_NORMAL);
1182 			if (p == NULL)
1183 				break;
1184 			p->oflags |= VPO_SWAPINPROG;
1185 			bm = p;
1186 		}
1187 		*rbehind = i - 1;
1188 	}
1189 	if (rahead != NULL) {
1190 		for (i = 0; i < *rahead; i++) {
1191 			p = vm_page_alloc(object,
1192 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1193 			if (p == NULL)
1194 				break;
1195 			p->oflags |= VPO_SWAPINPROG;
1196 		}
1197 		*rahead = i;
1198 	}
1199 	if (rbehind != NULL)
1200 		count += *rbehind;
1201 	if (rahead != NULL)
1202 		count += *rahead;
1203 
1204 	vm_object_pip_add(object, count);
1205 
1206 	pindex = bm->pindex;
1207 	blk = swp_pager_meta_ctl(object, pindex, 0);
1208 	KASSERT(blk != SWAPBLK_NONE,
1209 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1210 
1211 	VM_OBJECT_WUNLOCK(object);
1212 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1213 	/* Pages cannot leave the object while busy. */
1214 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1215 		MPASS(p->pindex == bm->pindex + i);
1216 		bp->b_pages[i] = p;
1217 	}
1218 
1219 	bp->b_flags |= B_PAGING;
1220 	bp->b_iocmd = BIO_READ;
1221 	bp->b_iodone = swp_pager_async_iodone;
1222 	bp->b_rcred = crhold(thread0.td_ucred);
1223 	bp->b_wcred = crhold(thread0.td_ucred);
1224 	bp->b_blkno = blk;
1225 	bp->b_bcount = PAGE_SIZE * count;
1226 	bp->b_bufsize = PAGE_SIZE * count;
1227 	bp->b_npages = count;
1228 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1229 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1230 
1231 	VM_CNT_INC(v_swapin);
1232 	VM_CNT_ADD(v_swappgsin, count);
1233 
1234 	/*
1235 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1236 	 * this point because we automatically release it on completion.
1237 	 * Instead, we look at the one page we are interested in which we
1238 	 * still hold a lock on even through the I/O completion.
1239 	 *
1240 	 * The other pages in our ma[] array are also released on completion,
1241 	 * so we cannot assume they are valid anymore either.
1242 	 *
1243 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1244 	 */
1245 	BUF_KERNPROC(bp);
1246 	swp_pager_strategy(bp);
1247 
1248 	/*
1249 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1250 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1251 	 * is set in the metadata for each page in the request.
1252 	 */
1253 	VM_OBJECT_WLOCK(object);
1254 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1255 		ma[0]->oflags |= VPO_SWAPSLEEP;
1256 		VM_CNT_INC(v_intrans);
1257 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1258 		    "swread", hz * 20)) {
1259 			printf(
1260 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1261 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1262 		}
1263 	}
1264 
1265 	/*
1266 	 * If we had an unrecoverable read error pages will not be valid.
1267 	 */
1268 	for (i = 0; i < reqcount; i++)
1269 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1270 			return (VM_PAGER_ERROR);
1271 
1272 	return (VM_PAGER_OK);
1273 
1274 	/*
1275 	 * A final note: in a low swap situation, we cannot deallocate swap
1276 	 * and mark a page dirty here because the caller is likely to mark
1277 	 * the page clean when we return, causing the page to possibly revert
1278 	 * to all-zero's later.
1279 	 */
1280 }
1281 
1282 /*
1283  * 	swap_pager_getpages_async():
1284  *
1285  *	Right now this is emulation of asynchronous operation on top of
1286  *	swap_pager_getpages().
1287  */
1288 static int
1289 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1290     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1291 {
1292 	int r, error;
1293 
1294 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1295 	VM_OBJECT_WUNLOCK(object);
1296 	switch (r) {
1297 	case VM_PAGER_OK:
1298 		error = 0;
1299 		break;
1300 	case VM_PAGER_ERROR:
1301 		error = EIO;
1302 		break;
1303 	case VM_PAGER_FAIL:
1304 		error = EINVAL;
1305 		break;
1306 	default:
1307 		panic("unhandled swap_pager_getpages() error %d", r);
1308 	}
1309 	(iodone)(arg, ma, count, error);
1310 	VM_OBJECT_WLOCK(object);
1311 
1312 	return (r);
1313 }
1314 
1315 /*
1316  *	swap_pager_putpages:
1317  *
1318  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1319  *
1320  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1321  *	are automatically converted to SWAP objects.
1322  *
1323  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1324  *	vm_page reservation system coupled with properly written VFS devices
1325  *	should ensure that no low-memory deadlock occurs.  This is an area
1326  *	which needs work.
1327  *
1328  *	The parent has N vm_object_pip_add() references prior to
1329  *	calling us and will remove references for rtvals[] that are
1330  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1331  *	completion.
1332  *
1333  *	The parent has soft-busy'd the pages it passes us and will unbusy
1334  *	those whos rtvals[] entry is not set to VM_PAGER_PEND on return.
1335  *	We need to unbusy the rest on I/O completion.
1336  */
1337 static void
1338 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1339     int flags, int *rtvals)
1340 {
1341 	int i, n;
1342 	boolean_t sync;
1343 	daddr_t addr, n_free, s_free;
1344 
1345 	swp_pager_init_freerange(&s_free, &n_free);
1346 	if (count && ma[0]->object != object) {
1347 		panic("swap_pager_putpages: object mismatch %p/%p",
1348 		    object,
1349 		    ma[0]->object
1350 		);
1351 	}
1352 
1353 	/*
1354 	 * Step 1
1355 	 *
1356 	 * Turn object into OBJT_SWAP
1357 	 * check for bogus sysops
1358 	 * force sync if not pageout process
1359 	 */
1360 	if (object->type != OBJT_SWAP) {
1361 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1362 		KASSERT(addr == SWAPBLK_NONE,
1363 		    ("unexpected object swap block"));
1364 	}
1365 	VM_OBJECT_WUNLOCK(object);
1366 
1367 	n = 0;
1368 	if (curproc != pageproc)
1369 		sync = TRUE;
1370 	else
1371 		sync = (flags & VM_PAGER_PUT_SYNC) != 0;
1372 
1373 	/*
1374 	 * Step 2
1375 	 *
1376 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1377 	 * The page is left dirty until the pageout operation completes
1378 	 * successfully.
1379 	 */
1380 	for (i = 0; i < count; i += n) {
1381 		int j;
1382 		struct buf *bp;
1383 		daddr_t blk;
1384 
1385 		/*
1386 		 * Maximum I/O size is limited by a number of factors.
1387 		 */
1388 		n = min(BLIST_MAX_ALLOC, count - i);
1389 		n = min(n, nsw_cluster_max);
1390 
1391 		/* Get a block of swap of size up to size n. */
1392 		blk = swp_pager_getswapspace(&n, 4);
1393 		if (blk == SWAPBLK_NONE) {
1394 			for (j = 0; j < n; ++j)
1395 				rtvals[i+j] = VM_PAGER_FAIL;
1396 			continue;
1397 		}
1398 
1399 		/*
1400 		 * All I/O parameters have been satisfied, build the I/O
1401 		 * request and assign the swap space.
