1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 #else 613 614 FEATURE(softupdates, "FFS soft-updates support"); 615 616 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 617 "soft updates stats"); 618 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 619 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 620 "total dependencies allocated"); 621 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 622 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 623 "high use dependencies allocated"); 624 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 625 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 626 "current dependencies allocated"); 627 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 628 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 629 "current dependencies written"); 630 631 unsigned long dep_current[D_LAST + 1]; 632 unsigned long dep_highuse[D_LAST + 1]; 633 unsigned long dep_total[D_LAST + 1]; 634 unsigned long dep_write[D_LAST + 1]; 635 636 #define SOFTDEP_TYPE(type, str, long) \ 637 static MALLOC_DEFINE(M_ ## type, #str, long); \ 638 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 639 &dep_total[D_ ## type], 0, ""); \ 640 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 641 &dep_current[D_ ## type], 0, ""); \ 642 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 643 &dep_highuse[D_ ## type], 0, ""); \ 644 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 645 &dep_write[D_ ## type], 0, ""); 646 647 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 648 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 649 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 650 "Block or frag allocated from cyl group map"); 651 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 652 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 653 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 654 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 655 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 656 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 657 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 658 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 659 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 660 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 661 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 662 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 663 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 664 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 665 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 666 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 667 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 668 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 669 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 670 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 671 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 672 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 673 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 674 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 675 676 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 677 678 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 679 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 680 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 681 682 #define M_SOFTDEP_FLAGS (M_WAITOK) 683 684 /* 685 * translate from workitem type to memory type 686 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 687 */ 688 static struct malloc_type *memtype[] = { 689 NULL, 690 M_PAGEDEP, 691 M_INODEDEP, 692 M_BMSAFEMAP, 693 M_NEWBLK, 694 M_ALLOCDIRECT, 695 M_INDIRDEP, 696 M_ALLOCINDIR, 697 M_FREEFRAG, 698 M_FREEBLKS, 699 M_FREEFILE, 700 M_DIRADD, 701 M_MKDIR, 702 M_DIRREM, 703 M_NEWDIRBLK, 704 M_FREEWORK, 705 M_FREEDEP, 706 M_JADDREF, 707 M_JREMREF, 708 M_JMVREF, 709 M_JNEWBLK, 710 M_JFREEBLK, 711 M_JFREEFRAG, 712 M_JSEG, 713 M_JSEGDEP, 714 M_SBDEP, 715 M_JTRUNC, 716 M_JFSYNC, 717 M_SENTINEL 718 }; 719 720 #define DtoM(type) (memtype[type]) 721 722 /* 723 * Names of malloc types. 724 */ 725 #define TYPENAME(type) \ 726 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 727 memtype[type]->ks_shortdesc : "???") 728 /* 729 * End system adaptation definitions. 730 */ 731 732 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 733 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 734 735 /* 736 * Internal function prototypes. 737 */ 738 static void check_clear_deps(struct mount *); 739 static void softdep_error(char *, int); 740 static int softdep_process_worklist(struct mount *, int); 741 static int softdep_waitidle(struct mount *, int); 742 static void drain_output(struct vnode *); 743 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 744 static int check_inodedep_free(struct inodedep *); 745 static void clear_remove(struct mount *); 746 static void clear_inodedeps(struct mount *); 747 static void unlinked_inodedep(struct mount *, struct inodedep *); 748 static void clear_unlinked_inodedep(struct inodedep *); 749 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 750 static int flush_pagedep_deps(struct vnode *, struct mount *, 751 struct diraddhd *); 752 static int free_pagedep(struct pagedep *); 753 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 754 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 755 static int flush_deplist(struct allocdirectlst *, int, int *); 756 static int sync_cgs(struct mount *, int); 757 static int handle_written_filepage(struct pagedep *, struct buf *, int); 758 static int handle_written_sbdep(struct sbdep *, struct buf *); 759 static void initiate_write_sbdep(struct sbdep *); 760 static void diradd_inode_written(struct diradd *, struct inodedep *); 761 static int handle_written_indirdep(struct indirdep *, struct buf *, 762 struct buf**, int); 763 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 764 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 765 uint8_t *); 766 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 767 static void handle_written_jaddref(struct jaddref *); 768 static void handle_written_jremref(struct jremref *); 769 static void handle_written_jseg(struct jseg *, struct buf *); 770 static void handle_written_jnewblk(struct jnewblk *); 771 static void handle_written_jblkdep(struct jblkdep *); 772 static void handle_written_jfreefrag(struct jfreefrag *); 773 static void complete_jseg(struct jseg *); 774 static void complete_jsegs(struct jseg *); 775 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 776 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 777 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 778 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 779 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 780 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 781 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 782 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 783 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 784 static inline void inoref_write(struct inoref *, struct jseg *, 785 struct jrefrec *); 786 static void handle_allocdirect_partdone(struct allocdirect *, 787 struct workhead *); 788 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 789 struct workhead *); 790 static void indirdep_complete(struct indirdep *); 791 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 792 static void indirblk_insert(struct freework *); 793 static void indirblk_remove(struct freework *); 794 static void handle_allocindir_partdone(struct allocindir *); 795 static void initiate_write_filepage(struct pagedep *, struct buf *); 796 static void initiate_write_indirdep(struct indirdep*, struct buf *); 797 static void handle_written_mkdir(struct mkdir *, int); 798 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 799 uint8_t *); 800 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 801 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 802 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 803 static void handle_workitem_freefile(struct freefile *); 804 static int handle_workitem_remove(struct dirrem *, int); 805 static struct dirrem *newdirrem(struct buf *, struct inode *, 806 struct inode *, int, struct dirrem **); 807 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 808 struct buf *); 809 static void cancel_indirdep(struct indirdep *, struct buf *, 810 struct freeblks *); 811 static void free_indirdep(struct indirdep *); 812 static void free_diradd(struct diradd *, struct workhead *); 813 static void merge_diradd(struct inodedep *, struct diradd *); 814 static void complete_diradd(struct diradd *); 815 static struct diradd *diradd_lookup(struct pagedep *, int); 816 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 817 struct jremref *); 818 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 819 struct jremref *); 820 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 821 struct jremref *, struct jremref *); 822 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 823 struct jremref *); 824 static void cancel_allocindir(struct allocindir *, struct buf *bp, 825 struct freeblks *, int); 826 static int setup_trunc_indir(struct freeblks *, struct inode *, 827 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 828 static void complete_trunc_indir(struct freework *); 829 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 830 int); 831 static void complete_mkdir(struct mkdir *); 832 static void free_newdirblk(struct newdirblk *); 833 static void free_jremref(struct jremref *); 834 static void free_jaddref(struct jaddref *); 835 static void free_jsegdep(struct jsegdep *); 836 static void free_jsegs(struct jblocks *); 837 static void rele_jseg(struct jseg *); 838 static void free_jseg(struct jseg *, struct jblocks *); 839 static void free_jnewblk(struct jnewblk *); 840 static void free_jblkdep(struct jblkdep *); 841 static void free_jfreefrag(struct jfreefrag *); 842 static void free_freedep(struct freedep *); 843 static void journal_jremref(struct dirrem *, struct jremref *, 844 struct inodedep *); 845 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 846 static int cancel_jaddref(struct jaddref *, struct inodedep *, 847 struct workhead *); 848 static void cancel_jfreefrag(struct jfreefrag *); 849 static inline void setup_freedirect(struct freeblks *, struct inode *, 850 int, int); 851 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 852 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 853 ufs_lbn_t, int); 854 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 855 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 856 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 857 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 858 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 859 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 860 int, int); 861 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 862 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 863 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 864 static void newblk_freefrag(struct newblk*); 865 static void free_newblk(struct newblk *); 866 static void cancel_allocdirect(struct allocdirectlst *, 867 struct allocdirect *, struct freeblks *); 868 static int check_inode_unwritten(struct inodedep *); 869 static int free_inodedep(struct inodedep *); 870 static void freework_freeblock(struct freework *, u_long); 871 static void freework_enqueue(struct freework *); 872 static int handle_workitem_freeblocks(struct freeblks *, int); 873 static int handle_complete_freeblocks(struct freeblks *, int); 874 static void handle_workitem_indirblk(struct freework *); 875 static void handle_written_freework(struct freework *); 876 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 877 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 878 struct workhead *); 879 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 880 struct inodedep *, struct allocindir *, ufs_lbn_t); 881 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 882 ufs2_daddr_t, ufs_lbn_t); 883 static void handle_workitem_freefrag(struct freefrag *); 884 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 885 ufs_lbn_t, u_long); 886 static void allocdirect_merge(struct allocdirectlst *, 887 struct allocdirect *, struct allocdirect *); 888 static struct freefrag *allocindir_merge(struct allocindir *, 889 struct allocindir *); 890 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 891 struct bmsafemap **); 892 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 893 int cg, struct bmsafemap *); 894 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 895 struct newblk **); 896 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 897 static int inodedep_find(struct inodedep_hashhead *, ino_t, 898 struct inodedep **); 899 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 900 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 901 int, struct pagedep **); 902 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 903 struct pagedep **); 904 static void pause_timer(void *); 905 static int request_cleanup(struct mount *, int); 906 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 907 static void schedule_cleanup(struct mount *); 908 static void softdep_ast_cleanup_proc(struct thread *); 909 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 910 static int process_worklist_item(struct mount *, int, int); 911 static void process_removes(struct vnode *); 912 static void process_truncates(struct vnode *); 913 static void jwork_move(struct workhead *, struct workhead *); 914 static void jwork_insert(struct workhead *, struct jsegdep *); 915 static void add_to_worklist(struct worklist *, int); 916 static void wake_worklist(struct worklist *); 917 static void wait_worklist(struct worklist *, char *); 918 static void remove_from_worklist(struct worklist *); 919 static void softdep_flush(void *); 920 static void softdep_flushjournal(struct mount *); 921 static int softdep_speedup(struct ufsmount *); 922 static void worklist_speedup(struct mount *); 923 static int journal_mount(struct mount *, struct fs *, struct ucred *); 924 static void journal_unmount(struct ufsmount *); 925 static int journal_space(struct ufsmount *, int); 926 static void journal_suspend(struct ufsmount *); 927 static int journal_unsuspend(struct ufsmount *ump); 928 static void softdep_prelink(struct vnode *, struct vnode *); 929 static void add_to_journal(struct worklist *); 930 static void remove_from_journal(struct worklist *); 931 static bool softdep_excess_items(struct ufsmount *, int); 932 static void softdep_process_journal(struct mount *, struct worklist *, int); 933 static struct jremref *newjremref(struct dirrem *, struct inode *, 934 struct inode *ip, off_t, nlink_t); 935 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 936 uint16_t); 937 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 938 uint16_t); 939 static inline struct jsegdep *inoref_jseg(struct inoref *); 940 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 941 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 942 ufs2_daddr_t, int); 943 static void adjust_newfreework(struct freeblks *, int); 944 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 945 static void move_newblock_dep(struct jaddref *, struct inodedep *); 946 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 947 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 948 ufs2_daddr_t, long, ufs_lbn_t); 949 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 950 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 951 static int jwait(struct worklist *, int); 952 static struct inodedep *inodedep_lookup_ip(struct inode *); 953 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 954 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 955 static void handle_jwork(struct workhead *); 956 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 957 struct mkdir **); 958 static struct jblocks *jblocks_create(void); 959 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 960 static void jblocks_free(struct jblocks *, struct mount *, int); 961 static void jblocks_destroy(struct jblocks *); 962 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 963 964 /* 965 * Exported softdep operations. 966 */ 967 static void softdep_disk_io_initiation(struct buf *); 968 static void softdep_disk_write_complete(struct buf *); 969 static void softdep_deallocate_dependencies(struct buf *); 970 static int softdep_count_dependencies(struct buf *bp, int); 971 972 /* 973 * Global lock over all of soft updates. 974 */ 975 static struct mtx lk; 976 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 977 978 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 979 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 980 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 981 982 /* 983 * Per-filesystem soft-updates locking. 984 */ 985 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 986 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 987 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 988 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 989 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 990 RA_WLOCKED) 991 992 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 993 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 994 995 /* 996 * Worklist queue management. 997 * These routines require that the lock be held. 998 */ 999 #ifndef /* NOT */ INVARIANTS 1000 #define WORKLIST_INSERT(head, item) do { \ 1001 (item)->wk_state |= ONWORKLIST; \ 1002 LIST_INSERT_HEAD(head, item, wk_list); \ 1003 } while (0) 1004 #define WORKLIST_REMOVE(item) do { \ 1005 (item)->wk_state &= ~ONWORKLIST; \ 1006 LIST_REMOVE(item, wk_list); \ 1007 } while (0) 1008 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1009 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1010 1011 #else /* INVARIANTS */ 1012 static void worklist_insert(struct workhead *, struct worklist *, int, 1013 const char *, int); 1014 static void worklist_remove(struct worklist *, int, const char *, int); 1015 1016 #define WORKLIST_INSERT(head, item) \ 1017 worklist_insert(head, item, 1, __func__, __LINE__) 1018 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1019 worklist_insert(head, item, 0, __func__, __LINE__) 1020 #define WORKLIST_REMOVE(item)\ 1021 worklist_remove(item, 1, __func__, __LINE__) 1022 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1023 worklist_remove(item, 0, __func__, __LINE__) 1024 1025 static void 1026 worklist_insert(head, item, locked, func, line) 1027 struct workhead *head; 1028 struct worklist *item; 1029 int locked; 1030 const char *func; 1031 int line; 1032 { 1033 1034 if (locked) 1035 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1036 if (item->wk_state & ONWORKLIST) 1037 panic("worklist_insert: %p %s(0x%X) already on list, " 1038 "added in function %s at line %d", 1039 item, TYPENAME(item->wk_type), item->wk_state, 1040 item->wk_func, item->wk_line); 1041 item->wk_state |= ONWORKLIST; 1042 item->wk_func = func; 1043 item->wk_line = line; 1044 LIST_INSERT_HEAD(head, item, wk_list); 1045 } 1046 1047 static void 1048 worklist_remove(item, locked, func, line) 1049 struct worklist *item; 1050 int locked; 1051 const char *func; 1052 int line; 1053 { 1054 1055 if (locked) 1056 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1057 if ((item->wk_state & ONWORKLIST) == 0) 1058 panic("worklist_remove: %p %s(0x%X) not on list, " 1059 "removed in function %s at line %d", 1060 item, TYPENAME(item->wk_type), item->wk_state, 1061 item->wk_func, item->wk_line); 1062 item->wk_state &= ~ONWORKLIST; 1063 item->wk_func = func; 1064 item->wk_line = line; 1065 LIST_REMOVE(item, wk_list); 1066 } 1067 #endif /* INVARIANTS */ 1068 1069 /* 1070 * Merge two jsegdeps keeping only the oldest one as newer references 1071 * can't be discarded until after older references. 1072 */ 1073 static inline struct jsegdep * 1074 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1075 { 1076 struct jsegdep *swp; 1077 1078 if (two == NULL) 1079 return (one); 1080 1081 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1082 swp = one; 1083 one = two; 1084 two = swp; 1085 } 1086 WORKLIST_REMOVE(&two->jd_list); 1087 free_jsegdep(two); 1088 1089 return (one); 1090 } 1091 1092 /* 1093 * If two freedeps are compatible free one to reduce list size. 1094 */ 1095 static inline struct freedep * 1096 freedep_merge(struct freedep *one, struct freedep *two) 1097 { 1098 if (two == NULL) 1099 return (one); 1100 1101 if (one->fd_freework == two->fd_freework) { 1102 WORKLIST_REMOVE(&two->fd_list); 1103 free_freedep(two); 1104 } 1105 return (one); 1106 } 1107 1108 /* 1109 * Move journal work from one list to another. Duplicate freedeps and 1110 * jsegdeps are coalesced to keep the lists as small as possible. 1111 */ 1112 static void 1113 jwork_move(dst, src) 1114 struct workhead *dst; 1115 struct workhead *src; 1116 { 1117 struct freedep *freedep; 1118 struct jsegdep *jsegdep; 1119 struct worklist *wkn; 1120 struct worklist *wk; 1121 1122 KASSERT(dst != src, 1123 ("jwork_move: dst == src")); 1124 freedep = NULL; 1125 jsegdep = NULL; 1126 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1127 if (wk->wk_type == D_JSEGDEP) 1128 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1129 else if (wk->wk_type == D_FREEDEP) 1130 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1131 } 1132 1133 while ((wk = LIST_FIRST(src)) != NULL) { 1134 WORKLIST_REMOVE(wk); 1135 WORKLIST_INSERT(dst, wk); 1136 if (wk->wk_type == D_JSEGDEP) { 1137 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1138 continue; 1139 } 1140 if (wk->wk_type == D_FREEDEP) 1141 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1142 } 1143 } 1144 1145 static void 1146 jwork_insert(dst, jsegdep) 1147 struct workhead *dst; 1148 struct jsegdep *jsegdep; 1149 { 1150 struct jsegdep *jsegdepn; 1151 struct worklist *wk; 1152 1153 LIST_FOREACH(wk, dst, wk_list) 1154 if (wk->wk_type == D_JSEGDEP) 1155 break; 1156 if (wk == NULL) { 1157 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1158 return; 1159 } 1160 jsegdepn = WK_JSEGDEP(wk); 1161 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1162 WORKLIST_REMOVE(wk); 1163 free_jsegdep(jsegdepn); 1164 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1165 } else 1166 free_jsegdep(jsegdep); 1167 } 1168 1169 /* 1170 * Routines for tracking and managing workitems. 1171 */ 1172 static void workitem_free(struct worklist *, int); 1173 static void workitem_alloc(struct worklist *, int, struct mount *); 1174 static void workitem_reassign(struct worklist *, int); 1175 1176 #define WORKITEM_FREE(item, type) \ 1177 workitem_free((struct worklist *)(item), (type)) 1178 #define WORKITEM_REASSIGN(item, type) \ 1179 workitem_reassign((struct worklist *)(item), (type)) 1180 1181 static void 1182 workitem_free(item, type) 1183 struct worklist *item; 1184 int type; 1185 { 1186 struct ufsmount *ump; 1187 1188 #ifdef INVARIANTS 1189 if (item->wk_state & ONWORKLIST) 1190 panic("workitem_free: %s(0x%X) still on list, " 1191 "added in function %s at line %d", 1192 TYPENAME(item->wk_type), item->wk_state, 1193 item->wk_func, item->wk_line); 1194 if (item->wk_type != type && type != D_NEWBLK) 1195 panic("workitem_free: type mismatch %s != %s", 1196 TYPENAME(item->wk_type), TYPENAME(type)); 1197 #endif 1198 if (item->wk_state & IOWAITING) 1199 wakeup(item); 1200 ump = VFSTOUFS(item->wk_mp); 1201 LOCK_OWNED(ump); 1202 KASSERT(ump->softdep_deps > 0, 1203 ("workitem_free: %s: softdep_deps going negative", 1204 ump->um_fs->fs_fsmnt)); 1205 if (--ump->softdep_deps == 0 && ump->softdep_req) 1206 wakeup(&ump->softdep_deps); 1207 KASSERT(dep_current[item->wk_type] > 0, 1208 ("workitem_free: %s: dep_current[%s] going negative", 1209 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1210 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1211 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1212 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1213 atomic_subtract_long(&dep_current[item->wk_type], 1); 1214 ump->softdep_curdeps[item->wk_type] -= 1; 1215 #ifdef INVARIANTS 1216 LIST_REMOVE(item, wk_all); 1217 #endif 1218 free(item, DtoM(type)); 1219 } 1220 1221 static void 1222 workitem_alloc(item, type, mp) 1223 struct worklist *item; 1224 int type; 1225 struct mount *mp; 1226 { 1227 struct ufsmount *ump; 1228 1229 item->wk_type = type; 1230 item->wk_mp = mp; 1231 item->wk_state = 0; 1232 1233 ump = VFSTOUFS(mp); 1234 ACQUIRE_GBLLOCK(&lk); 1235 dep_current[type]++; 1236 if (dep_current[type] > dep_highuse[type]) 1237 dep_highuse[type] = dep_current[type]; 1238 dep_total[type]++; 1239 FREE_GBLLOCK(&lk); 1240 ACQUIRE_LOCK(ump); 1241 ump->softdep_curdeps[type] += 1; 1242 ump->softdep_deps++; 1243 ump->softdep_accdeps++; 1244 #ifdef INVARIANTS 1245 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1246 #endif 1247 FREE_LOCK(ump); 1248 } 1249 1250 static void 1251 workitem_reassign(item, newtype) 1252 struct worklist *item; 1253 int newtype; 1254 { 1255 struct ufsmount *ump; 1256 1257 ump = VFSTOUFS(item->wk_mp); 1258 LOCK_OWNED(ump); 1259 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1260 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1261 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1262 ump->softdep_curdeps[item->wk_type] -= 1; 1263 ump->softdep_curdeps[newtype] += 1; 1264 KASSERT(dep_current[item->wk_type] > 0, 1265 ("workitem_reassign: %s: dep_current[%s] going negative", 1266 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1267 ACQUIRE_GBLLOCK(&lk); 1268 dep_current[newtype]++; 1269 dep_current[item->wk_type]--; 1270 if (dep_current[newtype] > dep_highuse[newtype]) 1271 dep_highuse[newtype] = dep_current[newtype]; 1272 dep_total[newtype]++; 1273 FREE_GBLLOCK(&lk); 1274 item->wk_type = newtype; 1275 } 1276 1277 /* 1278 * Workitem queue management 1279 */ 1280 static int max_softdeps; /* maximum number of structs before slowdown */ 1281 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1282 static int proc_waiting; /* tracks whether we have a timeout posted */ 1283 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1284 static struct callout softdep_callout; 1285 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1286 static int req_clear_remove; /* syncer process flush some freeblks */ 1287 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1288 1289 /* 1290 * runtime statistics 1291 */ 1292 static int stat_flush_threads; /* number of softdep flushing threads */ 1293 static int stat_worklist_push; /* number of worklist cleanups */ 1294 static int stat_blk_limit_push; /* number of times block limit neared */ 1295 static int stat_ino_limit_push; /* number of times inode limit neared */ 1296 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1297 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1298 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1299 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1300 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1301 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1302 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1303 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1304 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1305 static int stat_journal_min; /* Times hit journal min threshold */ 1306 static int stat_journal_low; /* Times hit journal low threshold */ 1307 static int stat_journal_wait; /* Times blocked in jwait(). */ 1308 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1309 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1310 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1311 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1312 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1313 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1314 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1315 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1316 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1317 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1318 1319 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1320 &max_softdeps, 0, ""); 1321 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1322 &tickdelay, 0, ""); 1323 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1324 &stat_flush_threads, 0, ""); 1325 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1326 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1327 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1328 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1329 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1330 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1331 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1332 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1333 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1334 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1335 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1336 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1337 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1338 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1340 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1342 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1344 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1348 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1370 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1372 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1373 1374 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1375 &softdep_flushcache, 0, ""); 1376 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1377 &stat_emptyjblocks, 0, ""); 1378 1379 SYSCTL_DECL(_vfs_ffs); 1380 1381 /* Whether to recompute the summary at mount time */ 1382 static int compute_summary_at_mount = 0; 1383 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1384 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1385 static int print_threads = 0; 1386 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1387 &print_threads, 0, "Notify flusher thread start/stop"); 1388 1389 /* List of all filesystems mounted with soft updates */ 1390 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1391 1392 /* 1393 * This function cleans the worklist for a filesystem. 1394 * Each filesystem running with soft dependencies gets its own 1395 * thread to run in this function. The thread is started up in 1396 * softdep_mount and shutdown in softdep_unmount. They show up 1397 * as part of the kernel "bufdaemon" process whose process 1398 * entry is available in bufdaemonproc. 1399 */ 1400 static int searchfailed; 1401 extern struct proc *bufdaemonproc; 1402 static void 1403 softdep_flush(addr) 1404 void *addr; 1405 { 1406 struct mount *mp; 1407 struct thread *td; 1408 struct ufsmount *ump; 1409 1410 td = curthread; 1411 td->td_pflags |= TDP_NORUNNINGBUF; 1412 mp = (struct mount *)addr; 1413 ump = VFSTOUFS(mp); 1414 atomic_add_int(&stat_flush_threads, 1); 1415 ACQUIRE_LOCK(ump); 1416 ump->softdep_flags &= ~FLUSH_STARTING; 1417 wakeup(&ump->softdep_flushtd); 1418 FREE_LOCK(ump); 1419 if (print_threads) { 1420 if (stat_flush_threads == 1) 1421 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1422 bufdaemonproc->p_pid); 1423 printf("Start thread %s\n", td->td_name); 1424 } 1425 for (;;) { 1426 while (softdep_process_worklist(mp, 0) > 0 || 1427 (MOUNTEDSUJ(mp) && 1428 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1429 kthread_suspend_check(); 1430 ACQUIRE_LOCK(ump); 1431 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1432 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1433 "sdflush", hz / 2); 1434 ump->softdep_flags &= ~FLUSH_CLEANUP; 1435 /* 1436 * Check to see if we are done and need to exit. 1437 */ 1438 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1439 FREE_LOCK(ump); 1440 continue; 1441 } 1442 ump->softdep_flags &= ~FLUSH_EXIT; 1443 FREE_LOCK(ump); 1444 wakeup(&ump->softdep_flags); 1445 if (print_threads) 1446 printf("Stop thread %s: searchfailed %d, did cleanups %d\n", td->td_name, searchfailed, ump->um_softdep->sd_cleanups); 1447 atomic_subtract_int(&stat_flush_threads, 1); 1448 kthread_exit(); 1449 panic("kthread_exit failed\n"); 1450 } 1451 } 1452 1453 static void 1454 worklist_speedup(mp) 1455 struct mount *mp; 1456 { 1457 struct ufsmount *ump; 1458 1459 ump = VFSTOUFS(mp); 1460 LOCK_OWNED(ump); 1461 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1462 ump->softdep_flags |= FLUSH_CLEANUP; 1463 wakeup(&ump->softdep_flushtd); 1464 } 1465 1466 static void 1467 softdep_send_speedup(struct ufsmount *ump, size_t shortage, u_int flags) 1468 { 1469 struct buf *bp; 1470 1471 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1472 return; 1473 1474 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1475 bp->b_iocmd = BIO_SPEEDUP; 1476 bp->b_ioflags = flags; 1477 bp->b_bcount = shortage; 1478 g_vfs_strategy(ump->um_bo, bp); 1479 bufwait(bp); 1480 free(bp, M_TRIM); 1481 } 1482 1483 static int 1484 softdep_speedup(ump) 1485 struct ufsmount *ump; 1486 { 1487 struct ufsmount *altump; 1488 struct mount_softdeps *sdp; 1489 1490 LOCK_OWNED(ump); 1491 worklist_speedup(ump->um_mountp); 1492 bd_speedup(); 1493 /* 1494 * If we have global shortages, then we need other 1495 * filesystems to help with the cleanup. Here we wakeup a 1496 * flusher thread for a filesystem that is over its fair 1497 * share of resources. 1498 */ 1499 if (req_clear_inodedeps || req_clear_remove) { 1500 ACQUIRE_GBLLOCK(&lk); 1501 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1502 if ((altump = sdp->sd_ump) == ump) 1503 continue; 1504 if (((req_clear_inodedeps && 1505 altump->softdep_curdeps[D_INODEDEP] > 1506 max_softdeps / stat_flush_threads) || 1507 (req_clear_remove && 1508 altump->softdep_curdeps[D_DIRREM] > 1509 (max_softdeps / 2) / stat_flush_threads)) && 1510 TRY_ACQUIRE_LOCK(altump)) 1511 break; 1512 } 1513 if (sdp == NULL) { 1514 searchfailed++; 1515 FREE_GBLLOCK(&lk); 1516 } else { 1517 /* 1518 * Move to the end of the list so we pick a 1519 * different one on out next try. 1520 */ 1521 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1522 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1523 FREE_GBLLOCK(&lk); 1524 if ((altump->softdep_flags & 1525 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1526 altump->softdep_flags |= FLUSH_CLEANUP; 1527 altump->um_softdep->sd_cleanups++; 1528 wakeup(&altump->softdep_flushtd); 1529 FREE_LOCK(altump); 1530 } 1531 } 1532 return (speedup_syncer()); 1533 } 1534 1535 /* 1536 * Add an item to the end of the work queue. 1537 * This routine requires that the lock be held. 1538 * This is the only routine that adds items to the list. 1539 * The following routine is the only one that removes items 1540 * and does so in order from first to last. 1541 */ 1542 1543 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1544 #define WK_NODELAY 0x0002 /* Process immediately. */ 1545 1546 static void 1547 add_to_worklist(wk, flags) 1548 struct worklist *wk; 1549 int flags; 1550 { 1551 struct ufsmount *ump; 1552 1553 ump = VFSTOUFS(wk->wk_mp); 1554 LOCK_OWNED(ump); 1555 if (wk->wk_state & ONWORKLIST) 1556 panic("add_to_worklist: %s(0x%X) already on list", 1557 TYPENAME(wk->wk_type), wk->wk_state); 1558 wk->wk_state |= ONWORKLIST; 1559 if (ump->softdep_on_worklist == 0) { 1560 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1561 ump->softdep_worklist_tail = wk; 1562 } else if (flags & WK_HEAD) { 1563 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1564 } else { 1565 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1566 ump->softdep_worklist_tail = wk; 1567 } 1568 ump->softdep_on_worklist += 1; 1569 if (flags & WK_NODELAY) 1570 worklist_speedup(wk->wk_mp); 1571 } 1572 1573 /* 1574 * Remove the item to be processed. If we are removing the last 1575 * item on the list, we need to recalculate the tail pointer. 1576 */ 1577 static void 1578 remove_from_worklist(wk) 1579 struct worklist *wk; 1580 { 1581 struct ufsmount *ump; 1582 1583 ump = VFSTOUFS(wk->wk_mp); 1584 if (ump->softdep_worklist_tail == wk) 1585 ump->softdep_worklist_tail = 1586 (struct worklist *)wk->wk_list.le_prev; 1587 WORKLIST_REMOVE(wk); 1588 ump->softdep_on_worklist -= 1; 1589 } 1590 1591 static void 1592 wake_worklist(wk) 1593 struct worklist *wk; 1594 { 1595 if (wk->wk_state & IOWAITING) { 1596 wk->wk_state &= ~IOWAITING; 1597 wakeup(wk); 1598 } 1599 } 1600 1601 static void 1602 wait_worklist(wk, wmesg) 1603 struct worklist *wk; 1604 char *wmesg; 1605 { 1606 struct ufsmount *ump; 1607 1608 ump = VFSTOUFS(wk->wk_mp); 1609 wk->wk_state |= IOWAITING; 1610 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1611 } 1612 1613 /* 1614 * Process that runs once per second to handle items in the background queue. 1615 * 1616 * Note that we ensure that everything is done in the order in which they 1617 * appear in the queue. The code below depends on this property to ensure 1618 * that blocks of a file are freed before the inode itself is freed. This 1619 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1620 * until all the old ones have been purged from the dependency lists. 1621 */ 1622 static int 1623 softdep_process_worklist(mp, full) 1624 struct mount *mp; 1625 int full; 1626 { 1627 int cnt, matchcnt; 1628 struct ufsmount *ump; 1629 long starttime; 1630 1631 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1632 if (MOUNTEDSOFTDEP(mp) == 0) 1633 return (0); 1634 matchcnt = 0; 1635 ump = VFSTOUFS(mp); 1636 ACQUIRE_LOCK(ump); 1637 starttime = time_second; 1638 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1639 check_clear_deps(mp); 1640 while (ump->softdep_on_worklist > 0) { 1641 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1642 break; 1643 else 1644 matchcnt += cnt; 1645 check_clear_deps(mp); 1646 /* 1647 * We do not generally want to stop for buffer space, but if 1648 * we are really being a buffer hog, we will stop and wait. 1649 */ 1650 if (should_yield()) { 1651 FREE_LOCK(ump); 1652 kern_yield(PRI_USER); 1653 bwillwrite(); 1654 ACQUIRE_LOCK(ump); 1655 } 1656 /* 1657 * Never allow processing to run for more than one 1658 * second. This gives the syncer thread the opportunity 1659 * to pause if appropriate. 1660 */ 1661 if (!full && starttime != time_second) 1662 break; 1663 } 1664 if (full == 0) 1665 journal_unsuspend(ump); 1666 FREE_LOCK(ump); 1667 return (matchcnt); 1668 } 1669 1670 /* 1671 * Process all removes associated with a vnode if we are running out of 1672 * journal space. Any other process which attempts to flush these will 1673 * be unable as we have the vnodes locked. 1674 */ 1675 static void 1676 process_removes(vp) 1677 struct vnode *vp; 1678 { 1679 struct inodedep *inodedep; 1680 struct dirrem *dirrem; 1681 struct ufsmount *ump; 1682 struct mount *mp; 1683 ino_t inum; 1684 1685 mp = vp->v_mount; 1686 ump = VFSTOUFS(mp); 1687 LOCK_OWNED(ump); 1688 inum = VTOI(vp)->i_number; 1689 for (;;) { 1690 top: 1691 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1692 return; 1693 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1694 /* 1695 * If another thread is trying to lock this vnode 1696 * it will fail but we must wait for it to do so 1697 * before we can proceed. 1698 */ 1699 if (dirrem->dm_state & INPROGRESS) { 1700 wait_worklist(&dirrem->dm_list, "pwrwait"); 1701 goto top; 1702 } 1703 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1704 (COMPLETE | ONWORKLIST)) 1705 break; 1706 } 1707 if (dirrem == NULL) 1708 return; 1709 remove_from_worklist(&dirrem->dm_list); 1710 FREE_LOCK(ump); 1711 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1712 panic("process_removes: suspended filesystem"); 1713 handle_workitem_remove(dirrem, 0); 1714 vn_finished_secondary_write(mp); 1715 ACQUIRE_LOCK(ump); 1716 } 1717 } 1718 1719 /* 1720 * Process all truncations associated with a vnode if we are running out 1721 * of journal space. This is called when the vnode lock is already held 1722 * and no other process can clear the truncation. This function returns 1723 * a value greater than zero if it did any work. 1724 */ 1725 static void 1726 process_truncates(vp) 1727 struct vnode *vp; 1728 { 1729 struct inodedep *inodedep; 1730 struct freeblks *freeblks; 1731 struct ufsmount *ump; 1732 struct mount *mp; 1733 ino_t inum; 1734 int cgwait; 1735 1736 mp = vp->v_mount; 1737 ump = VFSTOUFS(mp); 1738 LOCK_OWNED(ump); 1739 inum = VTOI(vp)->i_number; 1740 for (;;) { 1741 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1742 return; 1743 cgwait = 0; 1744 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1745 /* Journal entries not yet written. */ 1746 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1747 jwait(&LIST_FIRST( 1748 &freeblks->fb_jblkdephd)->jb_list, 1749 MNT_WAIT); 1750 break; 1751 } 1752 /* Another thread is executing this item. */ 1753 if (freeblks->fb_state & INPROGRESS) { 1754 wait_worklist(&freeblks->fb_list, "ptrwait"); 1755 break; 1756 } 1757 /* Freeblks is waiting on a inode write. */ 1758 if ((freeblks->fb_state & COMPLETE) == 0) { 1759 FREE_LOCK(ump); 1760 ffs_update(vp, 1); 1761 ACQUIRE_LOCK(ump); 1762 break; 1763 } 1764 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1765 (ALLCOMPLETE | ONWORKLIST)) { 1766 remove_from_worklist(&freeblks->fb_list); 1767 freeblks->fb_state |= INPROGRESS; 1768 FREE_LOCK(ump); 1769 if (vn_start_secondary_write(NULL, &mp, 1770 V_NOWAIT)) 1771 panic("process_truncates: " 1772 "suspended filesystem"); 1773 handle_workitem_freeblocks(freeblks, 0); 1774 vn_finished_secondary_write(mp); 1775 ACQUIRE_LOCK(ump); 1776 break; 1777 } 1778 if (freeblks->fb_cgwait) 1779 cgwait++; 1780 } 1781 if (cgwait) { 1782 FREE_LOCK(ump); 1783 sync_cgs(mp, MNT_WAIT); 1784 ffs_sync_snap(mp, MNT_WAIT); 1785 ACQUIRE_LOCK(ump); 1786 continue; 1787 } 1788 if (freeblks == NULL) 1789 break; 1790 } 1791 return; 1792 } 1793 1794 /* 1795 * Process one item on the worklist. 1796 */ 1797 static int 1798 process_worklist_item(mp, target, flags) 1799 struct mount *mp; 1800 int target; 1801 int flags; 1802 { 1803 struct worklist sentinel; 1804 struct worklist *wk; 1805 struct ufsmount *ump; 1806 int matchcnt; 1807 int error; 1808 1809 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1810 /* 1811 * If we are being called because of a process doing a 1812 * copy-on-write, then it is not safe to write as we may 1813 * recurse into the copy-on-write routine. 1814 */ 1815 if (curthread->td_pflags & TDP_COWINPROGRESS) 1816 return (-1); 1817 PHOLD(curproc); /* Don't let the stack go away. */ 1818 ump = VFSTOUFS(mp); 1819 LOCK_OWNED(ump); 1820 matchcnt = 0; 1821 sentinel.wk_mp = NULL; 1822 sentinel.wk_type = D_SENTINEL; 1823 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1824 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1825 wk = LIST_NEXT(&sentinel, wk_list)) { 1826 if (wk->wk_type == D_SENTINEL) { 1827 LIST_REMOVE(&sentinel, wk_list); 1828 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1829 continue; 1830 } 1831 if (wk->wk_state & INPROGRESS) 1832 panic("process_worklist_item: %p already in progress.", 1833 wk); 1834 wk->wk_state |= INPROGRESS; 1835 remove_from_worklist(wk); 1836 FREE_LOCK(ump); 1837 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1838 panic("process_worklist_item: suspended filesystem"); 1839 switch (wk->wk_type) { 1840 case D_DIRREM: 1841 /* removal of a directory entry */ 1842 error = handle_workitem_remove(WK_DIRREM(wk), flags); 1843 break; 1844 1845 case D_FREEBLKS: 1846 /* releasing blocks and/or fragments from a file */ 1847 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 1848 flags); 1849 break; 1850 1851 case D_FREEFRAG: 1852 /* releasing a fragment when replaced as a file grows */ 1853 handle_workitem_freefrag(WK_FREEFRAG(wk)); 1854 error = 0; 1855 break; 1856 1857 case D_FREEFILE: 1858 /* releasing an inode when its link count drops to 0 */ 1859 handle_workitem_freefile(WK_FREEFILE(wk)); 1860 error = 0; 1861 break; 1862 1863 default: 1864 panic("%s_process_worklist: Unknown type %s", 1865 "softdep", TYPENAME(wk->wk_type)); 1866 /* NOTREACHED */ 1867 } 1868 vn_finished_secondary_write(mp); 1869 ACQUIRE_LOCK(ump); 1870 if (error == 0) { 1871 if (++matchcnt == target) 1872 break; 1873 continue; 1874 } 1875 /* 1876 * We have to retry the worklist item later. Wake up any 1877 * waiters who may be able to complete it immediately and 1878 * add the item back to the head so we don't try to execute 1879 * it again. 1880 */ 1881 wk->wk_state &= ~INPROGRESS; 1882 wake_worklist(wk); 1883 add_to_worklist(wk, WK_HEAD); 1884 } 1885 /* Sentinal could've become the tail from remove_from_worklist. */ 1886 if (ump->softdep_worklist_tail == &sentinel) 1887 ump->softdep_worklist_tail = 1888 (struct worklist *)sentinel.wk_list.le_prev; 1889 LIST_REMOVE(&sentinel, wk_list); 1890 PRELE(curproc); 1891 return (matchcnt); 1892 } 1893 1894 /* 1895 * Move dependencies from one buffer to another. 1896 */ 1897 int 1898 softdep_move_dependencies(oldbp, newbp) 1899 struct buf *oldbp; 1900 struct buf *newbp; 1901 { 1902 struct worklist *wk, *wktail; 1903 struct ufsmount *ump; 1904 int dirty; 1905 1906 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 1907 return (0); 1908 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 1909 ("softdep_move_dependencies called on non-softdep filesystem")); 1910 dirty = 0; 1911 wktail = NULL; 1912 ump = VFSTOUFS(wk->wk_mp); 1913 ACQUIRE_LOCK(ump); 1914 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 1915 LIST_REMOVE(wk, wk_list); 1916 if (wk->wk_type == D_BMSAFEMAP && 1917 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 1918 dirty = 1; 1919 if (wktail == NULL) 1920 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 1921 else 1922 LIST_INSERT_AFTER(wktail, wk, wk_list); 1923 wktail = wk; 1924 } 1925 FREE_LOCK(ump); 1926 1927 return (dirty); 1928 } 1929 1930 /* 1931 * Purge the work list of all items associated with a particular mount point. 1932 */ 1933 int 1934 softdep_flushworklist(oldmnt, countp, td) 1935 struct mount *oldmnt; 1936 int *countp; 1937 struct thread *td; 1938 { 1939 struct vnode *devvp; 1940 struct ufsmount *ump; 1941 int count, error; 1942 1943 /* 1944 * Alternately flush the block device associated with the mount 1945 * point and process any dependencies that the flushing 1946 * creates. We continue until no more worklist dependencies 1947 * are found. 1948 */ 1949 *countp = 0; 1950 error = 0; 1951 ump = VFSTOUFS(oldmnt); 1952 devvp = ump->um_devvp; 1953 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 1954 *countp += count; 1955 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1956 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1957 VOP_UNLOCK(devvp); 1958 if (error != 0) 1959 break; 1960 } 1961 return (error); 1962 } 1963 1964 #define SU_WAITIDLE_RETRIES 20 1965 static int 1966 softdep_waitidle(struct mount *mp, int flags __unused) 1967 { 1968 struct ufsmount *ump; 1969 struct vnode *devvp; 1970 struct thread *td; 1971 int error, i; 1972 1973 ump = VFSTOUFS(mp); 1974 devvp = ump->um_devvp; 1975 td = curthread; 1976 error = 0; 1977 ACQUIRE_LOCK(ump); 1978 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 1979 ump->softdep_req = 1; 1980 KASSERT((flags & FORCECLOSE) == 0 || 1981 ump->softdep_on_worklist == 0, 1982 ("softdep_waitidle: work added after flush")); 1983 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 1984 "softdeps", 10 * hz); 1985 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 1986 error = VOP_FSYNC(devvp, MNT_WAIT, td); 1987 VOP_UNLOCK(devvp); 1988 ACQUIRE_LOCK(ump); 1989 if (error != 0) 1990 break; 1991 } 1992 ump->softdep_req = 0; 1993 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 1994 error = EBUSY; 1995 printf("softdep_waitidle: Failed to flush worklist for %p\n", 1996 mp); 1997 } 1998 FREE_LOCK(ump); 1999 return (error); 2000 } 2001 2002 /* 2003 * Flush all vnodes and worklist items associated with a specified mount point. 2004 */ 2005 int 2006 softdep_flushfiles(oldmnt, flags, td) 2007 struct mount *oldmnt; 2008 int flags; 2009 struct thread *td; 2010 { 2011 #ifdef QUOTA 2012 struct ufsmount *ump; 2013 int i; 2014 #endif 2015 int error, early, depcount, loopcnt, retry_flush_count, retry; 2016 int morework; 2017 2018 KASSERT(MOUNTEDSOFTDEP(oldmnt) != 0, 2019 ("softdep_flushfiles called on non-softdep filesystem")); 2020 loopcnt = 10; 2021 retry_flush_count = 3; 2022 retry_flush: 2023 error = 0; 2024 2025 /* 2026 * Alternately flush the vnodes associated with the mount 2027 * point and process any dependencies that the flushing 2028 * creates. In theory, this loop can happen at most twice, 2029 * but we give it a few extra just to be sure. 2030 */ 2031 for (; loopcnt > 0; loopcnt--) { 2032 /* 2033 * Do another flush in case any vnodes were brought in 2034 * as part of the cleanup operations. 2035 */ 2036 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2037 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2038 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2039 break; 2040 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2041 depcount == 0) 2042 break; 2043 } 2044 /* 2045 * If we are unmounting then it is an error to fail. If we 2046 * are simply trying to downgrade to read-only, then filesystem 2047 * activity can keep us busy forever, so we just fail with EBUSY. 2048 */ 2049 if (loopcnt == 0) { 2050 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2051 panic("softdep_flushfiles: looping"); 2052 error = EBUSY; 2053 } 2054 if (!error) 2055 error = softdep_waitidle(oldmnt, flags); 2056 if (!error) { 2057 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2058 retry = 0; 2059 MNT_ILOCK(oldmnt); 2060 morework = oldmnt->mnt_nvnodelistsize > 0; 2061 #ifdef QUOTA 2062 ump = VFSTOUFS(oldmnt); 2063 UFS_LOCK(ump); 2064 for (i = 0; i < MAXQUOTAS; i++) { 2065 if (ump->um_quotas[i] != NULLVP) 2066 morework = 1; 2067 } 2068 UFS_UNLOCK(ump); 2069 #endif 2070 if (morework) { 2071 if (--retry_flush_count > 0) { 2072 retry = 1; 2073 loopcnt = 3; 2074 } else 2075 error = EBUSY; 2076 } 2077 MNT_IUNLOCK(oldmnt); 2078 if (retry) 2079 goto retry_flush; 2080 } 2081 } 2082 return (error); 2083 } 2084 2085 /* 2086 * Structure hashing. 2087 * 2088 * There are four types of structures that can be looked up: 2089 * 1) pagedep structures identified by mount point, inode number, 2090 * and logical block. 2091 * 2) inodedep structures identified by mount point and inode number. 2092 * 3) newblk structures identified by mount point and 2093 * physical block number. 2094 * 4) bmsafemap structures identified by mount point and 2095 * cylinder group number. 2096 * 2097 * The "pagedep" and "inodedep" dependency structures are hashed 2098 * separately from the file blocks and inodes to which they correspond. 2099 * This separation helps when the in-memory copy of an inode or 2100 * file block must be replaced. It also obviates the need to access 2101 * an inode or file page when simply updating (or de-allocating) 2102 * dependency structures. Lookup of newblk structures is needed to 2103 * find newly allocated blocks when trying to associate them with 2104 * their allocdirect or allocindir structure. 2105 * 2106 * The lookup routines optionally create and hash a new instance when 2107 * an existing entry is not found. The bmsafemap lookup routine always 2108 * allocates a new structure if an existing one is not found. 2109 */ 2110 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2111 2112 /* 2113 * Structures and routines associated with pagedep caching. 2114 */ 2115 #define PAGEDEP_HASH(ump, inum, lbn) \ 2116 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2117 2118 static int 2119 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2120 struct pagedep_hashhead *pagedephd; 2121 ino_t ino; 2122 ufs_lbn_t lbn; 2123 struct pagedep **pagedeppp; 2124 { 2125 struct pagedep *pagedep; 2126 2127 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2128 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2129 *pagedeppp = pagedep; 2130 return (1); 2131 } 2132 } 2133 *pagedeppp = NULL; 2134 return (0); 2135 } 2136 /* 2137 * Look up a pagedep. Return 1 if found, 0 otherwise. 2138 * If not found, allocate if DEPALLOC flag is passed. 2139 * Found or allocated entry is returned in pagedeppp. 2140 */ 2141 static int 2142 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2143 struct mount *mp; 2144 struct buf *bp; 2145 ino_t ino; 2146 ufs_lbn_t lbn; 2147 int flags; 2148 struct pagedep **pagedeppp; 2149 { 2150 struct pagedep *pagedep; 2151 struct pagedep_hashhead *pagedephd; 2152 struct worklist *wk; 2153 struct ufsmount *ump; 2154 int ret; 2155 int i; 2156 2157 ump = VFSTOUFS(mp); 2158 LOCK_OWNED(ump); 2159 if (bp) { 2160 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2161 if (wk->wk_type == D_PAGEDEP) { 2162 *pagedeppp = WK_PAGEDEP(wk); 2163 return (1); 2164 } 2165 } 2166 } 2167 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2168 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2169 if (ret) { 2170 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2171 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2172 return (1); 2173 } 2174 if ((flags & DEPALLOC) == 0) 2175 return (0); 2176 FREE_LOCK(ump); 2177 pagedep = malloc(sizeof(struct pagedep), 2178 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2179 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2180 ACQUIRE_LOCK(ump); 2181 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2182 if (*pagedeppp) { 2183 /* 2184 * This should never happen since we only create pagedeps 2185 * with the vnode lock held. Could be an assert. 2186 */ 2187 WORKITEM_FREE(pagedep, D_PAGEDEP); 2188 return (ret); 2189 } 2190 pagedep->pd_ino = ino; 2191 pagedep->pd_lbn = lbn; 2192 LIST_INIT(&pagedep->pd_dirremhd); 2193 LIST_INIT(&pagedep->pd_pendinghd); 2194 for (i = 0; i < DAHASHSZ; i++) 2195 LIST_INIT(&pagedep->pd_diraddhd[i]); 2196 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2197 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2198 *pagedeppp = pagedep; 2199 return (0); 2200 } 2201 2202 /* 2203 * Structures and routines associated with inodedep caching. 2204 */ 2205 #define INODEDEP_HASH(ump, inum) \ 2206 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2207 2208 static int 2209 inodedep_find(inodedephd, inum, inodedeppp) 2210 struct inodedep_hashhead *inodedephd; 2211 ino_t inum; 2212 struct inodedep **inodedeppp; 2213 { 2214 struct inodedep *inodedep; 2215 2216 LIST_FOREACH(inodedep, inodedephd, id_hash) 2217 if (inum == inodedep->id_ino) 2218 break; 2219 if (inodedep) { 2220 *inodedeppp = inodedep; 2221 return (1); 2222 } 2223 *inodedeppp = NULL; 2224 2225 return (0); 2226 } 2227 /* 2228 * Look up an inodedep. Return 1 if found, 0 if not found. 2229 * If not found, allocate if DEPALLOC flag is passed. 2230 * Found or allocated entry is returned in inodedeppp. 2231 */ 2232 static int 2233 inodedep_lookup(mp, inum, flags, inodedeppp) 2234 struct mount *mp; 2235 ino_t inum; 2236 int flags; 2237 struct inodedep **inodedeppp; 2238 { 2239 struct inodedep *inodedep; 2240 struct inodedep_hashhead *inodedephd; 2241 struct ufsmount *ump; 2242 struct fs *fs; 2243 2244 ump = VFSTOUFS(mp); 2245 LOCK_OWNED(ump); 2246 fs = ump->um_fs; 2247 inodedephd = INODEDEP_HASH(ump, inum); 2248 2249 if (inodedep_find(inodedephd, inum, inodedeppp)) 2250 return (1); 2251 if ((flags & DEPALLOC) == 0) 2252 return (0); 2253 /* 2254 * If the system is over its limit and our filesystem is 2255 * responsible for more than our share of that usage and 2256 * we are not in a rush, request some inodedep cleanup. 