1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1989, 1993 5 * The Regents of the University of California. All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the University nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * @(#)ffs_subr.c 8.5 (Berkeley) 3/21/95 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 39 #ifndef _KERNEL 40 #include <stdio.h> 41 #include <string.h> 42 #include <stdlib.h> 43 #include <time.h> 44 #include <sys/errno.h> 45 #include <ufs/ufs/dinode.h> 46 #include <ufs/ffs/fs.h> 47 48 uint32_t calculate_crc32c(uint32_t, const void *, size_t); 49 uint32_t ffs_calc_sbhash(struct fs *); 50 struct malloc_type; 51 #define UFS_MALLOC(size, type, flags) malloc(size) 52 #define UFS_FREE(ptr, type) free(ptr) 53 54 #else /* _KERNEL */ 55 #include <sys/systm.h> 56 #include <sys/gsb_crc32.h> 57 #include <sys/lock.h> 58 #include <sys/malloc.h> 59 #include <sys/mount.h> 60 #include <sys/vnode.h> 61 #include <sys/bio.h> 62 #include <sys/buf.h> 63 #include <sys/ucred.h> 64 65 #include <ufs/ufs/quota.h> 66 #include <ufs/ufs/inode.h> 67 #include <ufs/ufs/extattr.h> 68 #include <ufs/ufs/ufsmount.h> 69 #include <ufs/ufs/ufs_extern.h> 70 #include <ufs/ffs/ffs_extern.h> 71 #include <ufs/ffs/fs.h> 72 73 #define UFS_MALLOC(size, type, flags) malloc(size, type, flags) 74 #define UFS_FREE(ptr, type) free(ptr, type) 75 76 #endif /* _KERNEL */ 77 78 /* 79 * Verify an inode check-hash. 80 */ 81 int 82 ffs_verify_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 83 { 84 uint32_t ckhash, save_ckhash; 85 86 /* 87 * Return success if unallocated or we are not doing inode check-hash. 88 */ 89 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 90 return (0); 91 /* 92 * Exclude di_ckhash from the crc32 calculation, e.g., always use 93 * a check-hash value of zero when calculating the check-hash. 94 */ 95 save_ckhash = dip->di_ckhash; 96 dip->di_ckhash = 0; 97 ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 98 dip->di_ckhash = save_ckhash; 99 if (save_ckhash == ckhash) 100 return (0); 101 return (EINVAL); 102 } 103 104 /* 105 * Update an inode check-hash. 106 */ 107 void 108 ffs_update_dinode_ckhash(struct fs *fs, struct ufs2_dinode *dip) 109 { 110 111 if (dip->di_mode == 0 || (fs->fs_metackhash & CK_INODE) == 0) 112 return; 113 /* 114 * Exclude old di_ckhash from the crc32 calculation, e.g., always use 115 * a check-hash value of zero when calculating the new check-hash. 116 */ 117 dip->di_ckhash = 0; 118 dip->di_ckhash = calculate_crc32c(~0L, (void *)dip, sizeof(*dip)); 119 } 120 121 /* 122 * These are the low-level functions that actually read and write 123 * the superblock and its associated data. 124 */ 125 static off_t sblock_try[] = SBLOCKSEARCH; 126 static int readsuper(void *, struct fs **, off_t, int, int, 127 int (*)(void *, off_t, void **, int)); 128 129 /* 130 * Read a superblock from the devfd device. 131 * 132 * If an alternate superblock is specified, it is read. Otherwise the 133 * set of locations given in the SBLOCKSEARCH list is searched for a 134 * superblock. Memory is allocated for the superblock by the readfunc and 135 * is returned. If filltype is non-NULL, additional memory is allocated 136 * of type filltype and filled in with the superblock summary information. 137 * All memory is freed when any error is returned. 