xref: /freebsd/sys/vm/swap_pager.c (revision 54e9e4e72d711fb41f88f793f6c64df1126112f9)
1 /*-
2  * SPDX-License-Identifier: BSD-4-Clause
3  *
4  * Copyright (c) 1998 Matthew Dillon,
5  * Copyright (c) 1994 John S. Dyson
6  * Copyright (c) 1990 University of Utah.
7  * Copyright (c) 1982, 1986, 1989, 1993
8  *	The Regents of the University of California.  All rights reserved.
9  *
10  * This code is derived from software contributed to Berkeley by
11  * the Systems Programming Group of the University of Utah Computer
12  * Science Department.
13  *
14  * Redistribution and use in source and binary forms, with or without
15  * modification, are permitted provided that the following conditions
16  * are met:
17  * 1. Redistributions of source code must retain the above copyright
18  *    notice, this list of conditions and the following disclaimer.
19  * 2. Redistributions in binary form must reproduce the above copyright
20  *    notice, this list of conditions and the following disclaimer in the
21  *    documentation and/or other materials provided with the distribution.
22  * 3. All advertising materials mentioning features or use of this software
23  *    must display the following acknowledgement:
24  *	This product includes software developed by the University of
25  *	California, Berkeley and its contributors.
26  * 4. Neither the name of the University nor the names of its contributors
27  *    may be used to endorse or promote products derived from this software
28  *    without specific prior written permission.
29  *
30  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
31  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
32  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
33  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
34  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
38  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
39  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
40  * SUCH DAMAGE.
41  *
42  *				New Swap System
43  *				Matthew Dillon
44  *
45  * Radix Bitmap 'blists'.
46  *
47  *	- The new swapper uses the new radix bitmap code.  This should scale
48  *	  to arbitrarily small or arbitrarily large swap spaces and an almost
49  *	  arbitrary degree of fragmentation.
50  *
51  * Features:
52  *
53  *	- on the fly reallocation of swap during putpages.  The new system
54  *	  does not try to keep previously allocated swap blocks for dirty
55  *	  pages.
56  *
57  *	- on the fly deallocation of swap
58  *
59  *	- No more garbage collection required.  Unnecessarily allocated swap
60  *	  blocks only exist for dirty vm_page_t's now and these are already
61  *	  cycled (in a high-load system) by the pager.  We also do on-the-fly
62  *	  removal of invalidated swap blocks when a page is destroyed
63  *	  or renamed.
64  *
65  * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$
66  *
67  *	@(#)swap_pager.c	8.9 (Berkeley) 3/21/94
68  *	@(#)vm_swap.c	8.5 (Berkeley) 2/17/94
69  */
70 
71 #include <sys/cdefs.h>
72 __FBSDID("$FreeBSD$");
73 
74 #include "opt_vm.h"
75 
76 #include <sys/param.h>
77 #include <sys/bio.h>
78 #include <sys/blist.h>
79 #include <sys/buf.h>
80 #include <sys/conf.h>
81 #include <sys/disk.h>
82 #include <sys/eventhandler.h>
83 #include <sys/fcntl.h>
84 #include <sys/lock.h>
85 #include <sys/kernel.h>
86 #include <sys/mount.h>
87 #include <sys/namei.h>
88 #include <sys/malloc.h>
89 #include <sys/pctrie.h>
90 #include <sys/priv.h>
91 #include <sys/proc.h>
92 #include <sys/racct.h>
93 #include <sys/resource.h>
94 #include <sys/resourcevar.h>
95 #include <sys/rwlock.h>
96 #include <sys/sbuf.h>
97 #include <sys/sysctl.h>
98 #include <sys/sysproto.h>
99 #include <sys/systm.h>
100 #include <sys/sx.h>
101 #include <sys/vmmeter.h>
102 #include <sys/vnode.h>
103 
104 #include <security/mac/mac_framework.h>
105 
106 #include <vm/vm.h>
107 #include <vm/pmap.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_kern.h>
110 #include <vm/vm_object.h>
111 #include <vm/vm_page.h>
112 #include <vm/vm_pager.h>
113 #include <vm/vm_pageout.h>
114 #include <vm/vm_param.h>
115 #include <vm/swap_pager.h>
116 #include <vm/vm_extern.h>
117 #include <vm/uma.h>
118 
119 #include <geom/geom.h>
120 
121 /*
122  * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64.
123  * The 64-page limit is due to the radix code (kern/subr_blist.c).
124  */
125 #ifndef MAX_PAGEOUT_CLUSTER
126 #define	MAX_PAGEOUT_CLUSTER	32
127 #endif
128 
129 #if !defined(SWB_NPAGES)
130 #define SWB_NPAGES	MAX_PAGEOUT_CLUSTER
131 #endif
132 
133 #define	SWAP_META_PAGES		PCTRIE_COUNT
134 
135 /*
136  * A swblk structure maps each page index within a
137  * SWAP_META_PAGES-aligned and sized range to the address of an
138  * on-disk swap block (or SWAPBLK_NONE). The collection of these
139  * mappings for an entire vm object is implemented as a pc-trie.
140  */
141 struct swblk {
142 	vm_pindex_t	p;
143 	daddr_t		d[SWAP_META_PAGES];
144 };
145 
146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data");
147 static struct mtx sw_dev_mtx;
148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq);
149 static struct swdevt *swdevhd;	/* Allocate from here next */
150 static int nswapdev;		/* Number of swap devices */
151 int swap_pager_avail;
152 static struct sx swdev_syscall_lock;	/* serialize swap(on|off) */
153 
154 static u_long swap_reserved;
155 static u_long swap_total;
156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS);
157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
158     &swap_reserved, 0, sysctl_page_shift, "A",
159     "Amount of swap storage needed to back all allocated anonymous memory.");
160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE,
161     &swap_total, 0, sysctl_page_shift, "A",
162     "Total amount of available swap storage.");
163 
164 static int overcommit = 0;
165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0,
166     "Configure virtual memory overcommit behavior. See tuning(7) "
167     "for details.");
168 static unsigned long swzone;
169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0,
170     "Actual size of swap metadata zone");
171 static unsigned long swap_maxpages;
172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0,
173     "Maximum amount of swap supported");
174 
175 /* bits from overcommit */
176 #define	SWAP_RESERVE_FORCE_ON		(1 << 0)
177 #define	SWAP_RESERVE_RLIMIT_ON		(1 << 1)
178 #define	SWAP_RESERVE_ALLOW_NONWIRED	(1 << 2)
179 
180 static int
181 sysctl_page_shift(SYSCTL_HANDLER_ARGS)
182 {
183 	uint64_t newval;
184 	u_long value = *(u_long *)arg1;
185 
186 	newval = ((uint64_t)value) << PAGE_SHIFT;
187 	return (sysctl_handle_64(oidp, &newval, 0, req));
188 }
189 
190 int
191 swap_reserve(vm_ooffset_t incr)
192 {
193 
194 	return (swap_reserve_by_cred(incr, curthread->td_ucred));
195 }
196 
197 int
198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred)
199 {
200 	u_long r, s, prev, pincr;
201 	int res, error;
202 	static int curfail;
203 	static struct timeval lastfail;
204 	struct uidinfo *uip;
205 
206 	uip = cred->cr_ruidinfo;
207 
208 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
209 	    (uintmax_t)incr));
210 
211 #ifdef RACCT
212 	if (racct_enable) {
213 		PROC_LOCK(curproc);
214 		error = racct_add(curproc, RACCT_SWAP, incr);
215 		PROC_UNLOCK(curproc);
216 		if (error != 0)
217 			return (0);
218 	}
219 #endif
220 
221 	pincr = atop(incr);
222 	res = 0;
223 	prev = atomic_fetchadd_long(&swap_reserved, pincr);
224 	r = prev + pincr;
225 	if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) {
226 		s = vm_cnt.v_page_count - vm_cnt.v_free_reserved -
227 		    vm_wire_count();
228 	} else
229 		s = 0;
230 	s += swap_total;
231 	if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s ||
232 	    (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) {
233 		res = 1;
234 	} else {
235 		prev = atomic_fetchadd_long(&swap_reserved, -pincr);
236 		if (prev < pincr)
237 			panic("swap_reserved < incr on overcommit fail");
238 	}
239 	if (res) {
240 		prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr);
241 		if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 &&
242 		    prev + pincr > lim_cur(curthread, RLIMIT_SWAP) &&
243 		    priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) {
244 			res = 0;
245 			prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr);
246 			if (prev < pincr)
247 				panic("uip->ui_vmsize < incr on overcommit fail");
248 		}
249 	}
250 	if (!res && ppsratecheck(&lastfail, &curfail, 1)) {
251 		printf("uid %d, pid %d: swap reservation for %jd bytes failed\n",
252 		    uip->ui_uid, curproc->p_pid, incr);
253 	}
254 
255 #ifdef RACCT
256 	if (racct_enable && !res) {
257 		PROC_LOCK(curproc);
258 		racct_sub(curproc, RACCT_SWAP, incr);
259 		PROC_UNLOCK(curproc);
260 	}
261 #endif
262 
263 	return (res);
264 }
265 
266 void
267 swap_reserve_force(vm_ooffset_t incr)
268 {
269 	struct uidinfo *uip;
270 	u_long pincr;
271 
272 	KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__,
273 	    (uintmax_t)incr));
274 
275 	PROC_LOCK(curproc);
276 #ifdef RACCT
277 	if (racct_enable)
278 		racct_add_force(curproc, RACCT_SWAP, incr);
279 #endif
280 	pincr = atop(incr);
281 	atomic_add_long(&swap_reserved, pincr);
282 	uip = curproc->p_ucred->cr_ruidinfo;
283 	atomic_add_long(&uip->ui_vmsize, pincr);
284 	PROC_UNLOCK(curproc);
285 }
286 
287 void
288 swap_release(vm_ooffset_t decr)
289 {
290 	struct ucred *cred;
291 
292 	PROC_LOCK(curproc);
293 	cred = curproc->p_ucred;
294 	swap_release_by_cred(decr, cred);
295 	PROC_UNLOCK(curproc);
296 }
297 
298 void
299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred)
300 {
301 	u_long prev, pdecr;
302  	struct uidinfo *uip;
303 
304 	uip = cred->cr_ruidinfo;
305 
306 	KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__,
307 	    (uintmax_t)decr));
308 
309 	pdecr = atop(decr);
310 	prev = atomic_fetchadd_long(&swap_reserved, -pdecr);
311 	if (prev < pdecr)
312 		panic("swap_reserved < decr");
313 
314 	prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr);
315 	if (prev < pdecr)
316 		printf("negative vmsize for uid = %d\n", uip->ui_uid);
317 #ifdef RACCT
318 	if (racct_enable)
319 		racct_sub_cred(cred, RACCT_SWAP, decr);
320 #endif
321 }
322 
323 #define SWM_POP		0x01	/* pop out			*/
324 
325 static int swap_pager_full = 2;	/* swap space exhaustion (task killing) */
326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/
327 static struct mtx swbuf_mtx;	/* to sync nsw_wcount_async */
328 static int nsw_wcount_async;	/* limit async write buffers */
329 static int nsw_wcount_async_max;/* assigned maximum			*/
330 static int nsw_cluster_max;	/* maximum VOP I/O allowed		*/
331 
332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS);
333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW |
334     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I",
335     "Maximum running async swap ops");
336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS);
337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD |
338     CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A",
339     "Swap Fragmentation Info");
340 
341 static struct sx sw_alloc_sx;
342 
343 /*
344  * "named" and "unnamed" anon region objects.  Try to reduce the overhead
345  * of searching a named list by hashing it just a little.
346  */
347 
348 #define NOBJLISTS		8
349 
350 #define NOBJLIST(handle)	\
351 	(&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)])
352 
353 static struct pagerlst	swap_pager_object_list[NOBJLISTS];
354 static uma_zone_t swwbuf_zone;
355 static uma_zone_t swrbuf_zone;
356 static uma_zone_t swblk_zone;
357 static uma_zone_t swpctrie_zone;
358 
359 /*
360  * pagerops for OBJT_SWAP - "swap pager".  Some ops are also global procedure
361  * calls hooked from other parts of the VM system and do not appear here.
362  * (see vm/swap_pager.h).
363  */
364 static vm_object_t
365 		swap_pager_alloc(void *handle, vm_ooffset_t size,
366 		    vm_prot_t prot, vm_ooffset_t offset, struct ucred *);
367 static void	swap_pager_dealloc(vm_object_t object);
368 static int	swap_pager_getpages(vm_object_t, vm_page_t *, int, int *,
369     int *);
370 static int	swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *,
371     int *, pgo_getpages_iodone_t, void *);
372 static void	swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *);
373 static boolean_t
374 		swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after);
375 static void	swap_pager_init(void);
376 static void	swap_pager_unswapped(vm_page_t);
377 static void	swap_pager_swapoff(struct swdevt *sp);
378 
379 struct pagerops swappagerops = {
380 	.pgo_init =	swap_pager_init,	/* early system initialization of pager	*/
381 	.pgo_alloc =	swap_pager_alloc,	/* allocate an OBJT_SWAP object		*/
382 	.pgo_dealloc =	swap_pager_dealloc,	/* deallocate an OBJT_SWAP object	*/
383 	.pgo_getpages =	swap_pager_getpages,	/* pagein				*/
384 	.pgo_getpages_async = swap_pager_getpages_async, /* pagein (async)		*/
385 	.pgo_putpages =	swap_pager_putpages,	/* pageout				*/
386 	.pgo_haspage =	swap_pager_haspage,	/* get backing store status for page	*/
387 	.pgo_pageunswapped = swap_pager_unswapped,	/* remove swap related to page		*/
388 };
389 
390 /*
391  * swap_*() routines are externally accessible.  swp_*() routines are
392  * internal.