2257 */ 2258 if (softdep_excess_items(ump, D_INODEDEP)) 2259 schedule_cleanup(mp); 2260 else 2261 FREE_LOCK(ump); 2262 inodedep = malloc(sizeof(struct inodedep), 2263 M_INODEDEP, M_SOFTDEP_FLAGS); 2264 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2265 ACQUIRE_LOCK(ump); 2266 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2267 WORKITEM_FREE(inodedep, D_INODEDEP); 2268 return (1); 2269 } 2270 inodedep->id_fs = fs; 2271 inodedep->id_ino = inum; 2272 inodedep->id_state = ALLCOMPLETE; 2273 inodedep->id_nlinkdelta = 0; 2274 inodedep->id_savedino1 = NULL; 2275 inodedep->id_savedsize = -1; 2276 inodedep->id_savedextsize = -1; 2277 inodedep->id_savednlink = -1; 2278 inodedep->id_bmsafemap = NULL; 2279 inodedep->id_mkdiradd = NULL; 2280 LIST_INIT(&inodedep->id_dirremhd); 2281 LIST_INIT(&inodedep->id_pendinghd); 2282 LIST_INIT(&inodedep->id_inowait); 2283 LIST_INIT(&inodedep->id_bufwait); 2284 TAILQ_INIT(&inodedep->id_inoreflst); 2285 TAILQ_INIT(&inodedep->id_inoupdt); 2286 TAILQ_INIT(&inodedep->id_newinoupdt); 2287 TAILQ_INIT(&inodedep->id_extupdt); 2288 TAILQ_INIT(&inodedep->id_newextupdt); 2289 TAILQ_INIT(&inodedep->id_freeblklst); 2290 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2291 *inodedeppp = inodedep; 2292 return (0); 2293 } 2294 2295 /* 2296 * Structures and routines associated with newblk caching. 2297 */ 2298 #define NEWBLK_HASH(ump, inum) \ 2299 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2300 2301 static int 2302 newblk_find(newblkhd, newblkno, flags, newblkpp) 2303 struct newblk_hashhead *newblkhd; 2304 ufs2_daddr_t newblkno; 2305 int flags; 2306 struct newblk **newblkpp; 2307 { 2308 struct newblk *newblk; 2309 2310 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2311 if (newblkno != newblk->nb_newblkno) 2312 continue; 2313 /* 2314 * If we're creating a new dependency don't match those that 2315 * have already been converted to allocdirects. This is for 2316 * a frag extend. 2317 */ 2318 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2319 continue; 2320 break; 2321 } 2322 if (newblk) { 2323 *newblkpp = newblk; 2324 return (1); 2325 } 2326 *newblkpp = NULL; 2327 return (0); 2328 } 2329 2330 /* 2331 * Look up a newblk. Return 1 if found, 0 if not found. 2332 * If not found, allocate if DEPALLOC flag is passed. 2333 * Found or allocated entry is returned in newblkpp. 2334 */ 2335 static int 2336 newblk_lookup(mp, newblkno, flags, newblkpp) 2337 struct mount *mp; 2338 ufs2_daddr_t newblkno; 2339 int flags; 2340 struct newblk **newblkpp; 2341 { 2342 struct newblk *newblk; 2343 struct newblk_hashhead *newblkhd; 2344 struct ufsmount *ump; 2345 2346 ump = VFSTOUFS(mp); 2347 LOCK_OWNED(ump); 2348 newblkhd = NEWBLK_HASH(ump, newblkno); 2349 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2350 return (1); 2351 if ((flags & DEPALLOC) == 0) 2352 return (0); 2353 if (softdep_excess_items(ump, D_NEWBLK) || 2354 softdep_excess_items(ump, D_ALLOCDIRECT) || 2355 softdep_excess_items(ump, D_ALLOCINDIR)) 2356 schedule_cleanup(mp); 2357 else 2358 FREE_LOCK(ump); 2359 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2360 M_SOFTDEP_FLAGS | M_ZERO); 2361 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2362 ACQUIRE_LOCK(ump); 2363 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2364 WORKITEM_FREE(newblk, D_NEWBLK); 2365 return (1); 2366 } 2367 newblk->nb_freefrag = NULL; 2368 LIST_INIT(&newblk->nb_indirdeps); 2369 LIST_INIT(&newblk->nb_newdirblk); 2370 LIST_INIT(&newblk->nb_jwork); 2371 newblk->nb_state = ATTACHED; 2372 newblk->nb_newblkno = newblkno; 2373 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2374 *newblkpp = newblk; 2375 return (0); 2376 } 2377 2378 /* 2379 * Structures and routines associated with freed indirect block caching. 2380 */ 2381 #define INDIR_HASH(ump, blkno) \ 2382 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2383 2384 /* 2385 * Lookup an indirect block in the indir hash table. The freework is 2386 * removed and potentially freed. The caller must do a blocking journal 2387 * write before writing to the blkno. 2388 */ 2389 static int 2390 indirblk_lookup(mp, blkno) 2391 struct mount *mp; 2392 ufs2_daddr_t blkno; 2393 { 2394 struct freework *freework; 2395 struct indir_hashhead *wkhd; 2396 struct ufsmount *ump; 2397 2398 ump = VFSTOUFS(mp); 2399 wkhd = INDIR_HASH(ump, blkno); 2400 TAILQ_FOREACH(freework, wkhd, fw_next) { 2401 if (freework->fw_blkno != blkno) 2402 continue; 2403 indirblk_remove(freework); 2404 return (1); 2405 } 2406 return (0); 2407 } 2408 2409 /* 2410 * Insert an indirect block represented by freework into the indirblk 2411 * hash table so that it may prevent the block from being re-used prior 2412 * to the journal being written. 2413 */ 2414 static void 2415 indirblk_insert(freework) 2416 struct freework *freework; 2417 { 2418 struct jblocks *jblocks; 2419 struct jseg *jseg; 2420 struct ufsmount *ump; 2421 2422 ump = VFSTOUFS(freework->fw_list.wk_mp); 2423 jblocks = ump->softdep_jblocks; 2424 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2425 if (jseg == NULL) 2426 return; 2427 2428 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2429 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2430 fw_next); 2431 freework->fw_state &= ~DEPCOMPLETE; 2432 } 2433 2434 static void 2435 indirblk_remove(freework) 2436 struct freework *freework; 2437 { 2438 struct ufsmount *ump; 2439 2440 ump = VFSTOUFS(freework->fw_list.wk_mp); 2441 LIST_REMOVE(freework, fw_segs); 2442 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2443 freework->fw_state |= DEPCOMPLETE; 2444 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2445 WORKITEM_FREE(freework, D_FREEWORK); 2446 } 2447 2448 /* 2449 * Executed during filesystem system initialization before 2450 * mounting any filesystems. 2451 */ 2452 void 2453 softdep_initialize() 2454 { 2455 2456 TAILQ_INIT(&softdepmounts); 2457 #ifdef __LP64__ 2458 max_softdeps = desiredvnodes * 4; 2459 #else 2460 max_softdeps = desiredvnodes * 2; 2461 #endif 2462 2463 /* initialise bioops hack */ 2464 bioops.io_start = softdep_disk_io_initiation; 2465 bioops.io_complete = softdep_disk_write_complete; 2466 bioops.io_deallocate = softdep_deallocate_dependencies; 2467 bioops.io_countdeps = softdep_count_dependencies; 2468 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2469 2470 /* Initialize the callout with an mtx. */ 2471 callout_init_mtx(&softdep_callout, &lk, 0); 2472 } 2473 2474 /* 2475 * Executed after all filesystems have been unmounted during 2476 * filesystem module unload. 2477 */ 2478 void 2479 softdep_uninitialize() 2480 { 2481 2482 /* clear bioops hack */ 2483 bioops.io_start = NULL; 2484 bioops.io_complete = NULL; 2485 bioops.io_deallocate = NULL; 2486 bioops.io_countdeps = NULL; 2487 softdep_ast_cleanup = NULL; 2488 2489 callout_drain(&softdep_callout); 2490 } 2491 2492 /* 2493 * Called at mount time to notify the dependency code that a 2494 * filesystem wishes to use it. 2495 */ 2496 int 2497 softdep_mount(devvp, mp, fs, cred) 2498 struct vnode *devvp; 2499 struct mount *mp; 2500 struct fs *fs; 2501 struct ucred *cred; 2502 { 2503 struct csum_total cstotal; 2504 struct mount_softdeps *sdp; 2505 struct ufsmount *ump; 2506 struct cg *cgp; 2507 struct buf *bp; 2508 u_int cyl, i; 2509 int error; 2510 2511 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2512 M_WAITOK | M_ZERO); 2513 MNT_ILOCK(mp); 2514 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2515 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2516 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2517 MNTK_SOFTDEP | MNTK_NOASYNC; 2518 } 2519 ump = VFSTOUFS(mp); 2520 ump->um_softdep = sdp; 2521 MNT_IUNLOCK(mp); 2522 rw_init(LOCK_PTR(ump), "per-fs softdep"); 2523 sdp->sd_ump = ump; 2524 LIST_INIT(&ump->softdep_workitem_pending); 2525 LIST_INIT(&ump->softdep_journal_pending); 2526 TAILQ_INIT(&ump->softdep_unlinked); 2527 LIST_INIT(&ump->softdep_dirtycg); 2528 ump->softdep_worklist_tail = NULL; 2529 ump->softdep_on_worklist = 0; 2530 ump->softdep_deps = 0; 2531 LIST_INIT(&ump->softdep_mkdirlisthd); 2532 ump->pagedep_hashtbl = hashinit(desiredvnodes / 5, M_PAGEDEP, 2533 &ump->pagedep_hash_size); 2534 ump->pagedep_nextclean = 0; 2535 ump->inodedep_hashtbl = hashinit(desiredvnodes, M_INODEDEP, 2536 &ump->inodedep_hash_size); 2537 ump->inodedep_nextclean = 0; 2538 ump->newblk_hashtbl = hashinit(max_softdeps / 2, M_NEWBLK, 2539 &ump->newblk_hash_size); 2540 ump->bmsafemap_hashtbl = hashinit(1024, M_BMSAFEMAP, 2541 &ump->bmsafemap_hash_size); 2542 i = 1 << (ffs(desiredvnodes / 10) - 1); 2543 ump->indir_hashtbl = malloc(i * sizeof(struct indir_hashhead), 2544 M_FREEWORK, M_WAITOK); 2545 ump->indir_hash_size = i - 1; 2546 for (i = 0; i <= ump->indir_hash_size; i++) 2547 TAILQ_INIT(&ump->indir_hashtbl[i]); 2548 #ifdef INVARIANTS 2549 for (i = 0; i <= D_LAST; i++) 2550 LIST_INIT(&ump->softdep_alldeps[i]); 2551 #endif 2552 ACQUIRE_GBLLOCK(&lk); 2553 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2554 FREE_GBLLOCK(&lk); 2555 if ((fs->fs_flags & FS_SUJ) && 2556 (error = journal_mount(mp, fs, cred)) != 0) { 2557 printf("Failed to start journal: %d\n", error); 2558 softdep_unmount(mp); 2559 return (error); 2560 } 2561 /* 2562 * Start our flushing thread in the bufdaemon process. 2563 */ 2564 ACQUIRE_LOCK(ump); 2565 ump->softdep_flags |= FLUSH_STARTING; 2566 FREE_LOCK(ump); 2567 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2568 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2569 mp->mnt_stat.f_mntonname); 2570 ACQUIRE_LOCK(ump); 2571 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2572 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2573 hz / 2); 2574 } 2575 FREE_LOCK(ump); 2576 /* 2577 * When doing soft updates, the counters in the 2578 * superblock may have gotten out of sync. Recomputation 2579 * can take a long time and can be deferred for background 2580 * fsck. However, the old behavior of scanning the cylinder 2581 * groups and recalculating them at mount time is available 2582 * by setting vfs.ffs.compute_summary_at_mount to one. 2583 */ 2584 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2585 return (0); 2586 bzero(&cstotal, sizeof cstotal); 2587 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2588 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2589 fs->fs_cgsize, cred, &bp)) != 0) { 2590 brelse(bp); 2591 softdep_unmount(mp); 2592 return (error); 2593 } 2594 cgp = (struct cg *)bp->b_data; 2595 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2596 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2597 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2598 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2599 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2600 brelse(bp); 2601 } 2602 #ifdef INVARIANTS 2603 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2604 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2605 #endif 2606 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2607 return (0); 2608 } 2609 2610 void 2611 softdep_unmount(mp) 2612 struct mount *mp; 2613 { 2614 struct ufsmount *ump; 2615 #ifdef INVARIANTS 2616 int i; 2617 #endif 2618 2619 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 2620 ("softdep_unmount called on non-softdep filesystem")); 2621 ump = VFSTOUFS(mp); 2622 MNT_ILOCK(mp); 2623 mp->mnt_flag &= ~MNT_SOFTDEP; 2624 if (MOUNTEDSUJ(mp) == 0) { 2625 MNT_IUNLOCK(mp); 2626 } else { 2627 mp->mnt_flag &= ~MNT_SUJ; 2628 MNT_IUNLOCK(mp); 2629 journal_unmount(ump); 2630 } 2631 /* 2632 * Shut down our flushing thread. Check for NULL is if 2633 * softdep_mount errors out before the thread has been created. 2634 */ 2635 if (ump->softdep_flushtd != NULL) { 2636 ACQUIRE_LOCK(ump); 2637 ump->softdep_flags |= FLUSH_EXIT; 2638 wakeup(&ump->softdep_flushtd); 2639 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM | PDROP, 2640 "sdwait", 0); 2641 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2642 ("Thread shutdown failed")); 2643 } 2644 /* 2645 * Free up our resources. 2646 */ 2647 ACQUIRE_GBLLOCK(&lk); 2648 TAILQ_REMOVE(&softdepmounts, ump->um_softdep, sd_next); 2649 FREE_GBLLOCK(&lk); 2650 rw_destroy(LOCK_PTR(ump)); 2651 hashdestroy(ump->pagedep_hashtbl, M_PAGEDEP, ump->pagedep_hash_size); 2652 hashdestroy(ump->inodedep_hashtbl, M_INODEDEP, ump->inodedep_hash_size); 2653 hashdestroy(ump->newblk_hashtbl, M_NEWBLK, ump->newblk_hash_size); 2654 hashdestroy(ump->bmsafemap_hashtbl, M_BMSAFEMAP, 2655 ump->bmsafemap_hash_size); 2656 free(ump->indir_hashtbl, M_FREEWORK); 2657 #ifdef INVARIANTS 2658 for (i = 0; i <= D_LAST; i++) { 2659 KASSERT(ump->softdep_curdeps[i] == 0, 2660 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2661 TYPENAME(i), ump->softdep_curdeps[i])); 2662 KASSERT(LIST_EMPTY(&ump->softdep_alldeps[i]), 2663 ("Unmount %s: Dep type %s not empty (%p)", ump->um_fs->fs_fsmnt, 2664 TYPENAME(i), LIST_FIRST(&ump->softdep_alldeps[i]))); 2665 } 2666 #endif 2667 free(ump->um_softdep, M_MOUNTDATA); 2668 } 2669 2670 static struct jblocks * 2671 jblocks_create(void) 2672 { 2673 struct jblocks *jblocks; 2674 2675 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2676 TAILQ_INIT(&jblocks->jb_segs); 2677 jblocks->jb_avail = 10; 2678 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2679 M_JBLOCKS, M_WAITOK | M_ZERO); 2680 2681 return (jblocks); 2682 } 2683 2684 static ufs2_daddr_t 2685 jblocks_alloc(jblocks, bytes, actual) 2686 struct jblocks *jblocks; 2687 int bytes; 2688 int *actual; 2689 { 2690 ufs2_daddr_t daddr; 2691 struct jextent *jext; 2692 int freecnt; 2693 int blocks; 2694 2695 blocks = bytes / DEV_BSIZE; 2696 jext = &jblocks->jb_extent[jblocks->jb_head]; 2697 freecnt = jext->je_blocks - jblocks->jb_off; 2698 if (freecnt == 0) { 2699 jblocks->jb_off = 0; 2700 if (++jblocks->jb_head > jblocks->jb_used) 2701 jblocks->jb_head = 0; 2702 jext = &jblocks->jb_extent[jblocks->jb_head]; 2703 freecnt = jext->je_blocks; 2704 } 2705 if (freecnt > blocks) 2706 freecnt = blocks; 2707 *actual = freecnt * DEV_BSIZE; 2708 daddr = jext->je_daddr + jblocks->jb_off; 2709 jblocks->jb_off += freecnt; 2710 jblocks->jb_free -= freecnt; 2711 2712 return (daddr); 2713 } 2714 2715 static void 2716 jblocks_free(jblocks, mp, bytes) 2717 struct jblocks *jblocks; 2718 struct mount *mp; 2719 int bytes; 2720 { 2721 2722 LOCK_OWNED(VFSTOUFS(mp)); 2723 jblocks->jb_free += bytes / DEV_BSIZE; 2724 if (jblocks->jb_suspended) 2725 worklist_speedup(mp); 2726 wakeup(jblocks); 2727 } 2728 2729 static void 2730 jblocks_destroy(jblocks) 2731 struct jblocks *jblocks; 2732 { 2733 2734 if (jblocks->jb_extent) 2735 free(jblocks->jb_extent, M_JBLOCKS); 2736 free(jblocks, M_JBLOCKS); 2737 } 2738 2739 static void 2740 jblocks_add(jblocks, daddr, blocks) 2741 struct jblocks *jblocks; 2742 ufs2_daddr_t daddr; 2743 int blocks; 2744 { 2745 struct jextent *jext; 2746 2747 jblocks->jb_blocks += blocks; 2748 jblocks->jb_free += blocks; 2749 jext = &jblocks->jb_extent[jblocks->jb_used]; 2750 /* Adding the first block. */ 2751 if (jext->je_daddr == 0) { 2752 jext->je_daddr = daddr; 2753 jext->je_blocks = blocks; 2754 return; 2755 } 2756 /* Extending the last extent. */ 2757 if (jext->je_daddr + jext->je_blocks == daddr) { 2758 jext->je_blocks += blocks; 2759 return; 2760 } 2761 /* Adding a new extent. */ 2762 if (++jblocks->jb_used == jblocks->jb_avail) { 2763 jblocks->jb_avail *= 2; 2764 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2765 M_JBLOCKS, M_WAITOK | M_ZERO); 2766 memcpy(jext, jblocks->jb_extent, 2767 sizeof(struct jextent) * jblocks->jb_used); 2768 free(jblocks->jb_extent, M_JBLOCKS); 2769 jblocks->jb_extent = jext; 2770 } 2771 jext = &jblocks->jb_extent[jblocks->jb_used]; 2772 jext->je_daddr = daddr; 2773 jext->je_blocks = blocks; 2774 return; 2775 } 2776 2777 int 2778 softdep_journal_lookup(mp, vpp) 2779 struct mount *mp; 2780 struct vnode **vpp; 2781 { 2782 struct componentname cnp; 2783 struct vnode *dvp; 2784 ino_t sujournal; 2785 int error; 2786 2787 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2788 if (error) 2789 return (error); 2790 bzero(&cnp, sizeof(cnp)); 2791 cnp.cn_nameiop = LOOKUP; 2792 cnp.cn_flags = ISLASTCN; 2793 cnp.cn_thread = curthread; 2794 cnp.cn_cred = curthread->td_ucred; 2795 cnp.cn_pnbuf = SUJ_FILE; 2796 cnp.cn_nameptr = SUJ_FILE; 2797 cnp.cn_namelen = strlen(SUJ_FILE); 2798 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2799 vput(dvp); 2800 if (error != 0) 2801 return (error); 2802 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2803 return (error); 2804 } 2805 2806 /* 2807 * Open and verify the journal file. 2808 */ 2809 static int 2810 journal_mount(mp, fs, cred) 2811 struct mount *mp; 2812 struct fs *fs; 2813 struct ucred *cred; 2814 { 2815 struct jblocks *jblocks; 2816 struct ufsmount *ump; 2817 struct vnode *vp; 2818 struct inode *ip; 2819 ufs2_daddr_t blkno; 2820 int bcount; 2821 int error; 2822 int i; 2823 2824 ump = VFSTOUFS(mp); 2825 ump->softdep_journal_tail = NULL; 2826 ump->softdep_on_journal = 0; 2827 ump->softdep_accdeps = 0; 2828 ump->softdep_req = 0; 2829 ump->softdep_jblocks = NULL; 2830 error = softdep_journal_lookup(mp, &vp); 2831 if (error != 0) { 2832 printf("Failed to find journal. Use tunefs to create one\n"); 2833 return (error); 2834 } 2835 ip = VTOI(vp); 2836 if (ip->i_size < SUJ_MIN) { 2837 error = ENOSPC; 2838 goto out; 2839 } 2840 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 2841 jblocks = jblocks_create(); 2842 for (i = 0; i < bcount; i++) { 2843 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 2844 if (error) 2845 break; 2846 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 2847 } 2848 if (error) { 2849 jblocks_destroy(jblocks); 2850 goto out; 2851 } 2852 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 2853 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 2854 ump->softdep_jblocks = jblocks; 2855 out: 2856 if (error == 0) { 2857 MNT_ILOCK(mp); 2858 mp->mnt_flag |= MNT_SUJ; 2859 mp->mnt_flag &= ~MNT_SOFTDEP; 2860 MNT_IUNLOCK(mp); 2861 /* 2862 * Only validate the journal contents if the 2863 * filesystem is clean, otherwise we write the logs 2864 * but they'll never be used. If the filesystem was 2865 * still dirty when we mounted it the journal is 2866 * invalid and a new journal can only be valid if it 2867 * starts from a clean mount. 2868 */ 2869 if (fs->fs_clean) { 2870 DIP_SET(ip, i_modrev, fs->fs_mtime); 2871 ip->i_flags |= IN_MODIFIED; 2872 ffs_update(vp, 1); 2873 } 2874 } 2875 vput(vp); 2876 return (error); 2877 } 2878 2879 static void 2880 journal_unmount(ump) 2881 struct ufsmount *ump; 2882 { 2883 2884 if (ump->softdep_jblocks) 2885 jblocks_destroy(ump->softdep_jblocks); 2886 ump->softdep_jblocks = NULL; 2887 } 2888 2889 /* 2890 * Called when a journal record is ready to be written. Space is allocated 2891 * and the journal entry is created when the journal is flushed to stable 2892 * store. 2893 */ 2894 static void 2895 add_to_journal(wk) 2896 struct worklist *wk; 2897 { 2898 struct ufsmount *ump; 2899 2900 ump = VFSTOUFS(wk->wk_mp); 2901 LOCK_OWNED(ump); 2902 if (wk->wk_state & ONWORKLIST) 2903 panic("add_to_journal: %s(0x%X) already on list", 2904 TYPENAME(wk->wk_type), wk->wk_state); 2905 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 2906 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 2907 ump->softdep_jblocks->jb_age = ticks; 2908 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 2909 } else 2910 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 2911 ump->softdep_journal_tail = wk; 2912 ump->softdep_on_journal += 1; 2913 } 2914 2915 /* 2916 * Remove an arbitrary item for the journal worklist maintain the tail 2917 * pointer. This happens when a new operation obviates the need to 2918 * journal an old operation. 2919 */ 2920 static void 2921 remove_from_journal(wk) 2922 struct worklist *wk; 2923 { 2924 struct ufsmount *ump; 2925 2926 ump = VFSTOUFS(wk->wk_mp); 2927 LOCK_OWNED(ump); 2928 #ifdef INVARIANTS 2929 { 2930 struct worklist *wkn; 2931 2932 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 2933 if (wkn == wk) 2934 break; 2935 if (wkn == NULL) 2936 panic("remove_from_journal: %p is not in journal", wk); 2937 } 2938 #endif 2939 /* 2940 * We emulate a TAILQ to save space in most structures which do not 2941 * require TAILQ semantics. Here we must update the tail position 2942 * when removing the tail which is not the final entry. This works 2943 * only if the worklist linkage are at the beginning of the structure. 2944 */ 2945 if (ump->softdep_journal_tail == wk) 2946 ump->softdep_journal_tail = 2947 (struct worklist *)wk->wk_list.le_prev; 2948 WORKLIST_REMOVE(wk); 2949 ump->softdep_on_journal -= 1; 2950 } 2951 2952 /* 2953 * Check for journal space as well as dependency limits so the prelink 2954 * code can throttle both journaled and non-journaled filesystems. 2955 * Threshold is 0 for low and 1 for min. 2956 */ 2957 static int 2958 journal_space(ump, thresh) 2959 struct ufsmount *ump; 2960 int thresh; 2961 { 2962 struct jblocks *jblocks; 2963 int limit, avail; 2964 2965 jblocks = ump->softdep_jblocks; 2966 if (jblocks == NULL) 2967 return (1); 2968 /* 2969 * We use a tighter restriction here to prevent request_cleanup() 2970 * running in threads from running into locks we currently hold. 2971 * We have to be over the limit and our filesystem has to be 2972 * responsible for more than our share of that usage. 2973 */ 2974 limit = (max_softdeps / 10) * 9; 2975 if (dep_current[D_INODEDEP] > limit && 2976 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 2977 return (0); 2978 if (thresh) 2979 thresh = jblocks->jb_min; 2980 else 2981 thresh = jblocks->jb_low; 2982 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 2983 avail = jblocks->jb_free - avail; 2984 2985 return (avail > thresh); 2986 } 2987 2988 static void 2989 journal_suspend(ump) 2990 struct ufsmount *ump; 2991 { 2992 struct jblocks *jblocks; 2993 struct mount *mp; 2994 bool set; 2995 2996 mp = UFSTOVFS(ump); 2997 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 2998 return; 2999 3000 jblocks = ump->softdep_jblocks; 3001 vfs_op_enter(mp); 3002 set = false; 3003 MNT_ILOCK(mp); 3004 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3005 stat_journal_min++; 3006 mp->mnt_kern_flag |= MNTK_SUSPEND; 3007 mp->mnt_susp_owner = ump->softdep_flushtd; 3008 set = true; 3009 } 3010 jblocks->jb_suspended = 1; 3011 MNT_IUNLOCK(mp); 3012 if (!set) 3013 vfs_op_exit(mp); 3014 } 3015 3016 static int 3017 journal_unsuspend(struct ufsmount *ump) 3018 { 3019 struct jblocks *jblocks; 3020 struct mount *mp; 3021 3022 mp = UFSTOVFS(ump); 3023 jblocks = ump->softdep_jblocks; 3024 3025 if (jblocks != NULL && jblocks->jb_suspended && 3026 journal_space(ump, jblocks->jb_min)) { 3027 jblocks->jb_suspended = 0; 3028 FREE_LOCK(ump); 3029 mp->mnt_susp_owner = curthread; 3030 vfs_write_resume(mp, 0); 3031 ACQUIRE_LOCK(ump); 3032 return (1); 3033 } 3034 return (0); 3035 } 3036 3037 /* 3038 * Called before any allocation function to be certain that there is 3039 * sufficient space in the journal prior to creating any new records. 3040 * Since in the case of block allocation we may have multiple locked 3041 * buffers at the time of the actual allocation we can not block 3042 * when the journal records are created. Doing so would create a deadlock 3043 * if any of these buffers needed to be flushed to reclaim space. Instead 3044 * we require a sufficiently large amount of available space such that 3045 * each thread in the system could have passed this allocation check and 3046 * still have sufficient free space. With 20% of a minimum journal size 3047 * of 1MB we have 6553 records available. 3048 */ 3049 int 3050 softdep_prealloc(vp, waitok) 3051 struct vnode *vp; 3052 int waitok; 3053 { 3054 struct ufsmount *ump; 3055 3056 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3057 ("softdep_prealloc called on non-softdep filesystem")); 3058 /* 3059 * Nothing to do if we are not running journaled soft updates. 3060 * If we currently hold the snapshot lock, we must avoid 3061 * handling other resources that could cause deadlock. Do not 3062 * touch quotas vnode since it is typically recursed with 3063 * other vnode locks held. 3064 */ 3065 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3066 (vp->v_vflag & VV_SYSTEM) != 0) 3067 return (0); 3068 ump = VFSTOUFS(vp->v_mount); 3069 ACQUIRE_LOCK(ump); 3070 if (journal_space(ump, 0)) { 3071 FREE_LOCK(ump); 3072 return (0); 3073 } 3074 stat_journal_low++; 3075 FREE_LOCK(ump); 3076 if (waitok == MNT_NOWAIT) 3077 return (ENOSPC); 3078 /* 3079 * Attempt to sync this vnode once to flush any journal 3080 * work attached to it. 3081 */ 3082 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3083 ffs_syncvnode(vp, waitok, 0); 3084 ACQUIRE_LOCK(ump); 3085 process_removes(vp); 3086 process_truncates(vp); 3087 if (journal_space(ump, 0) == 0) { 3088 softdep_speedup(ump); 3089 if (journal_space(ump, 1) == 0) 3090 journal_suspend(ump); 3091 } 3092 FREE_LOCK(ump); 3093 3094 return (0); 3095 } 3096 3097 /* 3098 * Before adjusting a link count on a vnode verify that we have sufficient 3099 * journal space. If not, process operations that depend on the currently 3100 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3101 * and softdep flush threads can not acquire these locks to reclaim space. 3102 */ 3103 static void 3104 softdep_prelink(dvp, vp) 3105 struct vnode *dvp; 3106 struct vnode *vp; 3107 { 3108 struct ufsmount *ump; 3109 3110 ump = VFSTOUFS(dvp->v_mount); 3111 LOCK_OWNED(ump); 3112 /* 3113 * Nothing to do if we have sufficient journal space. 3114 * If we currently hold the snapshot lock, we must avoid 3115 * handling other resources that could cause deadlock. 3116 */ 3117 if (journal_space(ump, 0) || (vp && IS_SNAPSHOT(VTOI(vp)))) 3118 return; 3119 stat_journal_low++; 3120 FREE_LOCK(ump); 3121 if (vp) 3122 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3123 ffs_syncvnode(dvp, MNT_WAIT, 0); 3124 ACQUIRE_LOCK(ump); 3125 /* Process vp before dvp as it may create .. removes. */ 3126 if (vp) { 3127 process_removes(vp); 3128 process_truncates(vp); 3129 } 3130 process_removes(dvp); 3131 process_truncates(dvp); 3132 softdep_speedup(ump); 3133 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3134 if (journal_space(ump, 0) == 0) { 3135 softdep_speedup(ump); 3136 if (journal_space(ump, 1) == 0) 3137 journal_suspend(ump); 3138 } 3139 } 3140 3141 static void 3142 jseg_write(ump, jseg, data) 3143 struct ufsmount *ump; 3144 struct jseg *jseg; 3145 uint8_t *data; 3146 { 3147 struct jsegrec *rec; 3148 3149 rec = (struct jsegrec *)data; 3150 rec->jsr_seq = jseg->js_seq; 3151 rec->jsr_oldest = jseg->js_oldseq; 3152 rec->jsr_cnt = jseg->js_cnt; 3153 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3154 rec->jsr_crc = 0; 3155 rec->jsr_time = ump->um_fs->fs_mtime; 3156 } 3157 3158 static inline void 3159 inoref_write(inoref, jseg, rec) 3160 struct inoref *inoref; 3161 struct jseg *jseg; 3162 struct jrefrec *rec; 3163 { 3164 3165 inoref->if_jsegdep->jd_seg = jseg; 3166 rec->jr_ino = inoref->if_ino; 3167 rec->jr_parent = inoref->if_parent; 3168 rec->jr_nlink = inoref->if_nlink; 3169 rec->jr_mode = inoref->if_mode; 3170 rec->jr_diroff = inoref->if_diroff; 3171 } 3172 3173 static void 3174 jaddref_write(jaddref, jseg, data) 3175 struct jaddref *jaddref; 3176 struct jseg *jseg; 3177 uint8_t *data; 3178 { 3179 struct jrefrec *rec; 3180 3181 rec = (struct jrefrec *)data; 3182 rec->jr_op = JOP_ADDREF; 3183 inoref_write(&jaddref->ja_ref, jseg, rec); 3184 } 3185 3186 static void 3187 jremref_write(jremref, jseg, data) 3188 struct jremref *jremref; 3189 struct jseg *jseg; 3190 uint8_t *data; 3191 { 3192 struct jrefrec *rec; 3193 3194 rec = (struct jrefrec *)data; 3195 rec->jr_op = JOP_REMREF; 3196 inoref_write(&jremref->jr_ref, jseg, rec); 3197 } 3198 3199 static void 3200 jmvref_write(jmvref, jseg, data) 3201 struct jmvref *jmvref; 3202 struct jseg *jseg; 3203 uint8_t *data; 3204 { 3205 struct jmvrec *rec; 3206 3207 rec = (struct jmvrec *)data; 3208 rec->jm_op = JOP_MVREF; 3209 rec->jm_ino = jmvref->jm_ino; 3210 rec->jm_parent = jmvref->jm_parent; 3211 rec->jm_oldoff = jmvref->jm_oldoff; 3212 rec->jm_newoff = jmvref->jm_newoff; 3213 } 3214 3215 static void 3216 jnewblk_write(jnewblk, jseg, data) 3217 struct jnewblk *jnewblk; 3218 struct jseg *jseg; 3219 uint8_t *data; 3220 { 3221 struct jblkrec *rec; 3222 3223 jnewblk->jn_jsegdep->jd_seg = jseg; 3224 rec = (struct jblkrec *)data; 3225 rec->jb_op = JOP_NEWBLK; 3226 rec->jb_ino = jnewblk->jn_ino; 3227 rec->jb_blkno = jnewblk->jn_blkno; 3228 rec->jb_lbn = jnewblk->jn_lbn; 3229 rec->jb_frags = jnewblk->jn_frags; 3230 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3231 } 3232 3233 static void 3234 jfreeblk_write(jfreeblk, jseg, data) 3235 struct jfreeblk *jfreeblk; 3236 struct jseg *jseg; 3237 uint8_t *data; 3238 { 3239 struct jblkrec *rec; 3240 3241 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3242 rec = (struct jblkrec *)data; 3243 rec->jb_op = JOP_FREEBLK; 3244 rec->jb_ino = jfreeblk->jf_ino; 3245 rec->jb_blkno = jfreeblk->jf_blkno; 3246 rec->jb_lbn = jfreeblk->jf_lbn; 3247 rec->jb_frags = jfreeblk->jf_frags; 3248 rec->jb_oldfrags = 0; 3249 } 3250 3251 static void 3252 jfreefrag_write(jfreefrag, jseg, data) 3253 struct jfreefrag *jfreefrag; 3254 struct jseg *jseg; 3255 uint8_t *data; 3256 { 3257 struct jblkrec *rec; 3258 3259 jfreefrag->fr_jsegdep->jd_seg = jseg; 3260 rec = (struct jblkrec *)data; 3261 rec->jb_op = JOP_FREEBLK; 3262 rec->jb_ino = jfreefrag->fr_ino; 3263 rec->jb_blkno = jfreefrag->fr_blkno; 3264 rec->jb_lbn = jfreefrag->fr_lbn; 3265 rec->jb_frags = jfreefrag->fr_frags; 3266 rec->jb_oldfrags = 0; 3267 } 3268 3269 static void 3270 jtrunc_write(jtrunc, jseg, data) 3271 struct jtrunc *jtrunc; 3272 struct jseg *jseg; 3273 uint8_t *data; 3274 { 3275 struct jtrncrec *rec; 3276 3277 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3278 rec = (struct jtrncrec *)data; 3279 rec->jt_op = JOP_TRUNC; 3280 rec->jt_ino = jtrunc->jt_ino; 3281 rec->jt_size = jtrunc->jt_size; 3282 rec->jt_extsize = jtrunc->jt_extsize; 3283 } 3284 3285 static void 3286 jfsync_write(jfsync, jseg, data) 3287 struct jfsync *jfsync; 3288 struct jseg *jseg; 3289 uint8_t *data; 3290 { 3291 struct jtrncrec *rec; 3292 3293 rec = (struct jtrncrec *)data; 3294 rec->jt_op = JOP_SYNC; 3295 rec->jt_ino = jfsync->jfs_ino; 3296 rec->jt_size = jfsync->jfs_size; 3297 rec->jt_extsize = jfsync->jfs_extsize; 3298 } 3299 3300 static void 3301 softdep_flushjournal(mp) 3302 struct mount *mp; 3303 { 3304 struct jblocks *jblocks; 3305 struct ufsmount *ump; 3306 3307 if (MOUNTEDSUJ(mp) == 0) 3308 return; 3309 ump = VFSTOUFS(mp); 3310 jblocks = ump->softdep_jblocks; 3311 ACQUIRE_LOCK(ump); 3312 while (ump->softdep_on_journal) { 3313 jblocks->jb_needseg = 1; 3314 softdep_process_journal(mp, NULL, MNT_WAIT); 3315 } 3316 FREE_LOCK(ump); 3317 } 3318 3319 static void softdep_synchronize_completed(struct bio *); 3320 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3321 3322 static void 3323 softdep_synchronize_completed(bp) 3324 struct bio *bp; 3325 { 3326 struct jseg *oldest; 3327 struct jseg *jseg; 3328 struct ufsmount *ump; 3329 3330 /* 3331 * caller1 marks the last segment written before we issued the 3332 * synchronize cache. 3333 */ 3334 jseg = bp->bio_caller1; 3335 if (jseg == NULL) { 3336 g_destroy_bio(bp); 3337 return; 3338 } 3339 ump = VFSTOUFS(jseg->js_list.wk_mp); 3340 ACQUIRE_LOCK(ump); 3341 oldest = NULL; 3342 /* 3343 * Mark all the journal entries waiting on the synchronize cache 3344 * as completed so they may continue on. 3345 */ 3346 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3347 jseg->js_state |= COMPLETE; 3348 oldest = jseg; 3349 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3350 } 3351 /* 3352 * Restart deferred journal entry processing from the oldest 3353 * completed jseg. 3354 */ 3355 if (oldest) 3356 complete_jsegs(oldest); 3357 3358 FREE_LOCK(ump); 3359 g_destroy_bio(bp); 3360 } 3361 3362 /* 3363 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3364 * barriers. The journal must be written prior to any blocks that depend 3365 * on it and the journal can not be released until the blocks have be 3366 * written. This code handles both barriers simultaneously. 3367 */ 3368 static void 3369 softdep_synchronize(bp, ump, caller1) 3370 struct bio *bp; 3371 struct ufsmount *ump; 3372 void *caller1; 3373 { 3374 3375 bp->bio_cmd = BIO_FLUSH; 3376 bp->bio_flags |= BIO_ORDERED; 3377 bp->bio_data = NULL; 3378 bp->bio_offset = ump->um_cp->provider->mediasize; 3379 bp->bio_length = 0; 3380 bp->bio_done = softdep_synchronize_completed; 3381 bp->bio_caller1 = caller1; 3382 g_io_request(bp, ump->um_cp); 3383 } 3384 3385 /* 3386 * Flush some journal records to disk. 3387 */ 3388 static void 3389 softdep_process_journal(mp, needwk, flags) 3390 struct mount *mp; 3391 struct worklist *needwk; 3392 int flags; 3393 { 3394 struct jblocks *jblocks; 3395 struct ufsmount *ump; 3396 struct worklist *wk; 3397 struct jseg *jseg; 3398 struct buf *bp; 3399 struct bio *bio; 3400 uint8_t *data; 3401 struct fs *fs; 3402 int shouldflush; 3403 int segwritten; 3404 int jrecmin; /* Minimum records per block. */ 3405 int jrecmax; /* Maximum records per block. */ 3406 int size; 3407 int cnt; 3408 int off; 3409 int devbsize; 3410 3411 if (MOUNTEDSUJ(mp) == 0) 3412 return; 3413 shouldflush = softdep_flushcache; 3414 bio = NULL; 3415 jseg = NULL; 3416 ump = VFSTOUFS(mp); 3417 LOCK_OWNED(ump); 3418 fs = ump->um_fs; 3419 jblocks = ump->softdep_jblocks; 3420 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3421 /* 3422 * We write anywhere between a disk block and fs block. The upper 3423 * bound is picked to prevent buffer cache fragmentation and limit 3424 * processing time per I/O. 3425 */ 3426 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3427 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3428 segwritten = 0; 3429 for (;;) { 3430 cnt = ump->softdep_on_journal; 3431 /* 3432 * Criteria for writing a segment: 3433 * 1) We have a full block. 3434 * 2) We're called from jwait() and haven't found the 3435 * journal item yet. 3436 * 3) Always write if needseg is set. 3437 * 4) If we are called from process_worklist and have 3438 * not yet written anything we write a partial block 3439 * to enforce a 1 second maximum latency on journal 3440 * entries. 3441 */ 3442 if (cnt < (jrecmax - 1) && needwk == NULL && 3443 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3444 break; 3445 cnt++; 3446 /* 3447 * Verify some free journal space. softdep_prealloc() should 3448 * guarantee that we don't run out so this is indicative of 3449 * a problem with the flow control. Try to recover 3450 * gracefully in any event. 3451 */ 3452 while (jblocks->jb_free == 0) { 3453 if (flags != MNT_WAIT) 3454 break; 3455 printf("softdep: Out of journal space!\n"); 3456 softdep_speedup(ump); 3457 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3458 } 3459 FREE_LOCK(ump); 3460 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3461 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3462 LIST_INIT(&jseg->js_entries); 3463 LIST_INIT(&jseg->js_indirs); 3464 jseg->js_state = ATTACHED; 3465 if (shouldflush == 0) 3466 jseg->js_state |= COMPLETE; 3467 else if (bio == NULL) 3468 bio = g_alloc_bio(); 3469 jseg->js_jblocks = jblocks; 3470 bp = geteblk(fs->fs_bsize, 0); 3471 ACQUIRE_LOCK(ump); 3472 /* 3473 * If there was a race while we were allocating the block 3474 * and jseg the entry we care about was likely written. 3475 * We bail out in both the WAIT and NOWAIT case and assume 3476 * the caller will loop if the entry it cares about is 3477 * not written. 3478 */ 3479 cnt = ump->softdep_on_journal; 3480 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3481 bp->b_flags |= B_INVAL | B_NOCACHE; 3482 WORKITEM_FREE(jseg, D_JSEG); 3483 FREE_LOCK(ump); 3484 brelse(bp); 3485 ACQUIRE_LOCK(ump); 3486 break; 3487 } 3488 /* 3489 * Calculate the disk block size required for the available 3490 * records rounded to the min size. 3491 */ 3492 if (cnt == 0) 3493 size = devbsize; 3494 else if (cnt < jrecmax) 3495 size = howmany(cnt, jrecmin) * devbsize; 3496 else 3497 size = fs->fs_bsize; 3498 /* 3499 * Allocate a disk block for this journal data and account 3500 * for truncation of the requested size if enough contiguous 3501 * space was not available. 3502 */ 3503 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3504 bp->b_lblkno = bp->b_blkno; 3505 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3506 bp->b_bcount = size; 3507 bp->b_flags &= ~B_INVAL; 3508 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3509 /* 3510 * Initialize our jseg with cnt records. Assign the next 3511 * sequence number to it and link it in-order. 3512 */ 3513 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3514 jseg->js_buf = bp; 3515 jseg->js_cnt = cnt; 3516 jseg->js_refs = cnt + 1; /* Self ref. */ 3517 jseg->js_size = size; 3518 jseg->js_seq = jblocks->jb_nextseq++; 3519 if (jblocks->jb_oldestseg == NULL) 3520 jblocks->jb_oldestseg = jseg; 3521 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3522 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3523 if (jblocks->jb_writeseg == NULL) 3524 jblocks->jb_writeseg = jseg; 3525 /* 3526 * Start filling in records from the pending list. 3527 */ 3528 data = bp->b_data; 3529 off = 0; 3530 3531 /* 3532 * Always put a header on the first block. 3533 * XXX As with below, there might not be a chance to get 3534 * into the loop. Ensure that something valid is written. 3535 */ 3536 jseg_write(ump, jseg, data); 3537 off += JREC_SIZE; 3538 data = bp->b_data + off; 3539 3540 /* 3541 * XXX Something is wrong here. There's no work to do, 3542 * but we need to perform and I/O and allow it to complete 3543 * anyways. 3544 */ 3545 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3546 stat_emptyjblocks++; 3547 3548 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3549 != NULL) { 3550 if (cnt == 0) 3551 break; 3552 /* Place a segment header on every device block. */ 3553 if ((off % devbsize) == 0) { 3554 jseg_write(ump, jseg, data); 3555 off += JREC_SIZE; 3556 data = bp->b_data + off; 3557 } 3558 if (wk == needwk) 3559 needwk = NULL; 3560 remove_from_journal(wk); 3561 wk->wk_state |= INPROGRESS; 3562 WORKLIST_INSERT(&jseg->js_entries, wk); 3563 switch (wk->wk_type) { 3564 case D_JADDREF: 3565 jaddref_write(WK_JADDREF(wk), jseg, data); 3566 break; 3567 case D_JREMREF: 3568 jremref_write(WK_JREMREF(wk), jseg, data); 3569 break; 3570 case D_JMVREF: 3571 jmvref_write(WK_JMVREF(wk), jseg, data); 3572 break; 3573 case D_JNEWBLK: 3574 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3575 break; 3576 case D_JFREEBLK: 3577 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3578 break; 3579 case D_JFREEFRAG: 3580 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3581 break; 3582 case D_JTRUNC: 3583 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3584 break; 3585 case D_JFSYNC: 3586 jfsync_write(WK_JFSYNC(wk), jseg, data); 3587 break; 3588 default: 3589 panic("process_journal: Unknown type %s", 3590 TYPENAME(wk->wk_type)); 3591 /* NOTREACHED */ 3592 } 3593 off += JREC_SIZE; 3594 data = bp->b_data + off; 3595 cnt--; 3596 } 3597 3598 /* Clear any remaining space so we don't leak kernel data */ 3599 if (size > off) 3600 bzero(data, size - off); 3601 3602 /* 3603 * Write this one buffer and continue. 3604 */ 3605 segwritten = 1; 3606 jblocks->jb_needseg = 0; 3607 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3608 FREE_LOCK(ump); 3609 pbgetvp(ump->um_devvp, bp); 3610 /* 3611 * We only do the blocking wait once we find the journal 3612 * entry we're looking for. 3613 */ 3614 if (needwk == NULL && flags == MNT_WAIT) 3615 bwrite(bp); 3616 else 3617 bawrite(bp); 3618 ACQUIRE_LOCK(ump); 3619 } 3620 /* 3621 * If we wrote a segment issue a synchronize cache so the journal 3622 * is reflected on disk before the data is written. Since reclaiming 3623 * journal space also requires writing a journal record this 3624 * process also enforces a barrier before reclamation. 3625 */ 3626 if (segwritten && shouldflush) { 3627 softdep_synchronize(bio, ump, 3628 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3629 } else if (bio) 3630 g_destroy_bio(bio); 3631 /* 3632 * If we've suspended the filesystem because we ran out of journal 3633 * space either try to sync it here to make some progress or 3634 * unsuspend it if we already have. 3635 */ 3636 if (flags == 0 && jblocks->jb_suspended) { 3637 if (journal_unsuspend(ump)) 3638 return; 3639 FREE_LOCK(ump); 3640 VFS_SYNC(mp, MNT_NOWAIT); 3641 ffs_sbupdate(ump, MNT_WAIT, 0); 3642 ACQUIRE_LOCK(ump); 3643 } 3644 } 3645 3646 /* 3647 * Complete a jseg, allowing all dependencies awaiting journal writes 3648 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3649 * structures so that the journal segment can be freed to reclaim space. 3650 */ 3651 static void 3652 complete_jseg(jseg) 3653 struct jseg *jseg; 3654 { 3655 struct worklist *wk; 3656 struct jmvref *jmvref; 3657 #ifdef INVARIANTS 3658 int i = 0; 3659 #endif 3660 3661 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 3662 WORKLIST_REMOVE(wk); 3663 wk->wk_state &= ~INPROGRESS; 3664 wk->wk_state |= COMPLETE; 3665 KASSERT(i++ < jseg->js_cnt, 3666 ("handle_written_jseg: overflow %d >= %d", 3667 i - 1, jseg->js_cnt)); 3668 switch (wk->wk_type) { 3669 case D_JADDREF: 3670 handle_written_jaddref(WK_JADDREF(wk)); 3671 break; 3672 case D_JREMREF: 3673 handle_written_jremref(WK_JREMREF(wk)); 3674 break; 3675 case D_JMVREF: 3676 rele_jseg(jseg); /* No jsegdep. */ 3677 jmvref = WK_JMVREF(wk); 3678 LIST_REMOVE(jmvref, jm_deps); 3679 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 3680 free_pagedep(jmvref->jm_pagedep); 3681 WORKITEM_FREE(jmvref, D_JMVREF); 3682 break; 3683 case D_JNEWBLK: 3684 handle_written_jnewblk(WK_JNEWBLK(wk)); 3685 break; 3686 case D_JFREEBLK: 3687 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 3688 break; 3689 case D_JTRUNC: 3690 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 3691 break; 3692 case D_JFSYNC: 3693 rele_jseg(jseg); /* No jsegdep. */ 3694 WORKITEM_FREE(wk, D_JFSYNC); 3695 break; 3696 case D_JFREEFRAG: 3697 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 3698 break; 3699 default: 3700 panic("handle_written_jseg: Unknown type %s", 3701 TYPENAME(wk->wk_type)); 3702 /* NOTREACHED */ 3703 } 3704 } 3705 /* Release the self reference so the structure may be freed. */ 3706 rele_jseg(jseg); 3707 } 3708 3709 /* 3710 * Determine which jsegs are ready for completion processing. Waits for 3711 * synchronize cache to complete as well as forcing in-order completion 3712 * of journal entries. 3713 */ 3714 static void 3715 complete_jsegs(jseg) 3716 struct jseg *jseg; 3717 { 3718 struct jblocks *jblocks; 3719 struct jseg *jsegn; 3720 3721 jblocks = jseg->js_jblocks; 3722 /* 3723 * Don't allow out of order completions. If this isn't the first 3724 * block wait for it to write before we're done. 3725 */ 3726 if (jseg != jblocks->jb_writeseg) 3727 return; 3728 /* Iterate through available jsegs processing their entries. */ 3729 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 3730 jblocks->jb_oldestwrseq = jseg->js_oldseq; 3731 jsegn = TAILQ_NEXT(jseg, js_next); 3732 complete_jseg(jseg); 3733 jseg = jsegn; 3734 } 3735 jblocks->jb_writeseg = jseg; 3736 /* 3737 * Attempt to free jsegs now that oldestwrseq may have advanced. 3738 */ 3739 free_jsegs(jblocks); 3740 } 3741 3742 /* 3743 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 3744 * the final completions. 3745 */ 3746 static void 3747 handle_written_jseg(jseg, bp) 3748 struct jseg *jseg; 3749 struct buf *bp; 3750 { 3751 3752 if (jseg->js_refs == 0) 3753 panic("handle_written_jseg: No self-reference on %p", jseg); 3754 jseg->js_state |= DEPCOMPLETE; 3755 /* 3756 * We'll never need this buffer again, set flags so it will be 3757 * discarded. 3758 */ 3759 bp->b_flags |= B_INVAL | B_NOCACHE; 3760 pbrelvp(bp); 3761 complete_jsegs(jseg); 3762 } 3763 3764 static inline struct jsegdep * 3765 inoref_jseg(inoref) 3766 struct inoref *inoref; 3767 { 3768 struct jsegdep *jsegdep; 3769 3770 jsegdep = inoref->if_jsegdep; 3771 inoref->if_jsegdep = NULL; 3772 3773 return (jsegdep); 3774 } 3775 3776 /* 3777 * Called once a jremref has made it to stable store. The jremref is marked 3778 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 3779 * for the jremref to complete will be awoken by free_jremref. 3780 */ 3781 static void 3782 handle_written_jremref(jremref) 3783 struct jremref *jremref; 3784 { 3785 struct inodedep *inodedep; 3786 struct jsegdep *jsegdep; 3787 struct dirrem *dirrem; 3788 3789 /* Grab the jsegdep. */ 3790 jsegdep = inoref_jseg(&jremref->jr_ref); 3791 /* 3792 * Remove us from the inoref list. 3793 */ 3794 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 3795 0, &inodedep) == 0) 3796 panic("handle_written_jremref: Lost inodedep"); 3797 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 3798 /* 3799 * Complete the dirrem. 3800 */ 3801 dirrem = jremref->jr_dirrem; 3802 jremref->jr_dirrem = NULL; 3803 LIST_REMOVE(jremref, jr_deps); 3804 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 3805 jwork_insert(&dirrem->dm_jwork, jsegdep); 3806 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 3807 (dirrem->dm_state & COMPLETE) != 0) 3808 add_to_worklist(&dirrem->dm_list, 0); 3809 free_jremref(jremref); 3810 } 3811 3812 /* 3813 * Called once a jaddref has made it to stable store. The dependency is 3814 * marked complete and any dependent structures are added to the inode 3815 * bufwait list to be completed as soon as it is written. If a bitmap write 3816 * depends on this entry we move the inode into the inodedephd of the 3817 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 3818 */ 3819 static void 3820 handle_written_jaddref(jaddref) 3821 struct jaddref *jaddref; 3822 { 3823 struct jsegdep *jsegdep; 3824 struct inodedep *inodedep; 3825 struct diradd *diradd; 3826 struct mkdir *mkdir; 3827 3828 /* Grab the jsegdep. */ 3829 jsegdep = inoref_jseg(&jaddref->ja_ref); 3830 mkdir = NULL; 3831 diradd = NULL; 3832 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 3833 0, &inodedep) == 0) 3834 panic("handle_written_jaddref: Lost inodedep."); 3835 if (jaddref->ja_diradd == NULL) 3836 panic("handle_written_jaddref: No dependency"); 3837 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 3838 diradd = jaddref->ja_diradd; 3839 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 3840 } else if (jaddref->ja_state & MKDIR_PARENT) { 3841 mkdir = jaddref->ja_mkdir; 3842 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 3843 } else if (jaddref->ja_state & MKDIR_BODY) 3844 mkdir = jaddref->ja_mkdir; 3845 else 3846 panic("handle_written_jaddref: Unknown dependency %p", 3847 jaddref->ja_diradd); 3848 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 3849 /* 3850 * Remove us from the inode list. 3851 */ 3852 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 3853 /* 3854 * The mkdir may be waiting on the jaddref to clear before freeing. 3855 */ 3856 if (mkdir) { 3857 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 3858 ("handle_written_jaddref: Incorrect type for mkdir %s", 3859 TYPENAME(mkdir->md_list.wk_type))); 3860 mkdir->md_jaddref = NULL; 3861 diradd = mkdir->md_diradd; 3862 mkdir->md_state |= DEPCOMPLETE; 3863 complete_mkdir(mkdir); 3864 } 3865 jwork_insert(&diradd->da_jwork, jsegdep); 3866 if (jaddref->ja_state & NEWBLOCK) { 3867 inodedep->id_state |= ONDEPLIST; 3868 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 3869 inodedep, id_deps); 3870 } 3871 free_jaddref(jaddref); 3872 } 3873 3874 /* 3875 * Called once a jnewblk journal is written. The allocdirect or allocindir 3876 * is placed in the bmsafemap to await notification of a written bitmap. If 3877 * the operation was canceled we add the segdep to the appropriate 3878 * dependency to free the journal space once the canceling operation 3879 * completes. 3880 */ 3881 static void 3882 handle_written_jnewblk(jnewblk) 3883 struct jnewblk *jnewblk; 3884 { 3885 struct bmsafemap *bmsafemap; 3886 struct freefrag *freefrag; 3887 struct freework *freework; 3888 struct jsegdep *jsegdep; 3889 struct newblk *newblk; 3890 3891 /* Grab the jsegdep. */ 3892 jsegdep = jnewblk->jn_jsegdep; 3893 jnewblk->jn_jsegdep = NULL; 3894 if (jnewblk->jn_dep == NULL) 3895 panic("handle_written_jnewblk: No dependency for the segdep."); 3896 switch (jnewblk->jn_dep->wk_type) { 3897 case D_NEWBLK: 3898 case D_ALLOCDIRECT: 3899 case D_ALLOCINDIR: 3900 /* 3901 * Add the written block to the bmsafemap so it can 3902 * be notified when the bitmap is on disk. 3903 */ 3904 newblk = WK_NEWBLK(jnewblk->jn_dep); 3905 newblk->nb_jnewblk = NULL; 3906 if ((newblk->nb_state & GOINGAWAY) == 0) { 3907 bmsafemap = newblk->nb_bmsafemap; 3908 newblk->nb_state |= ONDEPLIST; 3909 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 3910 nb_deps); 3911 } 3912 jwork_insert(&newblk->nb_jwork, jsegdep); 3913 break; 3914 case D_FREEFRAG: 3915 /* 3916 * A newblock being removed by a freefrag when replaced by 3917 * frag extension. 3918 */ 3919 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 3920 freefrag->ff_jdep = NULL; 3921 jwork_insert(&freefrag->ff_jwork, jsegdep); 3922 break; 3923 case D_FREEWORK: 3924 /* 3925 * A direct block was removed by truncate. 3926 */ 3927 freework = WK_FREEWORK(jnewblk->jn_dep); 3928 freework->fw_jnewblk = NULL; 3929 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 3930 break; 3931 default: 3932 panic("handle_written_jnewblk: Unknown type %d.", 3933 jnewblk->jn_dep->wk_type); 3934 } 3935 jnewblk->jn_dep = NULL; 3936 free_jnewblk(jnewblk); 3937 } 3938 3939 /* 3940 * Cancel a jfreefrag that won't be needed, probably due to colliding with 3941 * an in-flight allocation that has not yet been committed. Divorce us 3942 * from the freefrag and mark it DEPCOMPLETE so that it may be added 3943 * to the worklist. 3944 */ 3945 static void 3946 cancel_jfreefrag(jfreefrag) 3947 struct jfreefrag *jfreefrag; 3948 { 3949 struct freefrag *freefrag; 3950 3951 if (jfreefrag->fr_jsegdep) { 3952 free_jsegdep(jfreefrag->fr_jsegdep); 3953 jfreefrag->fr_jsegdep = NULL; 3954 } 3955 freefrag = jfreefrag->fr_freefrag; 3956 jfreefrag->fr_freefrag = NULL; 3957 free_jfreefrag(jfreefrag); 3958 freefrag->ff_state |= DEPCOMPLETE; 3959 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 3960 } 3961 3962 /* 3963 * Free a jfreefrag when the parent freefrag is rendered obsolete. 3964 */ 3965 static void 3966 free_jfreefrag(jfreefrag) 3967 struct jfreefrag *jfreefrag; 3968 { 3969 3970 if (jfreefrag->fr_state & INPROGRESS) 3971 WORKLIST_REMOVE(&jfreefrag->fr_list); 3972 else if (jfreefrag->fr_state & ONWORKLIST) 3973 remove_from_journal(&jfreefrag->fr_list); 3974 if (jfreefrag->fr_freefrag != NULL) 3975 panic("free_jfreefrag: Still attached to a freefrag."); 3976 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 3977 } 3978 3979 /* 3980 * Called when the journal write for a jfreefrag completes. The parent 3981 * freefrag is added to the worklist if this completes its dependencies. 3982 */ 3983 static void 3984 handle_written_jfreefrag(jfreefrag) 3985 struct jfreefrag *jfreefrag; 3986 { 3987 struct jsegdep *jsegdep; 3988 struct freefrag *freefrag; 3989 3990 /* Grab the jsegdep. */ 3991 jsegdep = jfreefrag->fr_jsegdep; 3992 jfreefrag->fr_jsegdep = NULL; 3993 freefrag = jfreefrag->fr_freefrag; 3994 if (freefrag == NULL) 3995 panic("handle_written_jfreefrag: No freefrag."); 3996 freefrag->ff_state |= DEPCOMPLETE; 3997 freefrag->ff_jdep = NULL; 3998 jwork_insert(&freefrag->ff_jwork, jsegdep); 3999 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4000 add_to_worklist(&freefrag->ff_list, 0); 4001 jfreefrag->fr_freefrag = NULL; 4002 free_jfreefrag(jfreefrag); 4003 } 4004 4005 /* 4006 * Called when the journal write for a jfreeblk completes. The jfreeblk 4007 * is removed from the freeblks list of pending journal writes and the 4008 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4009 * have been reclaimed. 4010 */ 4011 static void 4012 handle_written_jblkdep(jblkdep) 4013 struct jblkdep *jblkdep; 4014 { 4015 struct freeblks *freeblks; 4016 struct jsegdep *jsegdep; 4017 4018 /* Grab the jsegdep. */ 4019 jsegdep = jblkdep->jb_jsegdep; 4020 jblkdep->jb_jsegdep = NULL; 4021 freeblks = jblkdep->jb_freeblks; 4022 LIST_REMOVE(jblkdep, jb_deps); 4023 jwork_insert(&freeblks->fb_jwork, jsegdep); 4024 /* 4025 * If the freeblks is all journaled, we can add it to the worklist. 4026 */ 4027 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4028 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4029 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4030 4031 free_jblkdep(jblkdep); 4032 } 4033 4034 static struct jsegdep * 4035 newjsegdep(struct worklist *wk) 4036 { 4037 struct jsegdep *jsegdep; 4038 4039 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4040 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4041 jsegdep->jd_seg = NULL; 4042 4043 return (jsegdep); 4044 } 4045 4046 static struct jmvref * 4047 newjmvref(dp, ino, oldoff, newoff) 4048 struct inode *dp; 4049 ino_t ino; 4050 off_t oldoff; 4051 off_t newoff; 4052 { 4053 struct jmvref *jmvref; 4054 4055 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4056 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4057 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4058 jmvref->jm_parent = dp->i_number; 4059 jmvref->jm_ino = ino; 4060 jmvref->jm_oldoff = oldoff; 4061 jmvref->jm_newoff = newoff; 4062 4063 return (jmvref); 4064 } 4065 4066 /* 4067 * Allocate a new jremref that tracks the removal of ip from dp with the 4068 * directory entry offset of diroff. Mark the entry as ATTACHED and 4069 * DEPCOMPLETE as we have all the information required for the journal write 4070 * and the directory has already been removed from the buffer. The caller 4071 * is responsible for linking the jremref into the pagedep and adding it 4072 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4073 * a DOTDOT addition so handle_workitem_remove() can properly assign 4074 * the jsegdep when we're done. 4075 */ 4076 static struct jremref * 4077 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4078 off_t diroff, nlink_t nlink) 4079 { 4080 struct jremref *jremref; 4081 4082 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4083 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4084 jremref->jr_state = ATTACHED; 4085 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4086 nlink, ip->i_mode); 4087 jremref->jr_dirrem = dirrem; 4088 4089 return (jremref); 4090 } 4091 4092 static inline void 4093 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4094 nlink_t nlink, uint16_t mode) 4095 { 4096 4097 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4098 inoref->if_diroff = diroff; 4099 inoref->if_ino = ino; 4100 inoref->if_parent = parent; 4101 inoref->if_nlink = nlink; 4102 inoref->if_mode = mode; 4103 } 4104 4105 /* 4106 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4107 * directory offset may not be known until later. The caller is responsible 4108 * adding the entry to the journal when this information is available. nlink 4109 * should be the link count prior to the addition and mode is only required 4110 * to have the correct FMT. 4111 */ 4112 static struct jaddref * 4113 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4114 uint16_t mode) 4115 { 4116 struct jaddref *jaddref; 4117 4118 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4119 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4120 jaddref->ja_state = ATTACHED; 4121 jaddref->ja_mkdir = NULL; 4122 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4123 4124 return (jaddref); 4125 } 4126 4127 /* 4128 * Create a new free dependency for a freework. The caller is responsible 4129 * for adjusting the reference count when it has the lock held. The freedep 4130 * will track an outstanding bitmap write that will ultimately clear the 4131 * freework to continue. 