1402 		 */
1403 		if (sync != TRUE) {
1404 			mtx_lock(&swbuf_mtx);
1405 			while (nsw_wcount_async == 0)
1406 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1407 				    "swbufa", 0);
1408 			nsw_wcount_async--;
1409 			mtx_unlock(&swbuf_mtx);
1410 		}
1411 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1412 		if (sync != TRUE)
1413 			bp->b_flags = B_ASYNC;
1414 		bp->b_flags |= B_PAGING;
1415 		bp->b_iocmd = BIO_WRITE;
1416 
1417 		bp->b_rcred = crhold(thread0.td_ucred);
1418 		bp->b_wcred = crhold(thread0.td_ucred);
1419 		bp->b_bcount = PAGE_SIZE * n;
1420 		bp->b_bufsize = PAGE_SIZE * n;
1421 		bp->b_blkno = blk;
1422 
1423 		VM_OBJECT_WLOCK(object);
1424 		for (j = 0; j < n; ++j) {
1425 			vm_page_t mreq = ma[i+j];
1426 
1427 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1428 			    blk + j);
1429 			if (addr != SWAPBLK_NONE)
1430 				swp_pager_update_freerange(&s_free, &n_free,
1431 				    addr);
1432 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1433 			mreq->oflags |= VPO_SWAPINPROG;
1434 			bp->b_pages[j] = mreq;
1435 		}
1436 		VM_OBJECT_WUNLOCK(object);
1437 		bp->b_npages = n;
1438 		/*
1439 		 * Must set dirty range for NFS to work.
1440 		 */
1441 		bp->b_dirtyoff = 0;
1442 		bp->b_dirtyend = bp->b_bcount;
1443 
1444 		VM_CNT_INC(v_swapout);
1445 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1446 
1447 		/*
1448 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1449 		 * can call the async completion routine at the end of a
1450 		 * synchronous I/O operation.  Otherwise, our caller would
1451 		 * perform duplicate unbusy and wakeup operations on the page
1452 		 * and object, respectively.
1453 		 */
1454 		for (j = 0; j < n; j++)
1455 			rtvals[i + j] = VM_PAGER_PEND;
1456 
1457 		/*
1458 		 * asynchronous
1459 		 *
1460 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1461 		 */
1462 		if (sync == FALSE) {
1463 			bp->b_iodone = swp_pager_async_iodone;
1464 			BUF_KERNPROC(bp);
1465 			swp_pager_strategy(bp);
1466 			continue;
1467 		}
1468 
1469 		/*
1470 		 * synchronous
1471 		 *
1472 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1473 		 */
1474 		bp->b_iodone = bdone;
1475 		swp_pager_strategy(bp);
1476 
1477 		/*
1478 		 * Wait for the sync I/O to complete.
1479 		 */
1480 		bwait(bp, PVM, "swwrt");
1481 
1482 		/*
1483 		 * Now that we are through with the bp, we can call the
1484 		 * normal async completion, which frees everything up.
1485 		 */
1486 		swp_pager_async_iodone(bp);
1487 	}
1488 	VM_OBJECT_WLOCK(object);
1489 	swp_pager_freeswapspace(s_free, n_free);
1490 }
1491 
1492 /*
1493  *	swp_pager_async_iodone:
1494  *
1495  *	Completion routine for asynchronous reads and writes from/to swap.
1496  *	Also called manually by synchronous code to finish up a bp.
1497  *
1498  *	This routine may not sleep.
1499  */
1500 static void
1501 swp_pager_async_iodone(struct buf *bp)
1502 {
1503 	int i;
1504 	vm_object_t object = NULL;
1505 
1506 	/*
1507 	 * Report error - unless we ran out of memory, in which case
1508 	 * we've already logged it in swapgeom_strategy().
1509 	 */
1510 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1511 		printf(
1512 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1513 			"size %ld, error %d\n",
1514 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1515 		    (long)bp->b_blkno,
1516 		    (long)bp->b_bcount,
1517 		    bp->b_error
1518 		);
1519 	}
1520 
1521 	/*
1522 	 * remove the mapping for kernel virtual
1523 	 */
1524 	if (buf_mapped(bp))
1525 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1526 	else
1527 		bp->b_data = bp->b_kvabase;
1528 
1529 	if (bp->b_npages) {
1530 		object = bp->b_pages[0]->object;
1531 		VM_OBJECT_WLOCK(object);
1532 	}
1533 
1534 	/*
1535 	 * cleanup pages.  If an error occurs writing to swap, we are in
1536 	 * very serious trouble.  If it happens to be a disk error, though,
1537 	 * we may be able to recover by reassigning the swap later on.  So
1538 	 * in this case we remove the m->swapblk assignment for the page
1539 	 * but do not free it in the rlist.  The errornous block(s) are thus
1540 	 * never reallocated as swap.  Redirty the page and continue.
1541 	 */
1542 	for (i = 0; i < bp->b_npages; ++i) {
1543 		vm_page_t m = bp->b_pages[i];
1544 
1545 		m->oflags &= ~VPO_SWAPINPROG;
1546 		if (m->oflags & VPO_SWAPSLEEP) {
1547 			m->oflags &= ~VPO_SWAPSLEEP;
1548 			wakeup(&object->paging_in_progress);
1549 		}
1550 
1551 		if (bp->b_ioflags & BIO_ERROR) {
1552 			/*
1553 			 * If an error occurs I'd love to throw the swapblk
1554 			 * away without freeing it back to swapspace, so it
1555 			 * can never be used again.  But I can't from an
1556 			 * interrupt.
1557 			 */
1558 			if (bp->b_iocmd == BIO_READ) {
1559 				/*
1560 				 * NOTE: for reads, m->dirty will probably
1561 				 * be overridden by the original caller of
1562 				 * getpages so don't play cute tricks here.
1563 				 */
1564 				m->valid = 0;
1565 			} else {
1566 				/*
1567 				 * If a write error occurs, reactivate page
1568 				 * so it doesn't clog the inactive list,
1569 				 * then finish the I/O.
1570 				 */
1571 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1572 				vm_page_lock(m);
1573 				vm_page_activate(m);
1574 				vm_page_unlock(m);
1575 				vm_page_sunbusy(m);
1576 			}
1577 		} else if (bp->b_iocmd == BIO_READ) {
1578 			/*
1579 			 * NOTE: for reads, m->dirty will probably be
1580 			 * overridden by the original caller of getpages so
1581 			 * we cannot set them in order to free the underlying
1582 			 * swap in a low-swap situation.  I don't think we'd
1583 			 * want to do that anyway, but it was an optimization
1584 			 * that existed in the old swapper for a time before
1585 			 * it got ripped out due to precisely this problem.
1586 			 */
1587 			KASSERT(!pmap_page_is_mapped(m),
1588 			    ("swp_pager_async_iodone: page %p is mapped", m));
1589 			KASSERT(m->dirty == 0,
1590 			    ("swp_pager_async_iodone: page %p is dirty", m));
1591 
1592 			m->valid = VM_PAGE_BITS_ALL;
1593 			if (i < bp->b_pgbefore ||
1594 			    i >= bp->b_npages - bp->b_pgafter)
1595 				vm_page_readahead_finish(m);
1596 		} else {
1597 			/*
1598 			 * For write success, clear the dirty
1599 			 * status, then finish the I/O ( which decrements the
1600 			 * busy count and possibly wakes waiter's up ).
1601 			 * A page is only written to swap after a period of
1602 			 * inactivity.  Therefore, we do not expect it to be
1603 			 * reused.
