1 /*- 2 * SPDX-License-Identifier: BSD-4-Clause 3 * 4 * Copyright (c) 1998 Matthew Dillon, 5 * Copyright (c) 1994 John S. Dyson 6 * Copyright (c) 1990 University of Utah. 7 * Copyright (c) 1982, 1986, 1989, 1993 8 * The Regents of the University of California. All rights reserved. 9 * 10 * This code is derived from software contributed to Berkeley by 11 * the Systems Programming Group of the University of Utah Computer 12 * Science Department. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. All advertising materials mentioning features or use of this software 23 * must display the following acknowledgement: 24 * This product includes software developed by the University of 25 * California, Berkeley and its contributors. 26 * 4. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 * 42 * New Swap System 43 * Matthew Dillon 44 * 45 * Radix Bitmap 'blists'. 46 * 47 * - The new swapper uses the new radix bitmap code. This should scale 48 * to arbitrarily small or arbitrarily large swap spaces and an almost 49 * arbitrary degree of fragmentation. 50 * 51 * Features: 52 * 53 * - on the fly reallocation of swap during putpages. The new system 54 * does not try to keep previously allocated swap blocks for dirty 55 * pages. 56 * 57 * - on the fly deallocation of swap 58 * 59 * - No more garbage collection required. Unnecessarily allocated swap 60 * blocks only exist for dirty vm_page_t's now and these are already 61 * cycled (in a high-load system) by the pager. We also do on-the-fly 62 * removal of invalidated swap blocks when a page is destroyed 63 * or renamed. 64 * 65 * from: Utah $Hdr: swap_pager.c 1.4 91/04/30$ 66 * 67 * @(#)swap_pager.c 8.9 (Berkeley) 3/21/94 68 * @(#)vm_swap.c 8.5 (Berkeley) 2/17/94 69 */ 70 71 #include <sys/cdefs.h> 72 __FBSDID("$FreeBSD$"); 73 74 #include "opt_vm.h" 75 76 #include <sys/param.h> 77 #include <sys/bio.h> 78 #include <sys/blist.h> 79 #include <sys/buf.h> 80 #include <sys/conf.h> 81 #include <sys/disk.h> 82 #include <sys/eventhandler.h> 83 #include <sys/fcntl.h> 84 #include <sys/lock.h> 85 #include <sys/kernel.h> 86 #include <sys/mount.h> 87 #include <sys/namei.h> 88 #include <sys/malloc.h> 89 #include <sys/pctrie.h> 90 #include <sys/priv.h> 91 #include <sys/proc.h> 92 #include <sys/racct.h> 93 #include <sys/resource.h> 94 #include <sys/resourcevar.h> 95 #include <sys/rwlock.h> 96 #include <sys/sbuf.h> 97 #include <sys/sysctl.h> 98 #include <sys/sysproto.h> 99 #include <sys/systm.h> 100 #include <sys/sx.h> 101 #include <sys/vmmeter.h> 102 #include <sys/vnode.h> 103 104 #include <security/mac/mac_framework.h> 105 106 #include <vm/vm.h> 107 #include <vm/pmap.h> 108 #include <vm/vm_map.h> 109 #include <vm/vm_kern.h> 110 #include <vm/vm_object.h> 111 #include <vm/vm_page.h> 112 #include <vm/vm_pager.h> 113 #include <vm/vm_pageout.h> 114 #include <vm/vm_param.h> 115 #include <vm/swap_pager.h> 116 #include <vm/vm_extern.h> 117 #include <vm/uma.h> 118 119 #include <geom/geom.h> 120 121 /* 122 * MAX_PAGEOUT_CLUSTER must be a power of 2 between 1 and 64. 123 * The 64-page limit is due to the radix code (kern/subr_blist.c). 124 */ 125 #ifndef MAX_PAGEOUT_CLUSTER 126 #define MAX_PAGEOUT_CLUSTER 32 127 #endif 128 129 #if !defined(SWB_NPAGES) 130 #define SWB_NPAGES MAX_PAGEOUT_CLUSTER 131 #endif 132 133 #define SWAP_META_PAGES PCTRIE_COUNT 134 135 /* 136 * A swblk structure maps each page index within a 137 * SWAP_META_PAGES-aligned and sized range to the address of an 138 * on-disk swap block (or SWAPBLK_NONE). The collection of these 139 * mappings for an entire vm object is implemented as a pc-trie. 140 */ 141 struct swblk { 142 vm_pindex_t p; 143 daddr_t d[SWAP_META_PAGES]; 144 }; 145 146 static MALLOC_DEFINE(M_VMPGDATA, "vm_pgdata", "swap pager private data"); 147 static struct mtx sw_dev_mtx; 148 static TAILQ_HEAD(, swdevt) swtailq = TAILQ_HEAD_INITIALIZER(swtailq); 149 static struct swdevt *swdevhd; /* Allocate from here next */ 150 static int nswapdev; /* Number of swap devices */ 151 int swap_pager_avail; 152 static struct sx swdev_syscall_lock; /* serialize swap(on|off) */ 153 154 static u_long swap_reserved; 155 static u_long swap_total; 156 static int sysctl_page_shift(SYSCTL_HANDLER_ARGS); 157 SYSCTL_PROC(_vm, OID_AUTO, swap_reserved, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 158 &swap_reserved, 0, sysctl_page_shift, "A", 159 "Amount of swap storage needed to back all allocated anonymous memory."); 160 SYSCTL_PROC(_vm, OID_AUTO, swap_total, CTLTYPE_U64 | CTLFLAG_RD | CTLFLAG_MPSAFE, 161 &swap_total, 0, sysctl_page_shift, "A", 162 "Total amount of available swap storage."); 163 164 static int overcommit = 0; 165 SYSCTL_INT(_vm, VM_OVERCOMMIT, overcommit, CTLFLAG_RW, &overcommit, 0, 166 "Configure virtual memory overcommit behavior. See tuning(7) " 167 "for details."); 168 static unsigned long swzone; 169 SYSCTL_ULONG(_vm, OID_AUTO, swzone, CTLFLAG_RD, &swzone, 0, 170 "Actual size of swap metadata zone"); 171 static unsigned long swap_maxpages; 172 SYSCTL_ULONG(_vm, OID_AUTO, swap_maxpages, CTLFLAG_RD, &swap_maxpages, 0, 173 "Maximum amount of swap supported"); 174 175 /* bits from overcommit */ 176 #define SWAP_RESERVE_FORCE_ON (1 << 0) 177 #define SWAP_RESERVE_RLIMIT_ON (1 << 1) 178 #define SWAP_RESERVE_ALLOW_NONWIRED (1 << 2) 179 180 static int 181 sysctl_page_shift(SYSCTL_HANDLER_ARGS) 182 { 183 uint64_t newval; 184 u_long value = *(u_long *)arg1; 185 186 newval = ((uint64_t)value) << PAGE_SHIFT; 187 return (sysctl_handle_64(oidp, &newval, 0, req)); 188 } 189 190 int 191 swap_reserve(vm_ooffset_t incr) 192 { 193 194 return (swap_reserve_by_cred(incr, curthread->td_ucred)); 195 } 196 197 int 198 swap_reserve_by_cred(vm_ooffset_t incr, struct ucred *cred) 199 { 200 u_long r, s, prev, pincr; 201 int res, error; 202 static int curfail; 203 static struct timeval lastfail; 204 struct uidinfo *uip; 205 206 uip = cred->cr_ruidinfo; 207 208 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__, 209 (uintmax_t)incr)); 210 211 #ifdef RACCT 212 if (racct_enable) { 213 PROC_LOCK(curproc); 214 error = racct_add(curproc, RACCT_SWAP, incr); 215 PROC_UNLOCK(curproc); 216 if (error != 0) 217 return (0); 218 } 219 #endif 220 221 pincr = atop(incr); 222 res = 0; 223 prev = atomic_fetchadd_long(&swap_reserved, pincr); 224 r = prev + pincr; 225 if (overcommit & SWAP_RESERVE_ALLOW_NONWIRED) { 226 s = vm_cnt.v_page_count - vm_cnt.v_free_reserved - 227 vm_wire_count(); 228 } else 229 s = 0; 230 s += swap_total; 231 if ((overcommit & SWAP_RESERVE_FORCE_ON) == 0 || r <= s || 232 (error = priv_check(curthread, PRIV_VM_SWAP_NOQUOTA)) == 0) { 233 res = 1; 234 } else { 235 prev = atomic_fetchadd_long(&swap_reserved, -pincr); 236 if (prev < pincr) 237 panic("swap_reserved < incr on overcommit fail"); 238 } 239 if (res) { 240 prev = atomic_fetchadd_long(&uip->ui_vmsize, pincr); 241 if ((overcommit & SWAP_RESERVE_RLIMIT_ON) != 0 && 242 prev + pincr > lim_cur(curthread, RLIMIT_SWAP) && 243 priv_check(curthread, PRIV_VM_SWAP_NORLIMIT)) { 244 res = 0; 245 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pincr); 246 if (prev < pincr) 247 panic("uip->ui_vmsize < incr on overcommit fail"); 248 } 249 } 250 if (!res && ppsratecheck(&lastfail, &curfail, 1)) { 251 printf("uid %d, pid %d: swap reservation for %jd bytes failed\n", 252 uip->ui_uid, curproc->p_pid, incr); 253 } 254 255 #ifdef RACCT 256 if (racct_enable && !res) { 257 PROC_LOCK(curproc); 258 racct_sub(curproc, RACCT_SWAP, incr); 259 PROC_UNLOCK(curproc); 260 } 261 #endif 262 263 return (res); 264 } 265 266 void 267 swap_reserve_force(vm_ooffset_t incr) 268 { 269 struct uidinfo *uip; 270 u_long pincr; 271 272 KASSERT((incr & PAGE_MASK) == 0, ("%s: incr: %ju & PAGE_MASK", __func__, 273 (uintmax_t)incr)); 274 275 PROC_LOCK(curproc); 276 #ifdef RACCT 277 if (racct_enable) 278 racct_add_force(curproc, RACCT_SWAP, incr); 279 #endif 280 pincr = atop(incr); 281 atomic_add_long(&swap_reserved, pincr); 282 uip = curproc->p_ucred->cr_ruidinfo; 283 atomic_add_long(&uip->ui_vmsize, pincr); 284 PROC_UNLOCK(curproc); 285 } 286 287 void 288 swap_release(vm_ooffset_t decr) 289 { 290 struct ucred *cred; 291 292 PROC_LOCK(curproc); 293 cred = curproc->p_ucred; 294 swap_release_by_cred(decr, cred); 295 PROC_UNLOCK(curproc); 296 } 297 298 void 299 swap_release_by_cred(vm_ooffset_t decr, struct ucred *cred) 300 { 301 u_long prev, pdecr; 302 struct uidinfo *uip; 303 304 uip = cred->cr_ruidinfo; 305 306 KASSERT((decr & PAGE_MASK) == 0, ("%s: decr: %ju & PAGE_MASK", __func__, 307 (uintmax_t)decr)); 308 309 pdecr = atop(decr); 310 prev = atomic_fetchadd_long(&swap_reserved, -pdecr); 311 if (prev < pdecr) 312 panic("swap_reserved < decr"); 313 314 prev = atomic_fetchadd_long(&uip->ui_vmsize, -pdecr); 315 if (prev < pdecr) 316 printf("negative vmsize for uid = %d\n", uip->ui_uid); 317 #ifdef RACCT 318 if (racct_enable) 319 racct_sub_cred(cred, RACCT_SWAP, decr); 320 #endif 321 } 322 323 #define SWM_POP 0x01 /* pop out */ 324 325 static int swap_pager_full = 2; /* swap space exhaustion (task killing) */ 326 static int swap_pager_almost_full = 1; /* swap space exhaustion (w/hysteresis)*/ 327 static struct mtx swbuf_mtx; /* to sync nsw_wcount_async */ 328 static int nsw_wcount_async; /* limit async write buffers */ 329 static int nsw_wcount_async_max;/* assigned maximum */ 330 static int nsw_cluster_max; /* maximum VOP I/O allowed */ 331 332 static int sysctl_swap_async_max(SYSCTL_HANDLER_ARGS); 333 SYSCTL_PROC(_vm, OID_AUTO, swap_async_max, CTLTYPE_INT | CTLFLAG_RW | 334 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_async_max, "I", 335 "Maximum running async swap ops"); 336 static int sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS); 337 SYSCTL_PROC(_vm, OID_AUTO, swap_fragmentation, CTLTYPE_STRING | CTLFLAG_RD | 338 CTLFLAG_MPSAFE, NULL, 0, sysctl_swap_fragmentation, "A", 339 "Swap Fragmentation Info"); 340 341 static struct sx sw_alloc_sx; 342 343 /* 344 * "named" and "unnamed" anon region objects. Try to reduce the overhead 345 * of searching a named list by hashing it just a little. 346 */ 347 348 #define NOBJLISTS 8 349 350 #define NOBJLIST(handle) \ 351 (&swap_pager_object_list[((int)(intptr_t)handle >> 4) & (NOBJLISTS-1)]) 352 353 static struct pagerlst swap_pager_object_list[NOBJLISTS]; 354 static uma_zone_t swwbuf_zone; 355 static uma_zone_t swrbuf_zone; 356 static uma_zone_t swblk_zone; 357 static uma_zone_t swpctrie_zone; 358 359 /* 360 * pagerops for OBJT_SWAP - "swap pager". Some ops are also global procedure 361 * calls hooked from other parts of the VM system and do not appear here. 362 * (see vm/swap_pager.h). 