138 * 139 * If a superblock is found, zero is returned. Otherwise one of the 140 * following error values is returned: 141 * EIO: non-existent or truncated superblock. 142 * EIO: error reading summary information. 143 * ENOENT: no usable known superblock found. 144 * ENOSPC: failed to allocate space for the superblock. 145 * EINVAL: The previous newfs operation on this volume did not complete. 146 * The administrator must complete newfs before using this volume. 147 */ 148 int 149 ffs_sbget(void *devfd, struct fs **fsp, off_t altsblock, 150 struct malloc_type *filltype, 151 int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 152 { 153 struct fs *fs; 154 struct fs_summary_info *fs_si; 155 int i, error, size, blks; 156 uint8_t *space; 157 int32_t *lp; 158 char *buf; 159 160 fs = NULL; 161 *fsp = NULL; 162 if (altsblock >= 0) { 163 if ((error = readsuper(devfd, &fs, altsblock, 1, 0, 164 readfunc)) != 0) { 165 if (fs != NULL) 166 UFS_FREE(fs, filltype); 167 return (error); 168 } 169 } else { 170 for (i = 0; sblock_try[i] != -1; i++) { 171 if ((error = readsuper(devfd, &fs, sblock_try[i], 0, 172 altsblock, readfunc)) == 0) 173 break; 174 if (fs != NULL) { 175 UFS_FREE(fs, filltype); 176 fs = NULL; 177 } 178 if (error == ENOENT) 179 continue; 180 return (error); 181 } 182 if (sblock_try[i] == -1) 183 return (ENOENT); 184 } 185 /* 186 * Read in the superblock summary information. 187 */ 188 size = fs->fs_cssize; 189 blks = howmany(size, fs->fs_fsize); 190 if (fs->fs_contigsumsize > 0) 191 size += fs->fs_ncg * sizeof(int32_t); 192 size += fs->fs_ncg * sizeof(u_int8_t); 193 /* When running in libufs or libsa, UFS_MALLOC may fail */ 194 if ((fs_si = UFS_MALLOC(sizeof(*fs_si), filltype, M_WAITOK)) == NULL) { 195 UFS_FREE(fs, filltype); 196 return (ENOSPC); 197 } 198 bzero(fs_si, sizeof(*fs_si)); 199 fs->fs_si = fs_si; 200 if ((space = UFS_MALLOC(size, filltype, M_WAITOK)) == NULL) { 201 UFS_FREE(fs->fs_si, filltype); 202 UFS_FREE(fs, filltype); 203 return (ENOSPC); 204 } 205 fs->fs_csp = (struct csum *)space; 206 for (i = 0; i < blks; i += fs->fs_frag) { 207 size = fs->fs_bsize; 208 if (i + fs->fs_frag > blks) 209 size = (blks - i) * fs->fs_fsize; 210 buf = NULL; 211 error = (*readfunc)(devfd, 212 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), (void **)&buf, size); 213 if (error) { 214 if (buf != NULL) 215 UFS_FREE(buf, filltype); 216 UFS_FREE(fs->fs_csp, filltype); 217 UFS_FREE(fs->fs_si, filltype); 218 UFS_FREE(fs, filltype); 219 return (error); 220 } 221 memcpy(space, buf, size); 222 UFS_FREE(buf, filltype); 223 space += size; 224 } 225 if (fs->fs_contigsumsize > 0) { 226 fs->fs_maxcluster = lp = (int32_t *)space; 227 for (i = 0; i < fs->fs_ncg; i++) 228 *lp++ = fs->fs_contigsumsize; 229 space = (uint8_t *)lp; 230 } 231 size = fs->fs_ncg * sizeof(u_int8_t); 232 fs->fs_contigdirs = (u_int8_t *)space; 233 bzero(fs->fs_contigdirs, size); 234 *fsp = fs; 235 return (0); 236 } 237 238 /* 239 * Try to read a superblock from the location specified by sblockloc. 240 * Return zero on success or an errno on failure. 