1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp, cnp) 625 struct vnode *dvp; 626 struct vnode *vp; 627 struct componentname *cnp; 628 { 629 630 panic("softdep_prelink called"); 631 } 632 633 #else 634 635 FEATURE(softupdates, "FFS soft-updates support"); 636 637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 638 "soft updates stats"); 639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 640 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 641 "total dependencies allocated"); 642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 643 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 644 "high use dependencies allocated"); 645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 646 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 647 "current dependencies allocated"); 648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 649 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 650 "current dependencies written"); 651 652 unsigned long dep_current[D_LAST + 1]; 653 unsigned long dep_highuse[D_LAST + 1]; 654 unsigned long dep_total[D_LAST + 1]; 655 unsigned long dep_write[D_LAST + 1]; 656 657 #define SOFTDEP_TYPE(type, str, long) \ 658 static MALLOC_DEFINE(M_ ## type, #str, long); \ 659 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 660 &dep_total[D_ ## type], 0, ""); \ 661 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 662 &dep_current[D_ ## type], 0, ""); \ 663 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 664 &dep_highuse[D_ ## type], 0, ""); \ 665 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 666 &dep_write[D_ ## type], 0, ""); 667 668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 671 "Block or frag allocated from cyl group map"); 672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 696 697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 698 699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 702 703 #define M_SOFTDEP_FLAGS (M_WAITOK) 704 705 /* 706 * translate from workitem type to memory type 707 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 708 */ 709 static struct malloc_type *memtype[] = { 710 NULL, 711 M_PAGEDEP, 712 M_INODEDEP, 713 M_BMSAFEMAP, 714 M_NEWBLK, 715 M_ALLOCDIRECT, 716 M_INDIRDEP, 717 M_ALLOCINDIR, 718 M_FREEFRAG, 719 M_FREEBLKS, 720 M_FREEFILE, 721 M_DIRADD, 722 M_MKDIR, 723 M_DIRREM, 724 M_NEWDIRBLK, 725 M_FREEWORK, 726 M_FREEDEP, 727 M_JADDREF, 728 M_JREMREF, 729 M_JMVREF, 730 M_JNEWBLK, 731 M_JFREEBLK, 732 M_JFREEFRAG, 733 M_JSEG, 734 M_JSEGDEP, 735 M_SBDEP, 736 M_JTRUNC, 737 M_JFSYNC, 738 M_SENTINEL 739 }; 740 741 #define DtoM(type) (memtype[type]) 742 743 /* 744 * Names of malloc types. 745 */ 746 #define TYPENAME(type) \ 747 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 748 memtype[type]->ks_shortdesc : "???") 749 /* 750 * End system adaptation definitions. 751 */ 752 753 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 754 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 755 756 /* 757 * Internal function prototypes. 758 */ 759 static void check_clear_deps(struct mount *); 760 static void softdep_error(char *, int); 761 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 762 static int softdep_process_worklist(struct mount *, int); 763 static int softdep_waitidle(struct mount *, int); 764 static void drain_output(struct vnode *); 765 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 766 static int check_inodedep_free(struct inodedep *); 767 static void clear_remove(struct mount *); 768 static void clear_inodedeps(struct mount *); 769 static void unlinked_inodedep(struct mount *, struct inodedep *); 770 static void clear_unlinked_inodedep(struct inodedep *); 771 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 772 static int flush_pagedep_deps(struct vnode *, struct mount *, 773 struct diraddhd *, struct buf *); 774 static int free_pagedep(struct pagedep *); 775 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 776 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 777 static int flush_deplist(struct allocdirectlst *, int, int *); 778 static int sync_cgs(struct mount *, int); 779 static int handle_written_filepage(struct pagedep *, struct buf *, int); 780 static int handle_written_sbdep(struct sbdep *, struct buf *); 781 static void initiate_write_sbdep(struct sbdep *); 782 static void diradd_inode_written(struct diradd *, struct inodedep *); 783 static int handle_written_indirdep(struct indirdep *, struct buf *, 784 struct buf**, int); 785 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 786 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 787 uint8_t *); 788 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 789 static void handle_written_jaddref(struct jaddref *); 790 static void handle_written_jremref(struct jremref *); 791 static void handle_written_jseg(struct jseg *, struct buf *); 792 static void handle_written_jnewblk(struct jnewblk *); 793 static void handle_written_jblkdep(struct jblkdep *); 794 static void handle_written_jfreefrag(struct jfreefrag *); 795 static void complete_jseg(struct jseg *); 796 static void complete_jsegs(struct jseg *); 797 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 798 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 799 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 800 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 801 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 802 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 803 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 804 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 805 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 806 static inline void inoref_write(struct inoref *, struct jseg *, 807 struct jrefrec *); 808 static void handle_allocdirect_partdone(struct allocdirect *, 809 struct workhead *); 810 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 811 struct workhead *); 812 static void indirdep_complete(struct indirdep *); 813 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 814 static void indirblk_insert(struct freework *); 815 static void indirblk_remove(struct freework *); 816 static void handle_allocindir_partdone(struct allocindir *); 817 static void initiate_write_filepage(struct pagedep *, struct buf *); 818 static void initiate_write_indirdep(struct indirdep*, struct buf *); 819 static void handle_written_mkdir(struct mkdir *, int); 820 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 821 uint8_t *); 822 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 823 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 824 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 825 static void handle_workitem_freefile(struct freefile *); 826 static int handle_workitem_remove(struct dirrem *, int); 827 static struct dirrem *newdirrem(struct buf *, struct inode *, 828 struct inode *, int, struct dirrem **); 829 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 830 struct buf *); 831 static void cancel_indirdep(struct indirdep *, struct buf *, 832 struct freeblks *); 833 static void free_indirdep(struct indirdep *); 834 static void free_diradd(struct diradd *, struct workhead *); 835 static void merge_diradd(struct inodedep *, struct diradd *); 836 static void complete_diradd(struct diradd *); 837 static struct diradd *diradd_lookup(struct pagedep *, int); 838 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 839 struct jremref *); 840 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 841 struct jremref *); 842 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 843 struct jremref *, struct jremref *); 844 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 845 struct jremref *); 846 static void cancel_allocindir(struct allocindir *, struct buf *bp, 847 struct freeblks *, int); 848 static int setup_trunc_indir(struct freeblks *, struct inode *, 849 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 850 static void complete_trunc_indir(struct freework *); 851 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 852 int); 853 static void complete_mkdir(struct mkdir *); 854 static void free_newdirblk(struct newdirblk *); 855 static void free_jremref(struct jremref *); 856 static void free_jaddref(struct jaddref *); 857 static void free_jsegdep(struct jsegdep *); 858 static void free_jsegs(struct jblocks *); 859 static void rele_jseg(struct jseg *); 860 static void free_jseg(struct jseg *, struct jblocks *); 861 static void free_jnewblk(struct jnewblk *); 862 static void free_jblkdep(struct jblkdep *); 863 static void free_jfreefrag(struct jfreefrag *); 864 static void free_freedep(struct freedep *); 865 static void journal_jremref(struct dirrem *, struct jremref *, 866 struct inodedep *); 867 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 868 static int cancel_jaddref(struct jaddref *, struct inodedep *, 869 struct workhead *); 870 static void cancel_jfreefrag(struct jfreefrag *); 871 static inline void setup_freedirect(struct freeblks *, struct inode *, 872 int, int); 873 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 874 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 875 ufs_lbn_t, int); 876 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 877 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 878 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 879 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 880 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 881 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 882 int, int); 883 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 884 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 885 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 886 static void newblk_freefrag(struct newblk*); 887 static void free_newblk(struct newblk *); 888 static void cancel_allocdirect(struct allocdirectlst *, 889 struct allocdirect *, struct freeblks *); 890 static int check_inode_unwritten(struct inodedep *); 891 static int free_inodedep(struct inodedep *); 892 static void freework_freeblock(struct freework *, u_long); 893 static void freework_enqueue(struct freework *); 894 static int handle_workitem_freeblocks(struct freeblks *, int); 895 static int handle_complete_freeblocks(struct freeblks *, int); 896 static void handle_workitem_indirblk(struct freework *); 897 static void handle_written_freework(struct freework *); 898 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 899 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 900 struct workhead *); 901 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 902 struct inodedep *, struct allocindir *, ufs_lbn_t); 903 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 904 ufs2_daddr_t, ufs_lbn_t); 905 static void handle_workitem_freefrag(struct freefrag *); 906 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 907 ufs_lbn_t, u_long); 908 static void allocdirect_merge(struct allocdirectlst *, 909 struct allocdirect *, struct allocdirect *); 910 static struct freefrag *allocindir_merge(struct allocindir *, 911 struct allocindir *); 912 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 913 struct bmsafemap **); 914 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 915 int cg, struct bmsafemap *); 916 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 917 struct newblk **); 918 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 919 static int inodedep_find(struct inodedep_hashhead *, ino_t, 920 struct inodedep **); 921 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 922 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 923 int, struct pagedep **); 924 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 925 struct pagedep **); 926 static void pause_timer(void *); 927 static int request_cleanup(struct mount *, int); 928 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 929 static void schedule_cleanup(struct mount *); 930 static void softdep_ast_cleanup_proc(struct thread *); 931 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 932 static int process_worklist_item(struct mount *, int, int); 933 static void process_removes(struct vnode *); 934 static void process_truncates(struct vnode *); 935 static void jwork_move(struct workhead *, struct workhead *); 936 static void jwork_insert(struct workhead *, struct jsegdep *); 937 static void add_to_worklist(struct worklist *, int); 938 static void wake_worklist(struct worklist *); 939 static void wait_worklist(struct worklist *, char *); 940 static void remove_from_worklist(struct worklist *); 941 static void softdep_flush(void *); 942 static void softdep_flushjournal(struct mount *); 943 static int softdep_speedup(struct ufsmount *); 944 static void worklist_speedup(struct mount *); 945 static int journal_mount(struct mount *, struct fs *, struct ucred *); 946 static void journal_unmount(struct ufsmount *); 947 static int journal_space(struct ufsmount *, int); 948 static void journal_suspend(struct ufsmount *); 949 static int journal_unsuspend(struct ufsmount *ump); 950 static void add_to_journal(struct worklist *); 951 static void remove_from_journal(struct worklist *); 952 static bool softdep_excess_items(struct ufsmount *, int); 953 static void softdep_process_journal(struct mount *, struct worklist *, int); 954 static struct jremref *newjremref(struct dirrem *, struct inode *, 955 struct inode *ip, off_t, nlink_t); 956 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 957 uint16_t); 958 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 959 uint16_t); 960 static inline struct jsegdep *inoref_jseg(struct inoref *); 961 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 962 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 963 ufs2_daddr_t, int); 964 static void adjust_newfreework(struct freeblks *, int); 965 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 966 static void move_newblock_dep(struct jaddref *, struct inodedep *); 967 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 968 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 969 ufs2_daddr_t, long, ufs_lbn_t); 970 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 971 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 972 static int jwait(struct worklist *, int); 973 static struct inodedep *inodedep_lookup_ip(struct inode *); 974 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 975 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 976 static void handle_jwork(struct workhead *); 977 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 978 struct mkdir **); 979 static struct jblocks *jblocks_create(void); 980 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 981 static void jblocks_free(struct jblocks *, struct mount *, int); 982 static void jblocks_destroy(struct jblocks *); 983 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 984 985 /* 986 * Exported softdep operations. 987 */ 988 static void softdep_disk_io_initiation(struct buf *); 989 static void softdep_disk_write_complete(struct buf *); 990 static void softdep_deallocate_dependencies(struct buf *); 991 static int softdep_count_dependencies(struct buf *bp, int); 992 993 /* 994 * Global lock over all of soft updates. 995 */ 996 static struct mtx lk; 997 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 998 999 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 1000 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1001 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1002 1003 /* 1004 * Per-filesystem soft-updates locking. 1005 */ 1006 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1007 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1009 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1010 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1011 RA_WLOCKED) 1012 1013 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1014 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1015 1016 /* 1017 * Worklist queue management. 1018 * These routines require that the lock be held. 1019 */ 1020 #ifndef /* NOT */ INVARIANTS 1021 #define WORKLIST_INSERT(head, item) do { \ 1022 (item)->wk_state |= ONWORKLIST; \ 1023 LIST_INSERT_HEAD(head, item, wk_list); \ 1024 } while (0) 1025 #define WORKLIST_REMOVE(item) do { \ 1026 (item)->wk_state &= ~ONWORKLIST; \ 1027 LIST_REMOVE(item, wk_list); \ 1028 } while (0) 1029 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1030 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1031 1032 #else /* INVARIANTS */ 1033 static void worklist_insert(struct workhead *, struct worklist *, int, 1034 const char *, int); 1035 static void worklist_remove(struct worklist *, int, const char *, int); 1036 1037 #define WORKLIST_INSERT(head, item) \ 1038 worklist_insert(head, item, 1, __func__, __LINE__) 1039 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1040 worklist_insert(head, item, 0, __func__, __LINE__) 1041 #define WORKLIST_REMOVE(item)\ 1042 worklist_remove(item, 1, __func__, __LINE__) 1043 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1044 worklist_remove(item, 0, __func__, __LINE__) 1045 1046 static void 1047 worklist_insert(head, item, locked, func, line) 1048 struct workhead *head; 1049 struct worklist *item; 1050 int locked; 1051 const char *func; 1052 int line; 1053 { 1054 1055 if (locked) 1056 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1057 if (item->wk_state & ONWORKLIST) 1058 panic("worklist_insert: %p %s(0x%X) already on list, " 1059 "added in function %s at line %d", 1060 item, TYPENAME(item->wk_type), item->wk_state, 1061 item->wk_func, item->wk_line); 1062 item->wk_state |= ONWORKLIST; 1063 item->wk_func = func; 1064 item->wk_line = line; 1065 LIST_INSERT_HEAD(head, item, wk_list); 1066 } 1067 1068 static void 1069 worklist_remove(item, locked, func, line) 1070 struct worklist *item; 1071 int locked; 1072 const char *func; 1073 int line; 1074 { 1075 1076 if (locked) 1077 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1078 if ((item->wk_state & ONWORKLIST) == 0) 1079 panic("worklist_remove: %p %s(0x%X) not on list, " 1080 "removed in function %s at line %d", 1081 item, TYPENAME(item->wk_type), item->wk_state, 1082 item->wk_func, item->wk_line); 1083 item->wk_state &= ~ONWORKLIST; 1084 item->wk_func = func; 1085 item->wk_line = line; 1086 LIST_REMOVE(item, wk_list); 1087 } 1088 #endif /* INVARIANTS */ 1089 1090 /* 1091 * Merge two jsegdeps keeping only the oldest one as newer references 1092 * can't be discarded until after older references. 1093 */ 1094 static inline struct jsegdep * 1095 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1096 { 1097 struct jsegdep *swp; 1098 1099 if (two == NULL) 1100 return (one); 1101 1102 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1103 swp = one; 1104 one = two; 1105 two = swp; 1106 } 1107 WORKLIST_REMOVE(&two->jd_list); 1108 free_jsegdep(two); 1109 1110 return (one); 1111 } 1112 1113 /* 1114 * If two freedeps are compatible free one to reduce list size. 1115 */ 1116 static inline struct freedep * 1117 freedep_merge(struct freedep *one, struct freedep *two) 1118 { 1119 if (two == NULL) 1120 return (one); 1121 1122 if (one->fd_freework == two->fd_freework) { 1123 WORKLIST_REMOVE(&two->fd_list); 1124 free_freedep(two); 1125 } 1126 return (one); 1127 } 1128 1129 /* 1130 * Move journal work from one list to another. Duplicate freedeps and 1131 * jsegdeps are coalesced to keep the lists as small as possible. 1132 */ 1133 static void 1134 jwork_move(dst, src) 1135 struct workhead *dst; 1136 struct workhead *src; 1137 { 1138 struct freedep *freedep; 1139 struct jsegdep *jsegdep; 1140 struct worklist *wkn; 1141 struct worklist *wk; 1142 1143 KASSERT(dst != src, 1144 ("jwork_move: dst == src")); 1145 freedep = NULL; 1146 jsegdep = NULL; 1147 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1148 if (wk->wk_type == D_JSEGDEP) 1149 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1150 else if (wk->wk_type == D_FREEDEP) 1151 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1152 } 1153 1154 while ((wk = LIST_FIRST(src)) != NULL) { 1155 WORKLIST_REMOVE(wk); 1156 WORKLIST_INSERT(dst, wk); 1157 if (wk->wk_type == D_JSEGDEP) { 1158 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1159 continue; 1160 } 1161 if (wk->wk_type == D_FREEDEP) 1162 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1163 } 1164 } 1165 1166 static void 1167 jwork_insert(dst, jsegdep) 1168 struct workhead *dst; 1169 struct jsegdep *jsegdep; 1170 { 1171 struct jsegdep *jsegdepn; 1172 struct worklist *wk; 1173 1174 LIST_FOREACH(wk, dst, wk_list) 1175 if (wk->wk_type == D_JSEGDEP) 1176 break; 1177 if (wk == NULL) { 1178 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1179 return; 1180 } 1181 jsegdepn = WK_JSEGDEP(wk); 1182 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1183 WORKLIST_REMOVE(wk); 1184 free_jsegdep(jsegdepn); 1185 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1186 } else 1187 free_jsegdep(jsegdep); 1188 } 1189 1190 /* 1191 * Routines for tracking and managing workitems. 1192 */ 1193 static void workitem_free(struct worklist *, int); 1194 static void workitem_alloc(struct worklist *, int, struct mount *); 1195 static void workitem_reassign(struct worklist *, int); 1196 1197 #define WORKITEM_FREE(item, type) \ 1198 workitem_free((struct worklist *)(item), (type)) 1199 #define WORKITEM_REASSIGN(item, type) \ 1200 workitem_reassign((struct worklist *)(item), (type)) 1201 1202 static void 1203 workitem_free(item, type) 1204 struct worklist *item; 1205 int type; 1206 { 1207 struct ufsmount *ump; 1208 1209 #ifdef INVARIANTS 1210 if (item->wk_state & ONWORKLIST) 1211 panic("workitem_free: %s(0x%X) still on list, " 1212 "added in function %s at line %d", 1213 TYPENAME(item->wk_type), item->wk_state, 1214 item->wk_func, item->wk_line); 1215 if (item->wk_type != type && type != D_NEWBLK) 1216 panic("workitem_free: type mismatch %s != %s", 1217 TYPENAME(item->wk_type), TYPENAME(type)); 1218 #endif 1219 if (item->wk_state & IOWAITING) 1220 wakeup(item); 1221 ump = VFSTOUFS(item->wk_mp); 1222 LOCK_OWNED(ump); 1223 KASSERT(ump->softdep_deps > 0, 1224 ("workitem_free: %s: softdep_deps going negative", 1225 ump->um_fs->fs_fsmnt)); 1226 if (--ump->softdep_deps == 0 && ump->softdep_req) 1227 wakeup(&ump->softdep_deps); 1228 KASSERT(dep_current[item->wk_type] > 0, 1229 ("workitem_free: %s: dep_current[%s] going negative", 1230 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1233 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 atomic_subtract_long(&dep_current[item->wk_type], 1); 1235 ump->softdep_curdeps[item->wk_type] -= 1; 1236 LIST_REMOVE(item, wk_all); 1237 free(item, DtoM(type)); 1238 } 1239 1240 static void 1241 workitem_alloc(item, type, mp) 1242 struct worklist *item; 1243 int type; 1244 struct mount *mp; 1245 { 1246 struct ufsmount *ump; 1247 1248 item->wk_type = type; 1249 item->wk_mp = mp; 1250 item->wk_state = 0; 1251 1252 ump = VFSTOUFS(mp); 1253 ACQUIRE_GBLLOCK(&lk); 1254 dep_current[type]++; 1255 if (dep_current[type] > dep_highuse[type]) 1256 dep_highuse[type] = dep_current[type]; 1257 dep_total[type]++; 1258 FREE_GBLLOCK(&lk); 1259 ACQUIRE_LOCK(ump); 1260 ump->softdep_curdeps[type] += 1; 1261 ump->softdep_deps++; 1262 ump->softdep_accdeps++; 1263 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1264 FREE_LOCK(ump); 1265 } 1266 1267 static void 1268 workitem_reassign(item, newtype) 1269 struct worklist *item; 1270 int newtype; 1271 { 1272 struct ufsmount *ump; 1273 1274 ump = VFSTOUFS(item->wk_mp); 1275 LOCK_OWNED(ump); 1276 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1277 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1278 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1279 ump->softdep_curdeps[item->wk_type] -= 1; 1280 ump->softdep_curdeps[newtype] += 1; 1281 KASSERT(dep_current[item->wk_type] > 0, 1282 ("workitem_reassign: %s: dep_current[%s] going negative", 1283 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1284 ACQUIRE_GBLLOCK(&lk); 1285 dep_current[newtype]++; 1286 dep_current[item->wk_type]--; 1287 if (dep_current[newtype] > dep_highuse[newtype]) 1288 dep_highuse[newtype] = dep_current[newtype]; 1289 dep_total[newtype]++; 1290 FREE_GBLLOCK(&lk); 1291 item->wk_type = newtype; 1292 LIST_REMOVE(item, wk_all); 1293 LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all); 1294 } 1295 1296 /* 1297 * Workitem queue management 1298 */ 1299 static int max_softdeps; /* maximum number of structs before slowdown */ 1300 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1301 static int proc_waiting; /* tracks whether we have a timeout posted */ 1302 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1303 static struct callout softdep_callout; 1304 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1305 static int req_clear_remove; /* syncer process flush some freeblks */ 1306 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1307 1308 /* 1309 * runtime statistics 1310 */ 1311 static int stat_flush_threads; /* number of softdep flushing threads */ 1312 static int stat_worklist_push; /* number of worklist cleanups */ 1313 static int stat_delayed_inact; /* number of delayed inactivation cleanups */ 1314 static int stat_blk_limit_push; /* number of times block limit neared */ 1315 static int stat_ino_limit_push; /* number of times inode limit neared */ 1316 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1317 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1318 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1319 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1320 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1321 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1322 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1323 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1324 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1325 static int stat_journal_min; /* Times hit journal min threshold */ 1326 static int stat_journal_low; /* Times hit journal low threshold */ 1327 static int stat_journal_wait; /* Times blocked in jwait(). */ 1328 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1329 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1330 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1331 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1332 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1333 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1334 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1335 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1336 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1337 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1338 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1340 &max_softdeps, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1342 &tickdelay, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1344 &stat_flush_threads, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, 1348 &stat_delayed_inact, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1370 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1372 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1374 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1376 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1377 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1378 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1380 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1382 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1383 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1384 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1385 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1386 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1388 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1390 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1392 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1393 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1394 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1395 1396 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1397 &softdep_flushcache, 0, ""); 1398 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1399 &stat_emptyjblocks, 0, ""); 1400 1401 SYSCTL_DECL(_vfs_ffs); 1402 1403 /* Whether to recompute the summary at mount time */ 1404 static int compute_summary_at_mount = 0; 1405 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1406 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1407 static int print_threads = 0; 1408 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1409 &print_threads, 0, "Notify flusher thread start/stop"); 1410 1411 /* List of all filesystems mounted with soft updates */ 1412 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1413 1414 static void 1415 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, 1416 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) 1417 { 1418 struct diradd *dap; 1419 1420 /* 1421 * Requeue unfinished dependencies before 1422 * unlocking buffer, which could make 1423 * diraddhdp invalid. 1424 */ 1425 ACQUIRE_LOCK(VFSTOUFS(mp)); 1426 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1427 LIST_REMOVE(dap, da_pdlist); 1428 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1429 } 1430 FREE_LOCK(VFSTOUFS(mp)); 1431 1432 bp->b_vflags &= ~BV_SCANNED; 1433 BUF_NOREC(bp); 1434 BUF_UNLOCK(bp); 1435 } 1436 1437 /* 1438 * This function fetches inode inum on mount point mp. We already 1439 * hold a locked vnode vp, and might have a locked buffer bp belonging 1440 * to vp. 1441 1442 * We must not block on acquiring the new inode lock as we will get 1443 * into a lock-order reversal with the buffer lock and possibly get a 1444 * deadlock. Thus if we cannot instantiate the requested vnode 1445 * without sleeping on its lock, we must unlock the vnode and the 1446 * buffer before doing a blocking on the vnode lock. We return 1447 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1448 * that the caller can reassess its state. 1449 * 1450 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1451 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1452 * point. 1453 * 1454 * Since callers expect to operate on fully constructed vnode, we also 1455 * recheck v_data after relock, and return ENOENT if NULL. 1456 * 1457 * If unlocking bp, we must unroll dequeueing its unfinished 1458 * dependencies, and clear scan flag, before unlocking. If unlocking 1459 * vp while it is under deactivation, we re-queue deactivation. 1460 */ 1461 static int 1462 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1463 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1464 struct vnode **rvp) 1465 { 1466 struct vnode *pvp; 1467 int error; 1468 bool bplocked; 1469 1470 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1471 for (bplocked = true, pvp = NULL;;) { 1472 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1473 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1474 if (error == 0) { 1475 /* 1476 * Since we could have unlocked vp, the inode 1477 * number could no longer indicate a 1478 * constructed node. In this case, we must 1479 * restart the syscall. 1480 */ 1481 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1482 if (bp != NULL && bplocked) 1483 get_parent_vp_unlock_bp(mp, bp, 1484 diraddhdp, unfinishedp); 1485 if (VTOI(pvp)->i_mode == 0) 1486 vgone(pvp); 1487 error = ERELOOKUP; 1488 goto out2; 1489 } 1490 goto out1; 1491 } 1492 if (bp != NULL && bplocked) { 1493 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1494 bplocked = false; 1495 } 1496 1497 /* 1498 * Do not drop vnode lock while inactivating during 1499 * vunref. This would result in leaks of the VI flags 1500 * and reclaiming of non-truncated vnode. Instead, 1501 * re-schedule inactivation hoping that we would be 1502 * able to sync inode later. 1503 */ 1504 if ((vp->v_iflag & VI_DOINGINACT) != 0 && 1505 (vp->v_vflag & VV_UNREF) != 0) { 1506 VI_LOCK(vp); 1507 vp->v_iflag |= VI_OWEINACT; 1508 VI_UNLOCK(vp); 1509 return (ERELOOKUP); 1510 } 1511 1512 VOP_UNLOCK(vp); 1513 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1514 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1515 if (error != 0) { 1516 MPASS(error != ERELOOKUP); 1517 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1518 break; 1519 } 1520 if (VTOI(pvp)->i_mode == 0) { 1521 vgone(pvp); 1522 vput(pvp); 1523 pvp = NULL; 1524 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1525 error = ERELOOKUP; 1526 break; 1527 } 1528 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1529 if (error == 0) 1530 break; 1531 vput(pvp); 1532 pvp = NULL; 1533 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1534 if (vp->v_data == NULL) { 1535 error = ENOENT; 1536 break; 1537 } 1538 } 1539 if (bp != NULL) { 1540 MPASS(!bplocked); 1541 error = ERELOOKUP; 1542 } 1543 out2: 1544 if (error != 0 && pvp != NULL) { 1545 vput(pvp); 1546 pvp = NULL; 1547 } 1548 out1: 1549 *rvp = pvp; 1550 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1551 return (error); 1552 } 1553 1554 /* 1555 * This function cleans the worklist for a filesystem. 1556 * Each filesystem running with soft dependencies gets its own 1557 * thread to run in this function. The thread is started up in 1558 * softdep_mount and shutdown in softdep_unmount. They show up 1559 * as part of the kernel "bufdaemon" process whose process 1560 * entry is available in bufdaemonproc. 1561 */ 1562 static int searchfailed; 1563 extern struct proc *bufdaemonproc; 1564 static void 1565 softdep_flush(addr) 1566 void *addr; 1567 { 1568 struct mount *mp; 1569 struct thread *td; 1570 struct ufsmount *ump; 1571 int cleanups; 1572 1573 td = curthread; 1574 td->td_pflags |= TDP_NORUNNINGBUF; 1575 mp = (struct mount *)addr; 1576 ump = VFSTOUFS(mp); 1577 atomic_add_int(&stat_flush_threads, 1); 1578 ACQUIRE_LOCK(ump); 1579 ump->softdep_flags &= ~FLUSH_STARTING; 1580 wakeup(&ump->softdep_flushtd); 1581 FREE_LOCK(ump); 1582 if (print_threads) { 1583 if (stat_flush_threads == 1) 1584 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1585 bufdaemonproc->p_pid); 1586 printf("Start thread %s\n", td->td_name); 1587 } 1588 for (;;) { 1589 while (softdep_process_worklist(mp, 0) > 0 || 1590 (MOUNTEDSUJ(mp) && 1591 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1592 kthread_suspend_check(); 1593 ACQUIRE_LOCK(ump); 1594 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1595 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1596 "sdflush", hz / 2); 1597 ump->softdep_flags &= ~FLUSH_CLEANUP; 1598 /* 1599 * Check to see if we are done and need to exit. 1600 */ 1601 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1602 FREE_LOCK(ump); 1603 continue; 1604 } 1605 ump->softdep_flags &= ~FLUSH_EXIT; 1606 cleanups = ump->um_softdep->sd_cleanups; 1607 FREE_LOCK(ump); 1608 wakeup(&ump->softdep_flags); 1609 if (print_threads) { 1610 printf("Stop thread %s: searchfailed %d, " 1611 "did cleanups %d\n", 1612 td->td_name, searchfailed, cleanups); 1613 } 1614 atomic_subtract_int(&stat_flush_threads, 1); 1615 kthread_exit(); 1616 panic("kthread_exit failed\n"); 1617 } 1618 } 1619 1620 static void 1621 worklist_speedup(mp) 1622 struct mount *mp; 1623 { 1624 struct ufsmount *ump; 1625 1626 ump = VFSTOUFS(mp); 1627 LOCK_OWNED(ump); 1628 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1629 ump->softdep_flags |= FLUSH_CLEANUP; 1630 wakeup(&ump->softdep_flushtd); 1631 } 1632 1633 static void 1634 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1635 { 1636 struct buf *bp; 1637 1638 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1639 return; 1640 1641 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1642 bp->b_iocmd = BIO_SPEEDUP; 1643 bp->b_ioflags = flags; 1644 bp->b_bcount = omin(shortage, LONG_MAX); 1645 g_vfs_strategy(ump->um_bo, bp); 1646 bufwait(bp); 1647 free(bp, M_TRIM); 1648 } 1649 1650 static int 1651 softdep_speedup(ump) 1652 struct ufsmount *ump; 1653 { 1654 struct ufsmount *altump; 1655 struct mount_softdeps *sdp; 1656 1657 LOCK_OWNED(ump); 1658 worklist_speedup(ump->um_mountp); 1659 bd_speedup(); 1660 /* 1661 * If we have global shortages, then we need other 1662 * filesystems to help with the cleanup. Here we wakeup a 1663 * flusher thread for a filesystem that is over its fair 1664 * share of resources. 1665 */ 1666 if (req_clear_inodedeps || req_clear_remove) { 1667 ACQUIRE_GBLLOCK(&lk); 1668 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1669 if ((altump = sdp->sd_ump) == ump) 1670 continue; 1671 if (((req_clear_inodedeps && 1672 altump->softdep_curdeps[D_INODEDEP] > 1673 max_softdeps / stat_flush_threads) || 1674 (req_clear_remove && 1675 altump->softdep_curdeps[D_DIRREM] > 1676 (max_softdeps / 2) / stat_flush_threads)) && 1677 TRY_ACQUIRE_LOCK(altump)) 1678 break; 1679 } 1680 if (sdp == NULL) { 1681 searchfailed++; 1682 FREE_GBLLOCK(&lk); 1683 } else { 1684 /* 1685 * Move to the end of the list so we pick a 1686 * different one on out next try. 1687 */ 1688 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1689 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1690 FREE_GBLLOCK(&lk); 1691 if ((altump->softdep_flags & 1692 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1693 altump->softdep_flags |= FLUSH_CLEANUP; 1694 altump->um_softdep->sd_cleanups++; 1695 wakeup(&altump->softdep_flushtd); 1696 FREE_LOCK(altump); 1697 } 1698 } 1699 return (speedup_syncer()); 1700 } 1701 1702 /* 1703 * Add an item to the end of the work queue. 1704 * This routine requires that the lock be held. 1705 * This is the only routine that adds items to the list. 1706 * The following routine is the only one that removes items 1707 * and does so in order from first to last. 1708 */ 1709 1710 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1711 #define WK_NODELAY 0x0002 /* Process immediately. */ 1712 1713 static void 1714 add_to_worklist(wk, flags) 1715 struct worklist *wk; 1716 int flags; 1717 { 1718 struct ufsmount *ump; 1719 1720 ump = VFSTOUFS(wk->wk_mp); 1721 LOCK_OWNED(ump); 1722 if (wk->wk_state & ONWORKLIST) 1723 panic("add_to_worklist: %s(0x%X) already on list", 1724 TYPENAME(wk->wk_type), wk->wk_state); 1725 wk->wk_state |= ONWORKLIST; 1726 if (ump->softdep_on_worklist == 0) { 1727 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1728 ump->softdep_worklist_tail = wk; 1729 } else if (flags & WK_HEAD) { 1730 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1731 } else { 1732 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1733 ump->softdep_worklist_tail = wk; 1734 } 1735 ump->softdep_on_worklist += 1; 1736 if (flags & WK_NODELAY) 1737 worklist_speedup(wk->wk_mp); 1738 } 1739 1740 /* 1741 * Remove the item to be processed. If we are removing the last 1742 * item on the list, we need to recalculate the tail pointer. 1743 */ 1744 static void 1745 remove_from_worklist(wk) 1746 struct worklist *wk; 1747 { 1748 struct ufsmount *ump; 1749 1750 ump = VFSTOUFS(wk->wk_mp); 1751 if (ump->softdep_worklist_tail == wk) 1752 ump->softdep_worklist_tail = 1753 (struct worklist *)wk->wk_list.le_prev; 1754 WORKLIST_REMOVE(wk); 1755 ump->softdep_on_worklist -= 1; 1756 } 1757 1758 static void 1759 wake_worklist(wk) 1760 struct worklist *wk; 1761 { 1762 if (wk->wk_state & IOWAITING) { 1763 wk->wk_state &= ~IOWAITING; 1764 wakeup(wk); 1765 } 1766 } 1767 1768 static void 1769 wait_worklist(wk, wmesg) 1770 struct worklist *wk; 1771 char *wmesg; 1772 { 1773 struct ufsmount *ump; 1774 1775 ump = VFSTOUFS(wk->wk_mp); 1776 wk->wk_state |= IOWAITING; 1777 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1778 } 1779 1780 /* 1781 * Process that runs once per second to handle items in the background queue. 1782 * 1783 * Note that we ensure that everything is done in the order in which they 1784 * appear in the queue. The code below depends on this property to ensure 1785 * that blocks of a file are freed before the inode itself is freed. This 1786 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1787 * until all the old ones have been purged from the dependency lists. 1788 */ 1789 static int 1790 softdep_process_worklist(mp, full) 1791 struct mount *mp; 1792 int full; 1793 { 1794 int cnt, matchcnt; 1795 struct ufsmount *ump; 1796 long starttime; 1797 1798 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1799 ump = VFSTOUFS(mp); 1800 if (ump->um_softdep == NULL) 1801 return (0); 1802 matchcnt = 0; 1803 ACQUIRE_LOCK(ump); 1804 starttime = time_second; 1805 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1806 check_clear_deps(mp); 1807 while (ump->softdep_on_worklist > 0) { 1808 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1809 break; 1810 else 1811 matchcnt += cnt; 1812 check_clear_deps(mp); 1813 /* 1814 * We do not generally want to stop for buffer space, but if 1815 * we are really being a buffer hog, we will stop and wait. 1816 */ 1817 if (should_yield()) { 1818 FREE_LOCK(ump); 1819 kern_yield(PRI_USER); 1820 bwillwrite(); 1821 ACQUIRE_LOCK(ump); 1822 } 1823 /* 1824 * Never allow processing to run for more than one 1825 * second. This gives the syncer thread the opportunity 1826 * to pause if appropriate. 1827 */ 1828 if (!full && starttime != time_second) 1829 break; 1830 } 1831 if (full == 0) 1832 journal_unsuspend(ump); 1833 FREE_LOCK(ump); 1834 return (matchcnt); 1835 } 1836 1837 /* 1838 * Process all removes associated with a vnode if we are running out of 1839 * journal space. Any other process which attempts to flush these will 1840 * be unable as we have the vnodes locked. 1841 */ 1842 static void 1843 process_removes(vp) 1844 struct vnode *vp; 1845 { 1846 struct inodedep *inodedep; 1847 struct dirrem *dirrem; 1848 struct ufsmount *ump; 1849 struct mount *mp; 1850 ino_t inum; 1851 1852 mp = vp->v_mount; 1853 ump = VFSTOUFS(mp); 1854 LOCK_OWNED(ump); 1855 inum = VTOI(vp)->i_number; 1856 for (;;) { 1857 top: 1858 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1859 return; 1860 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1861 /* 1862 * If another thread is trying to lock this vnode 1863 * it will fail but we must wait for it to do so 1864 * before we can proceed. 1865 */ 1866 if (dirrem->dm_state & INPROGRESS) { 1867 wait_worklist(&dirrem->dm_list, "pwrwait"); 1868 goto top; 1869 } 1870 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1871 (COMPLETE | ONWORKLIST)) 1872 break; 1873 } 1874 if (dirrem == NULL) 1875 return; 1876 remove_from_worklist(&dirrem->dm_list); 1877 FREE_LOCK(ump); 1878 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1879 panic("process_removes: suspended filesystem"); 1880 handle_workitem_remove(dirrem, 0); 1881 vn_finished_secondary_write(mp); 1882 ACQUIRE_LOCK(ump); 1883 } 1884 } 1885 1886 /* 1887 * Process all truncations associated with a vnode if we are running out 1888 * of journal space. This is called when the vnode lock is already held 1889 * and no other process can clear the truncation. This function returns 1890 * a value greater than zero if it did any work. 1891 */ 1892 static void 1893 process_truncates(vp) 1894 struct vnode *vp; 1895 { 1896 struct inodedep *inodedep; 1897 struct freeblks *freeblks; 1898 struct ufsmount *ump; 1899 struct mount *mp; 1900 ino_t inum; 1901 int cgwait; 1902 1903 mp = vp->v_mount; 1904 ump = VFSTOUFS(mp); 1905 LOCK_OWNED(ump); 1906 inum = VTOI(vp)->i_number; 1907 for (;;) { 1908 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1909 return; 1910 cgwait = 0; 1911 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1912 /* Journal entries not yet written. */ 1913 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1914 jwait(&LIST_FIRST( 1915 &freeblks->fb_jblkdephd)->jb_list, 1916 MNT_WAIT); 1917 break; 1918 } 1919 /* Another thread is executing this item. */ 1920 if (freeblks->fb_state & INPROGRESS) { 1921 wait_worklist(&freeblks->fb_list, "ptrwait"); 1922 break; 1923 } 1924 /* Freeblks is waiting on a inode write. */ 1925 if ((freeblks->fb_state & COMPLETE) == 0) { 1926 FREE_LOCK(ump); 1927 ffs_update(vp, 1); 1928 ACQUIRE_LOCK(ump); 1929 break; 1930 } 1931 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1932 (ALLCOMPLETE | ONWORKLIST)) { 1933 remove_from_worklist(&freeblks->fb_list); 1934 freeblks->fb_state |= INPROGRESS; 1935 FREE_LOCK(ump); 1936 if (vn_start_secondary_write(NULL, &mp, 1937 V_NOWAIT)) 1938 panic("process_truncates: " 1939 "suspended filesystem"); 1940 handle_workitem_freeblocks(freeblks, 0); 1941 vn_finished_secondary_write(mp); 1942 ACQUIRE_LOCK(ump); 1943 break; 1944 } 1945 if (freeblks->fb_cgwait) 1946 cgwait++; 1947 } 1948 if (cgwait) { 1949 FREE_LOCK(ump); 1950 sync_cgs(mp, MNT_WAIT); 1951 ffs_sync_snap(mp, MNT_WAIT); 1952 ACQUIRE_LOCK(ump); 1953 continue; 1954 } 1955 if (freeblks == NULL) 1956 break; 1957 } 1958 return; 1959 } 1960 1961 /* 1962 * Process one item on the worklist. 1963 */ 1964 static int 1965 process_worklist_item(mp, target, flags) 1966 struct mount *mp; 1967 int target; 1968 int flags; 1969 { 1970 struct worklist sentinel; 1971 struct worklist *wk; 1972 struct ufsmount *ump; 1973 int matchcnt; 1974 int error; 1975 1976 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1977 /* 1978 * If we are being called because of a process doing a 1979 * copy-on-write, then it is not safe to write as we may 1980 * recurse into the copy-on-write routine. 1981 */ 1982 if (curthread->td_pflags & TDP_COWINPROGRESS) 1983 return (-1); 1984 PHOLD(curproc); /* Don't let the stack go away. */ 1985 ump = VFSTOUFS(mp); 1986 LOCK_OWNED(ump); 1987 matchcnt = 0; 1988 sentinel.wk_mp = NULL; 1989 sentinel.wk_type = D_SENTINEL; 1990 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1991 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1992 wk = LIST_NEXT(&sentinel, wk_list)) { 1993 if (wk->wk_type == D_SENTINEL) { 1994 LIST_REMOVE(&sentinel, wk_list); 1995 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1996 continue; 1997 } 1998 if (wk->wk_state & INPROGRESS) 1999 panic("process_worklist_item: %p already in progress.", 2000 wk); 2001 wk->wk_state |= INPROGRESS; 2002 remove_from_worklist(wk); 2003 FREE_LOCK(ump); 2004 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 2005 panic("process_worklist_item: suspended filesystem"); 2006 switch (wk->wk_type) { 2007 case D_DIRREM: 2008 /* removal of a directory entry */ 2009 error = handle_workitem_remove(WK_DIRREM(wk), flags); 2010 break; 2011 2012 case D_FREEBLKS: 2013 /* releasing blocks and/or fragments from a file */ 2014 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 2015 flags); 2016 break; 2017 2018 case D_FREEFRAG: 2019 /* releasing a fragment when replaced as a file grows */ 2020 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2021 error = 0; 2022 break; 2023 2024 case D_FREEFILE: 2025 /* releasing an inode when its link count drops to 0 */ 2026 handle_workitem_freefile(WK_FREEFILE(wk)); 2027 error = 0; 2028 break; 2029 2030 default: 2031 panic("%s_process_worklist: Unknown type %s", 2032 "softdep", TYPENAME(wk->wk_type)); 2033 /* NOTREACHED */ 2034 } 2035 vn_finished_secondary_write(mp); 2036 ACQUIRE_LOCK(ump); 2037 if (error == 0) { 2038 if (++matchcnt == target) 2039 break; 2040 continue; 2041 } 2042 /* 2043 * We have to retry the worklist item later. Wake up any 2044 * waiters who may be able to complete it immediately and 2045 * add the item back to the head so we don't try to execute 2046 * it again. 2047 */ 2048 wk->wk_state &= ~INPROGRESS; 2049 wake_worklist(wk); 2050 add_to_worklist(wk, WK_HEAD); 2051 } 2052 /* Sentinal could've become the tail from remove_from_worklist. */ 2053 if (ump->softdep_worklist_tail == &sentinel) 2054 ump->softdep_worklist_tail = 2055 (struct worklist *)sentinel.wk_list.le_prev; 2056 LIST_REMOVE(&sentinel, wk_list); 2057 PRELE(curproc); 2058 return (matchcnt); 2059 } 2060 2061 /* 2062 * Move dependencies from one buffer to another. 2063 */ 2064 int 2065 softdep_move_dependencies(oldbp, newbp) 2066 struct buf *oldbp; 2067 struct buf *newbp; 2068 { 2069 struct worklist *wk, *wktail; 2070 struct ufsmount *ump; 2071 int dirty; 2072 2073 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2074 return (0); 2075 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2076 ("softdep_move_dependencies called on non-softdep filesystem")); 2077 dirty = 0; 2078 wktail = NULL; 2079 ump = VFSTOUFS(wk->wk_mp); 2080 ACQUIRE_LOCK(ump); 2081 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2082 LIST_REMOVE(wk, wk_list); 2083 if (wk->wk_type == D_BMSAFEMAP && 2084 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2085 dirty = 1; 2086 if (wktail == NULL) 2087 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2088 else 2089 LIST_INSERT_AFTER(wktail, wk, wk_list); 2090 wktail = wk; 2091 } 2092 FREE_LOCK(ump); 2093 2094 return (dirty); 2095 } 2096 2097 /* 2098 * Purge the work list of all items associated with a particular mount point. 2099 */ 2100 int 2101 softdep_flushworklist(oldmnt, countp, td) 2102 struct mount *oldmnt; 2103 int *countp; 2104 struct thread *td; 2105 { 2106 struct vnode *devvp; 2107 struct ufsmount *ump; 2108 int count, error; 2109 2110 /* 2111 * Alternately flush the block device associated with the mount 2112 * point and process any dependencies that the flushing 2113 * creates. We continue until no more worklist dependencies 2114 * are found. 2115 */ 2116 *countp = 0; 2117 error = 0; 2118 ump = VFSTOUFS(oldmnt); 2119 devvp = ump->um_devvp; 2120 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2121 *countp += count; 2122 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2123 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2124 VOP_UNLOCK(devvp); 2125 if (error != 0) 2126 break; 2127 } 2128 return (error); 2129 } 2130 2131 #define SU_WAITIDLE_RETRIES 20 2132 static int 2133 softdep_waitidle(struct mount *mp, int flags __unused) 2134 { 2135 struct ufsmount *ump; 2136 struct vnode *devvp; 2137 struct thread *td; 2138 int error, i; 2139 2140 ump = VFSTOUFS(mp); 2141 KASSERT(ump->um_softdep != NULL, 2142 ("softdep_waitidle called on non-softdep filesystem")); 2143 devvp = ump->um_devvp; 2144 td = curthread; 2145 error = 0; 2146 ACQUIRE_LOCK(ump); 2147 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2148 ump->softdep_req = 1; 2149 KASSERT((flags & FORCECLOSE) == 0 || 2150 ump->softdep_on_worklist == 0, 2151 ("softdep_waitidle: work added after flush")); 2152 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2153 "softdeps", 10 * hz); 2154 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2155 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2156 VOP_UNLOCK(devvp); 2157 ACQUIRE_LOCK(ump); 2158 if (error != 0) 2159 break; 2160 } 2161 ump->softdep_req = 0; 2162 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2163 error = EBUSY; 2164 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2165 mp); 2166 } 2167 FREE_LOCK(ump); 2168 return (error); 2169 } 2170 2171 /* 2172 * Flush all vnodes and worklist items associated with a specified mount point. 2173 */ 2174 int 2175 softdep_flushfiles(oldmnt, flags, td) 2176 struct mount *oldmnt; 2177 int flags; 2178 struct thread *td; 2179 { 2180 struct ufsmount *ump; 2181 #ifdef QUOTA 2182 int i; 2183 #endif 2184 int error, early, depcount, loopcnt, retry_flush_count, retry; 2185 int morework; 2186 2187 ump = VFSTOUFS(oldmnt); 2188 KASSERT(ump->um_softdep != NULL, 2189 ("softdep_flushfiles called on non-softdep filesystem")); 2190 loopcnt = 10; 2191 retry_flush_count = 3; 2192 retry_flush: 2193 error = 0; 2194 2195 /* 2196 * Alternately flush the vnodes associated with the mount 2197 * point and process any dependencies that the flushing 2198 * creates. In theory, this loop can happen at most twice, 2199 * but we give it a few extra just to be sure. 2200 */ 2201 for (; loopcnt > 0; loopcnt--) { 2202 /* 2203 * Do another flush in case any vnodes were brought in 2204 * as part of the cleanup operations. 2205 */ 2206 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2207 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2208 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2209 break; 2210 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2211 depcount == 0) 2212 break; 2213 } 2214 /* 2215 * If we are unmounting then it is an error to fail. If we 2216 * are simply trying to downgrade to read-only, then filesystem 2217 * activity can keep us busy forever, so we just fail with EBUSY. 2218 */ 2219 if (loopcnt == 0) { 2220 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2221 panic("softdep_flushfiles: looping"); 2222 error = EBUSY; 2223 } 2224 if (!error) 2225 error = softdep_waitidle(oldmnt, flags); 2226 if (!error) { 2227 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2228 retry = 0; 2229 MNT_ILOCK(oldmnt); 2230 morework = oldmnt->mnt_nvnodelistsize > 0; 2231 #ifdef QUOTA 2232 UFS_LOCK(ump); 2233 for (i = 0; i < MAXQUOTAS; i++) { 2234 if (ump->um_quotas[i] != NULLVP) 2235 morework = 1; 2236 } 2237 UFS_UNLOCK(ump); 2238 #endif 2239 if (morework) { 2240 if (--retry_flush_count > 0) { 2241 retry = 1; 2242 loopcnt = 3; 2243 } else 2244 error = EBUSY; 2245 } 2246 MNT_IUNLOCK(oldmnt); 2247 if (retry) 2248 goto retry_flush; 2249 } 2250 } 2251 return (error); 2252 } 2253 2254 /* 2255 * Structure hashing. 2256 * 2257 * There are four types of structures that can be looked up: 2258 * 1) pagedep structures identified by mount point, inode number, 2259 * and logical block. 2260 * 2) inodedep structures identified by mount point and inode number. 2261 * 3) newblk structures identified by mount point and 2262 * physical block number. 2263 * 4) bmsafemap structures identified by mount point and 2264 * cylinder group number. 2265 * 2266 * The "pagedep" and "inodedep" dependency structures are hashed 2267 * separately from the file blocks and inodes to which they correspond. 2268 * This separation helps when the in-memory copy of an inode or 2269 * file block must be replaced. It also obviates the need to access 2270 * an inode or file page when simply updating (or de-allocating) 2271 * dependency structures. Lookup of newblk structures is needed to 2272 * find newly allocated blocks when trying to associate them with 2273 * their allocdirect or allocindir structure. 2274 * 2275 * The lookup routines optionally create and hash a new instance when 2276 * an existing entry is not found. The bmsafemap lookup routine always 2277 * allocates a new structure if an existing one is not found. 2278 */ 2279 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2280 2281 /* 2282 * Structures and routines associated with pagedep caching. 2283 */ 2284 #define PAGEDEP_HASH(ump, inum, lbn) \ 2285 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2286 2287 static int 2288 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2289 struct pagedep_hashhead *pagedephd; 2290 ino_t ino; 2291 ufs_lbn_t lbn; 2292 struct pagedep **pagedeppp; 2293 { 2294 struct pagedep *pagedep; 2295 2296 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2297 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2298 *pagedeppp = pagedep; 2299 return (1); 2300 } 2301 } 2302 *pagedeppp = NULL; 2303 return (0); 2304 } 2305 /* 2306 * Look up a pagedep. Return 1 if found, 0 otherwise. 2307 * If not found, allocate if DEPALLOC flag is passed. 2308 * Found or allocated entry is returned in pagedeppp. 2309 */ 2310 static int 2311 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2312 struct mount *mp; 2313 struct buf *bp; 2314 ino_t ino; 2315 ufs_lbn_t lbn; 2316 int flags; 2317 struct pagedep **pagedeppp; 2318 { 2319 struct pagedep *pagedep; 2320 struct pagedep_hashhead *pagedephd; 2321 struct worklist *wk; 2322 struct ufsmount *ump; 2323 int ret; 2324 int i; 2325 2326 ump = VFSTOUFS(mp); 2327 LOCK_OWNED(ump); 2328 if (bp) { 2329 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2330 if (wk->wk_type == D_PAGEDEP) { 2331 *pagedeppp = WK_PAGEDEP(wk); 2332 return (1); 2333 } 2334 } 2335 } 2336 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2337 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2338 if (ret) { 2339 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2340 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2341 return (1); 2342 } 2343 if ((flags & DEPALLOC) == 0) 2344 return (0); 2345 FREE_LOCK(ump); 2346 pagedep = malloc(sizeof(struct pagedep), 2347 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2348 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2349 ACQUIRE_LOCK(ump); 2350 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2351 if (*pagedeppp) { 2352 /* 2353 * This should never happen since we only create pagedeps 2354 * with the vnode lock held. Could be an assert. 2355 */ 2356 WORKITEM_FREE(pagedep, D_PAGEDEP); 2357 return (ret); 2358 } 2359 pagedep->pd_ino = ino; 2360 pagedep->pd_lbn = lbn; 2361 LIST_INIT(&pagedep->pd_dirremhd); 2362 LIST_INIT(&pagedep->pd_pendinghd); 2363 for (i = 0; i < DAHASHSZ; i++) 2364 LIST_INIT(&pagedep->pd_diraddhd[i]); 2365 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2366 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2367 *pagedeppp = pagedep; 2368 return (0); 2369 } 2370 2371 /* 2372 * Structures and routines associated with inodedep caching. 2373 */ 2374 #define INODEDEP_HASH(ump, inum) \ 2375 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2376 2377 static int 2378 inodedep_find(inodedephd, inum, inodedeppp) 2379 struct inodedep_hashhead *inodedephd; 2380 ino_t inum; 2381 struct inodedep **inodedeppp; 2382 { 2383 struct inodedep *inodedep; 2384 2385 LIST_FOREACH(inodedep, inodedephd, id_hash) 2386 if (inum == inodedep->id_ino) 2387 break; 2388 if (inodedep) { 2389 *inodedeppp = inodedep; 2390 return (1); 2391 } 2392 *inodedeppp = NULL; 2393 2394 return (0); 2395 } 2396 /* 2397 * Look up an inodedep. Return 1 if found, 0 if not found. 2398 * If not found, allocate if DEPALLOC flag is passed. 2399 * Found or allocated entry is returned in inodedeppp. 2400 */ 2401 static int 2402 inodedep_lookup(mp, inum, flags, inodedeppp) 2403 struct mount *mp; 2404 ino_t inum; 2405 int flags; 2406 struct inodedep **inodedeppp; 2407 { 2408 struct inodedep *inodedep; 2409 struct inodedep_hashhead *inodedephd; 2410 struct ufsmount *ump; 2411 struct fs *fs; 2412 2413 ump = VFSTOUFS(mp); 2414 LOCK_OWNED(ump); 2415 fs = ump->um_fs; 2416 inodedephd = INODEDEP_HASH(ump, inum); 2417 2418 if (inodedep_find(inodedephd, inum, inodedeppp)) 2419 return (1); 2420 if ((flags & DEPALLOC) == 0) 2421 return (0); 2422 /* 2423 * If the system is over its limit and our filesystem is 2424 * responsible for more than our share of that usage and 2425 * we are not in a rush, request some inodedep cleanup. 2426 */ 2427 if (softdep_excess_items(ump, D_INODEDEP)) 2428 schedule_cleanup(mp); 2429 else 2430 FREE_LOCK(ump); 2431 inodedep = malloc(sizeof(struct inodedep), 2432 M_INODEDEP, M_SOFTDEP_FLAGS); 2433 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2434 ACQUIRE_LOCK(ump); 2435 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2436 WORKITEM_FREE(inodedep, D_INODEDEP); 2437 return (1); 2438 } 2439 inodedep->id_fs = fs; 2440 inodedep->id_ino = inum; 2441 inodedep->id_state = ALLCOMPLETE; 2442 inodedep->id_nlinkdelta = 0; 2443 inodedep->id_nlinkwrote = -1; 2444 inodedep->id_savedino1 = NULL; 2445 inodedep->id_savedsize = -1; 2446 inodedep->id_savedextsize = -1; 2447 inodedep->id_savednlink = -1; 2448 inodedep->id_bmsafemap = NULL; 2449 inodedep->id_mkdiradd = NULL; 2450 LIST_INIT(&inodedep->id_dirremhd); 2451 LIST_INIT(&inodedep->id_pendinghd); 2452 LIST_INIT(&inodedep->id_inowait); 2453 LIST_INIT(&inodedep->id_bufwait); 2454 TAILQ_INIT(&inodedep->id_inoreflst); 2455 TAILQ_INIT(&inodedep->id_inoupdt); 2456 TAILQ_INIT(&inodedep->id_newinoupdt); 2457 TAILQ_INIT(&inodedep->id_extupdt); 2458 TAILQ_INIT(&inodedep->id_newextupdt); 2459 TAILQ_INIT(&inodedep->id_freeblklst); 2460 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2461 *inodedeppp = inodedep; 2462 return (0); 2463 } 2464 2465 /* 2466 * Structures and routines associated with newblk caching. 