363 */ 364 static vm_object_t 365 swap_pager_alloc(void *handle, vm_ooffset_t size, 366 vm_prot_t prot, vm_ooffset_t offset, struct ucred *); 367 static void swap_pager_dealloc(vm_object_t object); 368 static int swap_pager_getpages(vm_object_t, vm_page_t *, int, int *, 369 int *); 370 static int swap_pager_getpages_async(vm_object_t, vm_page_t *, int, int *, 371 int *, pgo_getpages_iodone_t, void *); 372 static void swap_pager_putpages(vm_object_t, vm_page_t *, int, boolean_t, int *); 373 static boolean_t 374 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, int *after); 375 static void swap_pager_init(void); 376 static void swap_pager_unswapped(vm_page_t); 377 static void swap_pager_swapoff(struct swdevt *sp); 378 379 struct pagerops swappagerops = { 380 .pgo_init = swap_pager_init, /* early system initialization of pager */ 381 .pgo_alloc = swap_pager_alloc, /* allocate an OBJT_SWAP object */ 382 .pgo_dealloc = swap_pager_dealloc, /* deallocate an OBJT_SWAP object */ 383 .pgo_getpages = swap_pager_getpages, /* pagein */ 384 .pgo_getpages_async = swap_pager_getpages_async, /* pagein (async) */ 385 .pgo_putpages = swap_pager_putpages, /* pageout */ 386 .pgo_haspage = swap_pager_haspage, /* get backing store status for page */ 387 .pgo_pageunswapped = swap_pager_unswapped, /* remove swap related to page */ 388 }; 389 390 /* 391 * swap_*() routines are externally accessible. swp_*() routines are 392 * internal. 393 */ 394 static int nswap_lowat = 128; /* in pages, swap_pager_almost_full warn */ 395 static int nswap_hiwat = 512; /* in pages, swap_pager_almost_full warn */ 396 397 SYSCTL_INT(_vm, OID_AUTO, dmmax, CTLFLAG_RD, &nsw_cluster_max, 0, 398 "Maximum size of a swap block in pages"); 399 400 static void swp_sizecheck(void); 401 static void swp_pager_async_iodone(struct buf *bp); 402 static bool swp_pager_swblk_empty(struct swblk *sb, int start, int limit); 403 static int swapongeom(struct vnode *); 404 static int swaponvp(struct thread *, struct vnode *, u_long); 405 static int swapoff_one(struct swdevt *sp, struct ucred *cred); 406 407 /* 408 * Swap bitmap functions 409 */ 410 static void swp_pager_freeswapspace(daddr_t blk, daddr_t npages); 411 static daddr_t swp_pager_getswapspace(int *npages, int limit); 412 413 /* 414 * Metadata functions 415 */ 416 static daddr_t swp_pager_meta_build(vm_object_t, vm_pindex_t, daddr_t); 417 static void swp_pager_meta_free(vm_object_t, vm_pindex_t, vm_pindex_t); 418 static void swp_pager_meta_free_all(vm_object_t); 419 static daddr_t swp_pager_meta_ctl(vm_object_t, vm_pindex_t, int); 420 421 static void 422 swp_pager_init_freerange(daddr_t *start, daddr_t *num) 423 { 424 425 *start = SWAPBLK_NONE; 426 *num = 0; 427 } 428 429 static void 430 swp_pager_update_freerange(daddr_t *start, daddr_t *num, daddr_t addr) 431 { 432 433 if (*start + *num == addr) { 434 (*num)++; 435 } else { 436 swp_pager_freeswapspace(*start, *num); 437 *start = addr; 438 *num = 1; 439 } 440 } 441 442 static void * 443 swblk_trie_alloc(struct pctrie *ptree) 444 { 445 446 return (uma_zalloc(swpctrie_zone, M_NOWAIT | (curproc == pageproc ? 447 M_USE_RESERVE : 0))); 448 } 449 450 static void 451 swblk_trie_free(struct pctrie *ptree, void *node) 452 { 453 454 uma_zfree(swpctrie_zone, node); 455 } 456 457 PCTRIE_DEFINE(SWAP, swblk, p, swblk_trie_alloc, swblk_trie_free); 458 459 /* 460 * SWP_SIZECHECK() - update swap_pager_full indication 461 * 462 * update the swap_pager_almost_full indication and warn when we are 463 * about to run out of swap space, using lowat/hiwat hysteresis. 464 * 465 * Clear swap_pager_full ( task killing ) indication when lowat is met. 466 * 467 * No restrictions on call 468 * This routine may not block. 469 */ 470 static void 471 swp_sizecheck(void) 472 { 473 474 if (swap_pager_avail < nswap_lowat) { 475 if (swap_pager_almost_full == 0) { 476 printf("swap_pager: out of swap space\n"); 477 swap_pager_almost_full = 1; 478 } 479 } else { 480 swap_pager_full = 0; 481 if (swap_pager_avail > nswap_hiwat) 482 swap_pager_almost_full = 0; 483 } 484 } 485 486 /* 487 * SWAP_PAGER_INIT() - initialize the swap pager! 488 * 489 * Expected to be started from system init. NOTE: This code is run 490 * before much else so be careful what you depend on. Most of the VM 491 * system has yet to be initialized at this point. 492 */ 493 static void 494 swap_pager_init(void) 495 { 496 /* 497 * Initialize object lists 498 */ 499 int i; 500 501 for (i = 0; i < NOBJLISTS; ++i) 502 TAILQ_INIT(&swap_pager_object_list[i]); 503 mtx_init(&sw_dev_mtx, "swapdev", NULL, MTX_DEF); 504 sx_init(&sw_alloc_sx, "swspsx"); 505 sx_init(&swdev_syscall_lock, "swsysc"); 506 } 507 508 /* 509 * SWAP_PAGER_SWAP_INIT() - swap pager initialization from pageout process 510 * 511 * Expected to be started from pageout process once, prior to entering 512 * its main loop. 513 */ 514 void 515 swap_pager_swap_init(void) 516 { 517 unsigned long n, n2; 518 519 /* 520 * Number of in-transit swap bp operations. Don't 521 * exhaust the pbufs completely. Make sure we 522 * initialize workable values (0 will work for hysteresis 523 * but it isn't very efficient). 524 * 525 * The nsw_cluster_max is constrained by the bp->b_pages[] 526 * array, which has MAXPHYS / PAGE_SIZE entries, and our locally 527 * defined MAX_PAGEOUT_CLUSTER. Also be aware that swap ops are 528 * constrained by the swap device interleave stripe size. 529 * 530 * Currently we hardwire nsw_wcount_async to 4. This limit is 531 * designed to prevent other I/O from having high latencies due to 532 * our pageout I/O. The value 4 works well for one or two active swap 533 * devices but is probably a little low if you have more. Even so, 534 * a higher value would probably generate only a limited improvement 535 * with three or four active swap devices since the system does not 536 * typically have to pageout at extreme bandwidths. We will want 537 * at least 2 per swap devices, and 4 is a pretty good value if you 538 * have one NFS swap device due to the command/ack latency over NFS. 539 * So it all works out pretty well. 540 */ 541 nsw_cluster_max = min(MAXPHYS / PAGE_SIZE, MAX_PAGEOUT_CLUSTER); 542 543 nsw_wcount_async = 4; 544 nsw_wcount_async_max = nsw_wcount_async; 545 mtx_init(&swbuf_mtx, "async swbuf mutex", NULL, MTX_DEF); 546 547 swwbuf_zone = pbuf_zsecond_create("swwbuf", nswbuf / 4); 548 swrbuf_zone = pbuf_zsecond_create("swrbuf", nswbuf / 2); 549 550 /* 551 * Initialize our zone, taking the user's requested size or 552 * estimating the number we need based on the number of pages 553 * in the system. 554 */ 555 n = maxswzone != 0 ? maxswzone / sizeof(struct swblk) : 556 vm_cnt.v_page_count / 2; 557 swpctrie_zone = uma_zcreate("swpctrie", pctrie_node_size(), NULL, NULL, 558 pctrie_zone_init, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM); 559 if (swpctrie_zone == NULL) 560 panic("failed to create swap pctrie zone."); 561 swblk_zone = uma_zcreate("swblk", sizeof(struct swblk), NULL, NULL, 562 NULL, NULL, _Alignof(struct swblk) - 1, UMA_ZONE_VM); 563 if (swblk_zone == NULL) 564 panic("failed to create swap blk zone."); 565 n2 = n; 566 do { 567 if (uma_zone_reserve_kva(swblk_zone, n)) 568 break; 569 /* 570 * if the allocation failed, try a zone two thirds the 571 * size of the previous attempt. 572 */ 573 n -= ((n + 2) / 3); 574 } while (n > 0); 575 576 /* 577 * Often uma_zone_reserve_kva() cannot reserve exactly the 578 * requested size. Account for the difference when 579 * calculating swap_maxpages. 580 */ 581 n = uma_zone_get_max(swblk_zone); 582 583 if (n < n2) 584 printf("Swap blk zone entries changed from %lu to %lu.\n", 585 n2, n); 586 swap_maxpages = n * SWAP_META_PAGES; 587 swzone = n * sizeof(struct swblk); 588 if (!uma_zone_reserve_kva(swpctrie_zone, n)) 589 printf("Cannot reserve swap pctrie zone, " 590 "reduce kern.maxswzone.\n"); 591 } 592 593 static vm_object_t 594 swap_pager_alloc_init(void *handle, struct ucred *cred, vm_ooffset_t size, 595 vm_ooffset_t offset) 596 { 597 vm_object_t object; 598 599 if (cred != NULL) { 600 if (!swap_reserve_by_cred(size, cred)) 601 return (NULL); 602 crhold(cred); 603 } 604 605 /* 606 * The un_pager.swp.swp_blks trie is initialized by 607 * vm_object_allocate() to ensure the correct order of 608 * visibility to other threads. 609 */ 610 object = vm_object_allocate(OBJT_SWAP, OFF_TO_IDX(offset + 611 PAGE_MASK + size)); 612 613 object->handle = handle; 614 if (cred != NULL) { 615 object->cred = cred; 616 object->charge = size; 617 } 618 return (object); 619 } 620 621 /* 622 * SWAP_PAGER_ALLOC() - allocate a new OBJT_SWAP VM object and instantiate 623 * its metadata structures. 624 * 625 * This routine is called from the mmap and fork code to create a new 626 * OBJT_SWAP object. 627 * 628 * This routine must ensure that no live duplicate is created for 629 * the named object request, which is protected against by 630 * holding the sw_alloc_sx lock in case handle != NULL. 631 */ 632 static vm_object_t 633 swap_pager_alloc(void *handle, vm_ooffset_t size, vm_prot_t prot, 634 vm_ooffset_t offset, struct ucred *cred) 635 { 636 vm_object_t object; 637 638 if (handle != NULL) { 639 /* 640 * Reference existing named region or allocate new one. There 641 * should not be a race here against swp_pager_meta_build() 642 * as called from vm_page_remove() in regards to the lookup 643 * of the handle. 644 */ 645 sx_xlock(&sw_alloc_sx); 646 object = vm_pager_object_lookup(NOBJLIST(handle), handle); 647 if (object == NULL) { 648 object = swap_pager_alloc_init(handle, cred, size, 649 offset); 650 if (object != NULL) { 651 TAILQ_INSERT_TAIL(NOBJLIST(object->handle), 652 object, pager_object_list); 653 } 654 } 655 sx_xunlock(&sw_alloc_sx); 656 } else { 657 object = swap_pager_alloc_init(handle, cred, size, offset); 658 } 659 return (object); 660 } 661 662 /* 663 * SWAP_PAGER_DEALLOC() - remove swap metadata from object 664 * 665 * The swap backing for the object is destroyed. The code is 666 * designed such that we can reinstantiate it later, but this 667 * routine is typically called only when the entire object is 668 * about to be destroyed. 669 * 670 * The object must be locked. 671 */ 672 static void 673 swap_pager_dealloc(vm_object_t object) 674 { 675 676 VM_OBJECT_ASSERT_WLOCKED(object); 677 KASSERT((object->flags & OBJ_DEAD) != 0, ("dealloc of reachable obj")); 678 679 /* 680 * Remove from list right away so lookups will fail if we block for 681 * pageout completion. 682 */ 683 if (object->handle != NULL) { 684 VM_OBJECT_WUNLOCK(object); 685 sx_xlock(&sw_alloc_sx); 686 TAILQ_REMOVE(NOBJLIST(object->handle), object, 687 pager_object_list); 688 sx_xunlock(&sw_alloc_sx); 689 VM_OBJECT_WLOCK(object); 690 } 691 692 vm_object_pip_wait(object, "swpdea"); 693 694 /* 695 * Free all remaining metadata. We only bother to free it from 696 * the swap meta data. We do not attempt to free swapblk's still 697 * associated with vm_page_t's for this object. We do not care 698 * if paging is still in progress on some objects. 