393  */
394 static int nswap_lowat = 128;	/* in pages, swap_pager_almost_full warn */
395 static int nswap_hiwat = 512;	/* in pages, swap_pager_almost_full warn */
396 
397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0,
398     "Maximum size of a swap block in pages");
399 
400 static void	swp_sizecheck(void);
401 static void	swp_pager_async_iodone(struct buf *bp);
402 static bool	swp_pager_swblk_empty(struct swblk *sb, int start, int limit);
403 static int	swapongeom(struct vnode *);
404 static int	swaponvp(struct thread *, struct vnode *, u_long);
405 static int	swapoff_one(struct swdevt *sp, struct ucred *cred);
406 
407 /*
408  * Swap bitmap functions
409  */
410 static void	swp_pager_freeswapspace(daddr_t blk, daddr_t npages);
411 static daddr_t	swp_pager_getswapspace(int *npages, int limit);
412 
413 /*
414  * Metadata functions
415  */
416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t);
417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t);
418 static void swp_pager_meta_free_all(vm_object_t);
419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int);
420 
421 static void
422 swp_pager_init_freerange(daddr_t *start, daddr_t *num)
423 {
424 
425 	*start = SWAPBLK_NONE;
426 	*num = 0;
427 }
428 
429 static void
430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr)
431 {
432 
433 	if (*start + *num == addr) {
434 		(*num)++;
435 	} else {
436 		swp_pager_freeswapspace(*start, *num);
437 		*start = addr;
438 		*num = 1;
439 	}
440 }
441 
442 static void *
443 swblk_trie_alloc(struct pctrie *ptree)
444 {
445 
446 	return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ?
447 	    M_USE_RESERVE : 0)));
448 }
449 
450 static void
451 swblk_trie_free(struct pctrie *ptree, void *node)
452 {
453 
454 	uma_zfree(swpctrie_zone, node);
455 }
456 
457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free);
458 
459 /*
460  * SWP_SIZECHECK() -	update swap_pager_full indication
461  *
462  *	update the swap_pager_almost_full indication and warn when we are
463  *	about to run out of swap space, using lowat/hiwat hysteresis.
464  *
465  *	Clear swap_pager_full ( task killing ) indication when lowat is met.
466  *
467  *	No restrictions on call
468  *	This routine may not block.
469  */
470 static void
471 swp_sizecheck(void)
472 {
473 
474 	if (swap_pager_avail < nswap_lowat) {
475 		if (swap_pager_almost_full == 0) {
476 			printf("swap_pager: out of swap space\n");
477 			swap_pager_almost_full = 1;
478 		}
479 	} else {
480 		swap_pager_full = 0;
481 		if (swap_pager_avail > nswap_hiwat)
482 			swap_pager_almost_full = 0;
483 	}
484 }
485 
486 /*
487  * SWAP_PAGER_INIT() -	initialize the swap pager!
488  *
489  *	Expected to be started from system init.  NOTE:  This code is run
490  *	before much else so be careful what you depend on.  Most of the VM
491  *	system has yet to be initialized at this point.
492  */
493 static void
494 swap_pager_init(void)
495 {
496 	/*
497 	 * Initialize object lists
498 	 */
499 	int i;
500 
501 	for (i = 0; i < NOBJLISTS; ++i)
502 		TAILQ_INIT(&swap_pager_object_list[i]);
503 	mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF);
504 	sx_init(&sw_alloc_sx, "swspsx");
505 	sx_init(&swdev_syscall_lock, "swsysc");
506 }
507 
508 /*
509  * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process
510  *
511  *	Expected to be started from pageout process once, prior to entering
512  *	its main loop.
513  */
514 void
515 swap_pager_swap_init(void)
516 {
517 	unsigned long n, n2;
518 
519 	/*
520 	 * Number of in-transit swap bp operations.  Don't
521 	 * exhaust the pbufs completely.  Make sure we
522 	 * initialize workable values (0 will work for hysteresis
523 	 * but it isn't very efficient).
524 	 *
525 	 * The nsw_cluster_max is constrained by the bp->b_pages[]
526 	 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally
527 	 * defined MAX_PAGEOUT_CLUSTER.   Also be aware that swap ops are
528 	 * constrained by the swap device interleave stripe size.
529 	 *
530 	 * Currently we hardwire nsw_wcount_async to 4.  This limit is
531 	 * designed to prevent other I/O from having high latencies due to
532 	 * our pageout I/O.  The value 4 works well for one or two active swap
533 	 * devices but is probably a little low if you have more.  Even so,
534 	 * a higher value would probably generate only a limited improvement
535 	 * with three or four active swap devices since the system does not
536 	 * typically have to pageout at extreme bandwidths.   We will want
537 	 * at least 2 per swap devices, and 4 is a pretty good value if you
538 	 * have one NFS swap device due to the command/ack latency over NFS.
539 	 * So it all works out pretty well.
540 	 */
541 	nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER);
542 
543 	nsw_wcount_async = 4;
544 	nsw_wcount_async_max = nsw_wcount_async;
545 	mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF);
546 
547 	swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4);
548 	swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2);
549 
550 	/*
551 	 * Initialize our zone, taking the user's requested size or
552 	 * estimating the number we need based on the number of pages
553 	 * in the system.
554 	 */
555 	n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) :
556 	    vm_cnt.v_page_count / 2;
557 	swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL,
558 	    pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
559 	if (swpctrie_zone == NULL)
560 		panic("failed to create swap pctrie zone.");
561 	swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL,
562 	    NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM);
563 	if (swblk_zone == NULL)
564 		panic("failed to create swap blk zone.");
565 	n2 = n;
566 	do {
567 		if (uma_zone_reserve_kva(swblk_zone, n))
568 			break;
569 		/*
570 		 * if the allocation failed, try a zone two thirds the
571 		 * size of the previous attempt.
572 		 */
573 		n -= ((n + 2) / 3);
574 	} while (n > 0);
575 
576 	/*
577 	 * Often uma_zone_reserve_kva() cannot reserve exactly the
578 	 * requested size.  Account for the difference when
579 	 * calculating swap_maxpages.
580 	 */
581 	n = uma_zone_get_max(swblk_zone);
582 
583 	if (n < n2)
584 		printf("Swap blk zone entries changed from %lu to %lu.\n",
585 		    n2, n);
586 	swap_maxpages = n * SWAP_META_PAGES;
587 	swzone = n * sizeof(struct swblk);
588 	if (!uma_zone_reserve_kva(swpctrie_zone, n))
589 		printf("Cannot reserve swap pctrie zone, "
590 		    "reduce kern.maxswzone.\n");
591 }
592 
593 static vm_object_t
594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size,
595     vm_ooffset_t offset)
596 {
597 	vm_object_t object;
598 
599 	if (cred != NULL) {
600 		if (!swap_reserve_by_cred(size, cred))
601 			return (NULL);
602 		crhold(cred);
603 	}
604 
605 	/*
606 	 * The un_pager.swp.swp_blks trie is initialized by
607 	 * vm_object_allocate() to ensure the correct order of
608 	 * visibility to other threads.
609 	 */
610 	object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset +
611 	    PAGE_MASK + size));
612 
613 	object->handle = handle;
614 	if (cred != NULL) {
615 		object->cred = cred;
616 		object->charge = size;
617 	}
618 	return (object);
619 }
620 
621 /*
622  * SWAP_PAGER_ALLOC() -	allocate a new OBJT_SWAP VM object and instantiate
623  *			its metadata structures.
624  *
625  *	This routine is called from the mmap and fork code to create a new
626  *	OBJT_SWAP object.
627  *
628  *	This routine must ensure that no live duplicate is created for
629  *	the named object request, which is protected against by
630  *	holding the sw_alloc_sx lock in case handle != NULL.
631  */
632 static vm_object_t
633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot,
634     vm_ooffset_t offset, struct ucred *cred)
635 {
636 	vm_object_t object;
637 
638 	if (handle != NULL) {
639 		/*
640 		 * Reference existing named region or allocate new one.  There
641 		 * should not be a race here against swp_pager_meta_build()
642 		 * as called from vm_page_remove() in regards to the lookup
643 		 * of the handle.
644 		 */
645 		sx_xlock(&sw_alloc_sx);
646 		object = vm_pager_object_lookup(NOBJLIST(handle), handle);
647 		if (object == NULL) {
648 			object = swap_pager_alloc_init(handle, cred, size,
649 			    offset);
650 			if (object != NULL) {
651 				TAILQ_INSERT_TAIL(NOBJLIST(object->handle),
652 				    object, pager_object_list);
653 			}
654 		}
655 		sx_xunlock(&sw_alloc_sx);
656 	} else {
657 		object = swap_pager_alloc_init(handle, cred, size, offset);
658 	}
659 	return (object);
660 }
661 
662 /*
663  * SWAP_PAGER_DEALLOC() -	remove swap metadata from object
664  *
665  *	The swap backing for the object is destroyed.  The code is
666  *	designed such that we can reinstantiate it later, but this
667  *	routine is typically called only when the entire object is
668  *	about to be destroyed.
669  *
670  *	The object must be locked.
671  */
672 static void
673 swap_pager_dealloc(vm_object_t object)
674 {
675 
676 	VM_OBJECT_ASSERT_WLOCKED(object);
677 	KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj"));
678 
679 	/*
680 	 * Remove from list right away so lookups will fail if we block for
681 	 * pageout completion.
682 	 */
683 	if (object->handle != NULL) {
684 		VM_OBJECT_WUNLOCK(object);
685 		sx_xlock(&sw_alloc_sx);
686 		TAILQ_REMOVE(NOBJLIST(object->handle), object,
687 		    pager_object_list);
688 		sx_xunlock(&sw_alloc_sx);
689 		VM_OBJECT_WLOCK(object);
690 	}
691 
692 	vm_object_pip_wait(object, "swpdea");
693 
694 	/*
695 	 * Free all remaining metadata.  We only bother to free it from
696 	 * the swap meta data.  We do not attempt to free swapblk's still
697 	 * associated with vm_page_t's for this object.  We do not care
698 	 * if paging is still in progress on some objects.
699 	 */
700 	swp_pager_meta_free_all(object);
701 	object->handle = NULL;
702 	object->type = OBJT_DEAD;
703 }
704 
705 /************************************************************************
706  *			SWAP PAGER BITMAP ROUTINES			*
707  ************************************************************************/
708 
709 /*
710  * SWP_PAGER_GETSWAPSPACE() -	allocate raw swap space
711  *
712  *	Allocate swap for up to the requested number of pages, and at
713  *	least a minimum number of pages.  The starting swap block number
714  *	(a page index) is returned or SWAPBLK_NONE if the allocation
715  *	failed.
716  *
717  *	Also has the side effect of advising that somebody made a mistake
718  *	when they configured swap and didn't configure enough.
719  *
720  *	This routine may not sleep.
721  *
722  *	We allocate in round-robin fashion from the configured devices.
723  */
724 static daddr_t
725 swp_pager_getswapspace(int *io_npages, int limit)
726 {
727 	daddr_t blk;
728 	struct swdevt *sp;
729 	int mpages, npages;
730 
731 	blk = SWAPBLK_NONE;
732 	mpages = *io_npages;
733 	npages = imin(BLIST_MAX_ALLOC, mpages);
734 	mtx_lock(&sw_dev_mtx);
735 	sp = swdevhd;
736 	while (!TAILQ_EMPTY(&swtailq)) {
737 		if (sp == NULL)
738 			sp = TAILQ_FIRST(&swtailq);
739 		if ((sp->sw_flags & SW_CLOSING) == 0)
740 			blk = blist_alloc(sp->sw_blist, &npages, mpages);
741 		if (blk != SWAPBLK_NONE)
742 			break;
743 		sp = TAILQ_NEXT(sp, sw_list);
744 		if (swdevhd == sp) {
745 			if (npages <= limit)
746 				break;
747 			mpages = npages - 1;
748 			npages >>= 1;
749 		}
750 	}
751 	if (blk != SWAPBLK_NONE) {
752 		*io_npages = npages;
753 		blk += sp->sw_first;
754 		sp->sw_used += npages;
755 		swap_pager_avail -= npages;
756 		swp_sizecheck();
757 		swdevhd = TAILQ_NEXT(sp, sw_list);
758 	} else {
759 		if (swap_pager_full != 2) {
760 			printf("swp_pager_getswapspace(%d): failed\n",
761 			    *io_npages);
762 			swap_pager_full = 2;
763 			swap_pager_almost_full = 1;
764 		}
765 		swdevhd = NULL;
766 	}
767 	mtx_unlock(&sw_dev_mtx);
768 	return (blk);
769 }
770 
771 static bool
772 swp_pager_isondev(daddr_t blk, struct swdevt *sp)
773 {
774 
775 	return (blk >= sp->sw_first && blk < sp->sw_end);
776 }
777 
778 static void
779 swp_pager_strategy(struct buf *bp)
780 {
781 	struct swdevt *sp;
782 
783 	mtx_lock(&sw_dev_mtx);
784 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
785 		if (swp_pager_isondev(bp->b_blkno, sp)) {
786 			mtx_unlock(&sw_dev_mtx);
787 			if ((sp->sw_flags & SW_UNMAPPED) != 0 &&
788 			    unmapped_buf_allowed) {
789 				bp->b_data = unmapped_buf;
790 				bp->b_offset = 0;
791 			} else {
792 				pmap_qenter((vm_offset_t)bp->b_data,
793 				    &bp->b_pages[0], bp->b_bcount / PAGE_SIZE);
794 			}
795 			sp->sw_strategy(bp, sp);
796 			return;
797 		}
798 	}
799 	panic("Swapdev not found");
800 }
801 
802 
803 /*
804  * SWP_PAGER_FREESWAPSPACE() -	free raw swap space
805  *
806  *	This routine returns the specified swap blocks back to the bitmap.