4132 */ 4133 static struct freedep * 4134 newfreedep(struct freework *freework) 4135 { 4136 struct freedep *freedep; 4137 4138 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4139 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4140 freedep->fd_freework = freework; 4141 4142 return (freedep); 4143 } 4144 4145 /* 4146 * Free a freedep structure once the buffer it is linked to is written. If 4147 * this is the last reference to the freework schedule it for completion. 4148 */ 4149 static void 4150 free_freedep(freedep) 4151 struct freedep *freedep; 4152 { 4153 struct freework *freework; 4154 4155 freework = freedep->fd_freework; 4156 freework->fw_freeblks->fb_cgwait--; 4157 if (--freework->fw_ref == 0) 4158 freework_enqueue(freework); 4159 WORKITEM_FREE(freedep, D_FREEDEP); 4160 } 4161 4162 /* 4163 * Allocate a new freework structure that may be a level in an indirect 4164 * when parent is not NULL or a top level block when it is. The top level 4165 * freework structures are allocated without the per-filesystem lock held 4166 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4167 */ 4168 static struct freework * 4169 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4170 struct ufsmount *ump; 4171 struct freeblks *freeblks; 4172 struct freework *parent; 4173 ufs_lbn_t lbn; 4174 ufs2_daddr_t nb; 4175 int frags; 4176 int off; 4177 int journal; 4178 { 4179 struct freework *freework; 4180 4181 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4182 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4183 freework->fw_state = ATTACHED; 4184 freework->fw_jnewblk = NULL; 4185 freework->fw_freeblks = freeblks; 4186 freework->fw_parent = parent; 4187 freework->fw_lbn = lbn; 4188 freework->fw_blkno = nb; 4189 freework->fw_frags = frags; 4190 freework->fw_indir = NULL; 4191 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4192 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4193 freework->fw_start = freework->fw_off = off; 4194 if (journal) 4195 newjfreeblk(freeblks, lbn, nb, frags); 4196 if (parent == NULL) { 4197 ACQUIRE_LOCK(ump); 4198 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4199 freeblks->fb_ref++; 4200 FREE_LOCK(ump); 4201 } 4202 4203 return (freework); 4204 } 4205 4206 /* 4207 * Eliminate a jfreeblk for a block that does not need journaling. 4208 */ 4209 static void 4210 cancel_jfreeblk(freeblks, blkno) 4211 struct freeblks *freeblks; 4212 ufs2_daddr_t blkno; 4213 { 4214 struct jfreeblk *jfreeblk; 4215 struct jblkdep *jblkdep; 4216 4217 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4218 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4219 continue; 4220 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4221 if (jfreeblk->jf_blkno == blkno) 4222 break; 4223 } 4224 if (jblkdep == NULL) 4225 return; 4226 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4227 free_jsegdep(jblkdep->jb_jsegdep); 4228 LIST_REMOVE(jblkdep, jb_deps); 4229 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4230 } 4231 4232 /* 4233 * Allocate a new jfreeblk to journal top level block pointer when truncating 4234 * a file. The caller must add this to the worklist when the per-filesystem 4235 * lock is held. 4236 */ 4237 static struct jfreeblk * 4238 newjfreeblk(freeblks, lbn, blkno, frags) 4239 struct freeblks *freeblks; 4240 ufs_lbn_t lbn; 4241 ufs2_daddr_t blkno; 4242 int frags; 4243 { 4244 struct jfreeblk *jfreeblk; 4245 4246 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4247 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4248 freeblks->fb_list.wk_mp); 4249 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4250 jfreeblk->jf_dep.jb_freeblks = freeblks; 4251 jfreeblk->jf_ino = freeblks->fb_inum; 4252 jfreeblk->jf_lbn = lbn; 4253 jfreeblk->jf_blkno = blkno; 4254 jfreeblk->jf_frags = frags; 4255 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4256 4257 return (jfreeblk); 4258 } 4259 4260 /* 4261 * The journal is only prepared to handle full-size block numbers, so we 4262 * have to adjust the record to reflect the change to a full-size block. 4263 * For example, suppose we have a block made up of fragments 8-15 and 4264 * want to free its last two fragments. We are given a request that says: 4265 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4266 * where frags are the number of fragments to free and oldfrags are the 4267 * number of fragments to keep. To block align it, we have to change it to 4268 * have a valid full-size blkno, so it becomes: 4269 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4270 */ 4271 static void 4272 adjust_newfreework(freeblks, frag_offset) 4273 struct freeblks *freeblks; 4274 int frag_offset; 4275 { 4276 struct jfreeblk *jfreeblk; 4277 4278 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4279 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4280 ("adjust_newfreework: Missing freeblks dependency")); 4281 4282 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4283 jfreeblk->jf_blkno -= frag_offset; 4284 jfreeblk->jf_frags += frag_offset; 4285 } 4286 4287 /* 4288 * Allocate a new jtrunc to track a partial truncation. 4289 */ 4290 static struct jtrunc * 4291 newjtrunc(freeblks, size, extsize) 4292 struct freeblks *freeblks; 4293 off_t size; 4294 int extsize; 4295 { 4296 struct jtrunc *jtrunc; 4297 4298 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4299 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4300 freeblks->fb_list.wk_mp); 4301 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4302 jtrunc->jt_dep.jb_freeblks = freeblks; 4303 jtrunc->jt_ino = freeblks->fb_inum; 4304 jtrunc->jt_size = size; 4305 jtrunc->jt_extsize = extsize; 4306 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4307 4308 return (jtrunc); 4309 } 4310 4311 /* 4312 * If we're canceling a new bitmap we have to search for another ref 4313 * to move into the bmsafemap dep. This might be better expressed 4314 * with another structure. 4315 */ 4316 static void 4317 move_newblock_dep(jaddref, inodedep) 4318 struct jaddref *jaddref; 4319 struct inodedep *inodedep; 4320 { 4321 struct inoref *inoref; 4322 struct jaddref *jaddrefn; 4323 4324 jaddrefn = NULL; 4325 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4326 inoref = TAILQ_NEXT(inoref, if_deps)) { 4327 if ((jaddref->ja_state & NEWBLOCK) && 4328 inoref->if_list.wk_type == D_JADDREF) { 4329 jaddrefn = (struct jaddref *)inoref; 4330 break; 4331 } 4332 } 4333 if (jaddrefn == NULL) 4334 return; 4335 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4336 jaddrefn->ja_state |= jaddref->ja_state & 4337 (ATTACHED | UNDONE | NEWBLOCK); 4338 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4339 jaddref->ja_state |= ATTACHED; 4340 LIST_REMOVE(jaddref, ja_bmdeps); 4341 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4342 ja_bmdeps); 4343 } 4344 4345 /* 4346 * Cancel a jaddref either before it has been written or while it is being 4347 * written. This happens when a link is removed before the add reaches 4348 * the disk. The jaddref dependency is kept linked into the bmsafemap 4349 * and inode to prevent the link count or bitmap from reaching the disk 4350 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4351 * required. 4352 * 4353 * Returns 1 if the canceled addref requires journaling of the remove and 4354 * 0 otherwise. 4355 */ 4356 static int 4357 cancel_jaddref(jaddref, inodedep, wkhd) 4358 struct jaddref *jaddref; 4359 struct inodedep *inodedep; 4360 struct workhead *wkhd; 4361 { 4362 struct inoref *inoref; 4363 struct jsegdep *jsegdep; 4364 int needsj; 4365 4366 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4367 ("cancel_jaddref: Canceling complete jaddref")); 4368 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4369 needsj = 1; 4370 else 4371 needsj = 0; 4372 if (inodedep == NULL) 4373 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4374 0, &inodedep) == 0) 4375 panic("cancel_jaddref: Lost inodedep"); 4376 /* 4377 * We must adjust the nlink of any reference operation that follows 4378 * us so that it is consistent with the in-memory reference. This 4379 * ensures that inode nlink rollbacks always have the correct link. 4380 */ 4381 if (needsj == 0) { 4382 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4383 inoref = TAILQ_NEXT(inoref, if_deps)) { 4384 if (inoref->if_state & GOINGAWAY) 4385 break; 4386 inoref->if_nlink--; 4387 } 4388 } 4389 jsegdep = inoref_jseg(&jaddref->ja_ref); 4390 if (jaddref->ja_state & NEWBLOCK) 4391 move_newblock_dep(jaddref, inodedep); 4392 wake_worklist(&jaddref->ja_list); 4393 jaddref->ja_mkdir = NULL; 4394 if (jaddref->ja_state & INPROGRESS) { 4395 jaddref->ja_state &= ~INPROGRESS; 4396 WORKLIST_REMOVE(&jaddref->ja_list); 4397 jwork_insert(wkhd, jsegdep); 4398 } else { 4399 free_jsegdep(jsegdep); 4400 if (jaddref->ja_state & DEPCOMPLETE) 4401 remove_from_journal(&jaddref->ja_list); 4402 } 4403 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4404 /* 4405 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4406 * can arrange for them to be freed with the bitmap. Otherwise we 4407 * no longer need this addref attached to the inoreflst and it 4408 * will incorrectly adjust nlink if we leave it. 4409 */ 4410 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4411 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4412 if_deps); 4413 jaddref->ja_state |= COMPLETE; 4414 free_jaddref(jaddref); 4415 return (needsj); 4416 } 4417 /* 4418 * Leave the head of the list for jsegdeps for fast merging. 4419 */ 4420 if (LIST_FIRST(wkhd) != NULL) { 4421 jaddref->ja_state |= ONWORKLIST; 4422 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4423 } else 4424 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4425 4426 return (needsj); 4427 } 4428 4429 /* 4430 * Attempt to free a jaddref structure when some work completes. This 4431 * should only succeed once the entry is written and all dependencies have 4432 * been notified. 4433 */ 4434 static void 4435 free_jaddref(jaddref) 4436 struct jaddref *jaddref; 4437 { 4438 4439 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4440 return; 4441 if (jaddref->ja_ref.if_jsegdep) 4442 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4443 jaddref, jaddref->ja_state); 4444 if (jaddref->ja_state & NEWBLOCK) 4445 LIST_REMOVE(jaddref, ja_bmdeps); 4446 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4447 panic("free_jaddref: Bad state %p(0x%X)", 4448 jaddref, jaddref->ja_state); 4449 if (jaddref->ja_mkdir != NULL) 4450 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4451 WORKITEM_FREE(jaddref, D_JADDREF); 4452 } 4453 4454 /* 4455 * Free a jremref structure once it has been written or discarded. 4456 */ 4457 static void 4458 free_jremref(jremref) 4459 struct jremref *jremref; 4460 { 4461 4462 if (jremref->jr_ref.if_jsegdep) 4463 free_jsegdep(jremref->jr_ref.if_jsegdep); 4464 if (jremref->jr_state & INPROGRESS) 4465 panic("free_jremref: IO still pending"); 4466 WORKITEM_FREE(jremref, D_JREMREF); 4467 } 4468 4469 /* 4470 * Free a jnewblk structure. 4471 */ 4472 static void 4473 free_jnewblk(jnewblk) 4474 struct jnewblk *jnewblk; 4475 { 4476 4477 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4478 return; 4479 LIST_REMOVE(jnewblk, jn_deps); 4480 if (jnewblk->jn_dep != NULL) 4481 panic("free_jnewblk: Dependency still attached."); 4482 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4483 } 4484 4485 /* 4486 * Cancel a jnewblk which has been been made redundant by frag extension. 4487 */ 4488 static void 4489 cancel_jnewblk(jnewblk, wkhd) 4490 struct jnewblk *jnewblk; 4491 struct workhead *wkhd; 4492 { 4493 struct jsegdep *jsegdep; 4494 4495 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4496 jsegdep = jnewblk->jn_jsegdep; 4497 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4498 panic("cancel_jnewblk: Invalid state"); 4499 jnewblk->jn_jsegdep = NULL; 4500 jnewblk->jn_dep = NULL; 4501 jnewblk->jn_state |= GOINGAWAY; 4502 if (jnewblk->jn_state & INPROGRESS) { 4503 jnewblk->jn_state &= ~INPROGRESS; 4504 WORKLIST_REMOVE(&jnewblk->jn_list); 4505 jwork_insert(wkhd, jsegdep); 4506 } else { 4507 free_jsegdep(jsegdep); 4508 remove_from_journal(&jnewblk->jn_list); 4509 } 4510 wake_worklist(&jnewblk->jn_list); 4511 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4512 } 4513 4514 static void 4515 free_jblkdep(jblkdep) 4516 struct jblkdep *jblkdep; 4517 { 4518 4519 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4520 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4521 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4522 WORKITEM_FREE(jblkdep, D_JTRUNC); 4523 else 4524 panic("free_jblkdep: Unexpected type %s", 4525 TYPENAME(jblkdep->jb_list.wk_type)); 4526 } 4527 4528 /* 4529 * Free a single jseg once it is no longer referenced in memory or on 4530 * disk. Reclaim journal blocks and dependencies waiting for the segment 4531 * to disappear. 4532 */ 4533 static void 4534 free_jseg(jseg, jblocks) 4535 struct jseg *jseg; 4536 struct jblocks *jblocks; 4537 { 4538 struct freework *freework; 4539 4540 /* 4541 * Free freework structures that were lingering to indicate freed 4542 * indirect blocks that forced journal write ordering on reallocate. 4543 */ 4544 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4545 indirblk_remove(freework); 4546 if (jblocks->jb_oldestseg == jseg) 4547 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4548 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4549 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4550 KASSERT(LIST_EMPTY(&jseg->js_entries), 4551 ("free_jseg: Freed jseg has valid entries.")); 4552 WORKITEM_FREE(jseg, D_JSEG); 4553 } 4554 4555 /* 4556 * Free all jsegs that meet the criteria for being reclaimed and update 4557 * oldestseg. 4558 */ 4559 static void 4560 free_jsegs(jblocks) 4561 struct jblocks *jblocks; 4562 { 4563 struct jseg *jseg; 4564 4565 /* 4566 * Free only those jsegs which have none allocated before them to 4567 * preserve the journal space ordering. 4568 */ 4569 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4570 /* 4571 * Only reclaim space when nothing depends on this journal 4572 * set and another set has written that it is no longer 4573 * valid. 4574 */ 4575 if (jseg->js_refs != 0) { 4576 jblocks->jb_oldestseg = jseg; 4577 return; 4578 } 4579 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4580 break; 4581 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4582 break; 4583 /* 4584 * We can free jsegs that didn't write entries when 4585 * oldestwrseq == js_seq. 4586 */ 4587 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4588 jseg->js_cnt != 0) 4589 break; 4590 free_jseg(jseg, jblocks); 4591 } 4592 /* 4593 * If we exited the loop above we still must discover the 4594 * oldest valid segment. 4595 */ 4596 if (jseg) 4597 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4598 jseg = TAILQ_NEXT(jseg, js_next)) 4599 if (jseg->js_refs != 0) 4600 break; 4601 jblocks->jb_oldestseg = jseg; 4602 /* 4603 * The journal has no valid records but some jsegs may still be 4604 * waiting on oldestwrseq to advance. We force a small record 4605 * out to permit these lingering records to be reclaimed. 4606 */ 4607 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4608 jblocks->jb_needseg = 1; 4609 } 4610 4611 /* 4612 * Release one reference to a jseg and free it if the count reaches 0. This 4613 * should eventually reclaim journal space as well. 4614 */ 4615 static void 4616 rele_jseg(jseg) 4617 struct jseg *jseg; 4618 { 4619 4620 KASSERT(jseg->js_refs > 0, 4621 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4622 if (--jseg->js_refs != 0) 4623 return; 4624 free_jsegs(jseg->js_jblocks); 4625 } 4626 4627 /* 4628 * Release a jsegdep and decrement the jseg count. 4629 */ 4630 static void 4631 free_jsegdep(jsegdep) 4632 struct jsegdep *jsegdep; 4633 { 4634 4635 if (jsegdep->jd_seg) 4636 rele_jseg(jsegdep->jd_seg); 4637 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4638 } 4639 4640 /* 4641 * Wait for a journal item to make it to disk. Initiate journal processing 4642 * if required. 4643 */ 4644 static int 4645 jwait(wk, waitfor) 4646 struct worklist *wk; 4647 int waitfor; 4648 { 4649 4650 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4651 /* 4652 * Blocking journal waits cause slow synchronous behavior. Record 4653 * stats on the frequency of these blocking operations. 4654 */ 4655 if (waitfor == MNT_WAIT) { 4656 stat_journal_wait++; 4657 switch (wk->wk_type) { 4658 case D_JREMREF: 4659 case D_JMVREF: 4660 stat_jwait_filepage++; 4661 break; 4662 case D_JTRUNC: 4663 case D_JFREEBLK: 4664 stat_jwait_freeblks++; 4665 break; 4666 case D_JNEWBLK: 4667 stat_jwait_newblk++; 4668 break; 4669 case D_JADDREF: 4670 stat_jwait_inode++; 4671 break; 4672 default: 4673 break; 4674 } 4675 } 4676 /* 4677 * If IO has not started we process the journal. We can't mark the 4678 * worklist item as IOWAITING because we drop the lock while 4679 * processing the journal and the worklist entry may be freed after 4680 * this point. The caller may call back in and re-issue the request. 4681 */ 4682 if ((wk->wk_state & INPROGRESS) == 0) { 4683 softdep_process_journal(wk->wk_mp, wk, waitfor); 4684 if (waitfor != MNT_WAIT) 4685 return (EBUSY); 4686 return (0); 4687 } 4688 if (waitfor != MNT_WAIT) 4689 return (EBUSY); 4690 wait_worklist(wk, "jwait"); 4691 return (0); 4692 } 4693 4694 /* 4695 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 4696 * appropriate. This is a convenience function to reduce duplicate code 4697 * for the setup and revert functions below. 4698 */ 4699 static struct inodedep * 4700 inodedep_lookup_ip(ip) 4701 struct inode *ip; 4702 { 4703 struct inodedep *inodedep; 4704 4705 KASSERT(ip->i_nlink >= ip->i_effnlink, 4706 ("inodedep_lookup_ip: bad delta")); 4707 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 4708 &inodedep); 4709 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 4710 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 4711 4712 return (inodedep); 4713 } 4714 4715 /* 4716 * Called prior to creating a new inode and linking it to a directory. The 4717 * jaddref structure must already be allocated by softdep_setup_inomapdep 4718 * and it is discovered here so we can initialize the mode and update 4719 * nlinkdelta. 4720 */ 4721 void 4722 softdep_setup_create(dp, ip) 4723 struct inode *dp; 4724 struct inode *ip; 4725 { 4726 struct inodedep *inodedep; 4727 struct jaddref *jaddref; 4728 struct vnode *dvp; 4729 4730 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4731 ("softdep_setup_create called on non-softdep filesystem")); 4732 KASSERT(ip->i_nlink == 1, 4733 ("softdep_setup_create: Invalid link count.")); 4734 dvp = ITOV(dp); 4735 ACQUIRE_LOCK(ITOUMP(dp)); 4736 inodedep = inodedep_lookup_ip(ip); 4737 if (DOINGSUJ(dvp)) { 4738 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4739 inoreflst); 4740 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 4741 ("softdep_setup_create: No addref structure present.")); 4742 } 4743 softdep_prelink(dvp, NULL); 4744 FREE_LOCK(ITOUMP(dp)); 4745 } 4746 4747 /* 4748 * Create a jaddref structure to track the addition of a DOTDOT link when 4749 * we are reparenting an inode as part of a rename. This jaddref will be 4750 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 4751 * non-journaling softdep. 4752 */ 4753 void 4754 softdep_setup_dotdot_link(dp, ip) 4755 struct inode *dp; 4756 struct inode *ip; 4757 { 4758 struct inodedep *inodedep; 4759 struct jaddref *jaddref; 4760 struct vnode *dvp; 4761 4762 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4763 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 4764 dvp = ITOV(dp); 4765 jaddref = NULL; 4766 /* 4767 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 4768 * is used as a normal link would be. 4769 */ 4770 if (DOINGSUJ(dvp)) 4771 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4772 dp->i_effnlink - 1, dp->i_mode); 4773 ACQUIRE_LOCK(ITOUMP(dp)); 4774 inodedep = inodedep_lookup_ip(dp); 4775 if (jaddref) 4776 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4777 if_deps); 4778 softdep_prelink(dvp, ITOV(ip)); 4779 FREE_LOCK(ITOUMP(dp)); 4780 } 4781 4782 /* 4783 * Create a jaddref structure to track a new link to an inode. The directory 4784 * offset is not known until softdep_setup_directory_add or 4785 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 4786 * softdep. 4787 */ 4788 void 4789 softdep_setup_link(dp, ip) 4790 struct inode *dp; 4791 struct inode *ip; 4792 { 4793 struct inodedep *inodedep; 4794 struct jaddref *jaddref; 4795 struct vnode *dvp; 4796 4797 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4798 ("softdep_setup_link called on non-softdep filesystem")); 4799 dvp = ITOV(dp); 4800 jaddref = NULL; 4801 if (DOINGSUJ(dvp)) 4802 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 4803 ip->i_mode); 4804 ACQUIRE_LOCK(ITOUMP(dp)); 4805 inodedep = inodedep_lookup_ip(ip); 4806 if (jaddref) 4807 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 4808 if_deps); 4809 softdep_prelink(dvp, ITOV(ip)); 4810 FREE_LOCK(ITOUMP(dp)); 4811 } 4812 4813 /* 4814 * Called to create the jaddref structures to track . and .. references as 4815 * well as lookup and further initialize the incomplete jaddref created 4816 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 4817 * nlinkdelta for non-journaling softdep. 4818 */ 4819 void 4820 softdep_setup_mkdir(dp, ip) 4821 struct inode *dp; 4822 struct inode *ip; 4823 { 4824 struct inodedep *inodedep; 4825 struct jaddref *dotdotaddref; 4826 struct jaddref *dotaddref; 4827 struct jaddref *jaddref; 4828 struct vnode *dvp; 4829 4830 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4831 ("softdep_setup_mkdir called on non-softdep filesystem")); 4832 dvp = ITOV(dp); 4833 dotaddref = dotdotaddref = NULL; 4834 if (DOINGSUJ(dvp)) { 4835 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 4836 ip->i_mode); 4837 dotaddref->ja_state |= MKDIR_BODY; 4838 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 4839 dp->i_effnlink - 1, dp->i_mode); 4840 dotdotaddref->ja_state |= MKDIR_PARENT; 4841 } 4842 ACQUIRE_LOCK(ITOUMP(dp)); 4843 inodedep = inodedep_lookup_ip(ip); 4844 if (DOINGSUJ(dvp)) { 4845 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4846 inoreflst); 4847 KASSERT(jaddref != NULL, 4848 ("softdep_setup_mkdir: No addref structure present.")); 4849 KASSERT(jaddref->ja_parent == dp->i_number, 4850 ("softdep_setup_mkdir: bad parent %ju", 4851 (uintmax_t)jaddref->ja_parent)); 4852 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 4853 if_deps); 4854 } 4855 inodedep = inodedep_lookup_ip(dp); 4856 if (DOINGSUJ(dvp)) 4857 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 4858 &dotdotaddref->ja_ref, if_deps); 4859 softdep_prelink(ITOV(dp), NULL); 4860 FREE_LOCK(ITOUMP(dp)); 4861 } 4862 4863 /* 4864 * Called to track nlinkdelta of the inode and parent directories prior to 4865 * unlinking a directory. 4866 */ 4867 void 4868 softdep_setup_rmdir(dp, ip) 4869 struct inode *dp; 4870 struct inode *ip; 4871 { 4872 struct vnode *dvp; 4873 4874 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4875 ("softdep_setup_rmdir called on non-softdep filesystem")); 4876 dvp = ITOV(dp); 4877 ACQUIRE_LOCK(ITOUMP(dp)); 4878 (void) inodedep_lookup_ip(ip); 4879 (void) inodedep_lookup_ip(dp); 4880 softdep_prelink(dvp, ITOV(ip)); 4881 FREE_LOCK(ITOUMP(dp)); 4882 } 4883 4884 /* 4885 * Called to track nlinkdelta of the inode and parent directories prior to 4886 * unlink. 4887 */ 4888 void 4889 softdep_setup_unlink(dp, ip) 4890 struct inode *dp; 4891 struct inode *ip; 4892 { 4893 struct vnode *dvp; 4894 4895 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4896 ("softdep_setup_unlink called on non-softdep filesystem")); 4897 dvp = ITOV(dp); 4898 ACQUIRE_LOCK(ITOUMP(dp)); 4899 (void) inodedep_lookup_ip(ip); 4900 (void) inodedep_lookup_ip(dp); 4901 softdep_prelink(dvp, ITOV(ip)); 4902 FREE_LOCK(ITOUMP(dp)); 4903 } 4904 4905 /* 4906 * Called to release the journal structures created by a failed non-directory 4907 * creation. Adjusts nlinkdelta for non-journaling softdep. 4908 */ 4909 void 4910 softdep_revert_create(dp, ip) 4911 struct inode *dp; 4912 struct inode *ip; 4913 { 4914 struct inodedep *inodedep; 4915 struct jaddref *jaddref; 4916 struct vnode *dvp; 4917 4918 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 4919 ("softdep_revert_create called on non-softdep filesystem")); 4920 dvp = ITOV(dp); 4921 ACQUIRE_LOCK(ITOUMP(dp)); 4922 inodedep = inodedep_lookup_ip(ip); 4923 if (DOINGSUJ(dvp)) { 4924 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4925 inoreflst); 4926 KASSERT(jaddref->ja_parent == dp->i_number, 4927 ("softdep_revert_create: addref parent mismatch")); 4928 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4929 } 4930 FREE_LOCK(ITOUMP(dp)); 4931 } 4932 4933 /* 4934 * Called to release the journal structures created by a failed link 4935 * addition. Adjusts nlinkdelta for non-journaling softdep. 4936 */ 4937 void 4938 softdep_revert_link(dp, ip) 4939 struct inode *dp; 4940 struct inode *ip; 4941 { 4942 struct inodedep *inodedep; 4943 struct jaddref *jaddref; 4944 struct vnode *dvp; 4945 4946 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4947 ("softdep_revert_link called on non-softdep filesystem")); 4948 dvp = ITOV(dp); 4949 ACQUIRE_LOCK(ITOUMP(dp)); 4950 inodedep = inodedep_lookup_ip(ip); 4951 if (DOINGSUJ(dvp)) { 4952 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4953 inoreflst); 4954 KASSERT(jaddref->ja_parent == dp->i_number, 4955 ("softdep_revert_link: addref parent mismatch")); 4956 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4957 } 4958 FREE_LOCK(ITOUMP(dp)); 4959 } 4960 4961 /* 4962 * Called to release the journal structures created by a failed mkdir 4963 * attempt. Adjusts nlinkdelta for non-journaling softdep. 4964 */ 4965 void 4966 softdep_revert_mkdir(dp, ip) 4967 struct inode *dp; 4968 struct inode *ip; 4969 { 4970 struct inodedep *inodedep; 4971 struct jaddref *jaddref; 4972 struct jaddref *dotaddref; 4973 struct vnode *dvp; 4974 4975 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 4976 ("softdep_revert_mkdir called on non-softdep filesystem")); 4977 dvp = ITOV(dp); 4978 4979 ACQUIRE_LOCK(ITOUMP(dp)); 4980 inodedep = inodedep_lookup_ip(dp); 4981 if (DOINGSUJ(dvp)) { 4982 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4983 inoreflst); 4984 KASSERT(jaddref->ja_parent == ip->i_number, 4985 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 4986 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4987 } 4988 inodedep = inodedep_lookup_ip(ip); 4989 if (DOINGSUJ(dvp)) { 4990 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 4991 inoreflst); 4992 KASSERT(jaddref->ja_parent == dp->i_number, 4993 ("softdep_revert_mkdir: addref parent mismatch")); 4994 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 4995 inoreflst, if_deps); 4996 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 4997 KASSERT(dotaddref->ja_parent == ip->i_number, 4998 ("softdep_revert_mkdir: dot addref parent mismatch")); 4999 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5000 } 5001 FREE_LOCK(ITOUMP(dp)); 5002 } 5003 5004 /* 5005 * Called to correct nlinkdelta after a failed rmdir. 5006 */ 5007 void 5008 softdep_revert_rmdir(dp, ip) 5009 struct inode *dp; 5010 struct inode *ip; 5011 { 5012 5013 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5014 ("softdep_revert_rmdir called on non-softdep filesystem")); 5015 ACQUIRE_LOCK(ITOUMP(dp)); 5016 (void) inodedep_lookup_ip(ip); 5017 (void) inodedep_lookup_ip(dp); 5018 FREE_LOCK(ITOUMP(dp)); 5019 } 5020 5021 /* 5022 * Protecting the freemaps (or bitmaps). 5023 * 5024 * To eliminate the need to execute fsck before mounting a filesystem 5025 * after a power failure, one must (conservatively) guarantee that the 5026 * on-disk copy of the bitmaps never indicate that a live inode or block is 5027 * free. So, when a block or inode is allocated, the bitmap should be 5028 * updated (on disk) before any new pointers. When a block or inode is 5029 * freed, the bitmap should not be updated until all pointers have been 5030 * reset. The latter dependency is handled by the delayed de-allocation 5031 * approach described below for block and inode de-allocation. The former 5032 * dependency is handled by calling the following procedure when a block or 5033 * inode is allocated. When an inode is allocated an "inodedep" is created 5034 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5035 * Each "inodedep" is also inserted into the hash indexing structure so 5036 * that any additional link additions can be made dependent on the inode 5037 * allocation. 5038 * 5039 * The ufs filesystem maintains a number of free block counts (e.g., per 5040 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5041 * in addition to the bitmaps. These counts are used to improve efficiency 5042 * during allocation and therefore must be consistent with the bitmaps. 5043 * There is no convenient way to guarantee post-crash consistency of these 5044 * counts with simple update ordering, for two main reasons: (1) The counts 5045 * and bitmaps for a single cylinder group block are not in the same disk 5046 * sector. If a disk write is interrupted (e.g., by power failure), one may 5047 * be written and the other not. (2) Some of the counts are located in the 5048 * superblock rather than the cylinder group block. So, we focus our soft 5049 * updates implementation on protecting the bitmaps. When mounting a 5050 * filesystem, we recompute the auxiliary counts from the bitmaps. 5051 */ 5052 5053 /* 5054 * Called just after updating the cylinder group block to allocate an inode. 5055 */ 5056 void 5057 softdep_setup_inomapdep(bp, ip, newinum, mode) 5058 struct buf *bp; /* buffer for cylgroup block with inode map */ 5059 struct inode *ip; /* inode related to allocation */ 5060 ino_t newinum; /* new inode number being allocated */ 5061 int mode; 5062 { 5063 struct inodedep *inodedep; 5064 struct bmsafemap *bmsafemap; 5065 struct jaddref *jaddref; 5066 struct mount *mp; 5067 struct fs *fs; 5068 5069 mp = ITOVFS(ip); 5070 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5071 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5072 fs = VFSTOUFS(mp)->um_fs; 5073 jaddref = NULL; 5074 5075 /* 5076 * Allocate the journal reference add structure so that the bitmap 5077 * can be dependent on it. 5078 */ 5079 if (MOUNTEDSUJ(mp)) { 5080 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5081 jaddref->ja_state |= NEWBLOCK; 5082 } 5083 5084 /* 5085 * Create a dependency for the newly allocated inode. 5086 * Panic if it already exists as something is seriously wrong. 5087 * Otherwise add it to the dependency list for the buffer holding 5088 * the cylinder group map from which it was allocated. 5089 * 5090 * We have to preallocate a bmsafemap entry in case it is needed 5091 * in bmsafemap_lookup since once we allocate the inodedep, we 5092 * have to finish initializing it before we can FREE_LOCK(). 5093 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5094 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5095 * creating the inodedep as it can be freed during the time 5096 * that we FREE_LOCK() while allocating the inodedep. We must 5097 * call workitem_alloc() before entering the locked section as 5098 * it also acquires the lock and we must avoid trying doing so 5099 * recursively. 5100 */ 5101 bmsafemap = malloc(sizeof(struct bmsafemap), 5102 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5103 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5104 ACQUIRE_LOCK(ITOUMP(ip)); 5105 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5106 panic("softdep_setup_inomapdep: dependency %p for new" 5107 "inode already exists", inodedep); 5108 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5109 if (jaddref) { 5110 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5111 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5112 if_deps); 5113 } else { 5114 inodedep->id_state |= ONDEPLIST; 5115 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5116 } 5117 inodedep->id_bmsafemap = bmsafemap; 5118 inodedep->id_state &= ~DEPCOMPLETE; 5119 FREE_LOCK(ITOUMP(ip)); 5120 } 5121 5122 /* 5123 * Called just after updating the cylinder group block to 5124 * allocate block or fragment. 5125 */ 5126 void 5127 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5128 struct buf *bp; /* buffer for cylgroup block with block map */ 5129 struct mount *mp; /* filesystem doing allocation */ 5130 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5131 int frags; /* Number of fragments. */ 5132 int oldfrags; /* Previous number of fragments for extend. */ 5133 { 5134 struct newblk *newblk; 5135 struct bmsafemap *bmsafemap; 5136 struct jnewblk *jnewblk; 5137 struct ufsmount *ump; 5138 struct fs *fs; 5139 5140 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5141 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5142 ump = VFSTOUFS(mp); 5143 fs = ump->um_fs; 5144 jnewblk = NULL; 5145 /* 5146 * Create a dependency for the newly allocated block. 5147 * Add it to the dependency list for the buffer holding 5148 * the cylinder group map from which it was allocated. 5149 */ 5150 if (MOUNTEDSUJ(mp)) { 5151 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5152 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5153 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5154 jnewblk->jn_state = ATTACHED; 5155 jnewblk->jn_blkno = newblkno; 5156 jnewblk->jn_frags = frags; 5157 jnewblk->jn_oldfrags = oldfrags; 5158 #ifdef INVARIANTS 5159 { 5160 struct cg *cgp; 5161 uint8_t *blksfree; 5162 long bno; 5163 int i; 5164 5165 cgp = (struct cg *)bp->b_data; 5166 blksfree = cg_blksfree(cgp); 5167 bno = dtogd(fs, jnewblk->jn_blkno); 5168 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5169 i++) { 5170 if (isset(blksfree, bno + i)) 5171 panic("softdep_setup_blkmapdep: " 5172 "free fragment %d from %d-%d " 5173 "state 0x%X dep %p", i, 5174 jnewblk->jn_oldfrags, 5175 jnewblk->jn_frags, 5176 jnewblk->jn_state, 5177 jnewblk->jn_dep); 5178 } 5179 } 5180 #endif 5181 } 5182 5183 CTR3(KTR_SUJ, 5184 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5185 newblkno, frags, oldfrags); 5186 ACQUIRE_LOCK(ump); 5187 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5188 panic("softdep_setup_blkmapdep: found block"); 5189 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5190 dtog(fs, newblkno), NULL); 5191 if (jnewblk) { 5192 jnewblk->jn_dep = (struct worklist *)newblk; 5193 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5194 } else { 5195 newblk->nb_state |= ONDEPLIST; 5196 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5197 } 5198 newblk->nb_bmsafemap = bmsafemap; 5199 newblk->nb_jnewblk = jnewblk; 5200 FREE_LOCK(ump); 5201 } 5202 5203 #define BMSAFEMAP_HASH(ump, cg) \ 5204 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5205 5206 static int 5207 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5208 struct bmsafemap_hashhead *bmsafemaphd; 5209 int cg; 5210 struct bmsafemap **bmsafemapp; 5211 { 5212 struct bmsafemap *bmsafemap; 5213 5214 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5215 if (bmsafemap->sm_cg == cg) 5216 break; 5217 if (bmsafemap) { 5218 *bmsafemapp = bmsafemap; 5219 return (1); 5220 } 5221 *bmsafemapp = NULL; 5222 5223 return (0); 5224 } 5225 5226 /* 5227 * Find the bmsafemap associated with a cylinder group buffer. 5228 * If none exists, create one. The buffer must be locked when 5229 * this routine is called and this routine must be called with 5230 * the softdep lock held. To avoid giving up the lock while 5231 * allocating a new bmsafemap, a preallocated bmsafemap may be 5232 * provided. If it is provided but not needed, it is freed. 5233 */ 5234 static struct bmsafemap * 5235 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5236 struct mount *mp; 5237 struct buf *bp; 5238 int cg; 5239 struct bmsafemap *newbmsafemap; 5240 { 5241 struct bmsafemap_hashhead *bmsafemaphd; 5242 struct bmsafemap *bmsafemap, *collision; 5243 struct worklist *wk; 5244 struct ufsmount *ump; 5245 5246 ump = VFSTOUFS(mp); 5247 LOCK_OWNED(ump); 5248 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5249 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5250 if (wk->wk_type == D_BMSAFEMAP) { 5251 if (newbmsafemap) 5252 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5253 return (WK_BMSAFEMAP(wk)); 5254 } 5255 } 5256 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5257 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5258 if (newbmsafemap) 5259 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5260 return (bmsafemap); 5261 } 5262 if (newbmsafemap) { 5263 bmsafemap = newbmsafemap; 5264 } else { 5265 FREE_LOCK(ump); 5266 bmsafemap = malloc(sizeof(struct bmsafemap), 5267 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5268 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5269 ACQUIRE_LOCK(ump); 5270 } 5271 bmsafemap->sm_buf = bp; 5272 LIST_INIT(&bmsafemap->sm_inodedephd); 5273 LIST_INIT(&bmsafemap->sm_inodedepwr); 5274 LIST_INIT(&bmsafemap->sm_newblkhd); 5275 LIST_INIT(&bmsafemap->sm_newblkwr); 5276 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5277 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5278 LIST_INIT(&bmsafemap->sm_freehd); 5279 LIST_INIT(&bmsafemap->sm_freewr); 5280 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5281 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5282 return (collision); 5283 } 5284 bmsafemap->sm_cg = cg; 5285 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5286 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5287 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5288 return (bmsafemap); 5289 } 5290 5291 /* 5292 * Direct block allocation dependencies. 5293 * 5294 * When a new block is allocated, the corresponding disk locations must be 5295 * initialized (with zeros or new data) before the on-disk inode points to 5296 * them. Also, the freemap from which the block was allocated must be 5297 * updated (on disk) before the inode's pointer. These two dependencies are 5298 * independent of each other and are needed for all file blocks and indirect 5299 * blocks that are pointed to directly by the inode. Just before the 5300 * "in-core" version of the inode is updated with a newly allocated block 5301 * number, a procedure (below) is called to setup allocation dependency 5302 * structures. These structures are removed when the corresponding 5303 * dependencies are satisfied or when the block allocation becomes obsolete 5304 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5305 * fragment that gets upgraded). All of these cases are handled in 5306 * procedures described later. 5307 * 5308 * When a file extension causes a fragment to be upgraded, either to a larger 5309 * fragment or to a full block, the on-disk location may change (if the 5310 * previous fragment could not simply be extended). In this case, the old 5311 * fragment must be de-allocated, but not until after the inode's pointer has 5312 * been updated. In most cases, this is handled by later procedures, which 5313 * will construct a "freefrag" structure to be added to the workitem queue 5314 * when the inode update is complete (or obsolete). The main exception to 5315 * this is when an allocation occurs while a pending allocation dependency 5316 * (for the same block pointer) remains. This case is handled in the main 5317 * allocation dependency setup procedure by immediately freeing the 5318 * unreferenced fragments. 5319 */ 5320 void 5321 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5322 struct inode *ip; /* inode to which block is being added */ 5323 ufs_lbn_t off; /* block pointer within inode */ 5324 ufs2_daddr_t newblkno; /* disk block number being added */ 5325 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5326 long newsize; /* size of new block */ 5327 long oldsize; /* size of new block */ 5328 struct buf *bp; /* bp for allocated block */ 5329 { 5330 struct allocdirect *adp, *oldadp; 5331 struct allocdirectlst *adphead; 5332 struct freefrag *freefrag; 5333 struct inodedep *inodedep; 5334 struct pagedep *pagedep; 5335 struct jnewblk *jnewblk; 5336 struct newblk *newblk; 5337 struct mount *mp; 5338 ufs_lbn_t lbn; 5339 5340 lbn = bp->b_lblkno; 5341 mp = ITOVFS(ip); 5342 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5343 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5344 if (oldblkno && oldblkno != newblkno) 5345 /* 5346 * The usual case is that a smaller fragment that 5347 * was just allocated has been replaced with a bigger 5348 * fragment or a full-size block. If it is marked as 5349 * B_DELWRI, the current contents have not been written 5350 * to disk. It is possible that the block was written 5351 * earlier, but very uncommon. If the block has never 5352 * been written, there is no need to send a BIO_DELETE 5353 * for it when it is freed. The gain from avoiding the 5354 * TRIMs for the common case of unwritten blocks far 5355 * exceeds the cost of the write amplification for the 5356 * uncommon case of failing to send a TRIM for a block 5357 * that had been written. 5358 */ 5359 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5360 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5361 else 5362 freefrag = NULL; 5363 5364 CTR6(KTR_SUJ, 5365 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5366 "off %jd newsize %ld oldsize %d", 5367 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5368 ACQUIRE_LOCK(ITOUMP(ip)); 5369 if (off >= UFS_NDADDR) { 5370 if (lbn > 0) 5371 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5372 lbn, off); 5373 /* allocating an indirect block */ 5374 if (oldblkno != 0) 5375 panic("softdep_setup_allocdirect: non-zero indir"); 5376 } else { 5377 if (off != lbn) 5378 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5379 lbn, off); 5380 /* 5381 * Allocating a direct block. 5382 * 5383 * If we are allocating a directory block, then we must 5384 * allocate an associated pagedep to track additions and 5385 * deletions. 5386 */ 5387 if ((ip->i_mode & IFMT) == IFDIR) 5388 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5389 &pagedep); 5390 } 5391 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5392 panic("softdep_setup_allocdirect: lost block"); 5393 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5394 ("softdep_setup_allocdirect: newblk already initialized")); 5395 /* 5396 * Convert the newblk to an allocdirect. 5397 */ 5398 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5399 adp = (struct allocdirect *)newblk; 5400 newblk->nb_freefrag = freefrag; 5401 adp->ad_offset = off; 5402 adp->ad_oldblkno = oldblkno; 5403 adp->ad_newsize = newsize; 5404 adp->ad_oldsize = oldsize; 5405 5406 /* 5407 * Finish initializing the journal. 5408 */ 5409 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5410 jnewblk->jn_ino = ip->i_number; 5411 jnewblk->jn_lbn = lbn; 5412 add_to_journal(&jnewblk->jn_list); 5413 } 5414 if (freefrag && freefrag->ff_jdep != NULL && 5415 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5416 add_to_journal(freefrag->ff_jdep); 5417 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5418 adp->ad_inodedep = inodedep; 5419 5420 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5421 /* 5422 * The list of allocdirects must be kept in sorted and ascending 5423 * order so that the rollback routines can quickly determine the 5424 * first uncommitted block (the size of the file stored on disk 5425 * ends at the end of the lowest committed fragment, or if there 5426 * are no fragments, at the end of the highest committed block). 5427 * Since files generally grow, the typical case is that the new 5428 * block is to be added at the end of the list. We speed this 5429 * special case by checking against the last allocdirect in the 5430 * list before laboriously traversing the list looking for the 5431 * insertion point. 5432 */ 5433 adphead = &inodedep->id_newinoupdt; 5434 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5435 if (oldadp == NULL || oldadp->ad_offset <= off) { 5436 /* insert at end of list */ 5437 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5438 if (oldadp != NULL && oldadp->ad_offset == off) 5439 allocdirect_merge(adphead, adp, oldadp); 5440 FREE_LOCK(ITOUMP(ip)); 5441 return; 5442 } 5443 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5444 if (oldadp->ad_offset >= off) 5445 break; 5446 } 5447 if (oldadp == NULL) 5448 panic("softdep_setup_allocdirect: lost entry"); 5449 /* insert in middle of list */ 5450 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5451 if (oldadp->ad_offset == off) 5452 allocdirect_merge(adphead, adp, oldadp); 5453 5454 FREE_LOCK(ITOUMP(ip)); 5455 } 5456 5457 /* 5458 * Merge a newer and older journal record to be stored either in a 5459 * newblock or freefrag. This handles aggregating journal records for 5460 * fragment allocation into a second record as well as replacing a 5461 * journal free with an aborted journal allocation. A segment for the 5462 * oldest record will be placed on wkhd if it has been written. If not 5463 * the segment for the newer record will suffice. 5464 */ 5465 static struct worklist * 5466 jnewblk_merge(new, old, wkhd) 5467 struct worklist *new; 5468 struct worklist *old; 5469 struct workhead *wkhd; 5470 { 5471 struct jnewblk *njnewblk; 5472 struct jnewblk *jnewblk; 5473 5474 /* Handle NULLs to simplify callers. */ 5475 if (new == NULL) 5476 return (old); 5477 if (old == NULL) 5478 return (new); 5479 /* Replace a jfreefrag with a jnewblk. */ 5480 if (new->wk_type == D_JFREEFRAG) { 5481 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5482 panic("jnewblk_merge: blkno mismatch: %p, %p", 5483 old, new); 5484 cancel_jfreefrag(WK_JFREEFRAG(new)); 5485 return (old); 5486 } 5487 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5488 panic("jnewblk_merge: Bad type: old %d new %d\n", 5489 old->wk_type, new->wk_type); 5490 /* 5491 * Handle merging of two jnewblk records that describe 5492 * different sets of fragments in the same block. 5493 */ 5494 jnewblk = WK_JNEWBLK(old); 5495 njnewblk = WK_JNEWBLK(new); 5496 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5497 panic("jnewblk_merge: Merging disparate blocks."); 5498 /* 5499 * The record may be rolled back in the cg. 5500 */ 5501 if (jnewblk->jn_state & UNDONE) { 5502 jnewblk->jn_state &= ~UNDONE; 5503 njnewblk->jn_state |= UNDONE; 5504 njnewblk->jn_state &= ~ATTACHED; 5505 } 5506 /* 5507 * We modify the newer addref and free the older so that if neither 5508 * has been written the most up-to-date copy will be on disk. If 5509 * both have been written but rolled back we only temporarily need 5510 * one of them to fix the bits when the cg write completes. 5511 */ 5512 jnewblk->jn_state |= ATTACHED | COMPLETE; 5513 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5514 cancel_jnewblk(jnewblk, wkhd); 5515 WORKLIST_REMOVE(&jnewblk->jn_list); 5516 free_jnewblk(jnewblk); 5517 return (new); 5518 } 5519 5520 /* 5521 * Replace an old allocdirect dependency with a newer one. 5522 */ 5523 static void 5524 allocdirect_merge(adphead, newadp, oldadp) 5525 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5526 struct allocdirect *newadp; /* allocdirect being added */ 5527 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5528 { 5529 struct worklist *wk; 5530 struct freefrag *freefrag; 5531 5532 freefrag = NULL; 5533 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5534 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5535 newadp->ad_oldsize != oldadp->ad_newsize || 5536 newadp->ad_offset >= UFS_NDADDR) 5537 panic("%s %jd != new %jd || old size %ld != new %ld", 5538 "allocdirect_merge: old blkno", 5539 (intmax_t)newadp->ad_oldblkno, 5540 (intmax_t)oldadp->ad_newblkno, 5541 newadp->ad_oldsize, oldadp->ad_newsize); 5542 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5543 newadp->ad_oldsize = oldadp->ad_oldsize; 5544 /* 5545 * If the old dependency had a fragment to free or had never 5546 * previously had a block allocated, then the new dependency 5547 * can immediately post its freefrag and adopt the old freefrag. 5548 * This action is done by swapping the freefrag dependencies. 5549 * The new dependency gains the old one's freefrag, and the 5550 * old one gets the new one and then immediately puts it on 5551 * the worklist when it is freed by free_newblk. It is 5552 * not possible to do this swap when the old dependency had a 5553 * non-zero size but no previous fragment to free. This condition 5554 * arises when the new block is an extension of the old block. 5555 * Here, the first part of the fragment allocated to the new 5556 * dependency is part of the block currently claimed on disk by 5557 * the old dependency, so cannot legitimately be freed until the 5558 * conditions for the new dependency are fulfilled. 5559 */ 5560 freefrag = newadp->ad_freefrag; 5561 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5562 newadp->ad_freefrag = oldadp->ad_freefrag; 5563 oldadp->ad_freefrag = freefrag; 5564 } 5565 /* 5566 * If we are tracking a new directory-block allocation, 5567 * move it from the old allocdirect to the new allocdirect. 5568 */ 5569 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5570 WORKLIST_REMOVE(wk); 5571 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5572 panic("allocdirect_merge: extra newdirblk"); 5573 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5574 } 5575 TAILQ_REMOVE(adphead, oldadp, ad_next); 5576 /* 5577 * We need to move any journal dependencies over to the freefrag 5578 * that releases this block if it exists. Otherwise we are 5579 * extending an existing block and we'll wait until that is 5580 * complete to release the journal space and extend the 5581 * new journal to cover this old space as well. 5582 */ 5583 if (freefrag == NULL) { 5584 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5585 panic("allocdirect_merge: %jd != %jd", 5586 oldadp->ad_newblkno, newadp->ad_newblkno); 5587 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5588 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5589 &oldadp->ad_block.nb_jnewblk->jn_list, 5590 &newadp->ad_block.nb_jwork); 5591 oldadp->ad_block.nb_jnewblk = NULL; 5592 cancel_newblk(&oldadp->ad_block, NULL, 5593 &newadp->ad_block.nb_jwork); 5594 } else { 5595 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5596 &freefrag->ff_list, &freefrag->ff_jwork); 5597 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5598 &freefrag->ff_jwork); 5599 } 5600 free_newblk(&oldadp->ad_block); 5601 } 5602 5603 /* 5604 * Allocate a jfreefrag structure to journal a single block free. 5605 */ 5606 static struct jfreefrag * 5607 newjfreefrag(freefrag, ip, blkno, size, lbn) 5608 struct freefrag *freefrag; 5609 struct inode *ip; 5610 ufs2_daddr_t blkno; 5611 long size; 5612 ufs_lbn_t lbn; 5613 { 5614 struct jfreefrag *jfreefrag; 5615 struct fs *fs; 5616 5617 fs = ITOFS(ip); 5618 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5619 M_SOFTDEP_FLAGS); 5620 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5621 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5622 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5623 jfreefrag->fr_ino = ip->i_number; 5624 jfreefrag->fr_lbn = lbn; 5625 jfreefrag->fr_blkno = blkno; 5626 jfreefrag->fr_frags = numfrags(fs, size); 5627 jfreefrag->fr_freefrag = freefrag; 5628 5629 return (jfreefrag); 5630 } 5631 5632 /* 5633 * Allocate a new freefrag structure. 5634 */ 5635 static struct freefrag * 5636 newfreefrag(ip, blkno, size, lbn, key) 5637 struct inode *ip; 5638 ufs2_daddr_t blkno; 5639 long size; 5640 ufs_lbn_t lbn; 5641 u_long key; 5642 { 5643 struct freefrag *freefrag; 5644 struct ufsmount *ump; 5645 struct fs *fs; 5646 5647 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5648 ip->i_number, blkno, size, lbn); 5649 ump = ITOUMP(ip); 5650 fs = ump->um_fs; 5651 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5652 panic("newfreefrag: frag size"); 5653 freefrag = malloc(sizeof(struct freefrag), 5654 M_FREEFRAG, M_SOFTDEP_FLAGS); 5655 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5656 freefrag->ff_state = ATTACHED; 5657 LIST_INIT(&freefrag->ff_jwork); 5658 freefrag->ff_inum = ip->i_number; 5659 freefrag->ff_vtype = ITOV(ip)->v_type; 5660 freefrag->ff_blkno = blkno; 5661 freefrag->ff_fragsize = size; 5662 freefrag->ff_key = key; 5663 5664 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5665 freefrag->ff_jdep = (struct worklist *) 5666 newjfreefrag(freefrag, ip, blkno, size, lbn); 5667 } else { 5668 freefrag->ff_state |= DEPCOMPLETE; 5669 freefrag->ff_jdep = NULL; 5670 } 5671 5672 return (freefrag); 5673 } 5674 5675 /* 5676 * This workitem de-allocates fragments that were replaced during 5677 * file block allocation. 5678 */ 5679 static void 5680 handle_workitem_freefrag(freefrag) 5681 struct freefrag *freefrag; 5682 { 5683 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 5684 struct workhead wkhd; 5685 5686 CTR3(KTR_SUJ, 5687 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 5688 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 5689 /* 5690 * It would be illegal to add new completion items to the 5691 * freefrag after it was schedule to be done so it must be 5692 * safe to modify the list head here. 5693 */ 5694 LIST_INIT(&wkhd); 5695 ACQUIRE_LOCK(ump); 5696 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 5697 /* 5698 * If the journal has not been written we must cancel it here. 5699 */ 5700 if (freefrag->ff_jdep) { 5701 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 5702 panic("handle_workitem_freefrag: Unexpected type %d\n", 5703 freefrag->ff_jdep->wk_type); 5704 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 5705 } 5706 FREE_LOCK(ump); 5707 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 5708 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 5709 &wkhd, freefrag->ff_key); 5710 ACQUIRE_LOCK(ump); 5711 WORKITEM_FREE(freefrag, D_FREEFRAG); 5712 FREE_LOCK(ump); 5713 } 5714 5715 /* 5716 * Set up a dependency structure for an external attributes data block. 5717 * This routine follows much of the structure of softdep_setup_allocdirect. 5718 * See the description of softdep_setup_allocdirect above for details. 5719 */ 5720 void 5721 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5722 struct inode *ip; 5723 ufs_lbn_t off; 5724 ufs2_daddr_t newblkno; 5725 ufs2_daddr_t oldblkno; 5726 long newsize; 5727 long oldsize; 5728 struct buf *bp; 5729 { 5730 struct allocdirect *adp, *oldadp; 5731 struct allocdirectlst *adphead; 5732 struct freefrag *freefrag; 5733 struct inodedep *inodedep; 5734 struct jnewblk *jnewblk; 5735 struct newblk *newblk; 5736 struct mount *mp; 5737 struct ufsmount *ump; 5738 ufs_lbn_t lbn; 5739 5740 mp = ITOVFS(ip); 5741 ump = VFSTOUFS(mp); 5742 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5743 ("softdep_setup_allocext called on non-softdep filesystem")); 5744 KASSERT(off < UFS_NXADDR, 5745 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 5746 5747 lbn = bp->b_lblkno; 5748 if (oldblkno && oldblkno != newblkno) 5749 /* 5750 * The usual case is that a smaller fragment that 5751 * was just allocated has been replaced with a bigger 5752 * fragment or a full-size block. If it is marked as 5753 * B_DELWRI, the current contents have not been written 5754 * to disk. It is possible that the block was written 5755 * earlier, but very uncommon. If the block has never 5756 * been written, there is no need to send a BIO_DELETE 5757 * for it when it is freed. The gain from avoiding the 5758 * TRIMs for the common case of unwritten blocks far 5759 * exceeds the cost of the write amplification for the 5760 * uncommon case of failing to send a TRIM for a block 5761 * that had been written. 