699 */ 700 swp_pager_meta_free_all(object); 701 object->handle = NULL; 702 object->type = OBJT_DEAD; 703 } 704 705 /************************************************************************ 706 * SWAP PAGER BITMAP ROUTINES * 707 ************************************************************************/ 708 709 /* 710 * SWP_PAGER_GETSWAPSPACE() - allocate raw swap space 711 * 712 * Allocate swap for up to the requested number of pages, and at 713 * least a minimum number of pages. The starting swap block number 714 * (a page index) is returned or SWAPBLK_NONE if the allocation 715 * failed. 716 * 717 * Also has the side effect of advising that somebody made a mistake 718 * when they configured swap and didn't configure enough. 719 * 720 * This routine may not sleep. 721 * 722 * We allocate in round-robin fashion from the configured devices. 723 */ 724 static daddr_t 725 swp_pager_getswapspace(int *io_npages, int limit) 726 { 727 daddr_t blk; 728 struct swdevt *sp; 729 int mpages, npages; 730 731 blk = SWAPBLK_NONE; 732 mpages = *io_npages; 733 npages = imin(BLIST_MAX_ALLOC, mpages); 734 mtx_lock(&sw_dev_mtx); 735 sp = swdevhd; 736 while (!TAILQ_EMPTY(&swtailq)) { 737 if (sp == NULL) 738 sp = TAILQ_FIRST(&swtailq); 739 if ((sp->sw_flags & SW_CLOSING) == 0) 740 blk = blist_alloc(sp->sw_blist, &npages, mpages); 741 if (blk != SWAPBLK_NONE) 742 break; 743 sp = TAILQ_NEXT(sp, sw_list); 744 if (swdevhd == sp) { 745 if (npages <= limit) 746 break; 747 mpages = npages - 1; 748 npages >>= 1; 749 } 750 } 751 if (blk != SWAPBLK_NONE) { 752 *io_npages = npages; 753 blk += sp->sw_first; 754 sp->sw_used += npages; 755 swap_pager_avail -= npages; 756 swp_sizecheck(); 757 swdevhd = TAILQ_NEXT(sp, sw_list); 758 } else { 759 if (swap_pager_full != 2) { 760 printf("swp_pager_getswapspace(%d): failed\n", 761 *io_npages); 762 swap_pager_full = 2; 763 swap_pager_almost_full = 1; 764 } 765 swdevhd = NULL; 766 } 767 mtx_unlock(&sw_dev_mtx); 768 return (blk); 769 } 770 771 static bool 772 swp_pager_isondev(daddr_t blk, struct swdevt *sp) 773 { 774 775 return (blk >= sp->sw_first && blk < sp->sw_end); 776 } 777 778 static void 779 swp_pager_strategy(struct buf *bp) 780 { 781 struct swdevt *sp; 782 783 mtx_lock(&sw_dev_mtx); 784 TAILQ_FOREACH(sp, &swtailq, sw_list) { 785 if (swp_pager_isondev(bp->b_blkno, sp)) { 786 mtx_unlock(&sw_dev_mtx); 787 if ((sp->sw_flags & SW_UNMAPPED) != 0 && 788 unmapped_buf_allowed) { 789 bp->b_data = unmapped_buf; 790 bp->b_offset = 0; 791 } else { 792 pmap_qenter((vm_offset_t)bp->b_data, 793 &bp->b_pages[0], bp->b_bcount / PAGE_SIZE); 794 } 795 sp->sw_strategy(bp, sp); 796 return; 797 } 798 } 799 panic("Swapdev not found"); 800 } 801 802 803 /* 804 * SWP_PAGER_FREESWAPSPACE() - free raw swap space 805 * 806 * This routine returns the specified swap blocks back to the bitmap. 807 * 808 * This routine may not sleep. 809 */ 810 static void 811 swp_pager_freeswapspace(daddr_t blk, daddr_t npages) 812 { 813 struct swdevt *sp; 814 815 if (npages == 0) 816 return; 817 mtx_lock(&sw_dev_mtx); 818 TAILQ_FOREACH(sp, &swtailq, sw_list) { 819 if (swp_pager_isondev(blk, sp)) { 820 sp->sw_used -= npages; 821 /* 822 * If we are attempting to stop swapping on 823 * this device, we don't want to mark any 824 * blocks free lest they be reused. 825 */ 826 if ((sp->sw_flags & SW_CLOSING) == 0) { 827 blist_free(sp->sw_blist, blk - sp->sw_first, 828 npages); 829 swap_pager_avail += npages; 830 swp_sizecheck(); 831 } 832 mtx_unlock(&sw_dev_mtx); 833 return; 834 } 835 } 836 panic("Swapdev not found"); 837 } 838 839 /* 840 * SYSCTL_SWAP_FRAGMENTATION() - produce raw swap space stats 841 */ 842 static int 843 sysctl_swap_fragmentation(SYSCTL_HANDLER_ARGS) 844 { 845 struct sbuf sbuf; 846 struct swdevt *sp; 847 const char *devname; 848 int error; 849 850 error = sysctl_wire_old_buffer(req, 0); 851 if (error != 0) 852 return (error); 853 sbuf_new_for_sysctl(&sbuf, NULL, 128, req); 854 mtx_lock(&sw_dev_mtx); 855 TAILQ_FOREACH(sp, &swtailq, sw_list) { 856 if (vn_isdisk(sp->sw_vp, NULL)) 857 devname = devtoname(sp->sw_vp->v_rdev); 858 else 859 devname = "[file]"; 860 sbuf_printf(&sbuf, "\nFree space on device %s:\n", devname); 861 blist_stats(sp->sw_blist, &sbuf); 862 } 863 mtx_unlock(&sw_dev_mtx); 864 error = sbuf_finish(&sbuf); 865 sbuf_delete(&sbuf); 866 return (error); 867 } 868 869 /* 870 * SWAP_PAGER_FREESPACE() - frees swap blocks associated with a page 871 * range within an object. 872 * 873 * This is a globally accessible routine. 874 * 875 * This routine removes swapblk assignments from swap metadata. 876 * 877 * The external callers of this routine typically have already destroyed 878 * or renamed vm_page_t's associated with this range in the object so 879 * we should be ok. 880 * 881 * The object must be locked. 882 */ 883 void 884 swap_pager_freespace(vm_object_t object, vm_pindex_t start, vm_size_t size) 885 { 886 887 swp_pager_meta_free(object, start, size); 888 } 889 890 /* 891 * SWAP_PAGER_RESERVE() - reserve swap blocks in object 892 * 893 * Assigns swap blocks to the specified range within the object. The 894 * swap blocks are not zeroed. Any previous swap assignment is destroyed. 895 * 896 * Returns 0 on success, -1 on failure. 897 */ 898 int 899 swap_pager_reserve(vm_object_t object, vm_pindex_t start, vm_size_t size) 900 { 901 daddr_t addr, blk, n_free, s_free; 902 int i, j, n; 903 904 swp_pager_init_freerange(&s_free, &n_free); 905 VM_OBJECT_WLOCK(object); 906 for (i = 0; i < size; i += n) { 907 n = size - i; 908 blk = swp_pager_getswapspace(&n, 1); 909 if (blk == SWAPBLK_NONE) { 910 swp_pager_meta_free(object, start, i); 911 VM_OBJECT_WUNLOCK(object); 912 return (-1); 913 } 914 for (j = 0; j < n; ++j) { 915 addr = swp_pager_meta_build(object, 916 start + i + j, blk + j); 917 if (addr != SWAPBLK_NONE) 918 swp_pager_update_freerange(&s_free, &n_free, 919 addr); 920 } 921 } 922 swp_pager_freeswapspace(s_free, n_free); 923 VM_OBJECT_WUNLOCK(object); 924 return (0); 925 } 926 927 /* 928 * SWAP_PAGER_COPY() - copy blocks from source pager to destination pager 929 * and destroy the source. 930 * 931 * Copy any valid swapblks from the source to the destination. In 932 * cases where both the source and destination have a valid swapblk, 933 * we keep the destination's. 934 * 935 * This routine is allowed to sleep. It may sleep allocating metadata 936 * indirectly through swp_pager_meta_build() or if paging is still in 937 * progress on the source. 938 * 939 * The source object contains no vm_page_t's (which is just as well) 940 * 941 * The source object is of type OBJT_SWAP. 942 * 943 * The source and destination objects must be locked. 944 * Both object locks may temporarily be released. 945 */ 946 void 947 swap_pager_copy(vm_object_t srcobject, vm_object_t dstobject, 948 vm_pindex_t offset, int destroysource) 949 { 950 vm_pindex_t i; 951 daddr_t dstaddr, n_free, s_free, srcaddr; 952 953 VM_OBJECT_ASSERT_WLOCKED(srcobject); 954 VM_OBJECT_ASSERT_WLOCKED(dstobject); 955 956 /* 957 * If destroysource is set, we remove the source object from the 958 * swap_pager internal queue now. 959 */ 960 if (destroysource && srcobject->handle != NULL) { 961 vm_object_pip_add(srcobject, 1); 962 VM_OBJECT_WUNLOCK(srcobject); 963 vm_object_pip_add(dstobject, 1); 964 VM_OBJECT_WUNLOCK(dstobject); 965 sx_xlock(&sw_alloc_sx); 966 TAILQ_REMOVE(NOBJLIST(srcobject->handle), srcobject, 967 pager_object_list); 968 sx_xunlock(&sw_alloc_sx); 969 VM_OBJECT_WLOCK(dstobject); 970 vm_object_pip_wakeup(dstobject); 971 VM_OBJECT_WLOCK(srcobject); 972 vm_object_pip_wakeup(srcobject); 973 } 974 975 /* 976 * Transfer source to destination. 977 */ 978 swp_pager_init_freerange(&s_free, &n_free); 979 for (i = 0; i < dstobject->size; ++i) { 980 srcaddr = swp_pager_meta_ctl(srcobject, i + offset, SWM_POP); 981 if (srcaddr == SWAPBLK_NONE) 982 continue; 983 dstaddr = swp_pager_meta_ctl(dstobject, i, 0); 984 if (dstaddr != SWAPBLK_NONE) { 985 /* 986 * Destination has valid swapblk or it is represented 987 * by a resident page. We destroy the source block. 988 */ 989 swp_pager_update_freerange(&s_free, &n_free, srcaddr); 990 continue; 991 } 992 993 /* 994 * Destination has no swapblk and is not resident, 995 * copy source. 996 * 997 * swp_pager_meta_build() can sleep. 998 */ 999 vm_object_pip_add(srcobject, 1); 1000 VM_OBJECT_WUNLOCK(srcobject); 1001 vm_object_pip_add(dstobject, 1); 1002 dstaddr = swp_pager_meta_build(dstobject, i, srcaddr); 1003 KASSERT(dstaddr == SWAPBLK_NONE, 1004 ("Unexpected destination swapblk")); 1005 vm_object_pip_wakeup(dstobject); 1006 VM_OBJECT_WLOCK(srcobject); 1007 vm_object_pip_wakeup(srcobject); 1008 } 1009 swp_pager_freeswapspace(s_free, n_free); 1010 1011 /* 1012 * Free left over swap blocks in source. 1013 * 1014 * We have to revert the type to OBJT_DEFAULT so we do not accidentally 1015 * double-remove the object from the swap queues. 1016 */ 1017 if (destroysource) { 1018 swp_pager_meta_free_all(srcobject); 1019 /* 1020 * Reverting the type is not necessary, the caller is going 1021 * to destroy srcobject directly, but I'm doing it here 1022 * for consistency since we've removed the object from its 1023 * queues. 1024 */ 1025 srcobject->type = OBJT_DEFAULT; 1026 } 1027 } 1028 1029 /* 1030 * SWAP_PAGER_HASPAGE() - determine if we have good backing store for 1031 * the requested page. 1032 * 1033 * We determine whether good backing store exists for the requested 1034 * page and return TRUE if it does, FALSE if it doesn't. 1035 * 1036 * If TRUE, we also try to determine how much valid, contiguous backing 1037 * store exists before and after the requested page. 1038 */ 1039 static boolean_t 1040 swap_pager_haspage(vm_object_t object, vm_pindex_t pindex, int *before, 1041 int *after) 1042 { 1043 daddr_t blk, blk0; 1044 int i; 1045 1046 VM_OBJECT_ASSERT_LOCKED(object); 1047 1048 /* 1049 * do we have good backing store at the requested index ? 1050 */ 1051 blk0 = swp_pager_meta_ctl(object, pindex, 0); 1052 if (blk0 == SWAPBLK_NONE) { 1053 if (before) 1054 *before = 0; 1055 if (after) 1056 *after = 0; 1057 return (FALSE); 1058 } 1059 1060 /* 1061 * find backwards-looking contiguous good backing store 1062 */ 1063 if (before != NULL) { 1064 for (i = 1; i < SWB_NPAGES; i++) { 1065 if (i > pindex) 1066 break; 1067 blk = swp_pager_meta_ctl(object, pindex - i, 0); 1068 if (blk != blk0 - i) 1069 break; 1070 } 1071 *before = i - 1; 1072 } 1073 1074 /* 1075 * find forward-looking contiguous good backing store 1076 */ 1077 if (after != NULL) { 1078 for (i = 1; i < SWB_NPAGES; i++) { 1079 blk = swp_pager_meta_ctl(object, pindex + i, 0); 1080 if (blk != blk0 + i) 1081 break; 1082 } 1083 *after = i - 1; 1084 } 1085 return (TRUE); 1086 } 1087 1088 /* 1089 * SWAP_PAGER_PAGE_UNSWAPPED() - remove swap backing store related to page 1090 * 1091 * This removes any associated swap backing store, whether valid or 1092 * not, from the page. 1093 * 1094 * This routine is typically called when a page is made dirty, at 1095 * which point any associated swap can be freed. MADV_FREE also 1096 * calls us in a special-case situation 1097 * 1098 * NOTE!!! If the page is clean and the swap was valid, the caller 1099 * should make the page dirty before calling this routine. This routine 1100 * does NOT change the m->dirty status of the page. Also: MADV_FREE 1101 * depends on it. 1102 * 1103 * This routine may not sleep. 