1604 			 */
1605 			KASSERT(!pmap_page_is_write_mapped(m),
1606 			    ("swp_pager_async_iodone: page %p is not write"
1607 			    " protected", m));
1608 			vm_page_undirty(m);
1609 			vm_page_lock(m);
1610 			vm_page_deactivate_noreuse(m);
1611 			vm_page_unlock(m);
1612 			vm_page_sunbusy(m);
1613 		}
1614 	}
1615 
1616 	/*
1617 	 * adjust pip.  NOTE: the original parent may still have its own
1618 	 * pip refs on the object.
1619 	 */
1620 	if (object != NULL) {
1621 		vm_object_pip_wakeupn(object, bp->b_npages);
1622 		VM_OBJECT_WUNLOCK(object);
1623 	}
1624 
1625 	/*
1626 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1627 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1628 	 * trigger a KASSERT in relpbuf().
1629 	 */
1630 	if (bp->b_vp) {
1631 		    bp->b_vp = NULL;
1632 		    bp->b_bufobj = NULL;
1633 	}
1634 	/*
1635 	 * release the physical I/O buffer
1636 	 */
1637 	if (bp->b_flags & B_ASYNC) {
1638 		mtx_lock(&swbuf_mtx);
1639 		if (++nsw_wcount_async == 1)
1640 			wakeup(&nsw_wcount_async);
1641 		mtx_unlock(&swbuf_mtx);
1642 	}
1643 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1644 }
1645 
1646 int
1647 swap_pager_nswapdev(void)
1648 {
1649 
1650 	return (nswapdev);
1651 }
1652 
1653 static void
1654 swp_pager_force_dirty(vm_page_t m)
1655 {
1656 
1657 	vm_page_dirty(m);
1658 #ifdef INVARIANTS
1659 	vm_page_lock(m);
1660 	if (!vm_page_wired(m) && m->queue == PQ_NONE)
1661 		panic("page %p is neither wired nor queued", m);
1662 	vm_page_unlock(m);
1663 #endif
1664 	vm_page_xunbusy(m);
1665 }
1666 
1667 static void
1668 swp_pager_force_launder(vm_page_t m)
1669 {
1670 
1671 	vm_page_dirty(m);
1672 	vm_page_lock(m);
1673 	vm_page_launder(m);
1674 	vm_page_unlock(m);
1675 	vm_page_xunbusy(m);
1676 }
1677 
1678 /*
1679  * SWP_PAGER_FORCE_PAGEIN() - force a swap block to be paged in
1680  *
1681  *	This routine dissociates the page at the given index within an object
1682  *	from its backing store, paging it in if it does not reside in memory.
1683  *	If the page is paged in, it is marked dirty and placed in the laundry
1684  *	queue.  The page is marked dirty because it no longer has backing
1685  *	store.  It is placed in the laundry queue because it has not been
1686  *	accessed recently.  Otherwise, it would already reside in memory.
1687  *
1688  *	We also attempt to swap in all other pages in the swap block.
1689  *	However, we only guarantee that the one at the specified index is
1690  *	paged in.
1691  *
1692  *	XXX - The code to page the whole block in doesn't work, so we
1693  *	      revert to the one-by-one behavior for now.  Sigh.
1694  */
1695 static void
1696 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex)
1697 {
1698 	vm_page_t m;
1699 
1700 	vm_object_pip_add(object, 1);
1701 	m = vm_page_grab(object, pindex, VM_ALLOC_NORMAL);
1702 	if (m->valid == VM_PAGE_BITS_ALL) {
1703 		vm_object_pip_wakeup(object);
1704 		swp_pager_force_dirty(m);
1705 		vm_pager_page_unswapped(m);
1706 		return;
1707 	}
1708 
1709 	if (swap_pager_getpages(object, &m, 1, NULL, NULL) != VM_PAGER_OK)
1710 		panic("swap_pager_force_pagein: read from swap failed");/*XXX*/
1711 	vm_object_pip_wakeup(object);
1712 	swp_pager_force_launder(m);
1713 	vm_pager_page_unswapped(m);
1714 }
1715 
1716 /*
1717  *	swap_pager_swapoff_object:
1718  *
1719  *	Page in all of the pages that have been paged out for an object
1720  *	from a given swap device.
1721  */
1722 static void
1723 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1724 {
1725 	struct swblk *sb;
1726 	vm_pindex_t pi;
1727 	int i;
1728 
1729 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1730 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1731 		pi = sb->p + SWAP_META_PAGES;
1732 		for (i = 0; i < SWAP_META_PAGES; i++) {
1733 			if (sb->d[i] == SWAPBLK_NONE)
1734 				continue;
1735 			if (swp_pager_isondev(sb->d[i], sp))
1736 				swp_pager_force_pagein(object, sb->p + i);
1737 		}
1738 	}
1739 }
1740 
1741 /*
1742  *	swap_pager_swapoff:
1743  *
1744  *	Page in all of the pages that have been paged out to the
1745  *	given device.  The corresponding blocks in the bitmap must be
1746  *	marked as allocated and the device must be flagged SW_CLOSING.
1747  *	There may be no processes swapped out to the device.
1748  *
1749  *	This routine may block.
1750  */
1751 static void
1752 swap_pager_swapoff(struct swdevt *sp)
1753 {
1754 	vm_object_t object;
1755 	int retries;
1756 
1757 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1758 
1759 	retries = 0;
1760 full_rescan:
1761 	mtx_lock(&vm_object_list_mtx);
1762 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1763 		if (object->type != OBJT_SWAP)
1764 			continue;
1765 		mtx_unlock(&vm_object_list_mtx);
1766 		/* Depends on type-stability. */
1767 		VM_OBJECT_WLOCK(object);
1768 
1769 		/*
1770 		 * Dead objects are eventually terminated on their own.
1771 		 */
1772 		if ((object->flags & OBJ_DEAD) != 0)
1773 			goto next_obj;
1774 
1775 		/*
1776 		 * Sync with fences placed after pctrie
1777 		 * initialization.  We must not access pctrie below
1778 		 * unless we checked that our object is swap and not
1779 		 * dead.
1780 		 */
1781 		atomic_thread_fence_acq();
1782 		if (object->type != OBJT_SWAP)
1783 			goto next_obj;
1784 
1785 		swap_pager_swapoff_object(sp, object);
1786 next_obj:
1787 		VM_OBJECT_WUNLOCK(object);
1788 		mtx_lock(&vm_object_list_mtx);
1789 	}
1790 	mtx_unlock(&vm_object_list_mtx);
1791 
1792 	if (sp->sw_used) {
1793 		/*
1794 		 * Objects may be locked or paging to the device being
1795 		 * removed, so we will miss their pages and need to
1796 		 * make another pass.  We have marked this device as
1797 		 * SW_CLOSING, so the activity should finish soon.
1798 		 */
1799 		retries++;
1800 		if (retries > 100) {
1801 			panic("swapoff: failed to locate %d swap blocks",
1802 			    sp->sw_used);
1803 		}
1804 		pause("swpoff", hz / 20);
1805 		goto full_rescan;
1806 	}
1807 	EVENTHANDLER_INVOKE(swapoff, sp);
1808 }
1809 
1810 /************************************************************************
1811  *				SWAP META DATA 				*
1812  ************************************************************************
1813  *
1814  *	These routines manipulate the swap metadata stored in the
1815  *	OBJT_SWAP object.