807  *
808  *	This routine may not sleep.
809  */
810 static void
811 swp_pager_freeswapspace(daddr_t blk, daddr_t npages)
812 {
813 	struct swdevt *sp;
814 
815 	if (npages == 0)
816 		return;
817 	mtx_lock(&sw_dev_mtx);
818 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
819 		if (swp_pager_isondev(blk, sp)) {
820 			sp->sw_used -= npages;
821 			/*
822 			 * If we are attempting to stop swapping on
823 			 * this device, we don't want to mark any
824 			 * blocks free lest they be reused.
825 			 */
826 			if ((sp->sw_flags & SW_CLOSING) == 0) {
827 				blist_free(sp->sw_blist, blk - sp->sw_first,
828 				    npages);
829 				swap_pager_avail += npages;
830 				swp_sizecheck();
831 			}
832 			mtx_unlock(&sw_dev_mtx);
833 			return;
834 		}
835 	}
836 	panic("Swapdev not found");
837 }
838 
839 /*
840  * SYSCTL_SWAP_FRAGMENTATION() -	produce raw swap space stats
841  */
842 static int
843 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS)
844 {
845 	struct sbuf sbuf;
846 	struct swdevt *sp;
847 	const char *devname;
848 	int error;
849 
850 	error = sysctl_wire_old_buffer(req, 0);
851 	if (error != 0)
852 		return (error);
853 	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
854 	mtx_lock(&sw_dev_mtx);
855 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
856 		if (vn_isdisk(sp->sw_vp, NULL))
857 			devname = devtoname(sp->sw_vp->v_rdev);
858 		else
859 			devname = "[file]";
860 		sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname);
861 		blist_stats(sp->sw_blist, &sbuf);
862 	}
863 	mtx_unlock(&sw_dev_mtx);
864 	error = sbuf_finish(&sbuf);
865 	sbuf_delete(&sbuf);
866 	return (error);
867 }
868 
869 /*
870  * SWAP_PAGER_FREESPACE() -	frees swap blocks associated with a page
871  *				range within an object.
872  *
873  *	This is a globally accessible routine.
874  *
875  *	This routine removes swapblk assignments from swap metadata.
876  *
877  *	The external callers of this routine typically have already destroyed
878  *	or renamed vm_page_t's associated with this range in the object so
879  *	we should be ok.
880  *
881  *	The object must be locked.
882  */
883 void
884 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size)
885 {
886 
887 	swp_pager_meta_free(object, start, size);
888 }
889 
890 /*
891  * SWAP_PAGER_RESERVE() - reserve swap blocks in object
892  *
893  *	Assigns swap blocks to the specified range within the object.  The
894  *	swap blocks are not zeroed.  Any previous swap assignment is destroyed.
895  *
896  *	Returns 0 on success, -1 on failure.
897  */
898 int
899 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size)
900 {
901 	daddr_t addr, blk, n_free, s_free;
902 	int i, j, n;
903 
904 	swp_pager_init_freerange(&s_free, &n_free);
905 	VM_OBJECT_WLOCK(object);
906 	for (i = 0; i < size; i += n) {
907 		n = size - i;
908 		blk = swp_pager_getswapspace(&n, 1);
909 		if (blk == SWAPBLK_NONE) {
910 			swp_pager_meta_free(object, start, i);
911 			VM_OBJECT_WUNLOCK(object);
912 			return (-1);
913 		}
914 		for (j = 0; j < n; ++j) {
915 			addr = swp_pager_meta_build(object,
916 			    start + i + j, blk + j);
917 			if (addr != SWAPBLK_NONE)
918 				swp_pager_update_freerange(&s_free, &n_free,
919 				    addr);
920 		}
921 	}
922 	swp_pager_freeswapspace(s_free, n_free);
923 	VM_OBJECT_WUNLOCK(object);
924 	return (0);
925 }
926 
927 /*
928  * SWAP_PAGER_COPY() -  copy blocks from source pager to destination pager
929  *			and destroy the source.
930  *
931  *	Copy any valid swapblks from the source to the destination.  In
932  *	cases where both the source and destination have a valid swapblk,
933  *	we keep the destination's.
934  *
935  *	This routine is allowed to sleep.  It may sleep allocating metadata
936  *	indirectly through swp_pager_meta_build() or if paging is still in
937  *	progress on the source.
938  *
939  *	The source object contains no vm_page_t's (which is just as well)
940  *
941  *	The source object is of type OBJT_SWAP.
942  *
943  *	The source and destination objects must be locked.
944  *	Both object locks may temporarily be released.
945  */
946 void
947 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject,
948     vm_pindex_t offset, int destroysource)
949 {
950 	vm_pindex_t i;
951 	daddr_t dstaddr, n_free, s_free, srcaddr;
952 
953 	VM_OBJECT_ASSERT_WLOCKED(srcobject);
954 	VM_OBJECT_ASSERT_WLOCKED(dstobject);
955 
956 	/*
957 	 * If destroysource is set, we remove the source object from the
958 	 * swap_pager internal queue now.
959 	 */
960 	if (destroysource && srcobject->handle != NULL) {
961 		vm_object_pip_add(srcobject, 1);
962 		VM_OBJECT_WUNLOCK(srcobject);
963 		vm_object_pip_add(dstobject, 1);
964 		VM_OBJECT_WUNLOCK(dstobject);
965 		sx_xlock(&sw_alloc_sx);
966 		TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject,
967 		    pager_object_list);
968 		sx_xunlock(&sw_alloc_sx);
969 		VM_OBJECT_WLOCK(dstobject);
970 		vm_object_pip_wakeup(dstobject);
971 		VM_OBJECT_WLOCK(srcobject);
972 		vm_object_pip_wakeup(srcobject);
973 	}
974 
975 	/*
976 	 * Transfer source to destination.
977 	 */
978 	swp_pager_init_freerange(&s_free, &n_free);
979 	for (i = 0; i < dstobject->size; ++i) {
980 		srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP);
981 		if (srcaddr == SWAPBLK_NONE)
982 			continue;
983 		dstaddr = swp_pager_meta_ctl(dstobject, i, 0);
984 		if (dstaddr != SWAPBLK_NONE) {
985 			/*
986 			 * Destination has valid swapblk or it is represented
987 			 * by a resident page.  We destroy the source block.
988 			 */
989 			swp_pager_update_freerange(&s_free, &n_free, srcaddr);
990 			continue;
991 		}
992 
993 		/*
994 		 * Destination has no swapblk and is not resident,
995 		 * copy source.
996 		 *
997 		 * swp_pager_meta_build() can sleep.
998 		 */
999 		vm_object_pip_add(srcobject, 1);
1000 		VM_OBJECT_WUNLOCK(srcobject);
1001 		vm_object_pip_add(dstobject, 1);
1002 		dstaddr = swp_pager_meta_build(dstobject, i, srcaddr);
1003 		KASSERT(dstaddr == SWAPBLK_NONE,
1004 		    ("Unexpected destination swapblk"));
1005 		vm_object_pip_wakeup(dstobject);
1006 		VM_OBJECT_WLOCK(srcobject);
1007 		vm_object_pip_wakeup(srcobject);
1008 	}
1009 	swp_pager_freeswapspace(s_free, n_free);
1010 
1011 	/*
1012 	 * Free left over swap blocks in source.
1013 	 *
1014 	 * We have to revert the type to OBJT_DEFAULT so we do not accidentally
1015 	 * double-remove the object from the swap queues.
1016 	 */
1017 	if (destroysource) {
1018 		swp_pager_meta_free_all(srcobject);
1019 		/*
1020 		 * Reverting the type is not necessary, the caller is going
1021 		 * to destroy srcobject directly, but I'm doing it here
1022 		 * for consistency since we've removed the object from its
1023 		 * queues.
1024 		 */
1025 		srcobject->type = OBJT_DEFAULT;
1026 	}
1027 }
1028 
1029 /*
1030  * SWAP_PAGER_HASPAGE() -	determine if we have good backing store for
1031  *				the requested page.
1032  *
1033  *	We determine whether good backing store exists for the requested
1034  *	page and return TRUE if it does, FALSE if it doesn't.
1035  *
1036  *	If TRUE, we also try to determine how much valid, contiguous backing
1037  *	store exists before and after the requested page.
1038  */
1039 static boolean_t
1040 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before,
1041     int *after)
1042 {
1043 	daddr_t blk, blk0;
1044 	int i;
1045 
1046 	VM_OBJECT_ASSERT_LOCKED(object);
1047 
1048 	/*
1049 	 * do we have good backing store at the requested index ?
1050 	 */
1051 	blk0 = swp_pager_meta_ctl(object, pindex, 0);
1052 	if (blk0 == SWAPBLK_NONE) {
1053 		if (before)
1054 			*before = 0;
1055 		if (after)
1056 			*after = 0;
1057 		return (FALSE);
1058 	}
1059 
1060 	/*
1061 	 * find backwards-looking contiguous good backing store
1062 	 */
1063 	if (before != NULL) {
1064 		for (i = 1; i < SWB_NPAGES; i++) {
1065 			if (i > pindex)
1066 				break;
1067 			blk = swp_pager_meta_ctl(object, pindex - i, 0);
1068 			if (blk != blk0 - i)
1069 				break;
1070 		}
1071 		*before = i - 1;
1072 	}
1073 
1074 	/*
1075 	 * find forward-looking contiguous good backing store
1076 	 */
1077 	if (after != NULL) {
1078 		for (i = 1; i < SWB_NPAGES; i++) {
1079 			blk = swp_pager_meta_ctl(object, pindex + i, 0);
1080 			if (blk != blk0 + i)
1081 				break;
1082 		}
1083 		*after = i - 1;
1084 	}
1085 	return (TRUE);
1086 }
1087 
1088 /*
1089  * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page
1090  *
1091  *	This removes any associated swap backing store, whether valid or
1092  *	not, from the page.
1093  *
1094  *	This routine is typically called when a page is made dirty, at
1095  *	which point any associated swap can be freed.  MADV_FREE also
1096  *	calls us in a special-case situation
1097  *
1098  *	NOTE!!!  If the page is clean and the swap was valid, the caller
1099  *	should make the page dirty before calling this routine.  This routine
1100  *	does NOT change the m->dirty status of the page.  Also: MADV_FREE
1101  *	depends on it.
1102  *
1103  *	This routine may not sleep.
1104  *
1105  *	The object containing the page must be locked.
1106  */
1107 static void
1108 swap_pager_unswapped(vm_page_t m)
1109 {
1110 	daddr_t srcaddr;
1111 
1112 	srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP);
1113 	if (srcaddr != SWAPBLK_NONE)
1114 		swp_pager_freeswapspace(srcaddr, 1);
1115 }
1116 
1117 /*
1118  * swap_pager_getpages() - bring pages in from swap
1119  *
1120  *	Attempt to page in the pages in array "ma" of length "count".  The
1121  *	caller may optionally specify that additional pages preceding and
1122  *	succeeding the specified range be paged in.  The number of such pages
1123  *	is returned in the "rbehind" and "rahead" parameters, and they will
1124  *	be in the inactive queue upon return.
1125  *
1126  *	The pages in "ma" must be busied and will remain busied upon return.
1127  */
1128 static int
1129 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind,
1130     int *rahead)
1131 {
1132 	struct buf *bp;
1133 	vm_page_t bm, mpred, msucc, p;
1134 	vm_pindex_t pindex;
1135 	daddr_t blk;
1136 	int i, maxahead, maxbehind, reqcount;
1137 
1138 	reqcount = count;
1139 
1140 	/*
1141 	 * Determine the final number of read-behind pages and
1142 	 * allocate them BEFORE releasing the object lock.  Otherwise,
1143 	 * there can be a problematic race with vm_object_split().
1144 	 * Specifically, vm_object_split() might first transfer pages
1145 	 * that precede ma[0] in the current object to a new object,
1146 	 * and then this function incorrectly recreates those pages as
1147 	 * read-behind pages in the current object.
1148 	 */
1149 	if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead))
1150 		return (VM_PAGER_FAIL);
1151 
1152 	/*
1153 	 * Clip the readahead and readbehind ranges to exclude resident pages.