1104 * 1105 * The object containing the page must be locked. 1106 */ 1107 static void 1108 swap_pager_unswapped(vm_page_t m) 1109 { 1110 daddr_t srcaddr; 1111 1112 srcaddr = swp_pager_meta_ctl(m->object, m->pindex, SWM_POP); 1113 if (srcaddr != SWAPBLK_NONE) 1114 swp_pager_freeswapspace(srcaddr, 1); 1115 } 1116 1117 /* 1118 * swap_pager_getpages() - bring pages in from swap 1119 * 1120 * Attempt to page in the pages in array "ma" of length "count". The 1121 * caller may optionally specify that additional pages preceding and 1122 * succeeding the specified range be paged in. The number of such pages 1123 * is returned in the "rbehind" and "rahead" parameters, and they will 1124 * be in the inactive queue upon return. 1125 * 1126 * The pages in "ma" must be busied and will remain busied upon return. 1127 */ 1128 static int 1129 swap_pager_getpages(vm_object_t object, vm_page_t *ma, int count, int *rbehind, 1130 int *rahead) 1131 { 1132 struct buf *bp; 1133 vm_page_t bm, mpred, msucc, p; 1134 vm_pindex_t pindex; 1135 daddr_t blk; 1136 int i, maxahead, maxbehind, reqcount; 1137 1138 reqcount = count; 1139 1140 /* 1141 * Determine the final number of read-behind pages and 1142 * allocate them BEFORE releasing the object lock. Otherwise, 1143 * there can be a problematic race with vm_object_split(). 1144 * Specifically, vm_object_split() might first transfer pages 1145 * that precede ma[0] in the current object to a new object, 1146 * and then this function incorrectly recreates those pages as 1147 * read-behind pages in the current object. 1148 */ 1149 if (!swap_pager_haspage(object, ma[0]->pindex, &maxbehind, &maxahead)) 1150 return (VM_PAGER_FAIL); 1151 1152 /* 1153 * Clip the readahead and readbehind ranges to exclude resident pages. 1154 */ 1155 if (rahead != NULL) { 1156 KASSERT(reqcount - 1 <= maxahead, 1157 ("page count %d extends beyond swap block", reqcount)); 1158 *rahead = imin(*rahead, maxahead - (reqcount - 1)); 1159 pindex = ma[reqcount - 1]->pindex; 1160 msucc = TAILQ_NEXT(ma[reqcount - 1], listq); 1161 if (msucc != NULL && msucc->pindex - pindex - 1 < *rahead) 1162 *rahead = msucc->pindex - pindex - 1; 1163 } 1164 if (rbehind != NULL) { 1165 *rbehind = imin(*rbehind, maxbehind); 1166 pindex = ma[0]->pindex; 1167 mpred = TAILQ_PREV(ma[0], pglist, listq); 1168 if (mpred != NULL && pindex - mpred->pindex - 1 < *rbehind) 1169 *rbehind = pindex - mpred->pindex - 1; 1170 } 1171 1172 bm = ma[0]; 1173 for (i = 0; i < count; i++) 1174 ma[i]->oflags |= VPO_SWAPINPROG; 1175 1176 /* 1177 * Allocate readahead and readbehind pages. 1178 */ 1179 if (rbehind != NULL) { 1180 for (i = 1; i <= *rbehind; i++) { 1181 p = vm_page_alloc(object, ma[0]->pindex - i, 1182 VM_ALLOC_NORMAL); 1183 if (p == NULL) 1184 break; 1185 p->oflags |= VPO_SWAPINPROG; 1186 bm = p; 1187 } 1188 *rbehind = i - 1; 1189 } 1190 if (rahead != NULL) { 1191 for (i = 0; i < *rahead; i++) { 1192 p = vm_page_alloc(object, 1193 ma[reqcount - 1]->pindex + i + 1, VM_ALLOC_NORMAL); 1194 if (p == NULL) 1195 break; 1196 p->oflags |= VPO_SWAPINPROG; 1197 } 1198 *rahead = i; 1199 } 1200 if (rbehind != NULL) 1201 count += *rbehind; 1202 if (rahead != NULL) 1203 count += *rahead; 1204 1205 vm_object_pip_add(object, count); 1206 1207 pindex = bm->pindex; 1208 blk = swp_pager_meta_ctl(object, pindex, 0); 1209 KASSERT(blk != SWAPBLK_NONE, 1210 ("no swap blocking containing %p(%jx)", object, (uintmax_t)pindex)); 1211 1212 VM_OBJECT_WUNLOCK(object); 1213 bp = uma_zalloc(swrbuf_zone, M_WAITOK); 1214 /* Pages cannot leave the object while busy. */ 1215 for (i = 0, p = bm; i < count; i++, p = TAILQ_NEXT(p, listq)) { 1216 MPASS(p->pindex == bm->pindex + i); 1217 bp->b_pages[i] = p; 1218 } 1219 1220 bp->b_flags |= B_PAGING; 1221 bp->b_iocmd = BIO_READ; 1222 bp->b_iodone = swp_pager_async_iodone; 1223 bp->b_rcred = crhold(thread0.td_ucred); 1224 bp->b_wcred = crhold(thread0.td_ucred); 1225 bp->b_blkno = blk; 1226 bp->b_bcount = PAGE_SIZE * count; 1227 bp->b_bufsize = PAGE_SIZE * count; 1228 bp->b_npages = count; 1229 bp->b_pgbefore = rbehind != NULL ? *rbehind : 0; 1230 bp->b_pgafter = rahead != NULL ? *rahead : 0; 1231 1232 VM_CNT_INC(v_swapin); 1233 VM_CNT_ADD(v_swappgsin, count); 1234 1235 /* 1236 * perform the I/O. NOTE!!! bp cannot be considered valid after 1237 * this point because we automatically release it on completion. 1238 * Instead, we look at the one page we are interested in which we 1239 * still hold a lock on even through the I/O completion. 1240 * 1241 * The other pages in our ma[] array are also released on completion, 1242 * so we cannot assume they are valid anymore either. 1243 * 1244 * NOTE: b_blkno is destroyed by the call to swapdev_strategy 1245 */ 1246 BUF_KERNPROC(bp); 1247 swp_pager_strategy(bp); 1248 1249 /* 1250 * Wait for the pages we want to complete. VPO_SWAPINPROG is always 1251 * cleared on completion. If an I/O error occurs, SWAPBLK_NONE 1252 * is set in the metadata for each page in the request. 1253 */ 1254 VM_OBJECT_WLOCK(object); 1255 while ((ma[0]->oflags & VPO_SWAPINPROG) != 0) { 1256 ma[0]->oflags |= VPO_SWAPSLEEP; 1257 VM_CNT_INC(v_intrans); 1258 if (VM_OBJECT_SLEEP(object, &object->paging_in_progress, PSWP, 1259 "swread", hz * 20)) { 1260 printf( 1261 "swap_pager: indefinite wait buffer: bufobj: %p, blkno: %jd, size: %ld\n", 1262 bp->b_bufobj, (intmax_t)bp->b_blkno, bp->b_bcount); 1263 } 1264 } 1265 1266 /* 1267 * If we had an unrecoverable read error pages will not be valid. 1268 */ 1269 for (i = 0; i < reqcount; i++) 1270 if (ma[i]->valid != VM_PAGE_BITS_ALL) 1271 return (VM_PAGER_ERROR); 1272 1273 return (VM_PAGER_OK); 1274 1275 /* 1276 * A final note: in a low swap situation, we cannot deallocate swap 1277 * and mark a page dirty here because the caller is likely to mark 1278 * the page clean when we return, causing the page to possibly revert 1279 * to all-zero's later. 1280 */ 1281 } 1282 1283 /* 1284 * swap_pager_getpages_async(): 1285 * 1286 * Right now this is emulation of asynchronous operation on top of 1287 * swap_pager_getpages(). 1288 */ 1289 static int 1290 swap_pager_getpages_async(vm_object_t object, vm_page_t *ma, int count, 1291 int *rbehind, int *rahead, pgo_getpages_iodone_t iodone, void *arg) 1292 { 1293 int r, error; 1294 1295 r = swap_pager_getpages(object, ma, count, rbehind, rahead); 1296 VM_OBJECT_WUNLOCK(object); 1297 switch (r) { 1298 case VM_PAGER_OK: 1299 error = 0; 1300 break; 1301 case VM_PAGER_ERROR: 1302 error = EIO; 1303 break; 1304 case VM_PAGER_FAIL: 1305 error = EINVAL; 1306 break; 1307 default: 1308 panic("unhandled swap_pager_getpages() error %d", r); 1309 } 1310 (iodone)(arg, ma, count, error); 1311 VM_OBJECT_WLOCK(object); 1312 1313 return (r); 1314 } 1315 1316 /* 1317 * swap_pager_putpages: 1318 * 1319 * Assign swap (if necessary) and initiate I/O on the specified pages. 1320 * 1321 * We support both OBJT_DEFAULT and OBJT_SWAP objects. DEFAULT objects 1322 * are automatically converted to SWAP objects. 1323 * 1324 * In a low memory situation we may block in VOP_STRATEGY(), but the new 1325 * vm_page reservation system coupled with properly written VFS devices 1326 * should ensure that no low-memory deadlock occurs. This is an area 1327 * which needs work. 1328 * 1329 * The parent has N vm_object_pip_add() references prior to 1330 * calling us and will remove references for rtvals[] that are 1331 * not set to VM_PAGER_PEND. We need to remove the rest on I/O 1332 * completion. 1333 * 1334 * The parent has soft-busy'd the pages it passes us and will unbusy 1335 * those whose rtvals[] entry is not set to VM_PAGER_PEND on return. 1336 * We need to unbusy the rest on I/O completion. 1337 */ 1338 static void 1339 swap_pager_putpages(vm_object_t object, vm_page_t *ma, int count, 1340 int flags, int *rtvals) 1341 { 1342 struct buf *bp; 1343 daddr_t addr, blk, n_free, s_free; 1344 vm_page_t mreq; 1345 int i, j, n; 1346 bool async; 1347 1348 KASSERT(count == 0 || ma[0]->object == object, 1349 ("%s: object mismatch %p/%p", 1350 __func__, object, ma[0]->object)); 1351 1352 /* 1353 * Step 1 1354 * 1355 * Turn object into OBJT_SWAP. Force sync if not a pageout process. 1356 */ 1357 if (object->type != OBJT_SWAP) { 1358 addr = swp_pager_meta_build(object, 0, SWAPBLK_NONE); 1359 KASSERT(addr == SWAPBLK_NONE, 1360 ("unexpected object swap block")); 1361 } 1362 VM_OBJECT_WUNLOCK(object); 1363 async = curproc == pageproc && (flags & VM_PAGER_PUT_SYNC) == 0; 1364 swp_pager_init_freerange(&s_free, &n_free); 1365 1366 /* 1367 * Step 2 1368 * 1369 * Assign swap blocks and issue I/O. We reallocate swap on the fly. 1370 * The page is left dirty until the pageout operation completes 1371 * successfully. 1372 */ 1373 for (i = 0; i < count; i += n) { 1374 /* Maximum I/O size is limited by maximum swap block size. */ 1375 n = min(count - i, nsw_cluster_max); 1376 1377 /* Get a block of swap of size up to size n. */ 1378 blk = swp_pager_getswapspace(&n, 4); 1379 if (blk == SWAPBLK_NONE) { 1380 for (j = 0; j < n; ++j) 1381 rtvals[i + j] = VM_PAGER_FAIL; 1382 continue; 1383 } 1384 1385 /* 1386 * All I/O parameters have been satisfied. Build the I/O 1387 * request and assign the swap space. 1388 */ 1389 if (async) { 1390 mtx_lock(&swbuf_mtx); 1391 while (nsw_wcount_async == 0) 1392 msleep(&nsw_wcount_async, &swbuf_mtx, PVM, 1393 "swbufa", 0); 1394 nsw_wcount_async--; 1395 mtx_unlock(&swbuf_mtx); 1396 } 1397 bp = uma_zalloc(swwbuf_zone, M_WAITOK); 1398 if (async) 1399 bp->b_flags = B_ASYNC; 1400 bp->b_flags |= B_PAGING; 1401 bp->b_iocmd = BIO_WRITE; 1402 1403 bp->b_rcred = crhold(thread0.td_ucred); 1404 bp->b_wcred = crhold(thread0.td_ucred); 1405 bp->b_bcount = PAGE_SIZE * n; 1406 bp->b_bufsize = PAGE_SIZE * n; 1407 bp->b_blkno = blk; 1408 1409 VM_OBJECT_WLOCK(object); 1410 for (j = 0; j < n; ++j) { 1411 mreq = ma[i + j]; 1412 addr = swp_pager_meta_build(mreq->object, mreq->pindex, 1413 blk + j); 1414 if (addr != SWAPBLK_NONE) 1415 swp_pager_update_freerange(&s_free, &n_free, 1416 addr); 1417 MPASS(mreq->dirty == VM_PAGE_BITS_ALL); 1418 mreq->oflags |= VPO_SWAPINPROG; 1419 bp->b_pages[j] = mreq; 1420 } 1421 VM_OBJECT_WUNLOCK(object); 1422 bp->b_npages = n; 1423 /* 1424 * Must set dirty range for NFS to work. 1425 */ 1426 bp->b_dirtyoff = 0; 1427 bp->b_dirtyend = bp->b_bcount; 1428 1429 VM_CNT_INC(v_swapout); 1430 VM_CNT_ADD(v_swappgsout, bp->b_npages); 1431 1432 /* 1433 * We unconditionally set rtvals[] to VM_PAGER_PEND so that we 1434 * can call the async completion routine at the end of a 1435 * synchronous I/O operation. Otherwise, our caller would 1436 * perform duplicate unbusy and wakeup operations on the page 1437 * and object, respectively. 