1816  *
1817  *	Swap metadata is implemented with a global hash and not directly
1818  *	linked into the object.  Instead the object simply contains
1819  *	appropriate tracking counters.
1820  */
1821 
1822 /*
1823  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1824  */
1825 static bool
1826 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1827 {
1828 	int i;
1829 
1830 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1831 	for (i = start; i < limit; i++) {
1832 		if (sb->d[i] != SWAPBLK_NONE)
1833 			return (false);
1834 	}
1835 	return (true);
1836 }
1837 
1838 /*
1839  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1840  *
1841  *	We first convert the object to a swap object if it is a default
1842  *	object.
1843  *
1844  *	The specified swapblk is added to the object's swap metadata.  If
1845  *	the swapblk is not valid, it is freed instead.  Any previously
1846  *	assigned swapblk is returned.
1847  */
1848 static daddr_t
1849 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1850 {
1851 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1852 	struct swblk *sb, *sb1;
1853 	vm_pindex_t modpi, rdpi;
1854 	daddr_t prev_swapblk;
1855 	int error, i;
1856 
1857 	VM_OBJECT_ASSERT_WLOCKED(object);
1858 
1859 	/*
1860 	 * Convert default object to swap object if necessary
1861 	 */
1862 	if (object->type != OBJT_SWAP) {
1863 		pctrie_init(&object->un_pager.swp.swp_blks);
1864 
1865 		/*
1866 		 * Ensure that swap_pager_swapoff()'s iteration over
1867 		 * object_list does not see a garbage pctrie.
1868 		 */
1869 		atomic_thread_fence_rel();
1870 
1871 		object->type = OBJT_SWAP;
1872 		KASSERT(object->handle == NULL, ("default pager with handle"));
1873 	}
1874 
1875 	rdpi = rounddown(pindex, SWAP_META_PAGES);
1876 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1877 	if (sb == NULL) {
1878 		if (swapblk == SWAPBLK_NONE)
1879 			return (SWAPBLK_NONE);
1880 		for (;;) {
1881 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1882 			    pageproc ? M_USE_RESERVE : 0));
1883 			if (sb != NULL) {
1884 				sb->p = rdpi;
1885 				for (i = 0; i < SWAP_META_PAGES; i++)
1886 					sb->d[i] = SWAPBLK_NONE;
1887 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1888 				    1, 0))
1889 					printf("swblk zone ok\n");
1890 				break;
1891 			}
1892 			VM_OBJECT_WUNLOCK(object);
1893 			if (uma_zone_exhausted(swblk_zone)) {
1894 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1895 				    0, 1))
1896 					printf("swap blk zone exhausted, "
1897 					    "increase kern.maxswzone\n");
1898 				vm_pageout_oom(VM_OOM_SWAPZ);
1899 				pause("swzonxb", 10);
1900 			} else
1901 				uma_zwait(swblk_zone);
1902 			VM_OBJECT_WLOCK(object);
1903 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1904 			    rdpi);
1905 			if (sb != NULL)
1906 				/*
1907 				 * Somebody swapped out a nearby page,
1908 				 * allocating swblk at the rdpi index,
1909 				 * while we dropped the object lock.
1910 				 */
1911 				goto allocated;
1912 		}
1913 		for (;;) {
1914 			error = SWAP_PCTRIE_INSERT(
1915 			    &object->un_pager.swp.swp_blks, sb);
1916 			if (error == 0) {
1917 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1918 				    1, 0))
1919 					printf("swpctrie zone ok\n");
1920 				break;
1921 			}
1922 			VM_OBJECT_WUNLOCK(object);
1923 			if (uma_zone_exhausted(swpctrie_zone)) {
1924 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1925 				    0, 1))
1926 					printf("swap pctrie zone exhausted, "
1927 					    "increase kern.maxswzone\n");
1928 				vm_pageout_oom(VM_OOM_SWAPZ);
1929 				pause("swzonxp", 10);
1930 			} else
1931 				uma_zwait(swpctrie_zone);
1932 			VM_OBJECT_WLOCK(object);
1933 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1934 			    rdpi);
1935 			if (sb1 != NULL) {
1936 				uma_zfree(swblk_zone, sb);
1937 				sb = sb1;
1938 				goto allocated;
1939 			}
1940 		}
1941 	}
1942 allocated:
1943 	MPASS(sb->p == rdpi);
1944 
1945 	modpi = pindex % SWAP_META_PAGES;
1946 	/* Return prior contents of metadata. */
1947 	prev_swapblk = sb->d[modpi];
1948 	/* Enter block into metadata. */
1949 	sb->d[modpi] = swapblk;
1950 
1951 	/*
1952 	 * Free the swblk if we end up with the empty page run.
1953 	 */
1954 	if (swapblk == SWAPBLK_NONE &&
1955 	    swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1956 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1957 		uma_zfree(swblk_zone, sb);
1958 	}
1959 	return (prev_swapblk);
1960 }
1961 
1962 /*
1963  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1964  *
1965  *	The requested range of blocks is freed, with any associated swap
1966  *	returned to the swap bitmap.
1967  *
1968  *	This routine will free swap metadata structures as they are cleaned
1969  *	out.  This routine does *NOT* operate on swap metadata associated
1970  *	with resident pages.
1971  */
1972 static void
1973 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
1974 {
1975 	struct swblk *sb;
1976 	daddr_t n_free, s_free;
1977 	vm_pindex_t last;
1978 	int i, limit, start;
1979 
1980 	VM_OBJECT_ASSERT_WLOCKED(object);
1981 	if (object->type != OBJT_SWAP || count == 0)
1982 		return;
1983 
1984 	swp_pager_init_freerange(&s_free, &n_free);
1985 	last = pindex + count;
1986 	for (;;) {
1987 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
1988 		    rounddown(pindex, SWAP_META_PAGES));
1989 		if (sb == NULL || sb->p >= last)
1990 			break;
1991 		start = pindex > sb->p ? pindex - sb->p : 0;
1992 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
1993 		    SWAP_META_PAGES;
1994 		for (i = start; i < limit; i++) {
1995 			if (sb->d[i] == SWAPBLK_NONE)
1996 				continue;
1997 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
1998 			sb->d[i] = SWAPBLK_NONE;
1999 		}
2000 		pindex = sb->p + SWAP_META_PAGES;
2001 		if (swp_pager_swblk_empty(sb, 0, start) &&
2002 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2003 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2004 			    sb->p);
2005 			uma_zfree(swblk_zone, sb);
2006 		}
2007 	}
2008 	swp_pager_freeswapspace(s_free, n_free);
2009 }
2010 
2011 /*
2012  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2013  *
2014  *	This routine locates and destroys all swap metadata associated with
2015  *	an object.