2467 */ 2468 #define NEWBLK_HASH(ump, inum) \ 2469 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2470 2471 static int 2472 newblk_find(newblkhd, newblkno, flags, newblkpp) 2473 struct newblk_hashhead *newblkhd; 2474 ufs2_daddr_t newblkno; 2475 int flags; 2476 struct newblk **newblkpp; 2477 { 2478 struct newblk *newblk; 2479 2480 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2481 if (newblkno != newblk->nb_newblkno) 2482 continue; 2483 /* 2484 * If we're creating a new dependency don't match those that 2485 * have already been converted to allocdirects. This is for 2486 * a frag extend. 2487 */ 2488 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2489 continue; 2490 break; 2491 } 2492 if (newblk) { 2493 *newblkpp = newblk; 2494 return (1); 2495 } 2496 *newblkpp = NULL; 2497 return (0); 2498 } 2499 2500 /* 2501 * Look up a newblk. Return 1 if found, 0 if not found. 2502 * If not found, allocate if DEPALLOC flag is passed. 2503 * Found or allocated entry is returned in newblkpp. 2504 */ 2505 static int 2506 newblk_lookup(mp, newblkno, flags, newblkpp) 2507 struct mount *mp; 2508 ufs2_daddr_t newblkno; 2509 int flags; 2510 struct newblk **newblkpp; 2511 { 2512 struct newblk *newblk; 2513 struct newblk_hashhead *newblkhd; 2514 struct ufsmount *ump; 2515 2516 ump = VFSTOUFS(mp); 2517 LOCK_OWNED(ump); 2518 newblkhd = NEWBLK_HASH(ump, newblkno); 2519 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2520 return (1); 2521 if ((flags & DEPALLOC) == 0) 2522 return (0); 2523 if (softdep_excess_items(ump, D_NEWBLK) || 2524 softdep_excess_items(ump, D_ALLOCDIRECT) || 2525 softdep_excess_items(ump, D_ALLOCINDIR)) 2526 schedule_cleanup(mp); 2527 else 2528 FREE_LOCK(ump); 2529 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2530 M_SOFTDEP_FLAGS | M_ZERO); 2531 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2532 ACQUIRE_LOCK(ump); 2533 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2534 WORKITEM_FREE(newblk, D_NEWBLK); 2535 return (1); 2536 } 2537 newblk->nb_freefrag = NULL; 2538 LIST_INIT(&newblk->nb_indirdeps); 2539 LIST_INIT(&newblk->nb_newdirblk); 2540 LIST_INIT(&newblk->nb_jwork); 2541 newblk->nb_state = ATTACHED; 2542 newblk->nb_newblkno = newblkno; 2543 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2544 *newblkpp = newblk; 2545 return (0); 2546 } 2547 2548 /* 2549 * Structures and routines associated with freed indirect block caching. 2550 */ 2551 #define INDIR_HASH(ump, blkno) \ 2552 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2553 2554 /* 2555 * Lookup an indirect block in the indir hash table. The freework is 2556 * removed and potentially freed. The caller must do a blocking journal 2557 * write before writing to the blkno. 2558 */ 2559 static int 2560 indirblk_lookup(mp, blkno) 2561 struct mount *mp; 2562 ufs2_daddr_t blkno; 2563 { 2564 struct freework *freework; 2565 struct indir_hashhead *wkhd; 2566 struct ufsmount *ump; 2567 2568 ump = VFSTOUFS(mp); 2569 wkhd = INDIR_HASH(ump, blkno); 2570 TAILQ_FOREACH(freework, wkhd, fw_next) { 2571 if (freework->fw_blkno != blkno) 2572 continue; 2573 indirblk_remove(freework); 2574 return (1); 2575 } 2576 return (0); 2577 } 2578 2579 /* 2580 * Insert an indirect block represented by freework into the indirblk 2581 * hash table so that it may prevent the block from being re-used prior 2582 * to the journal being written. 2583 */ 2584 static void 2585 indirblk_insert(freework) 2586 struct freework *freework; 2587 { 2588 struct jblocks *jblocks; 2589 struct jseg *jseg; 2590 struct ufsmount *ump; 2591 2592 ump = VFSTOUFS(freework->fw_list.wk_mp); 2593 jblocks = ump->softdep_jblocks; 2594 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2595 if (jseg == NULL) 2596 return; 2597 2598 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2599 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2600 fw_next); 2601 freework->fw_state &= ~DEPCOMPLETE; 2602 } 2603 2604 static void 2605 indirblk_remove(freework) 2606 struct freework *freework; 2607 { 2608 struct ufsmount *ump; 2609 2610 ump = VFSTOUFS(freework->fw_list.wk_mp); 2611 LIST_REMOVE(freework, fw_segs); 2612 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2613 freework->fw_state |= DEPCOMPLETE; 2614 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2615 WORKITEM_FREE(freework, D_FREEWORK); 2616 } 2617 2618 /* 2619 * Executed during filesystem system initialization before 2620 * mounting any filesystems. 2621 */ 2622 void 2623 softdep_initialize() 2624 { 2625 2626 TAILQ_INIT(&softdepmounts); 2627 #ifdef __LP64__ 2628 max_softdeps = desiredvnodes * 4; 2629 #else 2630 max_softdeps = desiredvnodes * 2; 2631 #endif 2632 2633 /* initialise bioops hack */ 2634 bioops.io_start = softdep_disk_io_initiation; 2635 bioops.io_complete = softdep_disk_write_complete; 2636 bioops.io_deallocate = softdep_deallocate_dependencies; 2637 bioops.io_countdeps = softdep_count_dependencies; 2638 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2639 2640 /* Initialize the callout with an mtx. */ 2641 callout_init_mtx(&softdep_callout, &lk, 0); 2642 } 2643 2644 /* 2645 * Executed after all filesystems have been unmounted during 2646 * filesystem module unload. 2647 */ 2648 void 2649 softdep_uninitialize() 2650 { 2651 2652 /* clear bioops hack */ 2653 bioops.io_start = NULL; 2654 bioops.io_complete = NULL; 2655 bioops.io_deallocate = NULL; 2656 bioops.io_countdeps = NULL; 2657 softdep_ast_cleanup = NULL; 2658 2659 callout_drain(&softdep_callout); 2660 } 2661 2662 /* 2663 * Called at mount time to notify the dependency code that a 2664 * filesystem wishes to use it. 2665 */ 2666 int 2667 softdep_mount(devvp, mp, fs, cred) 2668 struct vnode *devvp; 2669 struct mount *mp; 2670 struct fs *fs; 2671 struct ucred *cred; 2672 { 2673 struct csum_total cstotal; 2674 struct mount_softdeps *sdp; 2675 struct ufsmount *ump; 2676 struct cg *cgp; 2677 struct buf *bp; 2678 u_int cyl, i; 2679 int error; 2680 2681 ump = VFSTOUFS(mp); 2682 2683 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2684 M_WAITOK | M_ZERO); 2685 rw_init(&sdp->sd_fslock, "SUrw"); 2686 sdp->sd_ump = ump; 2687 LIST_INIT(&sdp->sd_workitem_pending); 2688 LIST_INIT(&sdp->sd_journal_pending); 2689 TAILQ_INIT(&sdp->sd_unlinked); 2690 LIST_INIT(&sdp->sd_dirtycg); 2691 sdp->sd_worklist_tail = NULL; 2692 sdp->sd_on_worklist = 0; 2693 sdp->sd_deps = 0; 2694 LIST_INIT(&sdp->sd_mkdirlisthd); 2695 sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP, 2696 &sdp->sd_pdhashsize); 2697 sdp->sd_pdnextclean = 0; 2698 sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP, 2699 &sdp->sd_idhashsize); 2700 sdp->sd_idnextclean = 0; 2701 sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK, 2702 &sdp->sd_newblkhashsize); 2703 sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize); 2704 i = 1 << (ffs(desiredvnodes / 10) - 1); 2705 sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead), 2706 M_FREEWORK, M_WAITOK); 2707 sdp->sd_indirhashsize = i - 1; 2708 for (i = 0; i <= sdp->sd_indirhashsize; i++) 2709 TAILQ_INIT(&sdp->sd_indirhash[i]); 2710 for (i = 0; i <= D_LAST; i++) 2711 LIST_INIT(&sdp->sd_alldeps[i]); 2712 ACQUIRE_GBLLOCK(&lk); 2713 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2714 FREE_GBLLOCK(&lk); 2715 2716 ump->um_softdep = sdp; 2717 MNT_ILOCK(mp); 2718 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2719 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2720 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2721 MNTK_SOFTDEP | MNTK_NOASYNC; 2722 } 2723 MNT_IUNLOCK(mp); 2724 2725 if ((fs->fs_flags & FS_SUJ) && 2726 (error = journal_mount(mp, fs, cred)) != 0) { 2727 printf("Failed to start journal: %d\n", error); 2728 softdep_unmount(mp); 2729 return (error); 2730 } 2731 /* 2732 * Start our flushing thread in the bufdaemon process. 2733 */ 2734 ACQUIRE_LOCK(ump); 2735 ump->softdep_flags |= FLUSH_STARTING; 2736 FREE_LOCK(ump); 2737 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2738 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2739 mp->mnt_stat.f_mntonname); 2740 ACQUIRE_LOCK(ump); 2741 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2742 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2743 hz / 2); 2744 } 2745 FREE_LOCK(ump); 2746 /* 2747 * When doing soft updates, the counters in the 2748 * superblock may have gotten out of sync. Recomputation 2749 * can take a long time and can be deferred for background 2750 * fsck. However, the old behavior of scanning the cylinder 2751 * groups and recalculating them at mount time is available 2752 * by setting vfs.ffs.compute_summary_at_mount to one. 2753 */ 2754 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2755 return (0); 2756 bzero(&cstotal, sizeof cstotal); 2757 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2758 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2759 fs->fs_cgsize, cred, &bp)) != 0) { 2760 brelse(bp); 2761 softdep_unmount(mp); 2762 return (error); 2763 } 2764 cgp = (struct cg *)bp->b_data; 2765 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2766 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2767 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2768 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2769 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2770 brelse(bp); 2771 } 2772 #ifdef INVARIANTS 2773 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2774 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2775 #endif 2776 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2777 return (0); 2778 } 2779 2780 void 2781 softdep_unmount(mp) 2782 struct mount *mp; 2783 { 2784 struct ufsmount *ump; 2785 struct mount_softdeps *ums; 2786 2787 ump = VFSTOUFS(mp); 2788 KASSERT(ump->um_softdep != NULL, 2789 ("softdep_unmount called on non-softdep filesystem")); 2790 MNT_ILOCK(mp); 2791 mp->mnt_flag &= ~MNT_SOFTDEP; 2792 if ((mp->mnt_flag & MNT_SUJ) == 0) { 2793 MNT_IUNLOCK(mp); 2794 } else { 2795 mp->mnt_flag &= ~MNT_SUJ; 2796 MNT_IUNLOCK(mp); 2797 journal_unmount(ump); 2798 } 2799 /* 2800 * Shut down our flushing thread. Check for NULL is if 2801 * softdep_mount errors out before the thread has been created. 2802 */ 2803 if (ump->softdep_flushtd != NULL) { 2804 ACQUIRE_LOCK(ump); 2805 ump->softdep_flags |= FLUSH_EXIT; 2806 wakeup(&ump->softdep_flushtd); 2807 while ((ump->softdep_flags & FLUSH_EXIT) != 0) { 2808 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM, 2809 "sdwait", 0); 2810 } 2811 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2812 ("Thread shutdown failed")); 2813 FREE_LOCK(ump); 2814 } 2815 2816 /* 2817 * We are no longer have softdep structure attached to ump. 2818 */ 2819 ums = ump->um_softdep; 2820 ACQUIRE_GBLLOCK(&lk); 2821 TAILQ_REMOVE(&softdepmounts, ums, sd_next); 2822 FREE_GBLLOCK(&lk); 2823 ump->um_softdep = NULL; 2824 2825 KASSERT(ums->sd_on_journal == 0, 2826 ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal)); 2827 KASSERT(ums->sd_on_worklist == 0, 2828 ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist)); 2829 KASSERT(ums->sd_deps == 0, 2830 ("ump %p ums %p deps %d", ump, ums, ums->sd_deps)); 2831 2832 /* 2833 * Free up our resources. 2834 */ 2835 rw_destroy(&ums->sd_fslock); 2836 hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize); 2837 hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize); 2838 hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize); 2839 hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize); 2840 free(ums->sd_indirhash, M_FREEWORK); 2841 #ifdef INVARIANTS 2842 for (int i = 0; i <= D_LAST; i++) { 2843 KASSERT(ums->sd_curdeps[i] == 0, 2844 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2845 TYPENAME(i), ums->sd_curdeps[i])); 2846 KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]), 2847 ("Unmount %s: Dep type %s not empty (%p)", 2848 ump->um_fs->fs_fsmnt, 2849 TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i]))); 2850 } 2851 #endif 2852 free(ums, M_MOUNTDATA); 2853 } 2854 2855 static struct jblocks * 2856 jblocks_create(void) 2857 { 2858 struct jblocks *jblocks; 2859 2860 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2861 TAILQ_INIT(&jblocks->jb_segs); 2862 jblocks->jb_avail = 10; 2863 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2864 M_JBLOCKS, M_WAITOK | M_ZERO); 2865 2866 return (jblocks); 2867 } 2868 2869 static ufs2_daddr_t 2870 jblocks_alloc(jblocks, bytes, actual) 2871 struct jblocks *jblocks; 2872 int bytes; 2873 int *actual; 2874 { 2875 ufs2_daddr_t daddr; 2876 struct jextent *jext; 2877 int freecnt; 2878 int blocks; 2879 2880 blocks = bytes / DEV_BSIZE; 2881 jext = &jblocks->jb_extent[jblocks->jb_head]; 2882 freecnt = jext->je_blocks - jblocks->jb_off; 2883 if (freecnt == 0) { 2884 jblocks->jb_off = 0; 2885 if (++jblocks->jb_head > jblocks->jb_used) 2886 jblocks->jb_head = 0; 2887 jext = &jblocks->jb_extent[jblocks->jb_head]; 2888 freecnt = jext->je_blocks; 2889 } 2890 if (freecnt > blocks) 2891 freecnt = blocks; 2892 *actual = freecnt * DEV_BSIZE; 2893 daddr = jext->je_daddr + jblocks->jb_off; 2894 jblocks->jb_off += freecnt; 2895 jblocks->jb_free -= freecnt; 2896 2897 return (daddr); 2898 } 2899 2900 static void 2901 jblocks_free(jblocks, mp, bytes) 2902 struct jblocks *jblocks; 2903 struct mount *mp; 2904 int bytes; 2905 { 2906 2907 LOCK_OWNED(VFSTOUFS(mp)); 2908 jblocks->jb_free += bytes / DEV_BSIZE; 2909 if (jblocks->jb_suspended) 2910 worklist_speedup(mp); 2911 wakeup(jblocks); 2912 } 2913 2914 static void 2915 jblocks_destroy(jblocks) 2916 struct jblocks *jblocks; 2917 { 2918 2919 if (jblocks->jb_extent) 2920 free(jblocks->jb_extent, M_JBLOCKS); 2921 free(jblocks, M_JBLOCKS); 2922 } 2923 2924 static void 2925 jblocks_add(jblocks, daddr, blocks) 2926 struct jblocks *jblocks; 2927 ufs2_daddr_t daddr; 2928 int blocks; 2929 { 2930 struct jextent *jext; 2931 2932 jblocks->jb_blocks += blocks; 2933 jblocks->jb_free += blocks; 2934 jext = &jblocks->jb_extent[jblocks->jb_used]; 2935 /* Adding the first block. */ 2936 if (jext->je_daddr == 0) { 2937 jext->je_daddr = daddr; 2938 jext->je_blocks = blocks; 2939 return; 2940 } 2941 /* Extending the last extent. */ 2942 if (jext->je_daddr + jext->je_blocks == daddr) { 2943 jext->je_blocks += blocks; 2944 return; 2945 } 2946 /* Adding a new extent. */ 2947 if (++jblocks->jb_used == jblocks->jb_avail) { 2948 jblocks->jb_avail *= 2; 2949 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2950 M_JBLOCKS, M_WAITOK | M_ZERO); 2951 memcpy(jext, jblocks->jb_extent, 2952 sizeof(struct jextent) * jblocks->jb_used); 2953 free(jblocks->jb_extent, M_JBLOCKS); 2954 jblocks->jb_extent = jext; 2955 } 2956 jext = &jblocks->jb_extent[jblocks->jb_used]; 2957 jext->je_daddr = daddr; 2958 jext->je_blocks = blocks; 2959 return; 2960 } 2961 2962 int 2963 softdep_journal_lookup(mp, vpp) 2964 struct mount *mp; 2965 struct vnode **vpp; 2966 { 2967 struct componentname cnp; 2968 struct vnode *dvp; 2969 ino_t sujournal; 2970 int error; 2971 2972 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2973 if (error) 2974 return (error); 2975 bzero(&cnp, sizeof(cnp)); 2976 cnp.cn_nameiop = LOOKUP; 2977 cnp.cn_flags = ISLASTCN; 2978 cnp.cn_thread = curthread; 2979 cnp.cn_cred = curthread->td_ucred; 2980 cnp.cn_pnbuf = SUJ_FILE; 2981 cnp.cn_nameptr = SUJ_FILE; 2982 cnp.cn_namelen = strlen(SUJ_FILE); 2983 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2984 vput(dvp); 2985 if (error != 0) 2986 return (error); 2987 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2988 return (error); 2989 } 2990 2991 /* 2992 * Open and verify the journal file. 2993 */ 2994 static int 2995 journal_mount(mp, fs, cred) 2996 struct mount *mp; 2997 struct fs *fs; 2998 struct ucred *cred; 2999 { 3000 struct jblocks *jblocks; 3001 struct ufsmount *ump; 3002 struct vnode *vp; 3003 struct inode *ip; 3004 ufs2_daddr_t blkno; 3005 int bcount; 3006 int error; 3007 int i; 3008 3009 ump = VFSTOUFS(mp); 3010 ump->softdep_journal_tail = NULL; 3011 ump->softdep_on_journal = 0; 3012 ump->softdep_accdeps = 0; 3013 ump->softdep_req = 0; 3014 ump->softdep_jblocks = NULL; 3015 error = softdep_journal_lookup(mp, &vp); 3016 if (error != 0) { 3017 printf("Failed to find journal. Use tunefs to create one\n"); 3018 return (error); 3019 } 3020 ip = VTOI(vp); 3021 if (ip->i_size < SUJ_MIN) { 3022 error = ENOSPC; 3023 goto out; 3024 } 3025 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 3026 jblocks = jblocks_create(); 3027 for (i = 0; i < bcount; i++) { 3028 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 3029 if (error) 3030 break; 3031 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 3032 } 3033 if (error) { 3034 jblocks_destroy(jblocks); 3035 goto out; 3036 } 3037 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3038 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3039 ump->softdep_jblocks = jblocks; 3040 3041 MNT_ILOCK(mp); 3042 mp->mnt_flag |= MNT_SUJ; 3043 MNT_IUNLOCK(mp); 3044 3045 /* 3046 * Only validate the journal contents if the 3047 * filesystem is clean, otherwise we write the logs 3048 * but they'll never be used. If the filesystem was 3049 * still dirty when we mounted it the journal is 3050 * invalid and a new journal can only be valid if it 3051 * starts from a clean mount. 3052 */ 3053 if (fs->fs_clean) { 3054 DIP_SET(ip, i_modrev, fs->fs_mtime); 3055 ip->i_flags |= IN_MODIFIED; 3056 ffs_update(vp, 1); 3057 } 3058 out: 3059 vput(vp); 3060 return (error); 3061 } 3062 3063 static void 3064 journal_unmount(ump) 3065 struct ufsmount *ump; 3066 { 3067 3068 if (ump->softdep_jblocks) 3069 jblocks_destroy(ump->softdep_jblocks); 3070 ump->softdep_jblocks = NULL; 3071 } 3072 3073 /* 3074 * Called when a journal record is ready to be written. Space is allocated 3075 * and the journal entry is created when the journal is flushed to stable 3076 * store. 3077 */ 3078 static void 3079 add_to_journal(wk) 3080 struct worklist *wk; 3081 { 3082 struct ufsmount *ump; 3083 3084 ump = VFSTOUFS(wk->wk_mp); 3085 LOCK_OWNED(ump); 3086 if (wk->wk_state & ONWORKLIST) 3087 panic("add_to_journal: %s(0x%X) already on list", 3088 TYPENAME(wk->wk_type), wk->wk_state); 3089 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3090 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3091 ump->softdep_jblocks->jb_age = ticks; 3092 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3093 } else 3094 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3095 ump->softdep_journal_tail = wk; 3096 ump->softdep_on_journal += 1; 3097 } 3098 3099 /* 3100 * Remove an arbitrary item for the journal worklist maintain the tail 3101 * pointer. This happens when a new operation obviates the need to 3102 * journal an old operation. 3103 */ 3104 static void 3105 remove_from_journal(wk) 3106 struct worklist *wk; 3107 { 3108 struct ufsmount *ump; 3109 3110 ump = VFSTOUFS(wk->wk_mp); 3111 LOCK_OWNED(ump); 3112 #ifdef INVARIANTS 3113 { 3114 struct worklist *wkn; 3115 3116 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3117 if (wkn == wk) 3118 break; 3119 if (wkn == NULL) 3120 panic("remove_from_journal: %p is not in journal", wk); 3121 } 3122 #endif 3123 /* 3124 * We emulate a TAILQ to save space in most structures which do not 3125 * require TAILQ semantics. Here we must update the tail position 3126 * when removing the tail which is not the final entry. This works 3127 * only if the worklist linkage are at the beginning of the structure. 3128 */ 3129 if (ump->softdep_journal_tail == wk) 3130 ump->softdep_journal_tail = 3131 (struct worklist *)wk->wk_list.le_prev; 3132 WORKLIST_REMOVE(wk); 3133 ump->softdep_on_journal -= 1; 3134 } 3135 3136 /* 3137 * Check for journal space as well as dependency limits so the prelink 3138 * code can throttle both journaled and non-journaled filesystems. 3139 * Threshold is 0 for low and 1 for min. 3140 */ 3141 static int 3142 journal_space(ump, thresh) 3143 struct ufsmount *ump; 3144 int thresh; 3145 { 3146 struct jblocks *jblocks; 3147 int limit, avail; 3148 3149 jblocks = ump->softdep_jblocks; 3150 if (jblocks == NULL) 3151 return (1); 3152 /* 3153 * We use a tighter restriction here to prevent request_cleanup() 3154 * running in threads from running into locks we currently hold. 3155 * We have to be over the limit and our filesystem has to be 3156 * responsible for more than our share of that usage. 3157 */ 3158 limit = (max_softdeps / 10) * 9; 3159 if (dep_current[D_INODEDEP] > limit && 3160 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3161 return (0); 3162 if (thresh) 3163 thresh = jblocks->jb_min; 3164 else 3165 thresh = jblocks->jb_low; 3166 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3167 avail = jblocks->jb_free - avail; 3168 3169 return (avail > thresh); 3170 } 3171 3172 static void 3173 journal_suspend(ump) 3174 struct ufsmount *ump; 3175 { 3176 struct jblocks *jblocks; 3177 struct mount *mp; 3178 bool set; 3179 3180 mp = UFSTOVFS(ump); 3181 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3182 return; 3183 3184 jblocks = ump->softdep_jblocks; 3185 vfs_op_enter(mp); 3186 set = false; 3187 MNT_ILOCK(mp); 3188 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3189 stat_journal_min++; 3190 mp->mnt_kern_flag |= MNTK_SUSPEND; 3191 mp->mnt_susp_owner = ump->softdep_flushtd; 3192 set = true; 3193 } 3194 jblocks->jb_suspended = 1; 3195 MNT_IUNLOCK(mp); 3196 if (!set) 3197 vfs_op_exit(mp); 3198 } 3199 3200 static int 3201 journal_unsuspend(struct ufsmount *ump) 3202 { 3203 struct jblocks *jblocks; 3204 struct mount *mp; 3205 3206 mp = UFSTOVFS(ump); 3207 jblocks = ump->softdep_jblocks; 3208 3209 if (jblocks != NULL && jblocks->jb_suspended && 3210 journal_space(ump, jblocks->jb_min)) { 3211 jblocks->jb_suspended = 0; 3212 FREE_LOCK(ump); 3213 mp->mnt_susp_owner = curthread; 3214 vfs_write_resume(mp, 0); 3215 ACQUIRE_LOCK(ump); 3216 return (1); 3217 } 3218 return (0); 3219 } 3220 3221 static void 3222 journal_check_space(struct ufsmount *ump) 3223 { 3224 struct mount *mp; 3225 3226 LOCK_OWNED(ump); 3227 3228 if (journal_space(ump, 0) == 0) { 3229 softdep_speedup(ump); 3230 mp = UFSTOVFS(ump); 3231 FREE_LOCK(ump); 3232 VFS_SYNC(mp, MNT_NOWAIT); 3233 ffs_sbupdate(ump, MNT_WAIT, 0); 3234 ACQUIRE_LOCK(ump); 3235 if (journal_space(ump, 1) == 0) 3236 journal_suspend(ump); 3237 } 3238 } 3239 3240 /* 3241 * Called before any allocation function to be certain that there is 3242 * sufficient space in the journal prior to creating any new records. 3243 * Since in the case of block allocation we may have multiple locked 3244 * buffers at the time of the actual allocation we can not block 3245 * when the journal records are created. Doing so would create a deadlock 3246 * if any of these buffers needed to be flushed to reclaim space. Instead 3247 * we require a sufficiently large amount of available space such that 3248 * each thread in the system could have passed this allocation check and 3249 * still have sufficient free space. With 20% of a minimum journal size 3250 * of 1MB we have 6553 records available. 3251 */ 3252 int 3253 softdep_prealloc(vp, waitok) 3254 struct vnode *vp; 3255 int waitok; 3256 { 3257 struct ufsmount *ump; 3258 3259 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3260 ("softdep_prealloc called on non-softdep filesystem")); 3261 /* 3262 * Nothing to do if we are not running journaled soft updates. 3263 * If we currently hold the snapshot lock, we must avoid 3264 * handling other resources that could cause deadlock. Do not 3265 * touch quotas vnode since it is typically recursed with 3266 * other vnode locks held. 3267 */ 3268 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3269 (vp->v_vflag & VV_SYSTEM) != 0) 3270 return (0); 3271 ump = VFSTOUFS(vp->v_mount); 3272 ACQUIRE_LOCK(ump); 3273 if (journal_space(ump, 0)) { 3274 FREE_LOCK(ump); 3275 return (0); 3276 } 3277 stat_journal_low++; 3278 FREE_LOCK(ump); 3279 if (waitok == MNT_NOWAIT) 3280 return (ENOSPC); 3281 /* 3282 * Attempt to sync this vnode once to flush any journal 3283 * work attached to it. 3284 */ 3285 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3286 ffs_syncvnode(vp, waitok, 0); 3287 ACQUIRE_LOCK(ump); 3288 process_removes(vp); 3289 process_truncates(vp); 3290 journal_check_space(ump); 3291 FREE_LOCK(ump); 3292 3293 return (0); 3294 } 3295 3296 /* 3297 * Try hard to sync all data and metadata for the vnode, and workitems 3298 * flushing which might conflict with the vnode lock. This is a 3299 * helper for softdep_prerename(). 3300 */ 3301 static int 3302 softdep_prerename_vnode(ump, vp) 3303 struct ufsmount *ump; 3304 struct vnode *vp; 3305 { 3306 int error; 3307 3308 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3309 if (vp->v_data == NULL) 3310 return (0); 3311 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3312 if (error != 0) 3313 return (error); 3314 ACQUIRE_LOCK(ump); 3315 process_removes(vp); 3316 process_truncates(vp); 3317 FREE_LOCK(ump); 3318 return (0); 3319 } 3320 3321 /* 3322 * Must be called from VOP_RENAME() after all vnodes are locked. 3323 * Ensures that there is enough journal space for rename. It is 3324 * sufficiently different from softdep_prelink() by having to handle 3325 * four vnodes. 3326 */ 3327 int 3328 softdep_prerename(fdvp, fvp, tdvp, tvp) 3329 struct vnode *fdvp; 3330 struct vnode *fvp; 3331 struct vnode *tdvp; 3332 struct vnode *tvp; 3333 { 3334 struct ufsmount *ump; 3335 int error; 3336 3337 ump = VFSTOUFS(fdvp->v_mount); 3338 3339 if (journal_space(ump, 0)) 3340 return (0); 3341 3342 VOP_UNLOCK(tdvp); 3343 VOP_UNLOCK(fvp); 3344 if (tvp != NULL && tvp != tdvp) 3345 VOP_UNLOCK(tvp); 3346 3347 error = softdep_prerename_vnode(ump, fdvp); 3348 VOP_UNLOCK(fdvp); 3349 if (error != 0) 3350 return (error); 3351 3352 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3353 error = softdep_prerename_vnode(ump, fvp); 3354 VOP_UNLOCK(fvp); 3355 if (error != 0) 3356 return (error); 3357 3358 if (tdvp != fdvp) { 3359 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3360 error = softdep_prerename_vnode(ump, tdvp); 3361 VOP_UNLOCK(tdvp); 3362 if (error != 0) 3363 return (error); 3364 } 3365 3366 if (tvp != fvp && tvp != NULL) { 3367 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3368 error = softdep_prerename_vnode(ump, tvp); 3369 VOP_UNLOCK(tvp); 3370 if (error != 0) 3371 return (error); 3372 } 3373 3374 ACQUIRE_LOCK(ump); 3375 softdep_speedup(ump); 3376 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3377 journal_check_space(ump); 3378 FREE_LOCK(ump); 3379 return (ERELOOKUP); 3380 } 3381 3382 /* 3383 * Before adjusting a link count on a vnode verify that we have sufficient 3384 * journal space. If not, process operations that depend on the currently 3385 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3386 * and softdep flush threads can not acquire these locks to reclaim space. 3387 * 3388 * Returns 0 if all owned locks are still valid and were not dropped 3389 * in the process, in other case it returns either an error from sync, 3390 * or ERELOOKUP if any of the locks were re-acquired. In the later 3391 * case, the state of the vnodes cannot be relied upon and our VFS 3392 * syscall must be restarted at top level from the lookup. 3393 */ 3394 int 3395 softdep_prelink(dvp, vp, cnp) 3396 struct vnode *dvp; 3397 struct vnode *vp; 3398 struct componentname *cnp; 3399 { 3400 struct ufsmount *ump; 3401 struct nameidata *ndp; 3402 3403 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3404 if (vp != NULL) 3405 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3406 ump = VFSTOUFS(dvp->v_mount); 3407 3408 /* 3409 * Nothing to do if we have sufficient journal space. We skip 3410 * flushing when vp is a snapshot to avoid deadlock where 3411 * another thread is trying to update the inodeblock for dvp 3412 * and is waiting on snaplk that vp holds. 3413 */ 3414 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) 3415 return (0); 3416 3417 /* 3418 * Check if the journal space consumption can in theory be 3419 * accounted on dvp and vp. If the vnodes metadata was not 3420 * changed comparing with the previous round-trip into 3421 * softdep_prelink(), as indicated by the seqc generation 3422 * recorded in the nameidata, then there is no point in 3423 * starting the sync. 3424 */ 3425 ndp = __containerof(cnp, struct nameidata, ni_cnd); 3426 if (!seqc_in_modify(ndp->ni_dvp_seqc) && 3427 vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) && 3428 (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) && 3429 vn_seqc_consistent(vp, ndp->ni_vp_seqc)))) 3430 return (0); 3431 3432 stat_journal_low++; 3433 if (vp != NULL) { 3434 VOP_UNLOCK(dvp); 3435 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3436 vn_lock_pair(dvp, false, vp, true); 3437 if (dvp->v_data == NULL) 3438 goto out; 3439 } 3440 if (vp != NULL) 3441 VOP_UNLOCK(vp); 3442 ffs_syncvnode(dvp, MNT_WAIT, 0); 3443 /* Process vp before dvp as it may create .. removes. */ 3444 if (vp != NULL) { 3445 VOP_UNLOCK(dvp); 3446 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3447 if (vp->v_data == NULL) { 3448 vn_lock_pair(dvp, false, vp, true); 3449 goto out; 3450 } 3451 ACQUIRE_LOCK(ump); 3452 process_removes(vp); 3453 process_truncates(vp); 3454 FREE_LOCK(ump); 3455 VOP_UNLOCK(vp); 3456 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3457 if (dvp->v_data == NULL) { 3458 vn_lock_pair(dvp, true, vp, false); 3459 goto out; 3460 } 3461 } 3462 3463 ACQUIRE_LOCK(ump); 3464 process_removes(dvp); 3465 process_truncates(dvp); 3466 VOP_UNLOCK(dvp); 3467 softdep_speedup(ump); 3468 3469 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3470 journal_check_space(ump); 3471 FREE_LOCK(ump); 3472 3473 vn_lock_pair(dvp, false, vp, false); 3474 out: 3475 ndp->ni_dvp_seqc = vn_seqc_read_any(dvp); 3476 if (vp != NULL) 3477 ndp->ni_vp_seqc = vn_seqc_read_any(vp); 3478 return (ERELOOKUP); 3479 } 3480 3481 static void 3482 jseg_write(ump, jseg, data) 3483 struct ufsmount *ump; 3484 struct jseg *jseg; 3485 uint8_t *data; 3486 { 3487 struct jsegrec *rec; 3488 3489 rec = (struct jsegrec *)data; 3490 rec->jsr_seq = jseg->js_seq; 3491 rec->jsr_oldest = jseg->js_oldseq; 3492 rec->jsr_cnt = jseg->js_cnt; 3493 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3494 rec->jsr_crc = 0; 3495 rec->jsr_time = ump->um_fs->fs_mtime; 3496 } 3497 3498 static inline void 3499 inoref_write(inoref, jseg, rec) 3500 struct inoref *inoref; 3501 struct jseg *jseg; 3502 struct jrefrec *rec; 3503 { 3504 3505 inoref->if_jsegdep->jd_seg = jseg; 3506 rec->jr_ino = inoref->if_ino; 3507 rec->jr_parent = inoref->if_parent; 3508 rec->jr_nlink = inoref->if_nlink; 3509 rec->jr_mode = inoref->if_mode; 3510 rec->jr_diroff = inoref->if_diroff; 3511 } 3512 3513 static void 3514 jaddref_write(jaddref, jseg, data) 3515 struct jaddref *jaddref; 3516 struct jseg *jseg; 3517 uint8_t *data; 3518 { 3519 struct jrefrec *rec; 3520 3521 rec = (struct jrefrec *)data; 3522 rec->jr_op = JOP_ADDREF; 3523 inoref_write(&jaddref->ja_ref, jseg, rec); 3524 } 3525 3526 static void 3527 jremref_write(jremref, jseg, data) 3528 struct jremref *jremref; 3529 struct jseg *jseg; 3530 uint8_t *data; 3531 { 3532 struct jrefrec *rec; 3533 3534 rec = (struct jrefrec *)data; 3535 rec->jr_op = JOP_REMREF; 3536 inoref_write(&jremref->jr_ref, jseg, rec); 3537 } 3538 3539 static void 3540 jmvref_write(jmvref, jseg, data) 3541 struct jmvref *jmvref; 3542 struct jseg *jseg; 3543 uint8_t *data; 3544 { 3545 struct jmvrec *rec; 3546 3547 rec = (struct jmvrec *)data; 3548 rec->jm_op = JOP_MVREF; 3549 rec->jm_ino = jmvref->jm_ino; 3550 rec->jm_parent = jmvref->jm_parent; 3551 rec->jm_oldoff = jmvref->jm_oldoff; 3552 rec->jm_newoff = jmvref->jm_newoff; 3553 } 3554 3555 static void 3556 jnewblk_write(jnewblk, jseg, data) 3557 struct jnewblk *jnewblk; 3558 struct jseg *jseg; 3559 uint8_t *data; 3560 { 3561 struct jblkrec *rec; 3562 3563 jnewblk->jn_jsegdep->jd_seg = jseg; 3564 rec = (struct jblkrec *)data; 3565 rec->jb_op = JOP_NEWBLK; 3566 rec->jb_ino = jnewblk->jn_ino; 3567 rec->jb_blkno = jnewblk->jn_blkno; 3568 rec->jb_lbn = jnewblk->jn_lbn; 3569 rec->jb_frags = jnewblk->jn_frags; 3570 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3571 } 3572 3573 static void 3574 jfreeblk_write(jfreeblk, jseg, data) 3575 struct jfreeblk *jfreeblk; 3576 struct jseg *jseg; 3577 uint8_t *data; 3578 { 3579 struct jblkrec *rec; 3580 3581 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3582 rec = (struct jblkrec *)data; 3583 rec->jb_op = JOP_FREEBLK; 3584 rec->jb_ino = jfreeblk->jf_ino; 3585 rec->jb_blkno = jfreeblk->jf_blkno; 3586 rec->jb_lbn = jfreeblk->jf_lbn; 3587 rec->jb_frags = jfreeblk->jf_frags; 3588 rec->jb_oldfrags = 0; 3589 } 3590 3591 static void 3592 jfreefrag_write(jfreefrag, jseg, data) 3593 struct jfreefrag *jfreefrag; 3594 struct jseg *jseg; 3595 uint8_t *data; 3596 { 3597 struct jblkrec *rec; 3598 3599 jfreefrag->fr_jsegdep->jd_seg = jseg; 3600 rec = (struct jblkrec *)data; 3601 rec->jb_op = JOP_FREEBLK; 3602 rec->jb_ino = jfreefrag->fr_ino; 3603 rec->jb_blkno = jfreefrag->fr_blkno; 3604 rec->jb_lbn = jfreefrag->fr_lbn; 3605 rec->jb_frags = jfreefrag->fr_frags; 3606 rec->jb_oldfrags = 0; 3607 } 3608 3609 static void 3610 jtrunc_write(jtrunc, jseg, data) 3611 struct jtrunc *jtrunc; 3612 struct jseg *jseg; 3613 uint8_t *data; 3614 { 3615 struct jtrncrec *rec; 3616 3617 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3618 rec = (struct jtrncrec *)data; 3619 rec->jt_op = JOP_TRUNC; 3620 rec->jt_ino = jtrunc->jt_ino; 3621 rec->jt_size = jtrunc->jt_size; 3622 rec->jt_extsize = jtrunc->jt_extsize; 3623 } 3624 3625 static void 3626 jfsync_write(jfsync, jseg, data) 3627 struct jfsync *jfsync; 3628 struct jseg *jseg; 3629 uint8_t *data; 3630 { 3631 struct jtrncrec *rec; 3632 3633 rec = (struct jtrncrec *)data; 3634 rec->jt_op = JOP_SYNC; 3635 rec->jt_ino = jfsync->jfs_ino; 3636 rec->jt_size = jfsync->jfs_size; 3637 rec->jt_extsize = jfsync->jfs_extsize; 3638 } 3639 3640 static void 3641 softdep_flushjournal(mp) 3642 struct mount *mp; 3643 { 3644 struct jblocks *jblocks; 3645 struct ufsmount *ump; 3646 3647 if (MOUNTEDSUJ(mp) == 0) 3648 return; 3649 ump = VFSTOUFS(mp); 3650 jblocks = ump->softdep_jblocks; 3651 ACQUIRE_LOCK(ump); 3652 while (ump->softdep_on_journal) { 3653 jblocks->jb_needseg = 1; 3654 softdep_process_journal(mp, NULL, MNT_WAIT); 3655 } 3656 FREE_LOCK(ump); 3657 } 3658 3659 static void softdep_synchronize_completed(struct bio *); 3660 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3661 3662 static void 3663 softdep_synchronize_completed(bp) 3664 struct bio *bp; 3665 { 3666 struct jseg *oldest; 3667 struct jseg *jseg; 3668 struct ufsmount *ump; 3669 3670 /* 3671 * caller1 marks the last segment written before we issued the 3672 * synchronize cache. 3673 */ 3674 jseg = bp->bio_caller1; 3675 if (jseg == NULL) { 3676 g_destroy_bio(bp); 3677 return; 3678 } 3679 ump = VFSTOUFS(jseg->js_list.wk_mp); 3680 ACQUIRE_LOCK(ump); 3681 oldest = NULL; 3682 /* 3683 * Mark all the journal entries waiting on the synchronize cache 3684 * as completed so they may continue on. 3685 */ 3686 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3687 jseg->js_state |= COMPLETE; 3688 oldest = jseg; 3689 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3690 } 3691 /* 3692 * Restart deferred journal entry processing from the oldest 3693 * completed jseg. 3694 */ 3695 if (oldest) 3696 complete_jsegs(oldest); 3697 3698 FREE_LOCK(ump); 3699 g_destroy_bio(bp); 3700 } 3701 3702 /* 3703 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3704 * barriers. The journal must be written prior to any blocks that depend 3705 * on it and the journal can not be released until the blocks have be 3706 * written. This code handles both barriers simultaneously. 3707 */ 3708 static void 3709 softdep_synchronize(bp, ump, caller1) 3710 struct bio *bp; 3711 struct ufsmount *ump; 3712 void *caller1; 3713 { 3714 3715 bp->bio_cmd = BIO_FLUSH; 3716 bp->bio_flags |= BIO_ORDERED; 3717 bp->bio_data = NULL; 3718 bp->bio_offset = ump->um_cp->provider->mediasize; 3719 bp->bio_length = 0; 3720 bp->bio_done = softdep_synchronize_completed; 3721 bp->bio_caller1 = caller1; 3722 g_io_request(bp, ump->um_cp); 3723 } 3724 3725 /* 3726 * Flush some journal records to disk. 3727 */ 3728 static void 3729 softdep_process_journal(mp, needwk, flags) 3730 struct mount *mp; 3731 struct worklist *needwk; 3732 int flags; 3733 { 3734 struct jblocks *jblocks; 3735 struct ufsmount *ump; 3736 struct worklist *wk; 3737 struct jseg *jseg; 3738 struct buf *bp; 3739 struct bio *bio; 3740 uint8_t *data; 3741 struct fs *fs; 3742 int shouldflush; 3743 int segwritten; 3744 int jrecmin; /* Minimum records per block. */ 3745 int jrecmax; /* Maximum records per block. */ 3746 int size; 3747 int cnt; 3748 int off; 3749 int devbsize; 3750 3751 ump = VFSTOUFS(mp); 3752 if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL) 3753 return; 3754 shouldflush = softdep_flushcache; 3755 bio = NULL; 3756 jseg = NULL; 3757 LOCK_OWNED(ump); 3758 fs = ump->um_fs; 3759 jblocks = ump->softdep_jblocks; 3760 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3761 /* 3762 * We write anywhere between a disk block and fs block. The upper 3763 * bound is picked to prevent buffer cache fragmentation and limit 3764 * processing time per I/O. 3765 */ 3766 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3767 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3768 segwritten = 0; 3769 for (;;) { 3770 cnt = ump->softdep_on_journal; 3771 /* 3772 * Criteria for writing a segment: 3773 * 1) We have a full block. 3774 * 2) We're called from jwait() and haven't found the 3775 * journal item yet. 3776 * 3) Always write if needseg is set. 3777 * 4) If we are called from process_worklist and have 3778 * not yet written anything we write a partial block 3779 * to enforce a 1 second maximum latency on journal 3780 * entries. 3781 */ 3782 if (cnt < (jrecmax - 1) && needwk == NULL && 3783 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3784 break; 3785 cnt++; 3786 /* 3787 * Verify some free journal space. softdep_prealloc() should 3788 * guarantee that we don't run out so this is indicative of 3789 * a problem with the flow control. Try to recover 3790 * gracefully in any event. 3791 */ 3792 while (jblocks->jb_free == 0) { 3793 if (flags != MNT_WAIT) 3794 break; 3795 printf("softdep: Out of journal space!\n"); 3796 softdep_speedup(ump); 3797 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3798 } 3799 FREE_LOCK(ump); 3800 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3801 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3802 LIST_INIT(&jseg->js_entries); 3803 LIST_INIT(&jseg->js_indirs); 3804 jseg->js_state = ATTACHED; 3805 if (shouldflush == 0) 3806 jseg->js_state |= COMPLETE; 3807 else if (bio == NULL) 3808 bio = g_alloc_bio(); 3809 jseg->js_jblocks = jblocks; 3810 bp = geteblk(fs->fs_bsize, 0); 3811 ACQUIRE_LOCK(ump); 3812 /* 3813 * If there was a race while we were allocating the block 3814 * and jseg the entry we care about was likely written. 3815 * We bail out in both the WAIT and NOWAIT case and assume 3816 * the caller will loop if the entry it cares about is 3817 * not written. 3818 */ 3819 cnt = ump->softdep_on_journal; 3820 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3821 bp->b_flags |= B_INVAL | B_NOCACHE; 3822 WORKITEM_FREE(jseg, D_JSEG); 3823 FREE_LOCK(ump); 3824 brelse(bp); 3825 ACQUIRE_LOCK(ump); 3826 break; 3827 } 3828 /* 3829 * Calculate the disk block size required for the available 3830 * records rounded to the min size. 3831 */ 3832 if (cnt == 0) 3833 size = devbsize; 3834 else if (cnt < jrecmax) 3835 size = howmany(cnt, jrecmin) * devbsize; 3836 else 3837 size = fs->fs_bsize; 3838 /* 3839 * Allocate a disk block for this journal data and account 3840 * for truncation of the requested size if enough contiguous 3841 * space was not available. 3842 */ 3843 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3844 bp->b_lblkno = bp->b_blkno; 3845 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3846 bp->b_bcount = size; 3847 bp->b_flags &= ~B_INVAL; 3848 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3849 /* 3850 * Initialize our jseg with cnt records. Assign the next 3851 * sequence number to it and link it in-order. 3852 */ 3853 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3854 jseg->js_buf = bp; 3855 jseg->js_cnt = cnt; 3856 jseg->js_refs = cnt + 1; /* Self ref. */ 3857 jseg->js_size = size; 3858 jseg->js_seq = jblocks->jb_nextseq++; 3859 if (jblocks->jb_oldestseg == NULL) 3860 jblocks->jb_oldestseg = jseg; 3861 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3862 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3863 if (jblocks->jb_writeseg == NULL) 3864 jblocks->jb_writeseg = jseg; 3865 /* 3866 * Start filling in records from the pending list. 3867 */ 3868 data = bp->b_data; 3869 off = 0; 3870 3871 /* 3872 * Always put a header on the first block. 3873 * XXX As with below, there might not be a chance to get 3874 * into the loop. Ensure that something valid is written. 3875 */ 3876 jseg_write(ump, jseg, data); 3877 off += JREC_SIZE; 3878 data = bp->b_data + off; 3879 3880 /* 3881 * XXX Something is wrong here. There's no work to do, 3882 * but we need to perform and I/O and allow it to complete 3883 * anyways. 3884 */ 3885 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3886 stat_emptyjblocks++; 3887 3888 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3889 != NULL) { 3890 if (cnt == 0) 3891 break; 3892 /* Place a segment header on every device block. */ 3893 if ((off % devbsize) == 0) { 3894 jseg_write(ump, jseg, data); 3895 off += JREC_SIZE; 3896 data = bp->b_data + off; 3897 } 3898 if (wk == needwk) 3899 needwk = NULL; 3900 remove_from_journal(wk); 3901 wk->wk_state |= INPROGRESS; 3902 WORKLIST_INSERT(&jseg->js_entries, wk); 3903 switch (wk->wk_type) { 3904 case D_JADDREF: 3905 jaddref_write(WK_JADDREF(wk), jseg, data); 3906 break; 3907 case D_JREMREF: 3908 jremref_write(WK_JREMREF(wk), jseg, data); 3909 break; 3910 case D_JMVREF: 3911 jmvref_write(WK_JMVREF(wk), jseg, data); 3912 break; 3913 case D_JNEWBLK: 3914 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3915 break; 3916 case D_JFREEBLK: 3917 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3918 break; 3919 case D_JFREEFRAG: 3920 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3921 break; 3922 case D_JTRUNC: 3923 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3924 break; 3925 case D_JFSYNC: 3926 jfsync_write(WK_JFSYNC(wk), jseg, data); 3927 break; 3928 default: 3929 panic("process_journal: Unknown type %s", 3930 TYPENAME(wk->wk_type)); 3931 /* NOTREACHED */ 3932 } 3933 off += JREC_SIZE; 3934 data = bp->b_data + off; 3935 cnt--; 3936 } 3937 3938 /* Clear any remaining space so we don't leak kernel data */ 3939 if (size > off) 3940 bzero(data, size - off); 3941 3942 /* 3943 * Write this one buffer and continue. 3944 */ 3945 segwritten = 1; 3946 jblocks->jb_needseg = 0; 3947 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3948 FREE_LOCK(ump); 3949 bp->b_xflags |= BX_CVTENXIO; 3950 pbgetvp(ump->um_devvp, bp); 3951 /* 3952 * We only do the blocking wait once we find the journal 3953 * entry we're looking for. 3954 */ 3955 if (needwk == NULL && flags == MNT_WAIT) 3956 bwrite(bp); 3957 else 3958 bawrite(bp); 3959 ACQUIRE_LOCK(ump); 3960 } 3961 /* 3962 * If we wrote a segment issue a synchronize cache so the journal 3963 * is reflected on disk before the data is written. Since reclaiming 3964 * journal space also requires writing a journal record this 3965 * process also enforces a barrier before reclamation. 3966 */ 3967 if (segwritten && shouldflush) { 3968 softdep_synchronize(bio, ump, 3969 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3970 } else if (bio) 3971 g_destroy_bio(bio); 3972 /* 3973 * If we've suspended the filesystem because we ran out of journal 3974 * space either try to sync it here to make some progress or 3975 * unsuspend it if we already have. 3976 */ 3977 if (flags == 0 && jblocks->jb_suspended) { 3978 if (journal_unsuspend(ump)) 3979 return; 3980 FREE_LOCK(ump); 3981 VFS_SYNC(mp, MNT_NOWAIT); 3982 ffs_sbupdate(ump, MNT_WAIT, 0); 3983 ACQUIRE_LOCK(ump); 3984 } 3985 } 3986 3987 /* 3988 * Complete a jseg, allowing all dependencies awaiting journal writes 3989 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3990 * structures so that the journal segment can be freed to reclaim space. 3991 */ 3992 static void 3993 complete_jseg(jseg) 3994 struct jseg *jseg; 3995 { 3996 struct worklist *wk; 3997 struct jmvref *jmvref; 3998 #ifdef INVARIANTS 3999 int i = 0; 4000 #endif 4001 4002 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 4003 WORKLIST_REMOVE(wk); 4004 wk->wk_state &= ~INPROGRESS; 4005 wk->wk_state |= COMPLETE; 4006 KASSERT(i++ < jseg->js_cnt, 4007 ("handle_written_jseg: overflow %d >= %d", 4008 i - 1, jseg->js_cnt)); 4009 switch (wk->wk_type) { 4010 case D_JADDREF: 4011 handle_written_jaddref(WK_JADDREF(wk)); 4012 break; 4013 case D_JREMREF: 4014 handle_written_jremref(WK_JREMREF(wk)); 4015 break; 4016 case D_JMVREF: 4017 rele_jseg(jseg); /* No jsegdep. */ 4018 jmvref = WK_JMVREF(wk); 4019 LIST_REMOVE(jmvref, jm_deps); 4020 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 4021 free_pagedep(jmvref->jm_pagedep); 4022 WORKITEM_FREE(jmvref, D_JMVREF); 4023 break; 4024 case D_JNEWBLK: 4025 handle_written_jnewblk(WK_JNEWBLK(wk)); 4026 break; 4027 case D_JFREEBLK: 4028 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 4029 break; 4030 case D_JTRUNC: 4031 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 4032 break; 4033 case D_JFSYNC: 4034 rele_jseg(jseg); /* No jsegdep. */ 4035 WORKITEM_FREE(wk, D_JFSYNC); 4036 break; 4037 case D_JFREEFRAG: 4038 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 4039 break; 4040 default: 4041 panic("handle_written_jseg: Unknown type %s", 4042 TYPENAME(wk->wk_type)); 4043 /* NOTREACHED */ 4044 } 4045 } 4046 /* Release the self reference so the structure may be freed. */ 4047 rele_jseg(jseg); 4048 } 4049 4050 /* 4051 * Determine which jsegs are ready for completion processing. Waits for 4052 * synchronize cache to complete as well as forcing in-order completion 4053 * of journal entries. 4054 */ 4055 static void 4056 complete_jsegs(jseg) 4057 struct jseg *jseg; 4058 { 4059 struct jblocks *jblocks; 4060 struct jseg *jsegn; 4061 4062 jblocks = jseg->js_jblocks; 4063 /* 4064 * Don't allow out of order completions. If this isn't the first 4065 * block wait for it to write before we're done. 4066 */ 4067 if (jseg != jblocks->jb_writeseg) 4068 return; 4069 /* Iterate through available jsegs processing their entries. */ 4070 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4071 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4072 jsegn = TAILQ_NEXT(jseg, js_next); 4073 complete_jseg(jseg); 4074 jseg = jsegn; 4075 } 4076 jblocks->jb_writeseg = jseg; 4077 /* 4078 * Attempt to free jsegs now that oldestwrseq may have advanced. 4079 */ 4080 free_jsegs(jblocks); 4081 } 4082 4083 /* 4084 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4085 * the final completions. 4086 */ 4087 static void 4088 handle_written_jseg(jseg, bp) 4089 struct jseg *jseg; 4090 struct buf *bp; 4091 { 4092 4093 if (jseg->js_refs == 0) 4094 panic("handle_written_jseg: No self-reference on %p", jseg); 4095 jseg->js_state |= DEPCOMPLETE; 4096 /* 4097 * We'll never need this buffer again, set flags so it will be 4098 * discarded. 4099 */ 4100 bp->b_flags |= B_INVAL | B_NOCACHE; 4101 pbrelvp(bp); 4102 complete_jsegs(jseg); 4103 } 4104 4105 static inline struct jsegdep * 4106 inoref_jseg(inoref) 4107 struct inoref *inoref; 4108 { 4109 struct jsegdep *jsegdep; 4110 4111 jsegdep = inoref->if_jsegdep; 4112 inoref->if_jsegdep = NULL; 4113 4114 return (jsegdep); 4115 } 4116 4117 /* 4118 * Called once a jremref has made it to stable store. The jremref is marked 4119 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4120 * for the jremref to complete will be awoken by free_jremref. 4121 */ 4122 static void 4123 handle_written_jremref(jremref) 4124 struct jremref *jremref; 4125 { 4126 struct inodedep *inodedep; 4127 struct jsegdep *jsegdep; 4128 struct dirrem *dirrem; 4129 4130 /* Grab the jsegdep. */ 4131 jsegdep = inoref_jseg(&jremref->jr_ref); 4132 /* 4133 * Remove us from the inoref list. 4134 */ 4135 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4136 0, &inodedep) == 0) 4137 panic("handle_written_jremref: Lost inodedep"); 4138 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4139 /* 4140 * Complete the dirrem. 4141 */ 4142 dirrem = jremref->jr_dirrem; 4143 jremref->jr_dirrem = NULL; 4144 LIST_REMOVE(jremref, jr_deps); 4145 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4146 jwork_insert(&dirrem->dm_jwork, jsegdep); 4147 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4148 (dirrem->dm_state & COMPLETE) != 0) 4149 add_to_worklist(&dirrem->dm_list, 0); 4150 free_jremref(jremref); 4151 } 4152 4153 /* 4154 * Called once a jaddref has made it to stable store. The dependency is 4155 * marked complete and any dependent structures are added to the inode 4156 * bufwait list to be completed as soon as it is written. If a bitmap write 4157 * depends on this entry we move the inode into the inodedephd of the 4158 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4159 */ 4160 static void 4161 handle_written_jaddref(jaddref) 4162 struct jaddref *jaddref; 4163 { 4164 struct jsegdep *jsegdep; 4165 struct inodedep *inodedep; 4166 struct diradd *diradd; 4167 struct mkdir *mkdir; 4168 4169 /* Grab the jsegdep. */ 4170 jsegdep = inoref_jseg(&jaddref->ja_ref); 4171 mkdir = NULL; 4172 diradd = NULL; 4173 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4174 0, &inodedep) == 0) 4175 panic("handle_written_jaddref: Lost inodedep."); 4176 if (jaddref->ja_diradd == NULL) 4177 panic("handle_written_jaddref: No dependency"); 4178 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4179 diradd = jaddref->ja_diradd; 4180 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4181 } else if (jaddref->ja_state & MKDIR_PARENT) { 4182 mkdir = jaddref->ja_mkdir; 4183 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4184 } else if (jaddref->ja_state & MKDIR_BODY) 4185 mkdir = jaddref->ja_mkdir; 4186 else 4187 panic("handle_written_jaddref: Unknown dependency %p", 4188 jaddref->ja_diradd); 4189 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4190 /* 4191 * Remove us from the inode list. 4192 */ 4193 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4194 /* 4195 * The mkdir may be waiting on the jaddref to clear before freeing. 4196 */ 4197 if (mkdir) { 4198 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4199 ("handle_written_jaddref: Incorrect type for mkdir %s", 4200 TYPENAME(mkdir->md_list.wk_type))); 4201 mkdir->md_jaddref = NULL; 4202 diradd = mkdir->md_diradd; 4203 mkdir->md_state |= DEPCOMPLETE; 4204 complete_mkdir(mkdir); 4205 } 4206 jwork_insert(&diradd->da_jwork, jsegdep); 4207 if (jaddref->ja_state & NEWBLOCK) { 4208 inodedep->id_state |= ONDEPLIST; 4209 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4210 inodedep, id_deps); 4211 } 4212 free_jaddref(jaddref); 4213 } 4214 4215 /* 4216 * Called once a jnewblk journal is written. The allocdirect or allocindir 4217 * is placed in the bmsafemap to await notification of a written bitmap. If 4218 * the operation was canceled we add the segdep to the appropriate 4219 * dependency to free the journal space once the canceling operation 4220 * completes. 4221 */ 4222 static void 4223 handle_written_jnewblk(jnewblk) 4224 struct jnewblk *jnewblk; 4225 { 4226 struct bmsafemap *bmsafemap; 4227 struct freefrag *freefrag; 4228 struct freework *freework; 4229 struct jsegdep *jsegdep; 4230 struct newblk *newblk; 4231 4232 /* Grab the jsegdep. */ 4233 jsegdep = jnewblk->jn_jsegdep; 4234 jnewblk->jn_jsegdep = NULL; 4235 if (jnewblk->jn_dep == NULL) 4236 panic("handle_written_jnewblk: No dependency for the segdep."); 4237 switch (jnewblk->jn_dep->wk_type) { 4238 case D_NEWBLK: 4239 case D_ALLOCDIRECT: 4240 case D_ALLOCINDIR: 4241 /* 4242 * Add the written block to the bmsafemap so it can 4243 * be notified when the bitmap is on disk. 4244 */ 4245 newblk = WK_NEWBLK(jnewblk->jn_dep); 4246 newblk->nb_jnewblk = NULL; 4247 if ((newblk->nb_state & GOINGAWAY) == 0) { 4248 bmsafemap = newblk->nb_bmsafemap; 4249 newblk->nb_state |= ONDEPLIST; 4250 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4251 nb_deps); 4252 } 4253 jwork_insert(&newblk->nb_jwork, jsegdep); 4254 break; 4255 case D_FREEFRAG: 4256 /* 4257 * A newblock being removed by a freefrag when replaced by 4258 * frag extension. 4259 */ 4260 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4261 freefrag->ff_jdep = NULL; 4262 jwork_insert(&freefrag->ff_jwork, jsegdep); 4263 break; 4264 case D_FREEWORK: 4265 /* 4266 * A direct block was removed by truncate. 4267 */ 4268 freework = WK_FREEWORK(jnewblk->jn_dep); 4269 freework->fw_jnewblk = NULL; 4270 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4271 break; 4272 default: 4273 panic("handle_written_jnewblk: Unknown type %d.", 4274 jnewblk->jn_dep->wk_type); 4275 } 4276 jnewblk->jn_dep = NULL; 4277 free_jnewblk(jnewblk); 4278 } 4279 4280 /* 4281 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4282 * an in-flight allocation that has not yet been committed. Divorce us 4283 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4284 * to the worklist. 4285 */ 4286 static void 4287 cancel_jfreefrag(jfreefrag) 4288 struct jfreefrag *jfreefrag; 4289 { 4290 struct freefrag *freefrag; 4291 4292 if (jfreefrag->fr_jsegdep) { 4293 free_jsegdep(jfreefrag->fr_jsegdep); 4294 jfreefrag->fr_jsegdep = NULL; 4295 } 4296 freefrag = jfreefrag->fr_freefrag; 4297 jfreefrag->fr_freefrag = NULL; 4298 free_jfreefrag(jfreefrag); 4299 freefrag->ff_state |= DEPCOMPLETE; 4300 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4301 } 4302 4303 /* 4304 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4305 */ 4306 static void 4307 free_jfreefrag(jfreefrag) 4308 struct jfreefrag *jfreefrag; 4309 { 4310 4311 if (jfreefrag->fr_state & INPROGRESS) 4312 WORKLIST_REMOVE(&jfreefrag->fr_list); 4313 else if (jfreefrag->fr_state & ONWORKLIST) 4314 remove_from_journal(&jfreefrag->fr_list); 4315 if (jfreefrag->fr_freefrag != NULL) 4316 panic("free_jfreefrag: Still attached to a freefrag."); 4317 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4318 } 4319 4320 /* 4321 * Called when the journal write for a jfreefrag completes. The parent 4322 * freefrag is added to the worklist if this completes its dependencies. 4323 */ 4324 static void 4325 handle_written_jfreefrag(jfreefrag) 4326 struct jfreefrag *jfreefrag; 4327 { 4328 struct jsegdep *jsegdep; 4329 struct freefrag *freefrag; 4330 4331 /* Grab the jsegdep. */ 4332 jsegdep = jfreefrag->fr_jsegdep; 4333 jfreefrag->fr_jsegdep = NULL; 4334 freefrag = jfreefrag->fr_freefrag; 4335 if (freefrag == NULL) 4336 panic("handle_written_jfreefrag: No freefrag."); 4337 freefrag->ff_state |= DEPCOMPLETE; 4338 freefrag->ff_jdep = NULL; 4339 jwork_insert(&freefrag->ff_jwork, jsegdep); 4340 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4341 add_to_worklist(&freefrag->ff_list, 0); 4342 jfreefrag->fr_freefrag = NULL; 4343 free_jfreefrag(jfreefrag); 4344 } 4345 4346 /* 4347 * Called when the journal write for a jfreeblk completes. The jfreeblk 4348 * is removed from the freeblks list of pending journal writes and the 4349 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4350 * have been reclaimed. 4351 */ 4352 static void 4353 handle_written_jblkdep(jblkdep) 4354 struct jblkdep *jblkdep; 4355 { 4356 struct freeblks *freeblks; 4357 struct jsegdep *jsegdep; 4358 4359 /* Grab the jsegdep. */ 4360 jsegdep = jblkdep->jb_jsegdep; 4361 jblkdep->jb_jsegdep = NULL; 4362 freeblks = jblkdep->jb_freeblks; 4363 LIST_REMOVE(jblkdep, jb_deps); 4364 jwork_insert(&freeblks->fb_jwork, jsegdep); 4365 /* 4366 * If the freeblks is all journaled, we can add it to the worklist. 4367 */ 4368 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4369 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4370 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4371 4372 free_jblkdep(jblkdep); 4373 } 4374 4375 static struct jsegdep * 4376 newjsegdep(struct worklist *wk) 4377 { 4378 struct jsegdep *jsegdep; 4379 4380 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4381 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4382 jsegdep->jd_seg = NULL; 4383 4384 return (jsegdep); 4385 } 4386 4387 static struct jmvref * 4388 newjmvref(dp, ino, oldoff, newoff) 4389 struct inode *dp; 4390 ino_t ino; 4391 off_t oldoff; 4392 off_t newoff; 4393 { 4394 struct jmvref *jmvref; 4395 4396 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4397 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4398 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4399 jmvref->jm_parent = dp->i_number; 4400 jmvref->jm_ino = ino; 4401 jmvref->jm_oldoff = oldoff; 4402 jmvref->jm_newoff = newoff; 4403 4404 return (jmvref); 4405 } 4406 4407 /* 4408 * Allocate a new jremref that tracks the removal of ip from dp with the 4409 * directory entry offset of diroff. Mark the entry as ATTACHED and 4410 * DEPCOMPLETE as we have all the information required for the journal write 4411 * and the directory has already been removed from the buffer. The caller 4412 * is responsible for linking the jremref into the pagedep and adding it 4413 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4414 * a DOTDOT addition so handle_workitem_remove() can properly assign 4415 * the jsegdep when we're done. 4416 */ 4417 static struct jremref * 4418 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4419 off_t diroff, nlink_t nlink) 4420 { 4421 struct jremref *jremref; 4422 4423 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4424 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4425 jremref->jr_state = ATTACHED; 4426 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4427 nlink, ip->i_mode); 4428 jremref->jr_dirrem = dirrem; 4429 4430 return (jremref); 4431 } 4432 4433 static inline void 4434 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4435 nlink_t nlink, uint16_t mode) 4436 { 4437 4438 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4439 inoref->if_diroff = diroff; 4440 inoref->if_ino = ino; 4441 inoref->if_parent = parent; 4442 inoref->if_nlink = nlink; 4443 inoref->if_mode = mode; 4444 } 4445 4446 /* 4447 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4448 * directory offset may not be known until later. The caller is responsible 4449 * adding the entry to the journal when this information is available. nlink 4450 * should be the link count prior to the addition and mode is only required 4451 * to have the correct FMT. 4452 */ 4453 static struct jaddref * 4454 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4455 uint16_t mode) 4456 { 4457 struct jaddref *jaddref; 4458 4459 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4460 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4461 jaddref->ja_state = ATTACHED; 4462 jaddref->ja_mkdir = NULL; 4463 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4464 4465 return (jaddref); 4466 } 4467 4468 /* 4469 * Create a new free dependency for a freework. The caller is responsible 4470 * for adjusting the reference count when it has the lock held. The freedep 4471 * will track an outstanding bitmap write that will ultimately clear the 4472 * freework to continue. 4473 */ 4474 static struct freedep * 4475 newfreedep(struct freework *freework) 4476 { 4477 struct freedep *freedep; 4478 4479 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4480 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4481 freedep->fd_freework = freework; 4482 4483 return (freedep); 4484 } 4485 4486 /* 4487 * Free a freedep structure once the buffer it is linked to is written. If 4488 * this is the last reference to the freework schedule it for completion. 