1154 	 */
1155 	if (rahead != NULL) {
1156 		KASSERT(reqcount - 1 <= maxahead,
1157 		    ("page count %d extends beyond swap block", reqcount));
1158 		*rahead = imin(*rahead, maxahead - (reqcount - 1));
1159 		pindex = ma[reqcount - 1]->pindex;
1160 		msucc = TAILQ_NEXT(ma[reqcount - 1], listq);
1161 		if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead)
1162 			*rahead = msucc->pindex - pindex - 1;
1163 	}
1164 	if (rbehind != NULL) {
1165 		*rbehind = imin(*rbehind, maxbehind);
1166 		pindex = ma[0]->pindex;
1167 		mpred = TAILQ_PREV(ma[0], pglist, listq);
1168 		if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind)
1169 			*rbehind = pindex - mpred->pindex - 1;
1170 	}
1171 
1172 	bm = ma[0];
1173 	for (i = 0; i < count; i++)
1174 		ma[i]->oflags |= VPO_SWAPINPROG;
1175 
1176 	/*
1177 	 * Allocate readahead and readbehind pages.
1178 	 */
1179 	if (rbehind != NULL) {
1180 		for (i = 1; i <= *rbehind; i++) {
1181 			p = vm_page_alloc(object, ma[0]->pindex - i,
1182 			    VM_ALLOC_NORMAL);
1183 			if (p == NULL)
1184 				break;
1185 			p->oflags |= VPO_SWAPINPROG;
1186 			bm = p;
1187 		}
1188 		*rbehind = i - 1;
1189 	}
1190 	if (rahead != NULL) {
1191 		for (i = 0; i < *rahead; i++) {
1192 			p = vm_page_alloc(object,
1193 			    ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL);
1194 			if (p == NULL)
1195 				break;
1196 			p->oflags |= VPO_SWAPINPROG;
1197 		}
1198 		*rahead = i;
1199 	}
1200 	if (rbehind != NULL)
1201 		count += *rbehind;
1202 	if (rahead != NULL)
1203 		count += *rahead;
1204 
1205 	vm_object_pip_add(object, count);
1206 
1207 	pindex = bm->pindex;
1208 	blk = swp_pager_meta_ctl(object, pindex, 0);
1209 	KASSERT(blk != SWAPBLK_NONE,
1210 	    ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex));
1211 
1212 	VM_OBJECT_WUNLOCK(object);
1213 	bp = uma_zalloc(swrbuf_zone, M_WAITOK);
1214 	/* Pages cannot leave the object while busy. */
1215 	for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) {
1216 		MPASS(p->pindex == bm->pindex + i);
1217 		bp->b_pages[i] = p;
1218 	}
1219 
1220 	bp->b_flags |= B_PAGING;
1221 	bp->b_iocmd = BIO_READ;
1222 	bp->b_iodone = swp_pager_async_iodone;
1223 	bp->b_rcred = crhold(thread0.td_ucred);
1224 	bp->b_wcred = crhold(thread0.td_ucred);
1225 	bp->b_blkno = blk;
1226 	bp->b_bcount = PAGE_SIZE * count;
1227 	bp->b_bufsize = PAGE_SIZE * count;
1228 	bp->b_npages = count;
1229 	bp->b_pgbefore = rbehind != NULL ? *rbehind : 0;
1230 	bp->b_pgafter = rahead != NULL ? *rahead : 0;
1231 
1232 	VM_CNT_INC(v_swapin);
1233 	VM_CNT_ADD(v_swappgsin, count);
1234 
1235 	/*
1236 	 * perform the I/O.  NOTE!!!  bp cannot be considered valid after
1237 	 * this point because we automatically release it on completion.
1238 	 * Instead, we look at the one page we are interested in which we
1239 	 * still hold a lock on even through the I/O completion.
1240 	 *
1241 	 * The other pages in our ma[] array are also released on completion,
1242 	 * so we cannot assume they are valid anymore either.
1243 	 *
1244 	 * NOTE: b_blkno is destroyed by the call to swapdev_strategy
1245 	 */
1246 	BUF_KERNPROC(bp);
1247 	swp_pager_strategy(bp);
1248 
1249 	/*
1250 	 * Wait for the pages we want to complete.  VPO_SWAPINPROG is always
1251 	 * cleared on completion.  If an I/O error occurs, SWAPBLK_NONE
1252 	 * is set in the metadata for each page in the request.
1253 	 */
1254 	VM_OBJECT_WLOCK(object);
1255 	while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) {
1256 		ma[0]->oflags |= VPO_SWAPSLEEP;
1257 		VM_CNT_INC(v_intrans);
1258 		if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP,
1259 		    "swread", hz * 20)) {
1260 			printf(
1261 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n",
1262 			    bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount);
1263 		}
1264 	}
1265 
1266 	/*
1267 	 * If we had an unrecoverable read error pages will not be valid.
1268 	 */
1269 	for (i = 0; i < reqcount; i++)
1270 		if (ma[i]->valid != VM_PAGE_BITS_ALL)
1271 			return (VM_PAGER_ERROR);
1272 
1273 	return (VM_PAGER_OK);
1274 
1275 	/*
1276 	 * A final note: in a low swap situation, we cannot deallocate swap
1277 	 * and mark a page dirty here because the caller is likely to mark
1278 	 * the page clean when we return, causing the page to possibly revert
1279 	 * to all-zero's later.
1280 	 */
1281 }
1282 
1283 /*
1284  * 	swap_pager_getpages_async():
1285  *
1286  *	Right now this is emulation of asynchronous operation on top of
1287  *	swap_pager_getpages().
1288  */
1289 static int
1290 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count,
1291     int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg)
1292 {
1293 	int r, error;
1294 
1295 	r = swap_pager_getpages(object, ma, count, rbehind, rahead);
1296 	VM_OBJECT_WUNLOCK(object);
1297 	switch (r) {
1298 	case VM_PAGER_OK:
1299 		error = 0;
1300 		break;
1301 	case VM_PAGER_ERROR:
1302 		error = EIO;
1303 		break;
1304 	case VM_PAGER_FAIL:
1305 		error = EINVAL;
1306 		break;
1307 	default:
1308 		panic("unhandled swap_pager_getpages() error %d", r);
1309 	}
1310 	(iodone)(arg, ma, count, error);
1311 	VM_OBJECT_WLOCK(object);
1312 
1313 	return (r);
1314 }
1315 
1316 /*
1317  *	swap_pager_putpages:
1318  *
1319  *	Assign swap (if necessary) and initiate I/O on the specified pages.
1320  *
1321  *	We support both OBJT_DEFAULT and OBJT_SWAP objects.  DEFAULT objects
1322  *	are automatically converted to SWAP objects.
1323  *
1324  *	In a low memory situation we may block in VOP_STRATEGY(), but the new
1325  *	vm_page reservation system coupled with properly written VFS devices
1326  *	should ensure that no low-memory deadlock occurs.  This is an area
1327  *	which needs work.
1328  *
1329  *	The parent has N vm_object_pip_add() references prior to
1330  *	calling us and will remove references for rtvals[] that are
1331  *	not set to VM_PAGER_PEND.  We need to remove the rest on I/O
1332  *	completion.
1333  *
1334  *	The parent has soft-busy'd the pages it passes us and will unbusy
1335  *	those whose rtvals[] entry is not set to VM_PAGER_PEND on return.
1336  *	We need to unbusy the rest on I/O completion.
1337  */
1338 static void
1339 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count,
1340     int flags, int *rtvals)
1341 {
1342 	struct buf *bp;
1343 	daddr_t addr, blk, n_free, s_free;
1344 	vm_page_t mreq;
1345 	int i, j, n;
1346 	bool async;
1347 
1348 	KASSERT(count == 0 || ma[0]->object == object,
1349 	    ("%s: object mismatch %p/%p",
1350 	    __func__, object, ma[0]->object));
1351 
1352 	/*
1353 	 * Step 1
1354 	 *
1355 	 * Turn object into OBJT_SWAP.  Force sync if not a pageout process.
1356 	 */
1357 	if (object->type != OBJT_SWAP) {
1358 		addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE);
1359 		KASSERT(addr == SWAPBLK_NONE,
1360 		    ("unexpected object swap block"));
1361 	}
1362 	VM_OBJECT_WUNLOCK(object);
1363 	async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0;
1364 	swp_pager_init_freerange(&s_free, &n_free);
1365 
1366 	/*
1367 	 * Step 2
1368 	 *
1369 	 * Assign swap blocks and issue I/O.  We reallocate swap on the fly.
1370 	 * The page is left dirty until the pageout operation completes
1371 	 * successfully.
1372 	 */
1373 	for (i = 0; i < count; i += n) {
1374 		/* Maximum I/O size is limited by maximum swap block size. */
1375 		n = min(count - i, nsw_cluster_max);
1376 
1377 		/* Get a block of swap of size up to size n. */
1378 		blk = swp_pager_getswapspace(&n, 4);
1379 		if (blk == SWAPBLK_NONE) {
1380 			for (j = 0; j < n; ++j)
1381 				rtvals[i + j] = VM_PAGER_FAIL;
1382 			continue;
1383 		}
1384 
1385 		/*
1386 		 * All I/O parameters have been satisfied.  Build the I/O
1387 		 * request and assign the swap space.
1388 		 */
1389 		if (async) {
1390 			mtx_lock(&swbuf_mtx);
1391 			while (nsw_wcount_async == 0)
1392 				msleep(&nsw_wcount_async, &swbuf_mtx, PVM,
1393 				    "swbufa", 0);
1394 			nsw_wcount_async--;
1395 			mtx_unlock(&swbuf_mtx);
1396 		}
1397 		bp = uma_zalloc(swwbuf_zone, M_WAITOK);
1398 		if (async)
1399 			bp->b_flags = B_ASYNC;
1400 		bp->b_flags |= B_PAGING;
1401 		bp->b_iocmd = BIO_WRITE;
1402 
1403 		bp->b_rcred = crhold(thread0.td_ucred);
1404 		bp->b_wcred = crhold(thread0.td_ucred);
1405 		bp->b_bcount = PAGE_SIZE * n;
1406 		bp->b_bufsize = PAGE_SIZE * n;
1407 		bp->b_blkno = blk;
1408 
1409 		VM_OBJECT_WLOCK(object);
1410 		for (j = 0; j < n; ++j) {
1411 			mreq = ma[i + j];
1412 			addr = swp_pager_meta_build(mreq->object, mreq->pindex,
1413 			    blk + j);
1414 			if (addr != SWAPBLK_NONE)
1415 				swp_pager_update_freerange(&s_free, &n_free,
1416 				    addr);
1417 			MPASS(mreq->dirty == VM_PAGE_BITS_ALL);
1418 			mreq->oflags |= VPO_SWAPINPROG;
1419 			bp->b_pages[j] = mreq;
1420 		}
1421 		VM_OBJECT_WUNLOCK(object);
1422 		bp->b_npages = n;
1423 		/*
1424 		 * Must set dirty range for NFS to work.
1425 		 */
1426 		bp->b_dirtyoff = 0;
1427 		bp->b_dirtyend = bp->b_bcount;
1428 
1429 		VM_CNT_INC(v_swapout);
1430 		VM_CNT_ADD(v_swappgsout, bp->b_npages);
1431 
1432 		/*
1433 		 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we
1434 		 * can call the async completion routine at the end of a
1435 		 * synchronous I/O operation.  Otherwise, our caller would
1436 		 * perform duplicate unbusy and wakeup operations on the page
1437 		 * and object, respectively.
1438 		 */
1439 		for (j = 0; j < n; j++)
1440 			rtvals[i + j] = VM_PAGER_PEND;
1441 
1442 		/*
1443 		 * asynchronous
1444 		 *
1445 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1446 		 */
1447 		if (async) {
1448 			bp->b_iodone = swp_pager_async_iodone;
1449 			BUF_KERNPROC(bp);
1450 			swp_pager_strategy(bp);
1451 			continue;
1452 		}
1453 
1454 		/*
1455 		 * synchronous
1456 		 *
1457 		 * NOTE: b_blkno is destroyed by the call to swapdev_strategy.
1458 		 */
1459 		bp->b_iodone = bdone;
1460 		swp_pager_strategy(bp);
1461 
1462 		/*
1463 		 * Wait for the sync I/O to complete.
1464 		 */
1465 		bwait(bp, PVM, "swwrt");
1466 
1467 		/*
1468 		 * Now that we are through with the bp, we can call the
1469 		 * normal async completion, which frees everything up.
1470 		 */
1471 		swp_pager_async_iodone(bp);
1472 	}
1473 	swp_pager_freeswapspace(s_free, n_free);
1474 	VM_OBJECT_WLOCK(object);
1475 }
1476 
1477 /*
1478  *	swp_pager_async_iodone:
1479  *
1480  *	Completion routine for asynchronous reads and writes from/to swap.
1481  *	Also called manually by synchronous code to finish up a bp.
1482  *
1483  *	This routine may not sleep.
1484  */
1485 static void
1486 swp_pager_async_iodone(struct buf *bp)
1487 {
1488 	int i;
1489 	vm_object_t object = NULL;
1490 
1491 	/*
1492 	 * Report error - unless we ran out of memory, in which case
1493 	 * we've already logged it in swapgeom_strategy().