241 */ 242 static int 243 readsuper(void *devfd, struct fs **fsp, off_t sblockloc, int isaltsblk, 244 int chkhash, int (*readfunc)(void *devfd, off_t loc, void **bufp, int size)) 245 { 246 struct fs *fs; 247 int error, res; 248 uint32_t ckhash; 249 250 error = (*readfunc)(devfd, sblockloc, (void **)fsp, SBLOCKSIZE); 251 if (error != 0) 252 return (error); 253 fs = *fsp; 254 if (fs->fs_magic == FS_BAD_MAGIC) 255 return (EINVAL); 256 if (((fs->fs_magic == FS_UFS1_MAGIC && (isaltsblk || 257 sblockloc <= SBLOCK_UFS1)) || 258 (fs->fs_magic == FS_UFS2_MAGIC && (isaltsblk || 259 sblockloc == fs->fs_sblockloc))) && 260 fs->fs_ncg >= 1 && 261 fs->fs_bsize >= MINBSIZE && 262 fs->fs_bsize <= MAXBSIZE && 263 fs->fs_bsize >= roundup(sizeof(struct fs), DEV_BSIZE) && 264 fs->fs_sbsize <= SBLOCKSIZE) { 265 /* 266 * If the filesystem has been run on a kernel without 267 * metadata check hashes, disable them. 268 */ 269 if ((fs->fs_flags & FS_METACKHASH) == 0) 270 fs->fs_metackhash = 0; 271 /* 272 * Clear any check-hashes that are not maintained 273 * by this kernel. Also clear any unsupported flags. 274 */ 275 fs->fs_metackhash &= CK_SUPPORTED; 276 fs->fs_flags &= FS_SUPPORTED; 277 if (fs->fs_ckhash != (ckhash = ffs_calc_sbhash(fs))) { 278 if (chkhash == STDSB_NOMSG) 279 return (EINTEGRITY); 280 if (chkhash == STDSB_NOHASHFAIL_NOMSG) { 281 fs->fs_flags |= FS_NEEDSFSCK; 282 fs->fs_fmod = 1; 283 return (0); 284 } 285 #ifdef _KERNEL 286 res = uprintf("Superblock check-hash failed: recorded " 287 "check-hash 0x%x != computed check-hash 0x%x%s\n", 288 fs->fs_ckhash, ckhash, 289 chkhash == STDSB_NOHASHFAIL ? " (Ignored)" : ""); 290 #else 291 res = 0; 292 #endif 293 /* 294 * Print check-hash failure if no controlling terminal 295 * in kernel or always if in user-mode (libufs). 296 */ 297 if (res == 0) 298 printf("Superblock check-hash failed: recorded " 299 "check-hash 0x%x != computed check-hash " 300 "0x%x%s\n", fs->fs_ckhash, ckhash, 301 chkhash == STDSB_NOHASHFAIL ? 302 " (Ignored)" : ""); 303 if (chkhash == STDSB) 304 return (EINTEGRITY); 305 /* chkhash == STDSB_NOHASHFAIL */ 306 fs->fs_flags |= FS_NEEDSFSCK; 307 fs->fs_fmod = 1; 308 return (0); 309 } 310 /* Have to set for old filesystems that predate this field */ 311 fs->fs_sblockactualloc = sblockloc; 312 /* Not yet any summary information */ 313 fs->fs_si = NULL; 314 return (0); 315 } 316 return (ENOENT); 317 } 318 319 /* 320 * Write a superblock to the devfd device from the memory pointed to by fs. 321 * Write out the superblock summary information if it is present. 322 * 323 * If the write is successful, zero is returned. Otherwise one of the 324 * following error values is returned: 325 * EIO: failed to write superblock. 326 * EIO: failed to write superblock summary information. 327 */ 328 int 329 ffs_sbput(void *devfd, struct fs *fs, off_t loc, 330 int (*writefunc)(void *devfd, off_t loc, void *buf, int size)) 331 { 332 int i, error, blks, size; 333 uint8_t *space; 334 335 /* 336 * If there is summary information, write it first, so if there 337 * is an error, the superblock will not be marked as clean. 