4489 */ 4490 static void 4491 free_freedep(freedep) 4492 struct freedep *freedep; 4493 { 4494 struct freework *freework; 4495 4496 freework = freedep->fd_freework; 4497 freework->fw_freeblks->fb_cgwait--; 4498 if (--freework->fw_ref == 0) 4499 freework_enqueue(freework); 4500 WORKITEM_FREE(freedep, D_FREEDEP); 4501 } 4502 4503 /* 4504 * Allocate a new freework structure that may be a level in an indirect 4505 * when parent is not NULL or a top level block when it is. The top level 4506 * freework structures are allocated without the per-filesystem lock held 4507 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4508 */ 4509 static struct freework * 4510 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4511 struct ufsmount *ump; 4512 struct freeblks *freeblks; 4513 struct freework *parent; 4514 ufs_lbn_t lbn; 4515 ufs2_daddr_t nb; 4516 int frags; 4517 int off; 4518 int journal; 4519 { 4520 struct freework *freework; 4521 4522 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4523 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4524 freework->fw_state = ATTACHED; 4525 freework->fw_jnewblk = NULL; 4526 freework->fw_freeblks = freeblks; 4527 freework->fw_parent = parent; 4528 freework->fw_lbn = lbn; 4529 freework->fw_blkno = nb; 4530 freework->fw_frags = frags; 4531 freework->fw_indir = NULL; 4532 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4533 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4534 freework->fw_start = freework->fw_off = off; 4535 if (journal) 4536 newjfreeblk(freeblks, lbn, nb, frags); 4537 if (parent == NULL) { 4538 ACQUIRE_LOCK(ump); 4539 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4540 freeblks->fb_ref++; 4541 FREE_LOCK(ump); 4542 } 4543 4544 return (freework); 4545 } 4546 4547 /* 4548 * Eliminate a jfreeblk for a block that does not need journaling. 4549 */ 4550 static void 4551 cancel_jfreeblk(freeblks, blkno) 4552 struct freeblks *freeblks; 4553 ufs2_daddr_t blkno; 4554 { 4555 struct jfreeblk *jfreeblk; 4556 struct jblkdep *jblkdep; 4557 4558 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4559 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4560 continue; 4561 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4562 if (jfreeblk->jf_blkno == blkno) 4563 break; 4564 } 4565 if (jblkdep == NULL) 4566 return; 4567 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4568 free_jsegdep(jblkdep->jb_jsegdep); 4569 LIST_REMOVE(jblkdep, jb_deps); 4570 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4571 } 4572 4573 /* 4574 * Allocate a new jfreeblk to journal top level block pointer when truncating 4575 * a file. The caller must add this to the worklist when the per-filesystem 4576 * lock is held. 4577 */ 4578 static struct jfreeblk * 4579 newjfreeblk(freeblks, lbn, blkno, frags) 4580 struct freeblks *freeblks; 4581 ufs_lbn_t lbn; 4582 ufs2_daddr_t blkno; 4583 int frags; 4584 { 4585 struct jfreeblk *jfreeblk; 4586 4587 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4588 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4589 freeblks->fb_list.wk_mp); 4590 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4591 jfreeblk->jf_dep.jb_freeblks = freeblks; 4592 jfreeblk->jf_ino = freeblks->fb_inum; 4593 jfreeblk->jf_lbn = lbn; 4594 jfreeblk->jf_blkno = blkno; 4595 jfreeblk->jf_frags = frags; 4596 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4597 4598 return (jfreeblk); 4599 } 4600 4601 /* 4602 * The journal is only prepared to handle full-size block numbers, so we 4603 * have to adjust the record to reflect the change to a full-size block. 4604 * For example, suppose we have a block made up of fragments 8-15 and 4605 * want to free its last two fragments. We are given a request that says: 4606 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4607 * where frags are the number of fragments to free and oldfrags are the 4608 * number of fragments to keep. To block align it, we have to change it to 4609 * have a valid full-size blkno, so it becomes: 4610 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4611 */ 4612 static void 4613 adjust_newfreework(freeblks, frag_offset) 4614 struct freeblks *freeblks; 4615 int frag_offset; 4616 { 4617 struct jfreeblk *jfreeblk; 4618 4619 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4620 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4621 ("adjust_newfreework: Missing freeblks dependency")); 4622 4623 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4624 jfreeblk->jf_blkno -= frag_offset; 4625 jfreeblk->jf_frags += frag_offset; 4626 } 4627 4628 /* 4629 * Allocate a new jtrunc to track a partial truncation. 4630 */ 4631 static struct jtrunc * 4632 newjtrunc(freeblks, size, extsize) 4633 struct freeblks *freeblks; 4634 off_t size; 4635 int extsize; 4636 { 4637 struct jtrunc *jtrunc; 4638 4639 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4640 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4641 freeblks->fb_list.wk_mp); 4642 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4643 jtrunc->jt_dep.jb_freeblks = freeblks; 4644 jtrunc->jt_ino = freeblks->fb_inum; 4645 jtrunc->jt_size = size; 4646 jtrunc->jt_extsize = extsize; 4647 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4648 4649 return (jtrunc); 4650 } 4651 4652 /* 4653 * If we're canceling a new bitmap we have to search for another ref 4654 * to move into the bmsafemap dep. This might be better expressed 4655 * with another structure. 4656 */ 4657 static void 4658 move_newblock_dep(jaddref, inodedep) 4659 struct jaddref *jaddref; 4660 struct inodedep *inodedep; 4661 { 4662 struct inoref *inoref; 4663 struct jaddref *jaddrefn; 4664 4665 jaddrefn = NULL; 4666 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4667 inoref = TAILQ_NEXT(inoref, if_deps)) { 4668 if ((jaddref->ja_state & NEWBLOCK) && 4669 inoref->if_list.wk_type == D_JADDREF) { 4670 jaddrefn = (struct jaddref *)inoref; 4671 break; 4672 } 4673 } 4674 if (jaddrefn == NULL) 4675 return; 4676 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4677 jaddrefn->ja_state |= jaddref->ja_state & 4678 (ATTACHED | UNDONE | NEWBLOCK); 4679 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4680 jaddref->ja_state |= ATTACHED; 4681 LIST_REMOVE(jaddref, ja_bmdeps); 4682 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4683 ja_bmdeps); 4684 } 4685 4686 /* 4687 * Cancel a jaddref either before it has been written or while it is being 4688 * written. This happens when a link is removed before the add reaches 4689 * the disk. The jaddref dependency is kept linked into the bmsafemap 4690 * and inode to prevent the link count or bitmap from reaching the disk 4691 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4692 * required. 4693 * 4694 * Returns 1 if the canceled addref requires journaling of the remove and 4695 * 0 otherwise. 4696 */ 4697 static int 4698 cancel_jaddref(jaddref, inodedep, wkhd) 4699 struct jaddref *jaddref; 4700 struct inodedep *inodedep; 4701 struct workhead *wkhd; 4702 { 4703 struct inoref *inoref; 4704 struct jsegdep *jsegdep; 4705 int needsj; 4706 4707 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4708 ("cancel_jaddref: Canceling complete jaddref")); 4709 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4710 needsj = 1; 4711 else 4712 needsj = 0; 4713 if (inodedep == NULL) 4714 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4715 0, &inodedep) == 0) 4716 panic("cancel_jaddref: Lost inodedep"); 4717 /* 4718 * We must adjust the nlink of any reference operation that follows 4719 * us so that it is consistent with the in-memory reference. This 4720 * ensures that inode nlink rollbacks always have the correct link. 4721 */ 4722 if (needsj == 0) { 4723 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4724 inoref = TAILQ_NEXT(inoref, if_deps)) { 4725 if (inoref->if_state & GOINGAWAY) 4726 break; 4727 inoref->if_nlink--; 4728 } 4729 } 4730 jsegdep = inoref_jseg(&jaddref->ja_ref); 4731 if (jaddref->ja_state & NEWBLOCK) 4732 move_newblock_dep(jaddref, inodedep); 4733 wake_worklist(&jaddref->ja_list); 4734 jaddref->ja_mkdir = NULL; 4735 if (jaddref->ja_state & INPROGRESS) { 4736 jaddref->ja_state &= ~INPROGRESS; 4737 WORKLIST_REMOVE(&jaddref->ja_list); 4738 jwork_insert(wkhd, jsegdep); 4739 } else { 4740 free_jsegdep(jsegdep); 4741 if (jaddref->ja_state & DEPCOMPLETE) 4742 remove_from_journal(&jaddref->ja_list); 4743 } 4744 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4745 /* 4746 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4747 * can arrange for them to be freed with the bitmap. Otherwise we 4748 * no longer need this addref attached to the inoreflst and it 4749 * will incorrectly adjust nlink if we leave it. 4750 */ 4751 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4752 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4753 if_deps); 4754 jaddref->ja_state |= COMPLETE; 4755 free_jaddref(jaddref); 4756 return (needsj); 4757 } 4758 /* 4759 * Leave the head of the list for jsegdeps for fast merging. 4760 */ 4761 if (LIST_FIRST(wkhd) != NULL) { 4762 jaddref->ja_state |= ONWORKLIST; 4763 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4764 } else 4765 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4766 4767 return (needsj); 4768 } 4769 4770 /* 4771 * Attempt to free a jaddref structure when some work completes. This 4772 * should only succeed once the entry is written and all dependencies have 4773 * been notified. 4774 */ 4775 static void 4776 free_jaddref(jaddref) 4777 struct jaddref *jaddref; 4778 { 4779 4780 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4781 return; 4782 if (jaddref->ja_ref.if_jsegdep) 4783 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4784 jaddref, jaddref->ja_state); 4785 if (jaddref->ja_state & NEWBLOCK) 4786 LIST_REMOVE(jaddref, ja_bmdeps); 4787 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4788 panic("free_jaddref: Bad state %p(0x%X)", 4789 jaddref, jaddref->ja_state); 4790 if (jaddref->ja_mkdir != NULL) 4791 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4792 WORKITEM_FREE(jaddref, D_JADDREF); 4793 } 4794 4795 /* 4796 * Free a jremref structure once it has been written or discarded. 4797 */ 4798 static void 4799 free_jremref(jremref) 4800 struct jremref *jremref; 4801 { 4802 4803 if (jremref->jr_ref.if_jsegdep) 4804 free_jsegdep(jremref->jr_ref.if_jsegdep); 4805 if (jremref->jr_state & INPROGRESS) 4806 panic("free_jremref: IO still pending"); 4807 WORKITEM_FREE(jremref, D_JREMREF); 4808 } 4809 4810 /* 4811 * Free a jnewblk structure. 4812 */ 4813 static void 4814 free_jnewblk(jnewblk) 4815 struct jnewblk *jnewblk; 4816 { 4817 4818 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4819 return; 4820 LIST_REMOVE(jnewblk, jn_deps); 4821 if (jnewblk->jn_dep != NULL) 4822 panic("free_jnewblk: Dependency still attached."); 4823 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4824 } 4825 4826 /* 4827 * Cancel a jnewblk which has been been made redundant by frag extension. 4828 */ 4829 static void 4830 cancel_jnewblk(jnewblk, wkhd) 4831 struct jnewblk *jnewblk; 4832 struct workhead *wkhd; 4833 { 4834 struct jsegdep *jsegdep; 4835 4836 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4837 jsegdep = jnewblk->jn_jsegdep; 4838 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4839 panic("cancel_jnewblk: Invalid state"); 4840 jnewblk->jn_jsegdep = NULL; 4841 jnewblk->jn_dep = NULL; 4842 jnewblk->jn_state |= GOINGAWAY; 4843 if (jnewblk->jn_state & INPROGRESS) { 4844 jnewblk->jn_state &= ~INPROGRESS; 4845 WORKLIST_REMOVE(&jnewblk->jn_list); 4846 jwork_insert(wkhd, jsegdep); 4847 } else { 4848 free_jsegdep(jsegdep); 4849 remove_from_journal(&jnewblk->jn_list); 4850 } 4851 wake_worklist(&jnewblk->jn_list); 4852 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4853 } 4854 4855 static void 4856 free_jblkdep(jblkdep) 4857 struct jblkdep *jblkdep; 4858 { 4859 4860 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4861 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4862 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4863 WORKITEM_FREE(jblkdep, D_JTRUNC); 4864 else 4865 panic("free_jblkdep: Unexpected type %s", 4866 TYPENAME(jblkdep->jb_list.wk_type)); 4867 } 4868 4869 /* 4870 * Free a single jseg once it is no longer referenced in memory or on 4871 * disk. Reclaim journal blocks and dependencies waiting for the segment 4872 * to disappear. 4873 */ 4874 static void 4875 free_jseg(jseg, jblocks) 4876 struct jseg *jseg; 4877 struct jblocks *jblocks; 4878 { 4879 struct freework *freework; 4880 4881 /* 4882 * Free freework structures that were lingering to indicate freed 4883 * indirect blocks that forced journal write ordering on reallocate. 4884 */ 4885 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4886 indirblk_remove(freework); 4887 if (jblocks->jb_oldestseg == jseg) 4888 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4889 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4890 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4891 KASSERT(LIST_EMPTY(&jseg->js_entries), 4892 ("free_jseg: Freed jseg has valid entries.")); 4893 WORKITEM_FREE(jseg, D_JSEG); 4894 } 4895 4896 /* 4897 * Free all jsegs that meet the criteria for being reclaimed and update 4898 * oldestseg. 4899 */ 4900 static void 4901 free_jsegs(jblocks) 4902 struct jblocks *jblocks; 4903 { 4904 struct jseg *jseg; 4905 4906 /* 4907 * Free only those jsegs which have none allocated before them to 4908 * preserve the journal space ordering. 4909 */ 4910 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4911 /* 4912 * Only reclaim space when nothing depends on this journal 4913 * set and another set has written that it is no longer 4914 * valid. 4915 */ 4916 if (jseg->js_refs != 0) { 4917 jblocks->jb_oldestseg = jseg; 4918 return; 4919 } 4920 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4921 break; 4922 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4923 break; 4924 /* 4925 * We can free jsegs that didn't write entries when 4926 * oldestwrseq == js_seq. 4927 */ 4928 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4929 jseg->js_cnt != 0) 4930 break; 4931 free_jseg(jseg, jblocks); 4932 } 4933 /* 4934 * If we exited the loop above we still must discover the 4935 * oldest valid segment. 4936 */ 4937 if (jseg) 4938 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4939 jseg = TAILQ_NEXT(jseg, js_next)) 4940 if (jseg->js_refs != 0) 4941 break; 4942 jblocks->jb_oldestseg = jseg; 4943 /* 4944 * The journal has no valid records but some jsegs may still be 4945 * waiting on oldestwrseq to advance. We force a small record 4946 * out to permit these lingering records to be reclaimed. 4947 */ 4948 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4949 jblocks->jb_needseg = 1; 4950 } 4951 4952 /* 4953 * Release one reference to a jseg and free it if the count reaches 0. This 4954 * should eventually reclaim journal space as well. 4955 */ 4956 static void 4957 rele_jseg(jseg) 4958 struct jseg *jseg; 4959 { 4960 4961 KASSERT(jseg->js_refs > 0, 4962 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4963 if (--jseg->js_refs != 0) 4964 return; 4965 free_jsegs(jseg->js_jblocks); 4966 } 4967 4968 /* 4969 * Release a jsegdep and decrement the jseg count. 4970 */ 4971 static void 4972 free_jsegdep(jsegdep) 4973 struct jsegdep *jsegdep; 4974 { 4975 4976 if (jsegdep->jd_seg) 4977 rele_jseg(jsegdep->jd_seg); 4978 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4979 } 4980 4981 /* 4982 * Wait for a journal item to make it to disk. Initiate journal processing 4983 * if required. 4984 */ 4985 static int 4986 jwait(wk, waitfor) 4987 struct worklist *wk; 4988 int waitfor; 4989 { 4990 4991 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4992 /* 4993 * Blocking journal waits cause slow synchronous behavior. Record 4994 * stats on the frequency of these blocking operations. 4995 */ 4996 if (waitfor == MNT_WAIT) { 4997 stat_journal_wait++; 4998 switch (wk->wk_type) { 4999 case D_JREMREF: 5000 case D_JMVREF: 5001 stat_jwait_filepage++; 5002 break; 5003 case D_JTRUNC: 5004 case D_JFREEBLK: 5005 stat_jwait_freeblks++; 5006 break; 5007 case D_JNEWBLK: 5008 stat_jwait_newblk++; 5009 break; 5010 case D_JADDREF: 5011 stat_jwait_inode++; 5012 break; 5013 default: 5014 break; 5015 } 5016 } 5017 /* 5018 * If IO has not started we process the journal. We can't mark the 5019 * worklist item as IOWAITING because we drop the lock while 5020 * processing the journal and the worklist entry may be freed after 5021 * this point. The caller may call back in and re-issue the request. 5022 */ 5023 if ((wk->wk_state & INPROGRESS) == 0) { 5024 softdep_process_journal(wk->wk_mp, wk, waitfor); 5025 if (waitfor != MNT_WAIT) 5026 return (EBUSY); 5027 return (0); 5028 } 5029 if (waitfor != MNT_WAIT) 5030 return (EBUSY); 5031 wait_worklist(wk, "jwait"); 5032 return (0); 5033 } 5034 5035 /* 5036 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 5037 * appropriate. This is a convenience function to reduce duplicate code 5038 * for the setup and revert functions below. 5039 */ 5040 static struct inodedep * 5041 inodedep_lookup_ip(ip) 5042 struct inode *ip; 5043 { 5044 struct inodedep *inodedep; 5045 5046 KASSERT(ip->i_nlink >= ip->i_effnlink, 5047 ("inodedep_lookup_ip: bad delta")); 5048 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5049 &inodedep); 5050 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5051 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5052 5053 return (inodedep); 5054 } 5055 5056 /* 5057 * Called prior to creating a new inode and linking it to a directory. The 5058 * jaddref structure must already be allocated by softdep_setup_inomapdep 5059 * and it is discovered here so we can initialize the mode and update 5060 * nlinkdelta. 5061 */ 5062 void 5063 softdep_setup_create(dp, ip) 5064 struct inode *dp; 5065 struct inode *ip; 5066 { 5067 struct inodedep *inodedep; 5068 struct jaddref *jaddref; 5069 struct vnode *dvp; 5070 5071 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5072 ("softdep_setup_create called on non-softdep filesystem")); 5073 KASSERT(ip->i_nlink == 1, 5074 ("softdep_setup_create: Invalid link count.")); 5075 dvp = ITOV(dp); 5076 ACQUIRE_LOCK(ITOUMP(dp)); 5077 inodedep = inodedep_lookup_ip(ip); 5078 if (DOINGSUJ(dvp)) { 5079 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5080 inoreflst); 5081 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5082 ("softdep_setup_create: No addref structure present.")); 5083 } 5084 FREE_LOCK(ITOUMP(dp)); 5085 } 5086 5087 /* 5088 * Create a jaddref structure to track the addition of a DOTDOT link when 5089 * we are reparenting an inode as part of a rename. This jaddref will be 5090 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5091 * non-journaling softdep. 5092 */ 5093 void 5094 softdep_setup_dotdot_link(dp, ip) 5095 struct inode *dp; 5096 struct inode *ip; 5097 { 5098 struct inodedep *inodedep; 5099 struct jaddref *jaddref; 5100 struct vnode *dvp; 5101 5102 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5103 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5104 dvp = ITOV(dp); 5105 jaddref = NULL; 5106 /* 5107 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5108 * is used as a normal link would be. 5109 */ 5110 if (DOINGSUJ(dvp)) 5111 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5112 dp->i_effnlink - 1, dp->i_mode); 5113 ACQUIRE_LOCK(ITOUMP(dp)); 5114 inodedep = inodedep_lookup_ip(dp); 5115 if (jaddref) 5116 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5117 if_deps); 5118 FREE_LOCK(ITOUMP(dp)); 5119 } 5120 5121 /* 5122 * Create a jaddref structure to track a new link to an inode. The directory 5123 * offset is not known until softdep_setup_directory_add or 5124 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5125 * softdep. 5126 */ 5127 void 5128 softdep_setup_link(dp, ip) 5129 struct inode *dp; 5130 struct inode *ip; 5131 { 5132 struct inodedep *inodedep; 5133 struct jaddref *jaddref; 5134 struct vnode *dvp; 5135 5136 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5137 ("softdep_setup_link called on non-softdep filesystem")); 5138 dvp = ITOV(dp); 5139 jaddref = NULL; 5140 if (DOINGSUJ(dvp)) 5141 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5142 ip->i_mode); 5143 ACQUIRE_LOCK(ITOUMP(dp)); 5144 inodedep = inodedep_lookup_ip(ip); 5145 if (jaddref) 5146 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5147 if_deps); 5148 FREE_LOCK(ITOUMP(dp)); 5149 } 5150 5151 /* 5152 * Called to create the jaddref structures to track . and .. references as 5153 * well as lookup and further initialize the incomplete jaddref created 5154 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5155 * nlinkdelta for non-journaling softdep. 5156 */ 5157 void 5158 softdep_setup_mkdir(dp, ip) 5159 struct inode *dp; 5160 struct inode *ip; 5161 { 5162 struct inodedep *inodedep; 5163 struct jaddref *dotdotaddref; 5164 struct jaddref *dotaddref; 5165 struct jaddref *jaddref; 5166 struct vnode *dvp; 5167 5168 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5169 ("softdep_setup_mkdir called on non-softdep filesystem")); 5170 dvp = ITOV(dp); 5171 dotaddref = dotdotaddref = NULL; 5172 if (DOINGSUJ(dvp)) { 5173 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5174 ip->i_mode); 5175 dotaddref->ja_state |= MKDIR_BODY; 5176 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5177 dp->i_effnlink - 1, dp->i_mode); 5178 dotdotaddref->ja_state |= MKDIR_PARENT; 5179 } 5180 ACQUIRE_LOCK(ITOUMP(dp)); 5181 inodedep = inodedep_lookup_ip(ip); 5182 if (DOINGSUJ(dvp)) { 5183 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5184 inoreflst); 5185 KASSERT(jaddref != NULL, 5186 ("softdep_setup_mkdir: No addref structure present.")); 5187 KASSERT(jaddref->ja_parent == dp->i_number, 5188 ("softdep_setup_mkdir: bad parent %ju", 5189 (uintmax_t)jaddref->ja_parent)); 5190 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5191 if_deps); 5192 } 5193 inodedep = inodedep_lookup_ip(dp); 5194 if (DOINGSUJ(dvp)) 5195 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5196 &dotdotaddref->ja_ref, if_deps); 5197 FREE_LOCK(ITOUMP(dp)); 5198 } 5199 5200 /* 5201 * Called to track nlinkdelta of the inode and parent directories prior to 5202 * unlinking a directory. 5203 */ 5204 void 5205 softdep_setup_rmdir(dp, ip) 5206 struct inode *dp; 5207 struct inode *ip; 5208 { 5209 struct vnode *dvp; 5210 5211 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5212 ("softdep_setup_rmdir called on non-softdep filesystem")); 5213 dvp = ITOV(dp); 5214 ACQUIRE_LOCK(ITOUMP(dp)); 5215 (void) inodedep_lookup_ip(ip); 5216 (void) inodedep_lookup_ip(dp); 5217 FREE_LOCK(ITOUMP(dp)); 5218 } 5219 5220 /* 5221 * Called to track nlinkdelta of the inode and parent directories prior to 5222 * unlink. 5223 */ 5224 void 5225 softdep_setup_unlink(dp, ip) 5226 struct inode *dp; 5227 struct inode *ip; 5228 { 5229 struct vnode *dvp; 5230 5231 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5232 ("softdep_setup_unlink called on non-softdep filesystem")); 5233 dvp = ITOV(dp); 5234 ACQUIRE_LOCK(ITOUMP(dp)); 5235 (void) inodedep_lookup_ip(ip); 5236 (void) inodedep_lookup_ip(dp); 5237 FREE_LOCK(ITOUMP(dp)); 5238 } 5239 5240 /* 5241 * Called to release the journal structures created by a failed non-directory 5242 * creation. Adjusts nlinkdelta for non-journaling softdep. 5243 */ 5244 void 5245 softdep_revert_create(dp, ip) 5246 struct inode *dp; 5247 struct inode *ip; 5248 { 5249 struct inodedep *inodedep; 5250 struct jaddref *jaddref; 5251 struct vnode *dvp; 5252 5253 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5254 ("softdep_revert_create called on non-softdep filesystem")); 5255 dvp = ITOV(dp); 5256 ACQUIRE_LOCK(ITOUMP(dp)); 5257 inodedep = inodedep_lookup_ip(ip); 5258 if (DOINGSUJ(dvp)) { 5259 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5260 inoreflst); 5261 KASSERT(jaddref->ja_parent == dp->i_number, 5262 ("softdep_revert_create: addref parent mismatch")); 5263 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5264 } 5265 FREE_LOCK(ITOUMP(dp)); 5266 } 5267 5268 /* 5269 * Called to release the journal structures created by a failed link 5270 * addition. Adjusts nlinkdelta for non-journaling softdep. 5271 */ 5272 void 5273 softdep_revert_link(dp, ip) 5274 struct inode *dp; 5275 struct inode *ip; 5276 { 5277 struct inodedep *inodedep; 5278 struct jaddref *jaddref; 5279 struct vnode *dvp; 5280 5281 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5282 ("softdep_revert_link called on non-softdep filesystem")); 5283 dvp = ITOV(dp); 5284 ACQUIRE_LOCK(ITOUMP(dp)); 5285 inodedep = inodedep_lookup_ip(ip); 5286 if (DOINGSUJ(dvp)) { 5287 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5288 inoreflst); 5289 KASSERT(jaddref->ja_parent == dp->i_number, 5290 ("softdep_revert_link: addref parent mismatch")); 5291 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5292 } 5293 FREE_LOCK(ITOUMP(dp)); 5294 } 5295 5296 /* 5297 * Called to release the journal structures created by a failed mkdir 5298 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5299 */ 5300 void 5301 softdep_revert_mkdir(dp, ip) 5302 struct inode *dp; 5303 struct inode *ip; 5304 { 5305 struct inodedep *inodedep; 5306 struct jaddref *jaddref; 5307 struct jaddref *dotaddref; 5308 struct vnode *dvp; 5309 5310 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5311 ("softdep_revert_mkdir called on non-softdep filesystem")); 5312 dvp = ITOV(dp); 5313 5314 ACQUIRE_LOCK(ITOUMP(dp)); 5315 inodedep = inodedep_lookup_ip(dp); 5316 if (DOINGSUJ(dvp)) { 5317 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5318 inoreflst); 5319 KASSERT(jaddref->ja_parent == ip->i_number, 5320 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5321 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5322 } 5323 inodedep = inodedep_lookup_ip(ip); 5324 if (DOINGSUJ(dvp)) { 5325 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5326 inoreflst); 5327 KASSERT(jaddref->ja_parent == dp->i_number, 5328 ("softdep_revert_mkdir: addref parent mismatch")); 5329 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5330 inoreflst, if_deps); 5331 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5332 KASSERT(dotaddref->ja_parent == ip->i_number, 5333 ("softdep_revert_mkdir: dot addref parent mismatch")); 5334 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5335 } 5336 FREE_LOCK(ITOUMP(dp)); 5337 } 5338 5339 /* 5340 * Called to correct nlinkdelta after a failed rmdir. 5341 */ 5342 void 5343 softdep_revert_rmdir(dp, ip) 5344 struct inode *dp; 5345 struct inode *ip; 5346 { 5347 5348 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5349 ("softdep_revert_rmdir called on non-softdep filesystem")); 5350 ACQUIRE_LOCK(ITOUMP(dp)); 5351 (void) inodedep_lookup_ip(ip); 5352 (void) inodedep_lookup_ip(dp); 5353 FREE_LOCK(ITOUMP(dp)); 5354 } 5355 5356 /* 5357 * Protecting the freemaps (or bitmaps). 5358 * 5359 * To eliminate the need to execute fsck before mounting a filesystem 5360 * after a power failure, one must (conservatively) guarantee that the 5361 * on-disk copy of the bitmaps never indicate that a live inode or block is 5362 * free. So, when a block or inode is allocated, the bitmap should be 5363 * updated (on disk) before any new pointers. When a block or inode is 5364 * freed, the bitmap should not be updated until all pointers have been 5365 * reset. The latter dependency is handled by the delayed de-allocation 5366 * approach described below for block and inode de-allocation. The former 5367 * dependency is handled by calling the following procedure when a block or 5368 * inode is allocated. When an inode is allocated an "inodedep" is created 5369 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5370 * Each "inodedep" is also inserted into the hash indexing structure so 5371 * that any additional link additions can be made dependent on the inode 5372 * allocation. 5373 * 5374 * The ufs filesystem maintains a number of free block counts (e.g., per 5375 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5376 * in addition to the bitmaps. These counts are used to improve efficiency 5377 * during allocation and therefore must be consistent with the bitmaps. 5378 * There is no convenient way to guarantee post-crash consistency of these 5379 * counts with simple update ordering, for two main reasons: (1) The counts 5380 * and bitmaps for a single cylinder group block are not in the same disk 5381 * sector. If a disk write is interrupted (e.g., by power failure), one may 5382 * be written and the other not. (2) Some of the counts are located in the 5383 * superblock rather than the cylinder group block. So, we focus our soft 5384 * updates implementation on protecting the bitmaps. When mounting a 5385 * filesystem, we recompute the auxiliary counts from the bitmaps. 5386 */ 5387 5388 /* 5389 * Called just after updating the cylinder group block to allocate an inode. 5390 */ 5391 void 5392 softdep_setup_inomapdep(bp, ip, newinum, mode) 5393 struct buf *bp; /* buffer for cylgroup block with inode map */ 5394 struct inode *ip; /* inode related to allocation */ 5395 ino_t newinum; /* new inode number being allocated */ 5396 int mode; 5397 { 5398 struct inodedep *inodedep; 5399 struct bmsafemap *bmsafemap; 5400 struct jaddref *jaddref; 5401 struct mount *mp; 5402 struct fs *fs; 5403 5404 mp = ITOVFS(ip); 5405 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5406 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5407 fs = VFSTOUFS(mp)->um_fs; 5408 jaddref = NULL; 5409 5410 /* 5411 * Allocate the journal reference add structure so that the bitmap 5412 * can be dependent on it. 5413 */ 5414 if (MOUNTEDSUJ(mp)) { 5415 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5416 jaddref->ja_state |= NEWBLOCK; 5417 } 5418 5419 /* 5420 * Create a dependency for the newly allocated inode. 5421 * Panic if it already exists as something is seriously wrong. 5422 * Otherwise add it to the dependency list for the buffer holding 5423 * the cylinder group map from which it was allocated. 5424 * 5425 * We have to preallocate a bmsafemap entry in case it is needed 5426 * in bmsafemap_lookup since once we allocate the inodedep, we 5427 * have to finish initializing it before we can FREE_LOCK(). 5428 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5429 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5430 * creating the inodedep as it can be freed during the time 5431 * that we FREE_LOCK() while allocating the inodedep. We must 5432 * call workitem_alloc() before entering the locked section as 5433 * it also acquires the lock and we must avoid trying doing so 5434 * recursively. 5435 */ 5436 bmsafemap = malloc(sizeof(struct bmsafemap), 5437 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5438 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5439 ACQUIRE_LOCK(ITOUMP(ip)); 5440 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5441 panic("softdep_setup_inomapdep: dependency %p for new" 5442 "inode already exists", inodedep); 5443 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5444 if (jaddref) { 5445 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5446 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5447 if_deps); 5448 } else { 5449 inodedep->id_state |= ONDEPLIST; 5450 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5451 } 5452 inodedep->id_bmsafemap = bmsafemap; 5453 inodedep->id_state &= ~DEPCOMPLETE; 5454 FREE_LOCK(ITOUMP(ip)); 5455 } 5456 5457 /* 5458 * Called just after updating the cylinder group block to 5459 * allocate block or fragment. 5460 */ 5461 void 5462 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5463 struct buf *bp; /* buffer for cylgroup block with block map */ 5464 struct mount *mp; /* filesystem doing allocation */ 5465 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5466 int frags; /* Number of fragments. */ 5467 int oldfrags; /* Previous number of fragments for extend. */ 5468 { 5469 struct newblk *newblk; 5470 struct bmsafemap *bmsafemap; 5471 struct jnewblk *jnewblk; 5472 struct ufsmount *ump; 5473 struct fs *fs; 5474 5475 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5476 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5477 ump = VFSTOUFS(mp); 5478 fs = ump->um_fs; 5479 jnewblk = NULL; 5480 /* 5481 * Create a dependency for the newly allocated block. 5482 * Add it to the dependency list for the buffer holding 5483 * the cylinder group map from which it was allocated. 5484 */ 5485 if (MOUNTEDSUJ(mp)) { 5486 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5487 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5488 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5489 jnewblk->jn_state = ATTACHED; 5490 jnewblk->jn_blkno = newblkno; 5491 jnewblk->jn_frags = frags; 5492 jnewblk->jn_oldfrags = oldfrags; 5493 #ifdef INVARIANTS 5494 { 5495 struct cg *cgp; 5496 uint8_t *blksfree; 5497 long bno; 5498 int i; 5499 5500 cgp = (struct cg *)bp->b_data; 5501 blksfree = cg_blksfree(cgp); 5502 bno = dtogd(fs, jnewblk->jn_blkno); 5503 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5504 i++) { 5505 if (isset(blksfree, bno + i)) 5506 panic("softdep_setup_blkmapdep: " 5507 "free fragment %d from %d-%d " 5508 "state 0x%X dep %p", i, 5509 jnewblk->jn_oldfrags, 5510 jnewblk->jn_frags, 5511 jnewblk->jn_state, 5512 jnewblk->jn_dep); 5513 } 5514 } 5515 #endif 5516 } 5517 5518 CTR3(KTR_SUJ, 5519 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5520 newblkno, frags, oldfrags); 5521 ACQUIRE_LOCK(ump); 5522 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5523 panic("softdep_setup_blkmapdep: found block"); 5524 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5525 dtog(fs, newblkno), NULL); 5526 if (jnewblk) { 5527 jnewblk->jn_dep = (struct worklist *)newblk; 5528 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5529 } else { 5530 newblk->nb_state |= ONDEPLIST; 5531 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5532 } 5533 newblk->nb_bmsafemap = bmsafemap; 5534 newblk->nb_jnewblk = jnewblk; 5535 FREE_LOCK(ump); 5536 } 5537 5538 #define BMSAFEMAP_HASH(ump, cg) \ 5539 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5540 5541 static int 5542 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5543 struct bmsafemap_hashhead *bmsafemaphd; 5544 int cg; 5545 struct bmsafemap **bmsafemapp; 5546 { 5547 struct bmsafemap *bmsafemap; 5548 5549 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5550 if (bmsafemap->sm_cg == cg) 5551 break; 5552 if (bmsafemap) { 5553 *bmsafemapp = bmsafemap; 5554 return (1); 5555 } 5556 *bmsafemapp = NULL; 5557 5558 return (0); 5559 } 5560 5561 /* 5562 * Find the bmsafemap associated with a cylinder group buffer. 5563 * If none exists, create one. The buffer must be locked when 5564 * this routine is called and this routine must be called with 5565 * the softdep lock held. To avoid giving up the lock while 5566 * allocating a new bmsafemap, a preallocated bmsafemap may be 5567 * provided. If it is provided but not needed, it is freed. 5568 */ 5569 static struct bmsafemap * 5570 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5571 struct mount *mp; 5572 struct buf *bp; 5573 int cg; 5574 struct bmsafemap *newbmsafemap; 5575 { 5576 struct bmsafemap_hashhead *bmsafemaphd; 5577 struct bmsafemap *bmsafemap, *collision; 5578 struct worklist *wk; 5579 struct ufsmount *ump; 5580 5581 ump = VFSTOUFS(mp); 5582 LOCK_OWNED(ump); 5583 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5584 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5585 if (wk->wk_type == D_BMSAFEMAP) { 5586 if (newbmsafemap) 5587 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5588 return (WK_BMSAFEMAP(wk)); 5589 } 5590 } 5591 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5592 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5593 if (newbmsafemap) 5594 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5595 return (bmsafemap); 5596 } 5597 if (newbmsafemap) { 5598 bmsafemap = newbmsafemap; 5599 } else { 5600 FREE_LOCK(ump); 5601 bmsafemap = malloc(sizeof(struct bmsafemap), 5602 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5603 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5604 ACQUIRE_LOCK(ump); 5605 } 5606 bmsafemap->sm_buf = bp; 5607 LIST_INIT(&bmsafemap->sm_inodedephd); 5608 LIST_INIT(&bmsafemap->sm_inodedepwr); 5609 LIST_INIT(&bmsafemap->sm_newblkhd); 5610 LIST_INIT(&bmsafemap->sm_newblkwr); 5611 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5612 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5613 LIST_INIT(&bmsafemap->sm_freehd); 5614 LIST_INIT(&bmsafemap->sm_freewr); 5615 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5616 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5617 return (collision); 5618 } 5619 bmsafemap->sm_cg = cg; 5620 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5621 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5622 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5623 return (bmsafemap); 5624 } 5625 5626 /* 5627 * Direct block allocation dependencies. 5628 * 5629 * When a new block is allocated, the corresponding disk locations must be 5630 * initialized (with zeros or new data) before the on-disk inode points to 5631 * them. Also, the freemap from which the block was allocated must be 5632 * updated (on disk) before the inode's pointer. These two dependencies are 5633 * independent of each other and are needed for all file blocks and indirect 5634 * blocks that are pointed to directly by the inode. Just before the 5635 * "in-core" version of the inode is updated with a newly allocated block 5636 * number, a procedure (below) is called to setup allocation dependency 5637 * structures. These structures are removed when the corresponding 5638 * dependencies are satisfied or when the block allocation becomes obsolete 5639 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5640 * fragment that gets upgraded). All of these cases are handled in 5641 * procedures described later. 5642 * 5643 * When a file extension causes a fragment to be upgraded, either to a larger 5644 * fragment or to a full block, the on-disk location may change (if the 5645 * previous fragment could not simply be extended). In this case, the old 5646 * fragment must be de-allocated, but not until after the inode's pointer has 5647 * been updated. In most cases, this is handled by later procedures, which 5648 * will construct a "freefrag" structure to be added to the workitem queue 5649 * when the inode update is complete (or obsolete). The main exception to 5650 * this is when an allocation occurs while a pending allocation dependency 5651 * (for the same block pointer) remains. This case is handled in the main 5652 * allocation dependency setup procedure by immediately freeing the 5653 * unreferenced fragments. 5654 */ 5655 void 5656 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5657 struct inode *ip; /* inode to which block is being added */ 5658 ufs_lbn_t off; /* block pointer within inode */ 5659 ufs2_daddr_t newblkno; /* disk block number being added */ 5660 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5661 long newsize; /* size of new block */ 5662 long oldsize; /* size of new block */ 5663 struct buf *bp; /* bp for allocated block */ 5664 { 5665 struct allocdirect *adp, *oldadp; 5666 struct allocdirectlst *adphead; 5667 struct freefrag *freefrag; 5668 struct inodedep *inodedep; 5669 struct pagedep *pagedep; 5670 struct jnewblk *jnewblk; 5671 struct newblk *newblk; 5672 struct mount *mp; 5673 ufs_lbn_t lbn; 5674 5675 lbn = bp->b_lblkno; 5676 mp = ITOVFS(ip); 5677 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5678 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5679 if (oldblkno && oldblkno != newblkno) 5680 /* 5681 * The usual case is that a smaller fragment that 5682 * was just allocated has been replaced with a bigger 5683 * fragment or a full-size block. If it is marked as 5684 * B_DELWRI, the current contents have not been written 5685 * to disk. It is possible that the block was written 5686 * earlier, but very uncommon. If the block has never 5687 * been written, there is no need to send a BIO_DELETE 5688 * for it when it is freed. The gain from avoiding the 5689 * TRIMs for the common case of unwritten blocks far 5690 * exceeds the cost of the write amplification for the 5691 * uncommon case of failing to send a TRIM for a block 5692 * that had been written. 5693 */ 5694 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5695 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5696 else 5697 freefrag = NULL; 5698 5699 CTR6(KTR_SUJ, 5700 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5701 "off %jd newsize %ld oldsize %d", 5702 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5703 ACQUIRE_LOCK(ITOUMP(ip)); 5704 if (off >= UFS_NDADDR) { 5705 if (lbn > 0) 5706 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5707 lbn, off); 5708 /* allocating an indirect block */ 5709 if (oldblkno != 0) 5710 panic("softdep_setup_allocdirect: non-zero indir"); 5711 } else { 5712 if (off != lbn) 5713 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5714 lbn, off); 5715 /* 5716 * Allocating a direct block. 5717 * 5718 * If we are allocating a directory block, then we must 5719 * allocate an associated pagedep to track additions and 5720 * deletions. 5721 */ 5722 if ((ip->i_mode & IFMT) == IFDIR) 5723 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5724 &pagedep); 5725 } 5726 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5727 panic("softdep_setup_allocdirect: lost block"); 5728 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5729 ("softdep_setup_allocdirect: newblk already initialized")); 5730 /* 5731 * Convert the newblk to an allocdirect. 5732 */ 5733 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5734 adp = (struct allocdirect *)newblk; 5735 newblk->nb_freefrag = freefrag; 5736 adp->ad_offset = off; 5737 adp->ad_oldblkno = oldblkno; 5738 adp->ad_newsize = newsize; 5739 adp->ad_oldsize = oldsize; 5740 5741 /* 5742 * Finish initializing the journal. 5743 */ 5744 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5745 jnewblk->jn_ino = ip->i_number; 5746 jnewblk->jn_lbn = lbn; 5747 add_to_journal(&jnewblk->jn_list); 5748 } 5749 if (freefrag && freefrag->ff_jdep != NULL && 5750 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5751 add_to_journal(freefrag->ff_jdep); 5752 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5753 adp->ad_inodedep = inodedep; 5754 5755 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5756 /* 5757 * The list of allocdirects must be kept in sorted and ascending 5758 * order so that the rollback routines can quickly determine the 5759 * first uncommitted block (the size of the file stored on disk 5760 * ends at the end of the lowest committed fragment, or if there 5761 * are no fragments, at the end of the highest committed block). 5762 * Since files generally grow, the typical case is that the new 5763 * block is to be added at the end of the list. We speed this 5764 * special case by checking against the last allocdirect in the 5765 * list before laboriously traversing the list looking for the 5766 * insertion point. 5767 */ 5768 adphead = &inodedep->id_newinoupdt; 5769 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5770 if (oldadp == NULL || oldadp->ad_offset <= off) { 5771 /* insert at end of list */ 5772 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5773 if (oldadp != NULL && oldadp->ad_offset == off) 5774 allocdirect_merge(adphead, adp, oldadp); 5775 FREE_LOCK(ITOUMP(ip)); 5776 return; 5777 } 5778 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5779 if (oldadp->ad_offset >= off) 5780 break; 5781 } 5782 if (oldadp == NULL) 5783 panic("softdep_setup_allocdirect: lost entry"); 5784 /* insert in middle of list */ 5785 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5786 if (oldadp->ad_offset == off) 5787 allocdirect_merge(adphead, adp, oldadp); 5788 5789 FREE_LOCK(ITOUMP(ip)); 5790 } 5791 5792 /* 5793 * Merge a newer and older journal record to be stored either in a 5794 * newblock or freefrag. This handles aggregating journal records for 5795 * fragment allocation into a second record as well as replacing a 5796 * journal free with an aborted journal allocation. A segment for the 5797 * oldest record will be placed on wkhd if it has been written. If not 5798 * the segment for the newer record will suffice. 5799 */ 5800 static struct worklist * 5801 jnewblk_merge(new, old, wkhd) 5802 struct worklist *new; 5803 struct worklist *old; 5804 struct workhead *wkhd; 5805 { 5806 struct jnewblk *njnewblk; 5807 struct jnewblk *jnewblk; 5808 5809 /* Handle NULLs to simplify callers. */ 5810 if (new == NULL) 5811 return (old); 5812 if (old == NULL) 5813 return (new); 5814 /* Replace a jfreefrag with a jnewblk. */ 5815 if (new->wk_type == D_JFREEFRAG) { 5816 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5817 panic("jnewblk_merge: blkno mismatch: %p, %p", 5818 old, new); 5819 cancel_jfreefrag(WK_JFREEFRAG(new)); 5820 return (old); 5821 } 5822 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5823 panic("jnewblk_merge: Bad type: old %d new %d\n", 5824 old->wk_type, new->wk_type); 5825 /* 5826 * Handle merging of two jnewblk records that describe 5827 * different sets of fragments in the same block. 5828 */ 5829 jnewblk = WK_JNEWBLK(old); 5830 njnewblk = WK_JNEWBLK(new); 5831 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5832 panic("jnewblk_merge: Merging disparate blocks."); 5833 /* 5834 * The record may be rolled back in the cg. 5835 */ 5836 if (jnewblk->jn_state & UNDONE) { 5837 jnewblk->jn_state &= ~UNDONE; 5838 njnewblk->jn_state |= UNDONE; 5839 njnewblk->jn_state &= ~ATTACHED; 5840 } 5841 /* 5842 * We modify the newer addref and free the older so that if neither 5843 * has been written the most up-to-date copy will be on disk. If 5844 * both have been written but rolled back we only temporarily need 5845 * one of them to fix the bits when the cg write completes. 5846 */ 5847 jnewblk->jn_state |= ATTACHED | COMPLETE; 5848 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5849 cancel_jnewblk(jnewblk, wkhd); 5850 WORKLIST_REMOVE(&jnewblk->jn_list); 5851 free_jnewblk(jnewblk); 5852 return (new); 5853 } 5854 5855 /* 5856 * Replace an old allocdirect dependency with a newer one. 5857 */ 5858 static void 5859 allocdirect_merge(adphead, newadp, oldadp) 5860 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5861 struct allocdirect *newadp; /* allocdirect being added */ 5862 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5863 { 5864 struct worklist *wk; 5865 struct freefrag *freefrag; 5866 5867 freefrag = NULL; 5868 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5869 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5870 newadp->ad_oldsize != oldadp->ad_newsize || 5871 newadp->ad_offset >= UFS_NDADDR) 5872 panic("%s %jd != new %jd || old size %ld != new %ld", 5873 "allocdirect_merge: old blkno", 5874 (intmax_t)newadp->ad_oldblkno, 5875 (intmax_t)oldadp->ad_newblkno, 5876 newadp->ad_oldsize, oldadp->ad_newsize); 5877 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5878 newadp->ad_oldsize = oldadp->ad_oldsize; 5879 /* 5880 * If the old dependency had a fragment to free or had never 5881 * previously had a block allocated, then the new dependency 5882 * can immediately post its freefrag and adopt the old freefrag. 5883 * This action is done by swapping the freefrag dependencies. 5884 * The new dependency gains the old one's freefrag, and the 5885 * old one gets the new one and then immediately puts it on 5886 * the worklist when it is freed by free_newblk. It is 5887 * not possible to do this swap when the old dependency had a 5888 * non-zero size but no previous fragment to free. This condition 5889 * arises when the new block is an extension of the old block. 5890 * Here, the first part of the fragment allocated to the new 5891 * dependency is part of the block currently claimed on disk by 5892 * the old dependency, so cannot legitimately be freed until the 5893 * conditions for the new dependency are fulfilled. 5894 */ 5895 freefrag = newadp->ad_freefrag; 5896 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5897 newadp->ad_freefrag = oldadp->ad_freefrag; 5898 oldadp->ad_freefrag = freefrag; 5899 } 5900 /* 5901 * If we are tracking a new directory-block allocation, 5902 * move it from the old allocdirect to the new allocdirect. 5903 */ 5904 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5905 WORKLIST_REMOVE(wk); 5906 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5907 panic("allocdirect_merge: extra newdirblk"); 5908 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5909 } 5910 TAILQ_REMOVE(adphead, oldadp, ad_next); 5911 /* 5912 * We need to move any journal dependencies over to the freefrag 5913 * that releases this block if it exists. Otherwise we are 5914 * extending an existing block and we'll wait until that is 5915 * complete to release the journal space and extend the 5916 * new journal to cover this old space as well. 5917 */ 5918 if (freefrag == NULL) { 5919 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5920 panic("allocdirect_merge: %jd != %jd", 5921 oldadp->ad_newblkno, newadp->ad_newblkno); 5922 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5923 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5924 &oldadp->ad_block.nb_jnewblk->jn_list, 5925 &newadp->ad_block.nb_jwork); 5926 oldadp->ad_block.nb_jnewblk = NULL; 5927 cancel_newblk(&oldadp->ad_block, NULL, 5928 &newadp->ad_block.nb_jwork); 5929 } else { 5930 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5931 &freefrag->ff_list, &freefrag->ff_jwork); 5932 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5933 &freefrag->ff_jwork); 5934 } 5935 free_newblk(&oldadp->ad_block); 5936 } 5937 5938 /* 5939 * Allocate a jfreefrag structure to journal a single block free. 5940 */ 5941 static struct jfreefrag * 5942 newjfreefrag(freefrag, ip, blkno, size, lbn) 5943 struct freefrag *freefrag; 5944 struct inode *ip; 5945 ufs2_daddr_t blkno; 5946 long size; 5947 ufs_lbn_t lbn; 5948 { 5949 struct jfreefrag *jfreefrag; 5950 struct fs *fs; 5951 5952 fs = ITOFS(ip); 5953 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5954 M_SOFTDEP_FLAGS); 5955 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5956 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5957 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5958 jfreefrag->fr_ino = ip->i_number; 5959 jfreefrag->fr_lbn = lbn; 5960 jfreefrag->fr_blkno = blkno; 5961 jfreefrag->fr_frags = numfrags(fs, size); 5962 jfreefrag->fr_freefrag = freefrag; 5963 5964 return (jfreefrag); 5965 } 5966 5967 /* 5968 * Allocate a new freefrag structure. 5969 */ 5970 static struct freefrag * 5971 newfreefrag(ip, blkno, size, lbn, key) 5972 struct inode *ip; 5973 ufs2_daddr_t blkno; 5974 long size; 5975 ufs_lbn_t lbn; 5976 u_long key; 5977 { 5978 struct freefrag *freefrag; 5979 struct ufsmount *ump; 5980 struct fs *fs; 5981 5982 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5983 ip->i_number, blkno, size, lbn); 5984 ump = ITOUMP(ip); 5985 fs = ump->um_fs; 5986 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5987 panic("newfreefrag: frag size"); 5988 freefrag = malloc(sizeof(struct freefrag), 5989 M_FREEFRAG, M_SOFTDEP_FLAGS); 5990 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5991 freefrag->ff_state = ATTACHED; 5992 LIST_INIT(&freefrag->ff_jwork); 5993 freefrag->ff_inum = ip->i_number; 5994 freefrag->ff_vtype = ITOV(ip)->v_type; 5995 freefrag->ff_blkno = blkno; 5996 freefrag->ff_fragsize = size; 5997 freefrag->ff_key = key; 5998 5999 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 6000 freefrag->ff_jdep = (struct worklist *) 6001 newjfreefrag(freefrag, ip, blkno, size, lbn); 6002 } else { 6003 freefrag->ff_state |= DEPCOMPLETE; 6004 freefrag->ff_jdep = NULL; 6005 } 6006 6007 return (freefrag); 6008 } 6009 6010 /* 6011 * This workitem de-allocates fragments that were replaced during 6012 * file block allocation. 6013 */ 6014 static void 6015 handle_workitem_freefrag(freefrag) 6016 struct freefrag *freefrag; 6017 { 6018 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 6019 struct workhead wkhd; 6020 6021 CTR3(KTR_SUJ, 6022 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 6023 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 6024 /* 6025 * It would be illegal to add new completion items to the 6026 * freefrag after it was schedule to be done so it must be 6027 * safe to modify the list head here. 6028 */ 6029 LIST_INIT(&wkhd); 6030 ACQUIRE_LOCK(ump); 6031 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 6032 /* 6033 * If the journal has not been written we must cancel it here. 6034 */ 6035 if (freefrag->ff_jdep) { 6036 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 6037 panic("handle_workitem_freefrag: Unexpected type %d\n", 6038 freefrag->ff_jdep->wk_type); 6039 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 6040 } 6041 FREE_LOCK(ump); 6042 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 6043 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 6044 &wkhd, freefrag->ff_key); 6045 ACQUIRE_LOCK(ump); 6046 WORKITEM_FREE(freefrag, D_FREEFRAG); 6047 FREE_LOCK(ump); 6048 } 6049 6050 /* 6051 * Set up a dependency structure for an external attributes data block. 6052 * This routine follows much of the structure of softdep_setup_allocdirect. 6053 * See the description of softdep_setup_allocdirect above for details. 6054 */ 6055 void 6056 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6057 struct inode *ip; 6058 ufs_lbn_t off; 6059 ufs2_daddr_t newblkno; 6060 ufs2_daddr_t oldblkno; 6061 long newsize; 6062 long oldsize; 6063 struct buf *bp; 6064 { 6065 struct allocdirect *adp, *oldadp; 6066 struct allocdirectlst *adphead; 6067 struct freefrag *freefrag; 6068 struct inodedep *inodedep; 6069 struct jnewblk *jnewblk; 6070 struct newblk *newblk; 6071 struct mount *mp; 6072 struct ufsmount *ump; 6073 ufs_lbn_t lbn; 6074 6075 mp = ITOVFS(ip); 6076 ump = VFSTOUFS(mp); 6077 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6078 ("softdep_setup_allocext called on non-softdep filesystem")); 6079 KASSERT(off < UFS_NXADDR, 6080 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6081 6082 lbn = bp->b_lblkno; 6083 if (oldblkno && oldblkno != newblkno) 6084 /* 6085 * The usual case is that a smaller fragment that 6086 * was just allocated has been replaced with a bigger 6087 * fragment or a full-size block. If it is marked as 6088 * B_DELWRI, the current contents have not been written 6089 * to disk. It is possible that the block was written 6090 * earlier, but very uncommon. If the block has never 6091 * been written, there is no need to send a BIO_DELETE 6092 * for it when it is freed. The gain from avoiding the 6093 * TRIMs for the common case of unwritten blocks far 6094 * exceeds the cost of the write amplification for the 6095 * uncommon case of failing to send a TRIM for a block 6096 * that had been written. 6097 */ 6098 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6099 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6100 else 6101 freefrag = NULL; 6102 6103 ACQUIRE_LOCK(ump); 6104 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6105 panic("softdep_setup_allocext: lost block"); 6106 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6107 ("softdep_setup_allocext: newblk already initialized")); 6108 /* 6109 * Convert the newblk to an allocdirect. 6110 */ 6111 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6112 adp = (struct allocdirect *)newblk; 6113 newblk->nb_freefrag = freefrag; 6114 adp->ad_offset = off; 6115 adp->ad_oldblkno = oldblkno; 6116 adp->ad_newsize = newsize; 6117 adp->ad_oldsize = oldsize; 6118 adp->ad_state |= EXTDATA; 6119 6120 /* 6121 * Finish initializing the journal. 6122 */ 6123 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6124 jnewblk->jn_ino = ip->i_number; 6125 jnewblk->jn_lbn = lbn; 6126 add_to_journal(&jnewblk->jn_list); 6127 } 6128 if (freefrag && freefrag->ff_jdep != NULL && 6129 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6130 add_to_journal(freefrag->ff_jdep); 6131 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6132 adp->ad_inodedep = inodedep; 6133 6134 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6135 /* 6136 * The list of allocdirects must be kept in sorted and ascending 6137 * order so that the rollback routines can quickly determine the 6138 * first uncommitted block (the size of the file stored on disk 6139 * ends at the end of the lowest committed fragment, or if there 6140 * are no fragments, at the end of the highest committed block). 6141 * Since files generally grow, the typical case is that the new 6142 * block is to be added at the end of the list. We speed this 6143 * special case by checking against the last allocdirect in the 6144 * list before laboriously traversing the list looking for the 6145 * insertion point. 6146 */ 6147 adphead = &inodedep->id_newextupdt; 6148 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6149 if (oldadp == NULL || oldadp->ad_offset <= off) { 6150 /* insert at end of list */ 6151 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6152 if (oldadp != NULL && oldadp->ad_offset == off) 6153 allocdirect_merge(adphead, adp, oldadp); 6154 FREE_LOCK(ump); 6155 return; 6156 } 6157 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6158 if (oldadp->ad_offset >= off) 6159 break; 6160 } 6161 if (oldadp == NULL) 6162 panic("softdep_setup_allocext: lost entry"); 6163 /* insert in middle of list */ 6164 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6165 if (oldadp->ad_offset == off) 6166 allocdirect_merge(adphead, adp, oldadp); 6167 FREE_LOCK(ump); 6168 } 6169 6170 /* 6171 * Indirect block allocation dependencies. 6172 * 6173 * The same dependencies that exist for a direct block also exist when 6174 * a new block is allocated and pointed to by an entry in a block of 6175 * indirect pointers. The undo/redo states described above are also 6176 * used here. Because an indirect block contains many pointers that 6177 * may have dependencies, a second copy of the entire in-memory indirect 6178 * block is kept. The buffer cache copy is always completely up-to-date. 6179 * The second copy, which is used only as a source for disk writes, 6180 * contains only the safe pointers (i.e., those that have no remaining 6181 * update dependencies). The second copy is freed when all pointers 6182 * are safe. The cache is not allowed to replace indirect blocks with 6183 * pending update dependencies. If a buffer containing an indirect 6184 * block with dependencies is written, these routines will mark it 6185 * dirty again. It can only be successfully written once all the 6186 * dependencies are removed. The ffs_fsync routine in conjunction with 6187 * softdep_sync_metadata work together to get all the dependencies 6188 * removed so that a file can be successfully written to disk. Three 6189 * procedures are used when setting up indirect block pointer 6190 * dependencies. The division is necessary because of the organization 6191 * of the "balloc" routine and because of the distinction between file 6192 * pages and file metadata blocks. 6193 */ 6194 6195 /* 6196 * Allocate a new allocindir structure. 