1494 	 */
1495 	if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) {
1496 		printf(
1497 		    "swap_pager: I/O error - %s failed; blkno %ld,"
1498 			"size %ld, error %d\n",
1499 		    ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"),
1500 		    (long)bp->b_blkno,
1501 		    (long)bp->b_bcount,
1502 		    bp->b_error
1503 		);
1504 	}
1505 
1506 	/*
1507 	 * remove the mapping for kernel virtual
1508 	 */
1509 	if (buf_mapped(bp))
1510 		pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages);
1511 	else
1512 		bp->b_data = bp->b_kvabase;
1513 
1514 	if (bp->b_npages) {
1515 		object = bp->b_pages[0]->object;
1516 		VM_OBJECT_WLOCK(object);
1517 	}
1518 
1519 	/*
1520 	 * cleanup pages.  If an error occurs writing to swap, we are in
1521 	 * very serious trouble.  If it happens to be a disk error, though,
1522 	 * we may be able to recover by reassigning the swap later on.  So
1523 	 * in this case we remove the m->swapblk assignment for the page
1524 	 * but do not free it in the rlist.  The errornous block(s) are thus
1525 	 * never reallocated as swap.  Redirty the page and continue.
1526 	 */
1527 	for (i = 0; i < bp->b_npages; ++i) {
1528 		vm_page_t m = bp->b_pages[i];
1529 
1530 		m->oflags &= ~VPO_SWAPINPROG;
1531 		if (m->oflags & VPO_SWAPSLEEP) {
1532 			m->oflags &= ~VPO_SWAPSLEEP;
1533 			wakeup(&object->paging_in_progress);
1534 		}
1535 
1536 		if (bp->b_ioflags & BIO_ERROR) {
1537 			/*
1538 			 * If an error occurs I'd love to throw the swapblk
1539 			 * away without freeing it back to swapspace, so it
1540 			 * can never be used again.  But I can't from an
1541 			 * interrupt.
1542 			 */
1543 			if (bp->b_iocmd == BIO_READ) {
1544 				/*
1545 				 * NOTE: for reads, m->dirty will probably
1546 				 * be overridden by the original caller of
1547 				 * getpages so don't play cute tricks here.
1548 				 */
1549 				m->valid = 0;
1550 			} else {
1551 				/*
1552 				 * If a write error occurs, reactivate page
1553 				 * so it doesn't clog the inactive list,
1554 				 * then finish the I/O.
1555 				 */
1556 				MPASS(m->dirty == VM_PAGE_BITS_ALL);
1557 				vm_page_lock(m);
1558 				vm_page_activate(m);
1559 				vm_page_unlock(m);
1560 				vm_page_sunbusy(m);
1561 			}
1562 		} else if (bp->b_iocmd == BIO_READ) {
1563 			/*
1564 			 * NOTE: for reads, m->dirty will probably be
1565 			 * overridden by the original caller of getpages so
1566 			 * we cannot set them in order to free the underlying
1567 			 * swap in a low-swap situation.  I don't think we'd
1568 			 * want to do that anyway, but it was an optimization
1569 			 * that existed in the old swapper for a time before
1570 			 * it got ripped out due to precisely this problem.
1571 			 */
1572 			KASSERT(!pmap_page_is_mapped(m),
1573 			    ("swp_pager_async_iodone: page %p is mapped", m));
1574 			KASSERT(m->dirty == 0,
1575 			    ("swp_pager_async_iodone: page %p is dirty", m));
1576 
1577 			m->valid = VM_PAGE_BITS_ALL;
1578 			if (i < bp->b_pgbefore ||
1579 			    i >= bp->b_npages - bp->b_pgafter)
1580 				vm_page_readahead_finish(m);
1581 		} else {
1582 			/*
1583 			 * For write success, clear the dirty
1584 			 * status, then finish the I/O ( which decrements the
1585 			 * busy count and possibly wakes waiter's up ).
1586 			 * A page is only written to swap after a period of
1587 			 * inactivity.  Therefore, we do not expect it to be
1588 			 * reused.
1589 			 */
1590 			KASSERT(!pmap_page_is_write_mapped(m),
1591 			    ("swp_pager_async_iodone: page %p is not write"
1592 			    " protected", m));
1593 			vm_page_undirty(m);
1594 			vm_page_lock(m);
1595 			vm_page_deactivate_noreuse(m);
1596 			vm_page_unlock(m);
1597 			vm_page_sunbusy(m);
1598 		}
1599 	}
1600 
1601 	/*
1602 	 * adjust pip.  NOTE: the original parent may still have its own
1603 	 * pip refs on the object.
1604 	 */
1605 	if (object != NULL) {
1606 		vm_object_pip_wakeupn(object, bp->b_npages);
1607 		VM_OBJECT_WUNLOCK(object);
1608 	}
1609 
1610 	/*
1611 	 * swapdev_strategy() manually sets b_vp and b_bufobj before calling
1612 	 * bstrategy(). Set them back to NULL now we're done with it, or we'll
1613 	 * trigger a KASSERT in relpbuf().
1614 	 */
1615 	if (bp->b_vp) {
1616 		    bp->b_vp = NULL;
1617 		    bp->b_bufobj = NULL;
1618 	}
1619 	/*
1620 	 * release the physical I/O buffer
1621 	 */
1622 	if (bp->b_flags & B_ASYNC) {
1623 		mtx_lock(&swbuf_mtx);
1624 		if (++nsw_wcount_async == 1)
1625 			wakeup(&nsw_wcount_async);
1626 		mtx_unlock(&swbuf_mtx);
1627 	}
1628 	uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp);
1629 }
1630 
1631 int
1632 swap_pager_nswapdev(void)
1633 {
1634 
1635 	return (nswapdev);
1636 }
1637 
1638 static void
1639 swp_pager_force_dirty(vm_page_t m)
1640 {
1641 
1642 	vm_page_dirty(m);
1643 #ifdef INVARIANTS
1644 	vm_page_lock(m);
1645 	if (!vm_page_wired(m) && m->queue == PQ_NONE)
1646 		panic("page %p is neither wired nor queued", m);
1647 	vm_page_unlock(m);
1648 #endif
1649 	vm_page_xunbusy(m);
1650 	swap_pager_unswapped(m);
1651 }
1652 
1653 static void
1654 swp_pager_force_launder(vm_page_t m)
1655 {
1656 
1657 	vm_page_dirty(m);
1658 	vm_page_lock(m);
1659 	vm_page_launder(m);
1660 	vm_page_unlock(m);
1661 	vm_page_xunbusy(m);
1662 	swap_pager_unswapped(m);
1663 }
1664 
1665 /*
1666  * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in
1667  *
1668  *	This routine dissociates pages starting at the given index within an
1669  *	object from their backing store, paging them in if they do not reside
1670  *	in memory.  Pages that are paged in are marked dirty and placed in the
1671  *	laundry queue.  Pages are marked dirty because they no longer have
1672  *	backing store.  They are placed in the laundry queue because they have
1673  *	not been accessed recently.  Otherwise, they would already reside in
1674  *	memory.
1675  */
1676 static void
1677 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages)
1678 {
1679 	vm_page_t ma[npages];
1680 	int i, j;
1681 
1682 	KASSERT(npages > 0, ("%s: No pages", __func__));
1683 	KASSERT(npages <= MAXPHYS / PAGE_SIZE,
1684 	    ("%s: Too many pages: %d", __func__, npages));
1685 	vm_object_pip_add(object, npages);
1686 	vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages);
1687 	for (i = j = 0;; i++) {
1688 		/* Count nonresident pages, to page-in all at once. */
1689 		if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL)
1690 			continue;
1691 		if (j < i) {
1692 			/* Page-in nonresident pages. Mark for laundering. */
1693 			if (swap_pager_getpages(object, &ma[j], i - j, NULL,
1694 			    NULL) != VM_PAGER_OK)
1695 				panic("%s: read from swap failed", __func__);
1696 			do {
1697 				swp_pager_force_launder(ma[j]);
1698 			} while (++j < i);
1699 		}
1700 		if (i == npages)
1701 			break;
1702 		/* Mark dirty a resident page. */
1703 		swp_pager_force_dirty(ma[j++]);
1704 	}
1705 	vm_object_pip_wakeupn(object, npages);
1706 }
1707 
1708 /*
1709  *	swap_pager_swapoff_object:
1710  *
1711  *	Page in all of the pages that have been paged out for an object
1712  *	to a swap device.
1713  */
1714 static void
1715 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object)
1716 {
1717 	struct swblk *sb;
1718 	vm_pindex_t pi, s_pindex;
1719 	daddr_t blk, n_blks, s_blk;
1720 	int i;
1721 
1722 	n_blks = 0;
1723 	for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
1724 	    &object->un_pager.swp.swp_blks, pi)) != NULL; ) {
1725 		for (i = 0; i < SWAP_META_PAGES; i++) {
1726 			blk = sb->d[i];
1727 			if (!swp_pager_isondev(blk, sp))
1728 				blk = SWAPBLK_NONE;
1729 
1730 			/*
1731 			 * If there are no blocks/pages accumulated, start a new
1732 			 * accumulation here.
1733 			 */
1734 			if (n_blks == 0) {
1735 				if (blk != SWAPBLK_NONE) {
1736 					s_blk = blk;
1737 					s_pindex = sb->p + i;
1738 					n_blks = 1;
1739 				}
1740 				continue;
1741 			}
1742 
1743 			/*
1744 			 * If the accumulation can be extended without breaking
1745 			 * the sequence of consecutive blocks and pages that
1746 			 * swp_pager_force_pagein() depends on, do so.
1747 			 */
1748 			if (n_blks < MAXPHYS / PAGE_SIZE &&
1749 			    s_blk + n_blks == blk &&
1750 			    s_pindex + n_blks == sb->p + i) {
1751 				++n_blks;
1752 				continue;
1753 			}
1754 
1755 			/*
1756 			 * The sequence of consecutive blocks and pages cannot
1757 			 * be extended, so page them all in here.  Then,
1758 			 * because doing so involves releasing and reacquiring
1759 			 * a lock that protects the swap block pctrie, do not
1760 			 * rely on the current swap block.  Break this loop and
1761 			 * re-fetch the same pindex from the pctrie again.
1762 			 */
1763 			swp_pager_force_pagein(object, s_pindex, n_blks);
1764 			n_blks = 0;
1765 			break;
1766 		}
1767 		if (i == SWAP_META_PAGES)
1768 			pi = sb->p + SWAP_META_PAGES;
1769 	}
1770 	if (n_blks > 0)
1771 		swp_pager_force_pagein(object, s_pindex, n_blks);
1772 }
1773 
1774 /*
1775  *	swap_pager_swapoff:
1776  *
1777  *	Page in all of the pages that have been paged out to the
1778  *	given device.  The corresponding blocks in the bitmap must be
1779  *	marked as allocated and the device must be flagged SW_CLOSING.
1780  *	There may be no processes swapped out to the device.
1781  *
1782  *	This routine may block.
1783  */
1784 static void
1785 swap_pager_swapoff(struct swdevt *sp)
1786 {
1787 	vm_object_t object;
1788 	int retries;
1789 
1790 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
1791 
1792 	retries = 0;
1793 full_rescan:
1794 	mtx_lock(&vm_object_list_mtx);
1795 	TAILQ_FOREACH(object, &vm_object_list, object_list) {
1796 		if (object->type != OBJT_SWAP)
1797 			continue;
1798 		mtx_unlock(&vm_object_list_mtx);
1799 		/* Depends on type-stability. */
1800 		VM_OBJECT_WLOCK(object);
1801 
1802 		/*
1803 		 * Dead objects are eventually terminated on their own.
1804 		 */
1805 		if ((object->flags & OBJ_DEAD) != 0)
1806 			goto next_obj;
1807 
1808 		/*
1809 		 * Sync with fences placed after pctrie
1810 		 * initialization.  We must not access pctrie below
1811 		 * unless we checked that our object is swap and not
1812 		 * dead.
1813 		 */
1814 		atomic_thread_fence_acq();
1815 		if (object->type != OBJT_SWAP)
1816 			goto next_obj;
1817 
1818 		swap_pager_swapoff_object(sp, object);
1819 next_obj:
1820 		VM_OBJECT_WUNLOCK(object);
1821 		mtx_lock(&vm_object_list_mtx);
1822 	}
1823 	mtx_unlock(&vm_object_list_mtx);
1824 
1825 	if (sp->sw_used) {
1826 		/*
1827 		 * Objects may be locked or paging to the device being
1828 		 * removed, so we will miss their pages and need to
1829 		 * make another pass.  We have marked this device as
1830 		 * SW_CLOSING, so the activity should finish soon.
1831 		 */
1832 		retries++;
1833 		if (retries > 100) {
1834 			panic("swapoff: failed to locate %d swap blocks",
1835 			    sp->sw_used);
1836 		}
1837 		pause("swpoff", hz / 20);
1838 		goto full_rescan;
1839 	}
1840 	EVENTHANDLER_INVOKE(swapoff, sp);
1841 }
1842 
1843 /************************************************************************
1844  *				SWAP META DATA 				*
1845  ************************************************************************
1846  *
1847  *	These routines manipulate the swap metadata stored in the
1848  *	OBJT_SWAP object.