338 */ 339 if (fs->fs_si != NULL && fs->fs_csp != NULL) { 340 blks = howmany(fs->fs_cssize, fs->fs_fsize); 341 space = (uint8_t *)fs->fs_csp; 342 for (i = 0; i < blks; i += fs->fs_frag) { 343 size = fs->fs_bsize; 344 if (i + fs->fs_frag > blks) 345 size = (blks - i) * fs->fs_fsize; 346 if ((error = (*writefunc)(devfd, 347 dbtob(fsbtodb(fs, fs->fs_csaddr + i)), 348 space, size)) != 0) 349 return (error); 350 space += size; 351 } 352 } 353 fs->fs_fmod = 0; 354 #ifndef _KERNEL 355 { 356 struct fs_summary_info *fs_si; 357 358 fs->fs_time = time(NULL); 359 /* Clear the pointers for the duration of writing. */ 360 fs_si = fs->fs_si; 361 fs->fs_si = NULL; 362 fs->fs_ckhash = ffs_calc_sbhash(fs); 363 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 364 fs->fs_si = fs_si; 365 } 366 #else /* _KERNEL */ 367 fs->fs_time = time_second; 368 fs->fs_ckhash = ffs_calc_sbhash(fs); 369 error = (*writefunc)(devfd, loc, fs, fs->fs_sbsize); 370 #endif /* _KERNEL */ 371 return (error); 372 } 373 374 /* 375 * Calculate the check-hash for a superblock. 376 */ 377 uint32_t 378 ffs_calc_sbhash(struct fs *fs) 379 { 380 uint32_t ckhash, save_ckhash; 381 382 /* 383 * A filesystem that was using a superblock ckhash may be moved 384 * to an older kernel that does not support ckhashes. The 385 * older kernel will clear the FS_METACKHASH flag indicating 386 * that it does not update hashes. When the disk is moved back 387 * to a kernel capable of ckhashes it disables them on mount: 388 * 389 * if ((fs->fs_flags & FS_METACKHASH) == 0) 390 * fs->fs_metackhash = 0; 391 * 392 * This leaves (fs->fs_metackhash & CK_SUPERBLOCK) == 0) with an 393 * old stale value in the fs->fs_ckhash field. Thus the need to 394 * just accept what is there. 395 */ 396 if ((fs->fs_metackhash & CK_SUPERBLOCK) == 0) 397 return (fs->fs_ckhash); 398 399 save_ckhash = fs->fs_ckhash; 400 fs->fs_ckhash = 0; 401 /* 402 * If newly read from disk, the caller is responsible for 403 * verifying that fs->fs_sbsize <= SBLOCKSIZE. 404 */ 405 ckhash = calculate_crc32c(~0L, (void *)fs, fs->fs_sbsize); 406 fs->fs_ckhash = save_ckhash; 407 return (ckhash); 408 } 409 410 /* 411 * Update the frsum fields to reflect addition or deletion 412 * of some frags. 413 */ 414 void 415 ffs_fragacct(struct fs *fs, int fragmap, int32_t fraglist[], int cnt) 416 { 417 int inblk; 418 int field, subfield; 419 int siz, pos; 420 421 inblk = (int)(fragtbl[fs->fs_frag][fragmap]) << 1; 422 fragmap <<= 1; 423 for (siz = 1; siz < fs->fs_frag; siz++) { 424 if ((inblk & (1 << (siz + (fs->fs_frag % NBBY)))) == 0) 425 continue; 426 field = around[siz]; 427 subfield = inside[siz]; 428 for (pos = siz; pos <= fs->fs_frag; pos++) { 429 if ((fragmap & field) == subfield) { 430 fraglist[siz] += cnt; 431 pos += siz; 432 field <<= siz; 433 subfield <<= siz; 434 } 435 field <<= 1; 436 subfield <<= 1; 437 } 438 } 439 } 440 441 /* 442 * block operations 443 * 444 * check if a block is available 445 */ 446 int 447 ffs_isblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 448 { 449 unsigned char mask; 450 451 switch ((int)fs->fs_frag) { 452 case 8: 453 return (cp[h] == 0xff); 454 case 4: 455 mask = 0x0f << ((h & 0x1) << 2); 456 return ((cp[h >> 1] & mask) == mask); 457 case 2: 458 mask = 0x03 << ((h & 0x3) << 1); 459 return ((cp[h >> 2] & mask) == mask); 460 case 1: 461 mask = 0x01 << (h & 0x7); 462 return ((cp[h >> 3] & mask) == mask); 463 default: 464 #ifdef _KERNEL 465 panic("ffs_isblock"); 466 #endif 467 break; 468 } 469 return (0); 470 } 471 472 /* 473 * check if a block is free 474 */ 475 int 476 ffs_isfreeblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 477 { 478 479 switch ((int)fs->fs_frag) { 480 case 8: 481 return (cp[h] == 0); 482 case 4: 483 return ((cp[h >> 1] & (0x0f << ((h & 0x1) << 2))) == 0); 484 case 2: 485 