6197 */ 6198 static struct allocindir * 6199 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6200 struct inode *ip; /* inode for file being extended */ 6201 int ptrno; /* offset of pointer in indirect block */ 6202 ufs2_daddr_t newblkno; /* disk block number being added */ 6203 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6204 ufs_lbn_t lbn; 6205 { 6206 struct newblk *newblk; 6207 struct allocindir *aip; 6208 struct freefrag *freefrag; 6209 struct jnewblk *jnewblk; 6210 6211 if (oldblkno) 6212 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6213 SINGLETON_KEY); 6214 else 6215 freefrag = NULL; 6216 ACQUIRE_LOCK(ITOUMP(ip)); 6217 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6218 panic("new_allocindir: lost block"); 6219 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6220 ("newallocindir: newblk already initialized")); 6221 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6222 newblk->nb_freefrag = freefrag; 6223 aip = (struct allocindir *)newblk; 6224 aip->ai_offset = ptrno; 6225 aip->ai_oldblkno = oldblkno; 6226 aip->ai_lbn = lbn; 6227 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6228 jnewblk->jn_ino = ip->i_number; 6229 jnewblk->jn_lbn = lbn; 6230 add_to_journal(&jnewblk->jn_list); 6231 } 6232 if (freefrag && freefrag->ff_jdep != NULL && 6233 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6234 add_to_journal(freefrag->ff_jdep); 6235 return (aip); 6236 } 6237 6238 /* 6239 * Called just before setting an indirect block pointer 6240 * to a newly allocated file page. 6241 */ 6242 void 6243 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6244 struct inode *ip; /* inode for file being extended */ 6245 ufs_lbn_t lbn; /* allocated block number within file */ 6246 struct buf *bp; /* buffer with indirect blk referencing page */ 6247 int ptrno; /* offset of pointer in indirect block */ 6248 ufs2_daddr_t newblkno; /* disk block number being added */ 6249 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6250 struct buf *nbp; /* buffer holding allocated page */ 6251 { 6252 struct inodedep *inodedep; 6253 struct freefrag *freefrag; 6254 struct allocindir *aip; 6255 struct pagedep *pagedep; 6256 struct mount *mp; 6257 struct ufsmount *ump; 6258 6259 mp = ITOVFS(ip); 6260 ump = VFSTOUFS(mp); 6261 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6262 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6263 KASSERT(lbn == nbp->b_lblkno, 6264 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6265 lbn, bp->b_lblkno)); 6266 CTR4(KTR_SUJ, 6267 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6268 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6269 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6270 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6271 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6272 /* 6273 * If we are allocating a directory page, then we must 6274 * allocate an associated pagedep to track additions and 6275 * deletions. 6276 */ 6277 if ((ip->i_mode & IFMT) == IFDIR) 6278 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6279 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6280 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6281 FREE_LOCK(ump); 6282 if (freefrag) 6283 handle_workitem_freefrag(freefrag); 6284 } 6285 6286 /* 6287 * Called just before setting an indirect block pointer to a 6288 * newly allocated indirect block. 6289 */ 6290 void 6291 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6292 struct buf *nbp; /* newly allocated indirect block */ 6293 struct inode *ip; /* inode for file being extended */ 6294 struct buf *bp; /* indirect block referencing allocated block */ 6295 int ptrno; /* offset of pointer in indirect block */ 6296 ufs2_daddr_t newblkno; /* disk block number being added */ 6297 { 6298 struct inodedep *inodedep; 6299 struct allocindir *aip; 6300 struct ufsmount *ump; 6301 ufs_lbn_t lbn; 6302 6303 ump = ITOUMP(ip); 6304 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6305 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6306 CTR3(KTR_SUJ, 6307 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6308 ip->i_number, newblkno, ptrno); 6309 lbn = nbp->b_lblkno; 6310 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6311 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6312 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6313 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6314 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6315 panic("softdep_setup_allocindir_meta: Block already existed"); 6316 FREE_LOCK(ump); 6317 } 6318 6319 static void 6320 indirdep_complete(indirdep) 6321 struct indirdep *indirdep; 6322 { 6323 struct allocindir *aip; 6324 6325 LIST_REMOVE(indirdep, ir_next); 6326 indirdep->ir_state |= DEPCOMPLETE; 6327 6328 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6329 LIST_REMOVE(aip, ai_next); 6330 free_newblk(&aip->ai_block); 6331 } 6332 /* 6333 * If this indirdep is not attached to a buf it was simply waiting 6334 * on completion to clear completehd. free_indirdep() asserts 6335 * that nothing is dangling. 6336 */ 6337 if ((indirdep->ir_state & ONWORKLIST) == 0) 6338 free_indirdep(indirdep); 6339 } 6340 6341 static struct indirdep * 6342 indirdep_lookup(mp, ip, bp) 6343 struct mount *mp; 6344 struct inode *ip; 6345 struct buf *bp; 6346 { 6347 struct indirdep *indirdep, *newindirdep; 6348 struct newblk *newblk; 6349 struct ufsmount *ump; 6350 struct worklist *wk; 6351 struct fs *fs; 6352 ufs2_daddr_t blkno; 6353 6354 ump = VFSTOUFS(mp); 6355 LOCK_OWNED(ump); 6356 indirdep = NULL; 6357 newindirdep = NULL; 6358 fs = ump->um_fs; 6359 for (;;) { 6360 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6361 if (wk->wk_type != D_INDIRDEP) 6362 continue; 6363 indirdep = WK_INDIRDEP(wk); 6364 break; 6365 } 6366 /* Found on the buffer worklist, no new structure to free. */ 6367 if (indirdep != NULL && newindirdep == NULL) 6368 return (indirdep); 6369 if (indirdep != NULL && newindirdep != NULL) 6370 panic("indirdep_lookup: simultaneous create"); 6371 /* None found on the buffer and a new structure is ready. */ 6372 if (indirdep == NULL && newindirdep != NULL) 6373 break; 6374 /* None found and no new structure available. */ 6375 FREE_LOCK(ump); 6376 newindirdep = malloc(sizeof(struct indirdep), 6377 M_INDIRDEP, M_SOFTDEP_FLAGS); 6378 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6379 newindirdep->ir_state = ATTACHED; 6380 if (I_IS_UFS1(ip)) 6381 newindirdep->ir_state |= UFS1FMT; 6382 TAILQ_INIT(&newindirdep->ir_trunc); 6383 newindirdep->ir_saveddata = NULL; 6384 LIST_INIT(&newindirdep->ir_deplisthd); 6385 LIST_INIT(&newindirdep->ir_donehd); 6386 LIST_INIT(&newindirdep->ir_writehd); 6387 LIST_INIT(&newindirdep->ir_completehd); 6388 if (bp->b_blkno == bp->b_lblkno) { 6389 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6390 NULL, NULL); 6391 bp->b_blkno = blkno; 6392 } 6393 newindirdep->ir_freeblks = NULL; 6394 newindirdep->ir_savebp = 6395 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6396 newindirdep->ir_bp = bp; 6397 BUF_KERNPROC(newindirdep->ir_savebp); 6398 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6399 ACQUIRE_LOCK(ump); 6400 } 6401 indirdep = newindirdep; 6402 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6403 /* 6404 * If the block is not yet allocated we don't set DEPCOMPLETE so 6405 * that we don't free dependencies until the pointers are valid. 6406 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6407 * than using the hash. 6408 */ 6409 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6410 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6411 else 6412 indirdep->ir_state |= DEPCOMPLETE; 6413 return (indirdep); 6414 } 6415 6416 /* 6417 * Called to finish the allocation of the "aip" allocated 6418 * by one of the two routines above. 6419 */ 6420 static struct freefrag * 6421 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6422 struct buf *bp; /* in-memory copy of the indirect block */ 6423 struct inode *ip; /* inode for file being extended */ 6424 struct inodedep *inodedep; /* Inodedep for ip */ 6425 struct allocindir *aip; /* allocindir allocated by the above routines */ 6426 ufs_lbn_t lbn; /* Logical block number for this block. */ 6427 { 6428 struct fs *fs; 6429 struct indirdep *indirdep; 6430 struct allocindir *oldaip; 6431 struct freefrag *freefrag; 6432 struct mount *mp; 6433 struct ufsmount *ump; 6434 6435 mp = ITOVFS(ip); 6436 ump = VFSTOUFS(mp); 6437 LOCK_OWNED(ump); 6438 fs = ump->um_fs; 6439 if (bp->b_lblkno >= 0) 6440 panic("setup_allocindir_phase2: not indir blk"); 6441 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6442 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6443 indirdep = indirdep_lookup(mp, ip, bp); 6444 KASSERT(indirdep->ir_savebp != NULL, 6445 ("setup_allocindir_phase2 NULL ir_savebp")); 6446 aip->ai_indirdep = indirdep; 6447 /* 6448 * Check for an unwritten dependency for this indirect offset. If 6449 * there is, merge the old dependency into the new one. This happens 6450 * as a result of reallocblk only. 6451 */ 6452 freefrag = NULL; 6453 if (aip->ai_oldblkno != 0) { 6454 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6455 if (oldaip->ai_offset == aip->ai_offset) { 6456 freefrag = allocindir_merge(aip, oldaip); 6457 goto done; 6458 } 6459 } 6460 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6461 if (oldaip->ai_offset == aip->ai_offset) { 6462 freefrag = allocindir_merge(aip, oldaip); 6463 goto done; 6464 } 6465 } 6466 } 6467 done: 6468 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6469 return (freefrag); 6470 } 6471 6472 /* 6473 * Merge two allocindirs which refer to the same block. Move newblock 6474 * dependencies and setup the freefrags appropriately. 6475 */ 6476 static struct freefrag * 6477 allocindir_merge(aip, oldaip) 6478 struct allocindir *aip; 6479 struct allocindir *oldaip; 6480 { 6481 struct freefrag *freefrag; 6482 struct worklist *wk; 6483 6484 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6485 panic("allocindir_merge: blkno"); 6486 aip->ai_oldblkno = oldaip->ai_oldblkno; 6487 freefrag = aip->ai_freefrag; 6488 aip->ai_freefrag = oldaip->ai_freefrag; 6489 oldaip->ai_freefrag = NULL; 6490 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6491 /* 6492 * If we are tracking a new directory-block allocation, 6493 * move it from the old allocindir to the new allocindir. 6494 */ 6495 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6496 WORKLIST_REMOVE(wk); 6497 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6498 panic("allocindir_merge: extra newdirblk"); 6499 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6500 } 6501 /* 6502 * We can skip journaling for this freefrag and just complete 6503 * any pending journal work for the allocindir that is being 6504 * removed after the freefrag completes. 6505 */ 6506 if (freefrag->ff_jdep) 6507 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6508 LIST_REMOVE(oldaip, ai_next); 6509 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6510 &freefrag->ff_list, &freefrag->ff_jwork); 6511 free_newblk(&oldaip->ai_block); 6512 6513 return (freefrag); 6514 } 6515 6516 static inline void 6517 setup_freedirect(freeblks, ip, i, needj) 6518 struct freeblks *freeblks; 6519 struct inode *ip; 6520 int i; 6521 int needj; 6522 { 6523 struct ufsmount *ump; 6524 ufs2_daddr_t blkno; 6525 int frags; 6526 6527 blkno = DIP(ip, i_db[i]); 6528 if (blkno == 0) 6529 return; 6530 DIP_SET(ip, i_db[i], 0); 6531 ump = ITOUMP(ip); 6532 frags = sblksize(ump->um_fs, ip->i_size, i); 6533 frags = numfrags(ump->um_fs, frags); 6534 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6535 } 6536 6537 static inline void 6538 setup_freeext(freeblks, ip, i, needj) 6539 struct freeblks *freeblks; 6540 struct inode *ip; 6541 int i; 6542 int needj; 6543 { 6544 struct ufsmount *ump; 6545 ufs2_daddr_t blkno; 6546 int frags; 6547 6548 blkno = ip->i_din2->di_extb[i]; 6549 if (blkno == 0) 6550 return; 6551 ip->i_din2->di_extb[i] = 0; 6552 ump = ITOUMP(ip); 6553 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6554 frags = numfrags(ump->um_fs, frags); 6555 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6556 } 6557 6558 static inline void 6559 setup_freeindir(freeblks, ip, i, lbn, needj) 6560 struct freeblks *freeblks; 6561 struct inode *ip; 6562 int i; 6563 ufs_lbn_t lbn; 6564 int needj; 6565 { 6566 struct ufsmount *ump; 6567 ufs2_daddr_t blkno; 6568 6569 blkno = DIP(ip, i_ib[i]); 6570 if (blkno == 0) 6571 return; 6572 DIP_SET(ip, i_ib[i], 0); 6573 ump = ITOUMP(ip); 6574 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6575 0, needj); 6576 } 6577 6578 static inline struct freeblks * 6579 newfreeblks(mp, ip) 6580 struct mount *mp; 6581 struct inode *ip; 6582 { 6583 struct freeblks *freeblks; 6584 6585 freeblks = malloc(sizeof(struct freeblks), 6586 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6587 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6588 LIST_INIT(&freeblks->fb_jblkdephd); 6589 LIST_INIT(&freeblks->fb_jwork); 6590 freeblks->fb_ref = 0; 6591 freeblks->fb_cgwait = 0; 6592 freeblks->fb_state = ATTACHED; 6593 freeblks->fb_uid = ip->i_uid; 6594 freeblks->fb_inum = ip->i_number; 6595 freeblks->fb_vtype = ITOV(ip)->v_type; 6596 freeblks->fb_modrev = DIP(ip, i_modrev); 6597 freeblks->fb_devvp = ITODEVVP(ip); 6598 freeblks->fb_chkcnt = 0; 6599 freeblks->fb_len = 0; 6600 6601 return (freeblks); 6602 } 6603 6604 static void 6605 trunc_indirdep(indirdep, freeblks, bp, off) 6606 struct indirdep *indirdep; 6607 struct freeblks *freeblks; 6608 struct buf *bp; 6609 int off; 6610 { 6611 struct allocindir *aip, *aipn; 6612 6613 /* 6614 * The first set of allocindirs won't be in savedbp. 6615 */ 6616 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6617 if (aip->ai_offset > off) 6618 cancel_allocindir(aip, bp, freeblks, 1); 6619 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6620 if (aip->ai_offset > off) 6621 cancel_allocindir(aip, bp, freeblks, 1); 6622 /* 6623 * These will exist in savedbp. 6624 */ 6625 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6626 if (aip->ai_offset > off) 6627 cancel_allocindir(aip, NULL, freeblks, 0); 6628 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6629 if (aip->ai_offset > off) 6630 cancel_allocindir(aip, NULL, freeblks, 0); 6631 } 6632 6633 /* 6634 * Follow the chain of indirects down to lastlbn creating a freework 6635 * structure for each. This will be used to start indir_trunc() at 6636 * the right offset and create the journal records for the parrtial 6637 * truncation. A second step will handle the truncated dependencies. 6638 */ 6639 static int 6640 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6641 struct freeblks *freeblks; 6642 struct inode *ip; 6643 ufs_lbn_t lbn; 6644 ufs_lbn_t lastlbn; 6645 ufs2_daddr_t blkno; 6646 { 6647 struct indirdep *indirdep; 6648 struct indirdep *indirn; 6649 struct freework *freework; 6650 struct newblk *newblk; 6651 struct mount *mp; 6652 struct ufsmount *ump; 6653 struct buf *bp; 6654 uint8_t *start; 6655 uint8_t *end; 6656 ufs_lbn_t lbnadd; 6657 int level; 6658 int error; 6659 int off; 6660 6661 freework = NULL; 6662 if (blkno == 0) 6663 return (0); 6664 mp = freeblks->fb_list.wk_mp; 6665 ump = VFSTOUFS(mp); 6666 /* 6667 * Here, calls to VOP_BMAP() will fail. However, we already have 6668 * the on-disk address, so we just pass it to bread() instead of 6669 * having bread() attempt to calculate it using VOP_BMAP(). 6670 */ 6671 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6672 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6673 if (error) 6674 return (error); 6675 level = lbn_level(lbn); 6676 lbnadd = lbn_offset(ump->um_fs, level); 6677 /* 6678 * Compute the offset of the last block we want to keep. Store 6679 * in the freework the first block we want to completely free. 6680 */ 6681 off = (lastlbn - -(lbn + level)) / lbnadd; 6682 if (off + 1 == NINDIR(ump->um_fs)) 6683 goto nowork; 6684 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6685 /* 6686 * Link the freework into the indirdep. This will prevent any new 6687 * allocations from proceeding until we are finished with the 6688 * truncate and the block is written. 6689 */ 6690 ACQUIRE_LOCK(ump); 6691 indirdep = indirdep_lookup(mp, ip, bp); 6692 if (indirdep->ir_freeblks) 6693 panic("setup_trunc_indir: indirdep already truncated."); 6694 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6695 freework->fw_indir = indirdep; 6696 /* 6697 * Cancel any allocindirs that will not make it to disk. 6698 * We have to do this for all copies of the indirdep that 6699 * live on this newblk. 6700 */ 6701 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6702 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6703 &newblk) == 0) 6704 panic("setup_trunc_indir: lost block"); 6705 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6706 trunc_indirdep(indirn, freeblks, bp, off); 6707 } else 6708 trunc_indirdep(indirdep, freeblks, bp, off); 6709 FREE_LOCK(ump); 6710 /* 6711 * Creation is protected by the buf lock. The saveddata is only 6712 * needed if a full truncation follows a partial truncation but it 6713 * is difficult to allocate in that case so we fetch it anyway. 6714 */ 6715 if (indirdep->ir_saveddata == NULL) 6716 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6717 M_SOFTDEP_FLAGS); 6718 nowork: 6719 /* Fetch the blkno of the child and the zero start offset. */ 6720 if (I_IS_UFS1(ip)) { 6721 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6722 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6723 } else { 6724 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6725 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6726 } 6727 if (freework) { 6728 /* Zero the truncated pointers. */ 6729 end = bp->b_data + bp->b_bcount; 6730 bzero(start, end - start); 6731 bdwrite(bp); 6732 } else 6733 bqrelse(bp); 6734 if (level == 0) 6735 return (0); 6736 lbn++; /* adjust level */ 6737 lbn -= (off * lbnadd); 6738 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6739 } 6740 6741 /* 6742 * Complete the partial truncation of an indirect block setup by 6743 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6744 * copy and writes them to disk before the freeblks is allowed to complete. 6745 */ 6746 static void 6747 complete_trunc_indir(freework) 6748 struct freework *freework; 6749 { 6750 struct freework *fwn; 6751 struct indirdep *indirdep; 6752 struct ufsmount *ump; 6753 struct buf *bp; 6754 uintptr_t start; 6755 int count; 6756 6757 ump = VFSTOUFS(freework->fw_list.wk_mp); 6758 LOCK_OWNED(ump); 6759 indirdep = freework->fw_indir; 6760 for (;;) { 6761 bp = indirdep->ir_bp; 6762 /* See if the block was discarded. */ 6763 if (bp == NULL) 6764 break; 6765 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6766 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6767 break; 6768 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6769 LOCK_PTR(ump)) == 0) 6770 BUF_UNLOCK(bp); 6771 ACQUIRE_LOCK(ump); 6772 } 6773 freework->fw_state |= DEPCOMPLETE; 6774 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6775 /* 6776 * Zero the pointers in the saved copy. 6777 */ 6778 if (indirdep->ir_state & UFS1FMT) 6779 start = sizeof(ufs1_daddr_t); 6780 else 6781 start = sizeof(ufs2_daddr_t); 6782 start *= freework->fw_start; 6783 count = indirdep->ir_savebp->b_bcount - start; 6784 start += (uintptr_t)indirdep->ir_savebp->b_data; 6785 bzero((char *)start, count); 6786 /* 6787 * We need to start the next truncation in the list if it has not 6788 * been started yet. 6789 */ 6790 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6791 if (fwn != NULL) { 6792 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6793 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6794 if ((fwn->fw_state & ONWORKLIST) == 0) 6795 freework_enqueue(fwn); 6796 } 6797 /* 6798 * If bp is NULL the block was fully truncated, restore 6799 * the saved block list otherwise free it if it is no 6800 * longer needed. 6801 */ 6802 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6803 if (bp == NULL) 6804 bcopy(indirdep->ir_saveddata, 6805 indirdep->ir_savebp->b_data, 6806 indirdep->ir_savebp->b_bcount); 6807 free(indirdep->ir_saveddata, M_INDIRDEP); 6808 indirdep->ir_saveddata = NULL; 6809 } 6810 /* 6811 * When bp is NULL there is a full truncation pending. We 6812 * must wait for this full truncation to be journaled before 6813 * we can release this freework because the disk pointers will 6814 * never be written as zero. 6815 */ 6816 if (bp == NULL) { 6817 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6818 handle_written_freework(freework); 6819 else 6820 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6821 &freework->fw_list); 6822 if (fwn == NULL) { 6823 freework->fw_indir = (void *)0x0000deadbeef0000; 6824 bp = indirdep->ir_savebp; 6825 indirdep->ir_savebp = NULL; 6826 free_indirdep(indirdep); 6827 FREE_LOCK(ump); 6828 brelse(bp); 6829 ACQUIRE_LOCK(ump); 6830 } 6831 } else { 6832 /* Complete when the real copy is written. */ 6833 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6834 BUF_UNLOCK(bp); 6835 } 6836 } 6837 6838 /* 6839 * Calculate the number of blocks we are going to release where datablocks 6840 * is the current total and length is the new file size. 6841 */ 6842 static ufs2_daddr_t 6843 blkcount(fs, datablocks, length) 6844 struct fs *fs; 6845 ufs2_daddr_t datablocks; 6846 off_t length; 6847 { 6848 off_t totblks, numblks; 6849 6850 totblks = 0; 6851 numblks = howmany(length, fs->fs_bsize); 6852 if (numblks <= UFS_NDADDR) { 6853 totblks = howmany(length, fs->fs_fsize); 6854 goto out; 6855 } 6856 totblks = blkstofrags(fs, numblks); 6857 numblks -= UFS_NDADDR; 6858 /* 6859 * Count all single, then double, then triple indirects required. 6860 * Subtracting one indirects worth of blocks for each pass 6861 * acknowledges one of each pointed to by the inode. 6862 */ 6863 for (;;) { 6864 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6865 numblks -= NINDIR(fs); 6866 if (numblks <= 0) 6867 break; 6868 numblks = howmany(numblks, NINDIR(fs)); 6869 } 6870 out: 6871 totblks = fsbtodb(fs, totblks); 6872 /* 6873 * Handle sparse files. We can't reclaim more blocks than the inode 6874 * references. We will correct it later in handle_complete_freeblks() 6875 * when we know the real count. 6876 */ 6877 if (totblks > datablocks) 6878 return (0); 6879 return (datablocks - totblks); 6880 } 6881 6882 /* 6883 * Handle freeblocks for journaled softupdate filesystems. 6884 * 6885 * Contrary to normal softupdates, we must preserve the block pointers in 6886 * indirects until their subordinates are free. This is to avoid journaling 6887 * every block that is freed which may consume more space than the journal 6888 * itself. The recovery program will see the free block journals at the 6889 * base of the truncated area and traverse them to reclaim space. The 6890 * pointers in the inode may be cleared immediately after the journal 6891 * records are written because each direct and indirect pointer in the 6892 * inode is recorded in a journal. This permits full truncation to proceed 6893 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6894 * 6895 * The algorithm is as follows: 6896 * 1) Traverse the in-memory state and create journal entries to release 6897 * the relevant blocks and full indirect trees. 6898 * 2) Traverse the indirect block chain adding partial truncation freework 6899 * records to indirects in the path to lastlbn. The freework will 6900 * prevent new allocation dependencies from being satisfied in this 6901 * indirect until the truncation completes. 6902 * 3) Read and lock the inode block, performing an update with the new size 6903 * and pointers. This prevents truncated data from becoming valid on 6904 * disk through step 4. 6905 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6906 * eliminate journal work for those records that do not require it. 6907 * 5) Schedule the journal records to be written followed by the inode block. 6908 * 6) Allocate any necessary frags for the end of file. 6909 * 7) Zero any partially truncated blocks. 6910 * 6911 * From this truncation proceeds asynchronously using the freework and 6912 * indir_trunc machinery. The file will not be extended again into a 6913 * partially truncated indirect block until all work is completed but 6914 * the normal dependency mechanism ensures that it is rolled back/forward 6915 * as appropriate. Further truncation may occur without delay and is 6916 * serialized in indir_trunc(). 6917 */ 6918 void 6919 softdep_journal_freeblocks(ip, cred, length, flags) 6920 struct inode *ip; /* The inode whose length is to be reduced */ 6921 struct ucred *cred; 6922 off_t length; /* The new length for the file */ 6923 int flags; /* IO_EXT and/or IO_NORMAL */ 6924 { 6925 struct freeblks *freeblks, *fbn; 6926 struct worklist *wk, *wkn; 6927 struct inodedep *inodedep; 6928 struct jblkdep *jblkdep; 6929 struct allocdirect *adp, *adpn; 6930 struct ufsmount *ump; 6931 struct fs *fs; 6932 struct buf *bp; 6933 struct vnode *vp; 6934 struct mount *mp; 6935 daddr_t dbn; 6936 ufs2_daddr_t extblocks, datablocks; 6937 ufs_lbn_t tmpval, lbn, lastlbn; 6938 int frags, lastoff, iboff, allocblock, needj, error, i; 6939 6940 ump = ITOUMP(ip); 6941 mp = UFSTOVFS(ump); 6942 fs = ump->um_fs; 6943 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6944 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6945 vp = ITOV(ip); 6946 needj = 1; 6947 iboff = -1; 6948 allocblock = 0; 6949 extblocks = 0; 6950 datablocks = 0; 6951 frags = 0; 6952 freeblks = newfreeblks(mp, ip); 6953 ACQUIRE_LOCK(ump); 6954 /* 6955 * If we're truncating a removed file that will never be written 6956 * we don't need to journal the block frees. The canceled journals 6957 * for the allocations will suffice. 6958 */ 6959 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6960 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6961 length == 0) 6962 needj = 0; 6963 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6964 ip->i_number, length, needj); 6965 FREE_LOCK(ump); 6966 /* 6967 * Calculate the lbn that we are truncating to. This results in -1 6968 * if we're truncating the 0 bytes. So it is the last lbn we want 6969 * to keep, not the first lbn we want to truncate. 6970 */ 6971 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6972 lastoff = blkoff(fs, length); 6973 /* 6974 * Compute frags we are keeping in lastlbn. 0 means all. 6975 */ 6976 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6977 frags = fragroundup(fs, lastoff); 6978 /* adp offset of last valid allocdirect. */ 6979 iboff = lastlbn; 6980 } else if (lastlbn > 0) 6981 iboff = UFS_NDADDR; 6982 if (fs->fs_magic == FS_UFS2_MAGIC) 6983 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6984 /* 6985 * Handle normal data blocks and indirects. This section saves 6986 * values used after the inode update to complete frag and indirect 6987 * truncation. 6988 */ 6989 if ((flags & IO_NORMAL) != 0) { 6990 /* 6991 * Handle truncation of whole direct and indirect blocks. 6992 */ 6993 for (i = iboff + 1; i < UFS_NDADDR; i++) 6994 setup_freedirect(freeblks, ip, i, needj); 6995 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6996 i < UFS_NIADDR; 6997 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6998 /* Release a whole indirect tree. */ 6999 if (lbn > lastlbn) { 7000 setup_freeindir(freeblks, ip, i, -lbn -i, 7001 needj); 7002 continue; 7003 } 7004 iboff = i + UFS_NDADDR; 7005 /* 7006 * Traverse partially truncated indirect tree. 7007 */ 7008 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 7009 setup_trunc_indir(freeblks, ip, -lbn - i, 7010 lastlbn, DIP(ip, i_ib[i])); 7011 } 7012 /* 7013 * Handle partial truncation to a frag boundary. 7014 */ 7015 if (frags) { 7016 ufs2_daddr_t blkno; 7017 long oldfrags; 7018 7019 oldfrags = blksize(fs, ip, lastlbn); 7020 blkno = DIP(ip, i_db[lastlbn]); 7021 if (blkno && oldfrags != frags) { 7022 oldfrags -= frags; 7023 oldfrags = numfrags(fs, oldfrags); 7024 blkno += numfrags(fs, frags); 7025 newfreework(ump, freeblks, NULL, lastlbn, 7026 blkno, oldfrags, 0, needj); 7027 if (needj) 7028 adjust_newfreework(freeblks, 7029 numfrags(fs, frags)); 7030 } else if (blkno == 0) 7031 allocblock = 1; 7032 } 7033 /* 7034 * Add a journal record for partial truncate if we are 7035 * handling indirect blocks. Non-indirects need no extra 7036 * journaling. 7037 */ 7038 if (length != 0 && lastlbn >= UFS_NDADDR) { 7039 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 7040 newjtrunc(freeblks, length, 0); 7041 } 7042 ip->i_size = length; 7043 DIP_SET(ip, i_size, ip->i_size); 7044 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7045 datablocks = DIP(ip, i_blocks) - extblocks; 7046 if (length != 0) 7047 datablocks = blkcount(fs, datablocks, length); 7048 freeblks->fb_len = length; 7049 } 7050 if ((flags & IO_EXT) != 0) { 7051 for (i = 0; i < UFS_NXADDR; i++) 7052 setup_freeext(freeblks, ip, i, needj); 7053 ip->i_din2->di_extsize = 0; 7054 datablocks += extblocks; 7055 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7056 } 7057 #ifdef QUOTA 7058 /* Reference the quotas in case the block count is wrong in the end. */ 7059 quotaref(vp, freeblks->fb_quota); 7060 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7061 #endif 7062 freeblks->fb_chkcnt = -datablocks; 7063 UFS_LOCK(ump); 7064 fs->fs_pendingblocks += datablocks; 7065 UFS_UNLOCK(ump); 7066 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7067 /* 7068 * Handle truncation of incomplete alloc direct dependencies. We 7069 * hold the inode block locked to prevent incomplete dependencies 7070 * from reaching the disk while we are eliminating those that 7071 * have been truncated. This is a partially inlined ffs_update(). 7072 */ 7073 ufs_itimes(vp); 7074 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7075 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7076 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7077 NULL, NULL, 0, cred, 0, NULL, &bp); 7078 if (error) { 7079 softdep_error("softdep_journal_freeblocks", error); 7080 return; 7081 } 7082 if (bp->b_bufsize == fs->fs_bsize) 7083 bp->b_flags |= B_CLUSTEROK; 7084 softdep_update_inodeblock(ip, bp, 0); 7085 if (ump->um_fstype == UFS1) { 7086 *((struct ufs1_dinode *)bp->b_data + 7087 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7088 } else { 7089 ffs_update_dinode_ckhash(fs, ip->i_din2); 7090 *((struct ufs2_dinode *)bp->b_data + 7091 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7092 } 7093 ACQUIRE_LOCK(ump); 7094 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7095 if ((inodedep->id_state & IOSTARTED) != 0) 7096 panic("softdep_setup_freeblocks: inode busy"); 7097 /* 7098 * Add the freeblks structure to the list of operations that 7099 * must await the zero'ed inode being written to disk. If we 7100 * still have a bitmap dependency (needj), then the inode 7101 * has never been written to disk, so we can process the 7102 * freeblks below once we have deleted the dependencies. 7103 */ 7104 if (needj) 7105 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7106 else 7107 freeblks->fb_state |= COMPLETE; 7108 if ((flags & IO_NORMAL) != 0) { 7109 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7110 if (adp->ad_offset > iboff) 7111 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7112 freeblks); 7113 /* 7114 * Truncate the allocdirect. We could eliminate 7115 * or modify journal records as well. 7116 */ 7117 else if (adp->ad_offset == iboff && frags) 7118 adp->ad_newsize = frags; 7119 } 7120 } 7121 if ((flags & IO_EXT) != 0) 7122 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7123 cancel_allocdirect(&inodedep->id_extupdt, adp, 7124 freeblks); 7125 /* 7126 * Scan the bufwait list for newblock dependencies that will never 7127 * make it to disk. 7128 */ 7129 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7130 if (wk->wk_type != D_ALLOCDIRECT) 7131 continue; 7132 adp = WK_ALLOCDIRECT(wk); 7133 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7134 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7135 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7136 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7137 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7138 } 7139 } 7140 /* 7141 * Add journal work. 7142 */ 7143 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7144 add_to_journal(&jblkdep->jb_list); 7145 FREE_LOCK(ump); 7146 bdwrite(bp); 7147 /* 7148 * Truncate dependency structures beyond length. 7149 */ 7150 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7151 /* 7152 * This is only set when we need to allocate a fragment because 7153 * none existed at the end of a frag-sized file. It handles only 7154 * allocating a new, zero filled block. 7155 */ 7156 if (allocblock) { 7157 ip->i_size = length - lastoff; 7158 DIP_SET(ip, i_size, ip->i_size); 7159 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7160 if (error != 0) { 7161 softdep_error("softdep_journal_freeblks", error); 7162 return; 7163 } 7164 ip->i_size = length; 7165 DIP_SET(ip, i_size, length); 7166 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7167 allocbuf(bp, frags); 7168 ffs_update(vp, 0); 7169 bawrite(bp); 7170 } else if (lastoff != 0 && vp->v_type != VDIR) { 7171 int size; 7172 7173 /* 7174 * Zero the end of a truncated frag or block. 7175 */ 7176 size = sblksize(fs, length, lastlbn); 7177 error = bread(vp, lastlbn, size, cred, &bp); 7178 if (error == 0) { 7179 bzero((char *)bp->b_data + lastoff, size - lastoff); 7180 bawrite(bp); 7181 } else if (!ffs_fsfail_cleanup(ump, error)) { 7182 softdep_error("softdep_journal_freeblks", error); 7183 return; 7184 } 7185 } 7186 ACQUIRE_LOCK(ump); 7187 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7188 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7189 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7190 /* 7191 * We zero earlier truncations so they don't erroneously 7192 * update i_blocks. 7193 */ 7194 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7195 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7196 fbn->fb_len = 0; 7197 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7198 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7199 freeblks->fb_state |= INPROGRESS; 7200 else 7201 freeblks = NULL; 7202 FREE_LOCK(ump); 7203 if (freeblks) 7204 handle_workitem_freeblocks(freeblks, 0); 7205 trunc_pages(ip, length, extblocks, flags); 7206 7207 } 7208 7209 /* 7210 * Flush a JOP_SYNC to the journal. 7211 */ 7212 void 7213 softdep_journal_fsync(ip) 7214 struct inode *ip; 7215 { 7216 struct jfsync *jfsync; 7217 struct ufsmount *ump; 7218 7219 ump = ITOUMP(ip); 7220 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7221 ("softdep_journal_fsync called on non-softdep filesystem")); 7222 if ((ip->i_flag & IN_TRUNCATED) == 0) 7223 return; 7224 ip->i_flag &= ~IN_TRUNCATED; 7225 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7226 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7227 jfsync->jfs_size = ip->i_size; 7228 jfsync->jfs_ino = ip->i_number; 7229 ACQUIRE_LOCK(ump); 7230 add_to_journal(&jfsync->jfs_list); 7231 jwait(&jfsync->jfs_list, MNT_WAIT); 7232 FREE_LOCK(ump); 7233 } 7234 7235 /* 7236 * Block de-allocation dependencies. 7237 * 7238 * When blocks are de-allocated, the on-disk pointers must be nullified before 7239 * the blocks are made available for use by other files. (The true 7240 * requirement is that old pointers must be nullified before new on-disk 7241 * pointers are set. We chose this slightly more stringent requirement to 7242 * reduce complexity.) Our implementation handles this dependency by updating 7243 * the inode (or indirect block) appropriately but delaying the actual block 7244 * de-allocation (i.e., freemap and free space count manipulation) until 7245 * after the updated versions reach stable storage. After the disk is 7246 * updated, the blocks can be safely de-allocated whenever it is convenient. 7247 * This implementation handles only the common case of reducing a file's 7248 * length to zero. Other cases are handled by the conventional synchronous 7249 * write approach. 7250 * 7251 * The ffs implementation with which we worked double-checks 7252 * the state of the block pointers and file size as it reduces 7253 * a file's length. Some of this code is replicated here in our 7254 * soft updates implementation. The freeblks->fb_chkcnt field is 7255 * used to transfer a part of this information to the procedure 7256 * that eventually de-allocates the blocks. 7257 * 7258 * This routine should be called from the routine that shortens 7259 * a file's length, before the inode's size or block pointers 7260 * are modified. It will save the block pointer information for 7261 * later release and zero the inode so that the calling routine 7262 * can release it. 7263 */ 7264 void 7265 softdep_setup_freeblocks(ip, length, flags) 7266 struct inode *ip; /* The inode whose length is to be reduced */ 7267 off_t length; /* The new length for the file */ 7268 int flags; /* IO_EXT and/or IO_NORMAL */ 7269 { 7270 struct ufs1_dinode *dp1; 7271 struct ufs2_dinode *dp2; 7272 struct freeblks *freeblks; 7273 struct inodedep *inodedep; 7274 struct allocdirect *adp; 7275 struct ufsmount *ump; 7276 struct buf *bp; 7277 struct fs *fs; 7278 ufs2_daddr_t extblocks, datablocks; 7279 struct mount *mp; 7280 int i, delay, error; 7281 ufs_lbn_t tmpval; 7282 ufs_lbn_t lbn; 7283 7284 ump = ITOUMP(ip); 7285 mp = UFSTOVFS(ump); 7286 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7287 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7288 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7289 ip->i_number, length); 7290 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7291 fs = ump->um_fs; 7292 if ((error = bread(ump->um_devvp, 7293 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7294 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7295 if (!ffs_fsfail_cleanup(ump, error)) 7296 softdep_error("softdep_setup_freeblocks", error); 7297 return; 7298 } 7299 freeblks = newfreeblks(mp, ip); 7300 extblocks = 0; 7301 datablocks = 0; 7302 if (fs->fs_magic == FS_UFS2_MAGIC) 7303 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7304 if ((flags & IO_NORMAL) != 0) { 7305 for (i = 0; i < UFS_NDADDR; i++) 7306 setup_freedirect(freeblks, ip, i, 0); 7307 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7308 i < UFS_NIADDR; 7309 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7310 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7311 ip->i_size = 0; 7312 DIP_SET(ip, i_size, 0); 7313 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7314 datablocks = DIP(ip, i_blocks) - extblocks; 7315 } 7316 if ((flags & IO_EXT) != 0) { 7317 for (i = 0; i < UFS_NXADDR; i++) 7318 setup_freeext(freeblks, ip, i, 0); 7319 ip->i_din2->di_extsize = 0; 7320 datablocks += extblocks; 7321 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7322 } 7323 #ifdef QUOTA 7324 /* Reference the quotas in case the block count is wrong in the end. */ 7325 quotaref(ITOV(ip), freeblks->fb_quota); 7326 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7327 #endif 7328 freeblks->fb_chkcnt = -datablocks; 7329 UFS_LOCK(ump); 7330 fs->fs_pendingblocks += datablocks; 7331 UFS_UNLOCK(ump); 7332 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7333 /* 7334 * Push the zero'ed inode to its disk buffer so that we are free 7335 * to delete its dependencies below. Once the dependencies are gone 7336 * the buffer can be safely released. 7337 */ 7338 if (ump->um_fstype == UFS1) { 7339 dp1 = ((struct ufs1_dinode *)bp->b_data + 7340 ino_to_fsbo(fs, ip->i_number)); 7341 ip->i_din1->di_freelink = dp1->di_freelink; 7342 *dp1 = *ip->i_din1; 7343 } else { 7344 dp2 = ((struct ufs2_dinode *)bp->b_data + 7345 ino_to_fsbo(fs, ip->i_number)); 7346 ip->i_din2->di_freelink = dp2->di_freelink; 7347 ffs_update_dinode_ckhash(fs, ip->i_din2); 7348 *dp2 = *ip->i_din2; 7349 } 7350 /* 7351 * Find and eliminate any inode dependencies. 7352 */ 7353 ACQUIRE_LOCK(ump); 7354 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7355 if ((inodedep->id_state & IOSTARTED) != 0) 7356 panic("softdep_setup_freeblocks: inode busy"); 7357 /* 7358 * Add the freeblks structure to the list of operations that 7359 * must await the zero'ed inode being written to disk. If we 7360 * still have a bitmap dependency (delay == 0), then the inode 7361 * has never been written to disk, so we can process the 7362 * freeblks below once we have deleted the dependencies. 7363 */ 7364 delay = (inodedep->id_state & DEPCOMPLETE); 7365 if (delay) 7366 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7367 else 7368 freeblks->fb_state |= COMPLETE; 7369 /* 7370 * Because the file length has been truncated to zero, any 7371 * pending block allocation dependency structures associated 7372 * with this inode are obsolete and can simply be de-allocated. 7373 * We must first merge the two dependency lists to get rid of 7374 * any duplicate freefrag structures, then purge the merged list. 7375 * If we still have a bitmap dependency, then the inode has never 7376 * been written to disk, so we can free any fragments without delay. 7377 */ 7378 if (flags & IO_NORMAL) { 7379 merge_inode_lists(&inodedep->id_newinoupdt, 7380 &inodedep->id_inoupdt); 7381 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7382 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7383 freeblks); 7384 } 7385 if (flags & IO_EXT) { 7386 merge_inode_lists(&inodedep->id_newextupdt, 7387 &inodedep->id_extupdt); 7388 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7389 cancel_allocdirect(&inodedep->id_extupdt, adp, 7390 freeblks); 7391 } 7392 FREE_LOCK(ump); 7393 bdwrite(bp); 7394 trunc_dependencies(ip, freeblks, -1, 0, flags); 7395 ACQUIRE_LOCK(ump); 7396 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7397 (void) free_inodedep(inodedep); 7398 freeblks->fb_state |= DEPCOMPLETE; 7399 /* 7400 * If the inode with zeroed block pointers is now on disk 7401 * we can start freeing blocks. 7402 */ 7403 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7404 freeblks->fb_state |= INPROGRESS; 7405 else 7406 freeblks = NULL; 7407 FREE_LOCK(ump); 7408 if (freeblks) 7409 handle_workitem_freeblocks(freeblks, 0); 7410 trunc_pages(ip, length, extblocks, flags); 7411 } 7412 7413 /* 7414 * Eliminate pages from the page cache that back parts of this inode and 7415 * adjust the vnode pager's idea of our size. This prevents stale data 7416 * from hanging around in the page cache. 7417 */ 7418 static void 7419 trunc_pages(ip, length, extblocks, flags) 7420 struct inode *ip; 7421 off_t length; 7422 ufs2_daddr_t extblocks; 7423 int flags; 7424 { 7425 struct vnode *vp; 7426 struct fs *fs; 7427 ufs_lbn_t lbn; 7428 off_t end, extend; 7429 7430 vp = ITOV(ip); 7431 fs = ITOFS(ip); 7432 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7433 if ((flags & IO_EXT) != 0) 7434 vn_pages_remove(vp, extend, 0); 7435 if ((flags & IO_NORMAL) == 0) 7436 return; 7437 BO_LOCK(&vp->v_bufobj); 7438 drain_output(vp); 7439 BO_UNLOCK(&vp->v_bufobj); 7440 /* 7441 * The vnode pager eliminates file pages we eliminate indirects 7442 * below. 7443 */ 7444 vnode_pager_setsize(vp, length); 7445 /* 7446 * Calculate the end based on the last indirect we want to keep. If 7447 * the block extends into indirects we can just use the negative of 7448 * its lbn. Doubles and triples exist at lower numbers so we must 7449 * be careful not to remove those, if they exist. double and triple 7450 * indirect lbns do not overlap with others so it is not important 7451 * to verify how many levels are required. 7452 */ 7453 lbn = lblkno(fs, length); 7454 if (lbn >= UFS_NDADDR) { 7455 /* Calculate the virtual lbn of the triple indirect. */ 7456 lbn = -lbn - (UFS_NIADDR - 1); 7457 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7458 } else 7459 end = extend; 7460 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7461 } 7462 7463 /* 7464 * See if the buf bp is in the range eliminated by truncation. 7465 */ 7466 static int 7467 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7468 struct buf *bp; 7469 int *blkoffp; 7470 ufs_lbn_t lastlbn; 7471 int lastoff; 7472 int flags; 7473 { 7474 ufs_lbn_t lbn; 7475 7476 *blkoffp = 0; 7477 /* Only match ext/normal blocks as appropriate. */ 7478 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7479 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7480 return (0); 7481 /* ALTDATA is always a full truncation. */ 7482 if ((bp->b_xflags & BX_ALTDATA) != 0) 7483 return (1); 7484 /* -1 is full truncation. */ 7485 if (lastlbn == -1) 7486 return (1); 7487 /* 7488 * If this is a partial truncate we only want those 7489 * blocks and indirect blocks that cover the range 7490 * we're after. 7491 */ 7492 lbn = bp->b_lblkno; 7493 if (lbn < 0) 7494 lbn = -(lbn + lbn_level(lbn)); 7495 if (lbn < lastlbn) 7496 return (0); 7497 /* Here we only truncate lblkno if it's partial. */ 7498 if (lbn == lastlbn) { 7499 if (lastoff == 0) 7500 return (0); 7501 *blkoffp = lastoff; 7502 } 7503 return (1); 7504 } 7505 7506 /* 7507 * Eliminate any dependencies that exist in memory beyond lblkno:off 7508 */ 7509 static void 7510 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7511 struct inode *ip; 7512 struct freeblks *freeblks; 7513 ufs_lbn_t lastlbn; 7514 int lastoff; 7515 int flags; 7516 { 7517 struct bufobj *bo; 7518 struct vnode *vp; 7519 struct buf *bp; 7520 int blkoff; 7521 7522 /* 7523 * We must wait for any I/O in progress to finish so that 7524 * all potential buffers on the dirty list will be visible. 7525 * Once they are all there, walk the list and get rid of 7526 * any dependencies. 7527 */ 7528 vp = ITOV(ip); 7529 bo = &vp->v_bufobj; 7530 BO_LOCK(bo); 7531 drain_output(vp); 7532 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7533 bp->b_vflags &= ~BV_SCANNED; 7534 restart: 7535 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7536 if (bp->b_vflags & BV_SCANNED) 7537 continue; 7538 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7539 bp->b_vflags |= BV_SCANNED; 7540 continue; 7541 } 7542 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7543 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7544 goto restart; 7545 BO_UNLOCK(bo); 7546 if (deallocate_dependencies(bp, freeblks, blkoff)) 7547 bqrelse(bp); 7548 else 7549 brelse(bp); 7550 BO_LOCK(bo); 7551 goto restart; 7552 } 7553 /* 7554 * Now do the work of vtruncbuf while also matching indirect blocks. 7555 */ 7556 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7557 bp->b_vflags &= ~BV_SCANNED; 7558 cleanrestart: 7559 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7560 if (bp->b_vflags & BV_SCANNED) 7561 continue; 7562 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7563 bp->b_vflags |= BV_SCANNED; 7564 continue; 7565 } 7566 if (BUF_LOCK(bp, 7567 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7568 BO_LOCKPTR(bo)) == ENOLCK) { 7569 BO_LOCK(bo); 7570 goto cleanrestart; 7571 } 7572 BO_LOCK(bo); 7573 bp->b_vflags |= BV_SCANNED; 7574 BO_UNLOCK(bo); 7575 bremfree(bp); 7576 if (blkoff != 0) { 7577 allocbuf(bp, blkoff); 7578 bqrelse(bp); 7579 } else { 7580 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7581 brelse(bp); 7582 } 7583 BO_LOCK(bo); 7584 goto cleanrestart; 7585 } 7586 drain_output(vp); 7587 BO_UNLOCK(bo); 7588 } 7589 7590 static int 7591 cancel_pagedep(pagedep, freeblks, blkoff) 7592 struct pagedep *pagedep; 7593 struct freeblks *freeblks; 7594 int blkoff; 7595 { 7596 struct jremref *jremref; 7597 struct jmvref *jmvref; 7598 struct dirrem *dirrem, *tmp; 7599 int i; 7600 7601 /* 7602 * Copy any directory remove dependencies to the list 7603 * to be processed after the freeblks proceeds. If 7604 * directory entry never made it to disk they 7605 * can be dumped directly onto the work list. 7606 */ 7607 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7608 /* Skip this directory removal if it is intended to remain. */ 7609 if (dirrem->dm_offset < blkoff) 7610 continue; 7611 /* 7612 * If there are any dirrems we wait for the journal write 7613 * to complete and then restart the buf scan as the lock 7614 * has been dropped. 7615 */ 7616 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7617 jwait(&jremref->jr_list, MNT_WAIT); 7618 return (ERESTART); 7619 } 7620 LIST_REMOVE(dirrem, dm_next); 7621 dirrem->dm_dirinum = pagedep->pd_ino; 7622 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7623 } 7624 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7625 jwait(&jmvref->jm_list, MNT_WAIT); 7626 return (ERESTART); 7627 } 7628 /* 7629 * When we're partially truncating a pagedep we just want to flush 7630 * journal entries and return. There can not be any adds in the 7631 * truncated portion of the directory and newblk must remain if 7632 * part of the block remains. 7633 */ 7634 if (blkoff != 0) { 7635 struct diradd *dap; 7636 7637 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7638 if (dap->da_offset > blkoff) 7639 panic("cancel_pagedep: diradd %p off %d > %d", 7640 dap, dap->da_offset, blkoff); 7641 for (i = 0; i < DAHASHSZ; i++) 7642 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7643 if (dap->da_offset > blkoff) 7644 panic("cancel_pagedep: diradd %p off %d > %d", 7645 dap, dap->da_offset, blkoff); 7646 return (0); 7647 } 7648 /* 7649 * There should be no directory add dependencies present 7650 * as the directory could not be truncated until all 7651 * children were removed. 7652 */ 7653 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7654 ("deallocate_dependencies: pendinghd != NULL")); 7655 for (i = 0; i < DAHASHSZ; i++) 7656 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7657 ("deallocate_dependencies: diraddhd != NULL")); 7658 if ((pagedep->pd_state & NEWBLOCK) != 0) 7659 free_newdirblk(pagedep->pd_newdirblk); 7660 if (free_pagedep(pagedep) == 0) 7661 panic("Failed to free pagedep %p", pagedep); 7662 return (0); 7663 } 7664 7665 /* 7666 * Reclaim any dependency structures from a buffer that is about to 7667 * be reallocated to a new vnode. The buffer must be locked, thus, 7668 * no I/O completion operations can occur while we are manipulating 7669 * its associated dependencies. The mutex is held so that other I/O's 7670 * associated with related dependencies do not occur. 7671 */ 7672 static int 7673 deallocate_dependencies(bp, freeblks, off) 7674 struct buf *bp; 7675 struct freeblks *freeblks; 7676 int off; 7677 { 7678 struct indirdep *indirdep; 7679 struct pagedep *pagedep; 7680 struct worklist *wk, *wkn; 7681 struct ufsmount *ump; 7682 7683 ump = softdep_bp_to_mp(bp); 7684 if (ump == NULL) 7685 goto done; 7686 ACQUIRE_LOCK(ump); 7687 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7688 switch (wk->wk_type) { 7689 case D_INDIRDEP: 7690 indirdep = WK_INDIRDEP(wk); 7691 if (bp->b_lblkno >= 0 || 7692 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7693 panic("deallocate_dependencies: not indir"); 7694 cancel_indirdep(indirdep, bp, freeblks); 7695 continue; 7696 7697 case D_PAGEDEP: 7698 pagedep = WK_PAGEDEP(wk); 7699 if (cancel_pagedep(pagedep, freeblks, off)) { 7700 FREE_LOCK(ump); 7701 return (ERESTART); 7702 } 7703 continue; 7704 7705 case D_ALLOCINDIR: 7706 /* 7707 * Simply remove the allocindir, we'll find it via 7708 * the indirdep where we can clear pointers if 7709 * needed. 7710 */ 7711 WORKLIST_REMOVE(wk); 7712 continue; 7713 7714 case D_FREEWORK: 7715 /* 7716 * A truncation is waiting for the zero'd pointers 7717 * to be written. It can be freed when the freeblks 7718 * is journaled. 7719 */ 7720 WORKLIST_REMOVE(wk); 7721 wk->wk_state |= ONDEPLIST; 7722 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7723 break; 7724 7725 case D_ALLOCDIRECT: 7726 if (off != 0) 7727 continue; 7728 /* FALLTHROUGH */ 7729 default: 7730 panic("deallocate_dependencies: Unexpected type %s", 7731 TYPENAME(wk->wk_type)); 7732 /* NOTREACHED */ 7733 } 7734 } 7735 FREE_LOCK(ump); 7736 done: 7737 /* 7738 * Don't throw away this buf, we were partially truncating and 7739 * some deps may always remain. 7740 */ 7741 if (off) { 7742 allocbuf(bp, off); 7743 bp->b_vflags |= BV_SCANNED; 7744 return (EBUSY); 7745 } 7746 bp->b_flags |= B_INVAL | B_NOCACHE; 7747 7748 return (0); 7749 } 7750 7751 /* 7752 * An allocdirect is being canceled due to a truncate. We must make sure 7753 * the journal entry is released in concert with the blkfree that releases 7754 * the storage. Completed journal entries must not be released until the 7755 * space is no longer pointed to by the inode or in the bitmap. 7756 */ 7757 static void 7758 cancel_allocdirect(adphead, adp, freeblks) 7759 struct allocdirectlst *adphead; 7760 struct allocdirect *adp; 7761 struct freeblks *freeblks; 7762 { 7763 struct freework *freework; 7764 struct newblk *newblk; 7765 struct worklist *wk; 7766 7767 TAILQ_REMOVE(adphead, adp, ad_next); 7768 newblk = (struct newblk *)adp; 7769 freework = NULL; 7770 /* 7771 * Find the correct freework structure. 7772 */ 7773 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7774 if (wk->wk_type != D_FREEWORK) 7775 continue; 7776 freework = WK_FREEWORK(wk); 7777 if (freework->fw_blkno == newblk->nb_newblkno) 7778 break; 7779 } 7780 if (freework == NULL) 7781 panic("cancel_allocdirect: Freework not found"); 7782 /* 7783 * If a newblk exists at all we still have the journal entry that 7784 * initiated the allocation so we do not need to journal the free. 7785 */ 7786 cancel_jfreeblk(freeblks, freework->fw_blkno); 7787 /* 7788 * If the journal hasn't been written the jnewblk must be passed 7789 * to the call to ffs_blkfree that reclaims the space. We accomplish 7790 * this by linking the journal dependency into the freework to be 7791 * freed when freework_freeblock() is called. If the journal has 7792 * been written we can simply reclaim the journal space when the 7793 * freeblks work is complete. 7794 */ 7795 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7796 &freeblks->fb_jwork); 7797 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7798 } 7799 7800 /* 7801 * Cancel a new block allocation. May be an indirect or direct block. We 7802 * remove it from various lists and return any journal record that needs to 7803 * be resolved by the caller. 7804 * 7805 * A special consideration is made for indirects which were never pointed 7806 * at on disk and will never be found once this block is released. 7807 */ 7808 static struct jnewblk * 7809 cancel_newblk(newblk, wk, wkhd) 7810 struct newblk *newblk; 7811 struct worklist *wk; 7812 struct workhead *wkhd; 7813 { 7814 struct jnewblk *jnewblk; 7815 7816 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7817 7818 newblk->nb_state |= GOINGAWAY; 7819 /* 7820 * Previously we traversed the completedhd on each indirdep 7821 * attached to this newblk to cancel them and gather journal 7822 * work. Since we need only the oldest journal segment and 7823 * the lowest point on the tree will always have the oldest 7824 * journal segment we are free to release the segments 7825 * of any subordinates and may leave the indirdep list to 7826 * indirdep_complete() when this newblk is freed. 7827 */ 7828 if (newblk->nb_state & ONDEPLIST) { 7829 newblk->nb_state &= ~ONDEPLIST; 7830 LIST_REMOVE(newblk, nb_deps); 7831 } 7832 if (newblk->nb_state & ONWORKLIST) 7833 WORKLIST_REMOVE(&newblk->nb_list); 7834 /* 7835 * If the journal entry hasn't been written we save a pointer to 7836 * the dependency that frees it until it is written or the 7837 * superseding operation completes. 7838 */ 7839 jnewblk = newblk->nb_jnewblk; 7840 if (jnewblk != NULL && wk != NULL) { 7841 newblk->nb_jnewblk = NULL; 7842 jnewblk->jn_dep = wk; 7843 } 7844 if (!LIST_EMPTY(&newblk->nb_jwork)) 7845 jwork_move(wkhd, &newblk->nb_jwork); 7846 /* 7847 * When truncating we must free the newdirblk early to remove 7848 * the pagedep from the hash before returning. 7849 */ 7850 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7851 free_newdirblk(WK_NEWDIRBLK(wk)); 7852 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7853 panic("cancel_newblk: extra newdirblk"); 7854 7855 return (jnewblk); 7856 } 7857 7858 /* 7859 * Schedule the freefrag associated with a newblk to be released once 7860 * the pointers are written and the previous block is no longer needed. 7861 */ 7862 static void 7863 newblk_freefrag(newblk) 7864 struct newblk *newblk; 7865 { 7866 struct freefrag *freefrag; 7867 7868 if (newblk->nb_freefrag == NULL) 7869 return; 7870 freefrag = newblk->nb_freefrag; 7871 newblk->nb_freefrag = NULL; 7872 freefrag->ff_state |= COMPLETE; 7873 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7874 add_to_worklist(&freefrag->ff_list, 0); 7875 } 7876 7877 /* 7878 * Free a newblk. Generate a new freefrag work request if appropriate. 7879 * This must be called after the inode pointer and any direct block pointers 7880 * are valid or fully removed via truncate or frag extension. 7881 */ 7882 static void 7883 free_newblk(newblk) 7884 struct newblk *newblk; 7885 { 7886 struct indirdep *indirdep; 7887 struct worklist *wk; 7888 7889 KASSERT(newblk->nb_jnewblk == NULL, 7890 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7891 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7892 ("free_newblk: unclaimed newblk")); 7893 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7894 newblk_freefrag(newblk); 7895 if (newblk->nb_state & ONDEPLIST) 7896 LIST_REMOVE(newblk, nb_deps); 7897 if (newblk->nb_state & ONWORKLIST) 7898 WORKLIST_REMOVE(&newblk->nb_list); 7899 LIST_REMOVE(newblk, nb_hash); 7900 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7901 free_newdirblk(WK_NEWDIRBLK(wk)); 7902 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7903 panic("free_newblk: extra newdirblk"); 7904 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7905 indirdep_complete(indirdep); 7906 handle_jwork(&newblk->nb_jwork); 7907 WORKITEM_FREE(newblk, D_NEWBLK); 7908 } 7909 7910 /* 7911 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7912 */ 7913 static void 7914 free_newdirblk(newdirblk) 7915 struct newdirblk *newdirblk; 7916 { 7917 struct pagedep *pagedep; 7918 struct diradd *dap; 7919 struct worklist *wk; 7920 7921 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7922 WORKLIST_REMOVE(&newdirblk->db_list); 7923 /* 7924 * If the pagedep is still linked onto the directory buffer 7925 * dependency chain, then some of the entries on the 7926 * pd_pendinghd list may not be committed to disk yet. In 7927 * this case, we will simply clear the NEWBLOCK flag and 7928 * let the pd_pendinghd list be processed when the pagedep 7929 * is next written. If the pagedep is no longer on the buffer 7930 * dependency chain, then all the entries on the pd_pending 7931 * list are committed to disk and we can free them here. 7932 */ 7933 pagedep = newdirblk->db_pagedep; 7934 pagedep->pd_state &= ~NEWBLOCK; 7935 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7936 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7937 free_diradd(dap, NULL); 7938 /* 7939 * If no dependencies remain, the pagedep will be freed. 7940 */ 7941 free_pagedep(pagedep); 7942 } 7943 /* Should only ever be one item in the list. */ 7944 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7945 WORKLIST_REMOVE(wk); 7946 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7947 } 7948 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7949 } 7950 7951 /* 7952 * Prepare an inode to be freed. The actual free operation is not 7953 * done until the zero'ed inode has been written to disk. 7954 */ 7955 void 7956 softdep_freefile(pvp, ino, mode) 7957 struct vnode *pvp; 7958 ino_t ino; 7959 int mode; 7960 { 7961 struct inode *ip = VTOI(pvp); 7962 struct inodedep *inodedep; 7963 struct freefile *freefile; 7964 struct freeblks *freeblks; 7965 struct ufsmount *ump; 7966 7967 ump = ITOUMP(ip); 7968 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7969 ("softdep_freefile called on non-softdep filesystem")); 7970 /* 7971 * This sets up the inode de-allocation dependency. 