2016  */
2017 static void
2018 swp_pager_meta_free_all(vm_object_t object)
2019 {
2020 	struct swblk *sb;
2021 	daddr_t n_free, s_free;
2022 	vm_pindex_t pindex;
2023 	int i;
2024 
2025 	VM_OBJECT_ASSERT_WLOCKED(object);
2026 	if (object->type != OBJT_SWAP)
2027 		return;
2028 
2029 	swp_pager_init_freerange(&s_free, &n_free);
2030 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2031 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2032 		pindex = sb->p + SWAP_META_PAGES;
2033 		for (i = 0; i < SWAP_META_PAGES; i++) {
2034 			if (sb->d[i] == SWAPBLK_NONE)
2035 				continue;
2036 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2037 		}
2038 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2039 		uma_zfree(swblk_zone, sb);
2040 	}
2041 	swp_pager_freeswapspace(s_free, n_free);
2042 }
2043 
2044 /*
2045  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2046  *
2047  *	This routine is capable of looking up, or removing swapblk
2048  *	assignments in the swap meta data.  It returns the swapblk being
2049  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2050  *
2051  *	When acting on a busy resident page and paging is in progress, we
2052  *	have to wait until paging is complete but otherwise can act on the
2053  *	busy page.
2054  *
2055  *	SWM_POP		remove from meta data but do not free it
2056  */
2057 static daddr_t
2058 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2059 {
2060 	struct swblk *sb;
2061 	daddr_t r1;
2062 
2063 	if ((flags & SWM_POP) != 0)
2064 		VM_OBJECT_ASSERT_WLOCKED(object);
2065 	else
2066 		VM_OBJECT_ASSERT_LOCKED(object);
2067 
2068 	/*
2069 	 * The meta data only exists if the object is OBJT_SWAP
2070 	 * and even then might not be allocated yet.
2071 	 */
2072 	if (object->type != OBJT_SWAP)
2073 		return (SWAPBLK_NONE);
2074 
2075 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2076 	    rounddown(pindex, SWAP_META_PAGES));
2077 	if (sb == NULL)
2078 		return (SWAPBLK_NONE);
2079 	r1 = sb->d[pindex % SWAP_META_PAGES];
2080 	if (r1 == SWAPBLK_NONE)
2081 		return (SWAPBLK_NONE);
2082 	if ((flags & SWM_POP) != 0) {
2083 		sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2084 		if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2085 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2086 			    rounddown(pindex, SWAP_META_PAGES));
2087 			uma_zfree(swblk_zone, sb);
2088 		}
2089 	}
2090 	return (r1);
2091 }
2092 
2093 /*
2094  * Returns the least page index which is greater than or equal to the
2095  * parameter pindex and for which there is a swap block allocated.
2096  * Returns object's size if the object's type is not swap or if there
2097  * are no allocated swap blocks for the object after the requested
2098  * pindex.
2099  */
2100 vm_pindex_t
2101 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2102 {
2103 	struct swblk *sb;
2104 	int i;
2105 
2106 	VM_OBJECT_ASSERT_LOCKED(object);
2107 	if (object->type != OBJT_SWAP)
2108 		return (object->size);
2109 
2110 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2111 	    rounddown(pindex, SWAP_META_PAGES));
2112 	if (sb == NULL)
2113 		return (object->size);
2114 	if (sb->p < pindex) {
2115 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2116 			if (sb->d[i] != SWAPBLK_NONE)
2117 				return (sb->p + i);
2118 		}
2119 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2120 		    roundup(pindex, SWAP_META_PAGES));
2121 		if (sb == NULL)
2122 			return (object->size);
2123 	}
2124 	for (i = 0; i < SWAP_META_PAGES; i++) {
2125 		if (sb->d[i] != SWAPBLK_NONE)
2126 			return (sb->p + i);
2127 	}
2128 
2129 	/*
2130 	 * We get here if a swblk is present in the trie but it
2131 	 * doesn't map any blocks.
2132 	 */
2133 	MPASS(0);
2134 	return (object->size);
2135 }
2136 
2137 /*
2138  * System call swapon(name) enables swapping on device name,
2139  * which must be in the swdevsw.  Return EBUSY
2140  * if already swapping on this device.
2141  */
2142 #ifndef _SYS_SYSPROTO_H_
2143 struct swapon_args {
2144 	char *name;
2145 };
2146 #endif
2147 
2148 /*
2149  * MPSAFE
2150  */
2151 /* ARGSUSED */
2152 int
2153 sys_swapon(struct thread *td, struct swapon_args *uap)
2154 {
2155 	struct vattr attr;
2156 	struct vnode *vp;
2157 	struct nameidata nd;
2158 	int error;
2159 
2160 	error = priv_check(td, PRIV_SWAPON);
2161 	if (error)
2162 		return (error);
2163 
2164 	sx_xlock(&swdev_syscall_lock);
2165 
2166 	/*
2167 	 * Swap metadata may not fit in the KVM if we have physical
2168 	 * memory of >1GB.
2169 	 */
2170 	if (swblk_zone == NULL) {
2171 		error = ENOMEM;
2172 		goto done;
2173 	}
2174 
2175 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2176 	    uap->name, td);
2177 	error = namei(&nd);
2178 	if (error)
2179 		goto done;
2180 
2181 	NDFREE(&nd, NDF_ONLY_PNBUF);
2182 	vp = nd.ni_vp;
2183 
2184 	if (vn_isdisk(vp, &error)) {
2185 		error = swapongeom(vp);
2186 	} else if (vp->v_type == VREG &&
2187 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2188 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2189 		/*
2190 		 * Allow direct swapping to NFS regular files in the same
2191 		 * way that nfs_mountroot() sets up diskless swapping.
2192 		 */
2193 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2194 	}
2195 
2196 	if (error)
2197 		vrele(vp);
2198 done:
2199 	sx_xunlock(&swdev_syscall_lock);
2200 	return (error);
2201 }
2202 
2203 /*
2204  * Check that the total amount of swap currently configured does not
2205  * exceed half the theoretical maximum.  If it does, print a warning
2206  * message.
2207  */
2208 static void
2209 swapon_check_swzone(void)
2210 {
2211 	unsigned long maxpages, npages;
2212 
2213 	npages = swap_total;
2214 	/* absolute maximum we can handle assuming 100% efficiency */
2215 	maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2216 
2217 	/* recommend using no more than half that amount */
2218 	if (npages > maxpages / 2) {
2219 		printf("warning: total configured swap (%lu pages) "
2220 		    "exceeds maximum recommended amount (%lu pages).\n",
2221 		    npages, maxpages / 2);
2222 		printf("warning: increase kern.maxswzone "
2223 		    "or reduce amount of swap.\n");
2224 	}
2225 }
2226 
2227 static void
2228 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2229     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2230 {
2231 	struct swdevt *sp, *tsp;
2232 	swblk_t dvbase;
2233 	u_long mblocks;
2234 
2235 	/*
2236 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2237 	 * First chop nblks off to page-align it, then convert.
2238 	 *
2239 	 * sw->sw_nblks is in page-sized chunks now too.
2240 	 */
2241 	nblks &= ~(ctodb(1) - 1);
2242 	nblks = dbtoc(nblks);
2243 
2244 	/*
2245 	 * If we go beyond this, we get overflows in the radix
2246 	 * tree bitmap code.