1438 */ 1439 for (j = 0; j < n; j++) 1440 rtvals[i + j] = VM_PAGER_PEND; 1441 1442 /* 1443 * asynchronous 1444 * 1445 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1446 */ 1447 if (async) { 1448 bp->b_iodone = swp_pager_async_iodone; 1449 BUF_KERNPROC(bp); 1450 swp_pager_strategy(bp); 1451 continue; 1452 } 1453 1454 /* 1455 * synchronous 1456 * 1457 * NOTE: b_blkno is destroyed by the call to swapdev_strategy. 1458 */ 1459 bp->b_iodone = bdone; 1460 swp_pager_strategy(bp); 1461 1462 /* 1463 * Wait for the sync I/O to complete. 1464 */ 1465 bwait(bp, PVM, "swwrt"); 1466 1467 /* 1468 * Now that we are through with the bp, we can call the 1469 * normal async completion, which frees everything up. 1470 */ 1471 swp_pager_async_iodone(bp); 1472 } 1473 swp_pager_freeswapspace(s_free, n_free); 1474 VM_OBJECT_WLOCK(object); 1475 } 1476 1477 /* 1478 * swp_pager_async_iodone: 1479 * 1480 * Completion routine for asynchronous reads and writes from/to swap. 1481 * Also called manually by synchronous code to finish up a bp. 1482 * 1483 * This routine may not sleep. 1484 */ 1485 static void 1486 swp_pager_async_iodone(struct buf *bp) 1487 { 1488 int i; 1489 vm_object_t object = NULL; 1490 1491 /* 1492 * Report error - unless we ran out of memory, in which case 1493 * we've already logged it in swapgeom_strategy(). 1494 */ 1495 if (bp->b_ioflags & BIO_ERROR && bp->b_error != ENOMEM) { 1496 printf( 1497 "swap_pager: I/O error - %s failed; blkno %ld," 1498 "size %ld, error %d\n", 1499 ((bp->b_iocmd == BIO_READ) ? "pagein" : "pageout"), 1500 (long)bp->b_blkno, 1501 (long)bp->b_bcount, 1502 bp->b_error 1503 ); 1504 } 1505 1506 /* 1507 * remove the mapping for kernel virtual 1508 */ 1509 if (buf_mapped(bp)) 1510 pmap_qremove((vm_offset_t)bp->b_data, bp->b_npages); 1511 else 1512 bp->b_data = bp->b_kvabase; 1513 1514 if (bp->b_npages) { 1515 object = bp->b_pages[0]->object; 1516 VM_OBJECT_WLOCK(object); 1517 } 1518 1519 /* 1520 * cleanup pages. If an error occurs writing to swap, we are in 1521 * very serious trouble. If it happens to be a disk error, though, 1522 * we may be able to recover by reassigning the swap later on. So 1523 * in this case we remove the m->swapblk assignment for the page 1524 * but do not free it in the rlist. The errornous block(s) are thus 1525 * never reallocated as swap. Redirty the page and continue. 1526 */ 1527 for (i = 0; i < bp->b_npages; ++i) { 1528 vm_page_t m = bp->b_pages[i]; 1529 1530 m->oflags &= ~VPO_SWAPINPROG; 1531 if (m->oflags & VPO_SWAPSLEEP) { 1532 m->oflags &= ~VPO_SWAPSLEEP; 1533 wakeup(&object->paging_in_progress); 1534 } 1535 1536 if (bp->b_ioflags & BIO_ERROR) { 1537 /* 1538 * If an error occurs I'd love to throw the swapblk 1539 * away without freeing it back to swapspace, so it 1540 * can never be used again. But I can't from an 1541 * interrupt. 1542 */ 1543 if (bp->b_iocmd == BIO_READ) { 1544 /* 1545 * NOTE: for reads, m->dirty will probably 1546 * be overridden by the original caller of 1547 * getpages so don't play cute tricks here. 1548 */ 1549 m->valid = 0; 1550 } else { 1551 /* 1552 * If a write error occurs, reactivate page 1553 * so it doesn't clog the inactive list, 1554 * then finish the I/O. 1555 */ 1556 MPASS(m->dirty == VM_PAGE_BITS_ALL); 1557 vm_page_lock(m); 1558 vm_page_activate(m); 1559 vm_page_unlock(m); 1560 vm_page_sunbusy(m); 1561 } 1562 } else if (bp->b_iocmd == BIO_READ) { 1563 /* 1564 * NOTE: for reads, m->dirty will probably be 1565 * overridden by the original caller of getpages so 1566 * we cannot set them in order to free the underlying 1567 * swap in a low-swap situation. I don't think we'd 1568 * want to do that anyway, but it was an optimization 1569 * that existed in the old swapper for a time before 1570 * it got ripped out due to precisely this problem. 1571 */ 1572 KASSERT(!pmap_page_is_mapped(m), 1573 ("swp_pager_async_iodone: page %p is mapped", m)); 1574 KASSERT(m->dirty == 0, 1575 ("swp_pager_async_iodone: page %p is dirty", m)); 1576 1577 m->valid = VM_PAGE_BITS_ALL; 1578 if (i < bp->b_pgbefore || 1579 i >= bp->b_npages - bp->b_pgafter) 1580 vm_page_readahead_finish(m); 1581 } else { 1582 /* 1583 * For write success, clear the dirty 1584 * status, then finish the I/O ( which decrements the 1585 * busy count and possibly wakes waiter's up ). 1586 * A page is only written to swap after a period of 1587 * inactivity. Therefore, we do not expect it to be 1588 * reused. 1589 */ 1590 KASSERT(!pmap_page_is_write_mapped(m), 1591 ("swp_pager_async_iodone: page %p is not write" 1592 " protected", m)); 1593 vm_page_undirty(m); 1594 vm_page_lock(m); 1595 vm_page_deactivate_noreuse(m); 1596 vm_page_unlock(m); 1597 vm_page_sunbusy(m); 1598 } 1599 } 1600 1601 /* 1602 * adjust pip. NOTE: the original parent may still have its own 1603 * pip refs on the object. 1604 */ 1605 if (object != NULL) { 1606 vm_object_pip_wakeupn(object, bp->b_npages); 1607 VM_OBJECT_WUNLOCK(object); 1608 } 1609 1610 /* 1611 * swapdev_strategy() manually sets b_vp and b_bufobj before calling 1612 * bstrategy(). Set them back to NULL now we're done with it, or we'll 1613 * trigger a KASSERT in relpbuf(). 1614 */ 1615 if (bp->b_vp) { 1616 bp->b_vp = NULL; 1617 bp->b_bufobj = NULL; 1618 } 1619 /* 1620 * release the physical I/O buffer 1621 */ 1622 if (bp->b_flags & B_ASYNC) { 1623 mtx_lock(&swbuf_mtx); 1624 if (++nsw_wcount_async == 1) 1625 wakeup(&nsw_wcount_async); 1626 mtx_unlock(&swbuf_mtx); 1627 } 1628 uma_zfree((bp->b_iocmd == BIO_READ) ? swrbuf_zone : swwbuf_zone, bp); 1629 } 1630 1631 int 1632 swap_pager_nswapdev(void) 1633 { 1634 1635 return (nswapdev); 1636 } 1637 1638 static void 1639 swp_pager_force_dirty(vm_page_t m) 1640 { 1641 1642 vm_page_dirty(m); 1643 #ifdef INVARIANTS 1644 vm_page_lock(m); 1645 if (!vm_page_wired(m) && m->queue == PQ_NONE) 1646 panic("page %p is neither wired nor queued", m); 1647 vm_page_unlock(m); 1648 #endif 1649 vm_page_xunbusy(m); 1650 swap_pager_unswapped(m); 1651 } 1652 1653 static void 1654 swp_pager_force_launder(vm_page_t m) 1655 { 1656 1657 vm_page_dirty(m); 1658 vm_page_lock(m); 1659 vm_page_launder(m); 1660 vm_page_unlock(m); 1661 vm_page_xunbusy(m); 1662 swap_pager_unswapped(m); 1663 } 1664 1665 /* 1666 * SWP_PAGER_FORCE_PAGEIN() - force swap blocks to be paged in 1667 * 1668 * This routine dissociates pages starting at the given index within an 1669 * object from their backing store, paging them in if they do not reside 1670 * in memory. Pages that are paged in are marked dirty and placed in the 1671 * laundry queue. Pages are marked dirty because they no longer have 1672 * backing store. They are placed in the laundry queue because they have 1673 * not been accessed recently. Otherwise, they would already reside in 1674 * memory. 1675 */ 1676 static void 1677 swp_pager_force_pagein(vm_object_t object, vm_pindex_t pindex, int npages) 1678 { 1679 vm_page_t ma[npages]; 1680 int i, j; 1681 1682 KASSERT(npages > 0, ("%s: No pages", __func__)); 1683 KASSERT(npages <= MAXPHYS / PAGE_SIZE, 1684 ("%s: Too many pages: %d", __func__, npages)); 1685 vm_object_pip_add(object, npages); 1686 vm_page_grab_pages(object, pindex, VM_ALLOC_NORMAL, ma, npages); 1687 for (i = j = 0;; i++) { 1688 /* Count nonresident pages, to page-in all at once. */ 1689 if (i < npages && ma[i]->valid != VM_PAGE_BITS_ALL) 1690 continue; 1691 if (j < i) { 1692 /* Page-in nonresident pages. Mark for laundering. */ 1693 if (swap_pager_getpages(object, &ma[j], i - j, NULL, 1694 NULL) != VM_PAGER_OK) 1695 panic("%s: read from swap failed", __func__); 1696 do { 1697 swp_pager_force_launder(ma[j]); 1698 } while (++j < i); 1699 } 1700 if (i == npages) 1701 break; 1702 /* Mark dirty a resident page. */ 1703 swp_pager_force_dirty(ma[j++]); 1704 } 1705 vm_object_pip_wakeupn(object, npages); 1706 } 1707 1708 /* 1709 * swap_pager_swapoff_object: 1710 * 1711 * Page in all of the pages that have been paged out for an object 1712 * to a swap device. 1713 */ 1714 static void 1715 swap_pager_swapoff_object(struct swdevt *sp, vm_object_t object) 1716 { 1717 struct swblk *sb; 1718 vm_pindex_t pi, s_pindex; 1719 daddr_t blk, n_blks, s_blk; 1720 int i; 1721 1722 n_blks = 0; 1723 for (pi = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 1724 &object->un_pager.swp.swp_blks, pi)) != NULL; ) { 1725 for (i = 0; i < SWAP_META_PAGES; i++) { 1726 blk = sb->d[i]; 1727 if (!swp_pager_isondev(blk, sp)) 1728 blk = SWAPBLK_NONE; 1729 1730 /* 1731 * If there are no blocks/pages accumulated, start a new 1732 * accumulation here. 1733 */ 1734 if (n_blks == 0) { 1735 if (blk != SWAPBLK_NONE) { 1736 s_blk = blk; 1737 s_pindex = sb->p + i; 1738 n_blks = 1; 1739 } 1740 continue; 1741 } 1742 1743 /* 1744 * If the accumulation can be extended without breaking 1745 * the sequence of consecutive blocks and pages that 1746 * swp_pager_force_pagein() depends on, do so. 1747 */ 1748 if (n_blks < MAXPHYS / PAGE_SIZE && 1749 s_blk + n_blks == blk && 1750 s_pindex + n_blks == sb->p + i) { 1751 ++n_blks; 1752 continue; 1753 } 1754 1755 /* 1756 * The sequence of consecutive blocks and pages cannot 1757 * be extended, so page them all in here. Then, 1758 * because doing so involves releasing and reacquiring 1759 * a lock that protects the swap block pctrie, do not 1760 * rely on the current swap block. Break this loop and 1761 * re-fetch the same pindex from the pctrie again. 1762 */ 1763 swp_pager_force_pagein(object, s_pindex, n_blks); 1764 n_blks = 0; 1765 break; 1766 } 1767 if (i == SWAP_META_PAGES) 1768 pi = sb->p + SWAP_META_PAGES; 1769 } 1770 if (n_blks > 0) 1771 swp_pager_force_pagein(object, s_pindex, n_blks); 1772 } 1773 1774 /* 1775 * swap_pager_swapoff: 1776 * 1777 * Page in all of the pages that have been paged out to the 1778 * given device. The corresponding blocks in the bitmap must be 1779 * marked as allocated and the device must be flagged SW_CLOSING. 1780 * There may be no processes swapped out to the device. 1781 * 1782 * This routine may block. 