7972 */ 7973 freefile = malloc(sizeof(struct freefile), 7974 M_FREEFILE, M_SOFTDEP_FLAGS); 7975 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7976 freefile->fx_mode = mode; 7977 freefile->fx_oldinum = ino; 7978 freefile->fx_devvp = ump->um_devvp; 7979 LIST_INIT(&freefile->fx_jwork); 7980 UFS_LOCK(ump); 7981 ump->um_fs->fs_pendinginodes += 1; 7982 UFS_UNLOCK(ump); 7983 7984 /* 7985 * If the inodedep does not exist, then the zero'ed inode has 7986 * been written to disk. If the allocated inode has never been 7987 * written to disk, then the on-disk inode is zero'ed. In either 7988 * case we can free the file immediately. If the journal was 7989 * canceled before being written the inode will never make it to 7990 * disk and we must send the canceled journal entrys to 7991 * ffs_freefile() to be cleared in conjunction with the bitmap. 7992 * Any blocks waiting on the inode to write can be safely freed 7993 * here as it will never been written. 7994 */ 7995 ACQUIRE_LOCK(ump); 7996 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7997 if (inodedep) { 7998 /* 7999 * Clear out freeblks that no longer need to reference 8000 * this inode. 8001 */ 8002 while ((freeblks = 8003 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 8004 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 8005 fb_next); 8006 freeblks->fb_state &= ~ONDEPLIST; 8007 } 8008 /* 8009 * Remove this inode from the unlinked list. 8010 */ 8011 if (inodedep->id_state & UNLINKED) { 8012 /* 8013 * Save the journal work to be freed with the bitmap 8014 * before we clear UNLINKED. Otherwise it can be lost 8015 * if the inode block is written. 8016 */ 8017 handle_bufwait(inodedep, &freefile->fx_jwork); 8018 clear_unlinked_inodedep(inodedep); 8019 /* 8020 * Re-acquire inodedep as we've dropped the 8021 * per-filesystem lock in clear_unlinked_inodedep(). 8022 */ 8023 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 8024 } 8025 } 8026 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 8027 FREE_LOCK(ump); 8028 handle_workitem_freefile(freefile); 8029 return; 8030 } 8031 if ((inodedep->id_state & DEPCOMPLETE) == 0) 8032 inodedep->id_state |= GOINGAWAY; 8033 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 8034 FREE_LOCK(ump); 8035 if (ip->i_number == ino) 8036 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 8037 } 8038 8039 /* 8040 * Check to see if an inode has never been written to disk. If 8041 * so free the inodedep and return success, otherwise return failure. 8042 * 8043 * If we still have a bitmap dependency, then the inode has never 8044 * been written to disk. Drop the dependency as it is no longer 8045 * necessary since the inode is being deallocated. We set the 8046 * ALLCOMPLETE flags since the bitmap now properly shows that the 8047 * inode is not allocated. Even if the inode is actively being 8048 * written, it has been rolled back to its zero'ed state, so we 8049 * are ensured that a zero inode is what is on the disk. For short 8050 * lived files, this change will usually result in removing all the 8051 * dependencies from the inode so that it can be freed immediately. 8052 */ 8053 static int 8054 check_inode_unwritten(inodedep) 8055 struct inodedep *inodedep; 8056 { 8057 8058 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8059 8060 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8061 !LIST_EMPTY(&inodedep->id_dirremhd) || 8062 !LIST_EMPTY(&inodedep->id_pendinghd) || 8063 !LIST_EMPTY(&inodedep->id_bufwait) || 8064 !LIST_EMPTY(&inodedep->id_inowait) || 8065 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8066 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8067 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8068 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8069 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8070 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8071 inodedep->id_mkdiradd != NULL || 8072 inodedep->id_nlinkdelta != 0) 8073 return (0); 8074 /* 8075 * Another process might be in initiate_write_inodeblock_ufs[12] 8076 * trying to allocate memory without holding "Softdep Lock". 8077 */ 8078 if ((inodedep->id_state & IOSTARTED) != 0 && 8079 inodedep->id_savedino1 == NULL) 8080 return (0); 8081 8082 if (inodedep->id_state & ONDEPLIST) 8083 LIST_REMOVE(inodedep, id_deps); 8084 inodedep->id_state &= ~ONDEPLIST; 8085 inodedep->id_state |= ALLCOMPLETE; 8086 inodedep->id_bmsafemap = NULL; 8087 if (inodedep->id_state & ONWORKLIST) 8088 WORKLIST_REMOVE(&inodedep->id_list); 8089 if (inodedep->id_savedino1 != NULL) { 8090 free(inodedep->id_savedino1, M_SAVEDINO); 8091 inodedep->id_savedino1 = NULL; 8092 } 8093 if (free_inodedep(inodedep) == 0) 8094 panic("check_inode_unwritten: busy inode"); 8095 return (1); 8096 } 8097 8098 static int 8099 check_inodedep_free(inodedep) 8100 struct inodedep *inodedep; 8101 { 8102 8103 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8104 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8105 !LIST_EMPTY(&inodedep->id_dirremhd) || 8106 !LIST_EMPTY(&inodedep->id_pendinghd) || 8107 !LIST_EMPTY(&inodedep->id_bufwait) || 8108 !LIST_EMPTY(&inodedep->id_inowait) || 8109 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8110 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8111 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8112 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8113 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8114 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8115 inodedep->id_mkdiradd != NULL || 8116 inodedep->id_nlinkdelta != 0 || 8117 inodedep->id_savedino1 != NULL) 8118 return (0); 8119 return (1); 8120 } 8121 8122 /* 8123 * Try to free an inodedep structure. Return 1 if it could be freed. 8124 */ 8125 static int 8126 free_inodedep(inodedep) 8127 struct inodedep *inodedep; 8128 { 8129 8130 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8131 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8132 !check_inodedep_free(inodedep)) 8133 return (0); 8134 if (inodedep->id_state & ONDEPLIST) 8135 LIST_REMOVE(inodedep, id_deps); 8136 LIST_REMOVE(inodedep, id_hash); 8137 WORKITEM_FREE(inodedep, D_INODEDEP); 8138 return (1); 8139 } 8140 8141 /* 8142 * Free the block referenced by a freework structure. The parent freeblks 8143 * structure is released and completed when the final cg bitmap reaches 8144 * the disk. This routine may be freeing a jnewblk which never made it to 8145 * disk in which case we do not have to wait as the operation is undone 8146 * in memory immediately. 8147 */ 8148 static void 8149 freework_freeblock(freework, key) 8150 struct freework *freework; 8151 u_long key; 8152 { 8153 struct freeblks *freeblks; 8154 struct jnewblk *jnewblk; 8155 struct ufsmount *ump; 8156 struct workhead wkhd; 8157 struct fs *fs; 8158 int bsize; 8159 int needj; 8160 8161 ump = VFSTOUFS(freework->fw_list.wk_mp); 8162 LOCK_OWNED(ump); 8163 /* 8164 * Handle partial truncate separately. 8165 */ 8166 if (freework->fw_indir) { 8167 complete_trunc_indir(freework); 8168 return; 8169 } 8170 freeblks = freework->fw_freeblks; 8171 fs = ump->um_fs; 8172 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8173 bsize = lfragtosize(fs, freework->fw_frags); 8174 LIST_INIT(&wkhd); 8175 /* 8176 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8177 * on the indirblk hashtable and prevents premature freeing. 8178 */ 8179 freework->fw_state |= DEPCOMPLETE; 8180 /* 8181 * SUJ needs to wait for the segment referencing freed indirect 8182 * blocks to expire so that we know the checker will not confuse 8183 * a re-allocated indirect block with its old contents. 8184 */ 8185 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8186 indirblk_insert(freework); 8187 /* 8188 * If we are canceling an existing jnewblk pass it to the free 8189 * routine, otherwise pass the freeblk which will ultimately 8190 * release the freeblks. If we're not journaling, we can just 8191 * free the freeblks immediately. 8192 */ 8193 jnewblk = freework->fw_jnewblk; 8194 if (jnewblk != NULL) { 8195 cancel_jnewblk(jnewblk, &wkhd); 8196 needj = 0; 8197 } else if (needj) { 8198 freework->fw_state |= DELAYEDFREE; 8199 freeblks->fb_cgwait++; 8200 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8201 } 8202 FREE_LOCK(ump); 8203 freeblks_free(ump, freeblks, btodb(bsize)); 8204 CTR4(KTR_SUJ, 8205 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8206 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8207 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8208 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8209 ACQUIRE_LOCK(ump); 8210 /* 8211 * The jnewblk will be discarded and the bits in the map never 8212 * made it to disk. We can immediately free the freeblk. 8213 */ 8214 if (needj == 0) 8215 handle_written_freework(freework); 8216 } 8217 8218 /* 8219 * We enqueue freework items that need processing back on the freeblks and 8220 * add the freeblks to the worklist. This makes it easier to find all work 8221 * required to flush a truncation in process_truncates(). 8222 */ 8223 static void 8224 freework_enqueue(freework) 8225 struct freework *freework; 8226 { 8227 struct freeblks *freeblks; 8228 8229 freeblks = freework->fw_freeblks; 8230 if ((freework->fw_state & INPROGRESS) == 0) 8231 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8232 if ((freeblks->fb_state & 8233 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8234 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8235 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8236 } 8237 8238 /* 8239 * Start, continue, or finish the process of freeing an indirect block tree. 8240 * The free operation may be paused at any point with fw_off containing the 8241 * offset to restart from. This enables us to implement some flow control 8242 * for large truncates which may fan out and generate a huge number of 8243 * dependencies. 8244 */ 8245 static void 8246 handle_workitem_indirblk(freework) 8247 struct freework *freework; 8248 { 8249 struct freeblks *freeblks; 8250 struct ufsmount *ump; 8251 struct fs *fs; 8252 8253 freeblks = freework->fw_freeblks; 8254 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8255 fs = ump->um_fs; 8256 if (freework->fw_state & DEPCOMPLETE) { 8257 handle_written_freework(freework); 8258 return; 8259 } 8260 if (freework->fw_off == NINDIR(fs)) { 8261 freework_freeblock(freework, SINGLETON_KEY); 8262 return; 8263 } 8264 freework->fw_state |= INPROGRESS; 8265 FREE_LOCK(ump); 8266 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8267 freework->fw_lbn); 8268 ACQUIRE_LOCK(ump); 8269 } 8270 8271 /* 8272 * Called when a freework structure attached to a cg buf is written. The 8273 * ref on either the parent or the freeblks structure is released and 8274 * the freeblks is added back to the worklist if there is more work to do. 8275 */ 8276 static void 8277 handle_written_freework(freework) 8278 struct freework *freework; 8279 { 8280 struct freeblks *freeblks; 8281 struct freework *parent; 8282 8283 freeblks = freework->fw_freeblks; 8284 parent = freework->fw_parent; 8285 if (freework->fw_state & DELAYEDFREE) 8286 freeblks->fb_cgwait--; 8287 freework->fw_state |= COMPLETE; 8288 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8289 WORKITEM_FREE(freework, D_FREEWORK); 8290 if (parent) { 8291 if (--parent->fw_ref == 0) 8292 freework_enqueue(parent); 8293 return; 8294 } 8295 if (--freeblks->fb_ref != 0) 8296 return; 8297 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8298 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8299 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8300 } 8301 8302 /* 8303 * This workitem routine performs the block de-allocation. 8304 * The workitem is added to the pending list after the updated 8305 * inode block has been written to disk. As mentioned above, 8306 * checks regarding the number of blocks de-allocated (compared 8307 * to the number of blocks allocated for the file) are also 8308 * performed in this function. 8309 */ 8310 static int 8311 handle_workitem_freeblocks(freeblks, flags) 8312 struct freeblks *freeblks; 8313 int flags; 8314 { 8315 struct freework *freework; 8316 struct newblk *newblk; 8317 struct allocindir *aip; 8318 struct ufsmount *ump; 8319 struct worklist *wk; 8320 u_long key; 8321 8322 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8323 ("handle_workitem_freeblocks: Journal entries not written.")); 8324 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8325 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8326 ACQUIRE_LOCK(ump); 8327 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8328 WORKLIST_REMOVE(wk); 8329 switch (wk->wk_type) { 8330 case D_DIRREM: 8331 wk->wk_state |= COMPLETE; 8332 add_to_worklist(wk, 0); 8333 continue; 8334 8335 case D_ALLOCDIRECT: 8336 free_newblk(WK_NEWBLK(wk)); 8337 continue; 8338 8339 case D_ALLOCINDIR: 8340 aip = WK_ALLOCINDIR(wk); 8341 freework = NULL; 8342 if (aip->ai_state & DELAYEDFREE) { 8343 FREE_LOCK(ump); 8344 freework = newfreework(ump, freeblks, NULL, 8345 aip->ai_lbn, aip->ai_newblkno, 8346 ump->um_fs->fs_frag, 0, 0); 8347 ACQUIRE_LOCK(ump); 8348 } 8349 newblk = WK_NEWBLK(wk); 8350 if (newblk->nb_jnewblk) { 8351 freework->fw_jnewblk = newblk->nb_jnewblk; 8352 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8353 newblk->nb_jnewblk = NULL; 8354 } 8355 free_newblk(newblk); 8356 continue; 8357 8358 case D_FREEWORK: 8359 freework = WK_FREEWORK(wk); 8360 if (freework->fw_lbn <= -UFS_NDADDR) 8361 handle_workitem_indirblk(freework); 8362 else 8363 freework_freeblock(freework, key); 8364 continue; 8365 default: 8366 panic("handle_workitem_freeblocks: Unknown type %s", 8367 TYPENAME(wk->wk_type)); 8368 } 8369 } 8370 if (freeblks->fb_ref != 0) { 8371 freeblks->fb_state &= ~INPROGRESS; 8372 wake_worklist(&freeblks->fb_list); 8373 freeblks = NULL; 8374 } 8375 FREE_LOCK(ump); 8376 ffs_blkrelease_finish(ump, key); 8377 if (freeblks) 8378 return handle_complete_freeblocks(freeblks, flags); 8379 return (0); 8380 } 8381 8382 /* 8383 * Handle completion of block free via truncate. This allows fs_pending 8384 * to track the actual free block count more closely than if we only updated 8385 * it at the end. We must be careful to handle cases where the block count 8386 * on free was incorrect. 8387 */ 8388 static void 8389 freeblks_free(ump, freeblks, blocks) 8390 struct ufsmount *ump; 8391 struct freeblks *freeblks; 8392 int blocks; 8393 { 8394 struct fs *fs; 8395 ufs2_daddr_t remain; 8396 8397 UFS_LOCK(ump); 8398 remain = -freeblks->fb_chkcnt; 8399 freeblks->fb_chkcnt += blocks; 8400 if (remain > 0) { 8401 if (remain < blocks) 8402 blocks = remain; 8403 fs = ump->um_fs; 8404 fs->fs_pendingblocks -= blocks; 8405 } 8406 UFS_UNLOCK(ump); 8407 } 8408 8409 /* 8410 * Once all of the freework workitems are complete we can retire the 8411 * freeblocks dependency and any journal work awaiting completion. This 8412 * can not be called until all other dependencies are stable on disk. 8413 */ 8414 static int 8415 handle_complete_freeblocks(freeblks, flags) 8416 struct freeblks *freeblks; 8417 int flags; 8418 { 8419 struct inodedep *inodedep; 8420 struct inode *ip; 8421 struct vnode *vp; 8422 struct fs *fs; 8423 struct ufsmount *ump; 8424 ufs2_daddr_t spare; 8425 8426 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8427 fs = ump->um_fs; 8428 flags = LK_EXCLUSIVE | flags; 8429 spare = freeblks->fb_chkcnt; 8430 8431 /* 8432 * If we did not release the expected number of blocks we may have 8433 * to adjust the inode block count here. Only do so if it wasn't 8434 * a truncation to zero and the modrev still matches. 8435 */ 8436 if (spare && freeblks->fb_len != 0) { 8437 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8438 flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) 8439 return (EBUSY); 8440 ip = VTOI(vp); 8441 if (ip->i_mode == 0) { 8442 vgone(vp); 8443 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8444 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8445 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8446 /* 8447 * We must wait so this happens before the 8448 * journal is reclaimed. 8449 */ 8450 ffs_update(vp, 1); 8451 } 8452 vput(vp); 8453 } 8454 if (spare < 0) { 8455 UFS_LOCK(ump); 8456 fs->fs_pendingblocks += spare; 8457 UFS_UNLOCK(ump); 8458 } 8459 #ifdef QUOTA 8460 /* Handle spare. */ 8461 if (spare) 8462 quotaadj(freeblks->fb_quota, ump, -spare); 8463 quotarele(freeblks->fb_quota); 8464 #endif 8465 ACQUIRE_LOCK(ump); 8466 if (freeblks->fb_state & ONDEPLIST) { 8467 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8468 0, &inodedep); 8469 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8470 freeblks->fb_state &= ~ONDEPLIST; 8471 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8472 free_inodedep(inodedep); 8473 } 8474 /* 8475 * All of the freeblock deps must be complete prior to this call 8476 * so it's now safe to complete earlier outstanding journal entries. 8477 */ 8478 handle_jwork(&freeblks->fb_jwork); 8479 WORKITEM_FREE(freeblks, D_FREEBLKS); 8480 FREE_LOCK(ump); 8481 return (0); 8482 } 8483 8484 /* 8485 * Release blocks associated with the freeblks and stored in the indirect 8486 * block dbn. If level is greater than SINGLE, the block is an indirect block 8487 * and recursive calls to indirtrunc must be used to cleanse other indirect 8488 * blocks. 8489 * 8490 * This handles partial and complete truncation of blocks. Partial is noted 8491 * with goingaway == 0. In this case the freework is completed after the 8492 * zero'd indirects are written to disk. For full truncation the freework 8493 * is completed after the block is freed. 8494 */ 8495 static void 8496 indir_trunc(freework, dbn, lbn) 8497 struct freework *freework; 8498 ufs2_daddr_t dbn; 8499 ufs_lbn_t lbn; 8500 { 8501 struct freework *nfreework; 8502 struct workhead wkhd; 8503 struct freeblks *freeblks; 8504 struct buf *bp; 8505 struct fs *fs; 8506 struct indirdep *indirdep; 8507 struct mount *mp; 8508 struct ufsmount *ump; 8509 ufs1_daddr_t *bap1; 8510 ufs2_daddr_t nb, nnb, *bap2; 8511 ufs_lbn_t lbnadd, nlbn; 8512 u_long key; 8513 int nblocks, ufs1fmt, freedblocks; 8514 int goingaway, freedeps, needj, level, cnt, i, error; 8515 8516 freeblks = freework->fw_freeblks; 8517 mp = freeblks->fb_list.wk_mp; 8518 ump = VFSTOUFS(mp); 8519 fs = ump->um_fs; 8520 /* 8521 * Get buffer of block pointers to be freed. There are three cases: 8522 * 8523 * 1) Partial truncate caches the indirdep pointer in the freework 8524 * which provides us a back copy to the save bp which holds the 8525 * pointers we want to clear. When this completes the zero 8526 * pointers are written to the real copy. 8527 * 2) The indirect is being completely truncated, cancel_indirdep() 8528 * eliminated the real copy and placed the indirdep on the saved 8529 * copy. The indirdep and buf are discarded when this completes. 8530 * 3) The indirect was not in memory, we read a copy off of the disk 8531 * using the devvp and drop and invalidate the buffer when we're 8532 * done. 8533 */ 8534 goingaway = 1; 8535 indirdep = NULL; 8536 if (freework->fw_indir != NULL) { 8537 goingaway = 0; 8538 indirdep = freework->fw_indir; 8539 bp = indirdep->ir_savebp; 8540 if (bp == NULL || bp->b_blkno != dbn) 8541 panic("indir_trunc: Bad saved buf %p blkno %jd", 8542 bp, (intmax_t)dbn); 8543 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8544 /* 8545 * The lock prevents the buf dep list from changing and 8546 * indirects on devvp should only ever have one dependency. 8547 */ 8548 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8549 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8550 panic("indir_trunc: Bad indirdep %p from buf %p", 8551 indirdep, bp); 8552 } else { 8553 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8554 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8555 if (error) 8556 return; 8557 } 8558 ACQUIRE_LOCK(ump); 8559 /* Protects against a race with complete_trunc_indir(). */ 8560 freework->fw_state &= ~INPROGRESS; 8561 /* 8562 * If we have an indirdep we need to enforce the truncation order 8563 * and discard it when it is complete. 8564 */ 8565 if (indirdep) { 8566 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8567 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8568 /* 8569 * Add the complete truncate to the list on the 8570 * indirdep to enforce in-order processing. 8571 */ 8572 if (freework->fw_indir == NULL) 8573 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8574 freework, fw_next); 8575 FREE_LOCK(ump); 8576 return; 8577 } 8578 /* 8579 * If we're goingaway, free the indirdep. Otherwise it will 8580 * linger until the write completes. 8581 */ 8582 if (goingaway) { 8583 KASSERT(indirdep->ir_savebp == bp, 8584 ("indir_trunc: losing ir_savebp %p", 8585 indirdep->ir_savebp)); 8586 indirdep->ir_savebp = NULL; 8587 free_indirdep(indirdep); 8588 } 8589 } 8590 FREE_LOCK(ump); 8591 /* Initialize pointers depending on block size. */ 8592 if (ump->um_fstype == UFS1) { 8593 bap1 = (ufs1_daddr_t *)bp->b_data; 8594 nb = bap1[freework->fw_off]; 8595 ufs1fmt = 1; 8596 bap2 = NULL; 8597 } else { 8598 bap2 = (ufs2_daddr_t *)bp->b_data; 8599 nb = bap2[freework->fw_off]; 8600 ufs1fmt = 0; 8601 bap1 = NULL; 8602 } 8603 level = lbn_level(lbn); 8604 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8605 lbnadd = lbn_offset(fs, level); 8606 nblocks = btodb(fs->fs_bsize); 8607 nfreework = freework; 8608 freedeps = 0; 8609 cnt = 0; 8610 /* 8611 * Reclaim blocks. Traverses into nested indirect levels and 8612 * arranges for the current level to be freed when subordinates 8613 * are free when journaling. 8614 */ 8615 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8616 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8617 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8618 fs->fs_bsize) != 0) 8619 nb = 0; 8620 if (i != NINDIR(fs) - 1) { 8621 if (ufs1fmt) 8622 nnb = bap1[i+1]; 8623 else 8624 nnb = bap2[i+1]; 8625 } else 8626 nnb = 0; 8627 if (nb == 0) 8628 continue; 8629 cnt++; 8630 if (level != 0) { 8631 nlbn = (lbn + 1) - (i * lbnadd); 8632 if (needj != 0) { 8633 nfreework = newfreework(ump, freeblks, freework, 8634 nlbn, nb, fs->fs_frag, 0, 0); 8635 freedeps++; 8636 } 8637 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8638 } else { 8639 struct freedep *freedep; 8640 8641 /* 8642 * Attempt to aggregate freedep dependencies for 8643 * all blocks being released to the same CG. 8644 */ 8645 LIST_INIT(&wkhd); 8646 if (needj != 0 && 8647 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8648 freedep = newfreedep(freework); 8649 WORKLIST_INSERT_UNLOCKED(&wkhd, 8650 &freedep->fd_list); 8651 freedeps++; 8652 } 8653 CTR3(KTR_SUJ, 8654 "indir_trunc: ino %jd blkno %jd size %d", 8655 freeblks->fb_inum, nb, fs->fs_bsize); 8656 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8657 fs->fs_bsize, freeblks->fb_inum, 8658 freeblks->fb_vtype, &wkhd, key); 8659 } 8660 } 8661 ffs_blkrelease_finish(ump, key); 8662 if (goingaway) { 8663 bp->b_flags |= B_INVAL | B_NOCACHE; 8664 brelse(bp); 8665 } 8666 freedblocks = 0; 8667 if (level == 0) 8668 freedblocks = (nblocks * cnt); 8669 if (needj == 0) 8670 freedblocks += nblocks; 8671 freeblks_free(ump, freeblks, freedblocks); 8672 /* 8673 * If we are journaling set up the ref counts and offset so this 8674 * indirect can be completed when its children are free. 8675 */ 8676 if (needj) { 8677 ACQUIRE_LOCK(ump); 8678 freework->fw_off = i; 8679 freework->fw_ref += freedeps; 8680 freework->fw_ref -= NINDIR(fs) + 1; 8681 if (level == 0) 8682 freeblks->fb_cgwait += freedeps; 8683 if (freework->fw_ref == 0) 8684 freework_freeblock(freework, SINGLETON_KEY); 8685 FREE_LOCK(ump); 8686 return; 8687 } 8688 /* 8689 * If we're not journaling we can free the indirect now. 8690 */ 8691 dbn = dbtofsb(fs, dbn); 8692 CTR3(KTR_SUJ, 8693 "indir_trunc 2: ino %jd blkno %jd size %d", 8694 freeblks->fb_inum, dbn, fs->fs_bsize); 8695 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8696 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8697 /* Non SUJ softdep does single-threaded truncations. */ 8698 if (freework->fw_blkno == dbn) { 8699 freework->fw_state |= ALLCOMPLETE; 8700 ACQUIRE_LOCK(ump); 8701 handle_written_freework(freework); 8702 FREE_LOCK(ump); 8703 } 8704 return; 8705 } 8706 8707 /* 8708 * Cancel an allocindir when it is removed via truncation. When bp is not 8709 * NULL the indirect never appeared on disk and is scheduled to be freed 8710 * independently of the indir so we can more easily track journal work. 8711 */ 8712 static void 8713 cancel_allocindir(aip, bp, freeblks, trunc) 8714 struct allocindir *aip; 8715 struct buf *bp; 8716 struct freeblks *freeblks; 8717 int trunc; 8718 { 8719 struct indirdep *indirdep; 8720 struct freefrag *freefrag; 8721 struct newblk *newblk; 8722 8723 newblk = (struct newblk *)aip; 8724 LIST_REMOVE(aip, ai_next); 8725 /* 8726 * We must eliminate the pointer in bp if it must be freed on its 8727 * own due to partial truncate or pending journal work. 8728 */ 8729 if (bp && (trunc || newblk->nb_jnewblk)) { 8730 /* 8731 * Clear the pointer and mark the aip to be freed 8732 * directly if it never existed on disk. 8733 */ 8734 aip->ai_state |= DELAYEDFREE; 8735 indirdep = aip->ai_indirdep; 8736 if (indirdep->ir_state & UFS1FMT) 8737 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8738 else 8739 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8740 } 8741 /* 8742 * When truncating the previous pointer will be freed via 8743 * savedbp. Eliminate the freefrag which would dup free. 8744 */ 8745 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8746 newblk->nb_freefrag = NULL; 8747 if (freefrag->ff_jdep) 8748 cancel_jfreefrag( 8749 WK_JFREEFRAG(freefrag->ff_jdep)); 8750 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8751 WORKITEM_FREE(freefrag, D_FREEFRAG); 8752 } 8753 /* 8754 * If the journal hasn't been written the jnewblk must be passed 8755 * to the call to ffs_blkfree that reclaims the space. We accomplish 8756 * this by leaving the journal dependency on the newblk to be freed 8757 * when a freework is created in handle_workitem_freeblocks(). 8758 */ 8759 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8760 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8761 } 8762 8763 /* 8764 * Create the mkdir dependencies for . and .. in a new directory. Link them 8765 * in to a newdirblk so any subsequent additions are tracked properly. The 8766 * caller is responsible for adding the mkdir1 dependency to the journal 8767 * and updating id_mkdiradd. This function returns with the per-filesystem 8768 * lock held. 8769 */ 8770 static struct mkdir * 8771 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8772 struct diradd *dap; 8773 ino_t newinum; 8774 ino_t dinum; 8775 struct buf *newdirbp; 8776 struct mkdir **mkdirp; 8777 { 8778 struct newblk *newblk; 8779 struct pagedep *pagedep; 8780 struct inodedep *inodedep; 8781 struct newdirblk *newdirblk; 8782 struct mkdir *mkdir1, *mkdir2; 8783 struct worklist *wk; 8784 struct jaddref *jaddref; 8785 struct ufsmount *ump; 8786 struct mount *mp; 8787 8788 mp = dap->da_list.wk_mp; 8789 ump = VFSTOUFS(mp); 8790 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8791 M_SOFTDEP_FLAGS); 8792 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8793 LIST_INIT(&newdirblk->db_mkdir); 8794 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8795 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8796 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8797 mkdir1->md_diradd = dap; 8798 mkdir1->md_jaddref = NULL; 8799 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8800 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8801 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8802 mkdir2->md_diradd = dap; 8803 mkdir2->md_jaddref = NULL; 8804 if (MOUNTEDSUJ(mp) == 0) { 8805 mkdir1->md_state |= DEPCOMPLETE; 8806 mkdir2->md_state |= DEPCOMPLETE; 8807 } 8808 /* 8809 * Dependency on "." and ".." being written to disk. 8810 */ 8811 mkdir1->md_buf = newdirbp; 8812 ACQUIRE_LOCK(VFSTOUFS(mp)); 8813 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8814 /* 8815 * We must link the pagedep, allocdirect, and newdirblk for 8816 * the initial file page so the pointer to the new directory 8817 * is not written until the directory contents are live and 8818 * any subsequent additions are not marked live until the 8819 * block is reachable via the inode. 8820 */ 8821 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8822 panic("setup_newdir: lost pagedep"); 8823 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8824 if (wk->wk_type == D_ALLOCDIRECT) 8825 break; 8826 if (wk == NULL) 8827 panic("setup_newdir: lost allocdirect"); 8828 if (pagedep->pd_state & NEWBLOCK) 8829 panic("setup_newdir: NEWBLOCK already set"); 8830 newblk = WK_NEWBLK(wk); 8831 pagedep->pd_state |= NEWBLOCK; 8832 pagedep->pd_newdirblk = newdirblk; 8833 newdirblk->db_pagedep = pagedep; 8834 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8835 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8836 /* 8837 * Look up the inodedep for the parent directory so that we 8838 * can link mkdir2 into the pending dotdot jaddref or 8839 * the inode write if there is none. If the inode is 8840 * ALLCOMPLETE and no jaddref is present all dependencies have 8841 * been satisfied and mkdir2 can be freed. 8842 */ 8843 inodedep_lookup(mp, dinum, 0, &inodedep); 8844 if (MOUNTEDSUJ(mp)) { 8845 if (inodedep == NULL) 8846 panic("setup_newdir: Lost parent."); 8847 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8848 inoreflst); 8849 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8850 (jaddref->ja_state & MKDIR_PARENT), 8851 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8852 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8853 mkdir2->md_jaddref = jaddref; 8854 jaddref->ja_mkdir = mkdir2; 8855 } else if (inodedep == NULL || 8856 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8857 dap->da_state &= ~MKDIR_PARENT; 8858 WORKITEM_FREE(mkdir2, D_MKDIR); 8859 mkdir2 = NULL; 8860 } else { 8861 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8862 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8863 } 8864 *mkdirp = mkdir2; 8865 8866 return (mkdir1); 8867 } 8868 8869 /* 8870 * Directory entry addition dependencies. 8871 * 8872 * When adding a new directory entry, the inode (with its incremented link 8873 * count) must be written to disk before the directory entry's pointer to it. 8874 * Also, if the inode is newly allocated, the corresponding freemap must be 8875 * updated (on disk) before the directory entry's pointer. These requirements 8876 * are met via undo/redo on the directory entry's pointer, which consists 8877 * simply of the inode number. 8878 * 8879 * As directory entries are added and deleted, the free space within a 8880 * directory block can become fragmented. The ufs filesystem will compact 8881 * a fragmented directory block to make space for a new entry. When this 8882 * occurs, the offsets of previously added entries change. Any "diradd" 8883 * dependency structures corresponding to these entries must be updated with 8884 * the new offsets. 8885 */ 8886 8887 /* 8888 * This routine is called after the in-memory inode's link 8889 * count has been incremented, but before the directory entry's 8890 * pointer to the inode has been set. 8891 */ 8892 int 8893 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8894 struct buf *bp; /* buffer containing directory block */ 8895 struct inode *dp; /* inode for directory */ 8896 off_t diroffset; /* offset of new entry in directory */ 8897 ino_t newinum; /* inode referenced by new directory entry */ 8898 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8899 int isnewblk; /* entry is in a newly allocated block */ 8900 { 8901 int offset; /* offset of new entry within directory block */ 8902 ufs_lbn_t lbn; /* block in directory containing new entry */ 8903 struct fs *fs; 8904 struct diradd *dap; 8905 struct newblk *newblk; 8906 struct pagedep *pagedep; 8907 struct inodedep *inodedep; 8908 struct newdirblk *newdirblk; 8909 struct mkdir *mkdir1, *mkdir2; 8910 struct jaddref *jaddref; 8911 struct ufsmount *ump; 8912 struct mount *mp; 8913 int isindir; 8914 8915 mp = ITOVFS(dp); 8916 ump = VFSTOUFS(mp); 8917 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8918 ("softdep_setup_directory_add called on non-softdep filesystem")); 8919 /* 8920 * Whiteouts have no dependencies. 8921 */ 8922 if (newinum == UFS_WINO) { 8923 if (newdirbp != NULL) 8924 bdwrite(newdirbp); 8925 return (0); 8926 } 8927 jaddref = NULL; 8928 mkdir1 = mkdir2 = NULL; 8929 fs = ump->um_fs; 8930 lbn = lblkno(fs, diroffset); 8931 offset = blkoff(fs, diroffset); 8932 dap = malloc(sizeof(struct diradd), M_DIRADD, 8933 M_SOFTDEP_FLAGS|M_ZERO); 8934 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8935 dap->da_offset = offset; 8936 dap->da_newinum = newinum; 8937 dap->da_state = ATTACHED; 8938 LIST_INIT(&dap->da_jwork); 8939 isindir = bp->b_lblkno >= UFS_NDADDR; 8940 newdirblk = NULL; 8941 if (isnewblk && 8942 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8943 newdirblk = malloc(sizeof(struct newdirblk), 8944 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8945 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8946 LIST_INIT(&newdirblk->db_mkdir); 8947 } 8948 /* 8949 * If we're creating a new directory setup the dependencies and set 8950 * the dap state to wait for them. Otherwise it's COMPLETE and 8951 * we can move on. 8952 */ 8953 if (newdirbp == NULL) { 8954 dap->da_state |= DEPCOMPLETE; 8955 ACQUIRE_LOCK(ump); 8956 } else { 8957 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8958 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8959 &mkdir2); 8960 } 8961 /* 8962 * Link into parent directory pagedep to await its being written. 8963 */ 8964 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8965 #ifdef INVARIANTS 8966 if (diradd_lookup(pagedep, offset) != NULL) 8967 panic("softdep_setup_directory_add: %p already at off %d\n", 8968 diradd_lookup(pagedep, offset), offset); 8969 #endif 8970 dap->da_pagedep = pagedep; 8971 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8972 da_pdlist); 8973 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8974 /* 8975 * If we're journaling, link the diradd into the jaddref so it 8976 * may be completed after the journal entry is written. Otherwise, 8977 * link the diradd into its inodedep. If the inode is not yet 8978 * written place it on the bufwait list, otherwise do the post-inode 8979 * write processing to put it on the id_pendinghd list. 8980 */ 8981 if (MOUNTEDSUJ(mp)) { 8982 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8983 inoreflst); 8984 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8985 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8986 jaddref->ja_diroff = diroffset; 8987 jaddref->ja_diradd = dap; 8988 add_to_journal(&jaddref->ja_list); 8989 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8990 diradd_inode_written(dap, inodedep); 8991 else 8992 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8993 /* 8994 * Add the journal entries for . and .. links now that the primary 8995 * link is written. 8996 */ 8997 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8998 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8999 inoreflst, if_deps); 9000 KASSERT(jaddref != NULL && 9001 jaddref->ja_ino == jaddref->ja_parent && 9002 (jaddref->ja_state & MKDIR_BODY), 9003 ("softdep_setup_directory_add: bad dot jaddref %p", 9004 jaddref)); 9005 mkdir1->md_jaddref = jaddref; 9006 jaddref->ja_mkdir = mkdir1; 9007 /* 9008 * It is important that the dotdot journal entry 9009 * is added prior to the dot entry since dot writes 9010 * both the dot and dotdot links. These both must 9011 * be added after the primary link for the journal 9012 * to remain consistent. 9013 */ 9014 add_to_journal(&mkdir2->md_jaddref->ja_list); 9015 add_to_journal(&jaddref->ja_list); 9016 } 9017 /* 9018 * If we are adding a new directory remember this diradd so that if 9019 * we rename it we can keep the dot and dotdot dependencies. If 9020 * we are adding a new name for an inode that has a mkdiradd we 9021 * must be in rename and we have to move the dot and dotdot 9022 * dependencies to this new name. The old name is being orphaned 9023 * soon. 9024 */ 9025 if (mkdir1 != NULL) { 9026 if (inodedep->id_mkdiradd != NULL) 9027 panic("softdep_setup_directory_add: Existing mkdir"); 9028 inodedep->id_mkdiradd = dap; 9029 } else if (inodedep->id_mkdiradd) 9030 merge_diradd(inodedep, dap); 9031 if (newdirblk != NULL) { 9032 /* 9033 * There is nothing to do if we are already tracking 9034 * this block. 9035 */ 9036 if ((pagedep->pd_state & NEWBLOCK) != 0) { 9037 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 9038 FREE_LOCK(ump); 9039 return (0); 9040 } 9041 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 9042 == 0) 9043 panic("softdep_setup_directory_add: lost entry"); 9044 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 9045 pagedep->pd_state |= NEWBLOCK; 9046 pagedep->pd_newdirblk = newdirblk; 9047 newdirblk->db_pagedep = pagedep; 9048 FREE_LOCK(ump); 9049 /* 9050 * If we extended into an indirect signal direnter to sync. 9051 */ 9052 if (isindir) 9053 return (1); 9054 return (0); 9055 } 9056 FREE_LOCK(ump); 9057 return (0); 9058 } 9059 9060 /* 9061 * This procedure is called to change the offset of a directory 9062 * entry when compacting a directory block which must be owned 9063 * exclusively by the caller. Note that the actual entry movement 9064 * must be done in this procedure to ensure that no I/O completions 9065 * occur while the move is in progress. 9066 */ 9067 void 9068 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9069 struct buf *bp; /* Buffer holding directory block. */ 9070 struct inode *dp; /* inode for directory */ 9071 caddr_t base; /* address of dp->i_offset */ 9072 caddr_t oldloc; /* address of old directory location */ 9073 caddr_t newloc; /* address of new directory location */ 9074 int entrysize; /* size of directory entry */ 9075 { 9076 int offset, oldoffset, newoffset; 9077 struct pagedep *pagedep; 9078 struct jmvref *jmvref; 9079 struct diradd *dap; 9080 struct direct *de; 9081 struct mount *mp; 9082 struct ufsmount *ump; 9083 ufs_lbn_t lbn; 9084 int flags; 9085 9086 mp = ITOVFS(dp); 9087 ump = VFSTOUFS(mp); 9088 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9089 ("softdep_change_directoryentry_offset called on " 9090 "non-softdep filesystem")); 9091 de = (struct direct *)oldloc; 9092 jmvref = NULL; 9093 flags = 0; 9094 /* 9095 * Moves are always journaled as it would be too complex to 9096 * determine if any affected adds or removes are present in the 9097 * journal. 9098 */ 9099 if (MOUNTEDSUJ(mp)) { 9100 flags = DEPALLOC; 9101 jmvref = newjmvref(dp, de->d_ino, 9102 I_OFFSET(dp) + (oldloc - base), 9103 I_OFFSET(dp) + (newloc - base)); 9104 } 9105 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9106 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9107 oldoffset = offset + (oldloc - base); 9108 newoffset = offset + (newloc - base); 9109 ACQUIRE_LOCK(ump); 9110 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9111 goto done; 9112 dap = diradd_lookup(pagedep, oldoffset); 9113 if (dap) { 9114 dap->da_offset = newoffset; 9115 newoffset = DIRADDHASH(newoffset); 9116 oldoffset = DIRADDHASH(oldoffset); 9117 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9118 newoffset != oldoffset) { 9119 LIST_REMOVE(dap, da_pdlist); 9120 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9121 dap, da_pdlist); 9122 } 9123 } 9124 done: 9125 if (jmvref) { 9126 jmvref->jm_pagedep = pagedep; 9127 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9128 add_to_journal(&jmvref->jm_list); 9129 } 9130 bcopy(oldloc, newloc, entrysize); 9131 FREE_LOCK(ump); 9132 } 9133 9134 /* 9135 * Move the mkdir dependencies and journal work from one diradd to another 9136 * when renaming a directory. The new name must depend on the mkdir deps 9137 * completing as the old name did. Directories can only have one valid link 9138 * at a time so one must be canonical. 9139 */ 9140 static void 9141 merge_diradd(inodedep, newdap) 9142 struct inodedep *inodedep; 9143 struct diradd *newdap; 9144 { 9145 struct diradd *olddap; 9146 struct mkdir *mkdir, *nextmd; 9147 struct ufsmount *ump; 9148 short state; 9149 9150 olddap = inodedep->id_mkdiradd; 9151 inodedep->id_mkdiradd = newdap; 9152 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9153 newdap->da_state &= ~DEPCOMPLETE; 9154 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9155 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9156 mkdir = nextmd) { 9157 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9158 if (mkdir->md_diradd != olddap) 9159 continue; 9160 mkdir->md_diradd = newdap; 9161 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9162 newdap->da_state |= state; 9163 olddap->da_state &= ~state; 9164 if ((olddap->da_state & 9165 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9166 break; 9167 } 9168 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9169 panic("merge_diradd: unfound ref"); 9170 } 9171 /* 9172 * Any mkdir related journal items are not safe to be freed until 9173 * the new name is stable. 9174 */ 9175 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9176 olddap->da_state |= DEPCOMPLETE; 9177 complete_diradd(olddap); 9178 } 9179 9180 /* 9181 * Move the diradd to the pending list when all diradd dependencies are 9182 * complete. 9183 */ 9184 static void 9185 complete_diradd(dap) 9186 struct diradd *dap; 9187 { 9188 struct pagedep *pagedep; 9189 9190 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9191 if (dap->da_state & DIRCHG) 9192 pagedep = dap->da_previous->dm_pagedep; 9193 else 9194 pagedep = dap->da_pagedep; 9195 LIST_REMOVE(dap, da_pdlist); 9196 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9197 } 9198 } 9199 9200 /* 9201 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9202 * add entries and conditonally journal the remove. 9203 */ 9204 static void 9205 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9206 struct diradd *dap; 9207 struct dirrem *dirrem; 9208 struct jremref *jremref; 9209 struct jremref *dotremref; 9210 struct jremref *dotdotremref; 9211 { 9212 struct inodedep *inodedep; 9213 struct jaddref *jaddref; 9214 struct inoref *inoref; 9215 struct ufsmount *ump; 9216 struct mkdir *mkdir; 9217 9218 /* 9219 * If no remove references were allocated we're on a non-journaled 9220 * filesystem and can skip the cancel step. 9221 */ 9222 if (jremref == NULL) { 9223 free_diradd(dap, NULL); 9224 return; 9225 } 9226 /* 9227 * Cancel the primary name an free it if it does not require 9228 * journaling. 9229 */ 9230 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9231 0, &inodedep) != 0) { 9232 /* Abort the addref that reference this diradd. */ 9233 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9234 if (inoref->if_list.wk_type != D_JADDREF) 9235 continue; 9236 jaddref = (struct jaddref *)inoref; 9237 if (jaddref->ja_diradd != dap) 9238 continue; 9239 if (cancel_jaddref(jaddref, inodedep, 9240 &dirrem->dm_jwork) == 0) { 9241 free_jremref(jremref); 9242 jremref = NULL; 9243 } 9244 break; 9245 } 9246 } 9247 /* 9248 * Cancel subordinate names and free them if they do not require 9249 * journaling. 9250 */ 9251 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9252 ump = VFSTOUFS(dap->da_list.wk_mp); 9253 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9254 if (mkdir->md_diradd != dap) 9255 continue; 9256 if ((jaddref = mkdir->md_jaddref) == NULL) 9257 continue; 9258 mkdir->md_jaddref = NULL; 9259 if (mkdir->md_state & MKDIR_PARENT) { 9260 if (cancel_jaddref(jaddref, NULL, 9261 &dirrem->dm_jwork) == 0) { 9262 free_jremref(dotdotremref); 9263 dotdotremref = NULL; 9264 } 9265 } else { 9266 if (cancel_jaddref(jaddref, inodedep, 9267 &dirrem->dm_jwork) == 0) { 9268 free_jremref(dotremref); 9269 dotremref = NULL; 9270 } 9271 } 9272 } 9273 } 9274 9275 if (jremref) 9276 journal_jremref(dirrem, jremref, inodedep); 9277 if (dotremref) 9278 journal_jremref(dirrem, dotremref, inodedep); 9279 if (dotdotremref) 9280 journal_jremref(dirrem, dotdotremref, NULL); 9281 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9282 free_diradd(dap, &dirrem->dm_jwork); 9283 } 9284 9285 /* 9286 * Free a diradd dependency structure. 9287 */ 9288 static void 9289 free_diradd(dap, wkhd) 9290 struct diradd *dap; 9291 struct workhead *wkhd; 9292 { 9293 struct dirrem *dirrem; 9294 struct pagedep *pagedep; 9295 struct inodedep *inodedep; 9296 struct mkdir *mkdir, *nextmd; 9297 struct ufsmount *ump; 9298 9299 ump = VFSTOUFS(dap->da_list.wk_mp); 9300 LOCK_OWNED(ump); 9301 LIST_REMOVE(dap, da_pdlist); 9302 if (dap->da_state & ONWORKLIST) 9303 WORKLIST_REMOVE(&dap->da_list); 9304 if ((dap->da_state & DIRCHG) == 0) { 9305 pagedep = dap->da_pagedep; 9306 } else { 9307 dirrem = dap->da_previous; 9308 pagedep = dirrem->dm_pagedep; 9309 dirrem->dm_dirinum = pagedep->pd_ino; 9310 dirrem->dm_state |= COMPLETE; 9311 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9312 add_to_worklist(&dirrem->dm_list, 0); 9313 } 9314 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9315 0, &inodedep) != 0) 9316 if (inodedep->id_mkdiradd == dap) 9317 inodedep->id_mkdiradd = NULL; 9318 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9319 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9320 mkdir = nextmd) { 9321 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9322 if (mkdir->md_diradd != dap) 9323 continue; 9324 dap->da_state &= 9325 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9326 LIST_REMOVE(mkdir, md_mkdirs); 9327 if (mkdir->md_state & ONWORKLIST) 9328 WORKLIST_REMOVE(&mkdir->md_list); 9329 if (mkdir->md_jaddref != NULL) 9330 panic("free_diradd: Unexpected jaddref"); 9331 WORKITEM_FREE(mkdir, D_MKDIR); 9332 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9333 break; 9334 } 9335 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9336 panic("free_diradd: unfound ref"); 9337 } 9338 if (inodedep) 9339 free_inodedep(inodedep); 9340 /* 9341 * Free any journal segments waiting for the directory write. 9342 */ 9343 handle_jwork(&dap->da_jwork); 9344 WORKITEM_FREE(dap, D_DIRADD); 9345 } 9346 9347 /* 9348 * Directory entry removal dependencies. 9349 * 9350 * When removing a directory entry, the entry's inode pointer must be 9351 * zero'ed on disk before the corresponding inode's link count is decremented 9352 * (possibly freeing the inode for re-use). This dependency is handled by 9353 * updating the directory entry but delaying the inode count reduction until 9354 * after the directory block has been written to disk. After this point, the 9355 * inode count can be decremented whenever it is convenient. 9356 */ 9357 9358 /* 9359 * This routine should be called immediately after removing 9360 * a directory entry. The inode's link count should not be 9361 * decremented by the calling procedure -- the soft updates 9362 * code will do this task when it is safe. 9363 */ 9364 void 9365 softdep_setup_remove(bp, dp, ip, isrmdir) 9366 struct buf *bp; /* buffer containing directory block */ 9367 struct inode *dp; /* inode for the directory being modified */ 9368 struct inode *ip; /* inode for directory entry being removed */ 9369 int isrmdir; /* indicates if doing RMDIR */ 9370 { 9371 struct dirrem *dirrem, *prevdirrem; 9372 struct inodedep *inodedep; 9373 struct ufsmount *ump; 9374 int direct; 9375 9376 ump = ITOUMP(ip); 9377 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9378 ("softdep_setup_remove called on non-softdep filesystem")); 9379 /* 9380 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9381 * newdirrem() to setup the full directory remove which requires 9382 * isrmdir > 1. 9383 */ 9384 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9385 /* 9386 * Add the dirrem to the inodedep's pending remove list for quick 9387 * discovery later. 9388 */ 9389 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9390 panic("softdep_setup_remove: Lost inodedep."); 9391 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9392 dirrem->dm_state |= ONDEPLIST; 9393 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9394 9395 /* 9396 * If the COMPLETE flag is clear, then there were no active 9397 * entries and we want to roll back to a zeroed entry until 9398 * the new inode is committed to disk. If the COMPLETE flag is 9399 * set then we have deleted an entry that never made it to 9400 * disk. If the entry we deleted resulted from a name change, 9401 * then the old name still resides on disk. We cannot delete 9402 * its inode (returned to us in prevdirrem) until the zeroed 9403 * directory entry gets to disk. The new inode has never been 9404 * referenced on the disk, so can be deleted immediately. 9405 */ 9406 if ((dirrem->dm_state & COMPLETE) == 0) { 9407 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9408 dm_next); 9409 FREE_LOCK(ump); 9410 } else { 9411 if (prevdirrem != NULL) 9412 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9413 prevdirrem, dm_next); 9414 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9415 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9416 FREE_LOCK(ump); 9417 if (direct) 9418 handle_workitem_remove(dirrem, 0); 9419 } 9420 } 9421 9422 /* 9423 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9424 * pd_pendinghd list of a pagedep. 9425 */ 9426 static struct diradd * 9427 diradd_lookup(pagedep, offset) 9428 struct pagedep *pagedep; 9429 int offset; 9430 { 9431 struct diradd *dap; 9432 9433 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9434 if (dap->da_offset == offset) 9435 return (dap); 9436 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9437 if (dap->da_offset == offset) 9438 return (dap); 9439 return (NULL); 9440 } 9441 9442 /* 9443 * Search for a .. diradd dependency in a directory that is being removed. 9444 * If the directory was renamed to a new parent we have a diradd rather 9445 * than a mkdir for the .. entry. We need to cancel it now before 9446 * it is found in truncate(). 9447 */ 9448 static struct jremref * 9449 cancel_diradd_dotdot(ip, dirrem, jremref) 9450 struct inode *ip; 9451 struct dirrem *dirrem; 9452 struct jremref *jremref; 9453 { 9454 struct pagedep *pagedep; 9455 struct diradd *dap; 9456 struct worklist *wk; 9457 9458 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9459 return (jremref); 9460 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9461 if (dap == NULL) 9462 return (jremref); 9463 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9464 /* 9465 * Mark any journal work as belonging to the parent so it is freed 9466 * with the .. reference. 9467 */ 9468 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9469 wk->wk_state |= MKDIR_PARENT; 9470 return (NULL); 9471 } 9472 9473 /* 9474 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9475 * replace it with a dirrem/diradd pair as a result of re-parenting a 9476 * directory. This ensures that we don't simultaneously have a mkdir and 9477 * a diradd for the same .. entry. 9478 */ 9479 static struct jremref * 9480 cancel_mkdir_dotdot(ip, dirrem, jremref) 9481 struct inode *ip; 9482 struct dirrem *dirrem; 9483 struct jremref *jremref; 9484 { 9485 struct inodedep *inodedep; 9486 struct jaddref *jaddref; 9487 struct ufsmount *ump; 9488 struct mkdir *mkdir; 9489 struct diradd *dap; 9490 struct mount *mp; 9491 9492 mp = ITOVFS(ip); 9493 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9494 return (jremref); 9495 dap = inodedep->id_mkdiradd; 9496 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9497 return (jremref); 9498 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9499 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9500 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9501 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9502 break; 9503 if (mkdir == NULL) 9504 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9505 if ((jaddref = mkdir->md_jaddref) != NULL) { 9506 mkdir->md_jaddref = NULL; 9507 jaddref->ja_state &= ~MKDIR_PARENT; 9508 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9509 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9510 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9511 journal_jremref(dirrem, jremref, inodedep); 9512 jremref = NULL; 9513 } 9514 } 9515 if (mkdir->md_state & ONWORKLIST) 9516 WORKLIST_REMOVE(&mkdir->md_list); 9517 mkdir->md_state |= ALLCOMPLETE; 9518 complete_mkdir(mkdir); 9519 return (jremref); 9520 } 9521 9522 static void 9523 journal_jremref(dirrem, jremref, inodedep) 9524 struct dirrem *dirrem; 9525 struct jremref *jremref; 9526 struct inodedep *inodedep; 9527 { 9528 9529 if (inodedep == NULL) 9530 if (inodedep_lookup(jremref->jr_list.wk_mp, 9531 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9532 panic("journal_jremref: Lost inodedep"); 9533 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9534 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9535 add_to_journal(&jremref->jr_list); 9536 } 9537 9538 static void 9539 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9540 struct dirrem *dirrem; 9541 struct jremref *jremref; 9542 struct jremref *dotremref; 9543 struct jremref *dotdotremref; 9544 { 9545 struct inodedep *inodedep; 9546 9547 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9548 &inodedep) == 0) 9549 panic("dirrem_journal: Lost inodedep"); 9550 journal_jremref(dirrem, jremref, inodedep); 9551 if (dotremref) 9552 journal_jremref(dirrem, dotremref, inodedep); 9553 if (dotdotremref) 9554 journal_jremref(dirrem, dotdotremref, NULL); 9555 } 9556 9557 /* 9558 * Allocate a new dirrem if appropriate and return it along with 9559 * its associated pagedep. Called without a lock, returns with lock. 9560 */ 9561 static struct dirrem * 9562 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9563 struct buf *bp; /* buffer containing directory block */ 9564 struct inode *dp; /* inode for the directory being modified */ 9565 struct inode *ip; /* inode for directory entry being removed */ 9566 int isrmdir; /* indicates if doing RMDIR */ 9567 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9568 { 9569 int offset; 9570 ufs_lbn_t lbn; 9571 struct diradd *dap; 9572 struct dirrem *dirrem; 9573 struct pagedep *pagedep; 9574 struct jremref *jremref; 9575 struct jremref *dotremref; 9576 struct jremref *dotdotremref; 9577 struct vnode *dvp; 9578 struct ufsmount *ump; 9579 9580 /* 9581 * Whiteouts have no deletion dependencies. 9582 */ 9583 if (ip == NULL) 9584 panic("newdirrem: whiteout"); 9585 dvp = ITOV(dp); 9586 ump = ITOUMP(dp); 9587 9588 /* 9589 * If the system is over its limit and our filesystem is 9590 * responsible for more than our share of that usage and 9591 * we are not a snapshot, request some inodedep cleanup. 9592 * Limiting the number of dirrem structures will also limit 9593 * the number of freefile and freeblks structures. 9594 */ 9595 ACQUIRE_LOCK(ump); 9596 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9597 schedule_cleanup(UFSTOVFS(ump)); 9598 else 9599 FREE_LOCK(ump); 9600 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9601 M_ZERO); 9602 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9603 LIST_INIT(&dirrem->dm_jremrefhd); 9604 LIST_INIT(&dirrem->dm_jwork); 9605 dirrem->dm_state = isrmdir ? RMDIR : 0; 9606 dirrem->dm_oldinum = ip->i_number; 9607 *prevdirremp = NULL; 9608 /* 9609 * Allocate remove reference structures to track journal write 9610 * dependencies. We will always have one for the link and 9611 * when doing directories we will always have one more for dot. 9612 * When renaming a directory we skip the dotdot link change so 9613 * this is not needed. 9614 */ 9615 jremref = dotremref = dotdotremref = NULL; 9616 if (DOINGSUJ(dvp)) { 9617 if (isrmdir) { 9618 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9619 ip->i_effnlink + 2); 9620 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9621 ip->i_effnlink + 1); 9622 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9623 dp->i_effnlink + 1); 9624 dotdotremref->jr_state |= MKDIR_PARENT; 9625 } else 9626 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9627 ip->i_effnlink + 1); 9628 } 9629 ACQUIRE_LOCK(ump); 9630 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9631 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9632 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9633 &pagedep); 9634 dirrem->dm_pagedep = pagedep; 9635 dirrem->dm_offset = offset; 9636 /* 9637 * If we're renaming a .. link to a new directory, cancel any 9638 * existing MKDIR_PARENT mkdir. If it has already been canceled 9639 * the jremref is preserved for any potential diradd in this 9640 * location. This can not coincide with a rmdir. 9641 */ 9642 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9643 if (isrmdir) 9644 panic("newdirrem: .. directory change during remove?"); 9645 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9646 } 9647 /* 9648 * If we're removing a directory search for the .. dependency now and 9649 * cancel it. Any pending journal work will be added to the dirrem 9650 * to be completed when the workitem remove completes. 9651 */ 9652 if (isrmdir) 9653 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9654 /* 9655 * Check for a diradd dependency for the same directory entry. 9656 * If present, then both dependencies become obsolete and can 9657 * be de-allocated. 9658 */ 9659 dap = diradd_lookup(pagedep, offset); 9660 if (dap == NULL) { 9661 /* 9662 * Link the jremref structures into the dirrem so they are 9663 * written prior to the pagedep. 9664 */ 9665 if (jremref) 9666 dirrem_journal(dirrem, jremref, dotremref, 9667 dotdotremref); 9668 return (dirrem); 9669 } 9670 /* 9671 * Must be ATTACHED at this point. 9672 */ 9673 if ((dap->da_state & ATTACHED) == 0) 9674 panic("newdirrem: not ATTACHED"); 9675 if (dap->da_newinum != ip->i_number) 9676 panic("newdirrem: inum %ju should be %ju", 9677 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9678 /* 9679 * If we are deleting a changed name that never made it to disk, 9680 * then return the dirrem describing the previous inode (which 9681 * represents the inode currently referenced from this entry on disk). 9682 */ 9683 if ((dap->da_state & DIRCHG) != 0) { 9684 *prevdirremp = dap->da_previous; 9685 dap->da_state &= ~DIRCHG; 9686 dap->da_pagedep = pagedep; 9687 } 9688 /* 9689 * We are deleting an entry that never made it to disk. 9690 * Mark it COMPLETE so we can delete its inode immediately. 9691 */ 9692 dirrem->dm_state |= COMPLETE; 9693 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9694 #ifdef INVARIANTS 9695 if (isrmdir == 0) { 9696 struct worklist *wk; 9697 9698 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9699 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9700 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9701 } 9702 #endif 9703 9704 return (dirrem); 9705 } 9706 9707 /* 9708 * Directory entry change dependencies. 9709 * 9710 * Changing an existing directory entry requires that an add operation 9711 * be completed first followed by a deletion. The semantics for the addition 9712 * are identical to the description of adding a new entry above except 9713 * that the rollback is to the old inode number rather than zero. Once 9714 * the addition dependency is completed, the removal is done as described 9715 * in the removal routine above. 9716 */ 9717 9718 /* 9719 * This routine should be called immediately after changing 9720 * a directory entry. The inode's link count should not be 9721 * decremented by the calling procedure -- the soft updates 9722 * code will perform this task when it is safe. 9723 */ 9724 void 9725 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9726 struct buf *bp; /* buffer containing directory block */ 9727 struct inode *dp; /* inode for the directory being modified */ 9728 struct inode *ip; /* inode for directory entry being removed */ 9729 ino_t newinum; /* new inode number for changed entry */ 9730 int isrmdir; /* indicates if doing RMDIR */ 9731 { 9732 int offset; 9733 struct diradd *dap = NULL; 9734 struct dirrem *dirrem, *prevdirrem; 9735 struct pagedep *pagedep; 9736 struct inodedep *inodedep; 9737 struct jaddref *jaddref; 9738 struct mount *mp; 9739 struct ufsmount *ump; 9740 9741 mp = ITOVFS(dp); 9742 ump = VFSTOUFS(mp); 9743 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9744 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9745 ("softdep_setup_directory_change called on non-softdep filesystem")); 9746 9747 /* 9748 * Whiteouts do not need diradd dependencies. 