5762 */ 5763 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5764 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5765 else 5766 freefrag = NULL; 5767 5768 ACQUIRE_LOCK(ump); 5769 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5770 panic("softdep_setup_allocext: lost block"); 5771 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5772 ("softdep_setup_allocext: newblk already initialized")); 5773 /* 5774 * Convert the newblk to an allocdirect. 5775 */ 5776 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5777 adp = (struct allocdirect *)newblk; 5778 newblk->nb_freefrag = freefrag; 5779 adp->ad_offset = off; 5780 adp->ad_oldblkno = oldblkno; 5781 adp->ad_newsize = newsize; 5782 adp->ad_oldsize = oldsize; 5783 adp->ad_state |= EXTDATA; 5784 5785 /* 5786 * Finish initializing the journal. 5787 */ 5788 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5789 jnewblk->jn_ino = ip->i_number; 5790 jnewblk->jn_lbn = lbn; 5791 add_to_journal(&jnewblk->jn_list); 5792 } 5793 if (freefrag && freefrag->ff_jdep != NULL && 5794 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5795 add_to_journal(freefrag->ff_jdep); 5796 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5797 adp->ad_inodedep = inodedep; 5798 5799 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5800 /* 5801 * The list of allocdirects must be kept in sorted and ascending 5802 * order so that the rollback routines can quickly determine the 5803 * first uncommitted block (the size of the file stored on disk 5804 * ends at the end of the lowest committed fragment, or if there 5805 * are no fragments, at the end of the highest committed block). 5806 * Since files generally grow, the typical case is that the new 5807 * block is to be added at the end of the list. We speed this 5808 * special case by checking against the last allocdirect in the 5809 * list before laboriously traversing the list looking for the 5810 * insertion point. 5811 */ 5812 adphead = &inodedep->id_newextupdt; 5813 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5814 if (oldadp == NULL || oldadp->ad_offset <= off) { 5815 /* insert at end of list */ 5816 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5817 if (oldadp != NULL && oldadp->ad_offset == off) 5818 allocdirect_merge(adphead, adp, oldadp); 5819 FREE_LOCK(ump); 5820 return; 5821 } 5822 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5823 if (oldadp->ad_offset >= off) 5824 break; 5825 } 5826 if (oldadp == NULL) 5827 panic("softdep_setup_allocext: lost entry"); 5828 /* insert in middle of list */ 5829 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5830 if (oldadp->ad_offset == off) 5831 allocdirect_merge(adphead, adp, oldadp); 5832 FREE_LOCK(ump); 5833 } 5834 5835 /* 5836 * Indirect block allocation dependencies. 5837 * 5838 * The same dependencies that exist for a direct block also exist when 5839 * a new block is allocated and pointed to by an entry in a block of 5840 * indirect pointers. The undo/redo states described above are also 5841 * used here. Because an indirect block contains many pointers that 5842 * may have dependencies, a second copy of the entire in-memory indirect 5843 * block is kept. The buffer cache copy is always completely up-to-date. 5844 * The second copy, which is used only as a source for disk writes, 5845 * contains only the safe pointers (i.e., those that have no remaining 5846 * update dependencies). The second copy is freed when all pointers 5847 * are safe. The cache is not allowed to replace indirect blocks with 5848 * pending update dependencies. If a buffer containing an indirect 5849 * block with dependencies is written, these routines will mark it 5850 * dirty again. It can only be successfully written once all the 5851 * dependencies are removed. The ffs_fsync routine in conjunction with 5852 * softdep_sync_metadata work together to get all the dependencies 5853 * removed so that a file can be successfully written to disk. Three 5854 * procedures are used when setting up indirect block pointer 5855 * dependencies. The division is necessary because of the organization 5856 * of the "balloc" routine and because of the distinction between file 5857 * pages and file metadata blocks. 5858 */ 5859 5860 /* 5861 * Allocate a new allocindir structure. 5862 */ 5863 static struct allocindir * 5864 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 5865 struct inode *ip; /* inode for file being extended */ 5866 int ptrno; /* offset of pointer in indirect block */ 5867 ufs2_daddr_t newblkno; /* disk block number being added */ 5868 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5869 ufs_lbn_t lbn; 5870 { 5871 struct newblk *newblk; 5872 struct allocindir *aip; 5873 struct freefrag *freefrag; 5874 struct jnewblk *jnewblk; 5875 5876 if (oldblkno) 5877 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 5878 SINGLETON_KEY); 5879 else 5880 freefrag = NULL; 5881 ACQUIRE_LOCK(ITOUMP(ip)); 5882 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 5883 panic("new_allocindir: lost block"); 5884 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5885 ("newallocindir: newblk already initialized")); 5886 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 5887 newblk->nb_freefrag = freefrag; 5888 aip = (struct allocindir *)newblk; 5889 aip->ai_offset = ptrno; 5890 aip->ai_oldblkno = oldblkno; 5891 aip->ai_lbn = lbn; 5892 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5893 jnewblk->jn_ino = ip->i_number; 5894 jnewblk->jn_lbn = lbn; 5895 add_to_journal(&jnewblk->jn_list); 5896 } 5897 if (freefrag && freefrag->ff_jdep != NULL && 5898 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5899 add_to_journal(freefrag->ff_jdep); 5900 return (aip); 5901 } 5902 5903 /* 5904 * Called just before setting an indirect block pointer 5905 * to a newly allocated file page. 5906 */ 5907 void 5908 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 5909 struct inode *ip; /* inode for file being extended */ 5910 ufs_lbn_t lbn; /* allocated block number within file */ 5911 struct buf *bp; /* buffer with indirect blk referencing page */ 5912 int ptrno; /* offset of pointer in indirect block */ 5913 ufs2_daddr_t newblkno; /* disk block number being added */ 5914 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 5915 struct buf *nbp; /* buffer holding allocated page */ 5916 { 5917 struct inodedep *inodedep; 5918 struct freefrag *freefrag; 5919 struct allocindir *aip; 5920 struct pagedep *pagedep; 5921 struct mount *mp; 5922 struct ufsmount *ump; 5923 5924 mp = ITOVFS(ip); 5925 ump = VFSTOUFS(mp); 5926 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5927 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 5928 KASSERT(lbn == nbp->b_lblkno, 5929 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 5930 lbn, bp->b_lblkno)); 5931 CTR4(KTR_SUJ, 5932 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 5933 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 5934 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 5935 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 5936 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5937 /* 5938 * If we are allocating a directory page, then we must 5939 * allocate an associated pagedep to track additions and 5940 * deletions. 5941 */ 5942 if ((ip->i_mode & IFMT) == IFDIR) 5943 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 5944 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5945 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 5946 FREE_LOCK(ump); 5947 if (freefrag) 5948 handle_workitem_freefrag(freefrag); 5949 } 5950 5951 /* 5952 * Called just before setting an indirect block pointer to a 5953 * newly allocated indirect block. 5954 */ 5955 void 5956 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 5957 struct buf *nbp; /* newly allocated indirect block */ 5958 struct inode *ip; /* inode for file being extended */ 5959 struct buf *bp; /* indirect block referencing allocated block */ 5960 int ptrno; /* offset of pointer in indirect block */ 5961 ufs2_daddr_t newblkno; /* disk block number being added */ 5962 { 5963 struct inodedep *inodedep; 5964 struct allocindir *aip; 5965 struct ufsmount *ump; 5966 ufs_lbn_t lbn; 5967 5968 ump = ITOUMP(ip); 5969 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 5970 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 5971 CTR3(KTR_SUJ, 5972 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 5973 ip->i_number, newblkno, ptrno); 5974 lbn = nbp->b_lblkno; 5975 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 5976 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 5977 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 5978 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 5979 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 5980 panic("softdep_setup_allocindir_meta: Block already existed"); 5981 FREE_LOCK(ump); 5982 } 5983 5984 static void 5985 indirdep_complete(indirdep) 5986 struct indirdep *indirdep; 5987 { 5988 struct allocindir *aip; 5989 5990 LIST_REMOVE(indirdep, ir_next); 5991 indirdep->ir_state |= DEPCOMPLETE; 5992 5993 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 5994 LIST_REMOVE(aip, ai_next); 5995 free_newblk(&aip->ai_block); 5996 } 5997 /* 5998 * If this indirdep is not attached to a buf it was simply waiting 5999 * on completion to clear completehd. free_indirdep() asserts 6000 * that nothing is dangling. 6001 */ 6002 if ((indirdep->ir_state & ONWORKLIST) == 0) 6003 free_indirdep(indirdep); 6004 } 6005 6006 static struct indirdep * 6007 indirdep_lookup(mp, ip, bp) 6008 struct mount *mp; 6009 struct inode *ip; 6010 struct buf *bp; 6011 { 6012 struct indirdep *indirdep, *newindirdep; 6013 struct newblk *newblk; 6014 struct ufsmount *ump; 6015 struct worklist *wk; 6016 struct fs *fs; 6017 ufs2_daddr_t blkno; 6018 6019 ump = VFSTOUFS(mp); 6020 LOCK_OWNED(ump); 6021 indirdep = NULL; 6022 newindirdep = NULL; 6023 fs = ump->um_fs; 6024 for (;;) { 6025 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6026 if (wk->wk_type != D_INDIRDEP) 6027 continue; 6028 indirdep = WK_INDIRDEP(wk); 6029 break; 6030 } 6031 /* Found on the buffer worklist, no new structure to free. */ 6032 if (indirdep != NULL && newindirdep == NULL) 6033 return (indirdep); 6034 if (indirdep != NULL && newindirdep != NULL) 6035 panic("indirdep_lookup: simultaneous create"); 6036 /* None found on the buffer and a new structure is ready. */ 6037 if (indirdep == NULL && newindirdep != NULL) 6038 break; 6039 /* None found and no new structure available. */ 6040 FREE_LOCK(ump); 6041 newindirdep = malloc(sizeof(struct indirdep), 6042 M_INDIRDEP, M_SOFTDEP_FLAGS); 6043 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6044 newindirdep->ir_state = ATTACHED; 6045 if (I_IS_UFS1(ip)) 6046 newindirdep->ir_state |= UFS1FMT; 6047 TAILQ_INIT(&newindirdep->ir_trunc); 6048 newindirdep->ir_saveddata = NULL; 6049 LIST_INIT(&newindirdep->ir_deplisthd); 6050 LIST_INIT(&newindirdep->ir_donehd); 6051 LIST_INIT(&newindirdep->ir_writehd); 6052 LIST_INIT(&newindirdep->ir_completehd); 6053 if (bp->b_blkno == bp->b_lblkno) { 6054 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6055 NULL, NULL); 6056 bp->b_blkno = blkno; 6057 } 6058 newindirdep->ir_freeblks = NULL; 6059 newindirdep->ir_savebp = 6060 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6061 newindirdep->ir_bp = bp; 6062 BUF_KERNPROC(newindirdep->ir_savebp); 6063 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6064 ACQUIRE_LOCK(ump); 6065 } 6066 indirdep = newindirdep; 6067 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6068 /* 6069 * If the block is not yet allocated we don't set DEPCOMPLETE so 6070 * that we don't free dependencies until the pointers are valid. 6071 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6072 * than using the hash. 6073 */ 6074 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6075 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6076 else 6077 indirdep->ir_state |= DEPCOMPLETE; 6078 return (indirdep); 6079 } 6080 6081 /* 6082 * Called to finish the allocation of the "aip" allocated 6083 * by one of the two routines above. 6084 */ 6085 static struct freefrag * 6086 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6087 struct buf *bp; /* in-memory copy of the indirect block */ 6088 struct inode *ip; /* inode for file being extended */ 6089 struct inodedep *inodedep; /* Inodedep for ip */ 6090 struct allocindir *aip; /* allocindir allocated by the above routines */ 6091 ufs_lbn_t lbn; /* Logical block number for this block. */ 6092 { 6093 struct fs *fs; 6094 struct indirdep *indirdep; 6095 struct allocindir *oldaip; 6096 struct freefrag *freefrag; 6097 struct mount *mp; 6098 struct ufsmount *ump; 6099 6100 mp = ITOVFS(ip); 6101 ump = VFSTOUFS(mp); 6102 LOCK_OWNED(ump); 6103 fs = ump->um_fs; 6104 if (bp->b_lblkno >= 0) 6105 panic("setup_allocindir_phase2: not indir blk"); 6106 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6107 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6108 indirdep = indirdep_lookup(mp, ip, bp); 6109 KASSERT(indirdep->ir_savebp != NULL, 6110 ("setup_allocindir_phase2 NULL ir_savebp")); 6111 aip->ai_indirdep = indirdep; 6112 /* 6113 * Check for an unwritten dependency for this indirect offset. If 6114 * there is, merge the old dependency into the new one. This happens 6115 * as a result of reallocblk only. 6116 */ 6117 freefrag = NULL; 6118 if (aip->ai_oldblkno != 0) { 6119 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6120 if (oldaip->ai_offset == aip->ai_offset) { 6121 freefrag = allocindir_merge(aip, oldaip); 6122 goto done; 6123 } 6124 } 6125 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6126 if (oldaip->ai_offset == aip->ai_offset) { 6127 freefrag = allocindir_merge(aip, oldaip); 6128 goto done; 6129 } 6130 } 6131 } 6132 done: 6133 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6134 return (freefrag); 6135 } 6136 6137 /* 6138 * Merge two allocindirs which refer to the same block. Move newblock 6139 * dependencies and setup the freefrags appropriately. 6140 */ 6141 static struct freefrag * 6142 allocindir_merge(aip, oldaip) 6143 struct allocindir *aip; 6144 struct allocindir *oldaip; 6145 { 6146 struct freefrag *freefrag; 6147 struct worklist *wk; 6148 6149 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6150 panic("allocindir_merge: blkno"); 6151 aip->ai_oldblkno = oldaip->ai_oldblkno; 6152 freefrag = aip->ai_freefrag; 6153 aip->ai_freefrag = oldaip->ai_freefrag; 6154 oldaip->ai_freefrag = NULL; 6155 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6156 /* 6157 * If we are tracking a new directory-block allocation, 6158 * move it from the old allocindir to the new allocindir. 6159 */ 6160 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6161 WORKLIST_REMOVE(wk); 6162 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6163 panic("allocindir_merge: extra newdirblk"); 6164 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6165 } 6166 /* 6167 * We can skip journaling for this freefrag and just complete 6168 * any pending journal work for the allocindir that is being 6169 * removed after the freefrag completes. 6170 */ 6171 if (freefrag->ff_jdep) 6172 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6173 LIST_REMOVE(oldaip, ai_next); 6174 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6175 &freefrag->ff_list, &freefrag->ff_jwork); 6176 free_newblk(&oldaip->ai_block); 6177 6178 return (freefrag); 6179 } 6180 6181 static inline void 6182 setup_freedirect(freeblks, ip, i, needj) 6183 struct freeblks *freeblks; 6184 struct inode *ip; 6185 int i; 6186 int needj; 6187 { 6188 struct ufsmount *ump; 6189 ufs2_daddr_t blkno; 6190 int frags; 6191 6192 blkno = DIP(ip, i_db[i]); 6193 if (blkno == 0) 6194 return; 6195 DIP_SET(ip, i_db[i], 0); 6196 ump = ITOUMP(ip); 6197 frags = sblksize(ump->um_fs, ip->i_size, i); 6198 frags = numfrags(ump->um_fs, frags); 6199 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6200 } 6201 6202 static inline void 6203 setup_freeext(freeblks, ip, i, needj) 6204 struct freeblks *freeblks; 6205 struct inode *ip; 6206 int i; 6207 int needj; 6208 { 6209 struct ufsmount *ump; 6210 ufs2_daddr_t blkno; 6211 int frags; 6212 6213 blkno = ip->i_din2->di_extb[i]; 6214 if (blkno == 0) 6215 return; 6216 ip->i_din2->di_extb[i] = 0; 6217 ump = ITOUMP(ip); 6218 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6219 frags = numfrags(ump->um_fs, frags); 6220 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6221 } 6222 6223 static inline void 6224 setup_freeindir(freeblks, ip, i, lbn, needj) 6225 struct freeblks *freeblks; 6226 struct inode *ip; 6227 int i; 6228 ufs_lbn_t lbn; 6229 int needj; 6230 { 6231 struct ufsmount *ump; 6232 ufs2_daddr_t blkno; 6233 6234 blkno = DIP(ip, i_ib[i]); 6235 if (blkno == 0) 6236 return; 6237 DIP_SET(ip, i_ib[i], 0); 6238 ump = ITOUMP(ip); 6239 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6240 0, needj); 6241 } 6242 6243 static inline struct freeblks * 6244 newfreeblks(mp, ip) 6245 struct mount *mp; 6246 struct inode *ip; 6247 { 6248 struct freeblks *freeblks; 6249 6250 freeblks = malloc(sizeof(struct freeblks), 6251 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6252 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6253 LIST_INIT(&freeblks->fb_jblkdephd); 6254 LIST_INIT(&freeblks->fb_jwork); 6255 freeblks->fb_ref = 0; 6256 freeblks->fb_cgwait = 0; 6257 freeblks->fb_state = ATTACHED; 6258 freeblks->fb_uid = ip->i_uid; 6259 freeblks->fb_inum = ip->i_number; 6260 freeblks->fb_vtype = ITOV(ip)->v_type; 6261 freeblks->fb_modrev = DIP(ip, i_modrev); 6262 freeblks->fb_devvp = ITODEVVP(ip); 6263 freeblks->fb_chkcnt = 0; 6264 freeblks->fb_len = 0; 6265 6266 return (freeblks); 6267 } 6268 6269 static void 6270 trunc_indirdep(indirdep, freeblks, bp, off) 6271 struct indirdep *indirdep; 6272 struct freeblks *freeblks; 6273 struct buf *bp; 6274 int off; 6275 { 6276 struct allocindir *aip, *aipn; 6277 6278 /* 6279 * The first set of allocindirs won't be in savedbp. 6280 */ 6281 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6282 if (aip->ai_offset > off) 6283 cancel_allocindir(aip, bp, freeblks, 1); 6284 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6285 if (aip->ai_offset > off) 6286 cancel_allocindir(aip, bp, freeblks, 1); 6287 /* 6288 * These will exist in savedbp. 6289 */ 6290 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6291 if (aip->ai_offset > off) 6292 cancel_allocindir(aip, NULL, freeblks, 0); 6293 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6294 if (aip->ai_offset > off) 6295 cancel_allocindir(aip, NULL, freeblks, 0); 6296 } 6297 6298 /* 6299 * Follow the chain of indirects down to lastlbn creating a freework 6300 * structure for each. This will be used to start indir_trunc() at 6301 * the right offset and create the journal records for the parrtial 6302 * truncation. A second step will handle the truncated dependencies. 6303 */ 6304 static int 6305 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6306 struct freeblks *freeblks; 6307 struct inode *ip; 6308 ufs_lbn_t lbn; 6309 ufs_lbn_t lastlbn; 6310 ufs2_daddr_t blkno; 6311 { 6312 struct indirdep *indirdep; 6313 struct indirdep *indirn; 6314 struct freework *freework; 6315 struct newblk *newblk; 6316 struct mount *mp; 6317 struct ufsmount *ump; 6318 struct buf *bp; 6319 uint8_t *start; 6320 uint8_t *end; 6321 ufs_lbn_t lbnadd; 6322 int level; 6323 int error; 6324 int off; 6325 6326 6327 freework = NULL; 6328 if (blkno == 0) 6329 return (0); 6330 mp = freeblks->fb_list.wk_mp; 6331 ump = VFSTOUFS(mp); 6332 /* 6333 * Here, calls to VOP_BMAP() will fail. However, we already have 6334 * the on-disk address, so we just pass it to bread() instead of 6335 * having bread() attempt to calculate it using VOP_BMAP(). 6336 */ 6337 error = breadn_flags(ITOV(ip), lbn, blkptrtodb(ump, blkno), 6338 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6339 if (error) 6340 return (error); 6341 level = lbn_level(lbn); 6342 lbnadd = lbn_offset(ump->um_fs, level); 6343 /* 6344 * Compute the offset of the last block we want to keep. Store 6345 * in the freework the first block we want to completely free. 6346 */ 6347 off = (lastlbn - -(lbn + level)) / lbnadd; 6348 if (off + 1 == NINDIR(ump->um_fs)) 6349 goto nowork; 6350 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6351 /* 6352 * Link the freework into the indirdep. This will prevent any new 6353 * allocations from proceeding until we are finished with the 6354 * truncate and the block is written. 6355 */ 6356 ACQUIRE_LOCK(ump); 6357 indirdep = indirdep_lookup(mp, ip, bp); 6358 if (indirdep->ir_freeblks) 6359 panic("setup_trunc_indir: indirdep already truncated."); 6360 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6361 freework->fw_indir = indirdep; 6362 /* 6363 * Cancel any allocindirs that will not make it to disk. 6364 * We have to do this for all copies of the indirdep that 6365 * live on this newblk. 6366 */ 6367 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6368 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6369 &newblk) == 0) 6370 panic("setup_trunc_indir: lost block"); 6371 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6372 trunc_indirdep(indirn, freeblks, bp, off); 6373 } else 6374 trunc_indirdep(indirdep, freeblks, bp, off); 6375 FREE_LOCK(ump); 6376 /* 6377 * Creation is protected by the buf lock. The saveddata is only 6378 * needed if a full truncation follows a partial truncation but it 6379 * is difficult to allocate in that case so we fetch it anyway. 6380 */ 6381 if (indirdep->ir_saveddata == NULL) 6382 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6383 M_SOFTDEP_FLAGS); 6384 nowork: 6385 /* Fetch the blkno of the child and the zero start offset. */ 6386 if (I_IS_UFS1(ip)) { 6387 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6388 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6389 } else { 6390 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6391 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6392 } 6393 if (freework) { 6394 /* Zero the truncated pointers. */ 6395 end = bp->b_data + bp->b_bcount; 6396 bzero(start, end - start); 6397 bdwrite(bp); 6398 } else 6399 bqrelse(bp); 6400 if (level == 0) 6401 return (0); 6402 lbn++; /* adjust level */ 6403 lbn -= (off * lbnadd); 6404 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6405 } 6406 6407 /* 6408 * Complete the partial truncation of an indirect block setup by 6409 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6410 * copy and writes them to disk before the freeblks is allowed to complete. 6411 */ 6412 static void 6413 complete_trunc_indir(freework) 6414 struct freework *freework; 6415 { 6416 struct freework *fwn; 6417 struct indirdep *indirdep; 6418 struct ufsmount *ump; 6419 struct buf *bp; 6420 uintptr_t start; 6421 int count; 6422 6423 ump = VFSTOUFS(freework->fw_list.wk_mp); 6424 LOCK_OWNED(ump); 6425 indirdep = freework->fw_indir; 6426 for (;;) { 6427 bp = indirdep->ir_bp; 6428 /* See if the block was discarded. */ 6429 if (bp == NULL) 6430 break; 6431 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6432 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6433 break; 6434 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6435 LOCK_PTR(ump)) == 0) 6436 BUF_UNLOCK(bp); 6437 ACQUIRE_LOCK(ump); 6438 } 6439 freework->fw_state |= DEPCOMPLETE; 6440 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6441 /* 6442 * Zero the pointers in the saved copy. 6443 */ 6444 if (indirdep->ir_state & UFS1FMT) 6445 start = sizeof(ufs1_daddr_t); 6446 else 6447 start = sizeof(ufs2_daddr_t); 6448 start *= freework->fw_start; 6449 count = indirdep->ir_savebp->b_bcount - start; 6450 start += (uintptr_t)indirdep->ir_savebp->b_data; 6451 bzero((char *)start, count); 6452 /* 6453 * We need to start the next truncation in the list if it has not 6454 * been started yet. 6455 */ 6456 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6457 if (fwn != NULL) { 6458 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6459 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6460 if ((fwn->fw_state & ONWORKLIST) == 0) 6461 freework_enqueue(fwn); 6462 } 6463 /* 6464 * If bp is NULL the block was fully truncated, restore 6465 * the saved block list otherwise free it if it is no 6466 * longer needed. 6467 */ 6468 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6469 if (bp == NULL) 6470 bcopy(indirdep->ir_saveddata, 6471 indirdep->ir_savebp->b_data, 6472 indirdep->ir_savebp->b_bcount); 6473 free(indirdep->ir_saveddata, M_INDIRDEP); 6474 indirdep->ir_saveddata = NULL; 6475 } 6476 /* 6477 * When bp is NULL there is a full truncation pending. We 6478 * must wait for this full truncation to be journaled before 6479 * we can release this freework because the disk pointers will 6480 * never be written as zero. 6481 */ 6482 if (bp == NULL) { 6483 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6484 handle_written_freework(freework); 6485 else 6486 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6487 &freework->fw_list); 6488 } else { 6489 /* Complete when the real copy is written. */ 6490 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6491 BUF_UNLOCK(bp); 6492 } 6493 } 6494 6495 /* 6496 * Calculate the number of blocks we are going to release where datablocks 6497 * is the current total and length is the new file size. 6498 */ 6499 static ufs2_daddr_t 6500 blkcount(fs, datablocks, length) 6501 struct fs *fs; 6502 ufs2_daddr_t datablocks; 6503 off_t length; 6504 { 6505 off_t totblks, numblks; 6506 6507 totblks = 0; 6508 numblks = howmany(length, fs->fs_bsize); 6509 if (numblks <= UFS_NDADDR) { 6510 totblks = howmany(length, fs->fs_fsize); 6511 goto out; 6512 } 6513 totblks = blkstofrags(fs, numblks); 6514 numblks -= UFS_NDADDR; 6515 /* 6516 * Count all single, then double, then triple indirects required. 6517 * Subtracting one indirects worth of blocks for each pass 6518 * acknowledges one of each pointed to by the inode. 6519 */ 6520 for (;;) { 6521 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6522 numblks -= NINDIR(fs); 6523 if (numblks <= 0) 6524 break; 6525 numblks = howmany(numblks, NINDIR(fs)); 6526 } 6527 out: 6528 totblks = fsbtodb(fs, totblks); 6529 /* 6530 * Handle sparse files. We can't reclaim more blocks than the inode 6531 * references. We will correct it later in handle_complete_freeblks() 6532 * when we know the real count. 6533 */ 6534 if (totblks > datablocks) 6535 return (0); 6536 return (datablocks - totblks); 6537 } 6538 6539 /* 6540 * Handle freeblocks for journaled softupdate filesystems. 6541 * 6542 * Contrary to normal softupdates, we must preserve the block pointers in 6543 * indirects until their subordinates are free. This is to avoid journaling 6544 * every block that is freed which may consume more space than the journal 6545 * itself. The recovery program will see the free block journals at the 6546 * base of the truncated area and traverse them to reclaim space. The 6547 * pointers in the inode may be cleared immediately after the journal 6548 * records are written because each direct and indirect pointer in the 6549 * inode is recorded in a journal. This permits full truncation to proceed 6550 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6551 * 6552 * The algorithm is as follows: 6553 * 1) Traverse the in-memory state and create journal entries to release 6554 * the relevant blocks and full indirect trees. 6555 * 2) Traverse the indirect block chain adding partial truncation freework 6556 * records to indirects in the path to lastlbn. The freework will 6557 * prevent new allocation dependencies from being satisfied in this 6558 * indirect until the truncation completes. 6559 * 3) Read and lock the inode block, performing an update with the new size 6560 * and pointers. This prevents truncated data from becoming valid on 6561 * disk through step 4. 6562 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6563 * eliminate journal work for those records that do not require it. 6564 * 5) Schedule the journal records to be written followed by the inode block. 6565 * 6) Allocate any necessary frags for the end of file. 6566 * 7) Zero any partially truncated blocks. 6567 * 6568 * From this truncation proceeds asynchronously using the freework and 6569 * indir_trunc machinery. The file will not be extended again into a 6570 * partially truncated indirect block until all work is completed but 6571 * the normal dependency mechanism ensures that it is rolled back/forward 6572 * as appropriate. Further truncation may occur without delay and is 6573 * serialized in indir_trunc(). 6574 */ 6575 void 6576 softdep_journal_freeblocks(ip, cred, length, flags) 6577 struct inode *ip; /* The inode whose length is to be reduced */ 6578 struct ucred *cred; 6579 off_t length; /* The new length for the file */ 6580 int flags; /* IO_EXT and/or IO_NORMAL */ 6581 { 6582 struct freeblks *freeblks, *fbn; 6583 struct worklist *wk, *wkn; 6584 struct inodedep *inodedep; 6585 struct jblkdep *jblkdep; 6586 struct allocdirect *adp, *adpn; 6587 struct ufsmount *ump; 6588 struct fs *fs; 6589 struct buf *bp; 6590 struct vnode *vp; 6591 struct mount *mp; 6592 ufs2_daddr_t extblocks, datablocks; 6593 ufs_lbn_t tmpval, lbn, lastlbn; 6594 int frags, lastoff, iboff, allocblock, needj, error, i; 6595 6596 ump = ITOUMP(ip); 6597 mp = UFSTOVFS(ump); 6598 fs = ump->um_fs; 6599 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6600 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6601 vp = ITOV(ip); 6602 needj = 1; 6603 iboff = -1; 6604 allocblock = 0; 6605 extblocks = 0; 6606 datablocks = 0; 6607 frags = 0; 6608 freeblks = newfreeblks(mp, ip); 6609 ACQUIRE_LOCK(ump); 6610 /* 6611 * If we're truncating a removed file that will never be written 6612 * we don't need to journal the block frees. The canceled journals 6613 * for the allocations will suffice. 6614 */ 6615 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6616 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6617 length == 0) 6618 needj = 0; 6619 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6620 ip->i_number, length, needj); 6621 FREE_LOCK(ump); 6622 /* 6623 * Calculate the lbn that we are truncating to. This results in -1 6624 * if we're truncating the 0 bytes. So it is the last lbn we want 6625 * to keep, not the first lbn we want to truncate. 6626 */ 6627 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6628 lastoff = blkoff(fs, length); 6629 /* 6630 * Compute frags we are keeping in lastlbn. 0 means all. 6631 */ 6632 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6633 frags = fragroundup(fs, lastoff); 6634 /* adp offset of last valid allocdirect. */ 6635 iboff = lastlbn; 6636 } else if (lastlbn > 0) 6637 iboff = UFS_NDADDR; 6638 if (fs->fs_magic == FS_UFS2_MAGIC) 6639 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6640 /* 6641 * Handle normal data blocks and indirects. This section saves 6642 * values used after the inode update to complete frag and indirect 6643 * truncation. 6644 */ 6645 if ((flags & IO_NORMAL) != 0) { 6646 /* 6647 * Handle truncation of whole direct and indirect blocks. 6648 */ 6649 for (i = iboff + 1; i < UFS_NDADDR; i++) 6650 setup_freedirect(freeblks, ip, i, needj); 6651 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6652 i < UFS_NIADDR; 6653 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6654 /* Release a whole indirect tree. */ 6655 if (lbn > lastlbn) { 6656 setup_freeindir(freeblks, ip, i, -lbn -i, 6657 needj); 6658 continue; 6659 } 6660 iboff = i + UFS_NDADDR; 6661 /* 6662 * Traverse partially truncated indirect tree. 6663 */ 6664 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 6665 setup_trunc_indir(freeblks, ip, -lbn - i, 6666 lastlbn, DIP(ip, i_ib[i])); 6667 } 6668 /* 6669 * Handle partial truncation to a frag boundary. 6670 */ 6671 if (frags) { 6672 ufs2_daddr_t blkno; 6673 long oldfrags; 6674 6675 oldfrags = blksize(fs, ip, lastlbn); 6676 blkno = DIP(ip, i_db[lastlbn]); 6677 if (blkno && oldfrags != frags) { 6678 oldfrags -= frags; 6679 oldfrags = numfrags(fs, oldfrags); 6680 blkno += numfrags(fs, frags); 6681 newfreework(ump, freeblks, NULL, lastlbn, 6682 blkno, oldfrags, 0, needj); 6683 if (needj) 6684 adjust_newfreework(freeblks, 6685 numfrags(fs, frags)); 6686 } else if (blkno == 0) 6687 allocblock = 1; 6688 } 6689 /* 6690 * Add a journal record for partial truncate if we are 6691 * handling indirect blocks. Non-indirects need no extra 6692 * journaling. 6693 */ 6694 if (length != 0 && lastlbn >= UFS_NDADDR) { 6695 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 6696 newjtrunc(freeblks, length, 0); 6697 } 6698 ip->i_size = length; 6699 DIP_SET(ip, i_size, ip->i_size); 6700 datablocks = DIP(ip, i_blocks) - extblocks; 6701 if (length != 0) 6702 datablocks = blkcount(fs, datablocks, length); 6703 freeblks->fb_len = length; 6704 } 6705 if ((flags & IO_EXT) != 0) { 6706 for (i = 0; i < UFS_NXADDR; i++) 6707 setup_freeext(freeblks, ip, i, needj); 6708 ip->i_din2->di_extsize = 0; 6709 datablocks += extblocks; 6710 } 6711 #ifdef QUOTA 6712 /* Reference the quotas in case the block count is wrong in the end. */ 6713 quotaref(vp, freeblks->fb_quota); 6714 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6715 #endif 6716 freeblks->fb_chkcnt = -datablocks; 6717 UFS_LOCK(ump); 6718 fs->fs_pendingblocks += datablocks; 6719 UFS_UNLOCK(ump); 6720 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6721 /* 6722 * Handle truncation of incomplete alloc direct dependencies. We 6723 * hold the inode block locked to prevent incomplete dependencies 6724 * from reaching the disk while we are eliminating those that 6725 * have been truncated. This is a partially inlined ffs_update(). 6726 */ 6727 ufs_itimes(vp); 6728 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 6729 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6730 (int)fs->fs_bsize, cred, &bp); 6731 if (error) { 6732 softdep_error("softdep_journal_freeblocks", error); 6733 return; 6734 } 6735 if (bp->b_bufsize == fs->fs_bsize) 6736 bp->b_flags |= B_CLUSTEROK; 6737 softdep_update_inodeblock(ip, bp, 0); 6738 if (ump->um_fstype == UFS1) { 6739 *((struct ufs1_dinode *)bp->b_data + 6740 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 6741 } else { 6742 ffs_update_dinode_ckhash(fs, ip->i_din2); 6743 *((struct ufs2_dinode *)bp->b_data + 6744 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 6745 } 6746 ACQUIRE_LOCK(ump); 6747 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6748 if ((inodedep->id_state & IOSTARTED) != 0) 6749 panic("softdep_setup_freeblocks: inode busy"); 6750 /* 6751 * Add the freeblks structure to the list of operations that 6752 * must await the zero'ed inode being written to disk. If we 6753 * still have a bitmap dependency (needj), then the inode 6754 * has never been written to disk, so we can process the 6755 * freeblks below once we have deleted the dependencies. 6756 */ 6757 if (needj) 6758 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 6759 else 6760 freeblks->fb_state |= COMPLETE; 6761 if ((flags & IO_NORMAL) != 0) { 6762 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 6763 if (adp->ad_offset > iboff) 6764 cancel_allocdirect(&inodedep->id_inoupdt, adp, 6765 freeblks); 6766 /* 6767 * Truncate the allocdirect. We could eliminate 6768 * or modify journal records as well. 6769 */ 6770 else if (adp->ad_offset == iboff && frags) 6771 adp->ad_newsize = frags; 6772 } 6773 } 6774 if ((flags & IO_EXT) != 0) 6775 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 6776 cancel_allocdirect(&inodedep->id_extupdt, adp, 6777 freeblks); 6778 /* 6779 * Scan the bufwait list for newblock dependencies that will never 6780 * make it to disk. 6781 */ 6782 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 6783 if (wk->wk_type != D_ALLOCDIRECT) 6784 continue; 6785 adp = WK_ALLOCDIRECT(wk); 6786 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 6787 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 6788 cancel_jfreeblk(freeblks, adp->ad_newblkno); 6789 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 6790 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 6791 } 6792 } 6793 /* 6794 * Add journal work. 6795 */ 6796 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 6797 add_to_journal(&jblkdep->jb_list); 6798 FREE_LOCK(ump); 6799 bdwrite(bp); 6800 /* 6801 * Truncate dependency structures beyond length. 6802 */ 6803 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 6804 /* 6805 * This is only set when we need to allocate a fragment because 6806 * none existed at the end of a frag-sized file. It handles only 6807 * allocating a new, zero filled block. 6808 */ 6809 if (allocblock) { 6810 ip->i_size = length - lastoff; 6811 DIP_SET(ip, i_size, ip->i_size); 6812 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 6813 if (error != 0) { 6814 softdep_error("softdep_journal_freeblks", error); 6815 return; 6816 } 6817 ip->i_size = length; 6818 DIP_SET(ip, i_size, length); 6819 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 6820 allocbuf(bp, frags); 6821 ffs_update(vp, 0); 6822 bawrite(bp); 6823 } else if (lastoff != 0 && vp->v_type != VDIR) { 6824 int size; 6825 6826 /* 6827 * Zero the end of a truncated frag or block. 6828 */ 6829 size = sblksize(fs, length, lastlbn); 6830 error = bread(vp, lastlbn, size, cred, &bp); 6831 if (error) { 6832 softdep_error("softdep_journal_freeblks", error); 6833 return; 6834 } 6835 bzero((char *)bp->b_data + lastoff, size - lastoff); 6836 bawrite(bp); 6837 6838 } 6839 ACQUIRE_LOCK(ump); 6840 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6841 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 6842 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 6843 /* 6844 * We zero earlier truncations so they don't erroneously 6845 * update i_blocks. 6846 */ 6847 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 6848 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 6849 fbn->fb_len = 0; 6850 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 6851 LIST_EMPTY(&freeblks->fb_jblkdephd)) 6852 freeblks->fb_state |= INPROGRESS; 6853 else 6854 freeblks = NULL; 6855 FREE_LOCK(ump); 6856 if (freeblks) 6857 handle_workitem_freeblocks(freeblks, 0); 6858 trunc_pages(ip, length, extblocks, flags); 6859 6860 } 6861 6862 /* 6863 * Flush a JOP_SYNC to the journal. 6864 */ 6865 void 6866 softdep_journal_fsync(ip) 6867 struct inode *ip; 6868 { 6869 struct jfsync *jfsync; 6870 struct ufsmount *ump; 6871 6872 ump = ITOUMP(ip); 6873 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6874 ("softdep_journal_fsync called on non-softdep filesystem")); 6875 if ((ip->i_flag & IN_TRUNCATED) == 0) 6876 return; 6877 ip->i_flag &= ~IN_TRUNCATED; 6878 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 6879 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 6880 jfsync->jfs_size = ip->i_size; 6881 jfsync->jfs_ino = ip->i_number; 6882 ACQUIRE_LOCK(ump); 6883 add_to_journal(&jfsync->jfs_list); 6884 jwait(&jfsync->jfs_list, MNT_WAIT); 6885 FREE_LOCK(ump); 6886 } 6887 6888 /* 6889 * Block de-allocation dependencies. 6890 * 6891 * When blocks are de-allocated, the on-disk pointers must be nullified before 6892 * the blocks are made available for use by other files. (The true 6893 * requirement is that old pointers must be nullified before new on-disk 6894 * pointers are set. We chose this slightly more stringent requirement to 6895 * reduce complexity.) Our implementation handles this dependency by updating 6896 * the inode (or indirect block) appropriately but delaying the actual block 6897 * de-allocation (i.e., freemap and free space count manipulation) until 6898 * after the updated versions reach stable storage. After the disk is 6899 * updated, the blocks can be safely de-allocated whenever it is convenient. 6900 * This implementation handles only the common case of reducing a file's 6901 * length to zero. Other cases are handled by the conventional synchronous 6902 * write approach. 6903 * 6904 * The ffs implementation with which we worked double-checks 6905 * the state of the block pointers and file size as it reduces 6906 * a file's length. Some of this code is replicated here in our 6907 * soft updates implementation. The freeblks->fb_chkcnt field is 6908 * used to transfer a part of this information to the procedure 6909 * that eventually de-allocates the blocks. 6910 * 6911 * This routine should be called from the routine that shortens 6912 * a file's length, before the inode's size or block pointers 6913 * are modified. It will save the block pointer information for 6914 * later release and zero the inode so that the calling routine 6915 * can release it. 6916 */ 6917 void 6918 softdep_setup_freeblocks(ip, length, flags) 6919 struct inode *ip; /* The inode whose length is to be reduced */ 6920 off_t length; /* The new length for the file */ 6921 int flags; /* IO_EXT and/or IO_NORMAL */ 6922 { 6923 struct ufs1_dinode *dp1; 6924 struct ufs2_dinode *dp2; 6925 struct freeblks *freeblks; 6926 struct inodedep *inodedep; 6927 struct allocdirect *adp; 6928 struct ufsmount *ump; 6929 struct buf *bp; 6930 struct fs *fs; 6931 ufs2_daddr_t extblocks, datablocks; 6932 struct mount *mp; 6933 int i, delay, error; 6934 ufs_lbn_t tmpval; 6935 ufs_lbn_t lbn; 6936 6937 ump = ITOUMP(ip); 6938 mp = UFSTOVFS(ump); 6939 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6940 ("softdep_setup_freeblocks called on non-softdep filesystem")); 6941 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 6942 ip->i_number, length); 6943 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 6944 fs = ump->um_fs; 6945 if ((error = bread(ump->um_devvp, 6946 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 6947 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 6948 brelse(bp); 6949 softdep_error("softdep_setup_freeblocks", error); 6950 return; 6951 } 6952 freeblks = newfreeblks(mp, ip); 6953 extblocks = 0; 6954 datablocks = 0; 6955 if (fs->fs_magic == FS_UFS2_MAGIC) 6956 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6957 if ((flags & IO_NORMAL) != 0) { 6958 for (i = 0; i < UFS_NDADDR; i++) 6959 setup_freedirect(freeblks, ip, i, 0); 6960 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6961 i < UFS_NIADDR; 6962 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 6963 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 6964 ip->i_size = 0; 6965 DIP_SET(ip, i_size, 0); 6966 datablocks = DIP(ip, i_blocks) - extblocks; 6967 } 6968 if ((flags & IO_EXT) != 0) { 6969 for (i = 0; i < UFS_NXADDR; i++) 6970 setup_freeext(freeblks, ip, i, 0); 6971 ip->i_din2->di_extsize = 0; 6972 datablocks += extblocks; 6973 } 6974 #ifdef QUOTA 6975 /* Reference the quotas in case the block count is wrong in the end. */ 6976 quotaref(ITOV(ip), freeblks->fb_quota); 6977 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 6978 #endif 6979 freeblks->fb_chkcnt = -datablocks; 6980 UFS_LOCK(ump); 6981 fs->fs_pendingblocks += datablocks; 6982 UFS_UNLOCK(ump); 6983 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 6984 /* 6985 * Push the zero'ed inode to its disk buffer so that we are free 6986 * to delete its dependencies below. Once the dependencies are gone 6987 * the buffer can be safely released. 6988 */ 6989 if (ump->um_fstype == UFS1) { 6990 dp1 = ((struct ufs1_dinode *)bp->b_data + 6991 ino_to_fsbo(fs, ip->i_number)); 6992 ip->i_din1->di_freelink = dp1->di_freelink; 6993 *dp1 = *ip->i_din1; 6994 } else { 6995 dp2 = ((struct ufs2_dinode *)bp->b_data + 6996 ino_to_fsbo(fs, ip->i_number)); 6997 ip->i_din2->di_freelink = dp2->di_freelink; 6998 ffs_update_dinode_ckhash(fs, ip->i_din2); 6999 *dp2 = *ip->i_din2; 7000 } 7001 /* 7002 * Find and eliminate any inode dependencies. 7003 */ 7004 ACQUIRE_LOCK(ump); 7005 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7006 if ((inodedep->id_state & IOSTARTED) != 0) 7007 panic("softdep_setup_freeblocks: inode busy"); 7008 /* 7009 * Add the freeblks structure to the list of operations that 7010 * must await the zero'ed inode being written to disk. If we 7011 * still have a bitmap dependency (delay == 0), then the inode 7012 * has never been written to disk, so we can process the 7013 * freeblks below once we have deleted the dependencies. 7014 */ 7015 delay = (inodedep->id_state & DEPCOMPLETE); 7016 if (delay) 7017 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7018 else 7019 freeblks->fb_state |= COMPLETE; 7020 /* 7021 * Because the file length has been truncated to zero, any 7022 * pending block allocation dependency structures associated 7023 * with this inode are obsolete and can simply be de-allocated. 7024 * We must first merge the two dependency lists to get rid of 7025 * any duplicate freefrag structures, then purge the merged list. 7026 * If we still have a bitmap dependency, then the inode has never 7027 * been written to disk, so we can free any fragments without delay. 7028 */ 7029 if (flags & IO_NORMAL) { 7030 merge_inode_lists(&inodedep->id_newinoupdt, 7031 &inodedep->id_inoupdt); 7032 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7033 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7034 freeblks); 7035 } 7036 if (flags & IO_EXT) { 7037 merge_inode_lists(&inodedep->id_newextupdt, 7038 &inodedep->id_extupdt); 7039 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7040 cancel_allocdirect(&inodedep->id_extupdt, adp, 7041 freeblks); 7042 } 7043 FREE_LOCK(ump); 7044 bdwrite(bp); 7045 trunc_dependencies(ip, freeblks, -1, 0, flags); 7046 ACQUIRE_LOCK(ump); 7047 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7048 (void) free_inodedep(inodedep); 7049 freeblks->fb_state |= DEPCOMPLETE; 7050 /* 7051 * If the inode with zeroed block pointers is now on disk 7052 * we can start freeing blocks. 7053 */ 7054 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7055 freeblks->fb_state |= INPROGRESS; 7056 else 7057 freeblks = NULL; 7058 FREE_LOCK(ump); 7059 if (freeblks) 7060 handle_workitem_freeblocks(freeblks, 0); 7061 trunc_pages(ip, length, extblocks, flags); 7062 } 7063 7064 /* 7065 * Eliminate pages from the page cache that back parts of this inode and 7066 * adjust the vnode pager's idea of our size. This prevents stale data 7067 * from hanging around in the page cache. 7068 */ 7069 static void 7070 trunc_pages(ip, length, extblocks, flags) 7071 struct inode *ip; 7072 off_t length; 7073 ufs2_daddr_t extblocks; 7074 int flags; 7075 { 7076 struct vnode *vp; 7077 struct fs *fs; 7078 ufs_lbn_t lbn; 7079 off_t end, extend; 7080 7081 vp = ITOV(ip); 7082 fs = ITOFS(ip); 7083 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7084 if ((flags & IO_EXT) != 0) 7085 vn_pages_remove(vp, extend, 0); 7086 if ((flags & IO_NORMAL) == 0) 7087 return; 7088 BO_LOCK(&vp->v_bufobj); 7089 drain_output(vp); 7090 BO_UNLOCK(&vp->v_bufobj); 7091 /* 7092 * The vnode pager eliminates file pages we eliminate indirects 7093 * below. 7094 */ 7095 vnode_pager_setsize(vp, length); 7096 /* 7097 * Calculate the end based on the last indirect we want to keep. If 7098 * the block extends into indirects we can just use the negative of 7099 * its lbn. Doubles and triples exist at lower numbers so we must 7100 * be careful not to remove those, if they exist. double and triple 7101 * indirect lbns do not overlap with others so it is not important 7102 * to verify how many levels are required. 7103 */ 7104 lbn = lblkno(fs, length); 7105 if (lbn >= UFS_NDADDR) { 7106 /* Calculate the virtual lbn of the triple indirect. */ 7107 lbn = -lbn - (UFS_NIADDR - 1); 7108 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7109 } else 7110 end = extend; 7111 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7112 } 7113 7114 /* 7115 * See if the buf bp is in the range eliminated by truncation. 7116 */ 7117 static int 7118 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7119 struct buf *bp; 7120 int *blkoffp; 7121 ufs_lbn_t lastlbn; 7122 int lastoff; 7123 int flags; 7124 { 7125 ufs_lbn_t lbn; 7126 7127 *blkoffp = 0; 7128 /* Only match ext/normal blocks as appropriate. */ 7129 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7130 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7131 return (0); 7132 /* ALTDATA is always a full truncation. */ 7133 if ((bp->b_xflags & BX_ALTDATA) != 0) 7134 return (1); 7135 /* -1 is full truncation. */ 7136 if (lastlbn == -1) 7137 return (1); 7138 /* 7139 * If this is a partial truncate we only want those 7140 * blocks and indirect blocks that cover the range 7141 * we're after. 7142 */ 7143 lbn = bp->b_lblkno; 7144 if (lbn < 0) 7145 lbn = -(lbn + lbn_level(lbn)); 7146 if (lbn < lastlbn) 7147 return (0); 7148 /* Here we only truncate lblkno if it's partial. */ 7149 if (lbn == lastlbn) { 7150 if (lastoff == 0) 7151 return (0); 7152 *blkoffp = lastoff; 7153 } 7154 return (1); 7155 } 7156 7157 /* 7158 * Eliminate any dependencies that exist in memory beyond lblkno:off 7159 */ 7160 static void 7161 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7162 struct inode *ip; 7163 struct freeblks *freeblks; 7164 ufs_lbn_t lastlbn; 7165 int lastoff; 7166 int flags; 7167 { 7168 struct bufobj *bo; 7169 struct vnode *vp; 7170 struct buf *bp; 7171 int blkoff; 7172 7173 /* 7174 * We must wait for any I/O in progress to finish so that 7175 * all potential buffers on the dirty list will be visible. 7176 * Once they are all there, walk the list and get rid of 7177 * any dependencies. 7178 */ 7179 vp = ITOV(ip); 7180 bo = &vp->v_bufobj; 7181 BO_LOCK(bo); 7182 drain_output(vp); 7183 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7184 bp->b_vflags &= ~BV_SCANNED; 7185 restart: 7186 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7187 if (bp->b_vflags & BV_SCANNED) 7188 continue; 7189 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7190 bp->b_vflags |= BV_SCANNED; 7191 continue; 7192 } 7193 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7194 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7195 goto restart; 7196 BO_UNLOCK(bo); 7197 if (deallocate_dependencies(bp, freeblks, blkoff)) 7198 bqrelse(bp); 7199 else 7200 brelse(bp); 7201 BO_LOCK(bo); 7202 goto restart; 7203 } 7204 /* 7205 * Now do the work of vtruncbuf while also matching indirect blocks. 7206 */ 7207 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7208 bp->b_vflags &= ~BV_SCANNED; 7209 cleanrestart: 7210 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7211 if (bp->b_vflags & BV_SCANNED) 7212 continue; 7213 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7214 bp->b_vflags |= BV_SCANNED; 7215 continue; 7216 } 7217 if (BUF_LOCK(bp, 7218 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7219 BO_LOCKPTR(bo)) == ENOLCK) { 7220 BO_LOCK(bo); 7221 goto cleanrestart; 7222 } 7223 bp->b_vflags |= BV_SCANNED; 7224 bremfree(bp); 7225 if (blkoff != 0) { 7226 allocbuf(bp, blkoff); 7227 bqrelse(bp); 7228 } else { 7229 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7230 brelse(bp); 7231 } 7232 BO_LOCK(bo); 7233 goto cleanrestart; 7234 } 7235 drain_output(vp); 7236 BO_UNLOCK(bo); 7237 } 7238 7239 static int 7240 cancel_pagedep(pagedep, freeblks, blkoff) 7241 struct pagedep *pagedep; 7242 struct freeblks *freeblks; 7243 int blkoff; 7244 { 7245 struct jremref *jremref; 7246 struct jmvref *jmvref; 7247 struct dirrem *dirrem, *tmp; 7248 int i; 7249 7250 /* 7251 * Copy any directory remove dependencies to the list 7252 * to be processed after the freeblks proceeds. If 7253 * directory entry never made it to disk they 7254 * can be dumped directly onto the work list. 7255 */ 7256 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7257 /* Skip this directory removal if it is intended to remain. */ 7258 if (dirrem->dm_offset < blkoff) 7259 continue; 7260 /* 7261 * If there are any dirrems we wait for the journal write 7262 * to complete and then restart the buf scan as the lock 7263 * has been dropped. 7264 */ 7265 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7266 jwait(&jremref->jr_list, MNT_WAIT); 7267 return (ERESTART); 7268 } 7269 LIST_REMOVE(dirrem, dm_next); 7270 dirrem->dm_dirinum = pagedep->pd_ino; 7271 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7272 } 7273 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7274 jwait(&jmvref->jm_list, MNT_WAIT); 7275 return (ERESTART); 7276 } 7277 /* 7278 * When we're partially truncating a pagedep we just want to flush 7279 * journal entries and return. There can not be any adds in the 7280 * truncated portion of the directory and newblk must remain if 7281 * part of the block remains. 7282 */ 7283 if (blkoff != 0) { 7284 struct diradd *dap; 7285 7286 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7287 if (dap->da_offset > blkoff) 7288 panic("cancel_pagedep: diradd %p off %d > %d", 7289 dap, dap->da_offset, blkoff); 7290 for (i = 0; i < DAHASHSZ; i++) 7291 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7292 if (dap->da_offset > blkoff) 7293 panic("cancel_pagedep: diradd %p off %d > %d", 7294 dap, dap->da_offset, blkoff); 7295 return (0); 7296 } 7297 /* 7298 * There should be no directory add dependencies present 7299 * as the directory could not be truncated until all 7300 * children were removed. 7301 */ 7302 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7303 ("deallocate_dependencies: pendinghd != NULL")); 7304 for (i = 0; i < DAHASHSZ; i++) 7305 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7306 ("deallocate_dependencies: diraddhd != NULL")); 7307 if ((pagedep->pd_state & NEWBLOCK) != 0) 7308 free_newdirblk(pagedep->pd_newdirblk); 7309 if (free_pagedep(pagedep) == 0) 7310 panic("Failed to free pagedep %p", pagedep); 7311 return (0); 7312 } 7313 7314 /* 7315 * Reclaim any dependency structures from a buffer that is about to 7316 * be reallocated to a new vnode. The buffer must be locked, thus, 7317 * no I/O completion operations can occur while we are manipulating 7318 * its associated dependencies. The mutex is held so that other I/O's 7319 * associated with related dependencies do not occur. 7320 */ 7321 static int 7322 deallocate_dependencies(bp, freeblks, off) 7323 struct buf *bp; 7324 struct freeblks *freeblks; 7325 int off; 7326 { 7327 struct indirdep *indirdep; 7328 struct pagedep *pagedep; 7329 struct worklist *wk, *wkn; 7330 struct ufsmount *ump; 7331 7332 ump = softdep_bp_to_mp(bp); 7333 if (ump == NULL) 7334 goto done; 7335 ACQUIRE_LOCK(ump); 7336 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7337 switch (wk->wk_type) { 7338 case D_INDIRDEP: 7339 indirdep = WK_INDIRDEP(wk); 7340 if (bp->b_lblkno >= 0 || 7341 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7342 panic("deallocate_dependencies: not indir"); 7343 cancel_indirdep(indirdep, bp, freeblks); 7344 continue; 7345 7346 case D_PAGEDEP: 7347 pagedep = WK_PAGEDEP(wk); 7348 if (cancel_pagedep(pagedep, freeblks, off)) { 7349 FREE_LOCK(ump); 7350 return (ERESTART); 7351 } 7352 continue; 7353 7354 case D_ALLOCINDIR: 7355 /* 7356 * Simply remove the allocindir, we'll find it via 7357 * the indirdep where we can clear pointers if 7358 * needed. 7359 */ 7360 WORKLIST_REMOVE(wk); 7361 continue; 7362 7363 case D_FREEWORK: 7364 /* 7365 * A truncation is waiting for the zero'd pointers 7366 * to be written. It can be freed when the freeblks 7367 * is journaled. 