1783 */ 1784 static void 1785 swap_pager_swapoff(struct swdevt *sp) 1786 { 1787 vm_object_t object; 1788 int retries; 1789 1790 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 1791 1792 retries = 0; 1793 full_rescan: 1794 mtx_lock(&vm_object_list_mtx); 1795 TAILQ_FOREACH(object, &vm_object_list, object_list) { 1796 if (object->type != OBJT_SWAP) 1797 continue; 1798 mtx_unlock(&vm_object_list_mtx); 1799 /* Depends on type-stability. */ 1800 VM_OBJECT_WLOCK(object); 1801 1802 /* 1803 * Dead objects are eventually terminated on their own. 1804 */ 1805 if ((object->flags & OBJ_DEAD) != 0) 1806 goto next_obj; 1807 1808 /* 1809 * Sync with fences placed after pctrie 1810 * initialization. We must not access pctrie below 1811 * unless we checked that our object is swap and not 1812 * dead. 1813 */ 1814 atomic_thread_fence_acq(); 1815 if (object->type != OBJT_SWAP) 1816 goto next_obj; 1817 1818 swap_pager_swapoff_object(sp, object); 1819 next_obj: 1820 VM_OBJECT_WUNLOCK(object); 1821 mtx_lock(&vm_object_list_mtx); 1822 } 1823 mtx_unlock(&vm_object_list_mtx); 1824 1825 if (sp->sw_used) { 1826 /* 1827 * Objects may be locked or paging to the device being 1828 * removed, so we will miss their pages and need to 1829 * make another pass. We have marked this device as 1830 * SW_CLOSING, so the activity should finish soon. 1831 */ 1832 retries++; 1833 if (retries > 100) { 1834 panic("swapoff: failed to locate %d swap blocks", 1835 sp->sw_used); 1836 } 1837 pause("swpoff", hz / 20); 1838 goto full_rescan; 1839 } 1840 EVENTHANDLER_INVOKE(swapoff, sp); 1841 } 1842 1843 /************************************************************************ 1844 * SWAP META DATA * 1845 ************************************************************************ 1846 * 1847 * These routines manipulate the swap metadata stored in the 1848 * OBJT_SWAP object. 1849 * 1850 * Swap metadata is implemented with a global hash and not directly 1851 * linked into the object. Instead the object simply contains 1852 * appropriate tracking counters. 1853 */ 1854 1855 /* 1856 * SWP_PAGER_SWBLK_EMPTY() - is a range of blocks free? 1857 */ 1858 static bool 1859 swp_pager_swblk_empty(struct swblk *sb, int start, int limit) 1860 { 1861 int i; 1862 1863 MPASS(0 <= start && start <= limit && limit <= SWAP_META_PAGES); 1864 for (i = start; i < limit; i++) { 1865 if (sb->d[i] != SWAPBLK_NONE) 1866 return (false); 1867 } 1868 return (true); 1869 } 1870 1871 /* 1872 * SWP_PAGER_META_BUILD() - add swap block to swap meta data for object 1873 * 1874 * We first convert the object to a swap object if it is a default 1875 * object. 1876 * 1877 * The specified swapblk is added to the object's swap metadata. If 1878 * the swapblk is not valid, it is freed instead. Any previously 1879 * assigned swapblk is returned. 1880 */ 1881 static daddr_t 1882 swp_pager_meta_build(vm_object_t object, vm_pindex_t pindex, daddr_t swapblk) 1883 { 1884 static volatile int swblk_zone_exhausted, swpctrie_zone_exhausted; 1885 struct swblk *sb, *sb1; 1886 vm_pindex_t modpi, rdpi; 1887 daddr_t prev_swapblk; 1888 int error, i; 1889 1890 VM_OBJECT_ASSERT_WLOCKED(object); 1891 1892 /* 1893 * Convert default object to swap object if necessary 1894 */ 1895 if (object->type != OBJT_SWAP) { 1896 pctrie_init(&object->un_pager.swp.swp_blks); 1897 1898 /* 1899 * Ensure that swap_pager_swapoff()'s iteration over 1900 * object_list does not see a garbage pctrie. 1901 */ 1902 atomic_thread_fence_rel(); 1903 1904 object->type = OBJT_SWAP; 1905 KASSERT(object->handle == NULL, ("default pager with handle")); 1906 } 1907 1908 rdpi = rounddown(pindex, SWAP_META_PAGES); 1909 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, rdpi); 1910 if (sb == NULL) { 1911 if (swapblk == SWAPBLK_NONE) 1912 return (SWAPBLK_NONE); 1913 for (;;) { 1914 sb = uma_zalloc(swblk_zone, M_NOWAIT | (curproc == 1915 pageproc ? M_USE_RESERVE : 0)); 1916 if (sb != NULL) { 1917 sb->p = rdpi; 1918 for (i = 0; i < SWAP_META_PAGES; i++) 1919 sb->d[i] = SWAPBLK_NONE; 1920 if (atomic_cmpset_int(&swblk_zone_exhausted, 1921 1, 0)) 1922 printf("swblk zone ok\n"); 1923 break; 1924 } 1925 VM_OBJECT_WUNLOCK(object); 1926 if (uma_zone_exhausted(swblk_zone)) { 1927 if (atomic_cmpset_int(&swblk_zone_exhausted, 1928 0, 1)) 1929 printf("swap blk zone exhausted, " 1930 "increase kern.maxswzone\n"); 1931 vm_pageout_oom(VM_OOM_SWAPZ); 1932 pause("swzonxb", 10); 1933 } else 1934 uma_zwait(swblk_zone); 1935 VM_OBJECT_WLOCK(object); 1936 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 1937 rdpi); 1938 if (sb != NULL) 1939 /* 1940 * Somebody swapped out a nearby page, 1941 * allocating swblk at the rdpi index, 1942 * while we dropped the object lock. 1943 */ 1944 goto allocated; 1945 } 1946 for (;;) { 1947 error = SWAP_PCTRIE_INSERT( 1948 &object->un_pager.swp.swp_blks, sb); 1949 if (error == 0) { 1950 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 1951 1, 0)) 1952 printf("swpctrie zone ok\n"); 1953 break; 1954 } 1955 VM_OBJECT_WUNLOCK(object); 1956 if (uma_zone_exhausted(swpctrie_zone)) { 1957 if (atomic_cmpset_int(&swpctrie_zone_exhausted, 1958 0, 1)) 1959 printf("swap pctrie zone exhausted, " 1960 "increase kern.maxswzone\n"); 1961 vm_pageout_oom(VM_OOM_SWAPZ); 1962 pause("swzonxp", 10); 1963 } else 1964 uma_zwait(swpctrie_zone); 1965 VM_OBJECT_WLOCK(object); 1966 sb1 = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 1967 rdpi); 1968 if (sb1 != NULL) { 1969 uma_zfree(swblk_zone, sb); 1970 sb = sb1; 1971 goto allocated; 1972 } 1973 } 1974 } 1975 allocated: 1976 MPASS(sb->p == rdpi); 1977 1978 modpi = pindex % SWAP_META_PAGES; 1979 /* Return prior contents of metadata. */ 1980 prev_swapblk = sb->d[modpi]; 1981 /* Enter block into metadata. */ 1982 sb->d[modpi] = swapblk; 1983 1984 /* 1985 * Free the swblk if we end up with the empty page run. 1986 */ 1987 if (swapblk == SWAPBLK_NONE && 1988 swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 1989 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, rdpi); 1990 uma_zfree(swblk_zone, sb); 1991 } 1992 return (prev_swapblk); 1993 } 1994 1995 /* 1996 * SWP_PAGER_META_FREE() - free a range of blocks in the object's swap metadata 1997 * 1998 * The requested range of blocks is freed, with any associated swap 1999 * returned to the swap bitmap. 2000 * 2001 * This routine will free swap metadata structures as they are cleaned 2002 * out. This routine does *NOT* operate on swap metadata associated 2003 * with resident pages. 2004 */ 2005 static void 2006 swp_pager_meta_free(vm_object_t object, vm_pindex_t pindex, vm_pindex_t count) 2007 { 2008 struct swblk *sb; 2009 daddr_t n_free, s_free; 2010 vm_pindex_t last; 2011 int i, limit, start; 2012 2013 VM_OBJECT_ASSERT_WLOCKED(object); 2014 if (object->type != OBJT_SWAP || count == 0) 2015 return; 2016 2017 swp_pager_init_freerange(&s_free, &n_free); 2018 last = pindex + count; 2019 for (;;) { 2020 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2021 rounddown(pindex, SWAP_META_PAGES)); 2022 if (sb == NULL || sb->p >= last) 2023 break; 2024 start = pindex > sb->p ? pindex - sb->p : 0; 2025 limit = last - sb->p < SWAP_META_PAGES ? last - sb->p : 2026 SWAP_META_PAGES; 2027 for (i = start; i < limit; i++) { 2028 if (sb->d[i] == SWAPBLK_NONE) 2029 continue; 2030 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]); 2031 sb->d[i] = SWAPBLK_NONE; 2032 } 2033 pindex = sb->p + SWAP_META_PAGES; 2034 if (swp_pager_swblk_empty(sb, 0, start) && 2035 swp_pager_swblk_empty(sb, limit, SWAP_META_PAGES)) { 2036 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, 2037 sb->p); 2038 uma_zfree(swblk_zone, sb); 2039 } 2040 } 2041 swp_pager_freeswapspace(s_free, n_free); 2042 } 2043 2044 /* 2045 * SWP_PAGER_META_FREE_ALL() - destroy all swap metadata associated with object 2046 * 2047 * This routine locates and destroys all swap metadata associated with 2048 * an object. 2049 */ 2050 static void 2051 swp_pager_meta_free_all(vm_object_t object) 2052 { 2053 struct swblk *sb; 2054 daddr_t n_free, s_free; 2055 vm_pindex_t pindex; 2056 int i; 2057 2058 VM_OBJECT_ASSERT_WLOCKED(object); 2059 if (object->type != OBJT_SWAP) 2060 return; 2061 2062 swp_pager_init_freerange(&s_free, &n_free); 2063 for (pindex = 0; (sb = SWAP_PCTRIE_LOOKUP_GE( 2064 &object->un_pager.swp.swp_blks, pindex)) != NULL;) { 2065 pindex = sb->p + SWAP_META_PAGES; 2066 for (i = 0; i < SWAP_META_PAGES; i++) { 2067 if (sb->d[i] == SWAPBLK_NONE) 2068 continue; 2069 swp_pager_update_freerange(&s_free, &n_free, sb->d[i]); 2070 } 2071 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, sb->p); 2072 uma_zfree(swblk_zone, sb); 2073 } 2074 swp_pager_freeswapspace(s_free, n_free); 2075 } 2076 2077 /* 2078 * SWP_PAGER_METACTL() - misc control of swap meta data. 2079 * 2080 * This routine is capable of looking up, or removing swapblk 2081 * assignments in the swap meta data. It returns the swapblk being 2082 * looked-up, popped, or SWAPBLK_NONE if the block was invalid. 2083 * 2084 * When acting on a busy resident page and paging is in progress, we 2085 * have to wait until paging is complete but otherwise can act on the 2086 * busy page. 2087 * 2088 * SWM_POP remove from meta data but do not free it 2089 */ 2090 static daddr_t 2091 swp_pager_meta_ctl(vm_object_t object, vm_pindex_t pindex, int flags) 2092 { 2093 struct swblk *sb; 2094 daddr_t r1; 2095 2096 if ((flags & SWM_POP) != 0) 2097 VM_OBJECT_ASSERT_WLOCKED(object); 2098 else 2099 VM_OBJECT_ASSERT_LOCKED(object); 2100 2101 /* 2102 * The meta data only exists if the object is OBJT_SWAP 2103 * and even then might not be allocated yet. 2104 */ 2105 if (object->type != OBJT_SWAP) 2106 return (SWAPBLK_NONE); 2107 2108 sb = SWAP_PCTRIE_LOOKUP(&object->un_pager.swp.swp_blks, 2109 rounddown(pindex, SWAP_META_PAGES)); 2110 if (sb == NULL) 2111 return (SWAPBLK_NONE); 2112 r1 = sb->d[pindex % SWAP_META_PAGES]; 2113 if (r1 == SWAPBLK_NONE) 2114 return (SWAPBLK_NONE); 2115 if ((flags & SWM_POP) != 0) { 2116 sb->d[pindex % SWAP_META_PAGES] = SWAPBLK_NONE; 2117 if (swp_pager_swblk_empty(sb, 0, SWAP_META_PAGES)) { 2118 SWAP_PCTRIE_REMOVE(&object->un_pager.swp.swp_blks, 2119 rounddown(pindex, SWAP_META_PAGES)); 2120 uma_zfree(swblk_zone, sb); 2121 } 2122 } 2123 return (r1); 2124 } 2125 2126 /* 2127 * Returns the least page index which is greater than or equal to the 2128 * parameter pindex and for which there is a swap block allocated. 2129 * Returns object's size if the object's type is not swap or if there 2130 * are no allocated swap blocks for the object after the requested 2131 * pindex. 2132 */ 2133 vm_pindex_t 2134 swap_pager_find_least(vm_object_t object, vm_pindex_t pindex) 2135 { 2136 struct swblk *sb; 2137 int i; 2138 2139 VM_OBJECT_ASSERT_LOCKED(object); 2140 if (object->type != OBJT_SWAP) 2141 return (object->size); 2142 2143 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2144 rounddown(pindex, SWAP_META_PAGES)); 2145 if (sb == NULL) 2146 return (object->size); 2147 if (sb->p < pindex) { 2148 for (i = pindex % SWAP_META_PAGES; i < SWAP_META_PAGES; i++) { 2149 if (sb->d[i] != SWAPBLK_NONE) 2150 return (sb->p + i); 2151 } 2152 sb = SWAP_PCTRIE_LOOKUP_GE(&object->un_pager.swp.swp_blks, 2153 roundup(pindex, SWAP_META_PAGES)); 2154 if (sb == NULL) 2155 return (object->size); 2156 } 2157 for (i = 0; i < SWAP_META_PAGES; i++) { 2158 if (sb->d[i] != SWAPBLK_NONE) 2159 return (sb->p + i); 2160 } 2161 2162 /* 2163 * We get here if a swblk is present in the trie but it 2164 * doesn't map any blocks. 