1849  *
1850  *	Swap metadata is implemented with a global hash and not directly
1851  *	linked into the object.  Instead the object simply contains
1852  *	appropriate tracking counters.
1853  */
1854 
1855 /*
1856  * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free?
1857  */
1858 static bool
1859 swp_pager_swblk_empty(struct swblk *sb, int start, int limit)
1860 {
1861 	int i;
1862 
1863 	MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES);
1864 	for (i = start; i < limit; i++) {
1865 		if (sb->d[i] != SWAPBLK_NONE)
1866 			return (false);
1867 	}
1868 	return (true);
1869 }
1870 
1871 /*
1872  * SWP_PAGER_META_BUILD() -	add swap block to swap meta data for object
1873  *
1874  *	We first convert the object to a swap object if it is a default
1875  *	object.
1876  *
1877  *	The specified swapblk is added to the object's swap metadata.  If
1878  *	the swapblk is not valid, it is freed instead.  Any previously
1879  *	assigned swapblk is returned.
1880  */
1881 static daddr_t
1882 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk)
1883 {
1884 	static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted;
1885 	struct swblk *sb, *sb1;
1886 	vm_pindex_t modpi, rdpi;
1887 	daddr_t prev_swapblk;
1888 	int error, i;
1889 
1890 	VM_OBJECT_ASSERT_WLOCKED(object);
1891 
1892 	/*
1893 	 * Convert default object to swap object if necessary
1894 	 */
1895 	if (object->type != OBJT_SWAP) {
1896 		pctrie_init(&object->un_pager.swp.swp_blks);
1897 
1898 		/*
1899 		 * Ensure that swap_pager_swapoff()'s iteration over
1900 		 * object_list does not see a garbage pctrie.
1901 		 */
1902 		atomic_thread_fence_rel();
1903 
1904 		object->type = OBJT_SWAP;
1905 		KASSERT(object->handle == NULL, ("default pager with handle"));
1906 	}
1907 
1908 	rdpi = rounddown(pindex, SWAP_META_PAGES);
1909 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi);
1910 	if (sb == NULL) {
1911 		if (swapblk == SWAPBLK_NONE)
1912 			return (SWAPBLK_NONE);
1913 		for (;;) {
1914 			sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc ==
1915 			    pageproc ? M_USE_RESERVE : 0));
1916 			if (sb != NULL) {
1917 				sb->p = rdpi;
1918 				for (i = 0; i < SWAP_META_PAGES; i++)
1919 					sb->d[i] = SWAPBLK_NONE;
1920 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1921 				    1, 0))
1922 					printf("swblk zone ok\n");
1923 				break;
1924 			}
1925 			VM_OBJECT_WUNLOCK(object);
1926 			if (uma_zone_exhausted(swblk_zone)) {
1927 				if (atomic_cmpset_int(&swblk_zone_exhausted,
1928 				    0, 1))
1929 					printf("swap blk zone exhausted, "
1930 					    "increase kern.maxswzone\n");
1931 				vm_pageout_oom(VM_OOM_SWAPZ);
1932 				pause("swzonxb", 10);
1933 			} else
1934 				uma_zwait(swblk_zone);
1935 			VM_OBJECT_WLOCK(object);
1936 			sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1937 			    rdpi);
1938 			if (sb != NULL)
1939 				/*
1940 				 * Somebody swapped out a nearby page,
1941 				 * allocating swblk at the rdpi index,
1942 				 * while we dropped the object lock.
1943 				 */
1944 				goto allocated;
1945 		}
1946 		for (;;) {
1947 			error = SWAP_PCTRIE_INSERT(
1948 			    &object->un_pager.swp.swp_blks, sb);
1949 			if (error == 0) {
1950 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1951 				    1, 0))
1952 					printf("swpctrie zone ok\n");
1953 				break;
1954 			}
1955 			VM_OBJECT_WUNLOCK(object);
1956 			if (uma_zone_exhausted(swpctrie_zone)) {
1957 				if (atomic_cmpset_int(&swpctrie_zone_exhausted,
1958 				    0, 1))
1959 					printf("swap pctrie zone exhausted, "
1960 					    "increase kern.maxswzone\n");
1961 				vm_pageout_oom(VM_OOM_SWAPZ);
1962 				pause("swzonxp", 10);
1963 			} else
1964 				uma_zwait(swpctrie_zone);
1965 			VM_OBJECT_WLOCK(object);
1966 			sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
1967 			    rdpi);
1968 			if (sb1 != NULL) {
1969 				uma_zfree(swblk_zone, sb);
1970 				sb = sb1;
1971 				goto allocated;
1972 			}
1973 		}
1974 	}
1975 allocated:
1976 	MPASS(sb->p == rdpi);
1977 
1978 	modpi = pindex % SWAP_META_PAGES;
1979 	/* Return prior contents of metadata. */
1980 	prev_swapblk = sb->d[modpi];
1981 	/* Enter block into metadata. */
1982 	sb->d[modpi] = swapblk;
1983 
1984 	/*
1985 	 * Free the swblk if we end up with the empty page run.
1986 	 */
1987 	if (swapblk == SWAPBLK_NONE &&
1988 	    swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
1989 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi);
1990 		uma_zfree(swblk_zone, sb);
1991 	}
1992 	return (prev_swapblk);
1993 }
1994 
1995 /*
1996  * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata
1997  *
1998  *	The requested range of blocks is freed, with any associated swap
1999  *	returned to the swap bitmap.
2000  *
2001  *	This routine will free swap metadata structures as they are cleaned
2002  *	out.  This routine does *NOT* operate on swap metadata associated
2003  *	with resident pages.
2004  */
2005 static void
2006 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count)
2007 {
2008 	struct swblk *sb;
2009 	daddr_t n_free, s_free;
2010 	vm_pindex_t last;
2011 	int i, limit, start;
2012 
2013 	VM_OBJECT_ASSERT_WLOCKED(object);
2014 	if (object->type != OBJT_SWAP || count == 0)
2015 		return;
2016 
2017 	swp_pager_init_freerange(&s_free, &n_free);
2018 	last = pindex + count;
2019 	for (;;) {
2020 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2021 		    rounddown(pindex, SWAP_META_PAGES));
2022 		if (sb == NULL || sb->p >= last)
2023 			break;
2024 		start = pindex > sb->p ? pindex - sb->p : 0;
2025 		limit = last - sb->p < SWAP_META_PAGES ? last - sb->p :
2026 		    SWAP_META_PAGES;
2027 		for (i = start; i < limit; i++) {
2028 			if (sb->d[i] == SWAPBLK_NONE)
2029 				continue;
2030 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2031 			sb->d[i] = SWAPBLK_NONE;
2032 		}
2033 		pindex = sb->p + SWAP_META_PAGES;
2034 		if (swp_pager_swblk_empty(sb, 0, start) &&
2035 		    swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) {
2036 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2037 			    sb->p);
2038 			uma_zfree(swblk_zone, sb);
2039 		}
2040 	}
2041 	swp_pager_freeswapspace(s_free, n_free);
2042 }
2043 
2044 /*
2045  * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object
2046  *
2047  *	This routine locates and destroys all swap metadata associated with
2048  *	an object.
2049  */
2050 static void
2051 swp_pager_meta_free_all(vm_object_t object)
2052 {
2053 	struct swblk *sb;
2054 	daddr_t n_free, s_free;
2055 	vm_pindex_t pindex;
2056 	int i;
2057 
2058 	VM_OBJECT_ASSERT_WLOCKED(object);
2059 	if (object->type != OBJT_SWAP)
2060 		return;
2061 
2062 	swp_pager_init_freerange(&s_free, &n_free);
2063 	for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE(
2064 	    &object->un_pager.swp.swp_blks, pindex)) != NULL;) {
2065 		pindex = sb->p + SWAP_META_PAGES;
2066 		for (i = 0; i < SWAP_META_PAGES; i++) {
2067 			if (sb->d[i] == SWAPBLK_NONE)
2068 				continue;
2069 			swp_pager_update_freerange(&s_free, &n_free, sb->d[i]);
2070 		}
2071 		SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p);
2072 		uma_zfree(swblk_zone, sb);
2073 	}
2074 	swp_pager_freeswapspace(s_free, n_free);
2075 }
2076 
2077 /*
2078  * SWP_PAGER_METACTL() -  misc control of swap meta data.
2079  *
2080  *	This routine is capable of looking up, or removing swapblk
2081  *	assignments in the swap meta data.  It returns the swapblk being
2082  *	looked-up, popped, or SWAPBLK_NONE if the block was invalid.
2083  *
2084  *	When acting on a busy resident page and paging is in progress, we
2085  *	have to wait until paging is complete but otherwise can act on the
2086  *	busy page.
2087  *
2088  *	SWM_POP		remove from meta data but do not free it
2089  */
2090 static daddr_t
2091 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags)
2092 {
2093 	struct swblk *sb;
2094 	daddr_t r1;
2095 
2096 	if ((flags & SWM_POP) != 0)
2097 		VM_OBJECT_ASSERT_WLOCKED(object);
2098 	else
2099 		VM_OBJECT_ASSERT_LOCKED(object);
2100 
2101 	/*
2102 	 * The meta data only exists if the object is OBJT_SWAP
2103 	 * and even then might not be allocated yet.
2104 	 */
2105 	if (object->type != OBJT_SWAP)
2106 		return (SWAPBLK_NONE);
2107 
2108 	sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks,
2109 	    rounddown(pindex, SWAP_META_PAGES));
2110 	if (sb == NULL)
2111 		return (SWAPBLK_NONE);
2112 	r1 = sb->d[pindex % SWAP_META_PAGES];
2113 	if (r1 == SWAPBLK_NONE)
2114 		return (SWAPBLK_NONE);
2115 	if ((flags & SWM_POP) != 0) {
2116 		sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE;
2117 		if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) {
2118 			SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks,
2119 			    rounddown(pindex, SWAP_META_PAGES));
2120 			uma_zfree(swblk_zone, sb);
2121 		}
2122 	}
2123 	return (r1);
2124 }
2125 
2126 /*
2127  * Returns the least page index which is greater than or equal to the
2128  * parameter pindex and for which there is a swap block allocated.
2129  * Returns object's size if the object's type is not swap or if there
2130  * are no allocated swap blocks for the object after the requested
2131  * pindex.
2132  */
2133 vm_pindex_t
2134 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex)
2135 {
2136 	struct swblk *sb;
2137 	int i;
2138 
2139 	VM_OBJECT_ASSERT_LOCKED(object);
2140 	if (object->type != OBJT_SWAP)
2141 		return (object->size);
2142 
2143 	sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2144 	    rounddown(pindex, SWAP_META_PAGES));
2145 	if (sb == NULL)
2146 		return (object->size);
2147 	if (sb->p < pindex) {
2148 		for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) {
2149 			if (sb->d[i] != SWAPBLK_NONE)
2150 				return (sb->p + i);
2151 		}
2152 		sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks,
2153 		    roundup(pindex, SWAP_META_PAGES));
2154 		if (sb == NULL)
2155 			return (object->size);
2156 	}
2157 	for (i = 0; i < SWAP_META_PAGES; i++) {
2158 		if (sb->d[i] != SWAPBLK_NONE)
2159 			return (sb->p + i);
2160 	}
2161 
2162 	/*
2163 	 * We get here if a swblk is present in the trie but it
2164 	 * doesn't map any blocks.
2165 	 */
2166 	MPASS(0);
2167 	return (object->size);
2168 }
2169 
2170 /*
2171  * System call swapon(name) enables swapping on device name,
2172  * which must be in the swdevsw.  Return EBUSY
2173  * if already swapping on this device.
2174  */
2175 #ifndef _SYS_SYSPROTO_H_
2176 struct swapon_args {
2177 	char *name;
2178 };
2179 #endif
2180 
2181 /*
2182  * MPSAFE
2183  */
2184 /* ARGSUSED */
2185 int
2186 sys_swapon(struct thread *td, struct swapon_args *uap)
2187 {
2188 	struct vattr attr;
2189 	struct vnode *vp;
2190 	struct nameidata nd;
2191 	int error;
2192 
2193 	error = priv_check(td, PRIV_SWAPON);
2194 	if (error)
2195 		return (error);
2196 
2197 	sx_xlock(&swdev_syscall_lock);
2198 
2199 	/*
2200 	 * Swap metadata may not fit in the KVM if we have physical
2201 	 * memory of >1GB.
2202 	 */
2203 	if (swblk_zone == NULL) {
2204 		error = ENOMEM;
2205 		goto done;
2206 	}
2207 
2208 	NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE,
2209 	    uap->name, td);
2210 	error = namei(&nd);
2211 	if (error)
2212 		goto done;
2213 
2214 	NDFREE(&nd, NDF_ONLY_PNBUF);
2215 	vp = nd.ni_vp;
2216 
2217 	if (vn_isdisk(vp, &error)) {
2218 		error = swapongeom(vp);
2219 	} else if (vp->v_type == VREG &&
2220 	    (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 &&
2221 	    (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) {
2222 		/*
2223 		 * Allow direct swapping to NFS regular files in the same
2224 		 * way that nfs_mountroot() sets up diskless swapping.