9749 */ 9750 if (newinum != UFS_WINO) { 9751 dap = malloc(sizeof(struct diradd), 9752 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9753 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9754 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9755 dap->da_offset = offset; 9756 dap->da_newinum = newinum; 9757 LIST_INIT(&dap->da_jwork); 9758 } 9759 9760 /* 9761 * Allocate a new dirrem and ACQUIRE_LOCK. 9762 */ 9763 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9764 pagedep = dirrem->dm_pagedep; 9765 /* 9766 * The possible values for isrmdir: 9767 * 0 - non-directory file rename 9768 * 1 - directory rename within same directory 9769 * inum - directory rename to new directory of given inode number 9770 * When renaming to a new directory, we are both deleting and 9771 * creating a new directory entry, so the link count on the new 9772 * directory should not change. Thus we do not need the followup 9773 * dirrem which is usually done in handle_workitem_remove. We set 9774 * the DIRCHG flag to tell handle_workitem_remove to skip the 9775 * followup dirrem. 9776 */ 9777 if (isrmdir > 1) 9778 dirrem->dm_state |= DIRCHG; 9779 9780 /* 9781 * Whiteouts have no additional dependencies, 9782 * so just put the dirrem on the correct list. 9783 */ 9784 if (newinum == UFS_WINO) { 9785 if ((dirrem->dm_state & COMPLETE) == 0) { 9786 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9787 dm_next); 9788 } else { 9789 dirrem->dm_dirinum = pagedep->pd_ino; 9790 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9791 add_to_worklist(&dirrem->dm_list, 0); 9792 } 9793 FREE_LOCK(ump); 9794 return; 9795 } 9796 /* 9797 * Add the dirrem to the inodedep's pending remove list for quick 9798 * discovery later. A valid nlinkdelta ensures that this lookup 9799 * will not fail. 9800 */ 9801 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9802 panic("softdep_setup_directory_change: Lost inodedep."); 9803 dirrem->dm_state |= ONDEPLIST; 9804 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9805 9806 /* 9807 * If the COMPLETE flag is clear, then there were no active 9808 * entries and we want to roll back to the previous inode until 9809 * the new inode is committed to disk. If the COMPLETE flag is 9810 * set, then we have deleted an entry that never made it to disk. 9811 * If the entry we deleted resulted from a name change, then the old 9812 * inode reference still resides on disk. Any rollback that we do 9813 * needs to be to that old inode (returned to us in prevdirrem). If 9814 * the entry we deleted resulted from a create, then there is 9815 * no entry on the disk, so we want to roll back to zero rather 9816 * than the uncommitted inode. In either of the COMPLETE cases we 9817 * want to immediately free the unwritten and unreferenced inode. 9818 */ 9819 if ((dirrem->dm_state & COMPLETE) == 0) { 9820 dap->da_previous = dirrem; 9821 } else { 9822 if (prevdirrem != NULL) { 9823 dap->da_previous = prevdirrem; 9824 } else { 9825 dap->da_state &= ~DIRCHG; 9826 dap->da_pagedep = pagedep; 9827 } 9828 dirrem->dm_dirinum = pagedep->pd_ino; 9829 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9830 add_to_worklist(&dirrem->dm_list, 0); 9831 } 9832 /* 9833 * Lookup the jaddref for this journal entry. We must finish 9834 * initializing it and make the diradd write dependent on it. 9835 * If we're not journaling, put it on the id_bufwait list if the 9836 * inode is not yet written. If it is written, do the post-inode 9837 * write processing to put it on the id_pendinghd list. 9838 */ 9839 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9840 if (MOUNTEDSUJ(mp)) { 9841 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9842 inoreflst); 9843 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9844 ("softdep_setup_directory_change: bad jaddref %p", 9845 jaddref)); 9846 jaddref->ja_diroff = I_OFFSET(dp); 9847 jaddref->ja_diradd = dap; 9848 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9849 dap, da_pdlist); 9850 add_to_journal(&jaddref->ja_list); 9851 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9852 dap->da_state |= COMPLETE; 9853 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9854 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9855 } else { 9856 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9857 dap, da_pdlist); 9858 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9859 } 9860 /* 9861 * If we're making a new name for a directory that has not been 9862 * committed when need to move the dot and dotdot references to 9863 * this new name. 9864 */ 9865 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9866 merge_diradd(inodedep, dap); 9867 FREE_LOCK(ump); 9868 } 9869 9870 /* 9871 * Called whenever the link count on an inode is changed. 9872 * It creates an inode dependency so that the new reference(s) 9873 * to the inode cannot be committed to disk until the updated 9874 * inode has been written. 9875 */ 9876 void 9877 softdep_change_linkcnt(ip) 9878 struct inode *ip; /* the inode with the increased link count */ 9879 { 9880 struct inodedep *inodedep; 9881 struct ufsmount *ump; 9882 9883 ump = ITOUMP(ip); 9884 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9885 ("softdep_change_linkcnt called on non-softdep filesystem")); 9886 ACQUIRE_LOCK(ump); 9887 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9888 if (ip->i_nlink < ip->i_effnlink) 9889 panic("softdep_change_linkcnt: bad delta"); 9890 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9891 FREE_LOCK(ump); 9892 } 9893 9894 /* 9895 * Attach a sbdep dependency to the superblock buf so that we can keep 9896 * track of the head of the linked list of referenced but unlinked inodes. 9897 */ 9898 void 9899 softdep_setup_sbupdate(ump, fs, bp) 9900 struct ufsmount *ump; 9901 struct fs *fs; 9902 struct buf *bp; 9903 { 9904 struct sbdep *sbdep; 9905 struct worklist *wk; 9906 9907 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9908 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9909 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9910 if (wk->wk_type == D_SBDEP) 9911 break; 9912 if (wk != NULL) 9913 return; 9914 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9915 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9916 sbdep->sb_fs = fs; 9917 sbdep->sb_ump = ump; 9918 ACQUIRE_LOCK(ump); 9919 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9920 FREE_LOCK(ump); 9921 } 9922 9923 /* 9924 * Return the first unlinked inodedep which is ready to be the head of the 9925 * list. The inodedep and all those after it must have valid next pointers. 9926 */ 9927 static struct inodedep * 9928 first_unlinked_inodedep(ump) 9929 struct ufsmount *ump; 9930 { 9931 struct inodedep *inodedep; 9932 struct inodedep *idp; 9933 9934 LOCK_OWNED(ump); 9935 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9936 inodedep; inodedep = idp) { 9937 if ((inodedep->id_state & UNLINKNEXT) == 0) 9938 return (NULL); 9939 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9940 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9941 break; 9942 if ((inodedep->id_state & UNLINKPREV) == 0) 9943 break; 9944 } 9945 return (inodedep); 9946 } 9947 9948 /* 9949 * Set the sujfree unlinked head pointer prior to writing a superblock. 9950 */ 9951 static void 9952 initiate_write_sbdep(sbdep) 9953 struct sbdep *sbdep; 9954 { 9955 struct inodedep *inodedep; 9956 struct fs *bpfs; 9957 struct fs *fs; 9958 9959 bpfs = sbdep->sb_fs; 9960 fs = sbdep->sb_ump->um_fs; 9961 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9962 if (inodedep) { 9963 fs->fs_sujfree = inodedep->id_ino; 9964 inodedep->id_state |= UNLINKPREV; 9965 } else 9966 fs->fs_sujfree = 0; 9967 bpfs->fs_sujfree = fs->fs_sujfree; 9968 /* 9969 * Because we have made changes to the superblock, we need to 9970 * recompute its check-hash. 9971 */ 9972 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9973 } 9974 9975 /* 9976 * After a superblock is written determine whether it must be written again 9977 * due to a changing unlinked list head. 9978 */ 9979 static int 9980 handle_written_sbdep(sbdep, bp) 9981 struct sbdep *sbdep; 9982 struct buf *bp; 9983 { 9984 struct inodedep *inodedep; 9985 struct fs *fs; 9986 9987 LOCK_OWNED(sbdep->sb_ump); 9988 fs = sbdep->sb_fs; 9989 /* 9990 * If the superblock doesn't match the in-memory list start over. 9991 */ 9992 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9993 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9994 (inodedep == NULL && fs->fs_sujfree != 0)) { 9995 bdirty(bp); 9996 return (1); 9997 } 9998 WORKITEM_FREE(sbdep, D_SBDEP); 9999 if (fs->fs_sujfree == 0) 10000 return (0); 10001 /* 10002 * Now that we have a record of this inode in stable store allow it 10003 * to be written to free up pending work. Inodes may see a lot of 10004 * write activity after they are unlinked which we must not hold up. 10005 */ 10006 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 10007 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 10008 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 10009 inodedep, inodedep->id_state); 10010 if (inodedep->id_state & UNLINKONLIST) 10011 break; 10012 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 10013 } 10014 10015 return (0); 10016 } 10017 10018 /* 10019 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 10020 */ 10021 static void 10022 unlinked_inodedep(mp, inodedep) 10023 struct mount *mp; 10024 struct inodedep *inodedep; 10025 { 10026 struct ufsmount *ump; 10027 10028 ump = VFSTOUFS(mp); 10029 LOCK_OWNED(ump); 10030 if (MOUNTEDSUJ(mp) == 0) 10031 return; 10032 ump->um_fs->fs_fmod = 1; 10033 if (inodedep->id_state & UNLINKED) 10034 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 10035 inodedep->id_state |= UNLINKED; 10036 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 10037 } 10038 10039 /* 10040 * Remove an inodedep from the unlinked inodedep list. This may require 10041 * disk writes if the inode has made it that far. 10042 */ 10043 static void 10044 clear_unlinked_inodedep(inodedep) 10045 struct inodedep *inodedep; 10046 { 10047 struct ufs2_dinode *dip; 10048 struct ufsmount *ump; 10049 struct inodedep *idp; 10050 struct inodedep *idn; 10051 struct fs *fs, *bpfs; 10052 struct buf *bp; 10053 daddr_t dbn; 10054 ino_t ino; 10055 ino_t nino; 10056 ino_t pino; 10057 int error; 10058 10059 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10060 fs = ump->um_fs; 10061 ino = inodedep->id_ino; 10062 error = 0; 10063 for (;;) { 10064 LOCK_OWNED(ump); 10065 KASSERT((inodedep->id_state & UNLINKED) != 0, 10066 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10067 inodedep)); 10068 /* 10069 * If nothing has yet been written simply remove us from 10070 * the in memory list and return. This is the most common 10071 * case where handle_workitem_remove() loses the final 10072 * reference. 10073 */ 10074 if ((inodedep->id_state & UNLINKLINKS) == 0) 10075 break; 10076 /* 10077 * If we have a NEXT pointer and no PREV pointer we can simply 10078 * clear NEXT's PREV and remove ourselves from the list. Be 10079 * careful not to clear PREV if the superblock points at 10080 * next as well. 10081 */ 10082 idn = TAILQ_NEXT(inodedep, id_unlinked); 10083 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10084 if (idn && fs->fs_sujfree != idn->id_ino) 10085 idn->id_state &= ~UNLINKPREV; 10086 break; 10087 } 10088 /* 10089 * Here we have an inodedep which is actually linked into 10090 * the list. We must remove it by forcing a write to the 10091 * link before us, whether it be the superblock or an inode. 10092 * Unfortunately the list may change while we're waiting 10093 * on the buf lock for either resource so we must loop until 10094 * we lock the right one. If both the superblock and an 10095 * inode point to this inode we must clear the inode first 10096 * followed by the superblock. 10097 */ 10098 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10099 pino = 0; 10100 if (idp && (idp->id_state & UNLINKNEXT)) 10101 pino = idp->id_ino; 10102 FREE_LOCK(ump); 10103 if (pino == 0) { 10104 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10105 (int)fs->fs_sbsize, 0, 0, 0); 10106 } else { 10107 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10108 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10109 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10110 &bp); 10111 } 10112 ACQUIRE_LOCK(ump); 10113 if (error) 10114 break; 10115 /* If the list has changed restart the loop. */ 10116 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10117 nino = 0; 10118 if (idp && (idp->id_state & UNLINKNEXT)) 10119 nino = idp->id_ino; 10120 if (nino != pino || 10121 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10122 FREE_LOCK(ump); 10123 brelse(bp); 10124 ACQUIRE_LOCK(ump); 10125 continue; 10126 } 10127 nino = 0; 10128 idn = TAILQ_NEXT(inodedep, id_unlinked); 10129 if (idn) 10130 nino = idn->id_ino; 10131 /* 10132 * Remove us from the in memory list. After this we cannot 10133 * access the inodedep. 10134 */ 10135 KASSERT((inodedep->id_state & UNLINKED) != 0, 10136 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10137 inodedep)); 10138 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10139 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10140 FREE_LOCK(ump); 10141 /* 10142 * The predecessor's next pointer is manually updated here 10143 * so that the NEXT flag is never cleared for an element 10144 * that is in the list. 10145 */ 10146 if (pino == 0) { 10147 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10148 bpfs = (struct fs *)bp->b_data; 10149 ffs_oldfscompat_write(bpfs, ump); 10150 softdep_setup_sbupdate(ump, bpfs, bp); 10151 /* 10152 * Because we may have made changes to the superblock, 10153 * we need to recompute its check-hash. 10154 */ 10155 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10156 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10157 ((struct ufs1_dinode *)bp->b_data + 10158 ino_to_fsbo(fs, pino))->di_freelink = nino; 10159 } else { 10160 dip = (struct ufs2_dinode *)bp->b_data + 10161 ino_to_fsbo(fs, pino); 10162 dip->di_freelink = nino; 10163 ffs_update_dinode_ckhash(fs, dip); 10164 } 10165 /* 10166 * If the bwrite fails we have no recourse to recover. The 10167 * filesystem is corrupted already. 10168 */ 10169 bwrite(bp); 10170 ACQUIRE_LOCK(ump); 10171 /* 10172 * If the superblock pointer still needs to be cleared force 10173 * a write here. 10174 */ 10175 if (fs->fs_sujfree == ino) { 10176 FREE_LOCK(ump); 10177 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10178 (int)fs->fs_sbsize, 0, 0, 0); 10179 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10180 bpfs = (struct fs *)bp->b_data; 10181 ffs_oldfscompat_write(bpfs, ump); 10182 softdep_setup_sbupdate(ump, bpfs, bp); 10183 /* 10184 * Because we may have made changes to the superblock, 10185 * we need to recompute its check-hash. 10186 */ 10187 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10188 bwrite(bp); 10189 ACQUIRE_LOCK(ump); 10190 } 10191 10192 if (fs->fs_sujfree != ino) 10193 return; 10194 panic("clear_unlinked_inodedep: Failed to clear free head"); 10195 } 10196 if (inodedep->id_ino == fs->fs_sujfree) 10197 panic("clear_unlinked_inodedep: Freeing head of free list"); 10198 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10199 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10200 return; 10201 } 10202 10203 /* 10204 * This workitem decrements the inode's link count. 10205 * If the link count reaches zero, the file is removed. 10206 */ 10207 static int 10208 handle_workitem_remove(dirrem, flags) 10209 struct dirrem *dirrem; 10210 int flags; 10211 { 10212 struct inodedep *inodedep; 10213 struct workhead dotdotwk; 10214 struct worklist *wk; 10215 struct ufsmount *ump; 10216 struct mount *mp; 10217 struct vnode *vp; 10218 struct inode *ip; 10219 ino_t oldinum; 10220 10221 if (dirrem->dm_state & ONWORKLIST) 10222 panic("handle_workitem_remove: dirrem %p still on worklist", 10223 dirrem); 10224 oldinum = dirrem->dm_oldinum; 10225 mp = dirrem->dm_list.wk_mp; 10226 ump = VFSTOUFS(mp); 10227 flags |= LK_EXCLUSIVE; 10228 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ | 10229 FFSV_FORCEINODEDEP) != 0) 10230 return (EBUSY); 10231 ip = VTOI(vp); 10232 MPASS(ip->i_mode != 0); 10233 ACQUIRE_LOCK(ump); 10234 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10235 panic("handle_workitem_remove: lost inodedep"); 10236 if (dirrem->dm_state & ONDEPLIST) 10237 LIST_REMOVE(dirrem, dm_inonext); 10238 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10239 ("handle_workitem_remove: Journal entries not written.")); 10240 10241 /* 10242 * Move all dependencies waiting on the remove to complete 10243 * from the dirrem to the inode inowait list to be completed 10244 * after the inode has been updated and written to disk. 10245 * 10246 * Any marked MKDIR_PARENT are saved to be completed when the 10247 * dotdot ref is removed unless DIRCHG is specified. For 10248 * directory change operations there will be no further 10249 * directory writes and the jsegdeps need to be moved along 10250 * with the rest to be completed when the inode is free or 10251 * stable in the inode free list. 10252 */ 10253 LIST_INIT(&dotdotwk); 10254 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10255 WORKLIST_REMOVE(wk); 10256 if ((dirrem->dm_state & DIRCHG) == 0 && 10257 wk->wk_state & MKDIR_PARENT) { 10258 wk->wk_state &= ~MKDIR_PARENT; 10259 WORKLIST_INSERT(&dotdotwk, wk); 10260 continue; 10261 } 10262 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10263 } 10264 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10265 /* 10266 * Normal file deletion. 10267 */ 10268 if ((dirrem->dm_state & RMDIR) == 0) { 10269 ip->i_nlink--; 10270 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10271 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10272 ip->i_nlink)); 10273 DIP_SET(ip, i_nlink, ip->i_nlink); 10274 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10275 if (ip->i_nlink < ip->i_effnlink) 10276 panic("handle_workitem_remove: bad file delta"); 10277 if (ip->i_nlink == 0) 10278 unlinked_inodedep(mp, inodedep); 10279 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10280 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10281 ("handle_workitem_remove: worklist not empty. %s", 10282 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10283 WORKITEM_FREE(dirrem, D_DIRREM); 10284 FREE_LOCK(ump); 10285 goto out; 10286 } 10287 /* 10288 * Directory deletion. Decrement reference count for both the 10289 * just deleted parent directory entry and the reference for ".". 10290 * Arrange to have the reference count on the parent decremented 10291 * to account for the loss of "..". 10292 */ 10293 ip->i_nlink -= 2; 10294 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10295 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10296 DIP_SET(ip, i_nlink, ip->i_nlink); 10297 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10298 if (ip->i_nlink < ip->i_effnlink) 10299 panic("handle_workitem_remove: bad dir delta"); 10300 if (ip->i_nlink == 0) 10301 unlinked_inodedep(mp, inodedep); 10302 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10303 /* 10304 * Rename a directory to a new parent. Since, we are both deleting 10305 * and creating a new directory entry, the link count on the new 10306 * directory should not change. Thus we skip the followup dirrem. 10307 */ 10308 if (dirrem->dm_state & DIRCHG) { 10309 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10310 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10311 WORKITEM_FREE(dirrem, D_DIRREM); 10312 FREE_LOCK(ump); 10313 goto out; 10314 } 10315 dirrem->dm_state = ONDEPLIST; 10316 dirrem->dm_oldinum = dirrem->dm_dirinum; 10317 /* 10318 * Place the dirrem on the parent's diremhd list. 10319 */ 10320 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10321 panic("handle_workitem_remove: lost dir inodedep"); 10322 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10323 /* 10324 * If the allocated inode has never been written to disk, then 10325 * the on-disk inode is zero'ed and we can remove the file 10326 * immediately. When journaling if the inode has been marked 10327 * unlinked and not DEPCOMPLETE we know it can never be written. 10328 */ 10329 inodedep_lookup(mp, oldinum, 0, &inodedep); 10330 if (inodedep == NULL || 10331 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10332 check_inode_unwritten(inodedep)) { 10333 FREE_LOCK(ump); 10334 vput(vp); 10335 return handle_workitem_remove(dirrem, flags); 10336 } 10337 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10338 FREE_LOCK(ump); 10339 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10340 out: 10341 ffs_update(vp, 0); 10342 vput(vp); 10343 return (0); 10344 } 10345 10346 /* 10347 * Inode de-allocation dependencies. 10348 * 10349 * When an inode's link count is reduced to zero, it can be de-allocated. We 10350 * found it convenient to postpone de-allocation until after the inode is 10351 * written to disk with its new link count (zero). At this point, all of the 10352 * on-disk inode's block pointers are nullified and, with careful dependency 10353 * list ordering, all dependencies related to the inode will be satisfied and 10354 * the corresponding dependency structures de-allocated. So, if/when the 10355 * inode is reused, there will be no mixing of old dependencies with new 10356 * ones. This artificial dependency is set up by the block de-allocation 10357 * procedure above (softdep_setup_freeblocks) and completed by the 10358 * following procedure. 10359 */ 10360 static void 10361 handle_workitem_freefile(freefile) 10362 struct freefile *freefile; 10363 { 10364 struct workhead wkhd; 10365 struct fs *fs; 10366 struct ufsmount *ump; 10367 int error; 10368 #ifdef INVARIANTS 10369 struct inodedep *idp; 10370 #endif 10371 10372 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10373 fs = ump->um_fs; 10374 #ifdef INVARIANTS 10375 ACQUIRE_LOCK(ump); 10376 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10377 FREE_LOCK(ump); 10378 if (error) 10379 panic("handle_workitem_freefile: inodedep %p survived", idp); 10380 #endif 10381 UFS_LOCK(ump); 10382 fs->fs_pendinginodes -= 1; 10383 UFS_UNLOCK(ump); 10384 LIST_INIT(&wkhd); 10385 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10386 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10387 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10388 softdep_error("handle_workitem_freefile", error); 10389 ACQUIRE_LOCK(ump); 10390 WORKITEM_FREE(freefile, D_FREEFILE); 10391 FREE_LOCK(ump); 10392 } 10393 10394 /* 10395 * Helper function which unlinks marker element from work list and returns 10396 * the next element on the list. 10397 */ 10398 static __inline struct worklist * 10399 markernext(struct worklist *marker) 10400 { 10401 struct worklist *next; 10402 10403 next = LIST_NEXT(marker, wk_list); 10404 LIST_REMOVE(marker, wk_list); 10405 return next; 10406 } 10407 10408 /* 10409 * Disk writes. 10410 * 10411 * The dependency structures constructed above are most actively used when file 10412 * system blocks are written to disk. No constraints are placed on when a 10413 * block can be written, but unsatisfied update dependencies are made safe by 10414 * modifying (or replacing) the source memory for the duration of the disk 10415 * write. When the disk write completes, the memory block is again brought 10416 * up-to-date. 10417 * 10418 * In-core inode structure reclamation. 10419 * 10420 * Because there are a finite number of "in-core" inode structures, they are 10421 * reused regularly. By transferring all inode-related dependencies to the 10422 * in-memory inode block and indexing them separately (via "inodedep"s), we 10423 * can allow "in-core" inode structures to be reused at any time and avoid 10424 * any increase in contention. 10425 * 10426 * Called just before entering the device driver to initiate a new disk I/O. 10427 * The buffer must be locked, thus, no I/O completion operations can occur 10428 * while we are manipulating its associated dependencies. 10429 */ 10430 static void 10431 softdep_disk_io_initiation(bp) 10432 struct buf *bp; /* structure describing disk write to occur */ 10433 { 10434 struct worklist *wk; 10435 struct worklist marker; 10436 struct inodedep *inodedep; 10437 struct freeblks *freeblks; 10438 struct jblkdep *jblkdep; 10439 struct newblk *newblk; 10440 struct ufsmount *ump; 10441 10442 /* 10443 * We only care about write operations. There should never 10444 * be dependencies for reads. 10445 */ 10446 if (bp->b_iocmd != BIO_WRITE) 10447 panic("softdep_disk_io_initiation: not write"); 10448 10449 if (bp->b_vflags & BV_BKGRDINPROG) 10450 panic("softdep_disk_io_initiation: Writing buffer with " 10451 "background write in progress: %p", bp); 10452 10453 ump = softdep_bp_to_mp(bp); 10454 if (ump == NULL) 10455 return; 10456 10457 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10458 PHOLD(curproc); /* Don't swap out kernel stack */ 10459 ACQUIRE_LOCK(ump); 10460 /* 10461 * Do any necessary pre-I/O processing. 10462 */ 10463 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10464 wk = markernext(&marker)) { 10465 LIST_INSERT_AFTER(wk, &marker, wk_list); 10466 switch (wk->wk_type) { 10467 case D_PAGEDEP: 10468 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10469 continue; 10470 10471 case D_INODEDEP: 10472 inodedep = WK_INODEDEP(wk); 10473 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10474 initiate_write_inodeblock_ufs1(inodedep, bp); 10475 else 10476 initiate_write_inodeblock_ufs2(inodedep, bp); 10477 continue; 10478 10479 case D_INDIRDEP: 10480 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10481 continue; 10482 10483 case D_BMSAFEMAP: 10484 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10485 continue; 10486 10487 case D_JSEG: 10488 WK_JSEG(wk)->js_buf = NULL; 10489 continue; 10490 10491 case D_FREEBLKS: 10492 freeblks = WK_FREEBLKS(wk); 10493 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10494 /* 10495 * We have to wait for the freeblks to be journaled 10496 * before we can write an inodeblock with updated 10497 * pointers. Be careful to arrange the marker so 10498 * we revisit the freeblks if it's not removed by 10499 * the first jwait(). 10500 */ 10501 if (jblkdep != NULL) { 10502 LIST_REMOVE(&marker, wk_list); 10503 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10504 jwait(&jblkdep->jb_list, MNT_WAIT); 10505 } 10506 continue; 10507 case D_ALLOCDIRECT: 10508 case D_ALLOCINDIR: 10509 /* 10510 * We have to wait for the jnewblk to be journaled 10511 * before we can write to a block if the contents 10512 * may be confused with an earlier file's indirect 10513 * at recovery time. Handle the marker as described 10514 * above. 10515 */ 10516 newblk = WK_NEWBLK(wk); 10517 if (newblk->nb_jnewblk != NULL && 10518 indirblk_lookup(newblk->nb_list.wk_mp, 10519 newblk->nb_newblkno)) { 10520 LIST_REMOVE(&marker, wk_list); 10521 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10522 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10523 } 10524 continue; 10525 10526 case D_SBDEP: 10527 initiate_write_sbdep(WK_SBDEP(wk)); 10528 continue; 10529 10530 case D_MKDIR: 10531 case D_FREEWORK: 10532 case D_FREEDEP: 10533 case D_JSEGDEP: 10534 continue; 10535 10536 default: 10537 panic("handle_disk_io_initiation: Unexpected type %s", 10538 TYPENAME(wk->wk_type)); 10539 /* NOTREACHED */ 10540 } 10541 } 10542 FREE_LOCK(ump); 10543 PRELE(curproc); /* Allow swapout of kernel stack */ 10544 } 10545 10546 /* 10547 * Called from within the procedure above to deal with unsatisfied 10548 * allocation dependencies in a directory. The buffer must be locked, 10549 * thus, no I/O completion operations can occur while we are 10550 * manipulating its associated dependencies. 10551 */ 10552 static void 10553 initiate_write_filepage(pagedep, bp) 10554 struct pagedep *pagedep; 10555 struct buf *bp; 10556 { 10557 struct jremref *jremref; 10558 struct jmvref *jmvref; 10559 struct dirrem *dirrem; 10560 struct diradd *dap; 10561 struct direct *ep; 10562 int i; 10563 10564 if (pagedep->pd_state & IOSTARTED) { 10565 /* 10566 * This can only happen if there is a driver that does not 10567 * understand chaining. Here biodone will reissue the call 10568 * to strategy for the incomplete buffers. 10569 */ 10570 printf("initiate_write_filepage: already started\n"); 10571 return; 10572 } 10573 pagedep->pd_state |= IOSTARTED; 10574 /* 10575 * Wait for all journal remove dependencies to hit the disk. 10576 * We can not allow any potentially conflicting directory adds 10577 * to be visible before removes and rollback is too difficult. 10578 * The per-filesystem lock may be dropped and re-acquired, however 10579 * we hold the buf locked so the dependency can not go away. 10580 */ 10581 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10582 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10583 jwait(&jremref->jr_list, MNT_WAIT); 10584 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10585 jwait(&jmvref->jm_list, MNT_WAIT); 10586 for (i = 0; i < DAHASHSZ; i++) { 10587 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10588 ep = (struct direct *) 10589 ((char *)bp->b_data + dap->da_offset); 10590 if (ep->d_ino != dap->da_newinum) 10591 panic("%s: dir inum %ju != new %ju", 10592 "initiate_write_filepage", 10593 (uintmax_t)ep->d_ino, 10594 (uintmax_t)dap->da_newinum); 10595 if (dap->da_state & DIRCHG) 10596 ep->d_ino = dap->da_previous->dm_oldinum; 10597 else 10598 ep->d_ino = 0; 10599 dap->da_state &= ~ATTACHED; 10600 dap->da_state |= UNDONE; 10601 } 10602 } 10603 } 10604 10605 /* 10606 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10607 * Note that any bug fixes made to this routine must be done in the 10608 * version found below. 10609 * 10610 * Called from within the procedure above to deal with unsatisfied 10611 * allocation dependencies in an inodeblock. The buffer must be 10612 * locked, thus, no I/O completion operations can occur while we 10613 * are manipulating its associated dependencies. 10614 */ 10615 static void 10616 initiate_write_inodeblock_ufs1(inodedep, bp) 10617 struct inodedep *inodedep; 10618 struct buf *bp; /* The inode block */ 10619 { 10620 struct allocdirect *adp, *lastadp; 10621 struct ufs1_dinode *dp; 10622 struct ufs1_dinode *sip; 10623 struct inoref *inoref; 10624 struct ufsmount *ump; 10625 struct fs *fs; 10626 ufs_lbn_t i; 10627 #ifdef INVARIANTS 10628 ufs_lbn_t prevlbn = 0; 10629 #endif 10630 int deplist; 10631 10632 if (inodedep->id_state & IOSTARTED) 10633 panic("initiate_write_inodeblock_ufs1: already started"); 10634 inodedep->id_state |= IOSTARTED; 10635 fs = inodedep->id_fs; 10636 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10637 LOCK_OWNED(ump); 10638 dp = (struct ufs1_dinode *)bp->b_data + 10639 ino_to_fsbo(fs, inodedep->id_ino); 10640 10641 /* 10642 * If we're on the unlinked list but have not yet written our 10643 * next pointer initialize it here. 10644 */ 10645 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10646 struct inodedep *inon; 10647 10648 inon = TAILQ_NEXT(inodedep, id_unlinked); 10649 dp->di_freelink = inon ? inon->id_ino : 0; 10650 } 10651 /* 10652 * If the bitmap is not yet written, then the allocated 10653 * inode cannot be written to disk. 10654 */ 10655 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10656 if (inodedep->id_savedino1 != NULL) 10657 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10658 FREE_LOCK(ump); 10659 sip = malloc(sizeof(struct ufs1_dinode), 10660 M_SAVEDINO, M_SOFTDEP_FLAGS); 10661 ACQUIRE_LOCK(ump); 10662 inodedep->id_savedino1 = sip; 10663 *inodedep->id_savedino1 = *dp; 10664 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10665 dp->di_gen = inodedep->id_savedino1->di_gen; 10666 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10667 return; 10668 } 10669 /* 10670 * If no dependencies, then there is nothing to roll back. 10671 */ 10672 inodedep->id_savedsize = dp->di_size; 10673 inodedep->id_savedextsize = 0; 10674 inodedep->id_savednlink = dp->di_nlink; 10675 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10676 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10677 return; 10678 /* 10679 * Revert the link count to that of the first unwritten journal entry. 10680 */ 10681 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10682 if (inoref) 10683 dp->di_nlink = inoref->if_nlink; 10684 /* 10685 * Set the dependencies to busy. 10686 */ 10687 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10688 adp = TAILQ_NEXT(adp, ad_next)) { 10689 #ifdef INVARIANTS 10690 if (deplist != 0 && prevlbn >= adp->ad_offset) 10691 panic("softdep_write_inodeblock: lbn order"); 10692 prevlbn = adp->ad_offset; 10693 if (adp->ad_offset < UFS_NDADDR && 10694 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10695 panic("initiate_write_inodeblock_ufs1: " 10696 "direct pointer #%jd mismatch %d != %jd", 10697 (intmax_t)adp->ad_offset, 10698 dp->di_db[adp->ad_offset], 10699 (intmax_t)adp->ad_newblkno); 10700 if (adp->ad_offset >= UFS_NDADDR && 10701 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10702 panic("initiate_write_inodeblock_ufs1: " 10703 "indirect pointer #%jd mismatch %d != %jd", 10704 (intmax_t)adp->ad_offset - UFS_NDADDR, 10705 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10706 (intmax_t)adp->ad_newblkno); 10707 deplist |= 1 << adp->ad_offset; 10708 if ((adp->ad_state & ATTACHED) == 0) 10709 panic("initiate_write_inodeblock_ufs1: " 10710 "Unknown state 0x%x", adp->ad_state); 10711 #endif /* INVARIANTS */ 10712 adp->ad_state &= ~ATTACHED; 10713 adp->ad_state |= UNDONE; 10714 } 10715 /* 10716 * The on-disk inode cannot claim to be any larger than the last 10717 * fragment that has been written. Otherwise, the on-disk inode 10718 * might have fragments that were not the last block in the file 10719 * which would corrupt the filesystem. 10720 */ 10721 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10722 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10723 if (adp->ad_offset >= UFS_NDADDR) 10724 break; 10725 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10726 /* keep going until hitting a rollback to a frag */ 10727 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10728 continue; 10729 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10730 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10731 #ifdef INVARIANTS 10732 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10733 panic("initiate_write_inodeblock_ufs1: " 10734 "lost dep1"); 10735 #endif /* INVARIANTS */ 10736 dp->di_db[i] = 0; 10737 } 10738 for (i = 0; i < UFS_NIADDR; i++) { 10739 #ifdef INVARIANTS 10740 if (dp->di_ib[i] != 0 && 10741 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10742 panic("initiate_write_inodeblock_ufs1: " 10743 "lost dep2"); 10744 #endif /* INVARIANTS */ 10745 dp->di_ib[i] = 0; 10746 } 10747 return; 10748 } 10749 /* 10750 * If we have zero'ed out the last allocated block of the file, 10751 * roll back the size to the last currently allocated block. 10752 * We know that this last allocated block is a full-sized as 10753 * we already checked for fragments in the loop above. 10754 */ 10755 if (lastadp != NULL && 10756 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10757 for (i = lastadp->ad_offset; i >= 0; i--) 10758 if (dp->di_db[i] != 0) 10759 break; 10760 dp->di_size = (i + 1) * fs->fs_bsize; 10761 } 10762 /* 10763 * The only dependencies are for indirect blocks. 10764 * 10765 * The file size for indirect block additions is not guaranteed. 10766 * Such a guarantee would be non-trivial to achieve. The conventional 10767 * synchronous write implementation also does not make this guarantee. 10768 * Fsck should catch and fix discrepancies. Arguably, the file size 10769 * can be over-estimated without destroying integrity when the file 10770 * moves into the indirect blocks (i.e., is large). If we want to 10771 * postpone fsck, we are stuck with this argument. 10772 */ 10773 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10774 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10775 } 10776 10777 /* 10778 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10779 * Note that any bug fixes made to this routine must be done in the 10780 * version found above. 10781 * 10782 * Called from within the procedure above to deal with unsatisfied 10783 * allocation dependencies in an inodeblock. The buffer must be 10784 * locked, thus, no I/O completion operations can occur while we 10785 * are manipulating its associated dependencies. 10786 */ 10787 static void 10788 initiate_write_inodeblock_ufs2(inodedep, bp) 10789 struct inodedep *inodedep; 10790 struct buf *bp; /* The inode block */ 10791 { 10792 struct allocdirect *adp, *lastadp; 10793 struct ufs2_dinode *dp; 10794 struct ufs2_dinode *sip; 10795 struct inoref *inoref; 10796 struct ufsmount *ump; 10797 struct fs *fs; 10798 ufs_lbn_t i; 10799 #ifdef INVARIANTS 10800 ufs_lbn_t prevlbn = 0; 10801 #endif 10802 int deplist; 10803 10804 if (inodedep->id_state & IOSTARTED) 10805 panic("initiate_write_inodeblock_ufs2: already started"); 10806 inodedep->id_state |= IOSTARTED; 10807 fs = inodedep->id_fs; 10808 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10809 LOCK_OWNED(ump); 10810 dp = (struct ufs2_dinode *)bp->b_data + 10811 ino_to_fsbo(fs, inodedep->id_ino); 10812 10813 /* 10814 * If we're on the unlinked list but have not yet written our 10815 * next pointer initialize it here. 10816 */ 10817 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10818 struct inodedep *inon; 10819 10820 inon = TAILQ_NEXT(inodedep, id_unlinked); 10821 dp->di_freelink = inon ? inon->id_ino : 0; 10822 ffs_update_dinode_ckhash(fs, dp); 10823 } 10824 /* 10825 * If the bitmap is not yet written, then the allocated 10826 * inode cannot be written to disk. 10827 */ 10828 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10829 if (inodedep->id_savedino2 != NULL) 10830 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10831 FREE_LOCK(ump); 10832 sip = malloc(sizeof(struct ufs2_dinode), 10833 M_SAVEDINO, M_SOFTDEP_FLAGS); 10834 ACQUIRE_LOCK(ump); 10835 inodedep->id_savedino2 = sip; 10836 *inodedep->id_savedino2 = *dp; 10837 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10838 dp->di_gen = inodedep->id_savedino2->di_gen; 10839 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10840 return; 10841 } 10842 /* 10843 * If no dependencies, then there is nothing to roll back. 10844 */ 10845 inodedep->id_savedsize = dp->di_size; 10846 inodedep->id_savedextsize = dp->di_extsize; 10847 inodedep->id_savednlink = dp->di_nlink; 10848 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10849 TAILQ_EMPTY(&inodedep->id_extupdt) && 10850 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10851 return; 10852 /* 10853 * Revert the link count to that of the first unwritten journal entry. 10854 */ 10855 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10856 if (inoref) 10857 dp->di_nlink = inoref->if_nlink; 10858 10859 /* 10860 * Set the ext data dependencies to busy. 10861 */ 10862 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10863 adp = TAILQ_NEXT(adp, ad_next)) { 10864 #ifdef INVARIANTS 10865 if (deplist != 0 && prevlbn >= adp->ad_offset) 10866 panic("initiate_write_inodeblock_ufs2: lbn order"); 10867 prevlbn = adp->ad_offset; 10868 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10869 panic("initiate_write_inodeblock_ufs2: " 10870 "ext pointer #%jd mismatch %jd != %jd", 10871 (intmax_t)adp->ad_offset, 10872 (intmax_t)dp->di_extb[adp->ad_offset], 10873 (intmax_t)adp->ad_newblkno); 10874 deplist |= 1 << adp->ad_offset; 10875 if ((adp->ad_state & ATTACHED) == 0) 10876 panic("initiate_write_inodeblock_ufs2: Unknown " 10877 "state 0x%x", adp->ad_state); 10878 #endif /* INVARIANTS */ 10879 adp->ad_state &= ~ATTACHED; 10880 adp->ad_state |= UNDONE; 10881 } 10882 /* 10883 * The on-disk inode cannot claim to be any larger than the last 10884 * fragment that has been written. Otherwise, the on-disk inode 10885 * might have fragments that were not the last block in the ext 10886 * data which would corrupt the filesystem. 10887 */ 10888 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10889 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10890 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10891 /* keep going until hitting a rollback to a frag */ 10892 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10893 continue; 10894 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10895 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10896 #ifdef INVARIANTS 10897 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10898 panic("initiate_write_inodeblock_ufs2: " 10899 "lost dep1"); 10900 #endif /* INVARIANTS */ 10901 dp->di_extb[i] = 0; 10902 } 10903 lastadp = NULL; 10904 break; 10905 } 10906 /* 10907 * If we have zero'ed out the last allocated block of the ext 10908 * data, roll back the size to the last currently allocated block. 10909 * We know that this last allocated block is a full-sized as 10910 * we already checked for fragments in the loop above. 10911 */ 10912 if (lastadp != NULL && 10913 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10914 for (i = lastadp->ad_offset; i >= 0; i--) 10915 if (dp->di_extb[i] != 0) 10916 break; 10917 dp->di_extsize = (i + 1) * fs->fs_bsize; 10918 } 10919 /* 10920 * Set the file data dependencies to busy. 10921 */ 10922 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10923 adp = TAILQ_NEXT(adp, ad_next)) { 10924 #ifdef INVARIANTS 10925 if (deplist != 0 && prevlbn >= adp->ad_offset) 10926 panic("softdep_write_inodeblock: lbn order"); 10927 if ((adp->ad_state & ATTACHED) == 0) 10928 panic("inodedep %p and adp %p not attached", inodedep, adp); 10929 prevlbn = adp->ad_offset; 10930 if (!ffs_fsfail_cleanup(ump, 0) && 10931 adp->ad_offset < UFS_NDADDR && 10932 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10933 panic("initiate_write_inodeblock_ufs2: " 10934 "direct pointer #%jd mismatch %jd != %jd", 10935 (intmax_t)adp->ad_offset, 10936 (intmax_t)dp->di_db[adp->ad_offset], 10937 (intmax_t)adp->ad_newblkno); 10938 if (!ffs_fsfail_cleanup(ump, 0) && 10939 adp->ad_offset >= UFS_NDADDR && 10940 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10941 panic("initiate_write_inodeblock_ufs2: " 10942 "indirect pointer #%jd mismatch %jd != %jd", 10943 (intmax_t)adp->ad_offset - UFS_NDADDR, 10944 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10945 (intmax_t)adp->ad_newblkno); 10946 deplist |= 1 << adp->ad_offset; 10947 if ((adp->ad_state & ATTACHED) == 0) 10948 panic("initiate_write_inodeblock_ufs2: Unknown " 10949 "state 0x%x", adp->ad_state); 10950 #endif /* INVARIANTS */ 10951 adp->ad_state &= ~ATTACHED; 10952 adp->ad_state |= UNDONE; 10953 } 10954 /* 10955 * The on-disk inode cannot claim to be any larger than the last 10956 * fragment that has been written. Otherwise, the on-disk inode 10957 * might have fragments that were not the last block in the file 10958 * which would corrupt the filesystem. 10959 */ 10960 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10961 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10962 if (adp->ad_offset >= UFS_NDADDR) 10963 break; 10964 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10965 /* keep going until hitting a rollback to a frag */ 10966 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10967 continue; 10968 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10969 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10970 #ifdef INVARIANTS 10971 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10972 panic("initiate_write_inodeblock_ufs2: " 10973 "lost dep2"); 10974 #endif /* INVARIANTS */ 10975 dp->di_db[i] = 0; 10976 } 10977 for (i = 0; i < UFS_NIADDR; i++) { 10978 #ifdef INVARIANTS 10979 if (dp->di_ib[i] != 0 && 10980 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10981 panic("initiate_write_inodeblock_ufs2: " 10982 "lost dep3"); 10983 #endif /* INVARIANTS */ 10984 dp->di_ib[i] = 0; 10985 } 10986 ffs_update_dinode_ckhash(fs, dp); 10987 return; 10988 } 10989 /* 10990 * If we have zero'ed out the last allocated block of the file, 10991 * roll back the size to the last currently allocated block. 10992 * We know that this last allocated block is a full-sized as 10993 * we already checked for fragments in the loop above. 10994 */ 10995 if (lastadp != NULL && 10996 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10997 for (i = lastadp->ad_offset; i >= 0; i--) 10998 if (dp->di_db[i] != 0) 10999 break; 11000 dp->di_size = (i + 1) * fs->fs_bsize; 11001 } 11002 /* 11003 * The only dependencies are for indirect blocks. 11004 * 11005 * The file size for indirect block additions is not guaranteed. 11006 * Such a guarantee would be non-trivial to achieve. The conventional 11007 * synchronous write implementation also does not make this guarantee. 11008 * Fsck should catch and fix discrepancies. Arguably, the file size 11009 * can be over-estimated without destroying integrity when the file 11010 * moves into the indirect blocks (i.e., is large). If we want to 11011 * postpone fsck, we are stuck with this argument. 11012 */ 11013 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 11014 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 11015 ffs_update_dinode_ckhash(fs, dp); 11016 } 11017 11018 /* 11019 * Cancel an indirdep as a result of truncation. Release all of the 11020 * children allocindirs and place their journal work on the appropriate 11021 * list. 11022 */ 11023 static void 11024 cancel_indirdep(indirdep, bp, freeblks) 11025 struct indirdep *indirdep; 11026 struct buf *bp; 11027 struct freeblks *freeblks; 11028 { 11029 struct allocindir *aip; 11030 11031 /* 11032 * None of the indirect pointers will ever be visible, 11033 * so they can simply be tossed. GOINGAWAY ensures 11034 * that allocated pointers will be saved in the buffer 11035 * cache until they are freed. Note that they will 11036 * only be able to be found by their physical address 11037 * since the inode mapping the logical address will 11038 * be gone. The save buffer used for the safe copy 11039 * was allocated in setup_allocindir_phase2 using 11040 * the physical address so it could be used for this 11041 * purpose. Hence we swap the safe copy with the real 11042 * copy, allowing the safe copy to be freed and holding 11043 * on to the real copy for later use in indir_trunc. 11044 */ 11045 if (indirdep->ir_state & GOINGAWAY) 11046 panic("cancel_indirdep: already gone"); 11047 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11048 indirdep->ir_state |= DEPCOMPLETE; 11049 LIST_REMOVE(indirdep, ir_next); 11050 } 11051 indirdep->ir_state |= GOINGAWAY; 11052 /* 11053 * Pass in bp for blocks still have journal writes 11054 * pending so we can cancel them on their own. 11055 */ 11056 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11057 cancel_allocindir(aip, bp, freeblks, 0); 11058 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11059 cancel_allocindir(aip, NULL, freeblks, 0); 11060 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11061 cancel_allocindir(aip, NULL, freeblks, 0); 11062 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11063 cancel_allocindir(aip, NULL, freeblks, 0); 11064 /* 11065 * If there are pending partial truncations we need to keep the 11066 * old block copy around until they complete. This is because 11067 * the current b_data is not a perfect superset of the available 11068 * blocks. 11069 */ 11070 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11071 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11072 else 11073 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11074 WORKLIST_REMOVE(&indirdep->ir_list); 11075 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11076 indirdep->ir_bp = NULL; 11077 indirdep->ir_freeblks = freeblks; 11078 } 11079 11080 /* 11081 * Free an indirdep once it no longer has new pointers to track. 11082 */ 11083 static void 11084 free_indirdep(indirdep) 11085 struct indirdep *indirdep; 11086 { 11087 11088 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11089 ("free_indirdep: Indir trunc list not empty.")); 11090 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11091 ("free_indirdep: Complete head not empty.")); 11092 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11093 ("free_indirdep: write head not empty.")); 11094 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11095 ("free_indirdep: done head not empty.")); 11096 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11097 ("free_indirdep: deplist head not empty.")); 11098 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11099 ("free_indirdep: %p still on newblk list.", indirdep)); 11100 KASSERT(indirdep->ir_saveddata == NULL, 11101 ("free_indirdep: %p still has saved data.", indirdep)); 11102 KASSERT(indirdep->ir_savebp == NULL, 11103 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11104 if (indirdep->ir_state & ONWORKLIST) 11105 WORKLIST_REMOVE(&indirdep->ir_list); 11106 WORKITEM_FREE(indirdep, D_INDIRDEP); 11107 } 11108 11109 /* 11110 * Called before a write to an indirdep. This routine is responsible for 11111 * rolling back pointers to a safe state which includes only those 11112 * allocindirs which have been completed. 11113 */ 11114 static void 11115 initiate_write_indirdep(indirdep, bp) 11116 struct indirdep *indirdep; 11117 struct buf *bp; 11118 { 11119 struct ufsmount *ump; 11120 11121 indirdep->ir_state |= IOSTARTED; 11122 if (indirdep->ir_state & GOINGAWAY) 11123 panic("disk_io_initiation: indirdep gone"); 11124 /* 11125 * If there are no remaining dependencies, this will be writing 11126 * the real pointers. 11127 */ 11128 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11129 TAILQ_EMPTY(&indirdep->ir_trunc)) 11130 return; 11131 /* 11132 * Replace up-to-date version with safe version. 11133 */ 11134 if (indirdep->ir_saveddata == NULL) { 11135 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11136 LOCK_OWNED(ump); 11137 FREE_LOCK(ump); 11138 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11139 M_SOFTDEP_FLAGS); 11140 ACQUIRE_LOCK(ump); 11141 } 11142 indirdep->ir_state &= ~ATTACHED; 11143 indirdep->ir_state |= UNDONE; 11144 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11145 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11146 bp->b_bcount); 11147 } 11148 11149 /* 11150 * Called when an inode has been cleared in a cg bitmap. This finally 11151 * eliminates any canceled jaddrefs 11152 */ 11153 void 11154 softdep_setup_inofree(mp, bp, ino, wkhd) 11155 struct mount *mp; 11156 struct buf *bp; 11157 ino_t ino; 11158 struct workhead *wkhd; 11159 { 11160 struct worklist *wk, *wkn; 11161 struct inodedep *inodedep; 11162 struct ufsmount *ump; 11163 uint8_t *inosused; 11164 struct cg *cgp; 11165 struct fs *fs; 11166 11167 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11168 ("softdep_setup_inofree called on non-softdep filesystem")); 11169 ump = VFSTOUFS(mp); 11170 ACQUIRE_LOCK(ump); 11171 if (!ffs_fsfail_cleanup(ump, 0)) { 11172 fs = ump->um_fs; 11173 cgp = (struct cg *)bp->b_data; 11174 inosused = cg_inosused(cgp); 11175 if (isset(inosused, ino % fs->fs_ipg)) 11176 panic("softdep_setup_inofree: inode %ju not freed.", 11177 (uintmax_t)ino); 11178 } 11179 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11180 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11181 (uintmax_t)ino, inodedep); 11182 if (wkhd) { 11183 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11184 if (wk->wk_type != D_JADDREF) 11185 continue; 11186 WORKLIST_REMOVE(wk); 11187 /* 11188 * We can free immediately even if the jaddref 11189 * isn't attached in a background write as now 11190 * the bitmaps are reconciled. 11191 */ 11192 wk->wk_state |= COMPLETE | ATTACHED; 11193 free_jaddref(WK_JADDREF(wk)); 11194 } 11195 jwork_move(&bp->b_dep, wkhd); 11196 } 11197 FREE_LOCK(ump); 11198 } 11199 11200 /* 11201 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11202 * map. Any dependencies waiting for the write to clear are added to the 11203 * buf's list and any jnewblks that are being canceled are discarded 11204 * immediately. 11205 */ 11206 void 11207 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11208 struct mount *mp; 11209 struct buf *bp; 11210 ufs2_daddr_t blkno; 11211 int frags; 11212 struct workhead *wkhd; 11213 { 11214 struct bmsafemap *bmsafemap; 11215 struct jnewblk *jnewblk; 11216 struct ufsmount *ump; 11217 struct worklist *wk; 11218 struct fs *fs; 11219 #ifdef INVARIANTS 11220 uint8_t *blksfree; 11221 struct cg *cgp; 11222 ufs2_daddr_t jstart; 11223 ufs2_daddr_t jend; 11224 ufs2_daddr_t end; 11225 long bno; 11226 int i; 11227 #endif 11228 11229 CTR3(KTR_SUJ, 11230 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11231 blkno, frags, wkhd); 11232 11233 ump = VFSTOUFS(mp); 11234 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11235 ("softdep_setup_blkfree called on non-softdep filesystem")); 11236 ACQUIRE_LOCK(ump); 11237 /* Lookup the bmsafemap so we track when it is dirty. */ 11238 fs = ump->um_fs; 11239 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11240 /* 11241 * Detach any jnewblks which have been canceled. They must linger 11242 * until the bitmap is cleared again by ffs_blkfree() to prevent 11243 * an unjournaled allocation from hitting the disk. 11244 */ 11245 if (wkhd) { 11246 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11247 CTR2(KTR_SUJ, 11248 "softdep_setup_blkfree: blkno %jd wk type %d", 11249 blkno, wk->wk_type); 11250 WORKLIST_REMOVE(wk); 11251 if (wk->wk_type != D_JNEWBLK) { 11252 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11253 continue; 11254 } 11255 jnewblk = WK_JNEWBLK(wk); 11256 KASSERT(jnewblk->jn_state & GOINGAWAY, 11257 ("softdep_setup_blkfree: jnewblk not canceled.")); 11258 #ifdef INVARIANTS 11259 /* 11260 * Assert that this block is free in the bitmap 11261 * before we discard the jnewblk. 11262 */ 11263 cgp = (struct cg *)bp->b_data; 11264 blksfree = cg_blksfree(cgp); 11265 bno = dtogd(fs, jnewblk->jn_blkno); 11266 for (i = jnewblk->jn_oldfrags; 11267 i < jnewblk->jn_frags; i++) { 11268 if (isset(blksfree, bno + i)) 11269 continue; 11270 panic("softdep_setup_blkfree: not free"); 11271 } 11272 #endif 11273 /* 11274 * Even if it's not attached we can free immediately 11275 * as the new bitmap is correct. 11276 */ 11277 wk->wk_state |= COMPLETE | ATTACHED; 11278 free_jnewblk(jnewblk); 11279 } 11280 } 11281 11282 #ifdef INVARIANTS 11283 /* 11284 * Assert that we are not freeing a block which has an outstanding 11285 * allocation dependency. 11286 */ 11287 fs = VFSTOUFS(mp)->um_fs; 11288 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11289 end = blkno + frags; 11290 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11291 /* 11292 * Don't match against blocks that will be freed when the 11293 * background write is done. 11294 */ 11295 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11296 (COMPLETE | DEPCOMPLETE)) 11297 continue; 11298 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11299 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11300 if ((blkno >= jstart && blkno < jend) || 11301 (end > jstart && end <= jend)) { 11302 printf("state 0x%X %jd - %d %d dep %p\n", 11303 jnewblk->jn_state, jnewblk->jn_blkno, 11304 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11305 jnewblk->jn_dep); 11306 panic("softdep_setup_blkfree: " 11307 "%jd-%jd(%d) overlaps with %jd-%jd", 11308 blkno, end, frags, jstart, jend); 11309 } 11310 } 11311 #endif 11312 FREE_LOCK(ump); 11313 } 11314 11315 /* 11316 * Revert a block allocation when the journal record that describes it 11317 * is not yet written. 11318 */ 11319 static int 11320 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11321 struct jnewblk *jnewblk; 11322 struct fs *fs; 11323 struct cg *cgp; 11324 uint8_t *blksfree; 11325 { 11326 ufs1_daddr_t fragno; 11327 long cgbno, bbase; 11328 int frags, blk; 11329 int i; 11330 11331 frags = 0; 11332 cgbno = dtogd(fs, jnewblk->jn_blkno); 11333 /* 11334 * We have to test which frags need to be rolled back. We may 11335 * be operating on a stale copy when doing background writes. 11336 */ 11337 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11338 if (isclr(blksfree, cgbno + i)) 11339 frags++; 11340 if (frags == 0) 11341 return (0); 11342 /* 11343 * This is mostly ffs_blkfree() sans some validation and 11344 * superblock updates. 11345 */ 11346 if (frags == fs->fs_frag) { 11347 fragno = fragstoblks(fs, cgbno); 11348 ffs_setblock(fs, blksfree, fragno); 11349 ffs_clusteracct(fs, cgp, fragno, 1); 11350 cgp->cg_cs.cs_nbfree++; 11351 } else { 11352 cgbno += jnewblk->jn_oldfrags; 11353 bbase = cgbno - fragnum(fs, cgbno); 11354 /* Decrement the old frags. */ 11355 blk = blkmap(fs, blksfree, bbase); 11356 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11357 /* Deallocate the fragment */ 11358 for (i = 0; i < frags; i++) 11359 setbit(blksfree, cgbno + i); 11360 cgp->cg_cs.cs_nffree += frags; 11361 /* Add back in counts associated with the new frags */ 11362 blk = blkmap(fs, blksfree, bbase); 11363 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11364 /* If a complete block has been reassembled, account for it. */ 11365 fragno = fragstoblks(fs, bbase); 11366 if (ffs_isblock(fs, blksfree, fragno)) { 11367 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11368 ffs_clusteracct(fs, cgp, fragno, 1); 11369 cgp->cg_cs.cs_nbfree++; 11370 } 11371 } 11372 stat_jnewblk++; 11373 jnewblk->jn_state &= ~ATTACHED; 11374 jnewblk->jn_state |= UNDONE; 11375 11376 return (frags); 11377 } 11378 11379 static void 11380 initiate_write_bmsafemap(bmsafemap, bp) 11381 struct bmsafemap *bmsafemap; 11382 struct buf *bp; /* The cg block. */ 11383 { 11384 struct jaddref *jaddref; 11385 struct jnewblk *jnewblk; 11386 uint8_t *inosused; 11387 uint8_t *blksfree; 11388 struct cg *cgp; 11389 struct fs *fs; 11390 ino_t ino; 11391 11392 /* 11393 * If this is a background write, we did this at the time that 11394 * the copy was made, so do not need to do it again. 11395 */ 11396 if (bmsafemap->sm_state & IOSTARTED) 11397 return; 11398 bmsafemap->sm_state |= IOSTARTED; 11399 /* 11400 * Clear any inode allocations which are pending journal writes. 11401 */ 11402 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11403 cgp = (struct cg *)bp->b_data; 11404 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11405 inosused = cg_inosused(cgp); 11406 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11407 ino = jaddref->ja_ino % fs->fs_ipg; 11408 if (isset(inosused, ino)) { 11409 if ((jaddref->ja_mode & IFMT) == IFDIR) 11410 cgp->cg_cs.cs_ndir--; 11411 cgp->cg_cs.cs_nifree++; 11412 clrbit(inosused, ino); 11413 jaddref->ja_state &= ~ATTACHED; 11414 jaddref->ja_state |= UNDONE; 11415 stat_jaddref++; 11416 } else 11417 panic("initiate_write_bmsafemap: inode %ju " 11418 "marked free", (uintmax_t)jaddref->ja_ino); 11419 } 11420 } 11421 /* 11422 * Clear any block allocations which are pending journal writes. 