2247 	 */
2248 	mblocks = 0x40000000 / BLIST_META_RADIX;
2249 	if (nblks > mblocks) {
2250 		printf(
2251     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2252 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2253 		nblks = mblocks;
2254 	}
2255 
2256 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2257 	sp->sw_vp = vp;
2258 	sp->sw_id = id;
2259 	sp->sw_dev = dev;
2260 	sp->sw_nblks = nblks;
2261 	sp->sw_used = 0;
2262 	sp->sw_strategy = strategy;
2263 	sp->sw_close = close;
2264 	sp->sw_flags = flags;
2265 
2266 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2267 	/*
2268 	 * Do not free the first two block in order to avoid overwriting
2269 	 * any bsd label at the front of the partition
2270 	 */
2271 	blist_free(sp->sw_blist, 2, nblks - 2);
2272 
2273 	dvbase = 0;
2274 	mtx_lock(&sw_dev_mtx);
2275 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2276 		if (tsp->sw_end >= dvbase) {
2277 			/*
2278 			 * We put one uncovered page between the devices
2279 			 * in order to definitively prevent any cross-device
2280 			 * I/O requests
2281 			 */
2282 			dvbase = tsp->sw_end + 1;
2283 		}
2284 	}
2285 	sp->sw_first = dvbase;
2286 	sp->sw_end = dvbase + nblks;
2287 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2288 	nswapdev++;
2289 	swap_pager_avail += nblks - 2;
2290 	swap_total += nblks;
2291 	swapon_check_swzone();
2292 	swp_sizecheck();
2293 	mtx_unlock(&sw_dev_mtx);
2294 	EVENTHANDLER_INVOKE(swapon, sp);
2295 }
2296 
2297 /*
2298  * SYSCALL: swapoff(devname)
2299  *
2300  * Disable swapping on the given device.
2301  *
2302  * XXX: Badly designed system call: it should use a device index
2303  * rather than filename as specification.  We keep sw_vp around
2304  * only to make this work.
2305  */
2306 #ifndef _SYS_SYSPROTO_H_
2307 struct swapoff_args {
2308 	char *name;
2309 };
2310 #endif
2311 
2312 /*
2313  * MPSAFE
2314  */
2315 /* ARGSUSED */
2316 int
2317 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2318 {
2319 	struct vnode *vp;
2320 	struct nameidata nd;
2321 	struct swdevt *sp;
2322 	int error;
2323 
2324 	error = priv_check(td, PRIV_SWAPOFF);
2325 	if (error)
2326 		return (error);
2327 
2328 	sx_xlock(&swdev_syscall_lock);
2329 
2330 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2331 	    td);
2332 	error = namei(&nd);
2333 	if (error)
2334 		goto done;
2335 	NDFREE(&nd, NDF_ONLY_PNBUF);
2336 	vp = nd.ni_vp;
2337 
2338 	mtx_lock(&sw_dev_mtx);
2339 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2340 		if (sp->sw_vp == vp)
2341 			break;
2342 	}
2343 	mtx_unlock(&sw_dev_mtx);
2344 	if (sp == NULL) {
2345 		error = EINVAL;
2346 		goto done;
2347 	}
2348 	error = swapoff_one(sp, td->td_ucred);
2349 done:
2350 	sx_xunlock(&swdev_syscall_lock);
2351 	return (error);
2352 }
2353 
2354 static int
2355 swapoff_one(struct swdevt *sp, struct ucred *cred)
2356 {
2357 	u_long nblks;
2358 #ifdef MAC
2359 	int error;
2360 #endif
2361 
2362 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2363 #ifdef MAC
2364 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2365 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2366 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2367 	if (error != 0)
2368 		return (error);
2369 #endif
2370 	nblks = sp->sw_nblks;
2371 
2372 	/*
2373 	 * We can turn off this swap device safely only if the
2374 	 * available virtual memory in the system will fit the amount
2375 	 * of data we will have to page back in, plus an epsilon so
2376 	 * the system doesn't become critically low on swap space.
2377 	 */
2378 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2379 		return (ENOMEM);
2380 
2381 	/*
2382 	 * Prevent further allocations on this device.
2383 	 */
2384 	mtx_lock(&sw_dev_mtx);
2385 	sp->sw_flags |= SW_CLOSING;
2386 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2387 	swap_total -= nblks;
2388 	mtx_unlock(&sw_dev_mtx);
2389 
2390 	/*
2391 	 * Page in the contents of the device and close it.
2392 	 */
2393 	swap_pager_swapoff(sp);
2394 
2395 	sp->sw_close(curthread, sp);
2396 	mtx_lock(&sw_dev_mtx);
2397 	sp->sw_id = NULL;
2398 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2399 	nswapdev--;
2400 	if (nswapdev == 0) {
2401 		swap_pager_full = 2;
2402 		swap_pager_almost_full = 1;
2403 	}
2404 	if (swdevhd == sp)
2405 		swdevhd = NULL;
2406 	mtx_unlock(&sw_dev_mtx);
2407 	blist_destroy(sp->sw_blist);
2408 	free(sp, M_VMPGDATA);
2409 	return (0);
2410 }
2411 
2412 void
2413 swapoff_all(void)
2414 {
2415 	struct swdevt *sp, *spt;
2416 	const char *devname;
2417 	int error;
2418 
2419 	sx_xlock(&swdev_syscall_lock);
2420 
2421 	mtx_lock(&sw_dev_mtx);
2422 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2423 		mtx_unlock(&sw_dev_mtx);
2424 		if (vn_isdisk(sp->sw_vp, NULL))
2425 			devname = devtoname(sp->sw_vp->v_rdev);
2426 		else
2427 			devname = "[file]";
2428 		error = swapoff_one(sp, thread0.td_ucred);
2429 		if (error != 0) {
2430 			printf("Cannot remove swap device %s (error=%d), "
2431 			    "skipping.\n", devname, error);
2432 		} else if (bootverbose) {
2433 			printf("Swap device %s removed.\n", devname);
2434 		}
2435 		mtx_lock(&sw_dev_mtx);
2436 	}
2437 	mtx_unlock(&sw_dev_mtx);
2438 
2439 	sx_xunlock(&swdev_syscall_lock);
2440 }
2441 
2442 void
2443 swap_pager_status(int *total, int *used)
2444 {
2445 	struct swdevt *sp;
2446 
2447 	*total = 0;
2448 	*used = 0;
2449 	mtx_lock(&sw_dev_mtx);
2450 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2451 		*total += sp->sw_nblks;
2452 		*used += sp->sw_used;
2453 	}
2454 	mtx_unlock(&sw_dev_mtx);
2455 }
2456 
2457 int
2458 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2459 {
2460 	struct swdevt *sp;
2461 	const char *tmp_devname;
2462 	int error, n;
2463 
2464 	n = 0;
2465 	error = ENOENT;
2466 	mtx_lock(&sw_dev_mtx);
2467 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2468 		if (n != name) {
2469 			n++;
2470 			continue;
2471 		}
2472 		xs->xsw_version = XSWDEV_VERSION;
2473 		xs->xsw_dev = sp->sw_dev;
2474 		xs->xsw_flags = sp->sw_flags;
2475 		xs->xsw_nblks = sp->sw_nblks;
2476 		xs->xsw_used = sp->sw_used;
2477 		if (devname != NULL) {
2478 			if (vn_isdisk(sp->sw_vp, NULL))
2479 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2480 			else
2481 				tmp_devname = "[file]";
2482 			strncpy(devname, tmp_devname, len);
2483 		}
2484 		error = 0;
2485 		break;
2486 	}
2487 	mtx_unlock(&sw_dev_mtx);
2488 	return (error);
2489 }
2490 
2491 #if defined(COMPAT_FREEBSD11)
2492 #define XSWDEV_VERSION_11	1
2493 struct xswdev11 {
2494 	u_int	xsw_version;
2495 	uint32_t xsw_dev;
2496 	int	xsw_flags;
2497 	int	xsw_nblks;
2498 	int     xsw_used;
2499 };
2500 #endif
2501 
2502 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2503 struct xswdev32 {
2504 	u_int	xsw_version;
2505 	u_int	xsw_dev1, xsw_dev2;
2506 	int	xsw_flags;
2507 	int	xsw_nblks;
2508 	int     xsw_used;
2509 };
2510 #endif
2511 
2512 static int
2513 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2514 {
2515 	struct xswdev xs;
2516 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2517 	struct xswdev32 xs32;
2518 #endif
2519 #if defined(COMPAT_FREEBSD11)
2520 	struct xswdev11 xs11;
2521 #endif
2522 	int error;
2523 
2524 	if (arg2 != 1)			/* name length */
2525 		return (EINVAL);
2526 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2527 	if (error != 0)
2528 		return (error);
2529 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2530 	if (req->oldlen == sizeof(xs32)) {
2531 		xs32.xsw_version = XSWDEV_VERSION;
2532 		xs32.xsw_dev1 = xs.xsw_dev;
2533 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2534 		xs32.xsw_flags = xs.xsw_flags;
2535 		xs32.xsw_nblks = xs.xsw_nblks;
2536 		xs32.xsw_used = xs.xsw_used;
2537 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2538 		return (error);
2539 	}
2540 #endif
2541 #if defined(COMPAT_FREEBSD11)
2542 	if (req->oldlen == sizeof(xs11)) {
2543 		xs11.xsw_version = XSWDEV_VERSION_11;
2544 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2545 		xs11.xsw_flags = xs.xsw_flags;
2546 		xs11.xsw_nblks = xs.xsw_nblks;
2547 		xs11.xsw_used = xs.xsw_used;
2548 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2549 		return (error);
2550 	}
2551 #endif
2552 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2553 	return (error);
2554 }
2555 
2556 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2557     "Number of swap devices");
2558 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2559     sysctl_vm_swap_info,
2560     "Swap statistics by device");
2561 
2562 /*
2563  * Count the approximate swap usage in pages for a vmspace.  The
2564  * shadowed or not yet copied on write swap blocks are not accounted.