2225 		 */
2226 		error = swaponvp(td, vp, attr.va_size / DEV_BSIZE);
2227 	}
2228 
2229 	if (error)
2230 		vrele(vp);
2231 done:
2232 	sx_xunlock(&swdev_syscall_lock);
2233 	return (error);
2234 }
2235 
2236 /*
2237  * Check that the total amount of swap currently configured does not
2238  * exceed half the theoretical maximum.  If it does, print a warning
2239  * message.
2240  */
2241 static void
2242 swapon_check_swzone(void)
2243 {
2244 	unsigned long maxpages, npages;
2245 
2246 	npages = swap_total;
2247 	/* absolute maximum we can handle assuming 100% efficiency */
2248 	maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES;
2249 
2250 	/* recommend using no more than half that amount */
2251 	if (npages > maxpages / 2) {
2252 		printf("warning: total configured swap (%lu pages) "
2253 		    "exceeds maximum recommended amount (%lu pages).\n",
2254 		    npages, maxpages / 2);
2255 		printf("warning: increase kern.maxswzone "
2256 		    "or reduce amount of swap.\n");
2257 	}
2258 }
2259 
2260 static void
2261 swaponsomething(struct vnode *vp, void *id, u_long nblks,
2262     sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags)
2263 {
2264 	struct swdevt *sp, *tsp;
2265 	swblk_t dvbase;
2266 	u_long mblocks;
2267 
2268 	/*
2269 	 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks.
2270 	 * First chop nblks off to page-align it, then convert.
2271 	 *
2272 	 * sw->sw_nblks is in page-sized chunks now too.
2273 	 */
2274 	nblks &= ~(ctodb(1) - 1);
2275 	nblks = dbtoc(nblks);
2276 
2277 	/*
2278 	 * If we go beyond this, we get overflows in the radix
2279 	 * tree bitmap code.
2280 	 */
2281 	mblocks = 0x40000000 / BLIST_META_RADIX;
2282 	if (nblks > mblocks) {
2283 		printf(
2284     "WARNING: reducing swap size to maximum of %luMB per unit\n",
2285 		    mblocks / 1024 / 1024 * PAGE_SIZE);
2286 		nblks = mblocks;
2287 	}
2288 
2289 	sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO);
2290 	sp->sw_vp = vp;
2291 	sp->sw_id = id;
2292 	sp->sw_dev = dev;
2293 	sp->sw_nblks = nblks;
2294 	sp->sw_used = 0;
2295 	sp->sw_strategy = strategy;
2296 	sp->sw_close = close;
2297 	sp->sw_flags = flags;
2298 
2299 	sp->sw_blist = blist_create(nblks, M_WAITOK);
2300 	/*
2301 	 * Do not free the first two block in order to avoid overwriting
2302 	 * any bsd label at the front of the partition
2303 	 */
2304 	blist_free(sp->sw_blist, 2, nblks - 2);
2305 
2306 	dvbase = 0;
2307 	mtx_lock(&sw_dev_mtx);
2308 	TAILQ_FOREACH(tsp, &swtailq, sw_list) {
2309 		if (tsp->sw_end >= dvbase) {
2310 			/*
2311 			 * We put one uncovered page between the devices
2312 			 * in order to definitively prevent any cross-device
2313 			 * I/O requests
2314 			 */
2315 			dvbase = tsp->sw_end + 1;
2316 		}
2317 	}
2318 	sp->sw_first = dvbase;
2319 	sp->sw_end = dvbase + nblks;
2320 	TAILQ_INSERT_TAIL(&swtailq, sp, sw_list);
2321 	nswapdev++;
2322 	swap_pager_avail += nblks - 2;
2323 	swap_total += nblks;
2324 	swapon_check_swzone();
2325 	swp_sizecheck();
2326 	mtx_unlock(&sw_dev_mtx);
2327 	EVENTHANDLER_INVOKE(swapon, sp);
2328 }
2329 
2330 /*
2331  * SYSCALL: swapoff(devname)
2332  *
2333  * Disable swapping on the given device.
2334  *
2335  * XXX: Badly designed system call: it should use a device index
2336  * rather than filename as specification.  We keep sw_vp around
2337  * only to make this work.
2338  */
2339 #ifndef _SYS_SYSPROTO_H_
2340 struct swapoff_args {
2341 	char *name;
2342 };
2343 #endif
2344 
2345 /*
2346  * MPSAFE
2347  */
2348 /* ARGSUSED */
2349 int
2350 sys_swapoff(struct thread *td, struct swapoff_args *uap)
2351 {
2352 	struct vnode *vp;
2353 	struct nameidata nd;
2354 	struct swdevt *sp;
2355 	int error;
2356 
2357 	error = priv_check(td, PRIV_SWAPOFF);
2358 	if (error)
2359 		return (error);
2360 
2361 	sx_xlock(&swdev_syscall_lock);
2362 
2363 	NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name,
2364 	    td);
2365 	error = namei(&nd);
2366 	if (error)
2367 		goto done;
2368 	NDFREE(&nd, NDF_ONLY_PNBUF);
2369 	vp = nd.ni_vp;
2370 
2371 	mtx_lock(&sw_dev_mtx);
2372 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2373 		if (sp->sw_vp == vp)
2374 			break;
2375 	}
2376 	mtx_unlock(&sw_dev_mtx);
2377 	if (sp == NULL) {
2378 		error = EINVAL;
2379 		goto done;
2380 	}
2381 	error = swapoff_one(sp, td->td_ucred);
2382 done:
2383 	sx_xunlock(&swdev_syscall_lock);
2384 	return (error);
2385 }
2386 
2387 static int
2388 swapoff_one(struct swdevt *sp, struct ucred *cred)
2389 {
2390 	u_long nblks;
2391 #ifdef MAC
2392 	int error;
2393 #endif
2394 
2395 	sx_assert(&swdev_syscall_lock, SA_XLOCKED);
2396 #ifdef MAC
2397 	(void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY);
2398 	error = mac_system_check_swapoff(cred, sp->sw_vp);
2399 	(void) VOP_UNLOCK(sp->sw_vp, 0);
2400 	if (error != 0)
2401 		return (error);
2402 #endif
2403 	nblks = sp->sw_nblks;
2404 
2405 	/*
2406 	 * We can turn off this swap device safely only if the
2407 	 * available virtual memory in the system will fit the amount
2408 	 * of data we will have to page back in, plus an epsilon so
2409 	 * the system doesn't become critically low on swap space.
2410 	 */
2411 	if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat)
2412 		return (ENOMEM);
2413 
2414 	/*
2415 	 * Prevent further allocations on this device.
2416 	 */
2417 	mtx_lock(&sw_dev_mtx);
2418 	sp->sw_flags |= SW_CLOSING;
2419 	swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks);
2420 	swap_total -= nblks;
2421 	mtx_unlock(&sw_dev_mtx);
2422 
2423 	/*
2424 	 * Page in the contents of the device and close it.
2425 	 */
2426 	swap_pager_swapoff(sp);
2427 
2428 	sp->sw_close(curthread, sp);
2429 	mtx_lock(&sw_dev_mtx);
2430 	sp->sw_id = NULL;
2431 	TAILQ_REMOVE(&swtailq, sp, sw_list);
2432 	nswapdev--;
2433 	if (nswapdev == 0) {
2434 		swap_pager_full = 2;
2435 		swap_pager_almost_full = 1;
2436 	}
2437 	if (swdevhd == sp)
2438 		swdevhd = NULL;
2439 	mtx_unlock(&sw_dev_mtx);
2440 	blist_destroy(sp->sw_blist);
2441 	free(sp, M_VMPGDATA);
2442 	return (0);
2443 }
2444 
2445 void
2446 swapoff_all(void)
2447 {
2448 	struct swdevt *sp, *spt;
2449 	const char *devname;
2450 	int error;
2451 
2452 	sx_xlock(&swdev_syscall_lock);
2453 
2454 	mtx_lock(&sw_dev_mtx);
2455 	TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) {
2456 		mtx_unlock(&sw_dev_mtx);
2457 		if (vn_isdisk(sp->sw_vp, NULL))
2458 			devname = devtoname(sp->sw_vp->v_rdev);
2459 		else
2460 			devname = "[file]";
2461 		error = swapoff_one(sp, thread0.td_ucred);
2462 		if (error != 0) {
2463 			printf("Cannot remove swap device %s (error=%d), "
2464 			    "skipping.\n", devname, error);
2465 		} else if (bootverbose) {
2466 			printf("Swap device %s removed.\n", devname);
2467 		}
2468 		mtx_lock(&sw_dev_mtx);
2469 	}
2470 	mtx_unlock(&sw_dev_mtx);
2471 
2472 	sx_xunlock(&swdev_syscall_lock);
2473 }
2474 
2475 void
2476 swap_pager_status(int *total, int *used)
2477 {
2478 	struct swdevt *sp;
2479 
2480 	*total = 0;
2481 	*used = 0;
2482 	mtx_lock(&sw_dev_mtx);
2483 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2484 		*total += sp->sw_nblks;
2485 		*used += sp->sw_used;
2486 	}
2487 	mtx_unlock(&sw_dev_mtx);
2488 }
2489 
2490 int
2491 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len)
2492 {
2493 	struct swdevt *sp;
2494 	const char *tmp_devname;
2495 	int error, n;
2496 
2497 	n = 0;
2498 	error = ENOENT;
2499 	mtx_lock(&sw_dev_mtx);
2500 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2501 		if (n != name) {
2502 			n++;
2503 			continue;
2504 		}
2505 		xs->xsw_version = XSWDEV_VERSION;
2506 		xs->xsw_dev = sp->sw_dev;
2507 		xs->xsw_flags = sp->sw_flags;
2508 		xs->xsw_nblks = sp->sw_nblks;
2509 		xs->xsw_used = sp->sw_used;
2510 		if (devname != NULL) {
2511 			if (vn_isdisk(sp->sw_vp, NULL))
2512 				tmp_devname = devtoname(sp->sw_vp->v_rdev);
2513 			else
2514 				tmp_devname = "[file]";
2515 			strncpy(devname, tmp_devname, len);
2516 		}
2517 		error = 0;
2518 		break;
2519 	}
2520 	mtx_unlock(&sw_dev_mtx);
2521 	return (error);
2522 }
2523 
2524 #if defined(COMPAT_FREEBSD11)
2525 #define XSWDEV_VERSION_11	1
2526 struct xswdev11 {
2527 	u_int	xsw_version;
2528 	uint32_t xsw_dev;
2529 	int	xsw_flags;
2530 	int	xsw_nblks;
2531 	int     xsw_used;
2532 };
2533 #endif
2534 
2535 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2536 struct xswdev32 {
2537 	u_int	xsw_version;
2538 	u_int	xsw_dev1, xsw_dev2;
2539 	int	xsw_flags;
2540 	int	xsw_nblks;
2541 	int     xsw_used;
2542 };
2543 #endif
2544 
2545 static int
2546 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS)
2547 {
2548 	struct xswdev xs;
2549 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2550 	struct xswdev32 xs32;
2551 #endif
2552 #if defined(COMPAT_FREEBSD11)
2553 	struct xswdev11 xs11;
2554 #endif
2555 	int error;
2556 
2557 	if (arg2 != 1)			/* name length */
2558 		return (EINVAL);
2559 	error = swap_dev_info(*(int *)arg1, &xs, NULL, 0);
2560 	if (error != 0)
2561 		return (error);
2562 #if defined(__amd64__) && defined(COMPAT_FREEBSD32)
2563 	if (req->oldlen == sizeof(xs32)) {
2564 		xs32.xsw_version = XSWDEV_VERSION;
2565 		xs32.xsw_dev1 = xs.xsw_dev;
2566 		xs32.xsw_dev2 = xs.xsw_dev >> 32;
2567 		xs32.xsw_flags = xs.xsw_flags;
2568 		xs32.xsw_nblks = xs.xsw_nblks;
2569 		xs32.xsw_used = xs.xsw_used;
2570 		error = SYSCTL_OUT(req, &xs32, sizeof(xs32));
2571 		return (error);
2572 	}
2573 #endif
2574 #if defined(COMPAT_FREEBSD11)
2575 	if (req->oldlen == sizeof(xs11)) {
2576 		xs11.xsw_version = XSWDEV_VERSION_11;
2577 		xs11.xsw_dev = xs.xsw_dev; /* truncation */
2578 		xs11.xsw_flags = xs.xsw_flags;
2579 		xs11.xsw_nblks = xs.xsw_nblks;
2580 		xs11.xsw_used = xs.xsw_used;
2581 		error = SYSCTL_OUT(req, &xs11, sizeof(xs11));
2582 		return (error);
2583 	}
2584 #endif
2585 	error = SYSCTL_OUT(req, &xs, sizeof(xs));
2586 	return (error);
2587 }
2588 
2589 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0,
2590     "Number of swap devices");
2591 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE,
2592     sysctl_vm_swap_info,
2593     "Swap statistics by device");
2594 
2595 /*
2596  * Count the approximate swap usage in pages for a vmspace.  The
2597  * shadowed or not yet copied on write swap blocks are not accounted.
2598  * The map must be locked.