11423 */ 11424 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11425 cgp = (struct cg *)bp->b_data; 11426 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11427 blksfree = cg_blksfree(cgp); 11428 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11429 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11430 continue; 11431 panic("initiate_write_bmsafemap: block %jd " 11432 "marked free", jnewblk->jn_blkno); 11433 } 11434 } 11435 /* 11436 * Move allocation lists to the written lists so they can be 11437 * cleared once the block write is complete. 11438 */ 11439 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11440 inodedep, id_deps); 11441 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11442 newblk, nb_deps); 11443 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11444 wk_list); 11445 } 11446 11447 void 11448 softdep_handle_error(struct buf *bp) 11449 { 11450 struct ufsmount *ump; 11451 11452 ump = softdep_bp_to_mp(bp); 11453 if (ump == NULL) 11454 return; 11455 11456 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11457 /* 11458 * No future writes will succeed, so the on-disk image is safe. 11459 * Pretend that this write succeeded so that the softdep state 11460 * will be cleaned up naturally. 11461 */ 11462 bp->b_ioflags &= ~BIO_ERROR; 11463 bp->b_error = 0; 11464 } 11465 } 11466 11467 /* 11468 * This routine is called during the completion interrupt 11469 * service routine for a disk write (from the procedure called 11470 * by the device driver to inform the filesystem caches of 11471 * a request completion). It should be called early in this 11472 * procedure, before the block is made available to other 11473 * processes or other routines are called. 11474 * 11475 */ 11476 static void 11477 softdep_disk_write_complete(bp) 11478 struct buf *bp; /* describes the completed disk write */ 11479 { 11480 struct worklist *wk; 11481 struct worklist *owk; 11482 struct ufsmount *ump; 11483 struct workhead reattach; 11484 struct freeblks *freeblks; 11485 struct buf *sbp; 11486 11487 ump = softdep_bp_to_mp(bp); 11488 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11489 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11490 "with outstanding dependencies for buffer %p", bp)); 11491 if (ump == NULL) 11492 return; 11493 if ((bp->b_ioflags & BIO_ERROR) != 0) 11494 softdep_handle_error(bp); 11495 /* 11496 * If an error occurred while doing the write, then the data 11497 * has not hit the disk and the dependencies cannot be processed. 11498 * But we do have to go through and roll forward any dependencies 11499 * that were rolled back before the disk write. 11500 */ 11501 sbp = NULL; 11502 ACQUIRE_LOCK(ump); 11503 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11504 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11505 switch (wk->wk_type) { 11506 case D_PAGEDEP: 11507 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11508 continue; 11509 11510 case D_INODEDEP: 11511 handle_written_inodeblock(WK_INODEDEP(wk), 11512 bp, 0); 11513 continue; 11514 11515 case D_BMSAFEMAP: 11516 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11517 bp, 0); 11518 continue; 11519 11520 case D_INDIRDEP: 11521 handle_written_indirdep(WK_INDIRDEP(wk), 11522 bp, &sbp, 0); 11523 continue; 11524 default: 11525 /* nothing to roll forward */ 11526 continue; 11527 } 11528 } 11529 FREE_LOCK(ump); 11530 if (sbp) 11531 brelse(sbp); 11532 return; 11533 } 11534 LIST_INIT(&reattach); 11535 11536 /* 11537 * Ump SU lock must not be released anywhere in this code segment. 11538 */ 11539 owk = NULL; 11540 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11541 WORKLIST_REMOVE(wk); 11542 atomic_add_long(&dep_write[wk->wk_type], 1); 11543 if (wk == owk) 11544 panic("duplicate worklist: %p\n", wk); 11545 owk = wk; 11546 switch (wk->wk_type) { 11547 case D_PAGEDEP: 11548 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11549 WRITESUCCEEDED)) 11550 WORKLIST_INSERT(&reattach, wk); 11551 continue; 11552 11553 case D_INODEDEP: 11554 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11555 WRITESUCCEEDED)) 11556 WORKLIST_INSERT(&reattach, wk); 11557 continue; 11558 11559 case D_BMSAFEMAP: 11560 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11561 WRITESUCCEEDED)) 11562 WORKLIST_INSERT(&reattach, wk); 11563 continue; 11564 11565 case D_MKDIR: 11566 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11567 continue; 11568 11569 case D_ALLOCDIRECT: 11570 wk->wk_state |= COMPLETE; 11571 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11572 continue; 11573 11574 case D_ALLOCINDIR: 11575 wk->wk_state |= COMPLETE; 11576 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11577 continue; 11578 11579 case D_INDIRDEP: 11580 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11581 WRITESUCCEEDED)) 11582 WORKLIST_INSERT(&reattach, wk); 11583 continue; 11584 11585 case D_FREEBLKS: 11586 wk->wk_state |= COMPLETE; 11587 freeblks = WK_FREEBLKS(wk); 11588 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11589 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11590 add_to_worklist(wk, WK_NODELAY); 11591 continue; 11592 11593 case D_FREEWORK: 11594 handle_written_freework(WK_FREEWORK(wk)); 11595 break; 11596 11597 case D_JSEGDEP: 11598 free_jsegdep(WK_JSEGDEP(wk)); 11599 continue; 11600 11601 case D_JSEG: 11602 handle_written_jseg(WK_JSEG(wk), bp); 11603 continue; 11604 11605 case D_SBDEP: 11606 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11607 WORKLIST_INSERT(&reattach, wk); 11608 continue; 11609 11610 case D_FREEDEP: 11611 free_freedep(WK_FREEDEP(wk)); 11612 continue; 11613 11614 default: 11615 panic("handle_disk_write_complete: Unknown type %s", 11616 TYPENAME(wk->wk_type)); 11617 /* NOTREACHED */ 11618 } 11619 } 11620 /* 11621 * Reattach any requests that must be redone. 11622 */ 11623 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11624 WORKLIST_REMOVE(wk); 11625 WORKLIST_INSERT(&bp->b_dep, wk); 11626 } 11627 FREE_LOCK(ump); 11628 if (sbp) 11629 brelse(sbp); 11630 } 11631 11632 /* 11633 * Called from within softdep_disk_write_complete above. 11634 */ 11635 static void 11636 handle_allocdirect_partdone(adp, wkhd) 11637 struct allocdirect *adp; /* the completed allocdirect */ 11638 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11639 { 11640 struct allocdirectlst *listhead; 11641 struct allocdirect *listadp; 11642 struct inodedep *inodedep; 11643 long bsize; 11644 11645 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11646 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11647 return; 11648 /* 11649 * The on-disk inode cannot claim to be any larger than the last 11650 * fragment that has been written. Otherwise, the on-disk inode 11651 * might have fragments that were not the last block in the file 11652 * which would corrupt the filesystem. Thus, we cannot free any 11653 * allocdirects after one whose ad_oldblkno claims a fragment as 11654 * these blocks must be rolled back to zero before writing the inode. 11655 * We check the currently active set of allocdirects in id_inoupdt 11656 * or id_extupdt as appropriate. 11657 */ 11658 inodedep = adp->ad_inodedep; 11659 bsize = inodedep->id_fs->fs_bsize; 11660 if (adp->ad_state & EXTDATA) 11661 listhead = &inodedep->id_extupdt; 11662 else 11663 listhead = &inodedep->id_inoupdt; 11664 TAILQ_FOREACH(listadp, listhead, ad_next) { 11665 /* found our block */ 11666 if (listadp == adp) 11667 break; 11668 /* continue if ad_oldlbn is not a fragment */ 11669 if (listadp->ad_oldsize == 0 || 11670 listadp->ad_oldsize == bsize) 11671 continue; 11672 /* hit a fragment */ 11673 return; 11674 } 11675 /* 11676 * If we have reached the end of the current list without 11677 * finding the just finished dependency, then it must be 11678 * on the future dependency list. Future dependencies cannot 11679 * be freed until they are moved to the current list. 11680 */ 11681 if (listadp == NULL) { 11682 #ifdef INVARIANTS 11683 if (adp->ad_state & EXTDATA) 11684 listhead = &inodedep->id_newextupdt; 11685 else 11686 listhead = &inodedep->id_newinoupdt; 11687 TAILQ_FOREACH(listadp, listhead, ad_next) 11688 /* found our block */ 11689 if (listadp == adp) 11690 break; 11691 if (listadp == NULL) 11692 panic("handle_allocdirect_partdone: lost dep"); 11693 #endif /* INVARIANTS */ 11694 return; 11695 } 11696 /* 11697 * If we have found the just finished dependency, then queue 11698 * it along with anything that follows it that is complete. 11699 * Since the pointer has not yet been written in the inode 11700 * as the dependency prevents it, place the allocdirect on the 11701 * bufwait list where it will be freed once the pointer is 11702 * valid. 11703 */ 11704 if (wkhd == NULL) 11705 wkhd = &inodedep->id_bufwait; 11706 for (; adp; adp = listadp) { 11707 listadp = TAILQ_NEXT(adp, ad_next); 11708 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11709 return; 11710 TAILQ_REMOVE(listhead, adp, ad_next); 11711 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11712 } 11713 } 11714 11715 /* 11716 * Called from within softdep_disk_write_complete above. This routine 11717 * completes successfully written allocindirs. 11718 */ 11719 static void 11720 handle_allocindir_partdone(aip) 11721 struct allocindir *aip; /* the completed allocindir */ 11722 { 11723 struct indirdep *indirdep; 11724 11725 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11726 return; 11727 indirdep = aip->ai_indirdep; 11728 LIST_REMOVE(aip, ai_next); 11729 /* 11730 * Don't set a pointer while the buffer is undergoing IO or while 11731 * we have active truncations. 11732 */ 11733 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11734 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11735 return; 11736 } 11737 if (indirdep->ir_state & UFS1FMT) 11738 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11739 aip->ai_newblkno; 11740 else 11741 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11742 aip->ai_newblkno; 11743 /* 11744 * Await the pointer write before freeing the allocindir. 11745 */ 11746 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11747 } 11748 11749 /* 11750 * Release segments held on a jwork list. 11751 */ 11752 static void 11753 handle_jwork(wkhd) 11754 struct workhead *wkhd; 11755 { 11756 struct worklist *wk; 11757 11758 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11759 WORKLIST_REMOVE(wk); 11760 switch (wk->wk_type) { 11761 case D_JSEGDEP: 11762 free_jsegdep(WK_JSEGDEP(wk)); 11763 continue; 11764 case D_FREEDEP: 11765 free_freedep(WK_FREEDEP(wk)); 11766 continue; 11767 case D_FREEFRAG: 11768 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11769 WORKITEM_FREE(wk, D_FREEFRAG); 11770 continue; 11771 case D_FREEWORK: 11772 handle_written_freework(WK_FREEWORK(wk)); 11773 continue; 11774 default: 11775 panic("handle_jwork: Unknown type %s\n", 11776 TYPENAME(wk->wk_type)); 11777 } 11778 } 11779 } 11780 11781 /* 11782 * Handle the bufwait list on an inode when it is safe to release items 11783 * held there. This normally happens after an inode block is written but 11784 * may be delayed and handled later if there are pending journal items that 11785 * are not yet safe to be released. 11786 */ 11787 static struct freefile * 11788 handle_bufwait(inodedep, refhd) 11789 struct inodedep *inodedep; 11790 struct workhead *refhd; 11791 { 11792 struct jaddref *jaddref; 11793 struct freefile *freefile; 11794 struct worklist *wk; 11795 11796 freefile = NULL; 11797 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11798 WORKLIST_REMOVE(wk); 11799 switch (wk->wk_type) { 11800 case D_FREEFILE: 11801 /* 11802 * We defer adding freefile to the worklist 11803 * until all other additions have been made to 11804 * ensure that it will be done after all the 11805 * old blocks have been freed. 11806 */ 11807 if (freefile != NULL) 11808 panic("handle_bufwait: freefile"); 11809 freefile = WK_FREEFILE(wk); 11810 continue; 11811 11812 case D_MKDIR: 11813 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11814 continue; 11815 11816 case D_DIRADD: 11817 diradd_inode_written(WK_DIRADD(wk), inodedep); 11818 continue; 11819 11820 case D_FREEFRAG: 11821 wk->wk_state |= COMPLETE; 11822 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11823 add_to_worklist(wk, 0); 11824 continue; 11825 11826 case D_DIRREM: 11827 wk->wk_state |= COMPLETE; 11828 add_to_worklist(wk, 0); 11829 continue; 11830 11831 case D_ALLOCDIRECT: 11832 case D_ALLOCINDIR: 11833 free_newblk(WK_NEWBLK(wk)); 11834 continue; 11835 11836 case D_JNEWBLK: 11837 wk->wk_state |= COMPLETE; 11838 free_jnewblk(WK_JNEWBLK(wk)); 11839 continue; 11840 11841 /* 11842 * Save freed journal segments and add references on 11843 * the supplied list which will delay their release 11844 * until the cg bitmap is cleared on disk. 11845 */ 11846 case D_JSEGDEP: 11847 if (refhd == NULL) 11848 free_jsegdep(WK_JSEGDEP(wk)); 11849 else 11850 WORKLIST_INSERT(refhd, wk); 11851 continue; 11852 11853 case D_JADDREF: 11854 jaddref = WK_JADDREF(wk); 11855 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11856 if_deps); 11857 /* 11858 * Transfer any jaddrefs to the list to be freed with 11859 * the bitmap if we're handling a removed file. 11860 */ 11861 if (refhd == NULL) { 11862 wk->wk_state |= COMPLETE; 11863 free_jaddref(jaddref); 11864 } else 11865 WORKLIST_INSERT(refhd, wk); 11866 continue; 11867 11868 default: 11869 panic("handle_bufwait: Unknown type %p(%s)", 11870 wk, TYPENAME(wk->wk_type)); 11871 /* NOTREACHED */ 11872 } 11873 } 11874 return (freefile); 11875 } 11876 /* 11877 * Called from within softdep_disk_write_complete above to restore 11878 * in-memory inode block contents to their most up-to-date state. Note 11879 * that this routine is always called from interrupt level with further 11880 * interrupts from this device blocked. 11881 * 11882 * If the write did not succeed, we will do all the roll-forward 11883 * operations, but we will not take the actions that will allow its 11884 * dependencies to be processed. 11885 */ 11886 static int 11887 handle_written_inodeblock(inodedep, bp, flags) 11888 struct inodedep *inodedep; 11889 struct buf *bp; /* buffer containing the inode block */ 11890 int flags; 11891 { 11892 struct freefile *freefile; 11893 struct allocdirect *adp, *nextadp; 11894 struct ufs1_dinode *dp1 = NULL; 11895 struct ufs2_dinode *dp2 = NULL; 11896 struct workhead wkhd; 11897 int hadchanges, fstype; 11898 ino_t freelink; 11899 11900 LIST_INIT(&wkhd); 11901 hadchanges = 0; 11902 freefile = NULL; 11903 if ((inodedep->id_state & IOSTARTED) == 0) 11904 panic("handle_written_inodeblock: not started"); 11905 inodedep->id_state &= ~IOSTARTED; 11906 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11907 fstype = UFS1; 11908 dp1 = (struct ufs1_dinode *)bp->b_data + 11909 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11910 freelink = dp1->di_freelink; 11911 } else { 11912 fstype = UFS2; 11913 dp2 = (struct ufs2_dinode *)bp->b_data + 11914 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11915 freelink = dp2->di_freelink; 11916 } 11917 /* 11918 * Leave this inodeblock dirty until it's in the list. 11919 */ 11920 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11921 (flags & WRITESUCCEEDED)) { 11922 struct inodedep *inon; 11923 11924 inon = TAILQ_NEXT(inodedep, id_unlinked); 11925 if ((inon == NULL && freelink == 0) || 11926 (inon && inon->id_ino == freelink)) { 11927 if (inon) 11928 inon->id_state |= UNLINKPREV; 11929 inodedep->id_state |= UNLINKNEXT; 11930 } 11931 hadchanges = 1; 11932 } 11933 /* 11934 * If we had to rollback the inode allocation because of 11935 * bitmaps being incomplete, then simply restore it. 11936 * Keep the block dirty so that it will not be reclaimed until 11937 * all associated dependencies have been cleared and the 11938 * corresponding updates written to disk. 11939 */ 11940 if (inodedep->id_savedino1 != NULL) { 11941 hadchanges = 1; 11942 if (fstype == UFS1) 11943 *dp1 = *inodedep->id_savedino1; 11944 else 11945 *dp2 = *inodedep->id_savedino2; 11946 free(inodedep->id_savedino1, M_SAVEDINO); 11947 inodedep->id_savedino1 = NULL; 11948 if ((bp->b_flags & B_DELWRI) == 0) 11949 stat_inode_bitmap++; 11950 bdirty(bp); 11951 /* 11952 * If the inode is clear here and GOINGAWAY it will never 11953 * be written. Process the bufwait and clear any pending 11954 * work which may include the freefile. 11955 */ 11956 if (inodedep->id_state & GOINGAWAY) 11957 goto bufwait; 11958 return (1); 11959 } 11960 if (flags & WRITESUCCEEDED) 11961 inodedep->id_state |= COMPLETE; 11962 /* 11963 * Roll forward anything that had to be rolled back before 11964 * the inode could be updated. 11965 */ 11966 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11967 nextadp = TAILQ_NEXT(adp, ad_next); 11968 if (adp->ad_state & ATTACHED) 11969 panic("handle_written_inodeblock: new entry"); 11970 if (fstype == UFS1) { 11971 if (adp->ad_offset < UFS_NDADDR) { 11972 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11973 panic("%s %s #%jd mismatch %d != %jd", 11974 "handle_written_inodeblock:", 11975 "direct pointer", 11976 (intmax_t)adp->ad_offset, 11977 dp1->di_db[adp->ad_offset], 11978 (intmax_t)adp->ad_oldblkno); 11979 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11980 } else { 11981 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11982 0) 11983 panic("%s: %s #%jd allocated as %d", 11984 "handle_written_inodeblock", 11985 "indirect pointer", 11986 (intmax_t)adp->ad_offset - 11987 UFS_NDADDR, 11988 dp1->di_ib[adp->ad_offset - 11989 UFS_NDADDR]); 11990 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11991 adp->ad_newblkno; 11992 } 11993 } else { 11994 if (adp->ad_offset < UFS_NDADDR) { 11995 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11996 panic("%s: %s #%jd %s %jd != %jd", 11997 "handle_written_inodeblock", 11998 "direct pointer", 11999 (intmax_t)adp->ad_offset, "mismatch", 12000 (intmax_t)dp2->di_db[adp->ad_offset], 12001 (intmax_t)adp->ad_oldblkno); 12002 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 12003 } else { 12004 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 12005 0) 12006 panic("%s: %s #%jd allocated as %jd", 12007 "handle_written_inodeblock", 12008 "indirect pointer", 12009 (intmax_t)adp->ad_offset - 12010 UFS_NDADDR, 12011 (intmax_t) 12012 dp2->di_ib[adp->ad_offset - 12013 UFS_NDADDR]); 12014 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 12015 adp->ad_newblkno; 12016 } 12017 } 12018 adp->ad_state &= ~UNDONE; 12019 adp->ad_state |= ATTACHED; 12020 hadchanges = 1; 12021 } 12022 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 12023 nextadp = TAILQ_NEXT(adp, ad_next); 12024 if (adp->ad_state & ATTACHED) 12025 panic("handle_written_inodeblock: new entry"); 12026 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 12027 panic("%s: direct pointers #%jd %s %jd != %jd", 12028 "handle_written_inodeblock", 12029 (intmax_t)adp->ad_offset, "mismatch", 12030 (intmax_t)dp2->di_extb[adp->ad_offset], 12031 (intmax_t)adp->ad_oldblkno); 12032 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 12033 adp->ad_state &= ~UNDONE; 12034 adp->ad_state |= ATTACHED; 12035 hadchanges = 1; 12036 } 12037 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 12038 stat_direct_blk_ptrs++; 12039 /* 12040 * Reset the file size to its most up-to-date value. 12041 */ 12042 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 12043 panic("handle_written_inodeblock: bad size"); 12044 if (inodedep->id_savednlink > UFS_LINK_MAX) 12045 panic("handle_written_inodeblock: Invalid link count " 12046 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 12047 inodedep); 12048 if (fstype == UFS1) { 12049 if (dp1->di_nlink != inodedep->id_savednlink) { 12050 dp1->di_nlink = inodedep->id_savednlink; 12051 hadchanges = 1; 12052 } 12053 if (dp1->di_size != inodedep->id_savedsize) { 12054 dp1->di_size = inodedep->id_savedsize; 12055 hadchanges = 1; 12056 } 12057 } else { 12058 if (dp2->di_nlink != inodedep->id_savednlink) { 12059 dp2->di_nlink = inodedep->id_savednlink; 12060 hadchanges = 1; 12061 } 12062 if (dp2->di_size != inodedep->id_savedsize) { 12063 dp2->di_size = inodedep->id_savedsize; 12064 hadchanges = 1; 12065 } 12066 if (dp2->di_extsize != inodedep->id_savedextsize) { 12067 dp2->di_extsize = inodedep->id_savedextsize; 12068 hadchanges = 1; 12069 } 12070 } 12071 inodedep->id_savedsize = -1; 12072 inodedep->id_savedextsize = -1; 12073 inodedep->id_savednlink = -1; 12074 /* 12075 * If there were any rollbacks in the inode block, then it must be 12076 * marked dirty so that its will eventually get written back in 12077 * its correct form. 12078 */ 12079 if (hadchanges) { 12080 if (fstype == UFS2) 12081 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12082 bdirty(bp); 12083 } 12084 bufwait: 12085 /* 12086 * If the write did not succeed, we have done all the roll-forward 12087 * operations, but we cannot take the actions that will allow its 12088 * dependencies to be processed. 12089 */ 12090 if ((flags & WRITESUCCEEDED) == 0) 12091 return (hadchanges); 12092 /* 12093 * Process any allocdirects that completed during the update. 12094 */ 12095 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12096 handle_allocdirect_partdone(adp, &wkhd); 12097 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12098 handle_allocdirect_partdone(adp, &wkhd); 12099 /* 12100 * Process deallocations that were held pending until the 12101 * inode had been written to disk. Freeing of the inode 12102 * is delayed until after all blocks have been freed to 12103 * avoid creation of new <vfsid, inum, lbn> triples 12104 * before the old ones have been deleted. Completely 12105 * unlinked inodes are not processed until the unlinked 12106 * inode list is written or the last reference is removed. 12107 */ 12108 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12109 freefile = handle_bufwait(inodedep, NULL); 12110 if (freefile && !LIST_EMPTY(&wkhd)) { 12111 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12112 freefile = NULL; 12113 } 12114 } 12115 /* 12116 * Move rolled forward dependency completions to the bufwait list 12117 * now that those that were already written have been processed. 12118 */ 12119 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12120 panic("handle_written_inodeblock: bufwait but no changes"); 12121 jwork_move(&inodedep->id_bufwait, &wkhd); 12122 12123 if (freefile != NULL) { 12124 /* 12125 * If the inode is goingaway it was never written. Fake up 12126 * the state here so free_inodedep() can succeed. 12127 */ 12128 if (inodedep->id_state & GOINGAWAY) 12129 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12130 if (free_inodedep(inodedep) == 0) 12131 panic("handle_written_inodeblock: live inodedep %p", 12132 inodedep); 12133 add_to_worklist(&freefile->fx_list, 0); 12134 return (0); 12135 } 12136 12137 /* 12138 * If no outstanding dependencies, free it. 12139 */ 12140 if (free_inodedep(inodedep) || 12141 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12142 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12143 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12144 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12145 return (0); 12146 return (hadchanges); 12147 } 12148 12149 /* 12150 * Perform needed roll-forwards and kick off any dependencies that 12151 * can now be processed. 12152 * 12153 * If the write did not succeed, we will do all the roll-forward 12154 * operations, but we will not take the actions that will allow its 12155 * dependencies to be processed. 12156 */ 12157 static int 12158 handle_written_indirdep(indirdep, bp, bpp, flags) 12159 struct indirdep *indirdep; 12160 struct buf *bp; 12161 struct buf **bpp; 12162 int flags; 12163 { 12164 struct allocindir *aip; 12165 struct buf *sbp; 12166 int chgs; 12167 12168 if (indirdep->ir_state & GOINGAWAY) 12169 panic("handle_written_indirdep: indirdep gone"); 12170 if ((indirdep->ir_state & IOSTARTED) == 0) 12171 panic("handle_written_indirdep: IO not started"); 12172 chgs = 0; 12173 /* 12174 * If there were rollbacks revert them here. 12175 */ 12176 if (indirdep->ir_saveddata) { 12177 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12178 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12179 free(indirdep->ir_saveddata, M_INDIRDEP); 12180 indirdep->ir_saveddata = NULL; 12181 } 12182 chgs = 1; 12183 } 12184 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12185 indirdep->ir_state |= ATTACHED; 12186 /* 12187 * If the write did not succeed, we have done all the roll-forward 12188 * operations, but we cannot take the actions that will allow its 12189 * dependencies to be processed. 12190 */ 12191 if ((flags & WRITESUCCEEDED) == 0) { 12192 stat_indir_blk_ptrs++; 12193 bdirty(bp); 12194 return (1); 12195 } 12196 /* 12197 * Move allocindirs with written pointers to the completehd if 12198 * the indirdep's pointer is not yet written. Otherwise 12199 * free them here. 12200 */ 12201 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12202 LIST_REMOVE(aip, ai_next); 12203 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12204 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12205 ai_next); 12206 newblk_freefrag(&aip->ai_block); 12207 continue; 12208 } 12209 free_newblk(&aip->ai_block); 12210 } 12211 /* 12212 * Move allocindirs that have finished dependency processing from 12213 * the done list to the write list after updating the pointers. 12214 */ 12215 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12216 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12217 handle_allocindir_partdone(aip); 12218 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12219 panic("disk_write_complete: not gone"); 12220 chgs = 1; 12221 } 12222 } 12223 /* 12224 * Preserve the indirdep if there were any changes or if it is not 12225 * yet valid on disk. 12226 */ 12227 if (chgs) { 12228 stat_indir_blk_ptrs++; 12229 bdirty(bp); 12230 return (1); 12231 } 12232 /* 12233 * If there were no changes we can discard the savedbp and detach 12234 * ourselves from the buf. We are only carrying completed pointers 12235 * in this case. 12236 */ 12237 sbp = indirdep->ir_savebp; 12238 sbp->b_flags |= B_INVAL | B_NOCACHE; 12239 indirdep->ir_savebp = NULL; 12240 indirdep->ir_bp = NULL; 12241 if (*bpp != NULL) 12242 panic("handle_written_indirdep: bp already exists."); 12243 *bpp = sbp; 12244 /* 12245 * The indirdep may not be freed until its parent points at it. 12246 */ 12247 if (indirdep->ir_state & DEPCOMPLETE) 12248 free_indirdep(indirdep); 12249 12250 return (0); 12251 } 12252 12253 /* 12254 * Process a diradd entry after its dependent inode has been written. 12255 */ 12256 static void 12257 diradd_inode_written(dap, inodedep) 12258 struct diradd *dap; 12259 struct inodedep *inodedep; 12260 { 12261 12262 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12263 dap->da_state |= COMPLETE; 12264 complete_diradd(dap); 12265 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12266 } 12267 12268 /* 12269 * Returns true if the bmsafemap will have rollbacks when written. Must only 12270 * be called with the per-filesystem lock and the buf lock on the cg held. 12271 */ 12272 static int 12273 bmsafemap_backgroundwrite(bmsafemap, bp) 12274 struct bmsafemap *bmsafemap; 12275 struct buf *bp; 12276 { 12277 int dirty; 12278 12279 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12280 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12281 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12282 /* 12283 * If we're initiating a background write we need to process the 12284 * rollbacks as they exist now, not as they exist when IO starts. 12285 * No other consumers will look at the contents of the shadowed 12286 * buf so this is safe to do here. 12287 */ 12288 if (bp->b_xflags & BX_BKGRDMARKER) 12289 initiate_write_bmsafemap(bmsafemap, bp); 12290 12291 return (dirty); 12292 } 12293 12294 /* 12295 * Re-apply an allocation when a cg write is complete. 12296 */ 12297 static int 12298 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12299 struct jnewblk *jnewblk; 12300 struct fs *fs; 12301 struct cg *cgp; 12302 uint8_t *blksfree; 12303 { 12304 ufs1_daddr_t fragno; 12305 ufs2_daddr_t blkno; 12306 long cgbno, bbase; 12307 int frags, blk; 12308 int i; 12309 12310 frags = 0; 12311 cgbno = dtogd(fs, jnewblk->jn_blkno); 12312 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12313 if (isclr(blksfree, cgbno + i)) 12314 panic("jnewblk_rollforward: re-allocated fragment"); 12315 frags++; 12316 } 12317 if (frags == fs->fs_frag) { 12318 blkno = fragstoblks(fs, cgbno); 12319 ffs_clrblock(fs, blksfree, (long)blkno); 12320 ffs_clusteracct(fs, cgp, blkno, -1); 12321 cgp->cg_cs.cs_nbfree--; 12322 } else { 12323 bbase = cgbno - fragnum(fs, cgbno); 12324 cgbno += jnewblk->jn_oldfrags; 12325 /* If a complete block had been reassembled, account for it. */ 12326 fragno = fragstoblks(fs, bbase); 12327 if (ffs_isblock(fs, blksfree, fragno)) { 12328 cgp->cg_cs.cs_nffree += fs->fs_frag; 12329 ffs_clusteracct(fs, cgp, fragno, -1); 12330 cgp->cg_cs.cs_nbfree--; 12331 } 12332 /* Decrement the old frags. */ 12333 blk = blkmap(fs, blksfree, bbase); 12334 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12335 /* Allocate the fragment */ 12336 for (i = 0; i < frags; i++) 12337 clrbit(blksfree, cgbno + i); 12338 cgp->cg_cs.cs_nffree -= frags; 12339 /* Add back in counts associated with the new frags */ 12340 blk = blkmap(fs, blksfree, bbase); 12341 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12342 } 12343 return (frags); 12344 } 12345 12346 /* 12347 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12348 * changes if it's not a background write. Set all written dependencies 12349 * to DEPCOMPLETE and free the structure if possible. 12350 * 12351 * If the write did not succeed, we will do all the roll-forward 12352 * operations, but we will not take the actions that will allow its 12353 * dependencies to be processed. 12354 */ 12355 static int 12356 handle_written_bmsafemap(bmsafemap, bp, flags) 12357 struct bmsafemap *bmsafemap; 12358 struct buf *bp; 12359 int flags; 12360 { 12361 struct newblk *newblk; 12362 struct inodedep *inodedep; 12363 struct jaddref *jaddref, *jatmp; 12364 struct jnewblk *jnewblk, *jntmp; 12365 struct ufsmount *ump; 12366 uint8_t *inosused; 12367 uint8_t *blksfree; 12368 struct cg *cgp; 12369 struct fs *fs; 12370 ino_t ino; 12371 int foreground; 12372 int chgs; 12373 12374 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12375 panic("handle_written_bmsafemap: Not started\n"); 12376 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12377 chgs = 0; 12378 bmsafemap->sm_state &= ~IOSTARTED; 12379 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12380 /* 12381 * If write was successful, release journal work that was waiting 12382 * on the write. Otherwise move the work back. 12383 */ 12384 if (flags & WRITESUCCEEDED) 12385 handle_jwork(&bmsafemap->sm_freewr); 12386 else 12387 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12388 worklist, wk_list); 12389 12390 /* 12391 * Restore unwritten inode allocation pending jaddref writes. 12392 */ 12393 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12394 cgp = (struct cg *)bp->b_data; 12395 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12396 inosused = cg_inosused(cgp); 12397 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12398 ja_bmdeps, jatmp) { 12399 if ((jaddref->ja_state & UNDONE) == 0) 12400 continue; 12401 ino = jaddref->ja_ino % fs->fs_ipg; 12402 if (isset(inosused, ino)) 12403 panic("handle_written_bmsafemap: " 12404 "re-allocated inode"); 12405 /* Do the roll-forward only if it's a real copy. */ 12406 if (foreground) { 12407 if ((jaddref->ja_mode & IFMT) == IFDIR) 12408 cgp->cg_cs.cs_ndir++; 12409 cgp->cg_cs.cs_nifree--; 12410 setbit(inosused, ino); 12411 chgs = 1; 12412 } 12413 jaddref->ja_state &= ~UNDONE; 12414 jaddref->ja_state |= ATTACHED; 12415 free_jaddref(jaddref); 12416 } 12417 } 12418 /* 12419 * Restore any block allocations which are pending journal writes. 12420 */ 12421 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12422 cgp = (struct cg *)bp->b_data; 12423 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12424 blksfree = cg_blksfree(cgp); 12425 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12426 jntmp) { 12427 if ((jnewblk->jn_state & UNDONE) == 0) 12428 continue; 12429 /* Do the roll-forward only if it's a real copy. */ 12430 if (foreground && 12431 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12432 chgs = 1; 12433 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12434 jnewblk->jn_state |= ATTACHED; 12435 free_jnewblk(jnewblk); 12436 } 12437 } 12438 /* 12439 * If the write did not succeed, we have done all the roll-forward 12440 * operations, but we cannot take the actions that will allow its 12441 * dependencies to be processed. 12442 */ 12443 if ((flags & WRITESUCCEEDED) == 0) { 12444 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12445 newblk, nb_deps); 12446 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12447 worklist, wk_list); 12448 if (foreground) 12449 bdirty(bp); 12450 return (1); 12451 } 12452 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12453 newblk->nb_state |= DEPCOMPLETE; 12454 newblk->nb_state &= ~ONDEPLIST; 12455 newblk->nb_bmsafemap = NULL; 12456 LIST_REMOVE(newblk, nb_deps); 12457 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12458 handle_allocdirect_partdone( 12459 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12460 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12461 handle_allocindir_partdone( 12462 WK_ALLOCINDIR(&newblk->nb_list)); 12463 else if (newblk->nb_list.wk_type != D_NEWBLK) 12464 panic("handle_written_bmsafemap: Unexpected type: %s", 12465 TYPENAME(newblk->nb_list.wk_type)); 12466 } 12467 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12468 inodedep->id_state |= DEPCOMPLETE; 12469 inodedep->id_state &= ~ONDEPLIST; 12470 LIST_REMOVE(inodedep, id_deps); 12471 inodedep->id_bmsafemap = NULL; 12472 } 12473 LIST_REMOVE(bmsafemap, sm_next); 12474 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12475 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12476 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12477 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12478 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12479 LIST_REMOVE(bmsafemap, sm_hash); 12480 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12481 return (0); 12482 } 12483 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12484 if (foreground) 12485 bdirty(bp); 12486 return (1); 12487 } 12488 12489 /* 12490 * Try to free a mkdir dependency. 12491 */ 12492 static void 12493 complete_mkdir(mkdir) 12494 struct mkdir *mkdir; 12495 { 12496 struct diradd *dap; 12497 12498 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12499 return; 12500 LIST_REMOVE(mkdir, md_mkdirs); 12501 dap = mkdir->md_diradd; 12502 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12503 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12504 dap->da_state |= DEPCOMPLETE; 12505 complete_diradd(dap); 12506 } 12507 WORKITEM_FREE(mkdir, D_MKDIR); 12508 } 12509 12510 /* 12511 * Handle the completion of a mkdir dependency. 12512 */ 12513 static void 12514 handle_written_mkdir(mkdir, type) 12515 struct mkdir *mkdir; 12516 int type; 12517 { 12518 12519 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12520 panic("handle_written_mkdir: bad type"); 12521 mkdir->md_state |= COMPLETE; 12522 complete_mkdir(mkdir); 12523 } 12524 12525 static int 12526 free_pagedep(pagedep) 12527 struct pagedep *pagedep; 12528 { 12529 int i; 12530 12531 if (pagedep->pd_state & NEWBLOCK) 12532 return (0); 12533 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12534 return (0); 12535 for (i = 0; i < DAHASHSZ; i++) 12536 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12537 return (0); 12538 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12539 return (0); 12540 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12541 return (0); 12542 if (pagedep->pd_state & ONWORKLIST) 12543 WORKLIST_REMOVE(&pagedep->pd_list); 12544 LIST_REMOVE(pagedep, pd_hash); 12545 WORKITEM_FREE(pagedep, D_PAGEDEP); 12546 12547 return (1); 12548 } 12549 12550 /* 12551 * Called from within softdep_disk_write_complete above. 12552 * A write operation was just completed. Removed inodes can 12553 * now be freed and associated block pointers may be committed. 12554 * Note that this routine is always called from interrupt level 12555 * with further interrupts from this device blocked. 12556 * 12557 * If the write did not succeed, we will do all the roll-forward 12558 * operations, but we will not take the actions that will allow its 12559 * dependencies to be processed. 12560 */ 12561 static int 12562 handle_written_filepage(pagedep, bp, flags) 12563 struct pagedep *pagedep; 12564 struct buf *bp; /* buffer containing the written page */ 12565 int flags; 12566 { 12567 struct dirrem *dirrem; 12568 struct diradd *dap, *nextdap; 12569 struct direct *ep; 12570 int i, chgs; 12571 12572 if ((pagedep->pd_state & IOSTARTED) == 0) 12573 panic("handle_written_filepage: not started"); 12574 pagedep->pd_state &= ~IOSTARTED; 12575 if ((flags & WRITESUCCEEDED) == 0) 12576 goto rollforward; 12577 /* 12578 * Process any directory removals that have been committed. 12579 */ 12580 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12581 LIST_REMOVE(dirrem, dm_next); 12582 dirrem->dm_state |= COMPLETE; 12583 dirrem->dm_dirinum = pagedep->pd_ino; 12584 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12585 ("handle_written_filepage: Journal entries not written.")); 12586 add_to_worklist(&dirrem->dm_list, 0); 12587 } 12588 /* 12589 * Free any directory additions that have been committed. 12590 * If it is a newly allocated block, we have to wait until 12591 * the on-disk directory inode claims the new block. 12592 */ 12593 if ((pagedep->pd_state & NEWBLOCK) == 0) 12594 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12595 free_diradd(dap, NULL); 12596 rollforward: 12597 /* 12598 * Uncommitted directory entries must be restored. 12599 */ 12600 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12601 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12602 dap = nextdap) { 12603 nextdap = LIST_NEXT(dap, da_pdlist); 12604 if (dap->da_state & ATTACHED) 12605 panic("handle_written_filepage: attached"); 12606 ep = (struct direct *) 12607 ((char *)bp->b_data + dap->da_offset); 12608 ep->d_ino = dap->da_newinum; 12609 dap->da_state &= ~UNDONE; 12610 dap->da_state |= ATTACHED; 12611 chgs = 1; 12612 /* 12613 * If the inode referenced by the directory has 12614 * been written out, then the dependency can be 12615 * moved to the pending list. 12616 */ 12617 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12618 LIST_REMOVE(dap, da_pdlist); 12619 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12620 da_pdlist); 12621 } 12622 } 12623 } 12624 /* 12625 * If there were any rollbacks in the directory, then it must be 12626 * marked dirty so that its will eventually get written back in 12627 * its correct form. 12628 */ 12629 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12630 if ((bp->b_flags & B_DELWRI) == 0) 12631 stat_dir_entry++; 12632 bdirty(bp); 12633 return (1); 12634 } 12635 /* 12636 * If we are not waiting for a new directory block to be 12637 * claimed by its inode, then the pagedep will be freed. 12638 * Otherwise it will remain to track any new entries on 12639 * the page in case they are fsync'ed. 12640 */ 12641 free_pagedep(pagedep); 12642 return (0); 12643 } 12644 12645 /* 12646 * Writing back in-core inode structures. 12647 * 12648 * The filesystem only accesses an inode's contents when it occupies an 12649 * "in-core" inode structure. These "in-core" structures are separate from 12650 * the page frames used to cache inode blocks. Only the latter are 12651 * transferred to/from the disk. So, when the updated contents of the 12652 * "in-core" inode structure are copied to the corresponding in-memory inode 12653 * block, the dependencies are also transferred. The following procedure is 12654 * called when copying a dirty "in-core" inode to a cached inode block. 12655 */ 12656 12657 /* 12658 * Called when an inode is loaded from disk. If the effective link count 12659 * differed from the actual link count when it was last flushed, then we 12660 * need to ensure that the correct effective link count is put back. 12661 */ 12662 void 12663 softdep_load_inodeblock(ip) 12664 struct inode *ip; /* the "in_core" copy of the inode */ 12665 { 12666 struct inodedep *inodedep; 12667 struct ufsmount *ump; 12668 12669 ump = ITOUMP(ip); 12670 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12671 ("softdep_load_inodeblock called on non-softdep filesystem")); 12672 /* 12673 * Check for alternate nlink count. 12674 */ 12675 ip->i_effnlink = ip->i_nlink; 12676 ACQUIRE_LOCK(ump); 12677 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12678 FREE_LOCK(ump); 12679 return; 12680 } 12681 if (ip->i_nlink != inodedep->id_nlinkwrote && 12682 inodedep->id_nlinkwrote != -1) { 12683 KASSERT(ip->i_nlink == 0 && 12684 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12685 ("read bad i_nlink value")); 12686 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12687 } 12688 ip->i_effnlink -= inodedep->id_nlinkdelta; 12689 KASSERT(ip->i_effnlink >= 0, 12690 ("softdep_load_inodeblock: negative i_effnlink")); 12691 FREE_LOCK(ump); 12692 } 12693 12694 /* 12695 * This routine is called just before the "in-core" inode 12696 * information is to be copied to the in-memory inode block. 12697 * Recall that an inode block contains several inodes. If 12698 * the force flag is set, then the dependencies will be 12699 * cleared so that the update can always be made. Note that 12700 * the buffer is locked when this routine is called, so we 12701 * will never be in the middle of writing the inode block 12702 * to disk. 12703 */ 12704 void 12705 softdep_update_inodeblock(ip, bp, waitfor) 12706 struct inode *ip; /* the "in_core" copy of the inode */ 12707 struct buf *bp; /* the buffer containing the inode block */ 12708 int waitfor; /* nonzero => update must be allowed */ 12709 { 12710 struct inodedep *inodedep; 12711 struct inoref *inoref; 12712 struct ufsmount *ump; 12713 struct worklist *wk; 12714 struct mount *mp; 12715 struct buf *ibp; 12716 struct fs *fs; 12717 int error; 12718 12719 ump = ITOUMP(ip); 12720 mp = UFSTOVFS(ump); 12721 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12722 ("softdep_update_inodeblock called on non-softdep filesystem")); 12723 fs = ump->um_fs; 12724 /* 12725 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12726 * does not have access to the in-core ip so must write directly into 12727 * the inode block buffer when setting freelink. 12728 */ 12729 if (fs->fs_magic == FS_UFS1_MAGIC) 12730 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12731 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12732 else 12733 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12734 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12735 /* 12736 * If the effective link count is not equal to the actual link 12737 * count, then we must track the difference in an inodedep while 12738 * the inode is (potentially) tossed out of the cache. Otherwise, 12739 * if there is no existing inodedep, then there are no dependencies 12740 * to track. 12741 */ 12742 ACQUIRE_LOCK(ump); 12743 again: 12744 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12745 FREE_LOCK(ump); 12746 if (ip->i_effnlink != ip->i_nlink) 12747 panic("softdep_update_inodeblock: bad link count"); 12748 return; 12749 } 12750 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12751 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12752 "inodedep %p id_nlinkdelta %jd", 12753 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12754 inodedep->id_nlinkwrote = ip->i_nlink; 12755 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12756 panic("softdep_update_inodeblock: bad delta"); 12757 /* 12758 * If we're flushing all dependencies we must also move any waiting 12759 * for journal writes onto the bufwait list prior to I/O. 12760 */ 12761 if (waitfor) { 12762 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12763 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12764 == DEPCOMPLETE) { 12765 jwait(&inoref->if_list, MNT_WAIT); 12766 goto again; 12767 } 12768 } 12769 } 12770 /* 12771 * Changes have been initiated. Anything depending on these 12772 * changes cannot occur until this inode has been written. 12773 */ 12774 inodedep->id_state &= ~COMPLETE; 12775 if ((inodedep->id_state & ONWORKLIST) == 0) 12776 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12777 /* 12778 * Any new dependencies associated with the incore inode must 12779 * now be moved to the list associated with the buffer holding 12780 * the in-memory copy of the inode. Once merged process any 12781 * allocdirects that are completed by the merger. 12782 */ 12783 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12784 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12785 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12786 NULL); 12787 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12788 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12789 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12790 NULL); 12791 /* 12792 * Now that the inode has been pushed into the buffer, the 12793 * operations dependent on the inode being written to disk 12794 * can be moved to the id_bufwait so that they will be 12795 * processed when the buffer I/O completes. 12796 */ 12797 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12798 WORKLIST_REMOVE(wk); 12799 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12800 } 12801 /* 12802 * Newly allocated inodes cannot be written until the bitmap 12803 * that allocates them have been written (indicated by 12804 * DEPCOMPLETE being set in id_state). If we are doing a 12805 * forced sync (e.g., an fsync on a file), we force the bitmap 12806 * to be written so that the update can be done. 12807 */ 12808 if (waitfor == 0) { 12809 FREE_LOCK(ump); 12810 return; 12811 } 12812 retry: 12813 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12814 FREE_LOCK(ump); 12815 return; 12816 } 12817 ibp = inodedep->id_bmsafemap->sm_buf; 12818 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12819 if (ibp == NULL) { 12820 /* 12821 * If ibp came back as NULL, the dependency could have been 12822 * freed while we slept. Look it up again, and check to see 12823 * that it has completed. 12824 */ 12825 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12826 goto retry; 12827 FREE_LOCK(ump); 12828 return; 12829 } 12830 FREE_LOCK(ump); 12831 if ((error = bwrite(ibp)) != 0) 12832 softdep_error("softdep_update_inodeblock: bwrite", error); 12833 } 12834 12835 /* 12836 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12837 * old inode dependency list (such as id_inoupdt). 12838 */ 12839 static void 12840 merge_inode_lists(newlisthead, oldlisthead) 12841 struct allocdirectlst *newlisthead; 12842 struct allocdirectlst *oldlisthead; 12843 { 12844 struct allocdirect *listadp, *newadp; 12845 12846 newadp = TAILQ_FIRST(newlisthead); 12847 if (newadp != NULL) 12848 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12849 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12850 if (listadp->ad_offset < newadp->ad_offset) { 12851 listadp = TAILQ_NEXT(listadp, ad_next); 12852 continue; 12853 } 12854 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12855 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12856 if (listadp->ad_offset == newadp->ad_offset) { 12857 allocdirect_merge(oldlisthead, newadp, 12858 listadp); 12859 listadp = newadp; 12860 } 12861 newadp = TAILQ_FIRST(newlisthead); 12862 } 12863 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12864 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12865 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12866 } 12867 } 12868 12869 /* 12870 * If we are doing an fsync, then we must ensure that any directory 12871 * entries for the inode have been written after the inode gets to disk. 12872 */ 12873 int 12874 softdep_fsync(vp) 12875 struct vnode *vp; /* the "in_core" copy of the inode */ 12876 { 12877 struct inodedep *inodedep; 12878 struct pagedep *pagedep; 12879 struct inoref *inoref; 12880 struct ufsmount *ump; 12881 struct worklist *wk; 12882 struct diradd *dap; 12883 struct mount *mp; 12884 struct vnode *pvp; 12885 struct inode *ip; 12886 struct buf *bp; 12887 struct fs *fs; 12888 struct thread *td = curthread; 12889 int error, flushparent, pagedep_new_block; 12890 ino_t parentino; 12891 ufs_lbn_t lbn; 12892 12893 ip = VTOI(vp); 12894 mp = vp->v_mount; 12895 ump = VFSTOUFS(mp); 12896 fs = ump->um_fs; 12897 if (MOUNTEDSOFTDEP(mp) == 0) 12898 return (0); 12899 ACQUIRE_LOCK(ump); 12900 restart: 12901 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12902 FREE_LOCK(ump); 12903 return (0); 12904 } 12905 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12906 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12907 == DEPCOMPLETE) { 12908 jwait(&inoref->if_list, MNT_WAIT); 12909 goto restart; 12910 } 12911 } 12912 if (!LIST_EMPTY(&inodedep->id_inowait) || 12913 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12914 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12915 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12916 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12917 panic("softdep_fsync: pending ops %p", inodedep); 12918 for (error = 0, flushparent = 0; ; ) { 12919 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12920 break; 12921 if (wk->wk_type != D_DIRADD) 12922 panic("softdep_fsync: Unexpected type %s", 12923 TYPENAME(wk->wk_type)); 12924 dap = WK_DIRADD(wk); 12925 /* 12926 * Flush our parent if this directory entry has a MKDIR_PARENT 12927 * dependency or is contained in a newly allocated block. 12928 */ 12929 if (dap->da_state & DIRCHG) 12930 pagedep = dap->da_previous->dm_pagedep; 12931 else 12932 pagedep = dap->da_pagedep; 12933 parentino = pagedep->pd_ino; 12934 lbn = pagedep->pd_lbn; 12935 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12936 panic("softdep_fsync: dirty"); 12937 if ((dap->da_state & MKDIR_PARENT) || 12938 (pagedep->pd_state & NEWBLOCK)) 12939 flushparent = 1; 12940 else 12941 flushparent = 0; 12942 /* 12943 * If we are being fsync'ed as part of vgone'ing this vnode, 12944 * then we will not be able to release and recover the 12945 * vnode below, so we just have to give up on writing its 12946 * directory entry out. It will eventually be written, just 12947 * not now, but then the user was not asking to have it 12948 * written, so we are not breaking any promises. 12949 */ 12950 if (VN_IS_DOOMED(vp)) 12951 break; 12952 /* 12953 * We prevent deadlock by always fetching inodes from the 12954 * root, moving down the directory tree. Thus, when fetching 12955 * our parent directory, we first try to get the lock. If 12956 * that fails, we must unlock ourselves before requesting 12957 * the lock on our parent. See the comment in ufs_lookup 12958 * for details on possible races. 12959 */ 12960 FREE_LOCK(ump); 12961 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12962 &pvp); 12963 if (error == ERELOOKUP) 12964 error = 0; 12965 if (error != 0) 12966 return (error); 12967 /* 12968 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12969 * that are contained in direct blocks will be resolved by 12970 * doing a ffs_update. Pagedeps contained in indirect blocks 12971 * may require a complete sync'ing of the directory. So, we 12972 * try the cheap and fast ffs_update first, and if that fails, 12973 * then we do the slower ffs_syncvnode of the directory. 12974 */ 12975 if (flushparent) { 12976 int locked; 12977 12978 if ((error = ffs_update(pvp, 1)) != 0) { 12979 vput(pvp); 12980 return (error); 12981 } 12982 ACQUIRE_LOCK(ump); 12983 locked = 1; 12984 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12985 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12986 if (wk->wk_type != D_DIRADD) 12987 panic("softdep_fsync: Unexpected type %s", 12988 TYPENAME(wk->wk_type)); 12989 dap = WK_DIRADD(wk); 12990 if (dap->da_state & DIRCHG) 12991 pagedep = dap->da_previous->dm_pagedep; 12992 else 12993 pagedep = dap->da_pagedep; 12994 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12995 FREE_LOCK(ump); 12996 locked = 0; 12997 if (pagedep_new_block && (error = 12998 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12999 vput(pvp); 13000 return (error); 13001 } 13002 } 13003 } 13004 if (locked) 13005 FREE_LOCK(ump); 13006 } 13007 /* 13008 * Flush directory page containing the inode's name. 13009 */ 13010 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 13011 &bp); 13012 if (error == 0) 13013 error = bwrite(bp); 13014 else 13015 brelse(bp); 13016 vput(pvp); 13017 if (!ffs_fsfail_cleanup(ump, error)) 13018 return (error); 13019 ACQUIRE_LOCK(ump); 13020 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 13021 break; 13022 } 13023 FREE_LOCK(ump); 13024 return (0); 13025 } 13026 13027 /* 13028 * Flush all the dirty bitmaps associated with the block device 13029 * before flushing the rest of the dirty blocks so as to reduce 13030 * the number of dependencies that will have to be rolled back. 13031 * 13032 * XXX Unused? 13033 */ 13034 void 13035 softdep_fsync_mountdev(vp) 13036 struct vnode *vp; 13037 { 13038 struct buf *bp, *nbp; 13039 struct worklist *wk; 13040 struct bufobj *bo; 13041 13042 if (!vn_isdisk(vp)) 13043 panic("softdep_fsync_mountdev: vnode not a disk"); 13044 bo = &vp->v_bufobj; 13045 restart: 13046 BO_LOCK(bo); 13047 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 13048 /* 13049 * If it is already scheduled, skip to the next buffer. 13050 */ 13051 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13052 continue; 13053 13054 if ((bp->b_flags & B_DELWRI) == 0) 13055 panic("softdep_fsync_mountdev: not dirty"); 13056 /* 13057 * We are only interested in bitmaps with outstanding 13058 * dependencies. 13059 */ 13060 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13061 wk->wk_type != D_BMSAFEMAP || 13062 (bp->b_vflags & BV_BKGRDINPROG)) { 13063 BUF_UNLOCK(bp); 13064 continue; 13065 } 13066 BO_UNLOCK(bo); 13067 bremfree(bp); 13068 (void) bawrite(bp); 13069 goto restart; 13070 } 13071 drain_output(vp); 13072 BO_UNLOCK(bo); 13073 } 13074 13075 /* 13076 * Sync all cylinder groups that were dirty at the time this function is 13077 * called. Newly dirtied cgs will be inserted before the sentinel. This 13078 * is used to flush freedep activity that may be holding up writes to a 13079 * indirect block. 13080 */ 13081 static int 13082 sync_cgs(mp, waitfor) 13083 struct mount *mp; 13084 int waitfor; 13085 { 13086 struct bmsafemap *bmsafemap; 13087 struct bmsafemap *sentinel; 13088 struct ufsmount *ump; 13089 struct buf *bp; 13090 int error; 13091 13092 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13093 sentinel->sm_cg = -1; 13094 ump = VFSTOUFS(mp); 13095 error = 0; 13096 ACQUIRE_LOCK(ump); 13097 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13098 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13099 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13100 /* Skip sentinels and cgs with no work to release. */ 13101 if (bmsafemap->sm_cg == -1 || 13102 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13103 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13104 LIST_REMOVE(sentinel, sm_next); 13105 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13106 continue; 13107 } 13108 /* 13109 * If we don't get the lock and we're waiting try again, if 13110 * not move on to the next buf and try to sync it. 13111 */ 13112 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13113 if (bp == NULL && waitfor == MNT_WAIT) 13114 continue; 13115 LIST_REMOVE(sentinel, sm_next); 13116 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13117 if (bp == NULL) 13118 continue; 13119 FREE_LOCK(ump); 13120 if (waitfor == MNT_NOWAIT) 13121 bawrite(bp); 13122 else 13123 error = bwrite(bp); 13124 ACQUIRE_LOCK(ump); 13125 if (error) 13126 break; 13127 } 13128 LIST_REMOVE(sentinel, sm_next); 13129 FREE_LOCK(ump); 13130 free(sentinel, M_BMSAFEMAP); 13131 return (error); 13132 } 13133 13134 /* 13135 * This routine is called when we are trying to synchronously flush a 13136 * file. This routine must eliminate any filesystem metadata dependencies 13137 * so that the syncing routine can succeed. 13138 */ 13139 int 13140 softdep_sync_metadata(struct vnode *vp) 13141 { 13142 struct inode *ip; 13143 int error; 13144 13145 ip = VTOI(vp); 13146 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13147 ("softdep_sync_metadata called on non-softdep filesystem")); 13148 /* 13149 * Ensure that any direct block dependencies have been cleared, 13150 * truncations are started, and inode references are journaled. 13151 */ 13152 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13153 /* 13154 * Write all journal records to prevent rollbacks on devvp. 13155 */ 13156 if (vp->v_type == VCHR) 13157 softdep_flushjournal(vp->v_mount); 13158 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13159 /* 13160 * Ensure that all truncates are written so we won't find deps on 13161 * indirect blocks. 13162 */ 13163 process_truncates(vp); 13164 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13165 13166 return (error); 13167 } 13168 13169 /* 13170 * This routine is called when we are attempting to sync a buf with 13171 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13172 * other IO it can but returns EBUSY if the buffer is not yet able to 13173 * be written. Dependencies which will not cause rollbacks will always 13174 * return 0. 13175 */ 13176 int 13177 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13178 { 13179 struct indirdep *indirdep; 13180 struct pagedep *pagedep; 13181 struct allocindir *aip; 13182 struct newblk *newblk; 13183 struct ufsmount *ump; 13184 struct buf *nbp; 13185 struct worklist *wk; 13186 int i, error; 13187 13188 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13189 ("softdep_sync_buf called on non-softdep filesystem")); 13190 /* 13191 * For VCHR we just don't want to force flush any dependencies that 13192 * will cause rollbacks. 13193 */ 13194 if (vp->v_type == VCHR) { 13195 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13196 return (EBUSY); 13197 return (0); 13198 } 13199 ump = VFSTOUFS(vp->v_mount); 13200 ACQUIRE_LOCK(ump); 13201 /* 13202 * As we hold the buffer locked, none of its dependencies 13203 * will disappear. 13204 */ 13205 error = 0; 13206 top: 13207 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13208 switch (wk->wk_type) { 13209 case D_ALLOCDIRECT: 13210 case D_ALLOCINDIR: 13211 newblk = WK_NEWBLK(wk); 13212 if (newblk->nb_jnewblk != NULL) { 13213 if (waitfor == MNT_NOWAIT) { 13214 error = EBUSY; 13215 goto out_unlock; 13216 } 13217 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13218 goto top; 13219 } 13220 if (newblk->nb_state & DEPCOMPLETE || 13221 waitfor == MNT_NOWAIT) 13222 continue; 13223 nbp = newblk->nb_bmsafemap->sm_buf; 13224 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13225 if (nbp == NULL) 13226 goto top; 13227 FREE_LOCK(ump); 13228 if ((error = bwrite(nbp)) != 0) 13229 goto out; 13230 ACQUIRE_LOCK(ump); 13231 continue; 13232 13233 case D_INDIRDEP: 13234 indirdep = WK_INDIRDEP(wk); 13235 if (waitfor == MNT_NOWAIT) { 13236 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13237 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13238 error = EBUSY; 13239 goto out_unlock; 13240 } 13241 } 13242 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13243 panic("softdep_sync_buf: truncation pending."); 13244 restart: 13245 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13246 newblk = (struct newblk *)aip; 13247 if (newblk->nb_jnewblk != NULL) { 13248 jwait(&newblk->nb_jnewblk->jn_list, 13249 waitfor); 13250 goto restart; 13251 } 13252 if (newblk->nb_state & DEPCOMPLETE) 13253 continue; 13254 nbp = newblk->nb_bmsafemap->sm_buf; 13255 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13256 if (nbp == NULL) 13257 goto restart; 13258 FREE_LOCK(ump); 13259 if ((error = bwrite(nbp)) != 0) 13260 goto out; 13261 ACQUIRE_LOCK(ump); 13262 goto restart; 13263 } 13264 continue; 13265 13266 case D_PAGEDEP: 13267 /* 13268 * Only flush directory entries in synchronous passes. 