2565  * The map must be locked.
2566  */
2567 long
2568 vmspace_swap_count(struct vmspace *vmspace)
2569 {
2570 	vm_map_t map;
2571 	vm_map_entry_t cur;
2572 	vm_object_t object;
2573 	struct swblk *sb;
2574 	vm_pindex_t e, pi;
2575 	long count;
2576 	int i;
2577 
2578 	map = &vmspace->vm_map;
2579 	count = 0;
2580 
2581 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2582 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2583 			continue;
2584 		object = cur->object.vm_object;
2585 		if (object == NULL || object->type != OBJT_SWAP)
2586 			continue;
2587 		VM_OBJECT_RLOCK(object);
2588 		if (object->type != OBJT_SWAP)
2589 			goto unlock;
2590 		pi = OFF_TO_IDX(cur->offset);
2591 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2592 		for (;; pi = sb->p + SWAP_META_PAGES) {
2593 			sb = SWAP_PCTRIE_LOOKUP_GE(
2594 			    &object->un_pager.swp.swp_blks, pi);
2595 			if (sb == NULL || sb->p >= e)
2596 				break;
2597 			for (i = 0; i < SWAP_META_PAGES; i++) {
2598 				if (sb->p + i < e &&
2599 				    sb->d[i] != SWAPBLK_NONE)
2600 					count++;
2601 			}
2602 		}
2603 unlock:
2604 		VM_OBJECT_RUNLOCK(object);
2605 	}
2606 	return (count);
2607 }
2608 
2609 /*
2610  * GEOM backend
2611  *
2612  * Swapping onto disk devices.
2613  *
2614  */
2615 
2616 static g_orphan_t swapgeom_orphan;
2617 
2618 static struct g_class g_swap_class = {
2619 	.name = "SWAP",
2620 	.version = G_VERSION,
2621 	.orphan = swapgeom_orphan,
2622 };
2623 
2624 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2625 
2626 
2627 static void
2628 swapgeom_close_ev(void *arg, int flags)
2629 {
2630 	struct g_consumer *cp;
2631 
2632 	cp = arg;
2633 	g_access(cp, -1, -1, 0);
2634 	g_detach(cp);
2635 	g_destroy_consumer(cp);
2636 }
2637 
2638 /*
2639  * Add a reference to the g_consumer for an inflight transaction.
2640  */
2641 static void
2642 swapgeom_acquire(struct g_consumer *cp)
2643 {
2644 
2645 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2646 	cp->index++;
2647 }
2648 
2649 /*
2650  * Remove a reference from the g_consumer.  Post a close event if all
2651  * references go away, since the function might be called from the
2652  * biodone context.
2653  */
2654 static void
2655 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2656 {
2657 
2658 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2659 	cp->index--;
2660 	if (cp->index == 0) {
2661 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2662 			sp->sw_id = NULL;
2663 	}
2664 }
2665 
2666 static void
2667 swapgeom_done(struct bio *bp2)
2668 {
2669 	struct swdevt *sp;
2670 	struct buf *bp;
2671 	struct g_consumer *cp;
2672 
2673 	bp = bp2->bio_caller2;
2674 	cp = bp2->bio_from;
2675 	bp->b_ioflags = bp2->bio_flags;
2676 	if (bp2->bio_error)
2677 		bp->b_ioflags |= BIO_ERROR;
2678 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2679 	bp->b_error = bp2->bio_error;
2680 	bp->b_caller1 = NULL;
2681 	bufdone(bp);
2682 	sp = bp2->bio_caller1;
2683 	mtx_lock(&sw_dev_mtx);
2684 	swapgeom_release(cp, sp);
2685 	mtx_unlock(&sw_dev_mtx);
2686 	g_destroy_bio(bp2);
2687 }
2688 
2689 static void
2690 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2691 {
2692 	struct bio *bio;
2693 	struct g_consumer *cp;
2694 
2695 	mtx_lock(&sw_dev_mtx);
2696 	cp = sp->sw_id;
2697 	if (cp == NULL) {
2698 		mtx_unlock(&sw_dev_mtx);
2699 		bp->b_error = ENXIO;
2700 		bp->b_ioflags |= BIO_ERROR;
2701 		bufdone(bp);
2702 		return;
2703 	}
2704 	swapgeom_acquire(cp);
2705 	mtx_unlock(&sw_dev_mtx);
2706 	if (bp->b_iocmd == BIO_WRITE)
2707 		bio = g_new_bio();
2708 	else
2709 		bio = g_alloc_bio();
2710 	if (bio == NULL) {
2711 		mtx_lock(&sw_dev_mtx);
2712 		swapgeom_release(cp, sp);
2713 		mtx_unlock(&sw_dev_mtx);
2714 		bp->b_error = ENOMEM;
2715 		bp->b_ioflags |= BIO_ERROR;
2716 		printf("swap_pager: cannot allocate bio\n");
2717 		bufdone(bp);
2718 		return;
2719 	}
2720 
2721 	bp->b_caller1 = bio;
2722 	bio->bio_caller1 = sp;
2723 	bio->bio_caller2 = bp;
2724 	bio->bio_cmd = bp->b_iocmd;
2725 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2726 	bio->bio_length = bp->b_bcount;
2727 	bio->bio_done = swapgeom_done;
2728 	if (!buf_mapped(bp)) {
2729 		bio->bio_ma = bp->b_pages;
2730 		bio->bio_data = unmapped_buf;
2731 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2732 		bio->bio_ma_n = bp->b_npages;
2733 		bio->bio_flags |= BIO_UNMAPPED;
2734 	} else {
2735 		bio->bio_data = bp->b_data;
2736 		bio->bio_ma = NULL;
2737 	}
2738 	g_io_request(bio, cp);
2739 	return;
2740 }
2741 
2742 static void
2743 swapgeom_orphan(struct g_consumer *cp)
2744 {
2745 	struct swdevt *sp;
2746 	int destroy;
2747 
2748 	mtx_lock(&sw_dev_mtx);
2749 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2750 		if (sp->sw_id == cp) {
2751 			sp->sw_flags |= SW_CLOSING;
2752 			break;
2753 		}
2754 	}
2755 	/*
2756 	 * Drop reference we were created with. Do directly since we're in a
2757 	 * special context where we don't have to queue the call to
2758 	 * swapgeom_close_ev().