2165 */ 2166 MPASS(0); 2167 return (object->size); 2168 } 2169 2170 /* 2171 * System call swapon(name) enables swapping on device name, 2172 * which must be in the swdevsw. Return EBUSY 2173 * if already swapping on this device. 2174 */ 2175 #ifndef _SYS_SYSPROTO_H_ 2176 struct swapon_args { 2177 char *name; 2178 }; 2179 #endif 2180 2181 /* 2182 * MPSAFE 2183 */ 2184 /* ARGSUSED */ 2185 int 2186 sys_swapon(struct thread *td, struct swapon_args *uap) 2187 { 2188 struct vattr attr; 2189 struct vnode *vp; 2190 struct nameidata nd; 2191 int error; 2192 2193 error = priv_check(td, PRIV_SWAPON); 2194 if (error) 2195 return (error); 2196 2197 sx_xlock(&swdev_syscall_lock); 2198 2199 /* 2200 * Swap metadata may not fit in the KVM if we have physical 2201 * memory of >1GB. 2202 */ 2203 if (swblk_zone == NULL) { 2204 error = ENOMEM; 2205 goto done; 2206 } 2207 2208 NDINIT(&nd, LOOKUP, ISOPEN | FOLLOW | AUDITVNODE1, UIO_USERSPACE, 2209 uap->name, td); 2210 error = namei(&nd); 2211 if (error) 2212 goto done; 2213 2214 NDFREE(&nd, NDF_ONLY_PNBUF); 2215 vp = nd.ni_vp; 2216 2217 if (vn_isdisk(vp, &error)) { 2218 error = swapongeom(vp); 2219 } else if (vp->v_type == VREG && 2220 (vp->v_mount->mnt_vfc->vfc_flags & VFCF_NETWORK) != 0 && 2221 (error = VOP_GETATTR(vp, &attr, td->td_ucred)) == 0) { 2222 /* 2223 * Allow direct swapping to NFS regular files in the same 2224 * way that nfs_mountroot() sets up diskless swapping. 2225 */ 2226 error = swaponvp(td, vp, attr.va_size / DEV_BSIZE); 2227 } 2228 2229 if (error) 2230 vrele(vp); 2231 done: 2232 sx_xunlock(&swdev_syscall_lock); 2233 return (error); 2234 } 2235 2236 /* 2237 * Check that the total amount of swap currently configured does not 2238 * exceed half the theoretical maximum. If it does, print a warning 2239 * message. 2240 */ 2241 static void 2242 swapon_check_swzone(void) 2243 { 2244 unsigned long maxpages, npages; 2245 2246 npages = swap_total; 2247 /* absolute maximum we can handle assuming 100% efficiency */ 2248 maxpages = uma_zone_get_max(swblk_zone) * SWAP_META_PAGES; 2249 2250 /* recommend using no more than half that amount */ 2251 if (npages > maxpages / 2) { 2252 printf("warning: total configured swap (%lu pages) " 2253 "exceeds maximum recommended amount (%lu pages).\n", 2254 npages, maxpages / 2); 2255 printf("warning: increase kern.maxswzone " 2256 "or reduce amount of swap.\n"); 2257 } 2258 } 2259 2260 static void 2261 swaponsomething(struct vnode *vp, void *id, u_long nblks, 2262 sw_strategy_t *strategy, sw_close_t *close, dev_t dev, int flags) 2263 { 2264 struct swdevt *sp, *tsp; 2265 swblk_t dvbase; 2266 u_long mblocks; 2267 2268 /* 2269 * nblks is in DEV_BSIZE'd chunks, convert to PAGE_SIZE'd chunks. 2270 * First chop nblks off to page-align it, then convert. 2271 * 2272 * sw->sw_nblks is in page-sized chunks now too. 2273 */ 2274 nblks &= ~(ctodb(1) - 1); 2275 nblks = dbtoc(nblks); 2276 2277 /* 2278 * If we go beyond this, we get overflows in the radix 2279 * tree bitmap code. 2280 */ 2281 mblocks = 0x40000000 / BLIST_META_RADIX; 2282 if (nblks > mblocks) { 2283 printf( 2284 "WARNING: reducing swap size to maximum of %luMB per unit\n", 2285 mblocks / 1024 / 1024 * PAGE_SIZE); 2286 nblks = mblocks; 2287 } 2288 2289 sp = malloc(sizeof *sp, M_VMPGDATA, M_WAITOK | M_ZERO); 2290 sp->sw_vp = vp; 2291 sp->sw_id = id; 2292 sp->sw_dev = dev; 2293 sp->sw_nblks = nblks; 2294 sp->sw_used = 0; 2295 sp->sw_strategy = strategy; 2296 sp->sw_close = close; 2297 sp->sw_flags = flags; 2298 2299 sp->sw_blist = blist_create(nblks, M_WAITOK); 2300 /* 2301 * Do not free the first two block in order to avoid overwriting 2302 * any bsd label at the front of the partition 2303 */ 2304 blist_free(sp->sw_blist, 2, nblks - 2); 2305 2306 dvbase = 0; 2307 mtx_lock(&sw_dev_mtx); 2308 TAILQ_FOREACH(tsp, &swtailq, sw_list) { 2309 if (tsp->sw_end >= dvbase) { 2310 /* 2311 * We put one uncovered page between the devices 2312 * in order to definitively prevent any cross-device 2313 * I/O requests 2314 */ 2315 dvbase = tsp->sw_end + 1; 2316 } 2317 } 2318 sp->sw_first = dvbase; 2319 sp->sw_end = dvbase + nblks; 2320 TAILQ_INSERT_TAIL(&swtailq, sp, sw_list); 2321 nswapdev++; 2322 swap_pager_avail += nblks - 2; 2323 swap_total += nblks; 2324 swapon_check_swzone(); 2325 swp_sizecheck(); 2326 mtx_unlock(&sw_dev_mtx); 2327 EVENTHANDLER_INVOKE(swapon, sp); 2328 } 2329 2330 /* 2331 * SYSCALL: swapoff(devname) 2332 * 2333 * Disable swapping on the given device. 2334 * 2335 * XXX: Badly designed system call: it should use a device index 2336 * rather than filename as specification. We keep sw_vp around 2337 * only to make this work. 2338 */ 2339 #ifndef _SYS_SYSPROTO_H_ 2340 struct swapoff_args { 2341 char *name; 2342 }; 2343 #endif 2344 2345 /* 2346 * MPSAFE 2347 */ 2348 /* ARGSUSED */ 2349 int 2350 sys_swapoff(struct thread *td, struct swapoff_args *uap) 2351 { 2352 struct vnode *vp; 2353 struct nameidata nd; 2354 struct swdevt *sp; 2355 int error; 2356 2357 error = priv_check(td, PRIV_SWAPOFF); 2358 if (error) 2359 return (error); 2360 2361 sx_xlock(&swdev_syscall_lock); 2362 2363 NDINIT(&nd, LOOKUP, FOLLOW | AUDITVNODE1, UIO_USERSPACE, uap->name, 2364 td); 2365 error = namei(&nd); 2366 if (error) 2367 goto done; 2368 NDFREE(&nd, NDF_ONLY_PNBUF); 2369 vp = nd.ni_vp; 2370 2371 mtx_lock(&sw_dev_mtx); 2372 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2373 if (sp->sw_vp == vp) 2374 break; 2375 } 2376 mtx_unlock(&sw_dev_mtx); 2377 if (sp == NULL) { 2378 error = EINVAL; 2379 goto done; 2380 } 2381 error = swapoff_one(sp, td->td_ucred); 2382 done: 2383 sx_xunlock(&swdev_syscall_lock); 2384 return (error); 2385 } 2386 2387 static int 2388 swapoff_one(struct swdevt *sp, struct ucred *cred) 2389 { 2390 u_long nblks; 2391 #ifdef MAC 2392 int error; 2393 #endif 2394 2395 sx_assert(&swdev_syscall_lock, SA_XLOCKED); 2396 #ifdef MAC 2397 (void) vn_lock(sp->sw_vp, LK_EXCLUSIVE | LK_RETRY); 2398 error = mac_system_check_swapoff(cred, sp->sw_vp); 2399 (void) VOP_UNLOCK(sp->sw_vp, 0); 2400 if (error != 0) 2401 return (error); 2402 #endif 2403 nblks = sp->sw_nblks; 2404 2405 /* 2406 * We can turn off this swap device safely only if the 2407 * available virtual memory in the system will fit the amount 2408 * of data we will have to page back in, plus an epsilon so 2409 * the system doesn't become critically low on swap space. 2410 */ 2411 if (vm_free_count() + swap_pager_avail < nblks + nswap_lowat) 2412 return (ENOMEM); 2413 2414 /* 2415 * Prevent further allocations on this device. 2416 */ 2417 mtx_lock(&sw_dev_mtx); 2418 sp->sw_flags |= SW_CLOSING; 2419 swap_pager_avail -= blist_fill(sp->sw_blist, 0, nblks); 2420 swap_total -= nblks; 2421 mtx_unlock(&sw_dev_mtx); 2422 2423 /* 2424 * Page in the contents of the device and close it. 2425 */ 2426 swap_pager_swapoff(sp); 2427 2428 sp->sw_close(curthread, sp); 2429 mtx_lock(&sw_dev_mtx); 2430 sp->sw_id = NULL; 2431 TAILQ_REMOVE(&swtailq, sp, sw_list); 2432 nswapdev--; 2433 if (nswapdev == 0) { 2434 swap_pager_full = 2; 2435 swap_pager_almost_full = 1; 2436 } 2437 if (swdevhd == sp) 2438 swdevhd = NULL; 2439 mtx_unlock(&sw_dev_mtx); 2440 blist_destroy(sp->sw_blist); 2441 free(sp, M_VMPGDATA); 2442 return (0); 2443 } 2444 2445 void 2446 swapoff_all(void) 2447 { 2448 struct swdevt *sp, *spt; 2449 const char *devname; 2450 int error; 2451 2452 sx_xlock(&swdev_syscall_lock); 2453 2454 mtx_lock(&sw_dev_mtx); 2455 TAILQ_FOREACH_SAFE(sp, &swtailq, sw_list, spt) { 2456 mtx_unlock(&sw_dev_mtx); 2457 if (vn_isdisk(sp->sw_vp, NULL)) 2458 devname = devtoname(sp->sw_vp->v_rdev); 2459 else 2460 devname = "[file]"; 2461 error = swapoff_one(sp, thread0.td_ucred); 2462 if (error != 0) { 2463 printf("Cannot remove swap device %s (error=%d), " 2464 "skipping.\n", devname, error); 2465 } else if (bootverbose) { 2466 printf("Swap device %s removed.\n", devname); 2467 } 2468 mtx_lock(&sw_dev_mtx); 2469 } 2470 mtx_unlock(&sw_dev_mtx); 2471 2472 sx_xunlock(&swdev_syscall_lock); 2473 } 2474 2475 void 2476 swap_pager_status(int *total, int *used) 2477 { 2478 struct swdevt *sp; 2479 2480 *total = 0; 2481 *used = 0; 2482 mtx_lock(&sw_dev_mtx); 2483 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2484 *total += sp->sw_nblks; 2485 *used += sp->sw_used; 2486 } 2487 mtx_unlock(&sw_dev_mtx); 2488 } 2489 2490 int 2491 swap_dev_info(int name, struct xswdev *xs, char *devname, size_t len) 2492 { 2493 struct swdevt *sp; 2494 const char *tmp_devname; 2495 int error, n; 2496 2497 n = 0; 2498 error = ENOENT; 2499 mtx_lock(&sw_dev_mtx); 2500 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2501 if (n != name) { 2502 n++; 2503 continue; 2504 } 2505 xs->xsw_version = XSWDEV_VERSION; 2506 xs->xsw_dev = sp->sw_dev; 2507 xs->xsw_flags = sp->sw_flags; 2508 xs->xsw_nblks = sp->sw_nblks; 2509 xs->xsw_used = sp->sw_used; 2510 if (devname != NULL) { 2511 if (vn_isdisk(sp->sw_vp, NULL)) 2512 tmp_devname = devtoname(sp->sw_vp->v_rdev); 2513 else 2514 tmp_devname = "[file]"; 2515 strncpy(devname, tmp_devname, len); 2516 } 2517 error = 0; 2518 break; 2519 } 2520 mtx_unlock(&sw_dev_mtx); 2521 return (error); 2522 } 2523 2524 #if defined(COMPAT_FREEBSD11) 2525 #define XSWDEV_VERSION_11 1 2526 struct xswdev11 { 2527 u_int xsw_version; 2528 uint32_t xsw_dev; 2529 int xsw_flags; 2530 int xsw_nblks; 2531 int xsw_used; 2532 }; 2533 #endif 2534 2535 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2536 struct xswdev32 { 2537 u_int xsw_version; 2538 u_int xsw_dev1, xsw_dev2; 2539 int xsw_flags; 2540 int xsw_nblks; 2541 int xsw_used; 2542 }; 2543 #endif 2544 2545 static int 2546 sysctl_vm_swap_info(SYSCTL_HANDLER_ARGS) 2547 { 2548 struct xswdev xs; 2549 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2550 struct xswdev32 xs32; 2551 #endif 2552 #if defined(COMPAT_FREEBSD11) 2553 struct xswdev11 xs11; 2554 #endif 2555 int error; 2556 2557 if (arg2 != 1) /* name length */ 2558 return (EINVAL); 2559 error = swap_dev_info(*(int *)arg1, &xs, NULL, 0); 2560 if (error != 0) 2561 return (error); 2562 #if defined(__amd64__) && defined(COMPAT_FREEBSD32) 2563 if (req->oldlen == sizeof(xs32)) { 2564 xs32.xsw_version = XSWDEV_VERSION; 2565 xs32.xsw_dev1 = xs.xsw_dev; 2566 xs32.xsw_dev2 = xs.xsw_dev >> 32; 2567 xs32.xsw_flags = xs.xsw_flags; 2568 xs32.xsw_nblks = xs.xsw_nblks; 2569 xs32.xsw_used = xs.xsw_used; 2570 error = SYSCTL_OUT(req, &xs32, sizeof(xs32)); 2571 return (error); 2572 } 2573 #endif 2574 #if defined(COMPAT_FREEBSD11) 2575 if (req->oldlen == sizeof(xs11)) { 2576 xs11.xsw_version = XSWDEV_VERSION_11; 2577 xs11.xsw_dev = xs.xsw_dev; /* truncation */ 2578 xs11.xsw_flags = xs.xsw_flags; 2579 xs11.xsw_nblks = xs.xsw_nblks; 2580 xs11.xsw_used = xs.xsw_used; 2581 error = SYSCTL_OUT(req, &xs11, sizeof(xs11)); 2582 return (error); 2583 } 2584 #endif 2585 error = SYSCTL_OUT(req, &xs, sizeof(xs)); 2586 return (error); 2587 } 2588 2589 SYSCTL_INT(_vm, OID_AUTO, nswapdev, CTLFLAG_RD, &nswapdev, 0, 2590 "Number of swap devices"); 2591 SYSCTL_NODE(_vm, OID_AUTO, swap_info, CTLFLAG_RD | CTLFLAG_MPSAFE, 2592 sysctl_vm_swap_info, 2593 "Swap statistics by device"); 2594 2595 /* 2596 * Count the approximate swap usage in pages for a vmspace. The 2597 * shadowed or not yet copied on write swap blocks are not accounted. 