7368 */ 7369 WORKLIST_REMOVE(wk); 7370 wk->wk_state |= ONDEPLIST; 7371 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7372 break; 7373 7374 case D_ALLOCDIRECT: 7375 if (off != 0) 7376 continue; 7377 /* FALLTHROUGH */ 7378 default: 7379 panic("deallocate_dependencies: Unexpected type %s", 7380 TYPENAME(wk->wk_type)); 7381 /* NOTREACHED */ 7382 } 7383 } 7384 FREE_LOCK(ump); 7385 done: 7386 /* 7387 * Don't throw away this buf, we were partially truncating and 7388 * some deps may always remain. 7389 */ 7390 if (off) { 7391 allocbuf(bp, off); 7392 bp->b_vflags |= BV_SCANNED; 7393 return (EBUSY); 7394 } 7395 bp->b_flags |= B_INVAL | B_NOCACHE; 7396 7397 return (0); 7398 } 7399 7400 /* 7401 * An allocdirect is being canceled due to a truncate. We must make sure 7402 * the journal entry is released in concert with the blkfree that releases 7403 * the storage. Completed journal entries must not be released until the 7404 * space is no longer pointed to by the inode or in the bitmap. 7405 */ 7406 static void 7407 cancel_allocdirect(adphead, adp, freeblks) 7408 struct allocdirectlst *adphead; 7409 struct allocdirect *adp; 7410 struct freeblks *freeblks; 7411 { 7412 struct freework *freework; 7413 struct newblk *newblk; 7414 struct worklist *wk; 7415 7416 TAILQ_REMOVE(adphead, adp, ad_next); 7417 newblk = (struct newblk *)adp; 7418 freework = NULL; 7419 /* 7420 * Find the correct freework structure. 7421 */ 7422 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7423 if (wk->wk_type != D_FREEWORK) 7424 continue; 7425 freework = WK_FREEWORK(wk); 7426 if (freework->fw_blkno == newblk->nb_newblkno) 7427 break; 7428 } 7429 if (freework == NULL) 7430 panic("cancel_allocdirect: Freework not found"); 7431 /* 7432 * If a newblk exists at all we still have the journal entry that 7433 * initiated the allocation so we do not need to journal the free. 7434 */ 7435 cancel_jfreeblk(freeblks, freework->fw_blkno); 7436 /* 7437 * If the journal hasn't been written the jnewblk must be passed 7438 * to the call to ffs_blkfree that reclaims the space. We accomplish 7439 * this by linking the journal dependency into the freework to be 7440 * freed when freework_freeblock() is called. If the journal has 7441 * been written we can simply reclaim the journal space when the 7442 * freeblks work is complete. 7443 */ 7444 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7445 &freeblks->fb_jwork); 7446 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7447 } 7448 7449 7450 /* 7451 * Cancel a new block allocation. May be an indirect or direct block. We 7452 * remove it from various lists and return any journal record that needs to 7453 * be resolved by the caller. 7454 * 7455 * A special consideration is made for indirects which were never pointed 7456 * at on disk and will never be found once this block is released. 7457 */ 7458 static struct jnewblk * 7459 cancel_newblk(newblk, wk, wkhd) 7460 struct newblk *newblk; 7461 struct worklist *wk; 7462 struct workhead *wkhd; 7463 { 7464 struct jnewblk *jnewblk; 7465 7466 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7467 7468 newblk->nb_state |= GOINGAWAY; 7469 /* 7470 * Previously we traversed the completedhd on each indirdep 7471 * attached to this newblk to cancel them and gather journal 7472 * work. Since we need only the oldest journal segment and 7473 * the lowest point on the tree will always have the oldest 7474 * journal segment we are free to release the segments 7475 * of any subordinates and may leave the indirdep list to 7476 * indirdep_complete() when this newblk is freed. 7477 */ 7478 if (newblk->nb_state & ONDEPLIST) { 7479 newblk->nb_state &= ~ONDEPLIST; 7480 LIST_REMOVE(newblk, nb_deps); 7481 } 7482 if (newblk->nb_state & ONWORKLIST) 7483 WORKLIST_REMOVE(&newblk->nb_list); 7484 /* 7485 * If the journal entry hasn't been written we save a pointer to 7486 * the dependency that frees it until it is written or the 7487 * superseding operation completes. 7488 */ 7489 jnewblk = newblk->nb_jnewblk; 7490 if (jnewblk != NULL && wk != NULL) { 7491 newblk->nb_jnewblk = NULL; 7492 jnewblk->jn_dep = wk; 7493 } 7494 if (!LIST_EMPTY(&newblk->nb_jwork)) 7495 jwork_move(wkhd, &newblk->nb_jwork); 7496 /* 7497 * When truncating we must free the newdirblk early to remove 7498 * the pagedep from the hash before returning. 7499 */ 7500 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7501 free_newdirblk(WK_NEWDIRBLK(wk)); 7502 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7503 panic("cancel_newblk: extra newdirblk"); 7504 7505 return (jnewblk); 7506 } 7507 7508 /* 7509 * Schedule the freefrag associated with a newblk to be released once 7510 * the pointers are written and the previous block is no longer needed. 7511 */ 7512 static void 7513 newblk_freefrag(newblk) 7514 struct newblk *newblk; 7515 { 7516 struct freefrag *freefrag; 7517 7518 if (newblk->nb_freefrag == NULL) 7519 return; 7520 freefrag = newblk->nb_freefrag; 7521 newblk->nb_freefrag = NULL; 7522 freefrag->ff_state |= COMPLETE; 7523 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7524 add_to_worklist(&freefrag->ff_list, 0); 7525 } 7526 7527 /* 7528 * Free a newblk. Generate a new freefrag work request if appropriate. 7529 * This must be called after the inode pointer and any direct block pointers 7530 * are valid or fully removed via truncate or frag extension. 7531 */ 7532 static void 7533 free_newblk(newblk) 7534 struct newblk *newblk; 7535 { 7536 struct indirdep *indirdep; 7537 struct worklist *wk; 7538 7539 KASSERT(newblk->nb_jnewblk == NULL, 7540 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7541 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7542 ("free_newblk: unclaimed newblk")); 7543 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7544 newblk_freefrag(newblk); 7545 if (newblk->nb_state & ONDEPLIST) 7546 LIST_REMOVE(newblk, nb_deps); 7547 if (newblk->nb_state & ONWORKLIST) 7548 WORKLIST_REMOVE(&newblk->nb_list); 7549 LIST_REMOVE(newblk, nb_hash); 7550 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7551 free_newdirblk(WK_NEWDIRBLK(wk)); 7552 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7553 panic("free_newblk: extra newdirblk"); 7554 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7555 indirdep_complete(indirdep); 7556 handle_jwork(&newblk->nb_jwork); 7557 WORKITEM_FREE(newblk, D_NEWBLK); 7558 } 7559 7560 /* 7561 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7562 */ 7563 static void 7564 free_newdirblk(newdirblk) 7565 struct newdirblk *newdirblk; 7566 { 7567 struct pagedep *pagedep; 7568 struct diradd *dap; 7569 struct worklist *wk; 7570 7571 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7572 WORKLIST_REMOVE(&newdirblk->db_list); 7573 /* 7574 * If the pagedep is still linked onto the directory buffer 7575 * dependency chain, then some of the entries on the 7576 * pd_pendinghd list may not be committed to disk yet. In 7577 * this case, we will simply clear the NEWBLOCK flag and 7578 * let the pd_pendinghd list be processed when the pagedep 7579 * is next written. If the pagedep is no longer on the buffer 7580 * dependency chain, then all the entries on the pd_pending 7581 * list are committed to disk and we can free them here. 7582 */ 7583 pagedep = newdirblk->db_pagedep; 7584 pagedep->pd_state &= ~NEWBLOCK; 7585 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7586 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7587 free_diradd(dap, NULL); 7588 /* 7589 * If no dependencies remain, the pagedep will be freed. 7590 */ 7591 free_pagedep(pagedep); 7592 } 7593 /* Should only ever be one item in the list. */ 7594 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7595 WORKLIST_REMOVE(wk); 7596 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7597 } 7598 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7599 } 7600 7601 /* 7602 * Prepare an inode to be freed. The actual free operation is not 7603 * done until the zero'ed inode has been written to disk. 7604 */ 7605 void 7606 softdep_freefile(pvp, ino, mode) 7607 struct vnode *pvp; 7608 ino_t ino; 7609 int mode; 7610 { 7611 struct inode *ip = VTOI(pvp); 7612 struct inodedep *inodedep; 7613 struct freefile *freefile; 7614 struct freeblks *freeblks; 7615 struct ufsmount *ump; 7616 7617 ump = ITOUMP(ip); 7618 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7619 ("softdep_freefile called on non-softdep filesystem")); 7620 /* 7621 * This sets up the inode de-allocation dependency. 7622 */ 7623 freefile = malloc(sizeof(struct freefile), 7624 M_FREEFILE, M_SOFTDEP_FLAGS); 7625 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7626 freefile->fx_mode = mode; 7627 freefile->fx_oldinum = ino; 7628 freefile->fx_devvp = ump->um_devvp; 7629 LIST_INIT(&freefile->fx_jwork); 7630 UFS_LOCK(ump); 7631 ump->um_fs->fs_pendinginodes += 1; 7632 UFS_UNLOCK(ump); 7633 7634 /* 7635 * If the inodedep does not exist, then the zero'ed inode has 7636 * been written to disk. If the allocated inode has never been 7637 * written to disk, then the on-disk inode is zero'ed. In either 7638 * case we can free the file immediately. If the journal was 7639 * canceled before being written the inode will never make it to 7640 * disk and we must send the canceled journal entrys to 7641 * ffs_freefile() to be cleared in conjunction with the bitmap. 7642 * Any blocks waiting on the inode to write can be safely freed 7643 * here as it will never been written. 7644 */ 7645 ACQUIRE_LOCK(ump); 7646 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7647 if (inodedep) { 7648 /* 7649 * Clear out freeblks that no longer need to reference 7650 * this inode. 7651 */ 7652 while ((freeblks = 7653 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7654 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 7655 fb_next); 7656 freeblks->fb_state &= ~ONDEPLIST; 7657 } 7658 /* 7659 * Remove this inode from the unlinked list. 7660 */ 7661 if (inodedep->id_state & UNLINKED) { 7662 /* 7663 * Save the journal work to be freed with the bitmap 7664 * before we clear UNLINKED. Otherwise it can be lost 7665 * if the inode block is written. 7666 */ 7667 handle_bufwait(inodedep, &freefile->fx_jwork); 7668 clear_unlinked_inodedep(inodedep); 7669 /* 7670 * Re-acquire inodedep as we've dropped the 7671 * per-filesystem lock in clear_unlinked_inodedep(). 7672 */ 7673 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7674 } 7675 } 7676 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 7677 FREE_LOCK(ump); 7678 handle_workitem_freefile(freefile); 7679 return; 7680 } 7681 if ((inodedep->id_state & DEPCOMPLETE) == 0) 7682 inodedep->id_state |= GOINGAWAY; 7683 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 7684 FREE_LOCK(ump); 7685 if (ip->i_number == ino) 7686 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 7687 } 7688 7689 /* 7690 * Check to see if an inode has never been written to disk. If 7691 * so free the inodedep and return success, otherwise return failure. 7692 * 7693 * If we still have a bitmap dependency, then the inode has never 7694 * been written to disk. Drop the dependency as it is no longer 7695 * necessary since the inode is being deallocated. We set the 7696 * ALLCOMPLETE flags since the bitmap now properly shows that the 7697 * inode is not allocated. Even if the inode is actively being 7698 * written, it has been rolled back to its zero'ed state, so we 7699 * are ensured that a zero inode is what is on the disk. For short 7700 * lived files, this change will usually result in removing all the 7701 * dependencies from the inode so that it can be freed immediately. 7702 */ 7703 static int 7704 check_inode_unwritten(inodedep) 7705 struct inodedep *inodedep; 7706 { 7707 7708 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7709 7710 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 7711 !LIST_EMPTY(&inodedep->id_dirremhd) || 7712 !LIST_EMPTY(&inodedep->id_pendinghd) || 7713 !LIST_EMPTY(&inodedep->id_bufwait) || 7714 !LIST_EMPTY(&inodedep->id_inowait) || 7715 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7716 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7717 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7718 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7719 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7720 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7721 inodedep->id_mkdiradd != NULL || 7722 inodedep->id_nlinkdelta != 0) 7723 return (0); 7724 /* 7725 * Another process might be in initiate_write_inodeblock_ufs[12] 7726 * trying to allocate memory without holding "Softdep Lock". 7727 */ 7728 if ((inodedep->id_state & IOSTARTED) != 0 && 7729 inodedep->id_savedino1 == NULL) 7730 return (0); 7731 7732 if (inodedep->id_state & ONDEPLIST) 7733 LIST_REMOVE(inodedep, id_deps); 7734 inodedep->id_state &= ~ONDEPLIST; 7735 inodedep->id_state |= ALLCOMPLETE; 7736 inodedep->id_bmsafemap = NULL; 7737 if (inodedep->id_state & ONWORKLIST) 7738 WORKLIST_REMOVE(&inodedep->id_list); 7739 if (inodedep->id_savedino1 != NULL) { 7740 free(inodedep->id_savedino1, M_SAVEDINO); 7741 inodedep->id_savedino1 = NULL; 7742 } 7743 if (free_inodedep(inodedep) == 0) 7744 panic("check_inode_unwritten: busy inode"); 7745 return (1); 7746 } 7747 7748 static int 7749 check_inodedep_free(inodedep) 7750 struct inodedep *inodedep; 7751 { 7752 7753 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7754 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 7755 !LIST_EMPTY(&inodedep->id_dirremhd) || 7756 !LIST_EMPTY(&inodedep->id_pendinghd) || 7757 !LIST_EMPTY(&inodedep->id_bufwait) || 7758 !LIST_EMPTY(&inodedep->id_inowait) || 7759 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 7760 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 7761 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 7762 !TAILQ_EMPTY(&inodedep->id_extupdt) || 7763 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 7764 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 7765 inodedep->id_mkdiradd != NULL || 7766 inodedep->id_nlinkdelta != 0 || 7767 inodedep->id_savedino1 != NULL) 7768 return (0); 7769 return (1); 7770 } 7771 7772 /* 7773 * Try to free an inodedep structure. Return 1 if it could be freed. 7774 */ 7775 static int 7776 free_inodedep(inodedep) 7777 struct inodedep *inodedep; 7778 { 7779 7780 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 7781 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 7782 !check_inodedep_free(inodedep)) 7783 return (0); 7784 if (inodedep->id_state & ONDEPLIST) 7785 LIST_REMOVE(inodedep, id_deps); 7786 LIST_REMOVE(inodedep, id_hash); 7787 WORKITEM_FREE(inodedep, D_INODEDEP); 7788 return (1); 7789 } 7790 7791 /* 7792 * Free the block referenced by a freework structure. The parent freeblks 7793 * structure is released and completed when the final cg bitmap reaches 7794 * the disk. This routine may be freeing a jnewblk which never made it to 7795 * disk in which case we do not have to wait as the operation is undone 7796 * in memory immediately. 7797 */ 7798 static void 7799 freework_freeblock(freework, key) 7800 struct freework *freework; 7801 u_long key; 7802 { 7803 struct freeblks *freeblks; 7804 struct jnewblk *jnewblk; 7805 struct ufsmount *ump; 7806 struct workhead wkhd; 7807 struct fs *fs; 7808 int bsize; 7809 int needj; 7810 7811 ump = VFSTOUFS(freework->fw_list.wk_mp); 7812 LOCK_OWNED(ump); 7813 /* 7814 * Handle partial truncate separately. 7815 */ 7816 if (freework->fw_indir) { 7817 complete_trunc_indir(freework); 7818 return; 7819 } 7820 freeblks = freework->fw_freeblks; 7821 fs = ump->um_fs; 7822 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 7823 bsize = lfragtosize(fs, freework->fw_frags); 7824 LIST_INIT(&wkhd); 7825 /* 7826 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 7827 * on the indirblk hashtable and prevents premature freeing. 7828 */ 7829 freework->fw_state |= DEPCOMPLETE; 7830 /* 7831 * SUJ needs to wait for the segment referencing freed indirect 7832 * blocks to expire so that we know the checker will not confuse 7833 * a re-allocated indirect block with its old contents. 7834 */ 7835 if (needj && freework->fw_lbn <= -UFS_NDADDR) 7836 indirblk_insert(freework); 7837 /* 7838 * If we are canceling an existing jnewblk pass it to the free 7839 * routine, otherwise pass the freeblk which will ultimately 7840 * release the freeblks. If we're not journaling, we can just 7841 * free the freeblks immediately. 7842 */ 7843 jnewblk = freework->fw_jnewblk; 7844 if (jnewblk != NULL) { 7845 cancel_jnewblk(jnewblk, &wkhd); 7846 needj = 0; 7847 } else if (needj) { 7848 freework->fw_state |= DELAYEDFREE; 7849 freeblks->fb_cgwait++; 7850 WORKLIST_INSERT(&wkhd, &freework->fw_list); 7851 } 7852 FREE_LOCK(ump); 7853 freeblks_free(ump, freeblks, btodb(bsize)); 7854 CTR4(KTR_SUJ, 7855 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 7856 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 7857 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 7858 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 7859 ACQUIRE_LOCK(ump); 7860 /* 7861 * The jnewblk will be discarded and the bits in the map never 7862 * made it to disk. We can immediately free the freeblk. 7863 */ 7864 if (needj == 0) 7865 handle_written_freework(freework); 7866 } 7867 7868 /* 7869 * We enqueue freework items that need processing back on the freeblks and 7870 * add the freeblks to the worklist. This makes it easier to find all work 7871 * required to flush a truncation in process_truncates(). 7872 */ 7873 static void 7874 freework_enqueue(freework) 7875 struct freework *freework; 7876 { 7877 struct freeblks *freeblks; 7878 7879 freeblks = freework->fw_freeblks; 7880 if ((freework->fw_state & INPROGRESS) == 0) 7881 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 7882 if ((freeblks->fb_state & 7883 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 7884 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7885 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7886 } 7887 7888 /* 7889 * Start, continue, or finish the process of freeing an indirect block tree. 7890 * The free operation may be paused at any point with fw_off containing the 7891 * offset to restart from. This enables us to implement some flow control 7892 * for large truncates which may fan out and generate a huge number of 7893 * dependencies. 7894 */ 7895 static void 7896 handle_workitem_indirblk(freework) 7897 struct freework *freework; 7898 { 7899 struct freeblks *freeblks; 7900 struct ufsmount *ump; 7901 struct fs *fs; 7902 7903 freeblks = freework->fw_freeblks; 7904 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7905 fs = ump->um_fs; 7906 if (freework->fw_state & DEPCOMPLETE) { 7907 handle_written_freework(freework); 7908 return; 7909 } 7910 if (freework->fw_off == NINDIR(fs)) { 7911 freework_freeblock(freework, SINGLETON_KEY); 7912 return; 7913 } 7914 freework->fw_state |= INPROGRESS; 7915 FREE_LOCK(ump); 7916 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 7917 freework->fw_lbn); 7918 ACQUIRE_LOCK(ump); 7919 } 7920 7921 /* 7922 * Called when a freework structure attached to a cg buf is written. The 7923 * ref on either the parent or the freeblks structure is released and 7924 * the freeblks is added back to the worklist if there is more work to do. 7925 */ 7926 static void 7927 handle_written_freework(freework) 7928 struct freework *freework; 7929 { 7930 struct freeblks *freeblks; 7931 struct freework *parent; 7932 7933 freeblks = freework->fw_freeblks; 7934 parent = freework->fw_parent; 7935 if (freework->fw_state & DELAYEDFREE) 7936 freeblks->fb_cgwait--; 7937 freework->fw_state |= COMPLETE; 7938 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 7939 WORKITEM_FREE(freework, D_FREEWORK); 7940 if (parent) { 7941 if (--parent->fw_ref == 0) 7942 freework_enqueue(parent); 7943 return; 7944 } 7945 if (--freeblks->fb_ref != 0) 7946 return; 7947 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 7948 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 7949 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 7950 } 7951 7952 /* 7953 * This workitem routine performs the block de-allocation. 7954 * The workitem is added to the pending list after the updated 7955 * inode block has been written to disk. As mentioned above, 7956 * checks regarding the number of blocks de-allocated (compared 7957 * to the number of blocks allocated for the file) are also 7958 * performed in this function. 7959 */ 7960 static int 7961 handle_workitem_freeblocks(freeblks, flags) 7962 struct freeblks *freeblks; 7963 int flags; 7964 { 7965 struct freework *freework; 7966 struct newblk *newblk; 7967 struct allocindir *aip; 7968 struct ufsmount *ump; 7969 struct worklist *wk; 7970 u_long key; 7971 7972 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 7973 ("handle_workitem_freeblocks: Journal entries not written.")); 7974 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 7975 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 7976 ACQUIRE_LOCK(ump); 7977 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 7978 WORKLIST_REMOVE(wk); 7979 switch (wk->wk_type) { 7980 case D_DIRREM: 7981 wk->wk_state |= COMPLETE; 7982 add_to_worklist(wk, 0); 7983 continue; 7984 7985 case D_ALLOCDIRECT: 7986 free_newblk(WK_NEWBLK(wk)); 7987 continue; 7988 7989 case D_ALLOCINDIR: 7990 aip = WK_ALLOCINDIR(wk); 7991 freework = NULL; 7992 if (aip->ai_state & DELAYEDFREE) { 7993 FREE_LOCK(ump); 7994 freework = newfreework(ump, freeblks, NULL, 7995 aip->ai_lbn, aip->ai_newblkno, 7996 ump->um_fs->fs_frag, 0, 0); 7997 ACQUIRE_LOCK(ump); 7998 } 7999 newblk = WK_NEWBLK(wk); 8000 if (newblk->nb_jnewblk) { 8001 freework->fw_jnewblk = newblk->nb_jnewblk; 8002 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8003 newblk->nb_jnewblk = NULL; 8004 } 8005 free_newblk(newblk); 8006 continue; 8007 8008 case D_FREEWORK: 8009 freework = WK_FREEWORK(wk); 8010 if (freework->fw_lbn <= -UFS_NDADDR) 8011 handle_workitem_indirblk(freework); 8012 else 8013 freework_freeblock(freework, key); 8014 continue; 8015 default: 8016 panic("handle_workitem_freeblocks: Unknown type %s", 8017 TYPENAME(wk->wk_type)); 8018 } 8019 } 8020 if (freeblks->fb_ref != 0) { 8021 freeblks->fb_state &= ~INPROGRESS; 8022 wake_worklist(&freeblks->fb_list); 8023 freeblks = NULL; 8024 } 8025 FREE_LOCK(ump); 8026 ffs_blkrelease_finish(ump, key); 8027 if (freeblks) 8028 return handle_complete_freeblocks(freeblks, flags); 8029 return (0); 8030 } 8031 8032 /* 8033 * Handle completion of block free via truncate. This allows fs_pending 8034 * to track the actual free block count more closely than if we only updated 8035 * it at the end. We must be careful to handle cases where the block count 8036 * on free was incorrect. 8037 */ 8038 static void 8039 freeblks_free(ump, freeblks, blocks) 8040 struct ufsmount *ump; 8041 struct freeblks *freeblks; 8042 int blocks; 8043 { 8044 struct fs *fs; 8045 ufs2_daddr_t remain; 8046 8047 UFS_LOCK(ump); 8048 remain = -freeblks->fb_chkcnt; 8049 freeblks->fb_chkcnt += blocks; 8050 if (remain > 0) { 8051 if (remain < blocks) 8052 blocks = remain; 8053 fs = ump->um_fs; 8054 fs->fs_pendingblocks -= blocks; 8055 } 8056 UFS_UNLOCK(ump); 8057 } 8058 8059 /* 8060 * Once all of the freework workitems are complete we can retire the 8061 * freeblocks dependency and any journal work awaiting completion. This 8062 * can not be called until all other dependencies are stable on disk. 8063 */ 8064 static int 8065 handle_complete_freeblocks(freeblks, flags) 8066 struct freeblks *freeblks; 8067 int flags; 8068 { 8069 struct inodedep *inodedep; 8070 struct inode *ip; 8071 struct vnode *vp; 8072 struct fs *fs; 8073 struct ufsmount *ump; 8074 ufs2_daddr_t spare; 8075 8076 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8077 fs = ump->um_fs; 8078 flags = LK_EXCLUSIVE | flags; 8079 spare = freeblks->fb_chkcnt; 8080 8081 /* 8082 * If we did not release the expected number of blocks we may have 8083 * to adjust the inode block count here. Only do so if it wasn't 8084 * a truncation to zero and the modrev still matches. 8085 */ 8086 if (spare && freeblks->fb_len != 0) { 8087 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8088 flags, &vp, FFSV_FORCEINSMQ) != 0) 8089 return (EBUSY); 8090 ip = VTOI(vp); 8091 if (ip->i_mode == 0) { 8092 vgone(vp); 8093 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8094 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8095 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8096 /* 8097 * We must wait so this happens before the 8098 * journal is reclaimed. 8099 */ 8100 ffs_update(vp, 1); 8101 } 8102 vput(vp); 8103 } 8104 if (spare < 0) { 8105 UFS_LOCK(ump); 8106 fs->fs_pendingblocks += spare; 8107 UFS_UNLOCK(ump); 8108 } 8109 #ifdef QUOTA 8110 /* Handle spare. */ 8111 if (spare) 8112 quotaadj(freeblks->fb_quota, ump, -spare); 8113 quotarele(freeblks->fb_quota); 8114 #endif 8115 ACQUIRE_LOCK(ump); 8116 if (freeblks->fb_state & ONDEPLIST) { 8117 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8118 0, &inodedep); 8119 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8120 freeblks->fb_state &= ~ONDEPLIST; 8121 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8122 free_inodedep(inodedep); 8123 } 8124 /* 8125 * All of the freeblock deps must be complete prior to this call 8126 * so it's now safe to complete earlier outstanding journal entries. 8127 */ 8128 handle_jwork(&freeblks->fb_jwork); 8129 WORKITEM_FREE(freeblks, D_FREEBLKS); 8130 FREE_LOCK(ump); 8131 return (0); 8132 } 8133 8134 /* 8135 * Release blocks associated with the freeblks and stored in the indirect 8136 * block dbn. If level is greater than SINGLE, the block is an indirect block 8137 * and recursive calls to indirtrunc must be used to cleanse other indirect 8138 * blocks. 8139 * 8140 * This handles partial and complete truncation of blocks. Partial is noted 8141 * with goingaway == 0. In this case the freework is completed after the 8142 * zero'd indirects are written to disk. For full truncation the freework 8143 * is completed after the block is freed. 8144 */ 8145 static void 8146 indir_trunc(freework, dbn, lbn) 8147 struct freework *freework; 8148 ufs2_daddr_t dbn; 8149 ufs_lbn_t lbn; 8150 { 8151 struct freework *nfreework; 8152 struct workhead wkhd; 8153 struct freeblks *freeblks; 8154 struct buf *bp; 8155 struct fs *fs; 8156 struct indirdep *indirdep; 8157 struct mount *mp; 8158 struct ufsmount *ump; 8159 ufs1_daddr_t *bap1; 8160 ufs2_daddr_t nb, nnb, *bap2; 8161 ufs_lbn_t lbnadd, nlbn; 8162 u_long key; 8163 int nblocks, ufs1fmt, freedblocks; 8164 int goingaway, freedeps, needj, level, cnt, i; 8165 8166 freeblks = freework->fw_freeblks; 8167 mp = freeblks->fb_list.wk_mp; 8168 ump = VFSTOUFS(mp); 8169 fs = ump->um_fs; 8170 /* 8171 * Get buffer of block pointers to be freed. There are three cases: 8172 * 8173 * 1) Partial truncate caches the indirdep pointer in the freework 8174 * which provides us a back copy to the save bp which holds the 8175 * pointers we want to clear. When this completes the zero 8176 * pointers are written to the real copy. 8177 * 2) The indirect is being completely truncated, cancel_indirdep() 8178 * eliminated the real copy and placed the indirdep on the saved 8179 * copy. The indirdep and buf are discarded when this completes. 8180 * 3) The indirect was not in memory, we read a copy off of the disk 8181 * using the devvp and drop and invalidate the buffer when we're 8182 * done. 8183 */ 8184 goingaway = 1; 8185 indirdep = NULL; 8186 if (freework->fw_indir != NULL) { 8187 goingaway = 0; 8188 indirdep = freework->fw_indir; 8189 bp = indirdep->ir_savebp; 8190 if (bp == NULL || bp->b_blkno != dbn) 8191 panic("indir_trunc: Bad saved buf %p blkno %jd", 8192 bp, (intmax_t)dbn); 8193 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8194 /* 8195 * The lock prevents the buf dep list from changing and 8196 * indirects on devvp should only ever have one dependency. 8197 */ 8198 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8199 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8200 panic("indir_trunc: Bad indirdep %p from buf %p", 8201 indirdep, bp); 8202 } else if (bread(freeblks->fb_devvp, dbn, (int)fs->fs_bsize, 8203 NOCRED, &bp) != 0) { 8204 brelse(bp); 8205 return; 8206 } 8207 ACQUIRE_LOCK(ump); 8208 /* Protects against a race with complete_trunc_indir(). */ 8209 freework->fw_state &= ~INPROGRESS; 8210 /* 8211 * If we have an indirdep we need to enforce the truncation order 8212 * and discard it when it is complete. 8213 */ 8214 if (indirdep) { 8215 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8216 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8217 /* 8218 * Add the complete truncate to the list on the 8219 * indirdep to enforce in-order processing. 8220 */ 8221 if (freework->fw_indir == NULL) 8222 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8223 freework, fw_next); 8224 FREE_LOCK(ump); 8225 return; 8226 } 8227 /* 8228 * If we're goingaway, free the indirdep. Otherwise it will 8229 * linger until the write completes. 8230 */ 8231 if (goingaway) { 8232 KASSERT(indirdep->ir_savebp == bp, 8233 ("indir_trunc: losing ir_savebp %p", 8234 indirdep->ir_savebp)); 8235 indirdep->ir_savebp = NULL; 8236 free_indirdep(indirdep); 8237 } 8238 } 8239 FREE_LOCK(ump); 8240 /* Initialize pointers depending on block size. */ 8241 if (ump->um_fstype == UFS1) { 8242 bap1 = (ufs1_daddr_t *)bp->b_data; 8243 nb = bap1[freework->fw_off]; 8244 ufs1fmt = 1; 8245 bap2 = NULL; 8246 } else { 8247 bap2 = (ufs2_daddr_t *)bp->b_data; 8248 nb = bap2[freework->fw_off]; 8249 ufs1fmt = 0; 8250 bap1 = NULL; 8251 } 8252 level = lbn_level(lbn); 8253 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8254 lbnadd = lbn_offset(fs, level); 8255 nblocks = btodb(fs->fs_bsize); 8256 nfreework = freework; 8257 freedeps = 0; 8258 cnt = 0; 8259 /* 8260 * Reclaim blocks. Traverses into nested indirect levels and 8261 * arranges for the current level to be freed when subordinates 8262 * are free when journaling. 8263 */ 8264 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8265 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8266 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8267 fs->fs_bsize) != 0) 8268 nb = 0; 8269 if (i != NINDIR(fs) - 1) { 8270 if (ufs1fmt) 8271 nnb = bap1[i+1]; 8272 else 8273 nnb = bap2[i+1]; 8274 } else 8275 nnb = 0; 8276 if (nb == 0) 8277 continue; 8278 cnt++; 8279 if (level != 0) { 8280 nlbn = (lbn + 1) - (i * lbnadd); 8281 if (needj != 0) { 8282 nfreework = newfreework(ump, freeblks, freework, 8283 nlbn, nb, fs->fs_frag, 0, 0); 8284 freedeps++; 8285 } 8286 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8287 } else { 8288 struct freedep *freedep; 8289 8290 /* 8291 * Attempt to aggregate freedep dependencies for 8292 * all blocks being released to the same CG. 8293 */ 8294 LIST_INIT(&wkhd); 8295 if (needj != 0 && 8296 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8297 freedep = newfreedep(freework); 8298 WORKLIST_INSERT_UNLOCKED(&wkhd, 8299 &freedep->fd_list); 8300 freedeps++; 8301 } 8302 CTR3(KTR_SUJ, 8303 "indir_trunc: ino %jd blkno %jd size %d", 8304 freeblks->fb_inum, nb, fs->fs_bsize); 8305 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8306 fs->fs_bsize, freeblks->fb_inum, 8307 freeblks->fb_vtype, &wkhd, key); 8308 } 8309 } 8310 ffs_blkrelease_finish(ump, key); 8311 if (goingaway) { 8312 bp->b_flags |= B_INVAL | B_NOCACHE; 8313 brelse(bp); 8314 } 8315 freedblocks = 0; 8316 if (level == 0) 8317 freedblocks = (nblocks * cnt); 8318 if (needj == 0) 8319 freedblocks += nblocks; 8320 freeblks_free(ump, freeblks, freedblocks); 8321 /* 8322 * If we are journaling set up the ref counts and offset so this 8323 * indirect can be completed when its children are free. 8324 */ 8325 if (needj) { 8326 ACQUIRE_LOCK(ump); 8327 freework->fw_off = i; 8328 freework->fw_ref += freedeps; 8329 freework->fw_ref -= NINDIR(fs) + 1; 8330 if (level == 0) 8331 freeblks->fb_cgwait += freedeps; 8332 if (freework->fw_ref == 0) 8333 freework_freeblock(freework, SINGLETON_KEY); 8334 FREE_LOCK(ump); 8335 return; 8336 } 8337 /* 8338 * If we're not journaling we can free the indirect now. 8339 */ 8340 dbn = dbtofsb(fs, dbn); 8341 CTR3(KTR_SUJ, 8342 "indir_trunc 2: ino %jd blkno %jd size %d", 8343 freeblks->fb_inum, dbn, fs->fs_bsize); 8344 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8345 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8346 /* Non SUJ softdep does single-threaded truncations. */ 8347 if (freework->fw_blkno == dbn) { 8348 freework->fw_state |= ALLCOMPLETE; 8349 ACQUIRE_LOCK(ump); 8350 handle_written_freework(freework); 8351 FREE_LOCK(ump); 8352 } 8353 return; 8354 } 8355 8356 /* 8357 * Cancel an allocindir when it is removed via truncation. When bp is not 8358 * NULL the indirect never appeared on disk and is scheduled to be freed 8359 * independently of the indir so we can more easily track journal work. 8360 */ 8361 static void 8362 cancel_allocindir(aip, bp, freeblks, trunc) 8363 struct allocindir *aip; 8364 struct buf *bp; 8365 struct freeblks *freeblks; 8366 int trunc; 8367 { 8368 struct indirdep *indirdep; 8369 struct freefrag *freefrag; 8370 struct newblk *newblk; 8371 8372 newblk = (struct newblk *)aip; 8373 LIST_REMOVE(aip, ai_next); 8374 /* 8375 * We must eliminate the pointer in bp if it must be freed on its 8376 * own due to partial truncate or pending journal work. 8377 */ 8378 if (bp && (trunc || newblk->nb_jnewblk)) { 8379 /* 8380 * Clear the pointer and mark the aip to be freed 8381 * directly if it never existed on disk. 8382 */ 8383 aip->ai_state |= DELAYEDFREE; 8384 indirdep = aip->ai_indirdep; 8385 if (indirdep->ir_state & UFS1FMT) 8386 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8387 else 8388 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8389 } 8390 /* 8391 * When truncating the previous pointer will be freed via 8392 * savedbp. Eliminate the freefrag which would dup free. 8393 */ 8394 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8395 newblk->nb_freefrag = NULL; 8396 if (freefrag->ff_jdep) 8397 cancel_jfreefrag( 8398 WK_JFREEFRAG(freefrag->ff_jdep)); 8399 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8400 WORKITEM_FREE(freefrag, D_FREEFRAG); 8401 } 8402 /* 8403 * If the journal hasn't been written the jnewblk must be passed 8404 * to the call to ffs_blkfree that reclaims the space. We accomplish 8405 * this by leaving the journal dependency on the newblk to be freed 8406 * when a freework is created in handle_workitem_freeblocks(). 8407 */ 8408 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8409 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8410 } 8411 8412 /* 8413 * Create the mkdir dependencies for . and .. in a new directory. Link them 8414 * in to a newdirblk so any subsequent additions are tracked properly. The 8415 * caller is responsible for adding the mkdir1 dependency to the journal 8416 * and updating id_mkdiradd. This function returns with the per-filesystem 8417 * lock held. 8418 */ 8419 static struct mkdir * 8420 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8421 struct diradd *dap; 8422 ino_t newinum; 8423 ino_t dinum; 8424 struct buf *newdirbp; 8425 struct mkdir **mkdirp; 8426 { 8427 struct newblk *newblk; 8428 struct pagedep *pagedep; 8429 struct inodedep *inodedep; 8430 struct newdirblk *newdirblk; 8431 struct mkdir *mkdir1, *mkdir2; 8432 struct worklist *wk; 8433 struct jaddref *jaddref; 8434 struct ufsmount *ump; 8435 struct mount *mp; 8436 8437 mp = dap->da_list.wk_mp; 8438 ump = VFSTOUFS(mp); 8439 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8440 M_SOFTDEP_FLAGS); 8441 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8442 LIST_INIT(&newdirblk->db_mkdir); 8443 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8444 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8445 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8446 mkdir1->md_diradd = dap; 8447 mkdir1->md_jaddref = NULL; 8448 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8449 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8450 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8451 mkdir2->md_diradd = dap; 8452 mkdir2->md_jaddref = NULL; 8453 if (MOUNTEDSUJ(mp) == 0) { 8454 mkdir1->md_state |= DEPCOMPLETE; 8455 mkdir2->md_state |= DEPCOMPLETE; 8456 } 8457 /* 8458 * Dependency on "." and ".." being written to disk. 8459 */ 8460 mkdir1->md_buf = newdirbp; 8461 ACQUIRE_LOCK(VFSTOUFS(mp)); 8462 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8463 /* 8464 * We must link the pagedep, allocdirect, and newdirblk for 8465 * the initial file page so the pointer to the new directory 8466 * is not written until the directory contents are live and 8467 * any subsequent additions are not marked live until the 8468 * block is reachable via the inode. 8469 */ 8470 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8471 panic("setup_newdir: lost pagedep"); 8472 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8473 if (wk->wk_type == D_ALLOCDIRECT) 8474 break; 8475 if (wk == NULL) 8476 panic("setup_newdir: lost allocdirect"); 8477 if (pagedep->pd_state & NEWBLOCK) 8478 panic("setup_newdir: NEWBLOCK already set"); 8479 newblk = WK_NEWBLK(wk); 8480 pagedep->pd_state |= NEWBLOCK; 8481 pagedep->pd_newdirblk = newdirblk; 8482 newdirblk->db_pagedep = pagedep; 8483 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8484 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8485 /* 8486 * Look up the inodedep for the parent directory so that we 8487 * can link mkdir2 into the pending dotdot jaddref or 8488 * the inode write if there is none. If the inode is 8489 * ALLCOMPLETE and no jaddref is present all dependencies have 8490 * been satisfied and mkdir2 can be freed. 8491 */ 8492 inodedep_lookup(mp, dinum, 0, &inodedep); 8493 if (MOUNTEDSUJ(mp)) { 8494 if (inodedep == NULL) 8495 panic("setup_newdir: Lost parent."); 8496 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8497 inoreflst); 8498 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8499 (jaddref->ja_state & MKDIR_PARENT), 8500 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8501 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8502 mkdir2->md_jaddref = jaddref; 8503 jaddref->ja_mkdir = mkdir2; 8504 } else if (inodedep == NULL || 8505 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8506 dap->da_state &= ~MKDIR_PARENT; 8507 WORKITEM_FREE(mkdir2, D_MKDIR); 8508 mkdir2 = NULL; 8509 } else { 8510 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8511 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8512 } 8513 *mkdirp = mkdir2; 8514 8515 return (mkdir1); 8516 } 8517 8518 /* 8519 * Directory entry addition dependencies. 8520 * 8521 * When adding a new directory entry, the inode (with its incremented link 8522 * count) must be written to disk before the directory entry's pointer to it. 8523 * Also, if the inode is newly allocated, the corresponding freemap must be 8524 * updated (on disk) before the directory entry's pointer. These requirements 8525 * are met via undo/redo on the directory entry's pointer, which consists 8526 * simply of the inode number. 8527 * 8528 * As directory entries are added and deleted, the free space within a 8529 * directory block can become fragmented. The ufs filesystem will compact 8530 * a fragmented directory block to make space for a new entry. When this 8531 * occurs, the offsets of previously added entries change. Any "diradd" 8532 * dependency structures corresponding to these entries must be updated with 8533 * the new offsets. 8534 */ 8535 8536 /* 8537 * This routine is called after the in-memory inode's link 8538 * count has been incremented, but before the directory entry's 8539 * pointer to the inode has been set. 8540 */ 8541 int 8542 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8543 struct buf *bp; /* buffer containing directory block */ 8544 struct inode *dp; /* inode for directory */ 8545 off_t diroffset; /* offset of new entry in directory */ 8546 ino_t newinum; /* inode referenced by new directory entry */ 8547 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8548 int isnewblk; /* entry is in a newly allocated block */ 8549 { 8550 int offset; /* offset of new entry within directory block */ 8551 ufs_lbn_t lbn; /* block in directory containing new entry */ 8552 struct fs *fs; 8553 struct diradd *dap; 8554 struct newblk *newblk; 8555 struct pagedep *pagedep; 8556 struct inodedep *inodedep; 8557 struct newdirblk *newdirblk; 8558 struct mkdir *mkdir1, *mkdir2; 8559 struct jaddref *jaddref; 8560 struct ufsmount *ump; 8561 struct mount *mp; 8562 int isindir; 8563 8564 mp = ITOVFS(dp); 8565 ump = VFSTOUFS(mp); 8566 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8567 ("softdep_setup_directory_add called on non-softdep filesystem")); 8568 /* 8569 * Whiteouts have no dependencies. 8570 */ 8571 if (newinum == UFS_WINO) { 8572 if (newdirbp != NULL) 8573 bdwrite(newdirbp); 8574 return (0); 8575 } 8576 jaddref = NULL; 8577 mkdir1 = mkdir2 = NULL; 8578 fs = ump->um_fs; 8579 lbn = lblkno(fs, diroffset); 8580 offset = blkoff(fs, diroffset); 8581 dap = malloc(sizeof(struct diradd), M_DIRADD, 8582 M_SOFTDEP_FLAGS|M_ZERO); 8583 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8584 dap->da_offset = offset; 8585 dap->da_newinum = newinum; 8586 dap->da_state = ATTACHED; 8587 LIST_INIT(&dap->da_jwork); 8588 isindir = bp->b_lblkno >= UFS_NDADDR; 8589 newdirblk = NULL; 8590 if (isnewblk && 8591 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8592 newdirblk = malloc(sizeof(struct newdirblk), 8593 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8594 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8595 LIST_INIT(&newdirblk->db_mkdir); 8596 } 8597 /* 8598 * If we're creating a new directory setup the dependencies and set 8599 * the dap state to wait for them. Otherwise it's COMPLETE and 8600 * we can move on. 8601 */ 8602 if (newdirbp == NULL) { 8603 dap->da_state |= DEPCOMPLETE; 8604 ACQUIRE_LOCK(ump); 8605 } else { 8606 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8607 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8608 &mkdir2); 8609 } 8610 /* 8611 * Link into parent directory pagedep to await its being written. 8612 */ 8613 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8614 #ifdef INVARIANTS 8615 if (diradd_lookup(pagedep, offset) != NULL) 8616 panic("softdep_setup_directory_add: %p already at off %d\n", 8617 diradd_lookup(pagedep, offset), offset); 8618 #endif 8619 dap->da_pagedep = pagedep; 8620 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8621 da_pdlist); 8622 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8623 /* 8624 * If we're journaling, link the diradd into the jaddref so it 8625 * may be completed after the journal entry is written. Otherwise, 8626 * link the diradd into its inodedep. If the inode is not yet 8627 * written place it on the bufwait list, otherwise do the post-inode 8628 * write processing to put it on the id_pendinghd list. 8629 */ 8630 if (MOUNTEDSUJ(mp)) { 8631 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8632 inoreflst); 8633 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8634 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8635 jaddref->ja_diroff = diroffset; 8636 jaddref->ja_diradd = dap; 8637 add_to_journal(&jaddref->ja_list); 8638 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8639 diradd_inode_written(dap, inodedep); 8640 else 8641 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8642 /* 8643 * Add the journal entries for . and .. links now that the primary 8644 * link is written. 8645 */ 8646 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8647 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8648 inoreflst, if_deps); 8649 KASSERT(jaddref != NULL && 8650 jaddref->ja_ino == jaddref->ja_parent && 8651 (jaddref->ja_state & MKDIR_BODY), 8652 ("softdep_setup_directory_add: bad dot jaddref %p", 8653 jaddref)); 8654 mkdir1->md_jaddref = jaddref; 8655 jaddref->ja_mkdir = mkdir1; 8656 /* 8657 * It is important that the dotdot journal entry 8658 * is added prior to the dot entry since dot writes 8659 * both the dot and dotdot links. These both must 8660 * be added after the primary link for the journal 8661 * to remain consistent. 8662 */ 8663 add_to_journal(&mkdir2->md_jaddref->ja_list); 8664 add_to_journal(&jaddref->ja_list); 8665 } 8666 /* 8667 * If we are adding a new directory remember this diradd so that if 8668 * we rename it we can keep the dot and dotdot dependencies. If 8669 * we are adding a new name for an inode that has a mkdiradd we 8670 * must be in rename and we have to move the dot and dotdot 8671 * dependencies to this new name. The old name is being orphaned 8672 * soon. 8673 */ 8674 if (mkdir1 != NULL) { 8675 if (inodedep->id_mkdiradd != NULL) 8676 panic("softdep_setup_directory_add: Existing mkdir"); 8677 inodedep->id_mkdiradd = dap; 8678 } else if (inodedep->id_mkdiradd) 8679 merge_diradd(inodedep, dap); 8680 if (newdirblk != NULL) { 8681 /* 8682 * There is nothing to do if we are already tracking 8683 * this block. 8684 */ 8685 if ((pagedep->pd_state & NEWBLOCK) != 0) { 8686 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 8687 FREE_LOCK(ump); 8688 return (0); 8689 } 8690 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 8691 == 0) 8692 panic("softdep_setup_directory_add: lost entry"); 8693 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8694 pagedep->pd_state |= NEWBLOCK; 8695 pagedep->pd_newdirblk = newdirblk; 8696 newdirblk->db_pagedep = pagedep; 8697 FREE_LOCK(ump); 8698 /* 8699 * If we extended into an indirect signal direnter to sync. 8700 */ 8701 if (isindir) 8702 return (1); 8703 return (0); 8704 } 8705 FREE_LOCK(ump); 8706 return (0); 8707 } 8708 8709 /* 8710 * This procedure is called to change the offset of a directory 8711 * entry when compacting a directory block which must be owned 8712 * exclusively by the caller. Note that the actual entry movement 8713 * must be done in this procedure to ensure that no I/O completions 8714 * occur while the move is in progress. 8715 */ 8716 void 8717 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 8718 struct buf *bp; /* Buffer holding directory block. */ 8719 struct inode *dp; /* inode for directory */ 8720 caddr_t base; /* address of dp->i_offset */ 8721 caddr_t oldloc; /* address of old directory location */ 8722 caddr_t newloc; /* address of new directory location */ 8723 int entrysize; /* size of directory entry */ 8724 { 8725 int offset, oldoffset, newoffset; 8726 struct pagedep *pagedep; 8727 struct jmvref *jmvref; 8728 struct diradd *dap; 8729 struct direct *de; 8730 struct mount *mp; 8731 struct ufsmount *ump; 8732 ufs_lbn_t lbn; 8733 int flags; 8734 8735 mp = ITOVFS(dp); 8736 ump = VFSTOUFS(mp); 8737 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8738 ("softdep_change_directoryentry_offset called on " 8739 "non-softdep filesystem")); 8740 de = (struct direct *)oldloc; 8741 jmvref = NULL; 8742 flags = 0; 8743 /* 8744 * Moves are always journaled as it would be too complex to 8745 * determine if any affected adds or removes are present in the 8746 * journal. 8747 */ 8748 if (MOUNTEDSUJ(mp)) { 8749 flags = DEPALLOC; 8750 jmvref = newjmvref(dp, de->d_ino, 8751 dp->i_offset + (oldloc - base), 8752 dp->i_offset + (newloc - base)); 8753 } 8754 lbn = lblkno(ump->um_fs, dp->i_offset); 8755 offset = blkoff(ump->um_fs, dp->i_offset); 8756 oldoffset = offset + (oldloc - base); 8757 newoffset = offset + (newloc - base); 8758 ACQUIRE_LOCK(ump); 8759 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 8760 goto done; 8761 dap = diradd_lookup(pagedep, oldoffset); 8762 if (dap) { 8763 dap->da_offset = newoffset; 8764 newoffset = DIRADDHASH(newoffset); 8765 oldoffset = DIRADDHASH(oldoffset); 8766 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 8767 newoffset != oldoffset) { 8768 LIST_REMOVE(dap, da_pdlist); 8769 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 8770 dap, da_pdlist); 8771 } 8772 } 8773 done: 8774 if (jmvref) { 8775 jmvref->jm_pagedep = pagedep; 8776 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 8777 add_to_journal(&jmvref->jm_list); 8778 } 8779 bcopy(oldloc, newloc, entrysize); 8780 FREE_LOCK(ump); 8781 } 8782 8783 /* 8784 * Move the mkdir dependencies and journal work from one diradd to another 8785 * when renaming a directory. The new name must depend on the mkdir deps 8786 * completing as the old name did. Directories can only have one valid link 8787 * at a time so one must be canonical. 8788 */ 8789 static void 8790 merge_diradd(inodedep, newdap) 8791 struct inodedep *inodedep; 8792 struct diradd *newdap; 8793 { 8794 struct diradd *olddap; 8795 struct mkdir *mkdir, *nextmd; 8796 struct ufsmount *ump; 8797 short state; 8798 8799 olddap = inodedep->id_mkdiradd; 8800 inodedep->id_mkdiradd = newdap; 8801 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8802 newdap->da_state &= ~DEPCOMPLETE; 8803 ump = VFSTOUFS(inodedep->id_list.wk_mp); 8804 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8805 mkdir = nextmd) { 8806 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8807 if (mkdir->md_diradd != olddap) 8808 continue; 8809 mkdir->md_diradd = newdap; 8810 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 8811 newdap->da_state |= state; 8812 olddap->da_state &= ~state; 8813 if ((olddap->da_state & 8814 (MKDIR_PARENT | MKDIR_BODY)) == 0) 8815 break; 8816 } 8817 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8818 panic("merge_diradd: unfound ref"); 8819 } 8820 /* 8821 * Any mkdir related journal items are not safe to be freed until 8822 * the new name is stable. 8823 */ 8824 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 8825 olddap->da_state |= DEPCOMPLETE; 8826 complete_diradd(olddap); 8827 } 8828 8829 /* 8830 * Move the diradd to the pending list when all diradd dependencies are 8831 * complete. 8832 */ 8833 static void 8834 complete_diradd(dap) 8835 struct diradd *dap; 8836 { 8837 struct pagedep *pagedep; 8838 8839 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 8840 if (dap->da_state & DIRCHG) 8841 pagedep = dap->da_previous->dm_pagedep; 8842 else 8843 pagedep = dap->da_pagedep; 8844 LIST_REMOVE(dap, da_pdlist); 8845 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 8846 } 8847 } 8848 8849 /* 8850 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 8851 * add entries and conditonally journal the remove. 8852 */ 8853 static void 8854 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 8855 struct diradd *dap; 8856 struct dirrem *dirrem; 8857 struct jremref *jremref; 8858 struct jremref *dotremref; 8859 struct jremref *dotdotremref; 8860 { 8861 struct inodedep *inodedep; 8862 struct jaddref *jaddref; 8863 struct inoref *inoref; 8864 struct ufsmount *ump; 8865 struct mkdir *mkdir; 8866 8867 /* 8868 * If no remove references were allocated we're on a non-journaled 8869 * filesystem and can skip the cancel step. 8870 */ 8871 if (jremref == NULL) { 8872 free_diradd(dap, NULL); 8873 return; 8874 } 8875 /* 8876 * Cancel the primary name an free it if it does not require 8877 * journaling. 8878 */ 8879 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 8880 0, &inodedep) != 0) { 8881 /* Abort the addref that reference this diradd. */ 8882 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 8883 if (inoref->if_list.wk_type != D_JADDREF) 8884 continue; 8885 jaddref = (struct jaddref *)inoref; 8886 if (jaddref->ja_diradd != dap) 8887 continue; 8888 if (cancel_jaddref(jaddref, inodedep, 8889 &dirrem->dm_jwork) == 0) { 8890 free_jremref(jremref); 8891 jremref = NULL; 8892 } 8893 break; 8894 } 8895 } 8896 /* 8897 * Cancel subordinate names and free them if they do not require 8898 * journaling. 8899 */ 8900 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8901 ump = VFSTOUFS(dap->da_list.wk_mp); 8902 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 8903 if (mkdir->md_diradd != dap) 8904 continue; 8905 if ((jaddref = mkdir->md_jaddref) == NULL) 8906 continue; 8907 mkdir->md_jaddref = NULL; 8908 if (mkdir->md_state & MKDIR_PARENT) { 8909 if (cancel_jaddref(jaddref, NULL, 8910 &dirrem->dm_jwork) == 0) { 8911 free_jremref(dotdotremref); 8912 dotdotremref = NULL; 8913 } 8914 } else { 8915 if (cancel_jaddref(jaddref, inodedep, 8916 &dirrem->dm_jwork) == 0) { 8917 free_jremref(dotremref); 8918 dotremref = NULL; 8919 } 8920 } 8921 } 8922 } 8923 8924 if (jremref) 8925 journal_jremref(dirrem, jremref, inodedep); 8926 if (dotremref) 8927 journal_jremref(dirrem, dotremref, inodedep); 8928 if (dotdotremref) 8929 journal_jremref(dirrem, dotdotremref, NULL); 8930 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 8931 free_diradd(dap, &dirrem->dm_jwork); 8932 } 8933 8934 /* 8935 * Free a diradd dependency structure. 8936 */ 8937 static void 8938 free_diradd(dap, wkhd) 8939 struct diradd *dap; 8940 struct workhead *wkhd; 8941 { 8942 struct dirrem *dirrem; 8943 struct pagedep *pagedep; 8944 struct inodedep *inodedep; 8945 struct mkdir *mkdir, *nextmd; 8946 struct ufsmount *ump; 8947 8948 ump = VFSTOUFS(dap->da_list.wk_mp); 8949 LOCK_OWNED(ump); 8950 LIST_REMOVE(dap, da_pdlist); 8951 if (dap->da_state & ONWORKLIST) 8952 WORKLIST_REMOVE(&dap->da_list); 8953 if ((dap->da_state & DIRCHG) == 0) { 8954 pagedep = dap->da_pagedep; 8955 } else { 8956 dirrem = dap->da_previous; 8957 pagedep = dirrem->dm_pagedep; 8958 dirrem->dm_dirinum = pagedep->pd_ino; 8959 dirrem->dm_state |= COMPLETE; 8960 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 8961 add_to_worklist(&dirrem->dm_list, 0); 8962 } 8963 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 8964 0, &inodedep) != 0) 8965 if (inodedep->id_mkdiradd == dap) 8966 inodedep->id_mkdiradd = NULL; 8967 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 8968 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 8969 mkdir = nextmd) { 8970 nextmd = LIST_NEXT(mkdir, md_mkdirs); 8971 if (mkdir->md_diradd != dap) 8972 continue; 8973 dap->da_state &= 8974 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 8975 LIST_REMOVE(mkdir, md_mkdirs); 8976 if (mkdir->md_state & ONWORKLIST) 8977 WORKLIST_REMOVE(&mkdir->md_list); 8978 if (mkdir->md_jaddref != NULL) 8979 panic("free_diradd: Unexpected jaddref"); 8980 WORKITEM_FREE(mkdir, D_MKDIR); 8981 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 8982 break; 8983 } 8984 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 8985 panic("free_diradd: unfound ref"); 8986 } 8987 if (inodedep) 8988 free_inodedep(inodedep); 8989 /* 8990 * Free any journal segments waiting for the directory write. 8991 */ 8992 handle_jwork(&dap->da_jwork); 8993 WORKITEM_FREE(dap, D_DIRADD); 8994 } 8995 8996 /* 8997 * Directory entry removal dependencies. 8998 * 8999 * When removing a directory entry, the entry's inode pointer must be 9000 * zero'ed on disk before the corresponding inode's link count is decremented 9001 * (possibly freeing the inode for re-use). This dependency is handled by 9002 * updating the directory entry but delaying the inode count reduction until 9003 * after the directory block has been written to disk. After this point, the 9004 * inode count can be decremented whenever it is convenient. 