2599  */
2600 long
2601 vmspace_swap_count(struct vmspace *vmspace)
2602 {
2603 	vm_map_t map;
2604 	vm_map_entry_t cur;
2605 	vm_object_t object;
2606 	struct swblk *sb;
2607 	vm_pindex_t e, pi;
2608 	long count;
2609 	int i;
2610 
2611 	map = &vmspace->vm_map;
2612 	count = 0;
2613 
2614 	for (cur = map->header.next; cur != &map->header; cur = cur->next) {
2615 		if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0)
2616 			continue;
2617 		object = cur->object.vm_object;
2618 		if (object == NULL || object->type != OBJT_SWAP)
2619 			continue;
2620 		VM_OBJECT_RLOCK(object);
2621 		if (object->type != OBJT_SWAP)
2622 			goto unlock;
2623 		pi = OFF_TO_IDX(cur->offset);
2624 		e = pi + OFF_TO_IDX(cur->end - cur->start);
2625 		for (;; pi = sb->p + SWAP_META_PAGES) {
2626 			sb = SWAP_PCTRIE_LOOKUP_GE(
2627 			    &object->un_pager.swp.swp_blks, pi);
2628 			if (sb == NULL || sb->p >= e)
2629 				break;
2630 			for (i = 0; i < SWAP_META_PAGES; i++) {
2631 				if (sb->p + i < e &&
2632 				    sb->d[i] != SWAPBLK_NONE)
2633 					count++;
2634 			}
2635 		}
2636 unlock:
2637 		VM_OBJECT_RUNLOCK(object);
2638 	}
2639 	return (count);
2640 }
2641 
2642 /*
2643  * GEOM backend
2644  *
2645  * Swapping onto disk devices.
2646  *
2647  */
2648 
2649 static g_orphan_t swapgeom_orphan;
2650 
2651 static struct g_class g_swap_class = {
2652 	.name = "SWAP",
2653 	.version = G_VERSION,
2654 	.orphan = swapgeom_orphan,
2655 };
2656 
2657 DECLARE_GEOM_CLASS(g_swap_class, g_class);
2658 
2659 
2660 static void
2661 swapgeom_close_ev(void *arg, int flags)
2662 {
2663 	struct g_consumer *cp;
2664 
2665 	cp = arg;
2666 	g_access(cp, -1, -1, 0);
2667 	g_detach(cp);
2668 	g_destroy_consumer(cp);
2669 }
2670 
2671 /*
2672  * Add a reference to the g_consumer for an inflight transaction.
2673  */
2674 static void
2675 swapgeom_acquire(struct g_consumer *cp)
2676 {
2677 
2678 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2679 	cp->index++;
2680 }
2681 
2682 /*
2683  * Remove a reference from the g_consumer.  Post a close event if all
2684  * references go away, since the function might be called from the
2685  * biodone context.
2686  */
2687 static void
2688 swapgeom_release(struct g_consumer *cp, struct swdevt *sp)
2689 {
2690 
2691 	mtx_assert(&sw_dev_mtx, MA_OWNED);
2692 	cp->index--;
2693 	if (cp->index == 0) {
2694 		if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0)
2695 			sp->sw_id = NULL;
2696 	}
2697 }
2698 
2699 static void
2700 swapgeom_done(struct bio *bp2)
2701 {
2702 	struct swdevt *sp;
2703 	struct buf *bp;
2704 	struct g_consumer *cp;
2705 
2706 	bp = bp2->bio_caller2;
2707 	cp = bp2->bio_from;
2708 	bp->b_ioflags = bp2->bio_flags;
2709 	if (bp2->bio_error)
2710 		bp->b_ioflags |= BIO_ERROR;
2711 	bp->b_resid = bp->b_bcount - bp2->bio_completed;
2712 	bp->b_error = bp2->bio_error;
2713 	bp->b_caller1 = NULL;
2714 	bufdone(bp);
2715 	sp = bp2->bio_caller1;
2716 	mtx_lock(&sw_dev_mtx);
2717 	swapgeom_release(cp, sp);
2718 	mtx_unlock(&sw_dev_mtx);
2719 	g_destroy_bio(bp2);
2720 }
2721 
2722 static void
2723 swapgeom_strategy(struct buf *bp, struct swdevt *sp)
2724 {
2725 	struct bio *bio;
2726 	struct g_consumer *cp;
2727 
2728 	mtx_lock(&sw_dev_mtx);
2729 	cp = sp->sw_id;
2730 	if (cp == NULL) {
2731 		mtx_unlock(&sw_dev_mtx);
2732 		bp->b_error = ENXIO;
2733 		bp->b_ioflags |= BIO_ERROR;
2734 		bufdone(bp);
2735 		return;
2736 	}
2737 	swapgeom_acquire(cp);
2738 	mtx_unlock(&sw_dev_mtx);
2739 	if (bp->b_iocmd == BIO_WRITE)
2740 		bio = g_new_bio();
2741 	else
2742 		bio = g_alloc_bio();
2743 	if (bio == NULL) {
2744 		mtx_lock(&sw_dev_mtx);
2745 		swapgeom_release(cp, sp);
2746 		mtx_unlock(&sw_dev_mtx);
2747 		bp->b_error = ENOMEM;
2748 		bp->b_ioflags |= BIO_ERROR;
2749 		printf("swap_pager: cannot allocate bio\n");
2750 		bufdone(bp);
2751 		return;
2752 	}
2753 
2754 	bp->b_caller1 = bio;
2755 	bio->bio_caller1 = sp;
2756 	bio->bio_caller2 = bp;
2757 	bio->bio_cmd = bp->b_iocmd;
2758 	bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE;
2759 	bio->bio_length = bp->b_bcount;
2760 	bio->bio_done = swapgeom_done;
2761 	if (!buf_mapped(bp)) {
2762 		bio->bio_ma = bp->b_pages;
2763 		bio->bio_data = unmapped_buf;
2764 		bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK;
2765 		bio->bio_ma_n = bp->b_npages;
2766 		bio->bio_flags |= BIO_UNMAPPED;
2767 	} else {
2768 		bio->bio_data = bp->b_data;
2769 		bio->bio_ma = NULL;
2770 	}
2771 	g_io_request(bio, cp);
2772 	return;
2773 }
2774 
2775 static void
2776 swapgeom_orphan(struct g_consumer *cp)
2777 {
2778 	struct swdevt *sp;
2779 	int destroy;
2780 
2781 	mtx_lock(&sw_dev_mtx);
2782 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2783 		if (sp->sw_id == cp) {
2784 			sp->sw_flags |= SW_CLOSING;
2785 			break;
2786 		}
2787 	}
2788 	/*
2789 	 * Drop reference we were created with. Do directly since we're in a
2790 	 * special context where we don't have to queue the call to
2791 	 * swapgeom_close_ev().
2792 	 */
2793 	cp->index--;
2794 	destroy = ((sp != NULL) && (cp->index == 0));
2795 	if (destroy)
2796 		sp->sw_id = NULL;
2797 	mtx_unlock(&sw_dev_mtx);
2798 	if (destroy)
2799 		swapgeom_close_ev(cp, 0);
2800 }
2801 
2802 static void
2803 swapgeom_close(struct thread *td, struct swdevt *sw)
2804 {
2805 	struct g_consumer *cp;
2806 
2807 	mtx_lock(&sw_dev_mtx);
2808 	cp = sw->sw_id;
2809 	sw->sw_id = NULL;
2810 	mtx_unlock(&sw_dev_mtx);
2811 
2812 	/*
2813 	 * swapgeom_close() may be called from the biodone context,
2814 	 * where we cannot perform topology changes.  Delegate the
2815 	 * work to the events thread.
2816 	 */
2817 	if (cp != NULL)
2818 		g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL);
2819 }
2820 
2821 static int
2822 swapongeom_locked(struct cdev *dev, struct vnode *vp)
2823 {
2824 	struct g_provider *pp;
2825 	struct g_consumer *cp;
2826 	static struct g_geom *gp;
2827 	struct swdevt *sp;
2828 	u_long nblks;
2829 	int error;
2830 
2831 	pp = g_dev_getprovider(dev);
2832 	if (pp == NULL)
2833 		return (ENODEV);
2834 	mtx_lock(&sw_dev_mtx);
2835 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2836 		cp = sp->sw_id;
2837 		if (cp != NULL && cp->provider == pp) {
2838 			mtx_unlock(&sw_dev_mtx);
2839 			return (EBUSY);
2840 		}
2841 	}
2842 	mtx_unlock(&sw_dev_mtx);
2843 	if (gp == NULL)
2844 		gp = g_new_geomf(&g_swap_class, "swap");
2845 	cp = g_new_consumer(gp);
2846 	cp->index = 1;	/* Number of active I/Os, plus one for being active. */
2847 	cp->flags |=  G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE;
2848 	g_attach(cp, pp);
2849 	/*
2850 	 * XXX: Every time you think you can improve the margin for
2851 	 * footshooting, somebody depends on the ability to do so:
2852 	 * savecore(8) wants to write to our swapdev so we cannot
2853 	 * set an exclusive count :-(
2854 	 */
2855 	error = g_access(cp, 1, 1, 0);
2856 	if (error != 0) {
2857 		g_detach(cp);
2858 		g_destroy_consumer(cp);
2859 		return (error);
2860 	}
2861 	nblks = pp->mediasize / DEV_BSIZE;
2862 	swaponsomething(vp, cp, nblks, swapgeom_strategy,
2863 	    swapgeom_close, dev2udev(dev),
2864 	    (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0);
2865 	return (0);
2866 }
2867 
2868 static int
2869 swapongeom(struct vnode *vp)
2870 {
2871 	int error;
2872 
2873 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2874 	if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) {
2875 		error = ENOENT;
2876 	} else {
2877 		g_topology_lock();
2878 		error = swapongeom_locked(vp->v_rdev, vp);
2879 		g_topology_unlock();
2880 	}
2881 	VOP_UNLOCK(vp, 0);
2882 	return (error);
2883 }
2884 
2885 /*
2886  * VNODE backend
2887  *
2888  * This is used mainly for network filesystem (read: probably only tested
2889  * with NFS) swapfiles.
2890  *
2891  */
2892 
2893 static void
2894 swapdev_strategy(struct buf *bp, struct swdevt *sp)
2895 {
2896 	struct vnode *vp2;
2897 
2898 	bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first);
2899 
2900 	vp2 = sp->sw_id;
2901 	vhold(vp2);
2902 	if (bp->b_iocmd == BIO_WRITE) {
2903 		if (bp->b_bufobj)
2904 			bufobj_wdrop(bp->b_bufobj);
2905 		bufobj_wref(&vp2->v_bufobj);
2906 	}
2907 	if (bp->b_bufobj != &vp2->v_bufobj)
2908 		bp->b_bufobj = &vp2->v_bufobj;
2909 	bp->b_vp = vp2;
2910 	bp->b_iooffset = dbtob(bp->b_blkno);
2911 	bstrategy(bp);
2912 	return;
2913 }
2914 
2915 static void
2916 swapdev_close(struct thread *td, struct swdevt *sp)
2917 {
2918 
2919 	VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td);
2920 	vrele(sp->sw_vp);
2921 }
2922 
2923 
2924 static int
2925 swaponvp(struct thread *td, struct vnode *vp, u_long nblks)
2926 {
2927 	struct swdevt *sp;
2928 	int error;
2929 
2930 	if (nblks == 0)
2931 		return (ENXIO);
2932 	mtx_lock(&sw_dev_mtx);
2933 	TAILQ_FOREACH(sp, &swtailq, sw_list) {
2934 		if (sp->sw_id == vp) {
2935 			mtx_unlock(&sw_dev_mtx);
2936 			return (EBUSY);
2937 		}
2938 	}
2939 	mtx_unlock(&sw_dev_mtx);
2940 
2941 	(void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY);
2942 #ifdef MAC
2943 	error = mac_system_check_swapon(td->td_ucred, vp);
2944 	if (error == 0)
2945 #endif
2946 		error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL);
2947 	(void) VOP_UNLOCK(vp, 0);
2948 	if (error)
2949 		return (error);
2950 
2951 	swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close,
2952 	    NODEV, 0);
2953 	return (0);
2954 }
2955 
2956 static int
2957 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS)
2958 {
2959 	int error, new, n;
2960 
2961 	new = nsw_wcount_async_max;
2962 	error = sysctl_handle_int(oidp, &new, 0, req);
2963 	if (error != 0 || req->newptr == NULL)
2964 		return (error);
2965 
2966 	if (new > nswbuf / 2 || new < 1)
2967 		return (EINVAL);
2968 
2969 	mtx_lock(&swbuf_mtx);
2970 	while (nsw_wcount_async_max != new) {
2971 		/*
2972 		 * Adjust difference.  If the current async count is too low,
2973 		 * we will need to sqeeze our update slowly in.  Sleep with a
2974 		 * higher priority than getpbuf() to finish faster.
2975 		 */
2976 		n = new - nsw_wcount_async_max;
2977 		if (nsw_wcount_async + n >= 0) {
2978 			nsw_wcount_async += n;
2979 			nsw_wcount_async_max += n;
2980 			wakeup(&nsw_wcount_async);
2981 		} else {
2982 			nsw_wcount_async_max -= nsw_wcount_async;
2983 			nsw_wcount_async = 0;
2984 			msleep(&nsw_wcount_async, &swbuf_mtx, PSWP,
2985 			    "swpsysctl", 0);
2986 		}
2987 	}
2988 	mtx_unlock(&swbuf_mtx);
2989 
2990 	return (0);
2991 }
2992