2759 	 */
2760 	cp->index--;
2761 	destroy = ((sp != NULL) && (cp->index == 0));
2762 	if (destroy)
2763 		sp->sw_id = NULL;
2764 	mtx_unlock(&sw_dev_mtx);
2765 	if (destroy)
2766 		swapgeom_close_ev(cp, 0);
2767 }
2768 
2769 static void
2770 swapgeom_close(struct thread *td, struct swdevt *sw)
2771 {
2772 	struct g_consumer *cp;
2773 
2774 	mtx_lock(&sw_dev_mtx);
2775 	cp = sw->sw_id;
2776 	sw->sw_id = NULL;
2777 	mtx_unlock(&sw_dev_mtx);
2778 
2779 	/*
2780 	 * swapgeom_close() may be called from the biodone context,
2781 	 * where we cannot perform topology changes.  Delegate the
2782 	 * work to the events thread.
2783 	 */
2784 	if (cp != NULL)
2785 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2786 }
2787 
2788 static int
2789 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2790 {
2791 	struct g_provider *pp;
2792 	struct g_consumer *cp;
2793 	static struct g_geom *gp;
2794 	struct swdevt *sp;
2795 	u_long nblks;
2796 	int error;
2797 
2798 	pp = g_dev_getprovider(dev);
2799 	if (pp == NULL)
2800 		return (ENODEV);
2801 	mtx_lock(&sw_dev_mtx);
2802 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2803 		cp = sp->sw_id;
2804 		if (cp != NULL && cp->provider == pp) {
2805 			mtx_unlock(&sw_dev_mtx);
2806 			return (EBUSY);
2807 		}
2808 	}
2809 	mtx_unlock(&sw_dev_mtx);
2810 	if (gp == NULL)
2811 		gp = g_new_geomf(&g_swap_class, "swap");
2812 	cp = g_new_consumer(gp);
2813 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2814 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2815 	g_attach(cp, pp);
2816 	/*
2817 	 * XXX: Every time you think you can improve the margin for
2818 	 * footshooting, somebody depends on the ability to do so:
2819 	 * savecore(8) wants to write to our swapdev so we cannot
2820 	 * set an exclusive count :-(
2821 	 */
2822 	error = g_access(cp, 1, 1, 0);
2823 	if (error != 0) {
2824 		g_detach(cp);
2825 		g_destroy_consumer(cp);
2826 		return (error);
2827 	}
2828 	nblks = pp->mediasize / DEV_BSIZE;
2829 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2830 	    swapgeom_close, dev2udev(dev),
2831 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2832 	return (0);
2833 }
2834 
2835 static int
2836 swapongeom(struct vnode *vp)
2837 {
2838 	int error;
2839 
2840 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2841 	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2842 		error = ENOENT;
2843 	} else {
2844 		g_topology_lock();
2845 		error = swapongeom_locked(vp->v_rdev, vp);
2846 		g_topology_unlock();
2847 	}
2848 	VOP_UNLOCK(vp, 0);
2849 	return (error);
2850 }
2851 
2852 /*
2853  * VNODE backend
2854  *
2855  * This is used mainly for network filesystem (read: probably only tested
2856  * with NFS) swapfiles.
2857  *
2858  */
2859 
2860 static void
2861 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2862 {
2863 	struct vnode *vp2;
2864 
2865 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2866 
2867 	vp2 = sp->sw_id;
2868 	vhold(vp2);
2869 	if (bp->b_iocmd == BIO_WRITE) {
2870 		if (bp->b_bufobj)
2871 			bufobj_wdrop(bp->b_bufobj);
2872 		bufobj_wref(&vp2->v_bufobj);
2873 	}
2874 	if (bp->b_bufobj != &vp2->v_bufobj)
2875 		bp->b_bufobj = &vp2->v_bufobj;
2876 	bp->b_vp = vp2;
2877 	bp->b_iooffset = dbtob(bp->b_blkno);
2878 	bstrategy(bp);
2879 	return;
2880 }
2881 
2882 static void
2883 swapdev_close(struct thread *td, struct swdevt *sp)
2884 {
2885 
2886 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2887 	vrele(sp->sw_vp);
2888 }
2889 
2890 
2891 static int
2892 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2893 {
2894 	struct swdevt *sp;
2895 	int error;
2896 
2897 	if (nblks == 0)
2898 		return (ENXIO);
2899 	mtx_lock(&sw_dev_mtx);
2900 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2901 		if (sp->sw_id == vp) {
2902 			mtx_unlock(&sw_dev_mtx);
2903 			return (EBUSY);
2904 		}
2905 	}
2906 	mtx_unlock(&sw_dev_mtx);
2907 
2908 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2909 #ifdef MAC
2910 	error = mac_system_check_swapon(td->td_ucred, vp);
2911 	if (error == 0)
2912 #endif
2913 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2914 	(void) VOP_UNLOCK(vp, 0);
2915 	if (error)
2916 		return (error);
2917 
2918 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2919 	    NODEV, 0);
2920 	return (0);
2921 }
2922 
2923 static int
2924 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2925 {
2926 	int error, new, n;
2927 
2928 	new = nsw_wcount_async_max;
2929 	error = sysctl_handle_int(oidp, &new, 0, req);
2930 	if (error != 0 || req->newptr == NULL)
2931 		return (error);
2932 
2933 	if (new > nswbuf / 2 || new < 1)
2934 		return (EINVAL);
2935 
2936 	mtx_lock(&swbuf_mtx);
2937 	while (nsw_wcount_async_max != new) {
2938 		/*
2939 		 * Adjust difference.  If the current async count is too low,
2940 		 * we will need to sqeeze our update slowly in.  Sleep with a
2941 		 * higher priority than getpbuf() to finish faster.
2942 		 */
2943 		n = new - nsw_wcount_async_max;
2944 		if (nsw_wcount_async + n >= 0) {
2945 			nsw_wcount_async += n;
2946 			nsw_wcount_async_max += n;
2947 			wakeup(&nsw_wcount_async);
2948 		} else {
2949 			nsw_wcount_async_max -= nsw_wcount_async;
2950 			nsw_wcount_async = 0;
2951 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2952 			    "swpsysctl", 0);
2953 		}
2954 	}
2955 	mtx_unlock(&swbuf_mtx);
2956 
2957 	return (0);
2958 }
2959