9005 */ 9006 9007 /* 9008 * This routine should be called immediately after removing 9009 * a directory entry. The inode's link count should not be 9010 * decremented by the calling procedure -- the soft updates 9011 * code will do this task when it is safe. 9012 */ 9013 void 9014 softdep_setup_remove(bp, dp, ip, isrmdir) 9015 struct buf *bp; /* buffer containing directory block */ 9016 struct inode *dp; /* inode for the directory being modified */ 9017 struct inode *ip; /* inode for directory entry being removed */ 9018 int isrmdir; /* indicates if doing RMDIR */ 9019 { 9020 struct dirrem *dirrem, *prevdirrem; 9021 struct inodedep *inodedep; 9022 struct ufsmount *ump; 9023 int direct; 9024 9025 ump = ITOUMP(ip); 9026 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9027 ("softdep_setup_remove called on non-softdep filesystem")); 9028 /* 9029 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9030 * newdirrem() to setup the full directory remove which requires 9031 * isrmdir > 1. 9032 */ 9033 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9034 /* 9035 * Add the dirrem to the inodedep's pending remove list for quick 9036 * discovery later. 9037 */ 9038 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9039 panic("softdep_setup_remove: Lost inodedep."); 9040 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9041 dirrem->dm_state |= ONDEPLIST; 9042 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9043 9044 /* 9045 * If the COMPLETE flag is clear, then there were no active 9046 * entries and we want to roll back to a zeroed entry until 9047 * the new inode is committed to disk. If the COMPLETE flag is 9048 * set then we have deleted an entry that never made it to 9049 * disk. If the entry we deleted resulted from a name change, 9050 * then the old name still resides on disk. We cannot delete 9051 * its inode (returned to us in prevdirrem) until the zeroed 9052 * directory entry gets to disk. The new inode has never been 9053 * referenced on the disk, so can be deleted immediately. 9054 */ 9055 if ((dirrem->dm_state & COMPLETE) == 0) { 9056 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9057 dm_next); 9058 FREE_LOCK(ump); 9059 } else { 9060 if (prevdirrem != NULL) 9061 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9062 prevdirrem, dm_next); 9063 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9064 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9065 FREE_LOCK(ump); 9066 if (direct) 9067 handle_workitem_remove(dirrem, 0); 9068 } 9069 } 9070 9071 /* 9072 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9073 * pd_pendinghd list of a pagedep. 9074 */ 9075 static struct diradd * 9076 diradd_lookup(pagedep, offset) 9077 struct pagedep *pagedep; 9078 int offset; 9079 { 9080 struct diradd *dap; 9081 9082 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9083 if (dap->da_offset == offset) 9084 return (dap); 9085 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9086 if (dap->da_offset == offset) 9087 return (dap); 9088 return (NULL); 9089 } 9090 9091 /* 9092 * Search for a .. diradd dependency in a directory that is being removed. 9093 * If the directory was renamed to a new parent we have a diradd rather 9094 * than a mkdir for the .. entry. We need to cancel it now before 9095 * it is found in truncate(). 9096 */ 9097 static struct jremref * 9098 cancel_diradd_dotdot(ip, dirrem, jremref) 9099 struct inode *ip; 9100 struct dirrem *dirrem; 9101 struct jremref *jremref; 9102 { 9103 struct pagedep *pagedep; 9104 struct diradd *dap; 9105 struct worklist *wk; 9106 9107 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9108 return (jremref); 9109 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9110 if (dap == NULL) 9111 return (jremref); 9112 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9113 /* 9114 * Mark any journal work as belonging to the parent so it is freed 9115 * with the .. reference. 9116 */ 9117 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9118 wk->wk_state |= MKDIR_PARENT; 9119 return (NULL); 9120 } 9121 9122 /* 9123 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9124 * replace it with a dirrem/diradd pair as a result of re-parenting a 9125 * directory. This ensures that we don't simultaneously have a mkdir and 9126 * a diradd for the same .. entry. 9127 */ 9128 static struct jremref * 9129 cancel_mkdir_dotdot(ip, dirrem, jremref) 9130 struct inode *ip; 9131 struct dirrem *dirrem; 9132 struct jremref *jremref; 9133 { 9134 struct inodedep *inodedep; 9135 struct jaddref *jaddref; 9136 struct ufsmount *ump; 9137 struct mkdir *mkdir; 9138 struct diradd *dap; 9139 struct mount *mp; 9140 9141 mp = ITOVFS(ip); 9142 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9143 return (jremref); 9144 dap = inodedep->id_mkdiradd; 9145 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9146 return (jremref); 9147 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9148 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9149 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9150 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9151 break; 9152 if (mkdir == NULL) 9153 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9154 if ((jaddref = mkdir->md_jaddref) != NULL) { 9155 mkdir->md_jaddref = NULL; 9156 jaddref->ja_state &= ~MKDIR_PARENT; 9157 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9158 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9159 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9160 journal_jremref(dirrem, jremref, inodedep); 9161 jremref = NULL; 9162 } 9163 } 9164 if (mkdir->md_state & ONWORKLIST) 9165 WORKLIST_REMOVE(&mkdir->md_list); 9166 mkdir->md_state |= ALLCOMPLETE; 9167 complete_mkdir(mkdir); 9168 return (jremref); 9169 } 9170 9171 static void 9172 journal_jremref(dirrem, jremref, inodedep) 9173 struct dirrem *dirrem; 9174 struct jremref *jremref; 9175 struct inodedep *inodedep; 9176 { 9177 9178 if (inodedep == NULL) 9179 if (inodedep_lookup(jremref->jr_list.wk_mp, 9180 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9181 panic("journal_jremref: Lost inodedep"); 9182 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9183 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9184 add_to_journal(&jremref->jr_list); 9185 } 9186 9187 static void 9188 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9189 struct dirrem *dirrem; 9190 struct jremref *jremref; 9191 struct jremref *dotremref; 9192 struct jremref *dotdotremref; 9193 { 9194 struct inodedep *inodedep; 9195 9196 9197 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9198 &inodedep) == 0) 9199 panic("dirrem_journal: Lost inodedep"); 9200 journal_jremref(dirrem, jremref, inodedep); 9201 if (dotremref) 9202 journal_jremref(dirrem, dotremref, inodedep); 9203 if (dotdotremref) 9204 journal_jremref(dirrem, dotdotremref, NULL); 9205 } 9206 9207 /* 9208 * Allocate a new dirrem if appropriate and return it along with 9209 * its associated pagedep. Called without a lock, returns with lock. 9210 */ 9211 static struct dirrem * 9212 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9213 struct buf *bp; /* buffer containing directory block */ 9214 struct inode *dp; /* inode for the directory being modified */ 9215 struct inode *ip; /* inode for directory entry being removed */ 9216 int isrmdir; /* indicates if doing RMDIR */ 9217 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9218 { 9219 int offset; 9220 ufs_lbn_t lbn; 9221 struct diradd *dap; 9222 struct dirrem *dirrem; 9223 struct pagedep *pagedep; 9224 struct jremref *jremref; 9225 struct jremref *dotremref; 9226 struct jremref *dotdotremref; 9227 struct vnode *dvp; 9228 struct ufsmount *ump; 9229 9230 /* 9231 * Whiteouts have no deletion dependencies. 9232 */ 9233 if (ip == NULL) 9234 panic("newdirrem: whiteout"); 9235 dvp = ITOV(dp); 9236 ump = ITOUMP(dp); 9237 9238 /* 9239 * If the system is over its limit and our filesystem is 9240 * responsible for more than our share of that usage and 9241 * we are not a snapshot, request some inodedep cleanup. 9242 * Limiting the number of dirrem structures will also limit 9243 * the number of freefile and freeblks structures. 9244 */ 9245 ACQUIRE_LOCK(ump); 9246 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9247 schedule_cleanup(UFSTOVFS(ump)); 9248 else 9249 FREE_LOCK(ump); 9250 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9251 M_ZERO); 9252 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9253 LIST_INIT(&dirrem->dm_jremrefhd); 9254 LIST_INIT(&dirrem->dm_jwork); 9255 dirrem->dm_state = isrmdir ? RMDIR : 0; 9256 dirrem->dm_oldinum = ip->i_number; 9257 *prevdirremp = NULL; 9258 /* 9259 * Allocate remove reference structures to track journal write 9260 * dependencies. We will always have one for the link and 9261 * when doing directories we will always have one more for dot. 9262 * When renaming a directory we skip the dotdot link change so 9263 * this is not needed. 9264 */ 9265 jremref = dotremref = dotdotremref = NULL; 9266 if (DOINGSUJ(dvp)) { 9267 if (isrmdir) { 9268 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9269 ip->i_effnlink + 2); 9270 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9271 ip->i_effnlink + 1); 9272 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9273 dp->i_effnlink + 1); 9274 dotdotremref->jr_state |= MKDIR_PARENT; 9275 } else 9276 jremref = newjremref(dirrem, dp, ip, dp->i_offset, 9277 ip->i_effnlink + 1); 9278 } 9279 ACQUIRE_LOCK(ump); 9280 lbn = lblkno(ump->um_fs, dp->i_offset); 9281 offset = blkoff(ump->um_fs, dp->i_offset); 9282 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9283 &pagedep); 9284 dirrem->dm_pagedep = pagedep; 9285 dirrem->dm_offset = offset; 9286 /* 9287 * If we're renaming a .. link to a new directory, cancel any 9288 * existing MKDIR_PARENT mkdir. If it has already been canceled 9289 * the jremref is preserved for any potential diradd in this 9290 * location. This can not coincide with a rmdir. 9291 */ 9292 if (dp->i_offset == DOTDOT_OFFSET) { 9293 if (isrmdir) 9294 panic("newdirrem: .. directory change during remove?"); 9295 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9296 } 9297 /* 9298 * If we're removing a directory search for the .. dependency now and 9299 * cancel it. Any pending journal work will be added to the dirrem 9300 * to be completed when the workitem remove completes. 9301 */ 9302 if (isrmdir) 9303 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9304 /* 9305 * Check for a diradd dependency for the same directory entry. 9306 * If present, then both dependencies become obsolete and can 9307 * be de-allocated. 9308 */ 9309 dap = diradd_lookup(pagedep, offset); 9310 if (dap == NULL) { 9311 /* 9312 * Link the jremref structures into the dirrem so they are 9313 * written prior to the pagedep. 9314 */ 9315 if (jremref) 9316 dirrem_journal(dirrem, jremref, dotremref, 9317 dotdotremref); 9318 return (dirrem); 9319 } 9320 /* 9321 * Must be ATTACHED at this point. 9322 */ 9323 if ((dap->da_state & ATTACHED) == 0) 9324 panic("newdirrem: not ATTACHED"); 9325 if (dap->da_newinum != ip->i_number) 9326 panic("newdirrem: inum %ju should be %ju", 9327 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9328 /* 9329 * If we are deleting a changed name that never made it to disk, 9330 * then return the dirrem describing the previous inode (which 9331 * represents the inode currently referenced from this entry on disk). 9332 */ 9333 if ((dap->da_state & DIRCHG) != 0) { 9334 *prevdirremp = dap->da_previous; 9335 dap->da_state &= ~DIRCHG; 9336 dap->da_pagedep = pagedep; 9337 } 9338 /* 9339 * We are deleting an entry that never made it to disk. 9340 * Mark it COMPLETE so we can delete its inode immediately. 9341 */ 9342 dirrem->dm_state |= COMPLETE; 9343 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9344 #ifdef INVARIANTS 9345 if (isrmdir == 0) { 9346 struct worklist *wk; 9347 9348 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9349 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9350 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9351 } 9352 #endif 9353 9354 return (dirrem); 9355 } 9356 9357 /* 9358 * Directory entry change dependencies. 9359 * 9360 * Changing an existing directory entry requires that an add operation 9361 * be completed first followed by a deletion. The semantics for the addition 9362 * are identical to the description of adding a new entry above except 9363 * that the rollback is to the old inode number rather than zero. Once 9364 * the addition dependency is completed, the removal is done as described 9365 * in the removal routine above. 9366 */ 9367 9368 /* 9369 * This routine should be called immediately after changing 9370 * a directory entry. The inode's link count should not be 9371 * decremented by the calling procedure -- the soft updates 9372 * code will perform this task when it is safe. 9373 */ 9374 void 9375 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9376 struct buf *bp; /* buffer containing directory block */ 9377 struct inode *dp; /* inode for the directory being modified */ 9378 struct inode *ip; /* inode for directory entry being removed */ 9379 ino_t newinum; /* new inode number for changed entry */ 9380 int isrmdir; /* indicates if doing RMDIR */ 9381 { 9382 int offset; 9383 struct diradd *dap = NULL; 9384 struct dirrem *dirrem, *prevdirrem; 9385 struct pagedep *pagedep; 9386 struct inodedep *inodedep; 9387 struct jaddref *jaddref; 9388 struct mount *mp; 9389 struct ufsmount *ump; 9390 9391 mp = ITOVFS(dp); 9392 ump = VFSTOUFS(mp); 9393 offset = blkoff(ump->um_fs, dp->i_offset); 9394 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9395 ("softdep_setup_directory_change called on non-softdep filesystem")); 9396 9397 /* 9398 * Whiteouts do not need diradd dependencies. 9399 */ 9400 if (newinum != UFS_WINO) { 9401 dap = malloc(sizeof(struct diradd), 9402 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9403 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9404 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9405 dap->da_offset = offset; 9406 dap->da_newinum = newinum; 9407 LIST_INIT(&dap->da_jwork); 9408 } 9409 9410 /* 9411 * Allocate a new dirrem and ACQUIRE_LOCK. 9412 */ 9413 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9414 pagedep = dirrem->dm_pagedep; 9415 /* 9416 * The possible values for isrmdir: 9417 * 0 - non-directory file rename 9418 * 1 - directory rename within same directory 9419 * inum - directory rename to new directory of given inode number 9420 * When renaming to a new directory, we are both deleting and 9421 * creating a new directory entry, so the link count on the new 9422 * directory should not change. Thus we do not need the followup 9423 * dirrem which is usually done in handle_workitem_remove. We set 9424 * the DIRCHG flag to tell handle_workitem_remove to skip the 9425 * followup dirrem. 9426 */ 9427 if (isrmdir > 1) 9428 dirrem->dm_state |= DIRCHG; 9429 9430 /* 9431 * Whiteouts have no additional dependencies, 9432 * so just put the dirrem on the correct list. 9433 */ 9434 if (newinum == UFS_WINO) { 9435 if ((dirrem->dm_state & COMPLETE) == 0) { 9436 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9437 dm_next); 9438 } else { 9439 dirrem->dm_dirinum = pagedep->pd_ino; 9440 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9441 add_to_worklist(&dirrem->dm_list, 0); 9442 } 9443 FREE_LOCK(ump); 9444 return; 9445 } 9446 /* 9447 * Add the dirrem to the inodedep's pending remove list for quick 9448 * discovery later. A valid nlinkdelta ensures that this lookup 9449 * will not fail. 9450 */ 9451 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9452 panic("softdep_setup_directory_change: Lost inodedep."); 9453 dirrem->dm_state |= ONDEPLIST; 9454 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9455 9456 /* 9457 * If the COMPLETE flag is clear, then there were no active 9458 * entries and we want to roll back to the previous inode until 9459 * the new inode is committed to disk. If the COMPLETE flag is 9460 * set, then we have deleted an entry that never made it to disk. 9461 * If the entry we deleted resulted from a name change, then the old 9462 * inode reference still resides on disk. Any rollback that we do 9463 * needs to be to that old inode (returned to us in prevdirrem). If 9464 * the entry we deleted resulted from a create, then there is 9465 * no entry on the disk, so we want to roll back to zero rather 9466 * than the uncommitted inode. In either of the COMPLETE cases we 9467 * want to immediately free the unwritten and unreferenced inode. 9468 */ 9469 if ((dirrem->dm_state & COMPLETE) == 0) { 9470 dap->da_previous = dirrem; 9471 } else { 9472 if (prevdirrem != NULL) { 9473 dap->da_previous = prevdirrem; 9474 } else { 9475 dap->da_state &= ~DIRCHG; 9476 dap->da_pagedep = pagedep; 9477 } 9478 dirrem->dm_dirinum = pagedep->pd_ino; 9479 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9480 add_to_worklist(&dirrem->dm_list, 0); 9481 } 9482 /* 9483 * Lookup the jaddref for this journal entry. We must finish 9484 * initializing it and make the diradd write dependent on it. 9485 * If we're not journaling, put it on the id_bufwait list if the 9486 * inode is not yet written. If it is written, do the post-inode 9487 * write processing to put it on the id_pendinghd list. 9488 */ 9489 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9490 if (MOUNTEDSUJ(mp)) { 9491 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9492 inoreflst); 9493 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9494 ("softdep_setup_directory_change: bad jaddref %p", 9495 jaddref)); 9496 jaddref->ja_diroff = dp->i_offset; 9497 jaddref->ja_diradd = dap; 9498 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9499 dap, da_pdlist); 9500 add_to_journal(&jaddref->ja_list); 9501 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9502 dap->da_state |= COMPLETE; 9503 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9504 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9505 } else { 9506 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9507 dap, da_pdlist); 9508 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9509 } 9510 /* 9511 * If we're making a new name for a directory that has not been 9512 * committed when need to move the dot and dotdot references to 9513 * this new name. 9514 */ 9515 if (inodedep->id_mkdiradd && dp->i_offset != DOTDOT_OFFSET) 9516 merge_diradd(inodedep, dap); 9517 FREE_LOCK(ump); 9518 } 9519 9520 /* 9521 * Called whenever the link count on an inode is changed. 9522 * It creates an inode dependency so that the new reference(s) 9523 * to the inode cannot be committed to disk until the updated 9524 * inode has been written. 9525 */ 9526 void 9527 softdep_change_linkcnt(ip) 9528 struct inode *ip; /* the inode with the increased link count */ 9529 { 9530 struct inodedep *inodedep; 9531 struct ufsmount *ump; 9532 9533 ump = ITOUMP(ip); 9534 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9535 ("softdep_change_linkcnt called on non-softdep filesystem")); 9536 ACQUIRE_LOCK(ump); 9537 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9538 if (ip->i_nlink < ip->i_effnlink) 9539 panic("softdep_change_linkcnt: bad delta"); 9540 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9541 FREE_LOCK(ump); 9542 } 9543 9544 /* 9545 * Attach a sbdep dependency to the superblock buf so that we can keep 9546 * track of the head of the linked list of referenced but unlinked inodes. 9547 */ 9548 void 9549 softdep_setup_sbupdate(ump, fs, bp) 9550 struct ufsmount *ump; 9551 struct fs *fs; 9552 struct buf *bp; 9553 { 9554 struct sbdep *sbdep; 9555 struct worklist *wk; 9556 9557 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9558 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9559 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9560 if (wk->wk_type == D_SBDEP) 9561 break; 9562 if (wk != NULL) 9563 return; 9564 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9565 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9566 sbdep->sb_fs = fs; 9567 sbdep->sb_ump = ump; 9568 ACQUIRE_LOCK(ump); 9569 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9570 FREE_LOCK(ump); 9571 } 9572 9573 /* 9574 * Return the first unlinked inodedep which is ready to be the head of the 9575 * list. The inodedep and all those after it must have valid next pointers. 9576 */ 9577 static struct inodedep * 9578 first_unlinked_inodedep(ump) 9579 struct ufsmount *ump; 9580 { 9581 struct inodedep *inodedep; 9582 struct inodedep *idp; 9583 9584 LOCK_OWNED(ump); 9585 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9586 inodedep; inodedep = idp) { 9587 if ((inodedep->id_state & UNLINKNEXT) == 0) 9588 return (NULL); 9589 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9590 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9591 break; 9592 if ((inodedep->id_state & UNLINKPREV) == 0) 9593 break; 9594 } 9595 return (inodedep); 9596 } 9597 9598 /* 9599 * Set the sujfree unlinked head pointer prior to writing a superblock. 9600 */ 9601 static void 9602 initiate_write_sbdep(sbdep) 9603 struct sbdep *sbdep; 9604 { 9605 struct inodedep *inodedep; 9606 struct fs *bpfs; 9607 struct fs *fs; 9608 9609 bpfs = sbdep->sb_fs; 9610 fs = sbdep->sb_ump->um_fs; 9611 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9612 if (inodedep) { 9613 fs->fs_sujfree = inodedep->id_ino; 9614 inodedep->id_state |= UNLINKPREV; 9615 } else 9616 fs->fs_sujfree = 0; 9617 bpfs->fs_sujfree = fs->fs_sujfree; 9618 /* 9619 * Because we have made changes to the superblock, we need to 9620 * recompute its check-hash. 9621 */ 9622 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9623 } 9624 9625 /* 9626 * After a superblock is written determine whether it must be written again 9627 * due to a changing unlinked list head. 9628 */ 9629 static int 9630 handle_written_sbdep(sbdep, bp) 9631 struct sbdep *sbdep; 9632 struct buf *bp; 9633 { 9634 struct inodedep *inodedep; 9635 struct fs *fs; 9636 9637 LOCK_OWNED(sbdep->sb_ump); 9638 fs = sbdep->sb_fs; 9639 /* 9640 * If the superblock doesn't match the in-memory list start over. 9641 */ 9642 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9643 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9644 (inodedep == NULL && fs->fs_sujfree != 0)) { 9645 bdirty(bp); 9646 return (1); 9647 } 9648 WORKITEM_FREE(sbdep, D_SBDEP); 9649 if (fs->fs_sujfree == 0) 9650 return (0); 9651 /* 9652 * Now that we have a record of this inode in stable store allow it 9653 * to be written to free up pending work. Inodes may see a lot of 9654 * write activity after they are unlinked which we must not hold up. 9655 */ 9656 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 9657 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 9658 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 9659 inodedep, inodedep->id_state); 9660 if (inodedep->id_state & UNLINKONLIST) 9661 break; 9662 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 9663 } 9664 9665 return (0); 9666 } 9667 9668 /* 9669 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 9670 */ 9671 static void 9672 unlinked_inodedep(mp, inodedep) 9673 struct mount *mp; 9674 struct inodedep *inodedep; 9675 { 9676 struct ufsmount *ump; 9677 9678 ump = VFSTOUFS(mp); 9679 LOCK_OWNED(ump); 9680 if (MOUNTEDSUJ(mp) == 0) 9681 return; 9682 ump->um_fs->fs_fmod = 1; 9683 if (inodedep->id_state & UNLINKED) 9684 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 9685 inodedep->id_state |= UNLINKED; 9686 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 9687 } 9688 9689 /* 9690 * Remove an inodedep from the unlinked inodedep list. This may require 9691 * disk writes if the inode has made it that far. 9692 */ 9693 static void 9694 clear_unlinked_inodedep(inodedep) 9695 struct inodedep *inodedep; 9696 { 9697 struct ufs2_dinode *dip; 9698 struct ufsmount *ump; 9699 struct inodedep *idp; 9700 struct inodedep *idn; 9701 struct fs *fs, *bpfs; 9702 struct buf *bp; 9703 ino_t ino; 9704 ino_t nino; 9705 ino_t pino; 9706 int error; 9707 9708 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9709 fs = ump->um_fs; 9710 ino = inodedep->id_ino; 9711 error = 0; 9712 for (;;) { 9713 LOCK_OWNED(ump); 9714 KASSERT((inodedep->id_state & UNLINKED) != 0, 9715 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9716 inodedep)); 9717 /* 9718 * If nothing has yet been written simply remove us from 9719 * the in memory list and return. This is the most common 9720 * case where handle_workitem_remove() loses the final 9721 * reference. 9722 */ 9723 if ((inodedep->id_state & UNLINKLINKS) == 0) 9724 break; 9725 /* 9726 * If we have a NEXT pointer and no PREV pointer we can simply 9727 * clear NEXT's PREV and remove ourselves from the list. Be 9728 * careful not to clear PREV if the superblock points at 9729 * next as well. 9730 */ 9731 idn = TAILQ_NEXT(inodedep, id_unlinked); 9732 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 9733 if (idn && fs->fs_sujfree != idn->id_ino) 9734 idn->id_state &= ~UNLINKPREV; 9735 break; 9736 } 9737 /* 9738 * Here we have an inodedep which is actually linked into 9739 * the list. We must remove it by forcing a write to the 9740 * link before us, whether it be the superblock or an inode. 9741 * Unfortunately the list may change while we're waiting 9742 * on the buf lock for either resource so we must loop until 9743 * we lock the right one. If both the superblock and an 9744 * inode point to this inode we must clear the inode first 9745 * followed by the superblock. 9746 */ 9747 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9748 pino = 0; 9749 if (idp && (idp->id_state & UNLINKNEXT)) 9750 pino = idp->id_ino; 9751 FREE_LOCK(ump); 9752 if (pino == 0) { 9753 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9754 (int)fs->fs_sbsize, 0, 0, 0); 9755 } else { 9756 error = bread(ump->um_devvp, 9757 fsbtodb(fs, ino_to_fsba(fs, pino)), 9758 (int)fs->fs_bsize, NOCRED, &bp); 9759 if (error) 9760 brelse(bp); 9761 } 9762 ACQUIRE_LOCK(ump); 9763 if (error) 9764 break; 9765 /* If the list has changed restart the loop. */ 9766 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9767 nino = 0; 9768 if (idp && (idp->id_state & UNLINKNEXT)) 9769 nino = idp->id_ino; 9770 if (nino != pino || 9771 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 9772 FREE_LOCK(ump); 9773 brelse(bp); 9774 ACQUIRE_LOCK(ump); 9775 continue; 9776 } 9777 nino = 0; 9778 idn = TAILQ_NEXT(inodedep, id_unlinked); 9779 if (idn) 9780 nino = idn->id_ino; 9781 /* 9782 * Remove us from the in memory list. After this we cannot 9783 * access the inodedep. 9784 */ 9785 KASSERT((inodedep->id_state & UNLINKED) != 0, 9786 ("clear_unlinked_inodedep: inodedep %p not unlinked", 9787 inodedep)); 9788 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9789 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9790 FREE_LOCK(ump); 9791 /* 9792 * The predecessor's next pointer is manually updated here 9793 * so that the NEXT flag is never cleared for an element 9794 * that is in the list. 9795 */ 9796 if (pino == 0) { 9797 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9798 bpfs = (struct fs *)bp->b_data; 9799 ffs_oldfscompat_write(bpfs, ump); 9800 softdep_setup_sbupdate(ump, bpfs, bp); 9801 /* 9802 * Because we may have made changes to the superblock, 9803 * we need to recompute its check-hash. 9804 */ 9805 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9806 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 9807 ((struct ufs1_dinode *)bp->b_data + 9808 ino_to_fsbo(fs, pino))->di_freelink = nino; 9809 } else { 9810 dip = (struct ufs2_dinode *)bp->b_data + 9811 ino_to_fsbo(fs, pino); 9812 dip->di_freelink = nino; 9813 ffs_update_dinode_ckhash(fs, dip); 9814 } 9815 /* 9816 * If the bwrite fails we have no recourse to recover. The 9817 * filesystem is corrupted already. 9818 */ 9819 bwrite(bp); 9820 ACQUIRE_LOCK(ump); 9821 /* 9822 * If the superblock pointer still needs to be cleared force 9823 * a write here. 9824 */ 9825 if (fs->fs_sujfree == ino) { 9826 FREE_LOCK(ump); 9827 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 9828 (int)fs->fs_sbsize, 0, 0, 0); 9829 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 9830 bpfs = (struct fs *)bp->b_data; 9831 ffs_oldfscompat_write(bpfs, ump); 9832 softdep_setup_sbupdate(ump, bpfs, bp); 9833 /* 9834 * Because we may have made changes to the superblock, 9835 * we need to recompute its check-hash. 9836 */ 9837 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9838 bwrite(bp); 9839 ACQUIRE_LOCK(ump); 9840 } 9841 9842 if (fs->fs_sujfree != ino) 9843 return; 9844 panic("clear_unlinked_inodedep: Failed to clear free head"); 9845 } 9846 if (inodedep->id_ino == fs->fs_sujfree) 9847 panic("clear_unlinked_inodedep: Freeing head of free list"); 9848 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 9849 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 9850 return; 9851 } 9852 9853 /* 9854 * This workitem decrements the inode's link count. 9855 * If the link count reaches zero, the file is removed. 9856 */ 9857 static int 9858 handle_workitem_remove(dirrem, flags) 9859 struct dirrem *dirrem; 9860 int flags; 9861 { 9862 struct inodedep *inodedep; 9863 struct workhead dotdotwk; 9864 struct worklist *wk; 9865 struct ufsmount *ump; 9866 struct mount *mp; 9867 struct vnode *vp; 9868 struct inode *ip; 9869 ino_t oldinum; 9870 9871 if (dirrem->dm_state & ONWORKLIST) 9872 panic("handle_workitem_remove: dirrem %p still on worklist", 9873 dirrem); 9874 oldinum = dirrem->dm_oldinum; 9875 mp = dirrem->dm_list.wk_mp; 9876 ump = VFSTOUFS(mp); 9877 flags |= LK_EXCLUSIVE; 9878 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ) != 0) 9879 return (EBUSY); 9880 ip = VTOI(vp); 9881 MPASS(ip->i_mode != 0); 9882 ACQUIRE_LOCK(ump); 9883 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 9884 panic("handle_workitem_remove: lost inodedep"); 9885 if (dirrem->dm_state & ONDEPLIST) 9886 LIST_REMOVE(dirrem, dm_inonext); 9887 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 9888 ("handle_workitem_remove: Journal entries not written.")); 9889 9890 /* 9891 * Move all dependencies waiting on the remove to complete 9892 * from the dirrem to the inode inowait list to be completed 9893 * after the inode has been updated and written to disk. 9894 * 9895 * Any marked MKDIR_PARENT are saved to be completed when the 9896 * dotdot ref is removed unless DIRCHG is specified. For 9897 * directory change operations there will be no further 9898 * directory writes and the jsegdeps need to be moved along 9899 * with the rest to be completed when the inode is free or 9900 * stable in the inode free list. 9901 */ 9902 LIST_INIT(&dotdotwk); 9903 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 9904 WORKLIST_REMOVE(wk); 9905 if ((dirrem->dm_state & DIRCHG) == 0 && 9906 wk->wk_state & MKDIR_PARENT) { 9907 wk->wk_state &= ~MKDIR_PARENT; 9908 WORKLIST_INSERT(&dotdotwk, wk); 9909 continue; 9910 } 9911 WORKLIST_INSERT(&inodedep->id_inowait, wk); 9912 } 9913 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 9914 /* 9915 * Normal file deletion. 9916 */ 9917 if ((dirrem->dm_state & RMDIR) == 0) { 9918 ip->i_nlink--; 9919 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 9920 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 9921 ip->i_nlink)); 9922 DIP_SET(ip, i_nlink, ip->i_nlink); 9923 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9924 if (ip->i_nlink < ip->i_effnlink) 9925 panic("handle_workitem_remove: bad file delta"); 9926 if (ip->i_nlink == 0) 9927 unlinked_inodedep(mp, inodedep); 9928 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9929 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9930 ("handle_workitem_remove: worklist not empty. %s", 9931 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 9932 WORKITEM_FREE(dirrem, D_DIRREM); 9933 FREE_LOCK(ump); 9934 goto out; 9935 } 9936 /* 9937 * Directory deletion. Decrement reference count for both the 9938 * just deleted parent directory entry and the reference for ".". 9939 * Arrange to have the reference count on the parent decremented 9940 * to account for the loss of "..". 9941 */ 9942 ip->i_nlink -= 2; 9943 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 9944 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 9945 DIP_SET(ip, i_nlink, ip->i_nlink); 9946 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9947 if (ip->i_nlink < ip->i_effnlink) 9948 panic("handle_workitem_remove: bad dir delta"); 9949 if (ip->i_nlink == 0) 9950 unlinked_inodedep(mp, inodedep); 9951 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9952 /* 9953 * Rename a directory to a new parent. Since, we are both deleting 9954 * and creating a new directory entry, the link count on the new 9955 * directory should not change. Thus we skip the followup dirrem. 9956 */ 9957 if (dirrem->dm_state & DIRCHG) { 9958 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 9959 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 9960 WORKITEM_FREE(dirrem, D_DIRREM); 9961 FREE_LOCK(ump); 9962 goto out; 9963 } 9964 dirrem->dm_state = ONDEPLIST; 9965 dirrem->dm_oldinum = dirrem->dm_dirinum; 9966 /* 9967 * Place the dirrem on the parent's diremhd list. 9968 */ 9969 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 9970 panic("handle_workitem_remove: lost dir inodedep"); 9971 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9972 /* 9973 * If the allocated inode has never been written to disk, then 9974 * the on-disk inode is zero'ed and we can remove the file 9975 * immediately. When journaling if the inode has been marked 9976 * unlinked and not DEPCOMPLETE we know it can never be written. 9977 */ 9978 inodedep_lookup(mp, oldinum, 0, &inodedep); 9979 if (inodedep == NULL || 9980 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 9981 check_inode_unwritten(inodedep)) { 9982 FREE_LOCK(ump); 9983 vput(vp); 9984 return handle_workitem_remove(dirrem, flags); 9985 } 9986 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 9987 FREE_LOCK(ump); 9988 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 9989 out: 9990 ffs_update(vp, 0); 9991 vput(vp); 9992 return (0); 9993 } 9994 9995 /* 9996 * Inode de-allocation dependencies. 9997 * 9998 * When an inode's link count is reduced to zero, it can be de-allocated. We 9999 * found it convenient to postpone de-allocation until after the inode is 10000 * written to disk with its new link count (zero). At this point, all of the 10001 * on-disk inode's block pointers are nullified and, with careful dependency 10002 * list ordering, all dependencies related to the inode will be satisfied and 10003 * the corresponding dependency structures de-allocated. So, if/when the 10004 * inode is reused, there will be no mixing of old dependencies with new 10005 * ones. This artificial dependency is set up by the block de-allocation 10006 * procedure above (softdep_setup_freeblocks) and completed by the 10007 * following procedure. 10008 */ 10009 static void 10010 handle_workitem_freefile(freefile) 10011 struct freefile *freefile; 10012 { 10013 struct workhead wkhd; 10014 struct fs *fs; 10015 struct ufsmount *ump; 10016 int error; 10017 #ifdef INVARIANTS 10018 struct inodedep *idp; 10019 #endif 10020 10021 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10022 fs = ump->um_fs; 10023 #ifdef INVARIANTS 10024 ACQUIRE_LOCK(ump); 10025 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10026 FREE_LOCK(ump); 10027 if (error) 10028 panic("handle_workitem_freefile: inodedep %p survived", idp); 10029 #endif 10030 UFS_LOCK(ump); 10031 fs->fs_pendinginodes -= 1; 10032 UFS_UNLOCK(ump); 10033 LIST_INIT(&wkhd); 10034 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10035 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10036 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10037 softdep_error("handle_workitem_freefile", error); 10038 ACQUIRE_LOCK(ump); 10039 WORKITEM_FREE(freefile, D_FREEFILE); 10040 FREE_LOCK(ump); 10041 } 10042 10043 10044 /* 10045 * Helper function which unlinks marker element from work list and returns 10046 * the next element on the list. 10047 */ 10048 static __inline struct worklist * 10049 markernext(struct worklist *marker) 10050 { 10051 struct worklist *next; 10052 10053 next = LIST_NEXT(marker, wk_list); 10054 LIST_REMOVE(marker, wk_list); 10055 return next; 10056 } 10057 10058 /* 10059 * Disk writes. 10060 * 10061 * The dependency structures constructed above are most actively used when file 10062 * system blocks are written to disk. No constraints are placed on when a 10063 * block can be written, but unsatisfied update dependencies are made safe by 10064 * modifying (or replacing) the source memory for the duration of the disk 10065 * write. When the disk write completes, the memory block is again brought 10066 * up-to-date. 10067 * 10068 * In-core inode structure reclamation. 10069 * 10070 * Because there are a finite number of "in-core" inode structures, they are 10071 * reused regularly. By transferring all inode-related dependencies to the 10072 * in-memory inode block and indexing them separately (via "inodedep"s), we 10073 * can allow "in-core" inode structures to be reused at any time and avoid 10074 * any increase in contention. 10075 * 10076 * Called just before entering the device driver to initiate a new disk I/O. 10077 * The buffer must be locked, thus, no I/O completion operations can occur 10078 * while we are manipulating its associated dependencies. 10079 */ 10080 static void 10081 softdep_disk_io_initiation(bp) 10082 struct buf *bp; /* structure describing disk write to occur */ 10083 { 10084 struct worklist *wk; 10085 struct worklist marker; 10086 struct inodedep *inodedep; 10087 struct freeblks *freeblks; 10088 struct jblkdep *jblkdep; 10089 struct newblk *newblk; 10090 struct ufsmount *ump; 10091 10092 /* 10093 * We only care about write operations. There should never 10094 * be dependencies for reads. 10095 */ 10096 if (bp->b_iocmd != BIO_WRITE) 10097 panic("softdep_disk_io_initiation: not write"); 10098 10099 if (bp->b_vflags & BV_BKGRDINPROG) 10100 panic("softdep_disk_io_initiation: Writing buffer with " 10101 "background write in progress: %p", bp); 10102 10103 ump = softdep_bp_to_mp(bp); 10104 if (ump == NULL) 10105 return; 10106 10107 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10108 PHOLD(curproc); /* Don't swap out kernel stack */ 10109 ACQUIRE_LOCK(ump); 10110 /* 10111 * Do any necessary pre-I/O processing. 10112 */ 10113 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10114 wk = markernext(&marker)) { 10115 LIST_INSERT_AFTER(wk, &marker, wk_list); 10116 switch (wk->wk_type) { 10117 10118 case D_PAGEDEP: 10119 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10120 continue; 10121 10122 case D_INODEDEP: 10123 inodedep = WK_INODEDEP(wk); 10124 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10125 initiate_write_inodeblock_ufs1(inodedep, bp); 10126 else 10127 initiate_write_inodeblock_ufs2(inodedep, bp); 10128 continue; 10129 10130 case D_INDIRDEP: 10131 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10132 continue; 10133 10134 case D_BMSAFEMAP: 10135 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10136 continue; 10137 10138 case D_JSEG: 10139 WK_JSEG(wk)->js_buf = NULL; 10140 continue; 10141 10142 case D_FREEBLKS: 10143 freeblks = WK_FREEBLKS(wk); 10144 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10145 /* 10146 * We have to wait for the freeblks to be journaled 10147 * before we can write an inodeblock with updated 10148 * pointers. Be careful to arrange the marker so 10149 * we revisit the freeblks if it's not removed by 10150 * the first jwait(). 10151 */ 10152 if (jblkdep != NULL) { 10153 LIST_REMOVE(&marker, wk_list); 10154 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10155 jwait(&jblkdep->jb_list, MNT_WAIT); 10156 } 10157 continue; 10158 case D_ALLOCDIRECT: 10159 case D_ALLOCINDIR: 10160 /* 10161 * We have to wait for the jnewblk to be journaled 10162 * before we can write to a block if the contents 10163 * may be confused with an earlier file's indirect 10164 * at recovery time. Handle the marker as described 10165 * above. 10166 */ 10167 newblk = WK_NEWBLK(wk); 10168 if (newblk->nb_jnewblk != NULL && 10169 indirblk_lookup(newblk->nb_list.wk_mp, 10170 newblk->nb_newblkno)) { 10171 LIST_REMOVE(&marker, wk_list); 10172 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10173 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10174 } 10175 continue; 10176 10177 case D_SBDEP: 10178 initiate_write_sbdep(WK_SBDEP(wk)); 10179 continue; 10180 10181 case D_MKDIR: 10182 case D_FREEWORK: 10183 case D_FREEDEP: 10184 case D_JSEGDEP: 10185 continue; 10186 10187 default: 10188 panic("handle_disk_io_initiation: Unexpected type %s", 10189 TYPENAME(wk->wk_type)); 10190 /* NOTREACHED */ 10191 } 10192 } 10193 FREE_LOCK(ump); 10194 PRELE(curproc); /* Allow swapout of kernel stack */ 10195 } 10196 10197 /* 10198 * Called from within the procedure above to deal with unsatisfied 10199 * allocation dependencies in a directory. The buffer must be locked, 10200 * thus, no I/O completion operations can occur while we are 10201 * manipulating its associated dependencies. 10202 */ 10203 static void 10204 initiate_write_filepage(pagedep, bp) 10205 struct pagedep *pagedep; 10206 struct buf *bp; 10207 { 10208 struct jremref *jremref; 10209 struct jmvref *jmvref; 10210 struct dirrem *dirrem; 10211 struct diradd *dap; 10212 struct direct *ep; 10213 int i; 10214 10215 if (pagedep->pd_state & IOSTARTED) { 10216 /* 10217 * This can only happen if there is a driver that does not 10218 * understand chaining. Here biodone will reissue the call 10219 * to strategy for the incomplete buffers. 10220 */ 10221 printf("initiate_write_filepage: already started\n"); 10222 return; 10223 } 10224 pagedep->pd_state |= IOSTARTED; 10225 /* 10226 * Wait for all journal remove dependencies to hit the disk. 10227 * We can not allow any potentially conflicting directory adds 10228 * to be visible before removes and rollback is too difficult. 10229 * The per-filesystem lock may be dropped and re-acquired, however 10230 * we hold the buf locked so the dependency can not go away. 10231 */ 10232 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10233 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10234 jwait(&jremref->jr_list, MNT_WAIT); 10235 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10236 jwait(&jmvref->jm_list, MNT_WAIT); 10237 for (i = 0; i < DAHASHSZ; i++) { 10238 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10239 ep = (struct direct *) 10240 ((char *)bp->b_data + dap->da_offset); 10241 if (ep->d_ino != dap->da_newinum) 10242 panic("%s: dir inum %ju != new %ju", 10243 "initiate_write_filepage", 10244 (uintmax_t)ep->d_ino, 10245 (uintmax_t)dap->da_newinum); 10246 if (dap->da_state & DIRCHG) 10247 ep->d_ino = dap->da_previous->dm_oldinum; 10248 else 10249 ep->d_ino = 0; 10250 dap->da_state &= ~ATTACHED; 10251 dap->da_state |= UNDONE; 10252 } 10253 } 10254 } 10255 10256 /* 10257 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10258 * Note that any bug fixes made to this routine must be done in the 10259 * version found below. 10260 * 10261 * Called from within the procedure above to deal with unsatisfied 10262 * allocation dependencies in an inodeblock. The buffer must be 10263 * locked, thus, no I/O completion operations can occur while we 10264 * are manipulating its associated dependencies. 10265 */ 10266 static void 10267 initiate_write_inodeblock_ufs1(inodedep, bp) 10268 struct inodedep *inodedep; 10269 struct buf *bp; /* The inode block */ 10270 { 10271 struct allocdirect *adp, *lastadp; 10272 struct ufs1_dinode *dp; 10273 struct ufs1_dinode *sip; 10274 struct inoref *inoref; 10275 struct ufsmount *ump; 10276 struct fs *fs; 10277 ufs_lbn_t i; 10278 #ifdef INVARIANTS 10279 ufs_lbn_t prevlbn = 0; 10280 #endif 10281 int deplist; 10282 10283 if (inodedep->id_state & IOSTARTED) 10284 panic("initiate_write_inodeblock_ufs1: already started"); 10285 inodedep->id_state |= IOSTARTED; 10286 fs = inodedep->id_fs; 10287 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10288 LOCK_OWNED(ump); 10289 dp = (struct ufs1_dinode *)bp->b_data + 10290 ino_to_fsbo(fs, inodedep->id_ino); 10291 10292 /* 10293 * If we're on the unlinked list but have not yet written our 10294 * next pointer initialize it here. 10295 */ 10296 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10297 struct inodedep *inon; 10298 10299 inon = TAILQ_NEXT(inodedep, id_unlinked); 10300 dp->di_freelink = inon ? inon->id_ino : 0; 10301 } 10302 /* 10303 * If the bitmap is not yet written, then the allocated 10304 * inode cannot be written to disk. 10305 */ 10306 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10307 if (inodedep->id_savedino1 != NULL) 10308 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10309 FREE_LOCK(ump); 10310 sip = malloc(sizeof(struct ufs1_dinode), 10311 M_SAVEDINO, M_SOFTDEP_FLAGS); 10312 ACQUIRE_LOCK(ump); 10313 inodedep->id_savedino1 = sip; 10314 *inodedep->id_savedino1 = *dp; 10315 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10316 dp->di_gen = inodedep->id_savedino1->di_gen; 10317 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10318 return; 10319 } 10320 /* 10321 * If no dependencies, then there is nothing to roll back. 10322 */ 10323 inodedep->id_savedsize = dp->di_size; 10324 inodedep->id_savedextsize = 0; 10325 inodedep->id_savednlink = dp->di_nlink; 10326 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10327 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10328 return; 10329 /* 10330 * Revert the link count to that of the first unwritten journal entry. 10331 */ 10332 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10333 if (inoref) 10334 dp->di_nlink = inoref->if_nlink; 10335 /* 10336 * Set the dependencies to busy. 10337 */ 10338 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10339 adp = TAILQ_NEXT(adp, ad_next)) { 10340 #ifdef INVARIANTS 10341 if (deplist != 0 && prevlbn >= adp->ad_offset) 10342 panic("softdep_write_inodeblock: lbn order"); 10343 prevlbn = adp->ad_offset; 10344 if (adp->ad_offset < UFS_NDADDR && 10345 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10346 panic("initiate_write_inodeblock_ufs1: " 10347 "direct pointer #%jd mismatch %d != %jd", 10348 (intmax_t)adp->ad_offset, 10349 dp->di_db[adp->ad_offset], 10350 (intmax_t)adp->ad_newblkno); 10351 if (adp->ad_offset >= UFS_NDADDR && 10352 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10353 panic("initiate_write_inodeblock_ufs1: " 10354 "indirect pointer #%jd mismatch %d != %jd", 10355 (intmax_t)adp->ad_offset - UFS_NDADDR, 10356 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10357 (intmax_t)adp->ad_newblkno); 10358 deplist |= 1 << adp->ad_offset; 10359 if ((adp->ad_state & ATTACHED) == 0) 10360 panic("initiate_write_inodeblock_ufs1: " 10361 "Unknown state 0x%x", adp->ad_state); 10362 #endif /* INVARIANTS */ 10363 adp->ad_state &= ~ATTACHED; 10364 adp->ad_state |= UNDONE; 10365 } 10366 /* 10367 * The on-disk inode cannot claim to be any larger than the last 10368 * fragment that has been written. Otherwise, the on-disk inode 10369 * might have fragments that were not the last block in the file 10370 * which would corrupt the filesystem. 10371 */ 10372 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10373 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10374 if (adp->ad_offset >= UFS_NDADDR) 10375 break; 10376 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10377 /* keep going until hitting a rollback to a frag */ 10378 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10379 continue; 10380 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10381 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10382 #ifdef INVARIANTS 10383 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10384 panic("initiate_write_inodeblock_ufs1: " 10385 "lost dep1"); 10386 #endif /* INVARIANTS */ 10387 dp->di_db[i] = 0; 10388 } 10389 for (i = 0; i < UFS_NIADDR; i++) { 10390 #ifdef INVARIANTS 10391 if (dp->di_ib[i] != 0 && 10392 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10393 panic("initiate_write_inodeblock_ufs1: " 10394 "lost dep2"); 10395 #endif /* INVARIANTS */ 10396 dp->di_ib[i] = 0; 10397 } 10398 return; 10399 } 10400 /* 10401 * If we have zero'ed out the last allocated block of the file, 10402 * roll back the size to the last currently allocated block. 10403 * We know that this last allocated block is a full-sized as 10404 * we already checked for fragments in the loop above. 10405 */ 10406 if (lastadp != NULL && 10407 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10408 for (i = lastadp->ad_offset; i >= 0; i--) 10409 if (dp->di_db[i] != 0) 10410 break; 10411 dp->di_size = (i + 1) * fs->fs_bsize; 10412 } 10413 /* 10414 * The only dependencies are for indirect blocks. 10415 * 10416 * The file size for indirect block additions is not guaranteed. 10417 * Such a guarantee would be non-trivial to achieve. The conventional 10418 * synchronous write implementation also does not make this guarantee. 10419 * Fsck should catch and fix discrepancies. Arguably, the file size 10420 * can be over-estimated without destroying integrity when the file 10421 * moves into the indirect blocks (i.e., is large). If we want to 10422 * postpone fsck, we are stuck with this argument. 10423 */ 10424 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10425 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10426 } 10427 10428 /* 10429 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10430 * Note that any bug fixes made to this routine must be done in the 10431 * version found above. 10432 * 10433 * Called from within the procedure above to deal with unsatisfied 10434 * allocation dependencies in an inodeblock. The buffer must be 10435 * locked, thus, no I/O completion operations can occur while we 10436 * are manipulating its associated dependencies. 10437 */ 10438 static void 10439 initiate_write_inodeblock_ufs2(inodedep, bp) 10440 struct inodedep *inodedep; 10441 struct buf *bp; /* The inode block */ 10442 { 10443 struct allocdirect *adp, *lastadp; 10444 struct ufs2_dinode *dp; 10445 struct ufs2_dinode *sip; 10446 struct inoref *inoref; 10447 struct ufsmount *ump; 10448 struct fs *fs; 10449 ufs_lbn_t i; 10450 #ifdef INVARIANTS 10451 ufs_lbn_t prevlbn = 0; 10452 #endif 10453 int deplist; 10454 10455 if (inodedep->id_state & IOSTARTED) 10456 panic("initiate_write_inodeblock_ufs2: already started"); 10457 inodedep->id_state |= IOSTARTED; 10458 fs = inodedep->id_fs; 10459 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10460 LOCK_OWNED(ump); 10461 dp = (struct ufs2_dinode *)bp->b_data + 10462 ino_to_fsbo(fs, inodedep->id_ino); 10463 10464 /* 10465 * If we're on the unlinked list but have not yet written our 10466 * next pointer initialize it here. 10467 */ 10468 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10469 struct inodedep *inon; 10470 10471 inon = TAILQ_NEXT(inodedep, id_unlinked); 10472 dp->di_freelink = inon ? inon->id_ino : 0; 10473 ffs_update_dinode_ckhash(fs, dp); 10474 } 10475 /* 10476 * If the bitmap is not yet written, then the allocated 10477 * inode cannot be written to disk. 10478 */ 10479 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10480 if (inodedep->id_savedino2 != NULL) 10481 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10482 FREE_LOCK(ump); 10483 sip = malloc(sizeof(struct ufs2_dinode), 10484 M_SAVEDINO, M_SOFTDEP_FLAGS); 10485 ACQUIRE_LOCK(ump); 10486 inodedep->id_savedino2 = sip; 10487 *inodedep->id_savedino2 = *dp; 10488 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10489 dp->di_gen = inodedep->id_savedino2->di_gen; 10490 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10491 return; 10492 } 10493 /* 10494 * If no dependencies, then there is nothing to roll back. 10495 */ 10496 inodedep->id_savedsize = dp->di_size; 10497 inodedep->id_savedextsize = dp->di_extsize; 10498 inodedep->id_savednlink = dp->di_nlink; 10499 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10500 TAILQ_EMPTY(&inodedep->id_extupdt) && 10501 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10502 return; 10503 /* 10504 * Revert the link count to that of the first unwritten journal entry. 10505 */ 10506 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10507 if (inoref) 10508 dp->di_nlink = inoref->if_nlink; 10509 10510 /* 10511 * Set the ext data dependencies to busy. 10512 */ 10513 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10514 adp = TAILQ_NEXT(adp, ad_next)) { 10515 #ifdef INVARIANTS 10516 if (deplist != 0 && prevlbn >= adp->ad_offset) 10517 panic("initiate_write_inodeblock_ufs2: lbn order"); 10518 prevlbn = adp->ad_offset; 10519 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10520 panic("initiate_write_inodeblock_ufs2: " 10521 "ext pointer #%jd mismatch %jd != %jd", 10522 (intmax_t)adp->ad_offset, 10523 (intmax_t)dp->di_extb[adp->ad_offset], 10524 (intmax_t)adp->ad_newblkno); 10525 deplist |= 1 << adp->ad_offset; 10526 if ((adp->ad_state & ATTACHED) == 0) 10527 panic("initiate_write_inodeblock_ufs2: Unknown " 10528 "state 0x%x", adp->ad_state); 10529 #endif /* INVARIANTS */ 10530 adp->ad_state &= ~ATTACHED; 10531 adp->ad_state |= UNDONE; 10532 } 10533 /* 10534 * The on-disk inode cannot claim to be any larger than the last 10535 * fragment that has been written. Otherwise, the on-disk inode 10536 * might have fragments that were not the last block in the ext 10537 * data which would corrupt the filesystem. 10538 */ 10539 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10540 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10541 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10542 /* keep going until hitting a rollback to a frag */ 10543 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10544 continue; 10545 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10546 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10547 #ifdef INVARIANTS 10548 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10549 panic("initiate_write_inodeblock_ufs2: " 10550 "lost dep1"); 10551 #endif /* INVARIANTS */ 10552 dp->di_extb[i] = 0; 10553 } 10554 lastadp = NULL; 10555 break; 10556 } 10557 /* 10558 * If we have zero'ed out the last allocated block of the ext 10559 * data, roll back the size to the last currently allocated block. 10560 * We know that this last allocated block is a full-sized as 10561 * we already checked for fragments in the loop above. 10562 */ 10563 if (lastadp != NULL && 10564 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10565 for (i = lastadp->ad_offset; i >= 0; i--) 10566 if (dp->di_extb[i] != 0) 10567 break; 10568 dp->di_extsize = (i + 1) * fs->fs_bsize; 10569 } 10570 /* 10571 * Set the file data dependencies to busy. 10572 */ 10573 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10574 adp = TAILQ_NEXT(adp, ad_next)) { 10575 #ifdef INVARIANTS 10576 if (deplist != 0 && prevlbn >= adp->ad_offset) 10577 panic("softdep_write_inodeblock: lbn order"); 10578 if ((adp->ad_state & ATTACHED) == 0) 10579 panic("inodedep %p and adp %p not attached", inodedep, adp); 10580 prevlbn = adp->ad_offset; 10581 if (adp->ad_offset < UFS_NDADDR && 10582 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10583 panic("initiate_write_inodeblock_ufs2: " 10584 "direct pointer #%jd mismatch %jd != %jd", 10585 (intmax_t)adp->ad_offset, 10586 (intmax_t)dp->di_db[adp->ad_offset], 10587 (intmax_t)adp->ad_newblkno); 10588 if (adp->ad_offset >= UFS_NDADDR && 10589 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10590 panic("initiate_write_inodeblock_ufs2: " 10591 "indirect pointer #%jd mismatch %jd != %jd", 10592 (intmax_t)adp->ad_offset - UFS_NDADDR, 10593 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10594 (intmax_t)adp->ad_newblkno); 10595 deplist |= 1 << adp->ad_offset; 10596 if ((adp->ad_state & ATTACHED) == 0) 10597 panic("initiate_write_inodeblock_ufs2: Unknown " 10598 "state 0x%x", adp->ad_state); 10599 #endif /* INVARIANTS */ 10600 adp->ad_state &= ~ATTACHED; 10601 adp->ad_state |= UNDONE; 10602 } 10603 /* 10604 * The on-disk inode cannot claim to be any larger than the last 10605 * fragment that has been written. Otherwise, the on-disk inode 10606 * might have fragments that were not the last block in the file 10607 * which would corrupt the filesystem. 