2598 * The map must be locked. 2599 */ 2600 long 2601 vmspace_swap_count(struct vmspace *vmspace) 2602 { 2603 vm_map_t map; 2604 vm_map_entry_t cur; 2605 vm_object_t object; 2606 struct swblk *sb; 2607 vm_pindex_t e, pi; 2608 long count; 2609 int i; 2610 2611 map = &vmspace->vm_map; 2612 count = 0; 2613 2614 for (cur = map->header.next; cur != &map->header; cur = cur->next) { 2615 if ((cur->eflags & MAP_ENTRY_IS_SUB_MAP) != 0) 2616 continue; 2617 object = cur->object.vm_object; 2618 if (object == NULL || object->type != OBJT_SWAP) 2619 continue; 2620 VM_OBJECT_RLOCK(object); 2621 if (object->type != OBJT_SWAP) 2622 goto unlock; 2623 pi = OFF_TO_IDX(cur->offset); 2624 e = pi + OFF_TO_IDX(cur->end - cur->start); 2625 for (;; pi = sb->p + SWAP_META_PAGES) { 2626 sb = SWAP_PCTRIE_LOOKUP_GE( 2627 &object->un_pager.swp.swp_blks, pi); 2628 if (sb == NULL || sb->p >= e) 2629 break; 2630 for (i = 0; i < SWAP_META_PAGES; i++) { 2631 if (sb->p + i < e && 2632 sb->d[i] != SWAPBLK_NONE) 2633 count++; 2634 } 2635 } 2636 unlock: 2637 VM_OBJECT_RUNLOCK(object); 2638 } 2639 return (count); 2640 } 2641 2642 /* 2643 * GEOM backend 2644 * 2645 * Swapping onto disk devices. 2646 * 2647 */ 2648 2649 static g_orphan_t swapgeom_orphan; 2650 2651 static struct g_class g_swap_class = { 2652 .name = "SWAP", 2653 .version = G_VERSION, 2654 .orphan = swapgeom_orphan, 2655 }; 2656 2657 DECLARE_GEOM_CLASS(g_swap_class, g_class); 2658 2659 2660 static void 2661 swapgeom_close_ev(void *arg, int flags) 2662 { 2663 struct g_consumer *cp; 2664 2665 cp = arg; 2666 g_access(cp, -1, -1, 0); 2667 g_detach(cp); 2668 g_destroy_consumer(cp); 2669 } 2670 2671 /* 2672 * Add a reference to the g_consumer for an inflight transaction. 2673 */ 2674 static void 2675 swapgeom_acquire(struct g_consumer *cp) 2676 { 2677 2678 mtx_assert(&sw_dev_mtx, MA_OWNED); 2679 cp->index++; 2680 } 2681 2682 /* 2683 * Remove a reference from the g_consumer. Post a close event if all 2684 * references go away, since the function might be called from the 2685 * biodone context. 2686 */ 2687 static void 2688 swapgeom_release(struct g_consumer *cp, struct swdevt *sp) 2689 { 2690 2691 mtx_assert(&sw_dev_mtx, MA_OWNED); 2692 cp->index--; 2693 if (cp->index == 0) { 2694 if (g_post_event(swapgeom_close_ev, cp, M_NOWAIT, NULL) == 0) 2695 sp->sw_id = NULL; 2696 } 2697 } 2698 2699 static void 2700 swapgeom_done(struct bio *bp2) 2701 { 2702 struct swdevt *sp; 2703 struct buf *bp; 2704 struct g_consumer *cp; 2705 2706 bp = bp2->bio_caller2; 2707 cp = bp2->bio_from; 2708 bp->b_ioflags = bp2->bio_flags; 2709 if (bp2->bio_error) 2710 bp->b_ioflags |= BIO_ERROR; 2711 bp->b_resid = bp->b_bcount - bp2->bio_completed; 2712 bp->b_error = bp2->bio_error; 2713 bp->b_caller1 = NULL; 2714 bufdone(bp); 2715 sp = bp2->bio_caller1; 2716 mtx_lock(&sw_dev_mtx); 2717 swapgeom_release(cp, sp); 2718 mtx_unlock(&sw_dev_mtx); 2719 g_destroy_bio(bp2); 2720 } 2721 2722 static void 2723 swapgeom_strategy(struct buf *bp, struct swdevt *sp) 2724 { 2725 struct bio *bio; 2726 struct g_consumer *cp; 2727 2728 mtx_lock(&sw_dev_mtx); 2729 cp = sp->sw_id; 2730 if (cp == NULL) { 2731 mtx_unlock(&sw_dev_mtx); 2732 bp->b_error = ENXIO; 2733 bp->b_ioflags |= BIO_ERROR; 2734 bufdone(bp); 2735 return; 2736 } 2737 swapgeom_acquire(cp); 2738 mtx_unlock(&sw_dev_mtx); 2739 if (bp->b_iocmd == BIO_WRITE) 2740 bio = g_new_bio(); 2741 else 2742 bio = g_alloc_bio(); 2743 if (bio == NULL) { 2744 mtx_lock(&sw_dev_mtx); 2745 swapgeom_release(cp, sp); 2746 mtx_unlock(&sw_dev_mtx); 2747 bp->b_error = ENOMEM; 2748 bp->b_ioflags |= BIO_ERROR; 2749 printf("swap_pager: cannot allocate bio\n"); 2750 bufdone(bp); 2751 return; 2752 } 2753 2754 bp->b_caller1 = bio; 2755 bio->bio_caller1 = sp; 2756 bio->bio_caller2 = bp; 2757 bio->bio_cmd = bp->b_iocmd; 2758 bio->bio_offset = (bp->b_blkno - sp->sw_first) * PAGE_SIZE; 2759 bio->bio_length = bp->b_bcount; 2760 bio->bio_done = swapgeom_done; 2761 if (!buf_mapped(bp)) { 2762 bio->bio_ma = bp->b_pages; 2763 bio->bio_data = unmapped_buf; 2764 bio->bio_ma_offset = (vm_offset_t)bp->b_offset & PAGE_MASK; 2765 bio->bio_ma_n = bp->b_npages; 2766 bio->bio_flags |= BIO_UNMAPPED; 2767 } else { 2768 bio->bio_data = bp->b_data; 2769 bio->bio_ma = NULL; 2770 } 2771 g_io_request(bio, cp); 2772 return; 2773 } 2774 2775 static void 2776 swapgeom_orphan(struct g_consumer *cp) 2777 { 2778 struct swdevt *sp; 2779 int destroy; 2780 2781 mtx_lock(&sw_dev_mtx); 2782 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2783 if (sp->sw_id == cp) { 2784 sp->sw_flags |= SW_CLOSING; 2785 break; 2786 } 2787 } 2788 /* 2789 * Drop reference we were created with. Do directly since we're in a 2790 * special context where we don't have to queue the call to 2791 * swapgeom_close_ev(). 2792 */ 2793 cp->index--; 2794 destroy = ((sp != NULL) && (cp->index == 0)); 2795 if (destroy) 2796 sp->sw_id = NULL; 2797 mtx_unlock(&sw_dev_mtx); 2798 if (destroy) 2799 swapgeom_close_ev(cp, 0); 2800 } 2801 2802 static void 2803 swapgeom_close(struct thread *td, struct swdevt *sw) 2804 { 2805 struct g_consumer *cp; 2806 2807 mtx_lock(&sw_dev_mtx); 2808 cp = sw->sw_id; 2809 sw->sw_id = NULL; 2810 mtx_unlock(&sw_dev_mtx); 2811 2812 /* 2813 * swapgeom_close() may be called from the biodone context, 2814 * where we cannot perform topology changes. Delegate the 2815 * work to the events thread. 2816 */ 2817 if (cp != NULL) 2818 g_waitfor_event(swapgeom_close_ev, cp, M_WAITOK, NULL); 2819 } 2820 2821 static int 2822 swapongeom_locked(struct cdev *dev, struct vnode *vp) 2823 { 2824 struct g_provider *pp; 2825 struct g_consumer *cp; 2826 static struct g_geom *gp; 2827 struct swdevt *sp; 2828 u_long nblks; 2829 int error; 2830 2831 pp = g_dev_getprovider(dev); 2832 if (pp == NULL) 2833 return (ENODEV); 2834 mtx_lock(&sw_dev_mtx); 2835 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2836 cp = sp->sw_id; 2837 if (cp != NULL && cp->provider == pp) { 2838 mtx_unlock(&sw_dev_mtx); 2839 return (EBUSY); 2840 } 2841 } 2842 mtx_unlock(&sw_dev_mtx); 2843 if (gp == NULL) 2844 gp = g_new_geomf(&g_swap_class, "swap"); 2845 cp = g_new_consumer(gp); 2846 cp->index = 1; /* Number of active I/Os, plus one for being active. */ 2847 cp->flags |= G_CF_DIRECT_SEND | G_CF_DIRECT_RECEIVE; 2848 g_attach(cp, pp); 2849 /* 2850 * XXX: Every time you think you can improve the margin for 2851 * footshooting, somebody depends on the ability to do so: 2852 * savecore(8) wants to write to our swapdev so we cannot 2853 * set an exclusive count :-( 2854 */ 2855 error = g_access(cp, 1, 1, 0); 2856 if (error != 0) { 2857 g_detach(cp); 2858 g_destroy_consumer(cp); 2859 return (error); 2860 } 2861 nblks = pp->mediasize / DEV_BSIZE; 2862 swaponsomething(vp, cp, nblks, swapgeom_strategy, 2863 swapgeom_close, dev2udev(dev), 2864 (pp->flags & G_PF_ACCEPT_UNMAPPED) != 0 ? SW_UNMAPPED : 0); 2865 return (0); 2866 } 2867 2868 static int 2869 swapongeom(struct vnode *vp) 2870 { 2871 int error; 2872 2873 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2874 if (vp->v_type != VCHR || (vp->v_iflag & VI_DOOMED) != 0) { 2875 error = ENOENT; 2876 } else { 2877 g_topology_lock(); 2878 error = swapongeom_locked(vp->v_rdev, vp); 2879 g_topology_unlock(); 2880 } 2881 VOP_UNLOCK(vp, 0); 2882 return (error); 2883 } 2884 2885 /* 2886 * VNODE backend 2887 * 2888 * This is used mainly for network filesystem (read: probably only tested 2889 * with NFS) swapfiles. 2890 * 2891 */ 2892 2893 static void 2894 swapdev_strategy(struct buf *bp, struct swdevt *sp) 2895 { 2896 struct vnode *vp2; 2897 2898 bp->b_blkno = ctodb(bp->b_blkno - sp->sw_first); 2899 2900 vp2 = sp->sw_id; 2901 vhold(vp2); 2902 if (bp->b_iocmd == BIO_WRITE) { 2903 if (bp->b_bufobj) 2904 bufobj_wdrop(bp->b_bufobj); 2905 bufobj_wref(&vp2->v_bufobj); 2906 } 2907 if (bp->b_bufobj != &vp2->v_bufobj) 2908 bp->b_bufobj = &vp2->v_bufobj; 2909 bp->b_vp = vp2; 2910 bp->b_iooffset = dbtob(bp->b_blkno); 2911 bstrategy(bp); 2912 return; 2913 } 2914 2915 static void 2916 swapdev_close(struct thread *td, struct swdevt *sp) 2917 { 2918 2919 VOP_CLOSE(sp->sw_vp, FREAD | FWRITE, td->td_ucred, td); 2920 vrele(sp->sw_vp); 2921 } 2922 2923 2924 static int 2925 swaponvp(struct thread *td, struct vnode *vp, u_long nblks) 2926 { 2927 struct swdevt *sp; 2928 int error; 2929 2930 if (nblks == 0) 2931 return (ENXIO); 2932 mtx_lock(&sw_dev_mtx); 2933 TAILQ_FOREACH(sp, &swtailq, sw_list) { 2934 if (sp->sw_id == vp) { 2935 mtx_unlock(&sw_dev_mtx); 2936 return (EBUSY); 2937 } 2938 } 2939 mtx_unlock(&sw_dev_mtx); 2940 2941 (void) vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 2942 #ifdef MAC 2943 error = mac_system_check_swapon(td->td_ucred, vp); 2944 if (error == 0) 2945 #endif 2946 error = VOP_OPEN(vp, FREAD | FWRITE, td->td_ucred, td, NULL); 2947 (void) VOP_UNLOCK(vp, 0); 2948 if (error) 2949 return (error); 2950 2951 swaponsomething(vp, vp, nblks, swapdev_strategy, swapdev_close, 2952 NODEV, 0); 2953 return (0); 2954 } 2955 2956 static int 2957 sysctl_swap_async_max(SYSCTL_HANDLER_ARGS) 2958 { 2959 int error, new, n; 2960 2961 new = nsw_wcount_async_max; 2962 error = sysctl_handle_int(oidp, &new, 0, req); 2963 if (error != 0 || req->newptr == NULL) 2964 return (error); 2965 2966 if (new > nswbuf / 2 || new < 1) 2967 return (EINVAL); 2968 2969 mtx_lock(&swbuf_mtx); 2970 while (nsw_wcount_async_max != new) { 2971 /* 2972 * Adjust difference. If the current async count is too low, 2973 * we will need to sqeeze our update slowly in. Sleep with a 2974 * higher priority than getpbuf() to finish faster. 2975 */ 2976 n = new - nsw_wcount_async_max; 2977 if (nsw_wcount_async + n >= 0) { 2978 nsw_wcount_async += n; 2979 nsw_wcount_async_max += n; 2980 wakeup(&nsw_wcount_async); 2981 } else { 2982 nsw_wcount_async_max -= nsw_wcount_async; 2983 nsw_wcount_async = 0; 2984 msleep(&nsw_wcount_async, &swbuf_mtx, PSWP, 2985 "swpsysctl", 0); 2986 } 2987 } 2988 mtx_unlock(&swbuf_mtx); 2989 2990 return (0); 2991 } 2992