13269 */ 13270 if (waitfor != MNT_WAIT) { 13271 error = EBUSY; 13272 goto out_unlock; 13273 } 13274 /* 13275 * While syncing snapshots, we must allow recursive 13276 * lookups. 13277 */ 13278 BUF_AREC(bp); 13279 /* 13280 * We are trying to sync a directory that may 13281 * have dependencies on both its own metadata 13282 * and/or dependencies on the inodes of any 13283 * recently allocated files. We walk its diradd 13284 * lists pushing out the associated inode. 13285 */ 13286 pagedep = WK_PAGEDEP(wk); 13287 for (i = 0; i < DAHASHSZ; i++) { 13288 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13289 continue; 13290 error = flush_pagedep_deps(vp, wk->wk_mp, 13291 &pagedep->pd_diraddhd[i], bp); 13292 if (error != 0) { 13293 if (error != ERELOOKUP) 13294 BUF_NOREC(bp); 13295 goto out_unlock; 13296 } 13297 } 13298 BUF_NOREC(bp); 13299 continue; 13300 13301 case D_FREEWORK: 13302 case D_FREEDEP: 13303 case D_JSEGDEP: 13304 case D_JNEWBLK: 13305 continue; 13306 13307 default: 13308 panic("softdep_sync_buf: Unknown type %s", 13309 TYPENAME(wk->wk_type)); 13310 /* NOTREACHED */ 13311 } 13312 } 13313 out_unlock: 13314 FREE_LOCK(ump); 13315 out: 13316 return (error); 13317 } 13318 13319 /* 13320 * Flush the dependencies associated with an inodedep. 13321 */ 13322 static int 13323 flush_inodedep_deps(vp, mp, ino) 13324 struct vnode *vp; 13325 struct mount *mp; 13326 ino_t ino; 13327 { 13328 struct inodedep *inodedep; 13329 struct inoref *inoref; 13330 struct ufsmount *ump; 13331 int error, waitfor; 13332 13333 /* 13334 * This work is done in two passes. The first pass grabs most 13335 * of the buffers and begins asynchronously writing them. The 13336 * only way to wait for these asynchronous writes is to sleep 13337 * on the filesystem vnode which may stay busy for a long time 13338 * if the filesystem is active. So, instead, we make a second 13339 * pass over the dependencies blocking on each write. In the 13340 * usual case we will be blocking against a write that we 13341 * initiated, so when it is done the dependency will have been 13342 * resolved. Thus the second pass is expected to end quickly. 13343 * We give a brief window at the top of the loop to allow 13344 * any pending I/O to complete. 13345 */ 13346 ump = VFSTOUFS(mp); 13347 LOCK_OWNED(ump); 13348 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13349 if (error) 13350 return (error); 13351 FREE_LOCK(ump); 13352 ACQUIRE_LOCK(ump); 13353 restart: 13354 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13355 return (0); 13356 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13357 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13358 == DEPCOMPLETE) { 13359 jwait(&inoref->if_list, MNT_WAIT); 13360 goto restart; 13361 } 13362 } 13363 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13364 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13365 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13366 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13367 continue; 13368 /* 13369 * If pass2, we are done, otherwise do pass 2. 13370 */ 13371 if (waitfor == MNT_WAIT) 13372 break; 13373 waitfor = MNT_WAIT; 13374 } 13375 /* 13376 * Try freeing inodedep in case all dependencies have been removed. 13377 */ 13378 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13379 (void) free_inodedep(inodedep); 13380 return (0); 13381 } 13382 13383 /* 13384 * Flush an inode dependency list. 13385 */ 13386 static int 13387 flush_deplist(listhead, waitfor, errorp) 13388 struct allocdirectlst *listhead; 13389 int waitfor; 13390 int *errorp; 13391 { 13392 struct allocdirect *adp; 13393 struct newblk *newblk; 13394 struct ufsmount *ump; 13395 struct buf *bp; 13396 13397 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13398 return (0); 13399 ump = VFSTOUFS(adp->ad_list.wk_mp); 13400 LOCK_OWNED(ump); 13401 TAILQ_FOREACH(adp, listhead, ad_next) { 13402 newblk = (struct newblk *)adp; 13403 if (newblk->nb_jnewblk != NULL) { 13404 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13405 return (1); 13406 } 13407 if (newblk->nb_state & DEPCOMPLETE) 13408 continue; 13409 bp = newblk->nb_bmsafemap->sm_buf; 13410 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13411 if (bp == NULL) { 13412 if (waitfor == MNT_NOWAIT) 13413 continue; 13414 return (1); 13415 } 13416 FREE_LOCK(ump); 13417 if (waitfor == MNT_NOWAIT) 13418 bawrite(bp); 13419 else 13420 *errorp = bwrite(bp); 13421 ACQUIRE_LOCK(ump); 13422 return (1); 13423 } 13424 return (0); 13425 } 13426 13427 /* 13428 * Flush dependencies associated with an allocdirect block. 13429 */ 13430 static int 13431 flush_newblk_dep(vp, mp, lbn) 13432 struct vnode *vp; 13433 struct mount *mp; 13434 ufs_lbn_t lbn; 13435 { 13436 struct newblk *newblk; 13437 struct ufsmount *ump; 13438 struct bufobj *bo; 13439 struct inode *ip; 13440 struct buf *bp; 13441 ufs2_daddr_t blkno; 13442 int error; 13443 13444 error = 0; 13445 bo = &vp->v_bufobj; 13446 ip = VTOI(vp); 13447 blkno = DIP(ip, i_db[lbn]); 13448 if (blkno == 0) 13449 panic("flush_newblk_dep: Missing block"); 13450 ump = VFSTOUFS(mp); 13451 ACQUIRE_LOCK(ump); 13452 /* 13453 * Loop until all dependencies related to this block are satisfied. 13454 * We must be careful to restart after each sleep in case a write 13455 * completes some part of this process for us. 13456 */ 13457 for (;;) { 13458 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13459 FREE_LOCK(ump); 13460 break; 13461 } 13462 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13463 panic("flush_newblk_dep: Bad newblk %p", newblk); 13464 /* 13465 * Flush the journal. 13466 */ 13467 if (newblk->nb_jnewblk != NULL) { 13468 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13469 continue; 13470 } 13471 /* 13472 * Write the bitmap dependency. 13473 */ 13474 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13475 bp = newblk->nb_bmsafemap->sm_buf; 13476 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13477 if (bp == NULL) 13478 continue; 13479 FREE_LOCK(ump); 13480 error = bwrite(bp); 13481 if (error) 13482 break; 13483 ACQUIRE_LOCK(ump); 13484 continue; 13485 } 13486 /* 13487 * Write the buffer. 13488 */ 13489 FREE_LOCK(ump); 13490 BO_LOCK(bo); 13491 bp = gbincore(bo, lbn); 13492 if (bp != NULL) { 13493 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13494 LK_INTERLOCK, BO_LOCKPTR(bo)); 13495 if (error == ENOLCK) { 13496 ACQUIRE_LOCK(ump); 13497 error = 0; 13498 continue; /* Slept, retry */ 13499 } 13500 if (error != 0) 13501 break; /* Failed */ 13502 if (bp->b_flags & B_DELWRI) { 13503 bremfree(bp); 13504 error = bwrite(bp); 13505 if (error) 13506 break; 13507 } else 13508 BUF_UNLOCK(bp); 13509 } else 13510 BO_UNLOCK(bo); 13511 /* 13512 * We have to wait for the direct pointers to 13513 * point at the newdirblk before the dependency 13514 * will go away. 13515 */ 13516 error = ffs_update(vp, 1); 13517 if (error) 13518 break; 13519 ACQUIRE_LOCK(ump); 13520 } 13521 return (error); 13522 } 13523 13524 /* 13525 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13526 */ 13527 static int 13528 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13529 struct vnode *pvp; 13530 struct mount *mp; 13531 struct diraddhd *diraddhdp; 13532 struct buf *locked_bp; 13533 { 13534 struct inodedep *inodedep; 13535 struct inoref *inoref; 13536 struct ufsmount *ump; 13537 struct diradd *dap; 13538 struct vnode *vp; 13539 int error = 0; 13540 struct buf *bp; 13541 ino_t inum; 13542 struct diraddhd unfinished; 13543 13544 LIST_INIT(&unfinished); 13545 ump = VFSTOUFS(mp); 13546 LOCK_OWNED(ump); 13547 restart: 13548 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13549 /* 13550 * Flush ourselves if this directory entry 13551 * has a MKDIR_PARENT dependency. 13552 */ 13553 if (dap->da_state & MKDIR_PARENT) { 13554 FREE_LOCK(ump); 13555 if ((error = ffs_update(pvp, 1)) != 0) 13556 break; 13557 ACQUIRE_LOCK(ump); 13558 /* 13559 * If that cleared dependencies, go on to next. 13560 */ 13561 if (dap != LIST_FIRST(diraddhdp)) 13562 continue; 13563 /* 13564 * All MKDIR_PARENT dependencies and all the 13565 * NEWBLOCK pagedeps that are contained in direct 13566 * blocks were resolved by doing above ffs_update. 13567 * Pagedeps contained in indirect blocks may 13568 * require a complete sync'ing of the directory. 13569 * We are in the midst of doing a complete sync, 13570 * so if they are not resolved in this pass we 13571 * defer them for now as they will be sync'ed by 13572 * our caller shortly. 13573 */ 13574 LIST_REMOVE(dap, da_pdlist); 13575 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13576 continue; 13577 } 13578 /* 13579 * A newly allocated directory must have its "." and 13580 * ".." entries written out before its name can be 13581 * committed in its parent. 13582 */ 13583 inum = dap->da_newinum; 13584 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13585 panic("flush_pagedep_deps: lost inode1"); 13586 /* 13587 * Wait for any pending journal adds to complete so we don't 13588 * cause rollbacks while syncing. 13589 */ 13590 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13591 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13592 == DEPCOMPLETE) { 13593 jwait(&inoref->if_list, MNT_WAIT); 13594 goto restart; 13595 } 13596 } 13597 if (dap->da_state & MKDIR_BODY) { 13598 FREE_LOCK(ump); 13599 error = get_parent_vp(pvp, mp, inum, locked_bp, 13600 diraddhdp, &unfinished, &vp); 13601 if (error != 0) 13602 break; 13603 error = flush_newblk_dep(vp, mp, 0); 13604 /* 13605 * If we still have the dependency we might need to 13606 * update the vnode to sync the new link count to 13607 * disk. 13608 */ 13609 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13610 error = ffs_update(vp, 1); 13611 vput(vp); 13612 if (error != 0) 13613 break; 13614 ACQUIRE_LOCK(ump); 13615 /* 13616 * If that cleared dependencies, go on to next. 13617 */ 13618 if (dap != LIST_FIRST(diraddhdp)) 13619 continue; 13620 if (dap->da_state & MKDIR_BODY) { 13621 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13622 &inodedep); 13623 panic("flush_pagedep_deps: MKDIR_BODY " 13624 "inodedep %p dap %p vp %p", 13625 inodedep, dap, vp); 13626 } 13627 } 13628 /* 13629 * Flush the inode on which the directory entry depends. 13630 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13631 * the only remaining dependency is that the updated inode 13632 * count must get pushed to disk. The inode has already 13633 * been pushed into its inode buffer (via VOP_UPDATE) at 13634 * the time of the reference count change. So we need only 13635 * locate that buffer, ensure that there will be no rollback 13636 * caused by a bitmap dependency, then write the inode buffer. 13637 */ 13638 retry: 13639 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13640 panic("flush_pagedep_deps: lost inode"); 13641 /* 13642 * If the inode still has bitmap dependencies, 13643 * push them to disk. 13644 */ 13645 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13646 bp = inodedep->id_bmsafemap->sm_buf; 13647 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13648 if (bp == NULL) 13649 goto retry; 13650 FREE_LOCK(ump); 13651 if ((error = bwrite(bp)) != 0) 13652 break; 13653 ACQUIRE_LOCK(ump); 13654 if (dap != LIST_FIRST(diraddhdp)) 13655 continue; 13656 } 13657 /* 13658 * If the inode is still sitting in a buffer waiting 13659 * to be written or waiting for the link count to be 13660 * adjusted update it here to flush it to disk. 13661 */ 13662 if (dap == LIST_FIRST(diraddhdp)) { 13663 FREE_LOCK(ump); 13664 error = get_parent_vp(pvp, mp, inum, locked_bp, 13665 diraddhdp, &unfinished, &vp); 13666 if (error != 0) 13667 break; 13668 error = ffs_update(vp, 1); 13669 vput(vp); 13670 if (error) 13671 break; 13672 ACQUIRE_LOCK(ump); 13673 } 13674 /* 13675 * If we have failed to get rid of all the dependencies 13676 * then something is seriously wrong. 13677 */ 13678 if (dap == LIST_FIRST(diraddhdp)) { 13679 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13680 panic("flush_pagedep_deps: failed to flush " 13681 "inodedep %p ino %ju dap %p", 13682 inodedep, (uintmax_t)inum, dap); 13683 } 13684 } 13685 if (error) 13686 ACQUIRE_LOCK(ump); 13687 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13688 LIST_REMOVE(dap, da_pdlist); 13689 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13690 } 13691 return (error); 13692 } 13693 13694 /* 13695 * A large burst of file addition or deletion activity can drive the 13696 * memory load excessively high. First attempt to slow things down 13697 * using the techniques below. If that fails, this routine requests 13698 * the offending operations to fall back to running synchronously 13699 * until the memory load returns to a reasonable level. 13700 */ 13701 int 13702 softdep_slowdown(vp) 13703 struct vnode *vp; 13704 { 13705 struct ufsmount *ump; 13706 int jlow; 13707 int max_softdeps_hard; 13708 13709 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13710 ("softdep_slowdown called on non-softdep filesystem")); 13711 ump = VFSTOUFS(vp->v_mount); 13712 ACQUIRE_LOCK(ump); 13713 jlow = 0; 13714 /* 13715 * Check for journal space if needed. 13716 */ 13717 if (DOINGSUJ(vp)) { 13718 if (journal_space(ump, 0) == 0) 13719 jlow = 1; 13720 } 13721 /* 13722 * If the system is under its limits and our filesystem is 13723 * not responsible for more than our share of the usage and 13724 * we are not low on journal space, then no need to slow down. 13725 */ 13726 max_softdeps_hard = max_softdeps * 11 / 10; 13727 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13728 dep_current[D_INODEDEP] < max_softdeps_hard && 13729 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13730 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13731 ump->softdep_curdeps[D_DIRREM] < 13732 (max_softdeps_hard / 2) / stat_flush_threads && 13733 ump->softdep_curdeps[D_INODEDEP] < 13734 max_softdeps_hard / stat_flush_threads && 13735 ump->softdep_curdeps[D_INDIRDEP] < 13736 (max_softdeps_hard / 1000) / stat_flush_threads && 13737 ump->softdep_curdeps[D_FREEBLKS] < 13738 max_softdeps_hard / stat_flush_threads) { 13739 FREE_LOCK(ump); 13740 return (0); 13741 } 13742 /* 13743 * If the journal is low or our filesystem is over its limit 13744 * then speedup the cleanup. 13745 */ 13746 if (ump->softdep_curdeps[D_INDIRDEP] < 13747 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13748 softdep_speedup(ump); 13749 stat_sync_limit_hit += 1; 13750 FREE_LOCK(ump); 13751 /* 13752 * We only slow down the rate at which new dependencies are 13753 * generated if we are not using journaling. With journaling, 13754 * the cleanup should always be sufficient to keep things 13755 * under control. 13756 */ 13757 if (DOINGSUJ(vp)) 13758 return (0); 13759 return (1); 13760 } 13761 13762 static int 13763 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) 13764 { 13765 return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && 13766 ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); 13767 } 13768 13769 static void 13770 softdep_request_cleanup_inactivate(struct mount *mp) 13771 { 13772 struct vnode *vp, *mvp; 13773 int error; 13774 13775 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, 13776 NULL) { 13777 vholdl(vp); 13778 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 13779 VI_LOCK(vp); 13780 if (vp->v_data != NULL && vp->v_usecount == 0) { 13781 while ((vp->v_iflag & VI_OWEINACT) != 0) { 13782 error = vinactive(vp); 13783 if (error != 0 && error != ERELOOKUP) 13784 break; 13785 } 13786 atomic_add_int(&stat_delayed_inact, 1); 13787 } 13788 VOP_UNLOCK(vp); 13789 vdropl(vp); 13790 } 13791 } 13792 13793 /* 13794 * Called by the allocation routines when they are about to fail 13795 * in the hope that we can free up the requested resource (inodes 13796 * or disk space). 13797 * 13798 * First check to see if the work list has anything on it. If it has, 13799 * clean up entries until we successfully free the requested resource. 13800 * Because this process holds inodes locked, we cannot handle any remove 13801 * requests that might block on a locked inode as that could lead to 13802 * deadlock. If the worklist yields none of the requested resource, 13803 * start syncing out vnodes to free up the needed space. 13804 */ 13805 int 13806 softdep_request_cleanup(fs, vp, cred, resource) 13807 struct fs *fs; 13808 struct vnode *vp; 13809 struct ucred *cred; 13810 int resource; 13811 { 13812 struct ufsmount *ump; 13813 struct mount *mp; 13814 long starttime; 13815 ufs2_daddr_t needed; 13816 int error, failed_vnode; 13817 13818 /* 13819 * If we are being called because of a process doing a 13820 * copy-on-write, then it is not safe to process any 13821 * worklist items as we will recurse into the copyonwrite 13822 * routine. This will result in an incoherent snapshot. 13823 * If the vnode that we hold is a snapshot, we must avoid 13824 * handling other resources that could cause deadlock. 13825 */ 13826 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13827 return (0); 13828 13829 if (resource == FLUSH_BLOCKS_WAIT) 13830 stat_cleanup_blkrequests += 1; 13831 else 13832 stat_cleanup_inorequests += 1; 13833 13834 mp = vp->v_mount; 13835 ump = VFSTOUFS(mp); 13836 mtx_assert(UFS_MTX(ump), MA_OWNED); 13837 UFS_UNLOCK(ump); 13838 error = ffs_update(vp, 1); 13839 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13840 UFS_LOCK(ump); 13841 return (0); 13842 } 13843 /* 13844 * If we are in need of resources, start by cleaning up 13845 * any block removals associated with our inode. 13846 */ 13847 ACQUIRE_LOCK(ump); 13848 process_removes(vp); 13849 process_truncates(vp); 13850 FREE_LOCK(ump); 13851 /* 13852 * Now clean up at least as many resources as we will need. 13853 * 13854 * When requested to clean up inodes, the number that are needed 13855 * is set by the number of simultaneous writers (mnt_writeopcount) 13856 * plus a bit of slop (2) in case some more writers show up while 13857 * we are cleaning. 13858 * 13859 * When requested to free up space, the amount of space that 13860 * we need is enough blocks to allocate a full-sized segment 13861 * (fs_contigsumsize). The number of such segments that will 13862 * be needed is set by the number of simultaneous writers 13863 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13864 * writers show up while we are cleaning. 13865 * 13866 * Additionally, if we are unpriviledged and allocating space, 13867 * we need to ensure that we clean up enough blocks to get the 13868 * needed number of blocks over the threshold of the minimum 13869 * number of blocks required to be kept free by the filesystem 13870 * (fs_minfree). 13871 */ 13872 if (resource == FLUSH_INODES_WAIT) { 13873 needed = vfs_mount_fetch_counter(vp->v_mount, 13874 MNT_COUNT_WRITEOPCOUNT) + 2; 13875 } else if (resource == FLUSH_BLOCKS_WAIT) { 13876 needed = (vfs_mount_fetch_counter(vp->v_mount, 13877 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13878 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13879 needed += fragstoblks(fs, 13880 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13881 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13882 } else { 13883 printf("softdep_request_cleanup: Unknown resource type %d\n", 13884 resource); 13885 UFS_LOCK(ump); 13886 return (0); 13887 } 13888 starttime = time_second; 13889 retry: 13890 if (resource == FLUSH_BLOCKS_WAIT && 13891 fs->fs_cstotal.cs_nbfree <= needed) 13892 softdep_send_speedup(ump, needed * fs->fs_bsize, 13893 BIO_SPEEDUP_TRIM); 13894 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13895 fs->fs_cstotal.cs_nbfree <= needed) || 13896 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13897 fs->fs_cstotal.cs_nifree <= needed)) { 13898 ACQUIRE_LOCK(ump); 13899 if (ump->softdep_on_worklist > 0 && 13900 process_worklist_item(UFSTOVFS(ump), 13901 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13902 stat_worklist_push += 1; 13903 FREE_LOCK(ump); 13904 } 13905 13906 /* 13907 * Check that there are vnodes pending inactivation. As they 13908 * have been unlinked, inactivating them will free up their 13909 * inodes. 13910 */ 13911 ACQUIRE_LOCK(ump); 13912 if (resource == FLUSH_INODES_WAIT && 13913 fs->fs_cstotal.cs_nifree <= needed && 13914 fs->fs_pendinginodes <= needed) { 13915 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { 13916 ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; 13917 FREE_LOCK(ump); 13918 softdep_request_cleanup_inactivate(mp); 13919 ACQUIRE_LOCK(ump); 13920 ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; 13921 wakeup(&ump->um_softdep->sd_flags); 13922 } else { 13923 while ((ump->um_softdep->sd_flags & 13924 FLUSH_DI_ACTIVE) != 0) { 13925 msleep(&ump->um_softdep->sd_flags, 13926 LOCK_PTR(ump), PVM, "ffsvina", hz); 13927 } 13928 } 13929 } 13930 FREE_LOCK(ump); 13931 13932 /* 13933 * If we still need resources and there are no more worklist 13934 * entries to process to obtain them, we have to start flushing 13935 * the dirty vnodes to force the release of additional requests 13936 * to the worklist that we can then process to reap addition 13937 * resources. We walk the vnodes associated with the mount point 13938 * until we get the needed worklist requests that we can reap. 13939 * 13940 * If there are several threads all needing to clean the same 13941 * mount point, only one is allowed to walk the mount list. 13942 * When several threads all try to walk the same mount list, 13943 * they end up competing with each other and often end up in 13944 * livelock. This approach ensures that forward progress is 13945 * made at the cost of occational ENOSPC errors being returned 13946 * that might otherwise have been avoided. 13947 */ 13948 error = 1; 13949 if ((resource == FLUSH_BLOCKS_WAIT && 13950 fs->fs_cstotal.cs_nbfree <= needed) || 13951 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13952 fs->fs_cstotal.cs_nifree <= needed)) { 13953 ACQUIRE_LOCK(ump); 13954 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13955 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13956 FREE_LOCK(ump); 13957 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13958 ACQUIRE_LOCK(ump); 13959 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13960 wakeup(&ump->um_softdep->sd_flags); 13961 FREE_LOCK(ump); 13962 if (ump->softdep_on_worklist > 0) { 13963 stat_cleanup_retries += 1; 13964 if (!failed_vnode) 13965 goto retry; 13966 } 13967 } else { 13968 while ((ump->um_softdep->sd_flags & 13969 FLUSH_RC_ACTIVE) != 0) { 13970 msleep(&ump->um_softdep->sd_flags, 13971 LOCK_PTR(ump), PVM, "ffsrca", hz); 13972 } 13973 FREE_LOCK(ump); 13974 error = 0; 13975 } 13976 stat_cleanup_failures += 1; 13977 } 13978 if (time_second - starttime > stat_cleanup_high_delay) 13979 stat_cleanup_high_delay = time_second - starttime; 13980 UFS_LOCK(ump); 13981 return (error); 13982 } 13983 13984 /* 13985 * Scan the vnodes for the specified mount point flushing out any 13986 * vnodes that can be locked without waiting. Finally, try to flush 13987 * the device associated with the mount point if it can be locked 13988 * without waiting. 13989 * 13990 * We return 0 if we were able to lock every vnode in our scan. 13991 * If we had to skip one or more vnodes, we return 1. 13992 */ 13993 static int 13994 softdep_request_cleanup_flush(mp, ump) 13995 struct mount *mp; 13996 struct ufsmount *ump; 13997 { 13998 struct thread *td; 13999 struct vnode *lvp, *mvp; 14000 int failed_vnode; 14001 14002 failed_vnode = 0; 14003 td = curthread; 14004 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 14005 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 14006 VI_UNLOCK(lvp); 14007 continue; 14008 } 14009 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 14010 failed_vnode = 1; 14011 continue; 14012 } 14013 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 14014 vput(lvp); 14015 continue; 14016 } 14017 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 14018 vput(lvp); 14019 } 14020 lvp = ump->um_devvp; 14021 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 14022 VOP_FSYNC(lvp, MNT_NOWAIT, td); 14023 VOP_UNLOCK(lvp); 14024 } 14025 return (failed_vnode); 14026 } 14027 14028 static bool 14029 softdep_excess_items(struct ufsmount *ump, int item) 14030 { 14031 14032 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 14033 return (dep_current[item] > max_softdeps && 14034 ump->softdep_curdeps[item] > max_softdeps / 14035 stat_flush_threads); 14036 } 14037 14038 static void 14039 schedule_cleanup(struct mount *mp) 14040 { 14041 struct ufsmount *ump; 14042 struct thread *td; 14043 14044 ump = VFSTOUFS(mp); 14045 LOCK_OWNED(ump); 14046 FREE_LOCK(ump); 14047 td = curthread; 14048 if ((td->td_pflags & TDP_KTHREAD) != 0 && 14049 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 14050 /* 14051 * No ast is delivered to kernel threads, so nobody 14052 * would deref the mp. Some kernel threads 14053 * explicitely check for AST, e.g. NFS daemon does 14054 * this in the serving loop. 14055 */ 14056 return; 14057 } 14058 if (td->td_su != NULL) 14059 vfs_rel(td->td_su); 14060 vfs_ref(mp); 14061 td->td_su = mp; 14062 thread_lock(td); 14063 td->td_flags |= TDF_ASTPENDING; 14064 thread_unlock(td); 14065 } 14066 14067 static void 14068 softdep_ast_cleanup_proc(struct thread *td) 14069 { 14070 struct mount *mp; 14071 struct ufsmount *ump; 14072 int error; 14073 bool req; 14074 14075 while ((mp = td->td_su) != NULL) { 14076 td->td_su = NULL; 14077 error = vfs_busy(mp, MBF_NOWAIT); 14078 vfs_rel(mp); 14079 if (error != 0) 14080 return; 14081 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 14082 ump = VFSTOUFS(mp); 14083 for (;;) { 14084 req = false; 14085 ACQUIRE_LOCK(ump); 14086 if (softdep_excess_items(ump, D_INODEDEP)) { 14087 req = true; 14088 request_cleanup(mp, FLUSH_INODES); 14089 } 14090 if (softdep_excess_items(ump, D_DIRREM)) { 14091 req = true; 14092 request_cleanup(mp, FLUSH_BLOCKS); 14093 } 14094 FREE_LOCK(ump); 14095 if (softdep_excess_items(ump, D_NEWBLK) || 14096 softdep_excess_items(ump, D_ALLOCDIRECT) || 14097 softdep_excess_items(ump, D_ALLOCINDIR)) { 14098 error = vn_start_write(NULL, &mp, 14099 V_WAIT); 14100 if (error == 0) { 14101 req = true; 14102 VFS_SYNC(mp, MNT_WAIT); 14103 vn_finished_write(mp); 14104 } 14105 } 14106 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14107 break; 14108 } 14109 } 14110 vfs_unbusy(mp); 14111 } 14112 if ((mp = td->td_su) != NULL) { 14113 td->td_su = NULL; 14114 vfs_rel(mp); 14115 } 14116 } 14117 14118 /* 14119 * If memory utilization has gotten too high, deliberately slow things 14120 * down and speed up the I/O processing. 14121 */ 14122 static int 14123 request_cleanup(mp, resource) 14124 struct mount *mp; 14125 int resource; 14126 { 14127 struct thread *td = curthread; 14128 struct ufsmount *ump; 14129 14130 ump = VFSTOUFS(mp); 14131 LOCK_OWNED(ump); 14132 /* 14133 * We never hold up the filesystem syncer or buf daemon. 14134 */ 14135 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14136 return (0); 14137 /* 14138 * First check to see if the work list has gotten backlogged. 14139 * If it has, co-opt this process to help clean up two entries. 14140 * Because this process may hold inodes locked, we cannot 14141 * handle any remove requests that might block on a locked 14142 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14143 * to avoid recursively processing the worklist. 14144 */ 14145 if (ump->softdep_on_worklist > max_softdeps / 10) { 14146 td->td_pflags |= TDP_SOFTDEP; 14147 process_worklist_item(mp, 2, LK_NOWAIT); 14148 td->td_pflags &= ~TDP_SOFTDEP; 14149 stat_worklist_push += 2; 14150 return(1); 14151 } 14152 /* 14153 * Next, we attempt to speed up the syncer process. If that 14154 * is successful, then we allow the process to continue. 14155 */ 14156 if (softdep_speedup(ump) && 14157 resource != FLUSH_BLOCKS_WAIT && 14158 resource != FLUSH_INODES_WAIT) 14159 return(0); 14160 /* 14161 * If we are resource constrained on inode dependencies, try 14162 * flushing some dirty inodes. Otherwise, we are constrained 14163 * by file deletions, so try accelerating flushes of directories 14164 * with removal dependencies. We would like to do the cleanup 14165 * here, but we probably hold an inode locked at this point and 14166 * that might deadlock against one that we try to clean. So, 14167 * the best that we can do is request the syncer daemon to do 14168 * the cleanup for us. 14169 */ 14170 switch (resource) { 14171 case FLUSH_INODES: 14172 case FLUSH_INODES_WAIT: 14173 ACQUIRE_GBLLOCK(&lk); 14174 stat_ino_limit_push += 1; 14175 req_clear_inodedeps += 1; 14176 FREE_GBLLOCK(&lk); 14177 stat_countp = &stat_ino_limit_hit; 14178 break; 14179 14180 case FLUSH_BLOCKS: 14181 case FLUSH_BLOCKS_WAIT: 14182 ACQUIRE_GBLLOCK(&lk); 14183 stat_blk_limit_push += 1; 14184 req_clear_remove += 1; 14185 FREE_GBLLOCK(&lk); 14186 stat_countp = &stat_blk_limit_hit; 14187 break; 14188 14189 default: 14190 panic("request_cleanup: unknown type"); 14191 } 14192 /* 14193 * Hopefully the syncer daemon will catch up and awaken us. 14194 * We wait at most tickdelay before proceeding in any case. 14195 */ 14196 ACQUIRE_GBLLOCK(&lk); 14197 FREE_LOCK(ump); 14198 proc_waiting += 1; 14199 if (callout_pending(&softdep_callout) == FALSE) 14200 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14201 pause_timer, 0); 14202 14203 if ((td->td_pflags & TDP_KTHREAD) == 0) 14204 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14205 proc_waiting -= 1; 14206 FREE_GBLLOCK(&lk); 14207 ACQUIRE_LOCK(ump); 14208 return (1); 14209 } 14210 14211 /* 14212 * Awaken processes pausing in request_cleanup and clear proc_waiting 14213 * to indicate that there is no longer a timer running. Pause_timer 14214 * will be called with the global softdep mutex (&lk) locked. 14215 */ 14216 static void 14217 pause_timer(arg) 14218 void *arg; 14219 { 14220 14221 GBLLOCK_OWNED(&lk); 14222 /* 14223 * The callout_ API has acquired mtx and will hold it around this 14224 * function call. 14225 */ 14226 *stat_countp += proc_waiting; 14227 wakeup(&proc_waiting); 14228 } 14229 14230 /* 14231 * If requested, try removing inode or removal dependencies. 14232 */ 14233 static void 14234 check_clear_deps(mp) 14235 struct mount *mp; 14236 { 14237 struct ufsmount *ump; 14238 bool suj_susp; 14239 14240 /* 14241 * Tell the lower layers that any TRIM or WRITE transactions that have 14242 * been delayed for performance reasons should proceed to help alleviate 14243 * the shortage faster. The race between checking req_* and the softdep 14244 * mutex (lk) is fine since this is an advisory operation that at most 14245 * causes deferred work to be done sooner. 14246 */ 14247 ump = VFSTOUFS(mp); 14248 suj_susp = ump->um_softdep->sd_jblocks != NULL && 14249 ump->softdep_jblocks->jb_suspended; 14250 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14251 FREE_LOCK(ump); 14252 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14253 ACQUIRE_LOCK(ump); 14254 } 14255 14256 /* 14257 * If we are suspended, it may be because of our using 14258 * too many inodedeps, so help clear them out. 14259 */ 14260 if (suj_susp) 14261 clear_inodedeps(mp); 14262 14263 /* 14264 * General requests for cleanup of backed up dependencies 14265 */ 14266 ACQUIRE_GBLLOCK(&lk); 14267 if (req_clear_inodedeps) { 14268 req_clear_inodedeps -= 1; 14269 FREE_GBLLOCK(&lk); 14270 clear_inodedeps(mp); 14271 ACQUIRE_GBLLOCK(&lk); 14272 wakeup(&proc_waiting); 14273 } 14274 if (req_clear_remove) { 14275 req_clear_remove -= 1; 14276 FREE_GBLLOCK(&lk); 14277 clear_remove(mp); 14278 ACQUIRE_GBLLOCK(&lk); 14279 wakeup(&proc_waiting); 14280 } 14281 FREE_GBLLOCK(&lk); 14282 } 14283 14284 /* 14285 * Flush out a directory with at least one removal dependency in an effort to 14286 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14287 */ 14288 static void 14289 clear_remove(mp) 14290 struct mount *mp; 14291 { 14292 struct pagedep_hashhead *pagedephd; 14293 struct pagedep *pagedep; 14294 struct ufsmount *ump; 14295 struct vnode *vp; 14296 struct bufobj *bo; 14297 int error, cnt; 14298 ino_t ino; 14299 14300 ump = VFSTOUFS(mp); 14301 LOCK_OWNED(ump); 14302 14303 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14304 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14305 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14306 ump->pagedep_nextclean = 0; 14307 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14308 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14309 continue; 14310 ino = pagedep->pd_ino; 14311 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14312 continue; 14313 FREE_LOCK(ump); 14314 14315 /* 14316 * Let unmount clear deps 14317 */ 14318 error = vfs_busy(mp, MBF_NOWAIT); 14319 if (error != 0) 14320 goto finish_write; 14321 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14322 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 14323 vfs_unbusy(mp); 14324 if (error != 0) { 14325 softdep_error("clear_remove: vget", error); 14326 goto finish_write; 14327 } 14328 MPASS(VTOI(vp)->i_mode != 0); 14329 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14330 softdep_error("clear_remove: fsync", error); 14331 bo = &vp->v_bufobj; 14332 BO_LOCK(bo); 14333 drain_output(vp); 14334 BO_UNLOCK(bo); 14335 vput(vp); 14336 finish_write: 14337 vn_finished_write(mp); 14338 ACQUIRE_LOCK(ump); 14339 return; 14340 } 14341 } 14342 } 14343 14344 /* 14345 * Clear out a block of dirty inodes in an effort to reduce 14346 * the number of inodedep dependency structures. 14347 */ 14348 static void 14349 clear_inodedeps(mp) 14350 struct mount *mp; 14351 { 14352 struct inodedep_hashhead *inodedephd; 14353 struct inodedep *inodedep; 14354 struct ufsmount *ump; 14355 struct vnode *vp; 14356 struct fs *fs; 14357 int error, cnt; 14358 ino_t firstino, lastino, ino; 14359 14360 ump = VFSTOUFS(mp); 14361 fs = ump->um_fs; 14362 LOCK_OWNED(ump); 14363 /* 14364 * Pick a random inode dependency to be cleared. 14365 * We will then gather up all the inodes in its block 14366 * that have dependencies and flush them out. 14367 */ 14368 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14369 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14370 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14371 ump->inodedep_nextclean = 0; 14372 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14373 break; 14374 } 14375 if (inodedep == NULL) 14376 return; 14377 /* 14378 * Find the last inode in the block with dependencies. 14379 */ 14380 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14381 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14382 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14383 break; 14384 /* 14385 * Asynchronously push all but the last inode with dependencies. 14386 * Synchronously push the last inode with dependencies to ensure 14387 * that the inode block gets written to free up the inodedeps. 14388 */ 14389 for (ino = firstino; ino <= lastino; ino++) { 14390 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14391 continue; 14392 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14393 continue; 14394 FREE_LOCK(ump); 14395 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14396 if (error != 0) { 14397 vn_finished_write(mp); 14398 ACQUIRE_LOCK(ump); 14399 return; 14400 } 14401 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14402 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) { 14403 softdep_error("clear_inodedeps: vget", error); 14404 vfs_unbusy(mp); 14405 vn_finished_write(mp); 14406 ACQUIRE_LOCK(ump); 14407 return; 14408 } 14409 vfs_unbusy(mp); 14410 if (VTOI(vp)->i_mode == 0) { 14411 vgone(vp); 14412 } else if (ino == lastino) { 14413 do { 14414 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14415 } while (error == ERELOOKUP); 14416 if (error != 0) 14417 softdep_error("clear_inodedeps: fsync1", error); 14418 } else { 14419 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14420 softdep_error("clear_inodedeps: fsync2", error); 14421 BO_LOCK(&vp->v_bufobj); 14422 drain_output(vp); 14423 BO_UNLOCK(&vp->v_bufobj); 14424 } 14425 vput(vp); 14426 vn_finished_write(mp); 14427 ACQUIRE_LOCK(ump); 14428 } 14429 } 14430 14431 void 14432 softdep_buf_append(bp, wkhd) 14433 struct buf *bp; 14434 struct workhead *wkhd; 14435 { 14436 struct worklist *wk; 14437 struct ufsmount *ump; 14438 14439 if ((wk = LIST_FIRST(wkhd)) == NULL) 14440 return; 14441 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14442 ("softdep_buf_append called on non-softdep filesystem")); 14443 ump = VFSTOUFS(wk->wk_mp); 14444 ACQUIRE_LOCK(ump); 14445 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14446 WORKLIST_REMOVE(wk); 14447 WORKLIST_INSERT(&bp->b_dep, wk); 14448 } 14449 FREE_LOCK(ump); 14450 14451 } 14452 14453 void 14454 softdep_inode_append(ip, cred, wkhd) 14455 struct inode *ip; 14456 struct ucred *cred; 14457 struct workhead *wkhd; 14458 { 14459 struct buf *bp; 14460 struct fs *fs; 14461 struct ufsmount *ump; 14462 int error; 14463 14464 ump = ITOUMP(ip); 14465 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14466 ("softdep_inode_append called on non-softdep filesystem")); 14467 fs = ump->um_fs; 14468 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14469 (int)fs->fs_bsize, cred, &bp); 14470 if (error) { 14471 bqrelse(bp); 14472 softdep_freework(wkhd); 14473 return; 14474 } 14475 softdep_buf_append(bp, wkhd); 14476 bqrelse(bp); 14477 } 14478 14479 void 14480 softdep_freework(wkhd) 14481 struct workhead *wkhd; 14482 { 14483 struct worklist *wk; 14484 struct ufsmount *ump; 14485 14486 if ((wk = LIST_FIRST(wkhd)) == NULL) 14487 return; 14488 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14489 ("softdep_freework called on non-softdep filesystem")); 14490 ump = VFSTOUFS(wk->wk_mp); 14491 ACQUIRE_LOCK(ump); 14492 handle_jwork(wkhd); 14493 FREE_LOCK(ump); 14494 } 14495 14496 static struct ufsmount * 14497 softdep_bp_to_mp(bp) 14498 struct buf *bp; 14499 { 14500 struct mount *mp; 14501 struct vnode *vp; 14502 14503 if (LIST_EMPTY(&bp->b_dep)) 14504 return (NULL); 14505 vp = bp->b_vp; 14506 KASSERT(vp != NULL, 14507 ("%s, buffer with dependencies lacks vnode", __func__)); 14508 14509 /* 14510 * The ump mount point is stable after we get a correct 14511 * pointer, since bp is locked and this prevents unmount from 14512 * proceeding. But to get to it, we cannot dereference bp->b_dep 14513 * head wk_mp, because we do not yet own SU ump lock and 14514 * workitem might be freed while dereferenced. 14515 */ 14516 retry: 14517 switch (vp->v_type) { 14518 case VCHR: 14519 VI_LOCK(vp); 14520 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14521 VI_UNLOCK(vp); 14522 if (mp == NULL) 14523 goto retry; 14524 break; 14525 case VREG: 14526 case VDIR: 14527 case VLNK: 14528 case VFIFO: 14529 case VSOCK: 14530 mp = vp->v_mount; 14531 break; 14532 case VBLK: 14533 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14534 /* FALLTHROUGH */ 14535 case VNON: 14536 case VBAD: 14537 case VMARKER: 14538 mp = NULL; 14539 break; 14540 default: 14541 vn_printf(vp, "unknown vnode type"); 14542 mp = NULL; 14543 break; 14544 } 14545 return (VFSTOUFS(mp)); 14546 } 14547 14548 /* 14549 * Function to determine if the buffer has outstanding dependencies 14550 * that will cause a roll-back if the buffer is written. If wantcount 14551 * is set, return number of dependencies, otherwise just yes or no. 14552 */ 14553 static int 14554 softdep_count_dependencies(bp, wantcount) 14555 struct buf *bp; 14556 int wantcount; 14557 { 14558 struct worklist *wk; 14559 struct ufsmount *ump; 14560 struct bmsafemap *bmsafemap; 14561 struct freework *freework; 14562 struct inodedep *inodedep; 14563 struct indirdep *indirdep; 14564 struct freeblks *freeblks; 14565 struct allocindir *aip; 14566 struct pagedep *pagedep; 14567 struct dirrem *dirrem; 14568 struct newblk *newblk; 14569 struct mkdir *mkdir; 14570 struct diradd *dap; 14571 int i, retval; 14572 14573 ump = softdep_bp_to_mp(bp); 14574 if (ump == NULL) 14575 return (0); 14576 retval = 0; 14577 ACQUIRE_LOCK(ump); 14578 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14579 switch (wk->wk_type) { 14580 case D_INODEDEP: 14581 inodedep = WK_INODEDEP(wk); 14582 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14583 /* bitmap allocation dependency */ 14584 retval += 1; 14585 if (!wantcount) 14586 goto out; 14587 } 14588 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14589 /* direct block pointer dependency */ 14590 retval += 1; 14591 if (!wantcount) 14592 goto out; 14593 } 14594 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14595 /* direct block pointer dependency */ 14596 retval += 1; 14597 if (!wantcount) 14598 goto out; 14599 } 14600 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14601 /* Add reference dependency. */ 14602 retval += 1; 14603 if (!wantcount) 14604 goto out; 14605 } 14606 continue; 14607 14608 case D_INDIRDEP: 14609 indirdep = WK_INDIRDEP(wk); 14610 14611 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14612 /* indirect truncation dependency */ 14613 retval += 1; 14614 if (!wantcount) 14615 goto out; 14616 } 14617 14618 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14619 /* indirect block pointer dependency */ 14620 retval += 1; 14621 if (!wantcount) 14622 goto out; 14623 } 14624 continue; 14625 14626 case D_PAGEDEP: 14627 pagedep = WK_PAGEDEP(wk); 14628 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14629 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14630 /* Journal remove ref dependency. */ 14631 retval += 1; 14632 if (!wantcount) 14633 goto out; 14634 } 14635 } 14636 for (i = 0; i < DAHASHSZ; i++) { 14637 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14638 /* directory entry dependency */ 14639 retval += 1; 14640 if (!wantcount) 14641 goto out; 14642 } 14643 } 14644 continue; 14645 14646 case D_BMSAFEMAP: 14647 bmsafemap = WK_BMSAFEMAP(wk); 14648 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14649 /* Add reference dependency. */ 14650 retval += 1; 14651 if (!wantcount) 14652 goto out; 14653 } 14654 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14655 /* Allocate block dependency. */ 14656 retval += 1; 14657 if (!wantcount) 14658 goto out; 14659 } 14660 continue; 14661 14662 case D_FREEBLKS: 14663 freeblks = WK_FREEBLKS(wk); 14664 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14665 /* Freeblk journal dependency. */ 14666 retval += 1; 14667 if (!wantcount) 14668 goto out; 14669 } 14670 continue; 14671 14672 case D_ALLOCDIRECT: 14673 case D_ALLOCINDIR: 14674 newblk = WK_NEWBLK(wk); 14675 if (newblk->nb_jnewblk) { 14676 /* Journal allocate dependency. */ 14677 retval += 1; 14678 if (!wantcount) 14679 goto out; 14680 } 14681 continue; 14682 14683 case D_MKDIR: 14684 mkdir = WK_MKDIR(wk); 14685 if (mkdir->md_jaddref) { 14686 /* Journal reference dependency. */ 14687 retval += 1; 14688 if (!wantcount) 14689 goto out; 14690 } 14691 continue; 14692 14693 case D_FREEWORK: 14694 case D_FREEDEP: 14695 case D_JSEGDEP: 14696 case D_JSEG: 14697 case D_SBDEP: 14698 /* never a dependency on these blocks */ 14699 continue; 14700 14701 default: 14702 panic("softdep_count_dependencies: Unexpected type %s", 14703 TYPENAME(wk->wk_type)); 14704 /* NOTREACHED */ 14705 } 14706 } 14707 out: 14708 FREE_LOCK(ump); 14709 return (retval); 14710 } 14711 14712 /* 14713 * Acquire exclusive access to a buffer. 14714 * Must be called with a locked mtx parameter. 14715 * Return acquired buffer or NULL on failure. 14716 */ 14717 static struct buf * 14718 getdirtybuf(bp, lock, waitfor) 14719 struct buf *bp; 14720 struct rwlock *lock; 14721 int waitfor; 14722 { 14723 int error; 14724 14725 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14726 if (waitfor != MNT_WAIT) 14727 return (NULL); 14728 error = BUF_LOCK(bp, 14729 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14730 /* 14731 * Even if we successfully acquire bp here, we have dropped 14732 * lock, which may violates our guarantee. 14733 */ 14734 if (error == 0) 14735 BUF_UNLOCK(bp); 14736 else if (error != ENOLCK) 14737 panic("getdirtybuf: inconsistent lock: %d", error); 14738 rw_wlock(lock); 14739 return (NULL); 14740 } 14741 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14742 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14743 rw_wunlock(lock); 14744 BO_LOCK(bp->b_bufobj); 14745 BUF_UNLOCK(bp); 14746 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14747 bp->b_vflags |= BV_BKGRDWAIT; 14748 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14749 PRIBIO | PDROP, "getbuf", 0); 14750 } else 14751 BO_UNLOCK(bp->b_bufobj); 14752 rw_wlock(lock); 14753 return (NULL); 14754 } 14755 BUF_UNLOCK(bp); 14756 if (waitfor != MNT_WAIT) 14757 return (NULL); 14758 #ifdef DEBUG_VFS_LOCKS 14759 if (bp->b_vp->v_type != VCHR) 14760 ASSERT_BO_WLOCKED(bp->b_bufobj); 14761 #endif 14762 bp->b_vflags |= BV_BKGRDWAIT; 14763 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14764 return (NULL); 14765 } 14766 if ((bp->b_flags & B_DELWRI) == 0) { 14767 BUF_UNLOCK(bp); 14768 return (NULL); 14769 } 14770 bremfree(bp); 14771 return (bp); 14772 } 14773 14774 /* 14775 * Check if it is safe to suspend the file system now. On entry, 14776 * the vnode interlock for devvp should be held. Return 0 with 14777 * the mount interlock held if the file system can be suspended now, 14778 * otherwise return EAGAIN with the mount interlock held. 14779 */ 14780 int 14781 softdep_check_suspend(struct mount *mp, 14782 struct vnode *devvp, 14783 int softdep_depcnt, 14784 int softdep_accdepcnt, 14785 int secondary_writes, 14786 int secondary_accwrites) 14787 { 14788 struct buf *bp; 14789 struct bufobj *bo; 14790 struct ufsmount *ump; 14791 struct inodedep *inodedep; 14792 struct indirdep *indirdep; 14793 struct worklist *wk, *nextwk; 14794 int error, unlinked; 14795 14796 bo = &devvp->v_bufobj; 14797 ASSERT_BO_WLOCKED(bo); 14798 14799 /* 14800 * If we are not running with soft updates, then we need only 14801 * deal with secondary writes as we try to suspend. 14802 */ 14803 if (MOUNTEDSOFTDEP(mp) == 0) { 14804 MNT_ILOCK(mp); 14805 while (mp->mnt_secondary_writes != 0) { 14806 BO_UNLOCK(bo); 14807 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14808 (PUSER - 1) | PDROP, "secwr", 0); 14809 BO_LOCK(bo); 14810 MNT_ILOCK(mp); 14811 } 14812 14813 /* 14814 * Reasons for needing more work before suspend: 14815 * - Dirty buffers on devvp. 14816 * - Secondary writes occurred after start of vnode sync loop 14817 */ 14818 error = 0; 14819 if (bo->bo_numoutput > 0 || 14820 bo->bo_dirty.bv_cnt > 0 || 14821 secondary_writes != 0 || 14822 mp->mnt_secondary_writes != 0 || 14823 secondary_accwrites != mp->mnt_secondary_accwrites) 14824 error = EAGAIN; 14825 BO_UNLOCK(bo); 14826 return (error); 14827 } 14828 14829 /* 14830 * If we are running with soft updates, then we need to coordinate 14831 * with them as we try to suspend. 14832 */ 14833 ump = VFSTOUFS(mp); 14834 for (;;) { 14835 if (!TRY_ACQUIRE_LOCK(ump)) { 14836 BO_UNLOCK(bo); 14837 ACQUIRE_LOCK(ump); 14838 FREE_LOCK(ump); 14839 BO_LOCK(bo); 14840 continue; 14841 } 14842 MNT_ILOCK(mp); 14843 if (mp->mnt_secondary_writes != 0) { 14844 FREE_LOCK(ump); 14845 BO_UNLOCK(bo); 14846 msleep(&mp->mnt_secondary_writes, 14847 MNT_MTX(mp), 14848 (PUSER - 1) | PDROP, "secwr", 0); 14849 BO_LOCK(bo); 14850 continue; 14851 } 14852 break; 14853 } 14854 14855 unlinked = 0; 14856 if (MOUNTEDSUJ(mp)) { 14857 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14858 inodedep != NULL; 14859 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14860 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14861 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14862 UNLINKONLIST) || 14863 !check_inodedep_free(inodedep)) 14864 continue; 14865 unlinked++; 14866 } 14867 } 14868 14869 /* 14870 * XXX Check for orphaned indirdep dependency structures. 14871 * 14872 * During forcible unmount after a disk failure there is a 14873 * bug that causes one or more indirdep dependency structures 14874 * to fail to be deallocated. We check for them here and clean 14875 * them up so that the unmount can succeed. 14876 */ 14877 if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 && 14878 ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) { 14879 LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP], 14880 wk_all, nextwk) { 14881 indirdep = WK_INDIRDEP(wk); 14882 if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) != 14883 (GOINGAWAY | DEPCOMPLETE) || 14884 !TAILQ_EMPTY(&indirdep->ir_trunc) || 14885 !LIST_EMPTY(&indirdep->ir_completehd) || 14886 !LIST_EMPTY(&indirdep->ir_writehd) || 14887 !LIST_EMPTY(&indirdep->ir_donehd) || 14888 !LIST_EMPTY(&indirdep->ir_deplisthd) || 14889 indirdep->ir_saveddata != NULL || 14890 indirdep->ir_savebp == NULL) { 14891 printf("%s: skipping orphaned indirdep %p\n", 14892 __FUNCTION__, indirdep); 14893 continue; 14894 } 14895 printf("%s: freeing orphaned indirdep %p\n", 14896 __FUNCTION__, indirdep); 14897 bp = indirdep->ir_savebp; 14898 indirdep->ir_savebp = NULL; 14899 free_indirdep(indirdep); 14900 FREE_LOCK(ump); 14901 brelse(bp); 14902 while (!TRY_ACQUIRE_LOCK(ump)) { 14903 BO_UNLOCK(bo); 14904 ACQUIRE_LOCK(ump); 14905 FREE_LOCK(ump); 14906 BO_LOCK(bo); 14907 } 14908 } 14909 } 14910 14911 /* 14912 * Reasons for needing more work before suspend: 14913 * - Dirty buffers on devvp. 14914 * - Dependency structures still exist 14915 * - Softdep activity occurred after start of vnode sync loop 14916 * - Secondary writes occurred after start of vnode sync loop 14917 */ 14918 error = 0; 14919 if (bo->bo_numoutput > 0 || 14920 bo->bo_dirty.bv_cnt > 0 || 14921 softdep_depcnt != unlinked || 14922 ump->softdep_deps != unlinked || 14923 softdep_accdepcnt != ump->softdep_accdeps || 14924 secondary_writes != 0 || 14925 mp->mnt_secondary_writes != 0 || 14926 secondary_accwrites != mp->mnt_secondary_accwrites) 14927 error = EAGAIN; 14928 FREE_LOCK(ump); 14929 BO_UNLOCK(bo); 14930 return (error); 14931 } 14932 14933 /* 14934 * Get the number of dependency structures for the file system, both 14935 * the current number and the total number allocated. These will 14936 * later be used to detect that softdep processing has occurred. 14937 */ 14938 void 14939 softdep_get_depcounts(struct mount *mp, 14940 int *softdep_depsp, 14941 int *softdep_accdepsp) 14942 { 14943 struct ufsmount *ump; 14944 14945 if (MOUNTEDSOFTDEP(mp) == 0) { 14946 *softdep_depsp = 0; 14947 *softdep_accdepsp = 0; 14948 return; 14949 } 14950 ump = VFSTOUFS(mp); 14951 ACQUIRE_LOCK(ump); 14952 *softdep_depsp = ump->softdep_deps; 14953 *softdep_accdepsp = ump->softdep_accdeps; 14954 FREE_LOCK(ump); 14955 } 14956 14957 /* 14958 * Wait for pending output on a vnode to complete. 14959 */ 14960 static void 14961 drain_output(vp) 14962 struct vnode *vp; 14963 { 14964 14965 ASSERT_VOP_LOCKED(vp, "drain_output"); 14966 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14967 } 14968 14969 /* 14970 * Called whenever a buffer that is being invalidated or reallocated 14971 * contains dependencies. This should only happen if an I/O error has 14972 * occurred. The routine is called with the buffer locked. 14973 */ 14974 static void 14975 softdep_deallocate_dependencies(bp) 14976 struct buf *bp; 14977 { 14978 14979 if ((bp->b_ioflags & BIO_ERROR) == 0) 14980 panic("softdep_deallocate_dependencies: dangling deps"); 14981 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14982 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14983 else 14984 printf("softdep_deallocate_dependencies: " 14985 "got error %d while accessing filesystem\n", bp->b_error); 14986 if (bp->b_error != ENXIO) 14987 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14988 } 14989 14990 /* 14991 * Function to handle asynchronous write errors in the filesystem. 14992 */ 14993 static void 14994 softdep_error(func, error) 14995 char *func; 14996 int error; 14997 { 14998 14999 /* XXX should do something better! */ 15000 printf("%s: got error %d while accessing filesystem\n", func, error); 15001 } 15002 15003 #ifdef DDB 15004 15005 /* exported to ffs_vfsops.c */ 15006 extern void db_print_ffs(struct ufsmount *ump); 15007 void 15008 db_print_ffs(struct ufsmount *ump) 15009 { 15010 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 15011 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 15012 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 15013 ump->um_fs, ump->softdep_on_worklist, 15014 ump->softdep_deps, ump->softdep_req); 15015 } 15016 15017 static void 15018 worklist_print(struct worklist *wk, int verbose) 15019 { 15020 15021 if (!verbose) { 15022 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 15023 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 15024 return; 15025 } 15026 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 15027 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 15028 LIST_NEXT(wk, wk_list)); 15029 db_print_ffs(VFSTOUFS(wk->wk_mp)); 15030 } 15031 15032 static void 15033 inodedep_print(struct inodedep *inodedep, int verbose) 15034 { 15035 15036 worklist_print(&inodedep->id_list, 0); 15037 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 15038 inodedep->id_fs, 15039 (intmax_t)inodedep->id_ino, 15040 (intmax_t)fsbtodb(inodedep->id_fs, 15041 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 15042 (intmax_t)inodedep->id_nlinkdelta, 15043 (intmax_t)inodedep->id_savednlink); 15044 15045 if (verbose == 0) 15046 return; 15047 15048 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 15049 inodedep->id_bmsafemap, 15050 inodedep->id_mkdiradd, 15051 TAILQ_FIRST(&inodedep->id_inoreflst)); 15052 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 15053 LIST_FIRST(&inodedep->id_dirremhd), 15054 LIST_FIRST(&inodedep->id_pendinghd), 15055 LIST_FIRST(&inodedep->id_bufwait)); 15056 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 15057 LIST_FIRST(&inodedep->id_inowait), 15058 TAILQ_FIRST(&inodedep->id_inoupdt), 15059 TAILQ_FIRST(&inodedep->id_newinoupdt)); 15060 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 15061 TAILQ_FIRST(&inodedep->id_extupdt), 15062 TAILQ_FIRST(&inodedep->id_newextupdt), 15063 TAILQ_FIRST(&inodedep->id_freeblklst)); 15064 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 15065 inodedep->id_savedino1, 15066 (intmax_t)inodedep->id_savedsize, 15067 (intmax_t)inodedep->id_savedextsize); 15068 } 15069 15070 static void 15071 newblk_print(struct newblk *nbp) 15072 { 15073 15074 worklist_print(&nbp->nb_list, 0); 15075 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 15076 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 15077 &nbp->nb_jnewblk, 15078 &nbp->nb_bmsafemap, 15079 &nbp->nb_freefrag); 15080 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 15081 LIST_FIRST(&nbp->nb_indirdeps), 15082 LIST_FIRST(&nbp->nb_newdirblk), 15083 LIST_FIRST(&nbp->nb_jwork)); 15084 } 15085 15086 static void 15087 allocdirect_print(struct allocdirect *adp) 15088 { 15089 15090 newblk_print(&adp->ad_block); 15091 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 15092 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 15093 db_printf(" offset %d, inodedep %p\n", 15094 adp->ad_offset, adp->ad_inodedep); 15095 } 15096 15097 static void 15098 allocindir_print(struct allocindir *aip) 15099 { 15100 15101 newblk_print(&aip->ai_block); 15102 db_printf(" oldblkno %jd, lbn %jd\n", 15103 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 15104 db_printf(" offset %d, indirdep %p\n", 15105 aip->ai_offset, aip->ai_indirdep); 15106 } 15107 15108 static void 15109 mkdir_print(struct mkdir *mkdir) 15110 { 15111 15112 worklist_print(&mkdir->md_list, 0); 15113 db_printf(" diradd %p, jaddref %p, buf %p\n", 15114 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 15115 } 15116 15117 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 15118 { 15119 15120 if (have_addr == 0) { 15121 db_printf("inodedep address required\n"); 15122 return; 15123 } 15124 inodedep_print((struct inodedep*)addr, 1); 15125 } 15126 15127 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 15128 { 15129 struct inodedep_hashhead *inodedephd; 15130 struct inodedep *inodedep; 15131 struct ufsmount *ump; 15132 int cnt; 15133 15134 if (have_addr == 0) { 15135 db_printf("ufsmount address required\n"); 15136 return; 15137 } 15138 ump = (struct ufsmount *)addr; 15139 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 15140 inodedephd = &ump->inodedep_hashtbl[cnt]; 15141 LIST_FOREACH(inodedep, inodedephd, id_hash) { 15142 inodedep_print(inodedep, 0); 15143 } 15144 } 15145 } 15146 15147 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15148 { 15149 15150 if (have_addr == 0) { 15151 db_printf("worklist address required\n"); 15152 return; 15153 } 15154 worklist_print((struct worklist *)addr, 1); 15155 } 15156 15157 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15158 { 15159 struct worklist *wk; 15160 struct workhead *wkhd; 15161 15162 if (have_addr == 0) { 15163 db_printf("worklist address required " 15164 "(for example value in bp->b_dep)\n"); 15165 return; 15166 } 15167 /* 15168 * We often do not have the address of the worklist head but 15169 * instead a pointer to its first entry (e.g., we have the 15170 * contents of bp->b_dep rather than &bp->b_dep). But the back 15171 * pointer of bp->b_dep will point at the head of the list, so 15172 * we cheat and use that instead. If we are in the middle of 15173 * a list we will still get the same result, so nothing 15174 * unexpected will result. 15175 */ 15176 wk = (struct worklist *)addr; 15177 if (wk == NULL) 15178 return; 15179 wkhd = (struct workhead *)wk->wk_list.le_prev; 15180 LIST_FOREACH(wk, wkhd, wk_list) { 15181 switch(wk->wk_type) { 15182 case D_INODEDEP: 15183 inodedep_print(WK_INODEDEP(wk), 0); 15184 continue; 15185 case D_ALLOCDIRECT: 15186 allocdirect_print(WK_ALLOCDIRECT(wk)); 15187 continue; 15188 case D_ALLOCINDIR: 15189 allocindir_print(WK_ALLOCINDIR(wk)); 15190 continue; 15191 case D_MKDIR: 15192 mkdir_print(WK_MKDIR(wk)); 15193 continue; 15194 default: 15195 worklist_print(wk, 0); 15196 continue; 15197 } 15198 } 15199 } 15200 15201 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15202 { 15203 if (have_addr == 0) { 15204 db_printf("mkdir address required\n"); 15205 return; 15206 } 15207 mkdir_print((struct mkdir *)addr); 15208 } 15209 15210 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15211 { 15212 struct mkdirlist *mkdirlisthd; 15213 struct mkdir *mkdir; 15214 15215 if (have_addr == 0) { 15216 db_printf("mkdir listhead address required\n"); 15217 return; 15218 } 15219 mkdirlisthd = (struct mkdirlist *)addr; 15220 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15221 mkdir_print(mkdir); 15222 if (mkdir->md_diradd != NULL) { 15223 db_printf(" "); 15224 worklist_print(&mkdir->md_diradd->da_list, 0); 15225 } 15226 if (mkdir->md_jaddref != NULL) { 15227 db_printf(" "); 15228 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15229 } 15230 } 15231 } 15232 15233 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15234 { 15235 if (have_addr == 0) { 15236 db_printf("allocdirect address required\n"); 15237 return; 15238 } 15239 allocdirect_print((struct allocdirect *)addr); 15240 } 15241 15242 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15243 { 15244 if (have_addr == 0) { 15245 db_printf("allocindir address required\n"); 15246 return; 15247 } 15248 allocindir_print((struct allocindir *)addr); 15249 } 15250 15251 #endif /* DDB */ 15252 15253 #endif /* SOFTUPDATES */ 15254