10608 */ 10609 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10610 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10611 if (adp->ad_offset >= UFS_NDADDR) 10612 break; 10613 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10614 /* keep going until hitting a rollback to a frag */ 10615 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10616 continue; 10617 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10618 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10619 #ifdef INVARIANTS 10620 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10621 panic("initiate_write_inodeblock_ufs2: " 10622 "lost dep2"); 10623 #endif /* INVARIANTS */ 10624 dp->di_db[i] = 0; 10625 } 10626 for (i = 0; i < UFS_NIADDR; i++) { 10627 #ifdef INVARIANTS 10628 if (dp->di_ib[i] != 0 && 10629 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10630 panic("initiate_write_inodeblock_ufs2: " 10631 "lost dep3"); 10632 #endif /* INVARIANTS */ 10633 dp->di_ib[i] = 0; 10634 } 10635 ffs_update_dinode_ckhash(fs, dp); 10636 return; 10637 } 10638 /* 10639 * If we have zero'ed out the last allocated block of the file, 10640 * roll back the size to the last currently allocated block. 10641 * We know that this last allocated block is a full-sized as 10642 * we already checked for fragments in the loop above. 10643 */ 10644 if (lastadp != NULL && 10645 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10646 for (i = lastadp->ad_offset; i >= 0; i--) 10647 if (dp->di_db[i] != 0) 10648 break; 10649 dp->di_size = (i + 1) * fs->fs_bsize; 10650 } 10651 /* 10652 * The only dependencies are for indirect blocks. 10653 * 10654 * The file size for indirect block additions is not guaranteed. 10655 * Such a guarantee would be non-trivial to achieve. The conventional 10656 * synchronous write implementation also does not make this guarantee. 10657 * Fsck should catch and fix discrepancies. Arguably, the file size 10658 * can be over-estimated without destroying integrity when the file 10659 * moves into the indirect blocks (i.e., is large). If we want to 10660 * postpone fsck, we are stuck with this argument. 10661 */ 10662 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10663 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10664 ffs_update_dinode_ckhash(fs, dp); 10665 } 10666 10667 /* 10668 * Cancel an indirdep as a result of truncation. Release all of the 10669 * children allocindirs and place their journal work on the appropriate 10670 * list. 10671 */ 10672 static void 10673 cancel_indirdep(indirdep, bp, freeblks) 10674 struct indirdep *indirdep; 10675 struct buf *bp; 10676 struct freeblks *freeblks; 10677 { 10678 struct allocindir *aip; 10679 10680 /* 10681 * None of the indirect pointers will ever be visible, 10682 * so they can simply be tossed. GOINGAWAY ensures 10683 * that allocated pointers will be saved in the buffer 10684 * cache until they are freed. Note that they will 10685 * only be able to be found by their physical address 10686 * since the inode mapping the logical address will 10687 * be gone. The save buffer used for the safe copy 10688 * was allocated in setup_allocindir_phase2 using 10689 * the physical address so it could be used for this 10690 * purpose. Hence we swap the safe copy with the real 10691 * copy, allowing the safe copy to be freed and holding 10692 * on to the real copy for later use in indir_trunc. 10693 */ 10694 if (indirdep->ir_state & GOINGAWAY) 10695 panic("cancel_indirdep: already gone"); 10696 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 10697 indirdep->ir_state |= DEPCOMPLETE; 10698 LIST_REMOVE(indirdep, ir_next); 10699 } 10700 indirdep->ir_state |= GOINGAWAY; 10701 /* 10702 * Pass in bp for blocks still have journal writes 10703 * pending so we can cancel them on their own. 10704 */ 10705 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 10706 cancel_allocindir(aip, bp, freeblks, 0); 10707 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 10708 cancel_allocindir(aip, NULL, freeblks, 0); 10709 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 10710 cancel_allocindir(aip, NULL, freeblks, 0); 10711 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 10712 cancel_allocindir(aip, NULL, freeblks, 0); 10713 /* 10714 * If there are pending partial truncations we need to keep the 10715 * old block copy around until they complete. This is because 10716 * the current b_data is not a perfect superset of the available 10717 * blocks. 10718 */ 10719 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 10720 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 10721 else 10722 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10723 WORKLIST_REMOVE(&indirdep->ir_list); 10724 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 10725 indirdep->ir_bp = NULL; 10726 indirdep->ir_freeblks = freeblks; 10727 } 10728 10729 /* 10730 * Free an indirdep once it no longer has new pointers to track. 10731 */ 10732 static void 10733 free_indirdep(indirdep) 10734 struct indirdep *indirdep; 10735 { 10736 10737 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 10738 ("free_indirdep: Indir trunc list not empty.")); 10739 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 10740 ("free_indirdep: Complete head not empty.")); 10741 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 10742 ("free_indirdep: write head not empty.")); 10743 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 10744 ("free_indirdep: done head not empty.")); 10745 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 10746 ("free_indirdep: deplist head not empty.")); 10747 KASSERT((indirdep->ir_state & DEPCOMPLETE), 10748 ("free_indirdep: %p still on newblk list.", indirdep)); 10749 KASSERT(indirdep->ir_saveddata == NULL, 10750 ("free_indirdep: %p still has saved data.", indirdep)); 10751 KASSERT(indirdep->ir_savebp == NULL, 10752 ("free_indirdep: %p still has savebp buffer.", indirdep)); 10753 if (indirdep->ir_state & ONWORKLIST) 10754 WORKLIST_REMOVE(&indirdep->ir_list); 10755 WORKITEM_FREE(indirdep, D_INDIRDEP); 10756 } 10757 10758 /* 10759 * Called before a write to an indirdep. This routine is responsible for 10760 * rolling back pointers to a safe state which includes only those 10761 * allocindirs which have been completed. 10762 */ 10763 static void 10764 initiate_write_indirdep(indirdep, bp) 10765 struct indirdep *indirdep; 10766 struct buf *bp; 10767 { 10768 struct ufsmount *ump; 10769 10770 indirdep->ir_state |= IOSTARTED; 10771 if (indirdep->ir_state & GOINGAWAY) 10772 panic("disk_io_initiation: indirdep gone"); 10773 /* 10774 * If there are no remaining dependencies, this will be writing 10775 * the real pointers. 10776 */ 10777 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 10778 TAILQ_EMPTY(&indirdep->ir_trunc)) 10779 return; 10780 /* 10781 * Replace up-to-date version with safe version. 10782 */ 10783 if (indirdep->ir_saveddata == NULL) { 10784 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 10785 LOCK_OWNED(ump); 10786 FREE_LOCK(ump); 10787 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 10788 M_SOFTDEP_FLAGS); 10789 ACQUIRE_LOCK(ump); 10790 } 10791 indirdep->ir_state &= ~ATTACHED; 10792 indirdep->ir_state |= UNDONE; 10793 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 10794 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 10795 bp->b_bcount); 10796 } 10797 10798 /* 10799 * Called when an inode has been cleared in a cg bitmap. This finally 10800 * eliminates any canceled jaddrefs 10801 */ 10802 void 10803 softdep_setup_inofree(mp, bp, ino, wkhd) 10804 struct mount *mp; 10805 struct buf *bp; 10806 ino_t ino; 10807 struct workhead *wkhd; 10808 { 10809 struct worklist *wk, *wkn; 10810 struct inodedep *inodedep; 10811 struct ufsmount *ump; 10812 uint8_t *inosused; 10813 struct cg *cgp; 10814 struct fs *fs; 10815 10816 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 10817 ("softdep_setup_inofree called on non-softdep filesystem")); 10818 ump = VFSTOUFS(mp); 10819 ACQUIRE_LOCK(ump); 10820 fs = ump->um_fs; 10821 cgp = (struct cg *)bp->b_data; 10822 inosused = cg_inosused(cgp); 10823 if (isset(inosused, ino % fs->fs_ipg)) 10824 panic("softdep_setup_inofree: inode %ju not freed.", 10825 (uintmax_t)ino); 10826 if (inodedep_lookup(mp, ino, 0, &inodedep)) 10827 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 10828 (uintmax_t)ino, inodedep); 10829 if (wkhd) { 10830 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 10831 if (wk->wk_type != D_JADDREF) 10832 continue; 10833 WORKLIST_REMOVE(wk); 10834 /* 10835 * We can free immediately even if the jaddref 10836 * isn't attached in a background write as now 10837 * the bitmaps are reconciled. 10838 */ 10839 wk->wk_state |= COMPLETE | ATTACHED; 10840 free_jaddref(WK_JADDREF(wk)); 10841 } 10842 jwork_move(&bp->b_dep, wkhd); 10843 } 10844 FREE_LOCK(ump); 10845 } 10846 10847 /* 10848 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 10849 * map. Any dependencies waiting for the write to clear are added to the 10850 * buf's list and any jnewblks that are being canceled are discarded 10851 * immediately. 10852 */ 10853 void 10854 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 10855 struct mount *mp; 10856 struct buf *bp; 10857 ufs2_daddr_t blkno; 10858 int frags; 10859 struct workhead *wkhd; 10860 { 10861 struct bmsafemap *bmsafemap; 10862 struct jnewblk *jnewblk; 10863 struct ufsmount *ump; 10864 struct worklist *wk; 10865 struct fs *fs; 10866 #ifdef INVARIANTS 10867 uint8_t *blksfree; 10868 struct cg *cgp; 10869 ufs2_daddr_t jstart; 10870 ufs2_daddr_t jend; 10871 ufs2_daddr_t end; 10872 long bno; 10873 int i; 10874 #endif 10875 10876 CTR3(KTR_SUJ, 10877 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 10878 blkno, frags, wkhd); 10879 10880 ump = VFSTOUFS(mp); 10881 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 10882 ("softdep_setup_blkfree called on non-softdep filesystem")); 10883 ACQUIRE_LOCK(ump); 10884 /* Lookup the bmsafemap so we track when it is dirty. */ 10885 fs = ump->um_fs; 10886 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10887 /* 10888 * Detach any jnewblks which have been canceled. They must linger 10889 * until the bitmap is cleared again by ffs_blkfree() to prevent 10890 * an unjournaled allocation from hitting the disk. 10891 */ 10892 if (wkhd) { 10893 while ((wk = LIST_FIRST(wkhd)) != NULL) { 10894 CTR2(KTR_SUJ, 10895 "softdep_setup_blkfree: blkno %jd wk type %d", 10896 blkno, wk->wk_type); 10897 WORKLIST_REMOVE(wk); 10898 if (wk->wk_type != D_JNEWBLK) { 10899 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 10900 continue; 10901 } 10902 jnewblk = WK_JNEWBLK(wk); 10903 KASSERT(jnewblk->jn_state & GOINGAWAY, 10904 ("softdep_setup_blkfree: jnewblk not canceled.")); 10905 #ifdef INVARIANTS 10906 /* 10907 * Assert that this block is free in the bitmap 10908 * before we discard the jnewblk. 10909 */ 10910 cgp = (struct cg *)bp->b_data; 10911 blksfree = cg_blksfree(cgp); 10912 bno = dtogd(fs, jnewblk->jn_blkno); 10913 for (i = jnewblk->jn_oldfrags; 10914 i < jnewblk->jn_frags; i++) { 10915 if (isset(blksfree, bno + i)) 10916 continue; 10917 panic("softdep_setup_blkfree: not free"); 10918 } 10919 #endif 10920 /* 10921 * Even if it's not attached we can free immediately 10922 * as the new bitmap is correct. 10923 */ 10924 wk->wk_state |= COMPLETE | ATTACHED; 10925 free_jnewblk(jnewblk); 10926 } 10927 } 10928 10929 #ifdef INVARIANTS 10930 /* 10931 * Assert that we are not freeing a block which has an outstanding 10932 * allocation dependency. 10933 */ 10934 fs = VFSTOUFS(mp)->um_fs; 10935 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 10936 end = blkno + frags; 10937 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 10938 /* 10939 * Don't match against blocks that will be freed when the 10940 * background write is done. 10941 */ 10942 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 10943 (COMPLETE | DEPCOMPLETE)) 10944 continue; 10945 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 10946 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 10947 if ((blkno >= jstart && blkno < jend) || 10948 (end > jstart && end <= jend)) { 10949 printf("state 0x%X %jd - %d %d dep %p\n", 10950 jnewblk->jn_state, jnewblk->jn_blkno, 10951 jnewblk->jn_oldfrags, jnewblk->jn_frags, 10952 jnewblk->jn_dep); 10953 panic("softdep_setup_blkfree: " 10954 "%jd-%jd(%d) overlaps with %jd-%jd", 10955 blkno, end, frags, jstart, jend); 10956 } 10957 } 10958 #endif 10959 FREE_LOCK(ump); 10960 } 10961 10962 /* 10963 * Revert a block allocation when the journal record that describes it 10964 * is not yet written. 10965 */ 10966 static int 10967 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 10968 struct jnewblk *jnewblk; 10969 struct fs *fs; 10970 struct cg *cgp; 10971 uint8_t *blksfree; 10972 { 10973 ufs1_daddr_t fragno; 10974 long cgbno, bbase; 10975 int frags, blk; 10976 int i; 10977 10978 frags = 0; 10979 cgbno = dtogd(fs, jnewblk->jn_blkno); 10980 /* 10981 * We have to test which frags need to be rolled back. We may 10982 * be operating on a stale copy when doing background writes. 10983 */ 10984 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 10985 if (isclr(blksfree, cgbno + i)) 10986 frags++; 10987 if (frags == 0) 10988 return (0); 10989 /* 10990 * This is mostly ffs_blkfree() sans some validation and 10991 * superblock updates. 10992 */ 10993 if (frags == fs->fs_frag) { 10994 fragno = fragstoblks(fs, cgbno); 10995 ffs_setblock(fs, blksfree, fragno); 10996 ffs_clusteracct(fs, cgp, fragno, 1); 10997 cgp->cg_cs.cs_nbfree++; 10998 } else { 10999 cgbno += jnewblk->jn_oldfrags; 11000 bbase = cgbno - fragnum(fs, cgbno); 11001 /* Decrement the old frags. */ 11002 blk = blkmap(fs, blksfree, bbase); 11003 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11004 /* Deallocate the fragment */ 11005 for (i = 0; i < frags; i++) 11006 setbit(blksfree, cgbno + i); 11007 cgp->cg_cs.cs_nffree += frags; 11008 /* Add back in counts associated with the new frags */ 11009 blk = blkmap(fs, blksfree, bbase); 11010 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11011 /* If a complete block has been reassembled, account for it. */ 11012 fragno = fragstoblks(fs, bbase); 11013 if (ffs_isblock(fs, blksfree, fragno)) { 11014 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11015 ffs_clusteracct(fs, cgp, fragno, 1); 11016 cgp->cg_cs.cs_nbfree++; 11017 } 11018 } 11019 stat_jnewblk++; 11020 jnewblk->jn_state &= ~ATTACHED; 11021 jnewblk->jn_state |= UNDONE; 11022 11023 return (frags); 11024 } 11025 11026 static void 11027 initiate_write_bmsafemap(bmsafemap, bp) 11028 struct bmsafemap *bmsafemap; 11029 struct buf *bp; /* The cg block. */ 11030 { 11031 struct jaddref *jaddref; 11032 struct jnewblk *jnewblk; 11033 uint8_t *inosused; 11034 uint8_t *blksfree; 11035 struct cg *cgp; 11036 struct fs *fs; 11037 ino_t ino; 11038 11039 /* 11040 * If this is a background write, we did this at the time that 11041 * the copy was made, so do not need to do it again. 11042 */ 11043 if (bmsafemap->sm_state & IOSTARTED) 11044 return; 11045 bmsafemap->sm_state |= IOSTARTED; 11046 /* 11047 * Clear any inode allocations which are pending journal writes. 11048 */ 11049 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11050 cgp = (struct cg *)bp->b_data; 11051 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11052 inosused = cg_inosused(cgp); 11053 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11054 ino = jaddref->ja_ino % fs->fs_ipg; 11055 if (isset(inosused, ino)) { 11056 if ((jaddref->ja_mode & IFMT) == IFDIR) 11057 cgp->cg_cs.cs_ndir--; 11058 cgp->cg_cs.cs_nifree++; 11059 clrbit(inosused, ino); 11060 jaddref->ja_state &= ~ATTACHED; 11061 jaddref->ja_state |= UNDONE; 11062 stat_jaddref++; 11063 } else 11064 panic("initiate_write_bmsafemap: inode %ju " 11065 "marked free", (uintmax_t)jaddref->ja_ino); 11066 } 11067 } 11068 /* 11069 * Clear any block allocations which are pending journal writes. 11070 */ 11071 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11072 cgp = (struct cg *)bp->b_data; 11073 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11074 blksfree = cg_blksfree(cgp); 11075 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11076 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11077 continue; 11078 panic("initiate_write_bmsafemap: block %jd " 11079 "marked free", jnewblk->jn_blkno); 11080 } 11081 } 11082 /* 11083 * Move allocation lists to the written lists so they can be 11084 * cleared once the block write is complete. 11085 */ 11086 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11087 inodedep, id_deps); 11088 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11089 newblk, nb_deps); 11090 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11091 wk_list); 11092 } 11093 11094 /* 11095 * This routine is called during the completion interrupt 11096 * service routine for a disk write (from the procedure called 11097 * by the device driver to inform the filesystem caches of 11098 * a request completion). It should be called early in this 11099 * procedure, before the block is made available to other 11100 * processes or other routines are called. 11101 * 11102 */ 11103 static void 11104 softdep_disk_write_complete(bp) 11105 struct buf *bp; /* describes the completed disk write */ 11106 { 11107 struct worklist *wk; 11108 struct worklist *owk; 11109 struct ufsmount *ump; 11110 struct workhead reattach; 11111 struct freeblks *freeblks; 11112 struct buf *sbp; 11113 11114 ump = softdep_bp_to_mp(bp); 11115 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11116 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11117 "with outstanding dependencies for buffer %p", bp)); 11118 if (ump == NULL) 11119 return; 11120 /* 11121 * If an error occurred while doing the write, then the data 11122 * has not hit the disk and the dependencies cannot be processed. 11123 * But we do have to go through and roll forward any dependencies 11124 * that were rolled back before the disk write. 11125 */ 11126 sbp = NULL; 11127 ACQUIRE_LOCK(ump); 11128 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11129 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11130 switch (wk->wk_type) { 11131 11132 case D_PAGEDEP: 11133 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11134 continue; 11135 11136 case D_INODEDEP: 11137 handle_written_inodeblock(WK_INODEDEP(wk), 11138 bp, 0); 11139 continue; 11140 11141 case D_BMSAFEMAP: 11142 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11143 bp, 0); 11144 continue; 11145 11146 case D_INDIRDEP: 11147 handle_written_indirdep(WK_INDIRDEP(wk), 11148 bp, &sbp, 0); 11149 continue; 11150 default: 11151 /* nothing to roll forward */ 11152 continue; 11153 } 11154 } 11155 FREE_LOCK(ump); 11156 if (sbp) 11157 brelse(sbp); 11158 return; 11159 } 11160 LIST_INIT(&reattach); 11161 11162 /* 11163 * Ump SU lock must not be released anywhere in this code segment. 11164 */ 11165 owk = NULL; 11166 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11167 WORKLIST_REMOVE(wk); 11168 atomic_add_long(&dep_write[wk->wk_type], 1); 11169 if (wk == owk) 11170 panic("duplicate worklist: %p\n", wk); 11171 owk = wk; 11172 switch (wk->wk_type) { 11173 11174 case D_PAGEDEP: 11175 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11176 WRITESUCCEEDED)) 11177 WORKLIST_INSERT(&reattach, wk); 11178 continue; 11179 11180 case D_INODEDEP: 11181 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11182 WRITESUCCEEDED)) 11183 WORKLIST_INSERT(&reattach, wk); 11184 continue; 11185 11186 case D_BMSAFEMAP: 11187 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11188 WRITESUCCEEDED)) 11189 WORKLIST_INSERT(&reattach, wk); 11190 continue; 11191 11192 case D_MKDIR: 11193 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11194 continue; 11195 11196 case D_ALLOCDIRECT: 11197 wk->wk_state |= COMPLETE; 11198 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11199 continue; 11200 11201 case D_ALLOCINDIR: 11202 wk->wk_state |= COMPLETE; 11203 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11204 continue; 11205 11206 case D_INDIRDEP: 11207 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11208 WRITESUCCEEDED)) 11209 WORKLIST_INSERT(&reattach, wk); 11210 continue; 11211 11212 case D_FREEBLKS: 11213 wk->wk_state |= COMPLETE; 11214 freeblks = WK_FREEBLKS(wk); 11215 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11216 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11217 add_to_worklist(wk, WK_NODELAY); 11218 continue; 11219 11220 case D_FREEWORK: 11221 handle_written_freework(WK_FREEWORK(wk)); 11222 break; 11223 11224 case D_JSEGDEP: 11225 free_jsegdep(WK_JSEGDEP(wk)); 11226 continue; 11227 11228 case D_JSEG: 11229 handle_written_jseg(WK_JSEG(wk), bp); 11230 continue; 11231 11232 case D_SBDEP: 11233 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11234 WORKLIST_INSERT(&reattach, wk); 11235 continue; 11236 11237 case D_FREEDEP: 11238 free_freedep(WK_FREEDEP(wk)); 11239 continue; 11240 11241 default: 11242 panic("handle_disk_write_complete: Unknown type %s", 11243 TYPENAME(wk->wk_type)); 11244 /* NOTREACHED */ 11245 } 11246 } 11247 /* 11248 * Reattach any requests that must be redone. 11249 */ 11250 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11251 WORKLIST_REMOVE(wk); 11252 WORKLIST_INSERT(&bp->b_dep, wk); 11253 } 11254 FREE_LOCK(ump); 11255 if (sbp) 11256 brelse(sbp); 11257 } 11258 11259 /* 11260 * Called from within softdep_disk_write_complete above. 11261 */ 11262 static void 11263 handle_allocdirect_partdone(adp, wkhd) 11264 struct allocdirect *adp; /* the completed allocdirect */ 11265 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11266 { 11267 struct allocdirectlst *listhead; 11268 struct allocdirect *listadp; 11269 struct inodedep *inodedep; 11270 long bsize; 11271 11272 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11273 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11274 return; 11275 /* 11276 * The on-disk inode cannot claim to be any larger than the last 11277 * fragment that has been written. Otherwise, the on-disk inode 11278 * might have fragments that were not the last block in the file 11279 * which would corrupt the filesystem. Thus, we cannot free any 11280 * allocdirects after one whose ad_oldblkno claims a fragment as 11281 * these blocks must be rolled back to zero before writing the inode. 11282 * We check the currently active set of allocdirects in id_inoupdt 11283 * or id_extupdt as appropriate. 11284 */ 11285 inodedep = adp->ad_inodedep; 11286 bsize = inodedep->id_fs->fs_bsize; 11287 if (adp->ad_state & EXTDATA) 11288 listhead = &inodedep->id_extupdt; 11289 else 11290 listhead = &inodedep->id_inoupdt; 11291 TAILQ_FOREACH(listadp, listhead, ad_next) { 11292 /* found our block */ 11293 if (listadp == adp) 11294 break; 11295 /* continue if ad_oldlbn is not a fragment */ 11296 if (listadp->ad_oldsize == 0 || 11297 listadp->ad_oldsize == bsize) 11298 continue; 11299 /* hit a fragment */ 11300 return; 11301 } 11302 /* 11303 * If we have reached the end of the current list without 11304 * finding the just finished dependency, then it must be 11305 * on the future dependency list. Future dependencies cannot 11306 * be freed until they are moved to the current list. 11307 */ 11308 if (listadp == NULL) { 11309 #ifdef INVARIANTS 11310 if (adp->ad_state & EXTDATA) 11311 listhead = &inodedep->id_newextupdt; 11312 else 11313 listhead = &inodedep->id_newinoupdt; 11314 TAILQ_FOREACH(listadp, listhead, ad_next) 11315 /* found our block */ 11316 if (listadp == adp) 11317 break; 11318 if (listadp == NULL) 11319 panic("handle_allocdirect_partdone: lost dep"); 11320 #endif /* INVARIANTS */ 11321 return; 11322 } 11323 /* 11324 * If we have found the just finished dependency, then queue 11325 * it along with anything that follows it that is complete. 11326 * Since the pointer has not yet been written in the inode 11327 * as the dependency prevents it, place the allocdirect on the 11328 * bufwait list where it will be freed once the pointer is 11329 * valid. 11330 */ 11331 if (wkhd == NULL) 11332 wkhd = &inodedep->id_bufwait; 11333 for (; adp; adp = listadp) { 11334 listadp = TAILQ_NEXT(adp, ad_next); 11335 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11336 return; 11337 TAILQ_REMOVE(listhead, adp, ad_next); 11338 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11339 } 11340 } 11341 11342 /* 11343 * Called from within softdep_disk_write_complete above. This routine 11344 * completes successfully written allocindirs. 11345 */ 11346 static void 11347 handle_allocindir_partdone(aip) 11348 struct allocindir *aip; /* the completed allocindir */ 11349 { 11350 struct indirdep *indirdep; 11351 11352 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11353 return; 11354 indirdep = aip->ai_indirdep; 11355 LIST_REMOVE(aip, ai_next); 11356 /* 11357 * Don't set a pointer while the buffer is undergoing IO or while 11358 * we have active truncations. 11359 */ 11360 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11361 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11362 return; 11363 } 11364 if (indirdep->ir_state & UFS1FMT) 11365 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11366 aip->ai_newblkno; 11367 else 11368 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11369 aip->ai_newblkno; 11370 /* 11371 * Await the pointer write before freeing the allocindir. 11372 */ 11373 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11374 } 11375 11376 /* 11377 * Release segments held on a jwork list. 11378 */ 11379 static void 11380 handle_jwork(wkhd) 11381 struct workhead *wkhd; 11382 { 11383 struct worklist *wk; 11384 11385 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11386 WORKLIST_REMOVE(wk); 11387 switch (wk->wk_type) { 11388 case D_JSEGDEP: 11389 free_jsegdep(WK_JSEGDEP(wk)); 11390 continue; 11391 case D_FREEDEP: 11392 free_freedep(WK_FREEDEP(wk)); 11393 continue; 11394 case D_FREEFRAG: 11395 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11396 WORKITEM_FREE(wk, D_FREEFRAG); 11397 continue; 11398 case D_FREEWORK: 11399 handle_written_freework(WK_FREEWORK(wk)); 11400 continue; 11401 default: 11402 panic("handle_jwork: Unknown type %s\n", 11403 TYPENAME(wk->wk_type)); 11404 } 11405 } 11406 } 11407 11408 /* 11409 * Handle the bufwait list on an inode when it is safe to release items 11410 * held there. This normally happens after an inode block is written but 11411 * may be delayed and handled later if there are pending journal items that 11412 * are not yet safe to be released. 11413 */ 11414 static struct freefile * 11415 handle_bufwait(inodedep, refhd) 11416 struct inodedep *inodedep; 11417 struct workhead *refhd; 11418 { 11419 struct jaddref *jaddref; 11420 struct freefile *freefile; 11421 struct worklist *wk; 11422 11423 freefile = NULL; 11424 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11425 WORKLIST_REMOVE(wk); 11426 switch (wk->wk_type) { 11427 case D_FREEFILE: 11428 /* 11429 * We defer adding freefile to the worklist 11430 * until all other additions have been made to 11431 * ensure that it will be done after all the 11432 * old blocks have been freed. 11433 */ 11434 if (freefile != NULL) 11435 panic("handle_bufwait: freefile"); 11436 freefile = WK_FREEFILE(wk); 11437 continue; 11438 11439 case D_MKDIR: 11440 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11441 continue; 11442 11443 case D_DIRADD: 11444 diradd_inode_written(WK_DIRADD(wk), inodedep); 11445 continue; 11446 11447 case D_FREEFRAG: 11448 wk->wk_state |= COMPLETE; 11449 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11450 add_to_worklist(wk, 0); 11451 continue; 11452 11453 case D_DIRREM: 11454 wk->wk_state |= COMPLETE; 11455 add_to_worklist(wk, 0); 11456 continue; 11457 11458 case D_ALLOCDIRECT: 11459 case D_ALLOCINDIR: 11460 free_newblk(WK_NEWBLK(wk)); 11461 continue; 11462 11463 case D_JNEWBLK: 11464 wk->wk_state |= COMPLETE; 11465 free_jnewblk(WK_JNEWBLK(wk)); 11466 continue; 11467 11468 /* 11469 * Save freed journal segments and add references on 11470 * the supplied list which will delay their release 11471 * until the cg bitmap is cleared on disk. 11472 */ 11473 case D_JSEGDEP: 11474 if (refhd == NULL) 11475 free_jsegdep(WK_JSEGDEP(wk)); 11476 else 11477 WORKLIST_INSERT(refhd, wk); 11478 continue; 11479 11480 case D_JADDREF: 11481 jaddref = WK_JADDREF(wk); 11482 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11483 if_deps); 11484 /* 11485 * Transfer any jaddrefs to the list to be freed with 11486 * the bitmap if we're handling a removed file. 11487 */ 11488 if (refhd == NULL) { 11489 wk->wk_state |= COMPLETE; 11490 free_jaddref(jaddref); 11491 } else 11492 WORKLIST_INSERT(refhd, wk); 11493 continue; 11494 11495 default: 11496 panic("handle_bufwait: Unknown type %p(%s)", 11497 wk, TYPENAME(wk->wk_type)); 11498 /* NOTREACHED */ 11499 } 11500 } 11501 return (freefile); 11502 } 11503 /* 11504 * Called from within softdep_disk_write_complete above to restore 11505 * in-memory inode block contents to their most up-to-date state. Note 11506 * that this routine is always called from interrupt level with further 11507 * interrupts from this device blocked. 11508 * 11509 * If the write did not succeed, we will do all the roll-forward 11510 * operations, but we will not take the actions that will allow its 11511 * dependencies to be processed. 11512 */ 11513 static int 11514 handle_written_inodeblock(inodedep, bp, flags) 11515 struct inodedep *inodedep; 11516 struct buf *bp; /* buffer containing the inode block */ 11517 int flags; 11518 { 11519 struct freefile *freefile; 11520 struct allocdirect *adp, *nextadp; 11521 struct ufs1_dinode *dp1 = NULL; 11522 struct ufs2_dinode *dp2 = NULL; 11523 struct workhead wkhd; 11524 int hadchanges, fstype; 11525 ino_t freelink; 11526 11527 LIST_INIT(&wkhd); 11528 hadchanges = 0; 11529 freefile = NULL; 11530 if ((inodedep->id_state & IOSTARTED) == 0) 11531 panic("handle_written_inodeblock: not started"); 11532 inodedep->id_state &= ~IOSTARTED; 11533 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11534 fstype = UFS1; 11535 dp1 = (struct ufs1_dinode *)bp->b_data + 11536 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11537 freelink = dp1->di_freelink; 11538 } else { 11539 fstype = UFS2; 11540 dp2 = (struct ufs2_dinode *)bp->b_data + 11541 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11542 freelink = dp2->di_freelink; 11543 } 11544 /* 11545 * Leave this inodeblock dirty until it's in the list. 11546 */ 11547 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11548 (flags & WRITESUCCEEDED)) { 11549 struct inodedep *inon; 11550 11551 inon = TAILQ_NEXT(inodedep, id_unlinked); 11552 if ((inon == NULL && freelink == 0) || 11553 (inon && inon->id_ino == freelink)) { 11554 if (inon) 11555 inon->id_state |= UNLINKPREV; 11556 inodedep->id_state |= UNLINKNEXT; 11557 } 11558 hadchanges = 1; 11559 } 11560 /* 11561 * If we had to rollback the inode allocation because of 11562 * bitmaps being incomplete, then simply restore it. 11563 * Keep the block dirty so that it will not be reclaimed until 11564 * all associated dependencies have been cleared and the 11565 * corresponding updates written to disk. 11566 */ 11567 if (inodedep->id_savedino1 != NULL) { 11568 hadchanges = 1; 11569 if (fstype == UFS1) 11570 *dp1 = *inodedep->id_savedino1; 11571 else 11572 *dp2 = *inodedep->id_savedino2; 11573 free(inodedep->id_savedino1, M_SAVEDINO); 11574 inodedep->id_savedino1 = NULL; 11575 if ((bp->b_flags & B_DELWRI) == 0) 11576 stat_inode_bitmap++; 11577 bdirty(bp); 11578 /* 11579 * If the inode is clear here and GOINGAWAY it will never 11580 * be written. Process the bufwait and clear any pending 11581 * work which may include the freefile. 11582 */ 11583 if (inodedep->id_state & GOINGAWAY) 11584 goto bufwait; 11585 return (1); 11586 } 11587 if (flags & WRITESUCCEEDED) 11588 inodedep->id_state |= COMPLETE; 11589 /* 11590 * Roll forward anything that had to be rolled back before 11591 * the inode could be updated. 11592 */ 11593 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11594 nextadp = TAILQ_NEXT(adp, ad_next); 11595 if (adp->ad_state & ATTACHED) 11596 panic("handle_written_inodeblock: new entry"); 11597 if (fstype == UFS1) { 11598 if (adp->ad_offset < UFS_NDADDR) { 11599 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11600 panic("%s %s #%jd mismatch %d != %jd", 11601 "handle_written_inodeblock:", 11602 "direct pointer", 11603 (intmax_t)adp->ad_offset, 11604 dp1->di_db[adp->ad_offset], 11605 (intmax_t)adp->ad_oldblkno); 11606 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11607 } else { 11608 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11609 0) 11610 panic("%s: %s #%jd allocated as %d", 11611 "handle_written_inodeblock", 11612 "indirect pointer", 11613 (intmax_t)adp->ad_offset - 11614 UFS_NDADDR, 11615 dp1->di_ib[adp->ad_offset - 11616 UFS_NDADDR]); 11617 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11618 adp->ad_newblkno; 11619 } 11620 } else { 11621 if (adp->ad_offset < UFS_NDADDR) { 11622 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11623 panic("%s: %s #%jd %s %jd != %jd", 11624 "handle_written_inodeblock", 11625 "direct pointer", 11626 (intmax_t)adp->ad_offset, "mismatch", 11627 (intmax_t)dp2->di_db[adp->ad_offset], 11628 (intmax_t)adp->ad_oldblkno); 11629 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11630 } else { 11631 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 11632 0) 11633 panic("%s: %s #%jd allocated as %jd", 11634 "handle_written_inodeblock", 11635 "indirect pointer", 11636 (intmax_t)adp->ad_offset - 11637 UFS_NDADDR, 11638 (intmax_t) 11639 dp2->di_ib[adp->ad_offset - 11640 UFS_NDADDR]); 11641 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 11642 adp->ad_newblkno; 11643 } 11644 } 11645 adp->ad_state &= ~UNDONE; 11646 adp->ad_state |= ATTACHED; 11647 hadchanges = 1; 11648 } 11649 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 11650 nextadp = TAILQ_NEXT(adp, ad_next); 11651 if (adp->ad_state & ATTACHED) 11652 panic("handle_written_inodeblock: new entry"); 11653 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 11654 panic("%s: direct pointers #%jd %s %jd != %jd", 11655 "handle_written_inodeblock", 11656 (intmax_t)adp->ad_offset, "mismatch", 11657 (intmax_t)dp2->di_extb[adp->ad_offset], 11658 (intmax_t)adp->ad_oldblkno); 11659 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 11660 adp->ad_state &= ~UNDONE; 11661 adp->ad_state |= ATTACHED; 11662 hadchanges = 1; 11663 } 11664 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 11665 stat_direct_blk_ptrs++; 11666 /* 11667 * Reset the file size to its most up-to-date value. 11668 */ 11669 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 11670 panic("handle_written_inodeblock: bad size"); 11671 if (inodedep->id_savednlink > UFS_LINK_MAX) 11672 panic("handle_written_inodeblock: Invalid link count " 11673 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 11674 inodedep); 11675 if (fstype == UFS1) { 11676 if (dp1->di_nlink != inodedep->id_savednlink) { 11677 dp1->di_nlink = inodedep->id_savednlink; 11678 hadchanges = 1; 11679 } 11680 if (dp1->di_size != inodedep->id_savedsize) { 11681 dp1->di_size = inodedep->id_savedsize; 11682 hadchanges = 1; 11683 } 11684 } else { 11685 if (dp2->di_nlink != inodedep->id_savednlink) { 11686 dp2->di_nlink = inodedep->id_savednlink; 11687 hadchanges = 1; 11688 } 11689 if (dp2->di_size != inodedep->id_savedsize) { 11690 dp2->di_size = inodedep->id_savedsize; 11691 hadchanges = 1; 11692 } 11693 if (dp2->di_extsize != inodedep->id_savedextsize) { 11694 dp2->di_extsize = inodedep->id_savedextsize; 11695 hadchanges = 1; 11696 } 11697 } 11698 inodedep->id_savedsize = -1; 11699 inodedep->id_savedextsize = -1; 11700 inodedep->id_savednlink = -1; 11701 /* 11702 * If there were any rollbacks in the inode block, then it must be 11703 * marked dirty so that its will eventually get written back in 11704 * its correct form. 11705 */ 11706 if (hadchanges) { 11707 if (fstype == UFS2) 11708 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 11709 bdirty(bp); 11710 } 11711 bufwait: 11712 /* 11713 * If the write did not succeed, we have done all the roll-forward 11714 * operations, but we cannot take the actions that will allow its 11715 * dependencies to be processed. 11716 */ 11717 if ((flags & WRITESUCCEEDED) == 0) 11718 return (hadchanges); 11719 /* 11720 * Process any allocdirects that completed during the update. 11721 */ 11722 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 11723 handle_allocdirect_partdone(adp, &wkhd); 11724 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 11725 handle_allocdirect_partdone(adp, &wkhd); 11726 /* 11727 * Process deallocations that were held pending until the 11728 * inode had been written to disk. Freeing of the inode 11729 * is delayed until after all blocks have been freed to 11730 * avoid creation of new <vfsid, inum, lbn> triples 11731 * before the old ones have been deleted. Completely 11732 * unlinked inodes are not processed until the unlinked 11733 * inode list is written or the last reference is removed. 11734 */ 11735 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 11736 freefile = handle_bufwait(inodedep, NULL); 11737 if (freefile && !LIST_EMPTY(&wkhd)) { 11738 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 11739 freefile = NULL; 11740 } 11741 } 11742 /* 11743 * Move rolled forward dependency completions to the bufwait list 11744 * now that those that were already written have been processed. 11745 */ 11746 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 11747 panic("handle_written_inodeblock: bufwait but no changes"); 11748 jwork_move(&inodedep->id_bufwait, &wkhd); 11749 11750 if (freefile != NULL) { 11751 /* 11752 * If the inode is goingaway it was never written. Fake up 11753 * the state here so free_inodedep() can succeed. 11754 */ 11755 if (inodedep->id_state & GOINGAWAY) 11756 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 11757 if (free_inodedep(inodedep) == 0) 11758 panic("handle_written_inodeblock: live inodedep %p", 11759 inodedep); 11760 add_to_worklist(&freefile->fx_list, 0); 11761 return (0); 11762 } 11763 11764 /* 11765 * If no outstanding dependencies, free it. 11766 */ 11767 if (free_inodedep(inodedep) || 11768 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 11769 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 11770 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 11771 LIST_FIRST(&inodedep->id_bufwait) == 0)) 11772 return (0); 11773 return (hadchanges); 11774 } 11775 11776 /* 11777 * Perform needed roll-forwards and kick off any dependencies that 11778 * can now be processed. 11779 * 11780 * If the write did not succeed, we will do all the roll-forward 11781 * operations, but we will not take the actions that will allow its 11782 * dependencies to be processed. 11783 */ 11784 static int 11785 handle_written_indirdep(indirdep, bp, bpp, flags) 11786 struct indirdep *indirdep; 11787 struct buf *bp; 11788 struct buf **bpp; 11789 int flags; 11790 { 11791 struct allocindir *aip; 11792 struct buf *sbp; 11793 int chgs; 11794 11795 if (indirdep->ir_state & GOINGAWAY) 11796 panic("handle_written_indirdep: indirdep gone"); 11797 if ((indirdep->ir_state & IOSTARTED) == 0) 11798 panic("handle_written_indirdep: IO not started"); 11799 chgs = 0; 11800 /* 11801 * If there were rollbacks revert them here. 11802 */ 11803 if (indirdep->ir_saveddata) { 11804 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 11805 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11806 free(indirdep->ir_saveddata, M_INDIRDEP); 11807 indirdep->ir_saveddata = NULL; 11808 } 11809 chgs = 1; 11810 } 11811 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 11812 indirdep->ir_state |= ATTACHED; 11813 /* 11814 * If the write did not succeed, we have done all the roll-forward 11815 * operations, but we cannot take the actions that will allow its 11816 * dependencies to be processed. 11817 */ 11818 if ((flags & WRITESUCCEEDED) == 0) { 11819 stat_indir_blk_ptrs++; 11820 bdirty(bp); 11821 return (1); 11822 } 11823 /* 11824 * Move allocindirs with written pointers to the completehd if 11825 * the indirdep's pointer is not yet written. Otherwise 11826 * free them here. 11827 */ 11828 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 11829 LIST_REMOVE(aip, ai_next); 11830 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11831 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 11832 ai_next); 11833 newblk_freefrag(&aip->ai_block); 11834 continue; 11835 } 11836 free_newblk(&aip->ai_block); 11837 } 11838 /* 11839 * Move allocindirs that have finished dependency processing from 11840 * the done list to the write list after updating the pointers. 11841 */ 11842 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 11843 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 11844 handle_allocindir_partdone(aip); 11845 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 11846 panic("disk_write_complete: not gone"); 11847 chgs = 1; 11848 } 11849 } 11850 /* 11851 * Preserve the indirdep if there were any changes or if it is not 11852 * yet valid on disk. 11853 */ 11854 if (chgs) { 11855 stat_indir_blk_ptrs++; 11856 bdirty(bp); 11857 return (1); 11858 } 11859 /* 11860 * If there were no changes we can discard the savedbp and detach 11861 * ourselves from the buf. We are only carrying completed pointers 11862 * in this case. 11863 */ 11864 sbp = indirdep->ir_savebp; 11865 sbp->b_flags |= B_INVAL | B_NOCACHE; 11866 indirdep->ir_savebp = NULL; 11867 indirdep->ir_bp = NULL; 11868 if (*bpp != NULL) 11869 panic("handle_written_indirdep: bp already exists."); 11870 *bpp = sbp; 11871 /* 11872 * The indirdep may not be freed until its parent points at it. 11873 */ 11874 if (indirdep->ir_state & DEPCOMPLETE) 11875 free_indirdep(indirdep); 11876 11877 return (0); 11878 } 11879 11880 /* 11881 * Process a diradd entry after its dependent inode has been written. 11882 */ 11883 static void 11884 diradd_inode_written(dap, inodedep) 11885 struct diradd *dap; 11886 struct inodedep *inodedep; 11887 { 11888 11889 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 11890 dap->da_state |= COMPLETE; 11891 complete_diradd(dap); 11892 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 11893 } 11894 11895 /* 11896 * Returns true if the bmsafemap will have rollbacks when written. Must only 11897 * be called with the per-filesystem lock and the buf lock on the cg held. 11898 */ 11899 static int 11900 bmsafemap_backgroundwrite(bmsafemap, bp) 11901 struct bmsafemap *bmsafemap; 11902 struct buf *bp; 11903 { 11904 int dirty; 11905 11906 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 11907 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 11908 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 11909 /* 11910 * If we're initiating a background write we need to process the 11911 * rollbacks as they exist now, not as they exist when IO starts. 11912 * No other consumers will look at the contents of the shadowed 11913 * buf so this is safe to do here. 11914 */ 11915 if (bp->b_xflags & BX_BKGRDMARKER) 11916 initiate_write_bmsafemap(bmsafemap, bp); 11917 11918 return (dirty); 11919 } 11920 11921 /* 11922 * Re-apply an allocation when a cg write is complete. 11923 */ 11924 static int 11925 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 11926 struct jnewblk *jnewblk; 11927 struct fs *fs; 11928 struct cg *cgp; 11929 uint8_t *blksfree; 11930 { 11931 ufs1_daddr_t fragno; 11932 ufs2_daddr_t blkno; 11933 long cgbno, bbase; 11934 int frags, blk; 11935 int i; 11936 11937 frags = 0; 11938 cgbno = dtogd(fs, jnewblk->jn_blkno); 11939 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 11940 if (isclr(blksfree, cgbno + i)) 11941 panic("jnewblk_rollforward: re-allocated fragment"); 11942 frags++; 11943 } 11944 if (frags == fs->fs_frag) { 11945 blkno = fragstoblks(fs, cgbno); 11946 ffs_clrblock(fs, blksfree, (long)blkno); 11947 ffs_clusteracct(fs, cgp, blkno, -1); 11948 cgp->cg_cs.cs_nbfree--; 11949 } else { 11950 bbase = cgbno - fragnum(fs, cgbno); 11951 cgbno += jnewblk->jn_oldfrags; 11952 /* If a complete block had been reassembled, account for it. */ 11953 fragno = fragstoblks(fs, bbase); 11954 if (ffs_isblock(fs, blksfree, fragno)) { 11955 cgp->cg_cs.cs_nffree += fs->fs_frag; 11956 ffs_clusteracct(fs, cgp, fragno, -1); 11957 cgp->cg_cs.cs_nbfree--; 11958 } 11959 /* Decrement the old frags. */ 11960 blk = blkmap(fs, blksfree, bbase); 11961 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11962 /* Allocate the fragment */ 11963 for (i = 0; i < frags; i++) 11964 clrbit(blksfree, cgbno + i); 11965 cgp->cg_cs.cs_nffree -= frags; 11966 /* Add back in counts associated with the new frags */ 11967 blk = blkmap(fs, blksfree, bbase); 11968 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11969 } 11970 return (frags); 11971 } 11972 11973 /* 11974 * Complete a write to a bmsafemap structure. Roll forward any bitmap 11975 * changes if it's not a background write. Set all written dependencies 11976 * to DEPCOMPLETE and free the structure if possible. 11977 * 11978 * If the write did not succeed, we will do all the roll-forward 11979 * operations, but we will not take the actions that will allow its 11980 * dependencies to be processed. 11981 */ 11982 static int 11983 handle_written_bmsafemap(bmsafemap, bp, flags) 11984 struct bmsafemap *bmsafemap; 11985 struct buf *bp; 11986 int flags; 11987 { 11988 struct newblk *newblk; 11989 struct inodedep *inodedep; 11990 struct jaddref *jaddref, *jatmp; 11991 struct jnewblk *jnewblk, *jntmp; 11992 struct ufsmount *ump; 11993 uint8_t *inosused; 11994 uint8_t *blksfree; 11995 struct cg *cgp; 11996 struct fs *fs; 11997 ino_t ino; 11998 int foreground; 11999 int chgs; 12000 12001 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12002 panic("handle_written_bmsafemap: Not started\n"); 12003 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12004 chgs = 0; 12005 bmsafemap->sm_state &= ~IOSTARTED; 12006 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12007 /* 12008 * If write was successful, release journal work that was waiting 12009 * on the write. Otherwise move the work back. 12010 */ 12011 if (flags & WRITESUCCEEDED) 12012 handle_jwork(&bmsafemap->sm_freewr); 12013 else 12014 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12015 worklist, wk_list); 12016 12017 /* 12018 * Restore unwritten inode allocation pending jaddref writes. 12019 */ 12020 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12021 cgp = (struct cg *)bp->b_data; 12022 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12023 inosused = cg_inosused(cgp); 12024 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12025 ja_bmdeps, jatmp) { 12026 if ((jaddref->ja_state & UNDONE) == 0) 12027 continue; 12028 ino = jaddref->ja_ino % fs->fs_ipg; 12029 if (isset(inosused, ino)) 12030 panic("handle_written_bmsafemap: " 12031 "re-allocated inode"); 12032 /* Do the roll-forward only if it's a real copy. */ 12033 if (foreground) { 12034 if ((jaddref->ja_mode & IFMT) == IFDIR) 12035 cgp->cg_cs.cs_ndir++; 12036 cgp->cg_cs.cs_nifree--; 12037 setbit(inosused, ino); 12038 chgs = 1; 12039 } 12040 jaddref->ja_state &= ~UNDONE; 12041 jaddref->ja_state |= ATTACHED; 12042 free_jaddref(jaddref); 12043 } 12044 } 12045 /* 12046 * Restore any block allocations which are pending journal writes. 12047 */ 12048 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12049 cgp = (struct cg *)bp->b_data; 12050 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12051 blksfree = cg_blksfree(cgp); 12052 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12053 jntmp) { 12054 if ((jnewblk->jn_state & UNDONE) == 0) 12055 continue; 12056 /* Do the roll-forward only if it's a real copy. */ 12057 if (foreground && 12058 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12059 chgs = 1; 12060 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12061 jnewblk->jn_state |= ATTACHED; 12062 free_jnewblk(jnewblk); 12063 } 12064 } 12065 /* 12066 * If the write did not succeed, we have done all the roll-forward 12067 * operations, but we cannot take the actions that will allow its 12068 * dependencies to be processed. 12069 */ 12070 if ((flags & WRITESUCCEEDED) == 0) { 12071 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12072 newblk, nb_deps); 12073 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12074 worklist, wk_list); 12075 if (foreground) 12076 bdirty(bp); 12077 return (1); 12078 } 12079 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12080 newblk->nb_state |= DEPCOMPLETE; 12081 newblk->nb_state &= ~ONDEPLIST; 12082 newblk->nb_bmsafemap = NULL; 12083 LIST_REMOVE(newblk, nb_deps); 12084 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12085 handle_allocdirect_partdone( 12086 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12087 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12088 handle_allocindir_partdone( 12089 WK_ALLOCINDIR(&newblk->nb_list)); 12090 else if (newblk->nb_list.wk_type != D_NEWBLK) 12091 panic("handle_written_bmsafemap: Unexpected type: %s", 12092 TYPENAME(newblk->nb_list.wk_type)); 12093 } 12094 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12095 inodedep->id_state |= DEPCOMPLETE; 12096 inodedep->id_state &= ~ONDEPLIST; 12097 LIST_REMOVE(inodedep, id_deps); 12098 inodedep->id_bmsafemap = NULL; 12099 } 12100 LIST_REMOVE(bmsafemap, sm_next); 12101 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12102 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12103 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12104 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12105 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12106 LIST_REMOVE(bmsafemap, sm_hash); 12107 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12108 return (0); 12109 } 12110 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12111 if (foreground) 12112 bdirty(bp); 12113 return (1); 12114 } 12115 12116 /* 12117 * Try to free a mkdir dependency. 12118 */ 12119 static void 12120 complete_mkdir(mkdir) 12121 struct mkdir *mkdir; 12122 { 12123 struct diradd *dap; 12124 12125 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12126 return; 12127 LIST_REMOVE(mkdir, md_mkdirs); 12128 dap = mkdir->md_diradd; 12129 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12130 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12131 dap->da_state |= DEPCOMPLETE; 12132 complete_diradd(dap); 12133 } 12134 WORKITEM_FREE(mkdir, D_MKDIR); 12135 } 12136 12137 /* 12138 * Handle the completion of a mkdir dependency. 12139 */ 12140 static void 12141 handle_written_mkdir(mkdir, type) 12142 struct mkdir *mkdir; 12143 int type; 12144 { 12145 12146 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12147 panic("handle_written_mkdir: bad type"); 12148 mkdir->md_state |= COMPLETE; 12149 complete_mkdir(mkdir); 12150 } 12151 12152 static int 12153 free_pagedep(pagedep) 12154 struct pagedep *pagedep; 12155 { 12156 int i; 12157 12158 if (pagedep->pd_state & NEWBLOCK) 12159 return (0); 12160 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12161 return (0); 12162 for (i = 0; i < DAHASHSZ; i++) 12163 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12164 return (0); 12165 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12166 return (0); 12167 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12168 return (0); 12169 if (pagedep->pd_state & ONWORKLIST) 12170 WORKLIST_REMOVE(&pagedep->pd_list); 12171 LIST_REMOVE(pagedep, pd_hash); 12172 WORKITEM_FREE(pagedep, D_PAGEDEP); 12173 12174 return (1); 12175 } 12176 12177 /* 12178 * Called from within softdep_disk_write_complete above. 12179 * A write operation was just completed. Removed inodes can 12180 * now be freed and associated block pointers may be committed. 12181 * Note that this routine is always called from interrupt level 12182 * with further interrupts from this device blocked. 12183 * 12184 * If the write did not succeed, we will do all the roll-forward 12185 * operations, but we will not take the actions that will allow its 12186 * dependencies to be processed. 12187 */ 12188 static int 12189 handle_written_filepage(pagedep, bp, flags) 12190 struct pagedep *pagedep; 12191 struct buf *bp; /* buffer containing the written page */ 12192 int flags; 12193 { 12194 struct dirrem *dirrem; 12195 struct diradd *dap, *nextdap; 12196 struct direct *ep; 12197 int i, chgs; 12198 12199 if ((pagedep->pd_state & IOSTARTED) == 0) 12200 panic("handle_written_filepage: not started"); 12201 pagedep->pd_state &= ~IOSTARTED; 12202 if ((flags & WRITESUCCEEDED) == 0) 12203 goto rollforward; 12204 /* 12205 * Process any directory removals that have been committed. 12206 */ 12207 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12208 LIST_REMOVE(dirrem, dm_next); 12209 dirrem->dm_state |= COMPLETE; 12210 dirrem->dm_dirinum = pagedep->pd_ino; 12211 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12212 ("handle_written_filepage: Journal entries not written.")); 12213 add_to_worklist(&dirrem->dm_list, 0); 12214 } 12215 /* 12216 * Free any directory additions that have been committed. 12217 * If it is a newly allocated block, we have to wait until 12218 * the on-disk directory inode claims the new block. 12219 */ 12220 if ((pagedep->pd_state & NEWBLOCK) == 0) 12221 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12222 free_diradd(dap, NULL); 12223 rollforward: 12224 /* 12225 * Uncommitted directory entries must be restored. 12226 */ 12227 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12228 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12229 dap = nextdap) { 12230 nextdap = LIST_NEXT(dap, da_pdlist); 12231 if (dap->da_state & ATTACHED) 12232 panic("handle_written_filepage: attached"); 12233 ep = (struct direct *) 12234 ((char *)bp->b_data + dap->da_offset); 12235 ep->d_ino = dap->da_newinum; 12236 dap->da_state &= ~UNDONE; 12237 dap->da_state |= ATTACHED; 12238 chgs = 1; 12239 /* 12240 * If the inode referenced by the directory has 12241 * been written out, then the dependency can be 12242 * moved to the pending list. 12243 */ 12244 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12245 LIST_REMOVE(dap, da_pdlist); 12246 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12247 da_pdlist); 12248 } 12249 } 12250 } 12251 /* 12252 * If there were any rollbacks in the directory, then it must be 12253 * marked dirty so that its will eventually get written back in 12254 * its correct form. 12255 */ 12256 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12257 if ((bp->b_flags & B_DELWRI) == 0) 12258 stat_dir_entry++; 12259 bdirty(bp); 12260 return (1); 12261 } 12262 /* 12263 * If we are not waiting for a new directory block to be 12264 * claimed by its inode, then the pagedep will be freed. 12265 * Otherwise it will remain to track any new entries on 12266 * the page in case they are fsync'ed. 12267 */ 12268 free_pagedep(pagedep); 12269 return (0); 12270 } 12271 12272 /* 12273 * Writing back in-core inode structures. 12274 * 12275 * The filesystem only accesses an inode's contents when it occupies an 12276 * "in-core" inode structure. These "in-core" structures are separate from 12277 * the page frames used to cache inode blocks. Only the latter are 12278 * transferred to/from the disk. So, when the updated contents of the 12279 * "in-core" inode structure are copied to the corresponding in-memory inode 12280 * block, the dependencies are also transferred. The following procedure is 12281 * called when copying a dirty "in-core" inode to a cached inode block. 