return ((cp[h >> 2] & (0x03 << ((h & 0x3) << 1))) == 0); 486 case 1: 487 return ((cp[h >> 3] & (0x01 << (h & 0x7))) == 0); 488 default: 489 #ifdef _KERNEL 490 panic("ffs_isfreeblock"); 491 #endif 492 break; 493 } 494 return (0); 495 } 496 497 /* 498 * take a block out of the map 499 */ 500 void 501 ffs_clrblock(struct fs *fs, u_char *cp, ufs1_daddr_t h) 502 { 503 504 switch ((int)fs->fs_frag) { 505 case 8: 506 cp[h] = 0; 507 return; 508 case 4: 509 cp[h >> 1] &= ~(0x0f << ((h & 0x1) << 2)); 510 return; 511 case 2: 512 cp[h >> 2] &= ~(0x03 << ((h & 0x3) << 1)); 513 return; 514 case 1: 515 cp[h >> 3] &= ~(0x01 << (h & 0x7)); 516 return; 517 default: 518 #ifdef _KERNEL 519 panic("ffs_clrblock"); 520 #endif 521 break; 522 } 523 } 524 525 /* 526 * put a block into the map 527 */ 528 void 529 ffs_setblock(struct fs *fs, unsigned char *cp, ufs1_daddr_t h) 530 { 531 532 switch ((int)fs->fs_frag) { 533 case 8: 534 cp[h] = 0xff; 535 return; 536 case 4: 537 cp[h >> 1] |= (0x0f << ((h & 0x1) << 2)); 538 return; 539 case 2: 540 cp[h >> 2] |= (0x03 << ((h & 0x3) << 1)); 541 return; 542 case 1: 543 cp[h >> 3] |= (0x01 << (h & 0x7)); 544 return; 545 default: 546 #ifdef _KERNEL 547 panic("ffs_setblock"); 548 #endif 549 break; 550 } 551 } 552 553 /* 554 * Update the cluster map because of an allocation or free. 555 * 556 * Cnt == 1 means free; cnt == -1 means allocating. 557 */ 558 void 559 ffs_clusteracct(struct fs *fs, struct cg *cgp, ufs1_daddr_t blkno, int cnt) 560 { 561 int32_t *sump; 562 int32_t *lp; 563 u_char *freemapp, *mapp; 564 int i, start, end, forw, back, map; 565 u_int bit; 566 567 if (fs->fs_contigsumsize <= 0) 568 return; 569 freemapp = cg_clustersfree(cgp); 570 sump = cg_clustersum(cgp); 571 /* 572 * Allocate or clear the actual block. 573 */ 574 if (cnt > 0) 575 setbit(freemapp, blkno); 576 else 577 clrbit(freemapp, blkno); 578 /* 579 * Find the size of the cluster going forward. 580 */ 581 start = blkno + 1; 582 end = start + fs->fs_contigsumsize; 583 if (end >= cgp->cg_nclusterblks) 584 end = cgp->cg_nclusterblks; 585 mapp = &freemapp[start / NBBY]; 586 map = *mapp++; 587 bit = 1U << (start % NBBY); 588 for (i = start; i < end; i++) { 589 if ((map & bit) == 0) 590 break; 591 if ((i & (NBBY - 1)) != (NBBY - 1)) { 592 bit <<= 1; 593 } else { 594 map = *mapp++; 595 bit = 1; 596 } 597 } 598 forw = i - start; 599 /* 600 * Find the size of the cluster going backward. 601 */ 602 start = blkno - 1; 603 end = start - fs->fs_contigsumsize; 604 if (end < 0) 605 end = -1; 606 mapp = &freemapp[start / NBBY]; 607 map = *mapp--; 608 bit = 1U << (start % NBBY); 609 for (i = start; i > end; i--) { 610 if ((map & bit) == 0) 611 break; 612 if ((i & (NBBY - 1)) != 0) { 613 bit >>= 1; 614 } else { 615 map = *mapp--; 616 bit = 1U << (NBBY - 1); 617 } 618 } 619 back = start - i; 620 /* 621 * Account for old cluster and the possibly new forward and 622 * back clusters. 623 */ 624 i = back + forw + 1; 625 if (i > fs->fs_contigsumsize) 626 i = fs->fs_contigsumsize; 627 sump[i] += cnt; 628 if (back > 0) 629 sump[back] -= cnt; 630 if (forw > 0) 631 sump[forw] -= cnt; 632 /* 633 * Update cluster summary information. 634 */ 635 lp = &sump[fs->fs_contigsumsize]; 636 for (i = fs->fs_contigsumsize; i > 0; i--) 637 if (*lp-- > 0) 638 break; 639 fs->fs_maxcluster[cgp->cg_cgx] = i; 640 } 641