12282 */ 12283 12284 /* 12285 * Called when an inode is loaded from disk. If the effective link count 12286 * differed from the actual link count when it was last flushed, then we 12287 * need to ensure that the correct effective link count is put back. 12288 */ 12289 void 12290 softdep_load_inodeblock(ip) 12291 struct inode *ip; /* the "in_core" copy of the inode */ 12292 { 12293 struct inodedep *inodedep; 12294 struct ufsmount *ump; 12295 12296 ump = ITOUMP(ip); 12297 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12298 ("softdep_load_inodeblock called on non-softdep filesystem")); 12299 /* 12300 * Check for alternate nlink count. 12301 */ 12302 ip->i_effnlink = ip->i_nlink; 12303 ACQUIRE_LOCK(ump); 12304 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12305 FREE_LOCK(ump); 12306 return; 12307 } 12308 ip->i_effnlink -= inodedep->id_nlinkdelta; 12309 KASSERT(ip->i_effnlink >= 0, 12310 ("softdep_load_inodeblock: negative i_effnlink")); 12311 FREE_LOCK(ump); 12312 } 12313 12314 /* 12315 * This routine is called just before the "in-core" inode 12316 * information is to be copied to the in-memory inode block. 12317 * Recall that an inode block contains several inodes. If 12318 * the force flag is set, then the dependencies will be 12319 * cleared so that the update can always be made. Note that 12320 * the buffer is locked when this routine is called, so we 12321 * will never be in the middle of writing the inode block 12322 * to disk. 12323 */ 12324 void 12325 softdep_update_inodeblock(ip, bp, waitfor) 12326 struct inode *ip; /* the "in_core" copy of the inode */ 12327 struct buf *bp; /* the buffer containing the inode block */ 12328 int waitfor; /* nonzero => update must be allowed */ 12329 { 12330 struct inodedep *inodedep; 12331 struct inoref *inoref; 12332 struct ufsmount *ump; 12333 struct worklist *wk; 12334 struct mount *mp; 12335 struct buf *ibp; 12336 struct fs *fs; 12337 int error; 12338 12339 ump = ITOUMP(ip); 12340 mp = UFSTOVFS(ump); 12341 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12342 ("softdep_update_inodeblock called on non-softdep filesystem")); 12343 fs = ump->um_fs; 12344 /* 12345 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12346 * does not have access to the in-core ip so must write directly into 12347 * the inode block buffer when setting freelink. 12348 */ 12349 if (fs->fs_magic == FS_UFS1_MAGIC) 12350 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12351 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12352 else 12353 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12354 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12355 /* 12356 * If the effective link count is not equal to the actual link 12357 * count, then we must track the difference in an inodedep while 12358 * the inode is (potentially) tossed out of the cache. Otherwise, 12359 * if there is no existing inodedep, then there are no dependencies 12360 * to track. 12361 */ 12362 ACQUIRE_LOCK(ump); 12363 again: 12364 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12365 FREE_LOCK(ump); 12366 if (ip->i_effnlink != ip->i_nlink) 12367 panic("softdep_update_inodeblock: bad link count"); 12368 return; 12369 } 12370 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12371 panic("softdep_update_inodeblock: bad delta"); 12372 /* 12373 * If we're flushing all dependencies we must also move any waiting 12374 * for journal writes onto the bufwait list prior to I/O. 12375 */ 12376 if (waitfor) { 12377 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12378 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12379 == DEPCOMPLETE) { 12380 jwait(&inoref->if_list, MNT_WAIT); 12381 goto again; 12382 } 12383 } 12384 } 12385 /* 12386 * Changes have been initiated. Anything depending on these 12387 * changes cannot occur until this inode has been written. 12388 */ 12389 inodedep->id_state &= ~COMPLETE; 12390 if ((inodedep->id_state & ONWORKLIST) == 0) 12391 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12392 /* 12393 * Any new dependencies associated with the incore inode must 12394 * now be moved to the list associated with the buffer holding 12395 * the in-memory copy of the inode. Once merged process any 12396 * allocdirects that are completed by the merger. 12397 */ 12398 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12399 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12400 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12401 NULL); 12402 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12403 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12404 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12405 NULL); 12406 /* 12407 * Now that the inode has been pushed into the buffer, the 12408 * operations dependent on the inode being written to disk 12409 * can be moved to the id_bufwait so that they will be 12410 * processed when the buffer I/O completes. 12411 */ 12412 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12413 WORKLIST_REMOVE(wk); 12414 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12415 } 12416 /* 12417 * Newly allocated inodes cannot be written until the bitmap 12418 * that allocates them have been written (indicated by 12419 * DEPCOMPLETE being set in id_state). If we are doing a 12420 * forced sync (e.g., an fsync on a file), we force the bitmap 12421 * to be written so that the update can be done. 12422 */ 12423 if (waitfor == 0) { 12424 FREE_LOCK(ump); 12425 return; 12426 } 12427 retry: 12428 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12429 FREE_LOCK(ump); 12430 return; 12431 } 12432 ibp = inodedep->id_bmsafemap->sm_buf; 12433 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12434 if (ibp == NULL) { 12435 /* 12436 * If ibp came back as NULL, the dependency could have been 12437 * freed while we slept. Look it up again, and check to see 12438 * that it has completed. 12439 */ 12440 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12441 goto retry; 12442 FREE_LOCK(ump); 12443 return; 12444 } 12445 FREE_LOCK(ump); 12446 if ((error = bwrite(ibp)) != 0) 12447 softdep_error("softdep_update_inodeblock: bwrite", error); 12448 } 12449 12450 /* 12451 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12452 * old inode dependency list (such as id_inoupdt). 12453 */ 12454 static void 12455 merge_inode_lists(newlisthead, oldlisthead) 12456 struct allocdirectlst *newlisthead; 12457 struct allocdirectlst *oldlisthead; 12458 { 12459 struct allocdirect *listadp, *newadp; 12460 12461 newadp = TAILQ_FIRST(newlisthead); 12462 if (newadp != NULL) 12463 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12464 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12465 if (listadp->ad_offset < newadp->ad_offset) { 12466 listadp = TAILQ_NEXT(listadp, ad_next); 12467 continue; 12468 } 12469 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12470 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12471 if (listadp->ad_offset == newadp->ad_offset) { 12472 allocdirect_merge(oldlisthead, newadp, 12473 listadp); 12474 listadp = newadp; 12475 } 12476 newadp = TAILQ_FIRST(newlisthead); 12477 } 12478 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12479 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12480 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12481 } 12482 } 12483 12484 /* 12485 * If we are doing an fsync, then we must ensure that any directory 12486 * entries for the inode have been written after the inode gets to disk. 12487 */ 12488 int 12489 softdep_fsync(vp) 12490 struct vnode *vp; /* the "in_core" copy of the inode */ 12491 { 12492 struct inodedep *inodedep; 12493 struct pagedep *pagedep; 12494 struct inoref *inoref; 12495 struct ufsmount *ump; 12496 struct worklist *wk; 12497 struct diradd *dap; 12498 struct mount *mp; 12499 struct vnode *pvp; 12500 struct inode *ip; 12501 struct buf *bp; 12502 struct fs *fs; 12503 struct thread *td = curthread; 12504 int error, flushparent, pagedep_new_block; 12505 ino_t parentino; 12506 ufs_lbn_t lbn; 12507 12508 ip = VTOI(vp); 12509 mp = vp->v_mount; 12510 ump = VFSTOUFS(mp); 12511 fs = ump->um_fs; 12512 if (MOUNTEDSOFTDEP(mp) == 0) 12513 return (0); 12514 ACQUIRE_LOCK(ump); 12515 restart: 12516 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12517 FREE_LOCK(ump); 12518 return (0); 12519 } 12520 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12521 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12522 == DEPCOMPLETE) { 12523 jwait(&inoref->if_list, MNT_WAIT); 12524 goto restart; 12525 } 12526 } 12527 if (!LIST_EMPTY(&inodedep->id_inowait) || 12528 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12529 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12530 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12531 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12532 panic("softdep_fsync: pending ops %p", inodedep); 12533 for (error = 0, flushparent = 0; ; ) { 12534 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12535 break; 12536 if (wk->wk_type != D_DIRADD) 12537 panic("softdep_fsync: Unexpected type %s", 12538 TYPENAME(wk->wk_type)); 12539 dap = WK_DIRADD(wk); 12540 /* 12541 * Flush our parent if this directory entry has a MKDIR_PARENT 12542 * dependency or is contained in a newly allocated block. 12543 */ 12544 if (dap->da_state & DIRCHG) 12545 pagedep = dap->da_previous->dm_pagedep; 12546 else 12547 pagedep = dap->da_pagedep; 12548 parentino = pagedep->pd_ino; 12549 lbn = pagedep->pd_lbn; 12550 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12551 panic("softdep_fsync: dirty"); 12552 if ((dap->da_state & MKDIR_PARENT) || 12553 (pagedep->pd_state & NEWBLOCK)) 12554 flushparent = 1; 12555 else 12556 flushparent = 0; 12557 /* 12558 * If we are being fsync'ed as part of vgone'ing this vnode, 12559 * then we will not be able to release and recover the 12560 * vnode below, so we just have to give up on writing its 12561 * directory entry out. It will eventually be written, just 12562 * not now, but then the user was not asking to have it 12563 * written, so we are not breaking any promises. 12564 */ 12565 if (VN_IS_DOOMED(vp)) 12566 break; 12567 /* 12568 * We prevent deadlock by always fetching inodes from the 12569 * root, moving down the directory tree. Thus, when fetching 12570 * our parent directory, we first try to get the lock. If 12571 * that fails, we must unlock ourselves before requesting 12572 * the lock on our parent. See the comment in ufs_lookup 12573 * for details on possible races. 12574 */ 12575 FREE_LOCK(ump); 12576 if (ffs_vgetf(mp, parentino, LK_NOWAIT | LK_EXCLUSIVE, &pvp, 12577 FFSV_FORCEINSMQ)) { 12578 /* 12579 * Unmount cannot proceed after unlock because 12580 * caller must have called vn_start_write(). 12581 */ 12582 VOP_UNLOCK(vp); 12583 error = ffs_vgetf(mp, parentino, LK_EXCLUSIVE, 12584 &pvp, FFSV_FORCEINSMQ); 12585 MPASS(VTOI(pvp)->i_mode != 0); 12586 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 12587 if (VN_IS_DOOMED(vp)) { 12588 if (error == 0) 12589 vput(pvp); 12590 error = ENOENT; 12591 } 12592 if (error != 0) 12593 return (error); 12594 } 12595 /* 12596 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12597 * that are contained in direct blocks will be resolved by 12598 * doing a ffs_update. Pagedeps contained in indirect blocks 12599 * may require a complete sync'ing of the directory. So, we 12600 * try the cheap and fast ffs_update first, and if that fails, 12601 * then we do the slower ffs_syncvnode of the directory. 12602 */ 12603 if (flushparent) { 12604 int locked; 12605 12606 if ((error = ffs_update(pvp, 1)) != 0) { 12607 vput(pvp); 12608 return (error); 12609 } 12610 ACQUIRE_LOCK(ump); 12611 locked = 1; 12612 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12613 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12614 if (wk->wk_type != D_DIRADD) 12615 panic("softdep_fsync: Unexpected type %s", 12616 TYPENAME(wk->wk_type)); 12617 dap = WK_DIRADD(wk); 12618 if (dap->da_state & DIRCHG) 12619 pagedep = dap->da_previous->dm_pagedep; 12620 else 12621 pagedep = dap->da_pagedep; 12622 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12623 FREE_LOCK(ump); 12624 locked = 0; 12625 if (pagedep_new_block && (error = 12626 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12627 vput(pvp); 12628 return (error); 12629 } 12630 } 12631 } 12632 if (locked) 12633 FREE_LOCK(ump); 12634 } 12635 /* 12636 * Flush directory page containing the inode's name. 12637 */ 12638 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 12639 &bp); 12640 if (error == 0) 12641 error = bwrite(bp); 12642 else 12643 brelse(bp); 12644 vput(pvp); 12645 if (error != 0) 12646 return (error); 12647 ACQUIRE_LOCK(ump); 12648 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 12649 break; 12650 } 12651 FREE_LOCK(ump); 12652 return (0); 12653 } 12654 12655 /* 12656 * Flush all the dirty bitmaps associated with the block device 12657 * before flushing the rest of the dirty blocks so as to reduce 12658 * the number of dependencies that will have to be rolled back. 12659 * 12660 * XXX Unused? 12661 */ 12662 void 12663 softdep_fsync_mountdev(vp) 12664 struct vnode *vp; 12665 { 12666 struct buf *bp, *nbp; 12667 struct worklist *wk; 12668 struct bufobj *bo; 12669 12670 if (!vn_isdisk(vp, NULL)) 12671 panic("softdep_fsync_mountdev: vnode not a disk"); 12672 bo = &vp->v_bufobj; 12673 restart: 12674 BO_LOCK(bo); 12675 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 12676 /* 12677 * If it is already scheduled, skip to the next buffer. 12678 */ 12679 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 12680 continue; 12681 12682 if ((bp->b_flags & B_DELWRI) == 0) 12683 panic("softdep_fsync_mountdev: not dirty"); 12684 /* 12685 * We are only interested in bitmaps with outstanding 12686 * dependencies. 12687 */ 12688 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 12689 wk->wk_type != D_BMSAFEMAP || 12690 (bp->b_vflags & BV_BKGRDINPROG)) { 12691 BUF_UNLOCK(bp); 12692 continue; 12693 } 12694 BO_UNLOCK(bo); 12695 bremfree(bp); 12696 (void) bawrite(bp); 12697 goto restart; 12698 } 12699 drain_output(vp); 12700 BO_UNLOCK(bo); 12701 } 12702 12703 /* 12704 * Sync all cylinder groups that were dirty at the time this function is 12705 * called. Newly dirtied cgs will be inserted before the sentinel. This 12706 * is used to flush freedep activity that may be holding up writes to a 12707 * indirect block. 12708 */ 12709 static int 12710 sync_cgs(mp, waitfor) 12711 struct mount *mp; 12712 int waitfor; 12713 { 12714 struct bmsafemap *bmsafemap; 12715 struct bmsafemap *sentinel; 12716 struct ufsmount *ump; 12717 struct buf *bp; 12718 int error; 12719 12720 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 12721 sentinel->sm_cg = -1; 12722 ump = VFSTOUFS(mp); 12723 error = 0; 12724 ACQUIRE_LOCK(ump); 12725 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 12726 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 12727 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 12728 /* Skip sentinels and cgs with no work to release. */ 12729 if (bmsafemap->sm_cg == -1 || 12730 (LIST_EMPTY(&bmsafemap->sm_freehd) && 12731 LIST_EMPTY(&bmsafemap->sm_freewr))) { 12732 LIST_REMOVE(sentinel, sm_next); 12733 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12734 continue; 12735 } 12736 /* 12737 * If we don't get the lock and we're waiting try again, if 12738 * not move on to the next buf and try to sync it. 12739 */ 12740 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 12741 if (bp == NULL && waitfor == MNT_WAIT) 12742 continue; 12743 LIST_REMOVE(sentinel, sm_next); 12744 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 12745 if (bp == NULL) 12746 continue; 12747 FREE_LOCK(ump); 12748 if (waitfor == MNT_NOWAIT) 12749 bawrite(bp); 12750 else 12751 error = bwrite(bp); 12752 ACQUIRE_LOCK(ump); 12753 if (error) 12754 break; 12755 } 12756 LIST_REMOVE(sentinel, sm_next); 12757 FREE_LOCK(ump); 12758 free(sentinel, M_BMSAFEMAP); 12759 return (error); 12760 } 12761 12762 /* 12763 * This routine is called when we are trying to synchronously flush a 12764 * file. This routine must eliminate any filesystem metadata dependencies 12765 * so that the syncing routine can succeed. 12766 */ 12767 int 12768 softdep_sync_metadata(struct vnode *vp) 12769 { 12770 struct inode *ip; 12771 int error; 12772 12773 ip = VTOI(vp); 12774 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12775 ("softdep_sync_metadata called on non-softdep filesystem")); 12776 /* 12777 * Ensure that any direct block dependencies have been cleared, 12778 * truncations are started, and inode references are journaled. 12779 */ 12780 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 12781 /* 12782 * Write all journal records to prevent rollbacks on devvp. 12783 */ 12784 if (vp->v_type == VCHR) 12785 softdep_flushjournal(vp->v_mount); 12786 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 12787 /* 12788 * Ensure that all truncates are written so we won't find deps on 12789 * indirect blocks. 12790 */ 12791 process_truncates(vp); 12792 FREE_LOCK(VFSTOUFS(vp->v_mount)); 12793 12794 return (error); 12795 } 12796 12797 /* 12798 * This routine is called when we are attempting to sync a buf with 12799 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 12800 * other IO it can but returns EBUSY if the buffer is not yet able to 12801 * be written. Dependencies which will not cause rollbacks will always 12802 * return 0. 12803 */ 12804 int 12805 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 12806 { 12807 struct indirdep *indirdep; 12808 struct pagedep *pagedep; 12809 struct allocindir *aip; 12810 struct newblk *newblk; 12811 struct ufsmount *ump; 12812 struct buf *nbp; 12813 struct worklist *wk; 12814 int i, error; 12815 12816 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 12817 ("softdep_sync_buf called on non-softdep filesystem")); 12818 /* 12819 * For VCHR we just don't want to force flush any dependencies that 12820 * will cause rollbacks. 12821 */ 12822 if (vp->v_type == VCHR) { 12823 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 12824 return (EBUSY); 12825 return (0); 12826 } 12827 ump = VFSTOUFS(vp->v_mount); 12828 ACQUIRE_LOCK(ump); 12829 /* 12830 * As we hold the buffer locked, none of its dependencies 12831 * will disappear. 12832 */ 12833 error = 0; 12834 top: 12835 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 12836 switch (wk->wk_type) { 12837 12838 case D_ALLOCDIRECT: 12839 case D_ALLOCINDIR: 12840 newblk = WK_NEWBLK(wk); 12841 if (newblk->nb_jnewblk != NULL) { 12842 if (waitfor == MNT_NOWAIT) { 12843 error = EBUSY; 12844 goto out_unlock; 12845 } 12846 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 12847 goto top; 12848 } 12849 if (newblk->nb_state & DEPCOMPLETE || 12850 waitfor == MNT_NOWAIT) 12851 continue; 12852 nbp = newblk->nb_bmsafemap->sm_buf; 12853 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12854 if (nbp == NULL) 12855 goto top; 12856 FREE_LOCK(ump); 12857 if ((error = bwrite(nbp)) != 0) 12858 goto out; 12859 ACQUIRE_LOCK(ump); 12860 continue; 12861 12862 case D_INDIRDEP: 12863 indirdep = WK_INDIRDEP(wk); 12864 if (waitfor == MNT_NOWAIT) { 12865 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 12866 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 12867 error = EBUSY; 12868 goto out_unlock; 12869 } 12870 } 12871 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 12872 panic("softdep_sync_buf: truncation pending."); 12873 restart: 12874 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 12875 newblk = (struct newblk *)aip; 12876 if (newblk->nb_jnewblk != NULL) { 12877 jwait(&newblk->nb_jnewblk->jn_list, 12878 waitfor); 12879 goto restart; 12880 } 12881 if (newblk->nb_state & DEPCOMPLETE) 12882 continue; 12883 nbp = newblk->nb_bmsafemap->sm_buf; 12884 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 12885 if (nbp == NULL) 12886 goto restart; 12887 FREE_LOCK(ump); 12888 if ((error = bwrite(nbp)) != 0) 12889 goto out; 12890 ACQUIRE_LOCK(ump); 12891 goto restart; 12892 } 12893 continue; 12894 12895 case D_PAGEDEP: 12896 /* 12897 * Only flush directory entries in synchronous passes. 12898 */ 12899 if (waitfor != MNT_WAIT) { 12900 error = EBUSY; 12901 goto out_unlock; 12902 } 12903 /* 12904 * While syncing snapshots, we must allow recursive 12905 * lookups. 12906 */ 12907 BUF_AREC(bp); 12908 /* 12909 * We are trying to sync a directory that may 12910 * have dependencies on both its own metadata 12911 * and/or dependencies on the inodes of any 12912 * recently allocated files. We walk its diradd 12913 * lists pushing out the associated inode. 12914 */ 12915 pagedep = WK_PAGEDEP(wk); 12916 for (i = 0; i < DAHASHSZ; i++) { 12917 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 12918 continue; 12919 if ((error = flush_pagedep_deps(vp, wk->wk_mp, 12920 &pagedep->pd_diraddhd[i]))) { 12921 BUF_NOREC(bp); 12922 goto out_unlock; 12923 } 12924 } 12925 BUF_NOREC(bp); 12926 continue; 12927 12928 case D_FREEWORK: 12929 case D_FREEDEP: 12930 case D_JSEGDEP: 12931 case D_JNEWBLK: 12932 continue; 12933 12934 default: 12935 panic("softdep_sync_buf: Unknown type %s", 12936 TYPENAME(wk->wk_type)); 12937 /* NOTREACHED */ 12938 } 12939 } 12940 out_unlock: 12941 FREE_LOCK(ump); 12942 out: 12943 return (error); 12944 } 12945 12946 /* 12947 * Flush the dependencies associated with an inodedep. 12948 */ 12949 static int 12950 flush_inodedep_deps(vp, mp, ino) 12951 struct vnode *vp; 12952 struct mount *mp; 12953 ino_t ino; 12954 { 12955 struct inodedep *inodedep; 12956 struct inoref *inoref; 12957 struct ufsmount *ump; 12958 int error, waitfor; 12959 12960 /* 12961 * This work is done in two passes. The first pass grabs most 12962 * of the buffers and begins asynchronously writing them. The 12963 * only way to wait for these asynchronous writes is to sleep 12964 * on the filesystem vnode which may stay busy for a long time 12965 * if the filesystem is active. So, instead, we make a second 12966 * pass over the dependencies blocking on each write. In the 12967 * usual case we will be blocking against a write that we 12968 * initiated, so when it is done the dependency will have been 12969 * resolved. Thus the second pass is expected to end quickly. 12970 * We give a brief window at the top of the loop to allow 12971 * any pending I/O to complete. 12972 */ 12973 ump = VFSTOUFS(mp); 12974 LOCK_OWNED(ump); 12975 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 12976 if (error) 12977 return (error); 12978 FREE_LOCK(ump); 12979 ACQUIRE_LOCK(ump); 12980 restart: 12981 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 12982 return (0); 12983 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12984 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12985 == DEPCOMPLETE) { 12986 jwait(&inoref->if_list, MNT_WAIT); 12987 goto restart; 12988 } 12989 } 12990 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 12991 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 12992 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 12993 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 12994 continue; 12995 /* 12996 * If pass2, we are done, otherwise do pass 2. 12997 */ 12998 if (waitfor == MNT_WAIT) 12999 break; 13000 waitfor = MNT_WAIT; 13001 } 13002 /* 13003 * Try freeing inodedep in case all dependencies have been removed. 13004 */ 13005 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13006 (void) free_inodedep(inodedep); 13007 return (0); 13008 } 13009 13010 /* 13011 * Flush an inode dependency list. 13012 */ 13013 static int 13014 flush_deplist(listhead, waitfor, errorp) 13015 struct allocdirectlst *listhead; 13016 int waitfor; 13017 int *errorp; 13018 { 13019 struct allocdirect *adp; 13020 struct newblk *newblk; 13021 struct ufsmount *ump; 13022 struct buf *bp; 13023 13024 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13025 return (0); 13026 ump = VFSTOUFS(adp->ad_list.wk_mp); 13027 LOCK_OWNED(ump); 13028 TAILQ_FOREACH(adp, listhead, ad_next) { 13029 newblk = (struct newblk *)adp; 13030 if (newblk->nb_jnewblk != NULL) { 13031 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13032 return (1); 13033 } 13034 if (newblk->nb_state & DEPCOMPLETE) 13035 continue; 13036 bp = newblk->nb_bmsafemap->sm_buf; 13037 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13038 if (bp == NULL) { 13039 if (waitfor == MNT_NOWAIT) 13040 continue; 13041 return (1); 13042 } 13043 FREE_LOCK(ump); 13044 if (waitfor == MNT_NOWAIT) 13045 bawrite(bp); 13046 else 13047 *errorp = bwrite(bp); 13048 ACQUIRE_LOCK(ump); 13049 return (1); 13050 } 13051 return (0); 13052 } 13053 13054 /* 13055 * Flush dependencies associated with an allocdirect block. 13056 */ 13057 static int 13058 flush_newblk_dep(vp, mp, lbn) 13059 struct vnode *vp; 13060 struct mount *mp; 13061 ufs_lbn_t lbn; 13062 { 13063 struct newblk *newblk; 13064 struct ufsmount *ump; 13065 struct bufobj *bo; 13066 struct inode *ip; 13067 struct buf *bp; 13068 ufs2_daddr_t blkno; 13069 int error; 13070 13071 error = 0; 13072 bo = &vp->v_bufobj; 13073 ip = VTOI(vp); 13074 blkno = DIP(ip, i_db[lbn]); 13075 if (blkno == 0) 13076 panic("flush_newblk_dep: Missing block"); 13077 ump = VFSTOUFS(mp); 13078 ACQUIRE_LOCK(ump); 13079 /* 13080 * Loop until all dependencies related to this block are satisfied. 13081 * We must be careful to restart after each sleep in case a write 13082 * completes some part of this process for us. 13083 */ 13084 for (;;) { 13085 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13086 FREE_LOCK(ump); 13087 break; 13088 } 13089 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13090 panic("flush_newblk_dep: Bad newblk %p", newblk); 13091 /* 13092 * Flush the journal. 13093 */ 13094 if (newblk->nb_jnewblk != NULL) { 13095 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13096 continue; 13097 } 13098 /* 13099 * Write the bitmap dependency. 13100 */ 13101 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13102 bp = newblk->nb_bmsafemap->sm_buf; 13103 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13104 if (bp == NULL) 13105 continue; 13106 FREE_LOCK(ump); 13107 error = bwrite(bp); 13108 if (error) 13109 break; 13110 ACQUIRE_LOCK(ump); 13111 continue; 13112 } 13113 /* 13114 * Write the buffer. 13115 */ 13116 FREE_LOCK(ump); 13117 BO_LOCK(bo); 13118 bp = gbincore(bo, lbn); 13119 if (bp != NULL) { 13120 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13121 LK_INTERLOCK, BO_LOCKPTR(bo)); 13122 if (error == ENOLCK) { 13123 ACQUIRE_LOCK(ump); 13124 error = 0; 13125 continue; /* Slept, retry */ 13126 } 13127 if (error != 0) 13128 break; /* Failed */ 13129 if (bp->b_flags & B_DELWRI) { 13130 bremfree(bp); 13131 error = bwrite(bp); 13132 if (error) 13133 break; 13134 } else 13135 BUF_UNLOCK(bp); 13136 } else 13137 BO_UNLOCK(bo); 13138 /* 13139 * We have to wait for the direct pointers to 13140 * point at the newdirblk before the dependency 13141 * will go away. 13142 */ 13143 error = ffs_update(vp, 1); 13144 if (error) 13145 break; 13146 ACQUIRE_LOCK(ump); 13147 } 13148 return (error); 13149 } 13150 13151 /* 13152 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13153 */ 13154 static int 13155 flush_pagedep_deps(pvp, mp, diraddhdp) 13156 struct vnode *pvp; 13157 struct mount *mp; 13158 struct diraddhd *diraddhdp; 13159 { 13160 struct inodedep *inodedep; 13161 struct inoref *inoref; 13162 struct ufsmount *ump; 13163 struct diradd *dap; 13164 struct vnode *vp; 13165 int error = 0; 13166 struct buf *bp; 13167 ino_t inum; 13168 struct diraddhd unfinished; 13169 13170 LIST_INIT(&unfinished); 13171 ump = VFSTOUFS(mp); 13172 LOCK_OWNED(ump); 13173 restart: 13174 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13175 /* 13176 * Flush ourselves if this directory entry 13177 * has a MKDIR_PARENT dependency. 13178 */ 13179 if (dap->da_state & MKDIR_PARENT) { 13180 FREE_LOCK(ump); 13181 if ((error = ffs_update(pvp, 1)) != 0) 13182 break; 13183 ACQUIRE_LOCK(ump); 13184 /* 13185 * If that cleared dependencies, go on to next. 13186 */ 13187 if (dap != LIST_FIRST(diraddhdp)) 13188 continue; 13189 /* 13190 * All MKDIR_PARENT dependencies and all the 13191 * NEWBLOCK pagedeps that are contained in direct 13192 * blocks were resolved by doing above ffs_update. 13193 * Pagedeps contained in indirect blocks may 13194 * require a complete sync'ing of the directory. 13195 * We are in the midst of doing a complete sync, 13196 * so if they are not resolved in this pass we 13197 * defer them for now as they will be sync'ed by 13198 * our caller shortly. 13199 */ 13200 LIST_REMOVE(dap, da_pdlist); 13201 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13202 continue; 13203 } 13204 /* 13205 * A newly allocated directory must have its "." and 13206 * ".." entries written out before its name can be 13207 * committed in its parent. 13208 */ 13209 inum = dap->da_newinum; 13210 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13211 panic("flush_pagedep_deps: lost inode1"); 13212 /* 13213 * Wait for any pending journal adds to complete so we don't 13214 * cause rollbacks while syncing. 13215 */ 13216 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13217 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13218 == DEPCOMPLETE) { 13219 jwait(&inoref->if_list, MNT_WAIT); 13220 goto restart; 13221 } 13222 } 13223 if (dap->da_state & MKDIR_BODY) { 13224 FREE_LOCK(ump); 13225 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13226 FFSV_FORCEINSMQ))) 13227 break; 13228 MPASS(VTOI(vp)->i_mode != 0); 13229 error = flush_newblk_dep(vp, mp, 0); 13230 /* 13231 * If we still have the dependency we might need to 13232 * update the vnode to sync the new link count to 13233 * disk. 13234 */ 13235 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13236 error = ffs_update(vp, 1); 13237 vput(vp); 13238 if (error != 0) 13239 break; 13240 ACQUIRE_LOCK(ump); 13241 /* 13242 * If that cleared dependencies, go on to next. 13243 */ 13244 if (dap != LIST_FIRST(diraddhdp)) 13245 continue; 13246 if (dap->da_state & MKDIR_BODY) { 13247 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13248 &inodedep); 13249 panic("flush_pagedep_deps: MKDIR_BODY " 13250 "inodedep %p dap %p vp %p", 13251 inodedep, dap, vp); 13252 } 13253 } 13254 /* 13255 * Flush the inode on which the directory entry depends. 13256 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13257 * the only remaining dependency is that the updated inode 13258 * count must get pushed to disk. The inode has already 13259 * been pushed into its inode buffer (via VOP_UPDATE) at 13260 * the time of the reference count change. So we need only 13261 * locate that buffer, ensure that there will be no rollback 13262 * caused by a bitmap dependency, then write the inode buffer. 13263 */ 13264 retry: 13265 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13266 panic("flush_pagedep_deps: lost inode"); 13267 /* 13268 * If the inode still has bitmap dependencies, 13269 * push them to disk. 13270 */ 13271 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13272 bp = inodedep->id_bmsafemap->sm_buf; 13273 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13274 if (bp == NULL) 13275 goto retry; 13276 FREE_LOCK(ump); 13277 if ((error = bwrite(bp)) != 0) 13278 break; 13279 ACQUIRE_LOCK(ump); 13280 if (dap != LIST_FIRST(diraddhdp)) 13281 continue; 13282 } 13283 /* 13284 * If the inode is still sitting in a buffer waiting 13285 * to be written or waiting for the link count to be 13286 * adjusted update it here to flush it to disk. 13287 */ 13288 if (dap == LIST_FIRST(diraddhdp)) { 13289 FREE_LOCK(ump); 13290 if ((error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &vp, 13291 FFSV_FORCEINSMQ))) 13292 break; 13293 MPASS(VTOI(vp)->i_mode != 0); 13294 error = ffs_update(vp, 1); 13295 vput(vp); 13296 if (error) 13297 break; 13298 ACQUIRE_LOCK(ump); 13299 } 13300 /* 13301 * If we have failed to get rid of all the dependencies 13302 * then something is seriously wrong. 13303 */ 13304 if (dap == LIST_FIRST(diraddhdp)) { 13305 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13306 panic("flush_pagedep_deps: failed to flush " 13307 "inodedep %p ino %ju dap %p", 13308 inodedep, (uintmax_t)inum, dap); 13309 } 13310 } 13311 if (error) 13312 ACQUIRE_LOCK(ump); 13313 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13314 LIST_REMOVE(dap, da_pdlist); 13315 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13316 } 13317 return (error); 13318 } 13319 13320 /* 13321 * A large burst of file addition or deletion activity can drive the 13322 * memory load excessively high. First attempt to slow things down 13323 * using the techniques below. If that fails, this routine requests 13324 * the offending operations to fall back to running synchronously 13325 * until the memory load returns to a reasonable level. 13326 */ 13327 int 13328 softdep_slowdown(vp) 13329 struct vnode *vp; 13330 { 13331 struct ufsmount *ump; 13332 int jlow; 13333 int max_softdeps_hard; 13334 13335 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13336 ("softdep_slowdown called on non-softdep filesystem")); 13337 ump = VFSTOUFS(vp->v_mount); 13338 ACQUIRE_LOCK(ump); 13339 jlow = 0; 13340 /* 13341 * Check for journal space if needed. 13342 */ 13343 if (DOINGSUJ(vp)) { 13344 if (journal_space(ump, 0) == 0) 13345 jlow = 1; 13346 } 13347 /* 13348 * If the system is under its limits and our filesystem is 13349 * not responsible for more than our share of the usage and 13350 * we are not low on journal space, then no need to slow down. 13351 */ 13352 max_softdeps_hard = max_softdeps * 11 / 10; 13353 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13354 dep_current[D_INODEDEP] < max_softdeps_hard && 13355 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13356 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13357 ump->softdep_curdeps[D_DIRREM] < 13358 (max_softdeps_hard / 2) / stat_flush_threads && 13359 ump->softdep_curdeps[D_INODEDEP] < 13360 max_softdeps_hard / stat_flush_threads && 13361 ump->softdep_curdeps[D_INDIRDEP] < 13362 (max_softdeps_hard / 1000) / stat_flush_threads && 13363 ump->softdep_curdeps[D_FREEBLKS] < 13364 max_softdeps_hard / stat_flush_threads) { 13365 FREE_LOCK(ump); 13366 return (0); 13367 } 13368 /* 13369 * If the journal is low or our filesystem is over its limit 13370 * then speedup the cleanup. 13371 */ 13372 if (ump->softdep_curdeps[D_INDIRDEP] < 13373 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13374 softdep_speedup(ump); 13375 stat_sync_limit_hit += 1; 13376 FREE_LOCK(ump); 13377 /* 13378 * We only slow down the rate at which new dependencies are 13379 * generated if we are not using journaling. With journaling, 13380 * the cleanup should always be sufficient to keep things 13381 * under control. 13382 */ 13383 if (DOINGSUJ(vp)) 13384 return (0); 13385 return (1); 13386 } 13387 13388 /* 13389 * Called by the allocation routines when they are about to fail 13390 * in the hope that we can free up the requested resource (inodes 13391 * or disk space). 13392 * 13393 * First check to see if the work list has anything on it. If it has, 13394 * clean up entries until we successfully free the requested resource. 13395 * Because this process holds inodes locked, we cannot handle any remove 13396 * requests that might block on a locked inode as that could lead to 13397 * deadlock. If the worklist yields none of the requested resource, 13398 * start syncing out vnodes to free up the needed space. 13399 */ 13400 int 13401 softdep_request_cleanup(fs, vp, cred, resource) 13402 struct fs *fs; 13403 struct vnode *vp; 13404 struct ucred *cred; 13405 int resource; 13406 { 13407 struct ufsmount *ump; 13408 struct mount *mp; 13409 long starttime; 13410 ufs2_daddr_t needed; 13411 int error, failed_vnode; 13412 13413 /* 13414 * If we are being called because of a process doing a 13415 * copy-on-write, then it is not safe to process any 13416 * worklist items as we will recurse into the copyonwrite 13417 * routine. This will result in an incoherent snapshot. 13418 * If the vnode that we hold is a snapshot, we must avoid 13419 * handling other resources that could cause deadlock. 13420 */ 13421 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13422 return (0); 13423 13424 if (resource == FLUSH_BLOCKS_WAIT) 13425 stat_cleanup_blkrequests += 1; 13426 else 13427 stat_cleanup_inorequests += 1; 13428 13429 mp = vp->v_mount; 13430 ump = VFSTOUFS(mp); 13431 mtx_assert(UFS_MTX(ump), MA_OWNED); 13432 UFS_UNLOCK(ump); 13433 error = ffs_update(vp, 1); 13434 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13435 UFS_LOCK(ump); 13436 return (0); 13437 } 13438 /* 13439 * If we are in need of resources, start by cleaning up 13440 * any block removals associated with our inode. 13441 */ 13442 ACQUIRE_LOCK(ump); 13443 process_removes(vp); 13444 process_truncates(vp); 13445 FREE_LOCK(ump); 13446 /* 13447 * Now clean up at least as many resources as we will need. 13448 * 13449 * When requested to clean up inodes, the number that are needed 13450 * is set by the number of simultaneous writers (mnt_writeopcount) 13451 * plus a bit of slop (2) in case some more writers show up while 13452 * we are cleaning. 13453 * 13454 * When requested to free up space, the amount of space that 13455 * we need is enough blocks to allocate a full-sized segment 13456 * (fs_contigsumsize). The number of such segments that will 13457 * be needed is set by the number of simultaneous writers 13458 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13459 * writers show up while we are cleaning. 13460 * 13461 * Additionally, if we are unpriviledged and allocating space, 13462 * we need to ensure that we clean up enough blocks to get the 13463 * needed number of blocks over the threshold of the minimum 13464 * number of blocks required to be kept free by the filesystem 13465 * (fs_minfree). 13466 */ 13467 if (resource == FLUSH_INODES_WAIT) { 13468 needed = vfs_mount_fetch_counter(vp->v_mount, 13469 MNT_COUNT_WRITEOPCOUNT) + 2; 13470 } else if (resource == FLUSH_BLOCKS_WAIT) { 13471 needed = (vfs_mount_fetch_counter(vp->v_mount, 13472 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13473 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13474 needed += fragstoblks(fs, 13475 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13476 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13477 } else { 13478 printf("softdep_request_cleanup: Unknown resource type %d\n", 13479 resource); 13480 UFS_LOCK(ump); 13481 return (0); 13482 } 13483 starttime = time_second; 13484 retry: 13485 if (resource == FLUSH_BLOCKS_WAIT && 13486 fs->fs_cstotal.cs_nbfree <= needed) 13487 softdep_send_speedup(ump, needed * fs->fs_bsize, 13488 BIO_SPEEDUP_TRIM); 13489 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13490 fs->fs_cstotal.cs_nbfree <= needed) || 13491 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13492 fs->fs_cstotal.cs_nifree <= needed)) { 13493 ACQUIRE_LOCK(ump); 13494 if (ump->softdep_on_worklist > 0 && 13495 process_worklist_item(UFSTOVFS(ump), 13496 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13497 stat_worklist_push += 1; 13498 FREE_LOCK(ump); 13499 } 13500 /* 13501 * If we still need resources and there are no more worklist 13502 * entries to process to obtain them, we have to start flushing 13503 * the dirty vnodes to force the release of additional requests 13504 * to the worklist that we can then process to reap addition 13505 * resources. We walk the vnodes associated with the mount point 13506 * until we get the needed worklist requests that we can reap. 13507 * 13508 * If there are several threads all needing to clean the same 13509 * mount point, only one is allowed to walk the mount list. 13510 * When several threads all try to walk the same mount list, 13511 * they end up competing with each other and often end up in 13512 * livelock. This approach ensures that forward progress is 13513 * made at the cost of occational ENOSPC errors being returned 13514 * that might otherwise have been avoided. 13515 */ 13516 error = 1; 13517 if ((resource == FLUSH_BLOCKS_WAIT && 13518 fs->fs_cstotal.cs_nbfree <= needed) || 13519 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13520 fs->fs_cstotal.cs_nifree <= needed)) { 13521 ACQUIRE_LOCK(ump); 13522 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13523 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13524 FREE_LOCK(ump); 13525 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13526 ACQUIRE_LOCK(ump); 13527 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13528 FREE_LOCK(ump); 13529 if (ump->softdep_on_worklist > 0) { 13530 stat_cleanup_retries += 1; 13531 if (!failed_vnode) 13532 goto retry; 13533 } 13534 } else { 13535 FREE_LOCK(ump); 13536 error = 0; 13537 } 13538 stat_cleanup_failures += 1; 13539 } 13540 if (time_second - starttime > stat_cleanup_high_delay) 13541 stat_cleanup_high_delay = time_second - starttime; 13542 UFS_LOCK(ump); 13543 return (error); 13544 } 13545 13546 /* 13547 * Scan the vnodes for the specified mount point flushing out any 13548 * vnodes that can be locked without waiting. Finally, try to flush 13549 * the device associated with the mount point if it can be locked 13550 * without waiting. 13551 * 13552 * We return 0 if we were able to lock every vnode in our scan. 13553 * If we had to skip one or more vnodes, we return 1. 13554 */ 13555 static int 13556 softdep_request_cleanup_flush(mp, ump) 13557 struct mount *mp; 13558 struct ufsmount *ump; 13559 { 13560 struct thread *td; 13561 struct vnode *lvp, *mvp; 13562 int failed_vnode; 13563 13564 failed_vnode = 0; 13565 td = curthread; 13566 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 13567 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 13568 VI_UNLOCK(lvp); 13569 continue; 13570 } 13571 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT, 13572 td) != 0) { 13573 failed_vnode = 1; 13574 continue; 13575 } 13576 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 13577 vput(lvp); 13578 continue; 13579 } 13580 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 13581 vput(lvp); 13582 } 13583 lvp = ump->um_devvp; 13584 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 13585 VOP_FSYNC(lvp, MNT_NOWAIT, td); 13586 VOP_UNLOCK(lvp); 13587 } 13588 return (failed_vnode); 13589 } 13590 13591 static bool 13592 softdep_excess_items(struct ufsmount *ump, int item) 13593 { 13594 13595 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 13596 return (dep_current[item] > max_softdeps && 13597 ump->softdep_curdeps[item] > max_softdeps / 13598 stat_flush_threads); 13599 } 13600 13601 static void 13602 schedule_cleanup(struct mount *mp) 13603 { 13604 struct ufsmount *ump; 13605 struct thread *td; 13606 13607 ump = VFSTOUFS(mp); 13608 LOCK_OWNED(ump); 13609 FREE_LOCK(ump); 13610 td = curthread; 13611 if ((td->td_pflags & TDP_KTHREAD) != 0 && 13612 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 13613 /* 13614 * No ast is delivered to kernel threads, so nobody 13615 * would deref the mp. Some kernel threads 13616 * explicitely check for AST, e.g. NFS daemon does 13617 * this in the serving loop. 13618 */ 13619 return; 13620 } 13621 if (td->td_su != NULL) 13622 vfs_rel(td->td_su); 13623 vfs_ref(mp); 13624 td->td_su = mp; 13625 thread_lock(td); 13626 td->td_flags |= TDF_ASTPENDING; 13627 thread_unlock(td); 13628 } 13629 13630 static void 13631 softdep_ast_cleanup_proc(struct thread *td) 13632 { 13633 struct mount *mp; 13634 struct ufsmount *ump; 13635 int error; 13636 bool req; 13637 13638 while ((mp = td->td_su) != NULL) { 13639 td->td_su = NULL; 13640 error = vfs_busy(mp, MBF_NOWAIT); 13641 vfs_rel(mp); 13642 if (error != 0) 13643 return; 13644 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 13645 ump = VFSTOUFS(mp); 13646 for (;;) { 13647 req = false; 13648 ACQUIRE_LOCK(ump); 13649 if (softdep_excess_items(ump, D_INODEDEP)) { 13650 req = true; 13651 request_cleanup(mp, FLUSH_INODES); 13652 } 13653 if (softdep_excess_items(ump, D_DIRREM)) { 13654 req = true; 13655 request_cleanup(mp, FLUSH_BLOCKS); 13656 } 13657 FREE_LOCK(ump); 13658 if (softdep_excess_items(ump, D_NEWBLK) || 13659 softdep_excess_items(ump, D_ALLOCDIRECT) || 13660 softdep_excess_items(ump, D_ALLOCINDIR)) { 13661 error = vn_start_write(NULL, &mp, 13662 V_WAIT); 13663 if (error == 0) { 13664 req = true; 13665 VFS_SYNC(mp, MNT_WAIT); 13666 vn_finished_write(mp); 13667 } 13668 } 13669 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 13670 break; 13671 } 13672 } 13673 vfs_unbusy(mp); 13674 } 13675 if ((mp = td->td_su) != NULL) { 13676 td->td_su = NULL; 13677 vfs_rel(mp); 13678 } 13679 } 13680 13681 /* 13682 * If memory utilization has gotten too high, deliberately slow things 13683 * down and speed up the I/O processing. 13684 */ 13685 static int 13686 request_cleanup(mp, resource) 13687 struct mount *mp; 13688 int resource; 13689 { 13690 struct thread *td = curthread; 13691 struct ufsmount *ump; 13692 13693 ump = VFSTOUFS(mp); 13694 LOCK_OWNED(ump); 13695 /* 13696 * We never hold up the filesystem syncer or buf daemon. 13697 */ 13698 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 13699 return (0); 13700 /* 13701 * First check to see if the work list has gotten backlogged. 13702 * If it has, co-opt this process to help clean up two entries. 13703 * Because this process may hold inodes locked, we cannot 13704 * handle any remove requests that might block on a locked 13705 * inode as that could lead to deadlock. We set TDP_SOFTDEP 13706 * to avoid recursively processing the worklist. 13707 */ 13708 if (ump->softdep_on_worklist > max_softdeps / 10) { 13709 td->td_pflags |= TDP_SOFTDEP; 13710 process_worklist_item(mp, 2, LK_NOWAIT); 13711 td->td_pflags &= ~TDP_SOFTDEP; 13712 stat_worklist_push += 2; 13713 return(1); 13714 } 13715 /* 13716 * Next, we attempt to speed up the syncer process. If that 13717 * is successful, then we allow the process to continue. 13718 */ 13719 if (softdep_speedup(ump) && 13720 resource != FLUSH_BLOCKS_WAIT && 13721 resource != FLUSH_INODES_WAIT) 13722 return(0); 13723 /* 13724 * If we are resource constrained on inode dependencies, try 13725 * flushing some dirty inodes. Otherwise, we are constrained 13726 * by file deletions, so try accelerating flushes of directories 13727 * with removal dependencies. We would like to do the cleanup 13728 * here, but we probably hold an inode locked at this point and 13729 * that might deadlock against one that we try to clean. So, 13730 * the best that we can do is request the syncer daemon to do 13731 * the cleanup for us. 13732 */ 13733 switch (resource) { 13734 13735 case FLUSH_INODES: 13736 case FLUSH_INODES_WAIT: 13737 ACQUIRE_GBLLOCK(&lk); 13738 stat_ino_limit_push += 1; 13739 req_clear_inodedeps += 1; 13740 FREE_GBLLOCK(&lk); 13741 stat_countp = &stat_ino_limit_hit; 13742 break; 13743 13744 case FLUSH_BLOCKS: 13745 case FLUSH_BLOCKS_WAIT: 13746 ACQUIRE_GBLLOCK(&lk); 13747 stat_blk_limit_push += 1; 13748 req_clear_remove += 1; 13749 FREE_GBLLOCK(&lk); 13750 stat_countp = &stat_blk_limit_hit; 13751 break; 13752 13753 default: 13754 panic("request_cleanup: unknown type"); 13755 } 13756 /* 13757 * Hopefully the syncer daemon will catch up and awaken us. 13758 * We wait at most tickdelay before proceeding in any case. 13759 */ 13760 ACQUIRE_GBLLOCK(&lk); 13761 FREE_LOCK(ump); 13762 proc_waiting += 1; 13763 if (callout_pending(&softdep_callout) == FALSE) 13764 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 13765 pause_timer, 0); 13766 13767 if ((td->td_pflags & TDP_KTHREAD) == 0) 13768 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 13769 proc_waiting -= 1; 13770 FREE_GBLLOCK(&lk); 13771 ACQUIRE_LOCK(ump); 13772 return (1); 13773 } 13774 13775 /* 13776 * Awaken processes pausing in request_cleanup and clear proc_waiting 13777 * to indicate that there is no longer a timer running. Pause_timer 13778 * will be called with the global softdep mutex (&lk) locked. 13779 */ 13780 static void 13781 pause_timer(arg) 13782 void *arg; 13783 { 13784 13785 GBLLOCK_OWNED(&lk); 13786 /* 13787 * The callout_ API has acquired mtx and will hold it around this 13788 * function call. 13789 */ 13790 *stat_countp += proc_waiting; 13791 wakeup(&proc_waiting); 13792 } 13793 13794 /* 13795 * If requested, try removing inode or removal dependencies. 13796 */ 13797 static void 13798 check_clear_deps(mp) 13799 struct mount *mp; 13800 { 13801 struct ufsmount *ump; 13802 bool suj_susp; 13803 13804 /* 13805 * Tell the lower layers that any TRIM or WRITE transactions that have 13806 * been delayed for performance reasons should proceed to help alleviate 13807 * the shortage faster. The race between checking req_* and the softdep 13808 * mutex (lk) is fine since this is an advisory operation that at most 13809 * causes deferred work to be done sooner. 13810 */ 13811 ump = VFSTOUFS(mp); 13812 suj_susp = MOUNTEDSUJ(mp) && ump->softdep_jblocks->jb_suspended; 13813 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 13814 FREE_LOCK(ump); 13815 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 13816 ACQUIRE_LOCK(ump); 13817 } 13818 13819 /* 13820 * If we are suspended, it may be because of our using 13821 * too many inodedeps, so help clear them out. 13822 */ 13823 if (suj_susp) 13824 clear_inodedeps(mp); 13825 13826 /* 13827 * General requests for cleanup of backed up dependencies 13828 */ 13829 ACQUIRE_GBLLOCK(&lk); 13830 if (req_clear_inodedeps) { 13831 req_clear_inodedeps -= 1; 13832 FREE_GBLLOCK(&lk); 13833 clear_inodedeps(mp); 13834 ACQUIRE_GBLLOCK(&lk); 13835 wakeup(&proc_waiting); 13836 } 13837 if (req_clear_remove) { 13838 req_clear_remove -= 1; 13839 FREE_GBLLOCK(&lk); 13840 clear_remove(mp); 13841 ACQUIRE_GBLLOCK(&lk); 13842 wakeup(&proc_waiting); 13843 } 13844 FREE_GBLLOCK(&lk); 13845 } 13846 13847 /* 13848 * Flush out a directory with at least one removal dependency in an effort to 13849 * reduce the number of dirrem, freefile, and freeblks dependency structures. 13850 */ 13851 static void 13852 clear_remove(mp) 13853 struct mount *mp; 13854 { 13855 struct pagedep_hashhead *pagedephd; 13856 struct pagedep *pagedep; 13857 struct ufsmount *ump; 13858 struct vnode *vp; 13859 struct bufobj *bo; 13860 int error, cnt; 13861 ino_t ino; 13862 13863 ump = VFSTOUFS(mp); 13864 LOCK_OWNED(ump); 13865 13866 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 13867 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 13868 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 13869 ump->pagedep_nextclean = 0; 13870 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 13871 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 13872 continue; 13873 ino = pagedep->pd_ino; 13874 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13875 continue; 13876 FREE_LOCK(ump); 13877 13878 /* 13879 * Let unmount clear deps 13880 */ 13881 error = vfs_busy(mp, MBF_NOWAIT); 13882 if (error != 0) 13883 goto finish_write; 13884 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13885 FFSV_FORCEINSMQ); 13886 vfs_unbusy(mp); 13887 if (error != 0) { 13888 softdep_error("clear_remove: vget", error); 13889 goto finish_write; 13890 } 13891 MPASS(VTOI(vp)->i_mode != 0); 13892 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13893 softdep_error("clear_remove: fsync", error); 13894 bo = &vp->v_bufobj; 13895 BO_LOCK(bo); 13896 drain_output(vp); 13897 BO_UNLOCK(bo); 13898 vput(vp); 13899 finish_write: 13900 vn_finished_write(mp); 13901 ACQUIRE_LOCK(ump); 13902 return; 13903 } 13904 } 13905 } 13906 13907 /* 13908 * Clear out a block of dirty inodes in an effort to reduce 13909 * the number of inodedep dependency structures. 13910 */ 13911 static void 13912 clear_inodedeps(mp) 13913 struct mount *mp; 13914 { 13915 struct inodedep_hashhead *inodedephd; 13916 struct inodedep *inodedep; 13917 struct ufsmount *ump; 13918 struct vnode *vp; 13919 struct fs *fs; 13920 int error, cnt; 13921 ino_t firstino, lastino, ino; 13922 13923 ump = VFSTOUFS(mp); 13924 fs = ump->um_fs; 13925 LOCK_OWNED(ump); 13926 /* 13927 * Pick a random inode dependency to be cleared. 13928 * We will then gather up all the inodes in its block 13929 * that have dependencies and flush them out. 13930 */ 13931 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 13932 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 13933 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 13934 ump->inodedep_nextclean = 0; 13935 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 13936 break; 13937 } 13938 if (inodedep == NULL) 13939 return; 13940 /* 13941 * Find the last inode in the block with dependencies. 13942 */ 13943 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 13944 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 13945 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 13946 break; 13947 /* 13948 * Asynchronously push all but the last inode with dependencies. 13949 * Synchronously push the last inode with dependencies to ensure 13950 * that the inode block gets written to free up the inodedeps. 13951 */ 13952 for (ino = firstino; ino <= lastino; ino++) { 13953 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13954 continue; 13955 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 13956 continue; 13957 FREE_LOCK(ump); 13958 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 13959 if (error != 0) { 13960 vn_finished_write(mp); 13961 ACQUIRE_LOCK(ump); 13962 return; 13963 } 13964 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 13965 FFSV_FORCEINSMQ)) != 0) { 13966 softdep_error("clear_inodedeps: vget", error); 13967 vfs_unbusy(mp); 13968 vn_finished_write(mp); 13969 ACQUIRE_LOCK(ump); 13970 return; 13971 } 13972 vfs_unbusy(mp); 13973 if (VTOI(vp)->i_mode == 0) { 13974 vgone(vp); 13975 } else if (ino == lastino) { 13976 if ((error = ffs_syncvnode(vp, MNT_WAIT, 0))) 13977 softdep_error("clear_inodedeps: fsync1", error); 13978 } else { 13979 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 13980 softdep_error("clear_inodedeps: fsync2", error); 13981 BO_LOCK(&vp->v_bufobj); 13982 drain_output(vp); 13983 BO_UNLOCK(&vp->v_bufobj); 13984 } 13985 vput(vp); 13986 vn_finished_write(mp); 13987 ACQUIRE_LOCK(ump); 13988 } 13989 } 13990 13991 void 13992 softdep_buf_append(bp, wkhd) 13993 struct buf *bp; 13994 struct workhead *wkhd; 13995 { 13996 struct worklist *wk; 13997 struct ufsmount *ump; 13998 13999 if ((wk = LIST_FIRST(wkhd)) == NULL) 14000 return; 14001 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14002 ("softdep_buf_append called on non-softdep filesystem")); 14003 ump = VFSTOUFS(wk->wk_mp); 14004 ACQUIRE_LOCK(ump); 14005 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14006 WORKLIST_REMOVE(wk); 14007 WORKLIST_INSERT(&bp->b_dep, wk); 14008 } 14009 FREE_LOCK(ump); 14010 14011 } 14012 14013 void 14014 softdep_inode_append(ip, cred, wkhd) 14015 struct inode *ip; 14016 struct ucred *cred; 14017 struct workhead *wkhd; 14018 { 14019 struct buf *bp; 14020 struct fs *fs; 14021 struct ufsmount *ump; 14022 int error; 14023 14024 ump = ITOUMP(ip); 14025 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14026 ("softdep_inode_append called on non-softdep filesystem")); 14027 fs = ump->um_fs; 14028 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14029 (int)fs->fs_bsize, cred, &bp); 14030 if (error) { 14031 bqrelse(bp); 14032 softdep_freework(wkhd); 14033 return; 14034 } 14035 softdep_buf_append(bp, wkhd); 14036 bqrelse(bp); 14037 } 14038 14039 void 14040 softdep_freework(wkhd) 14041 struct workhead *wkhd; 14042 { 14043 struct worklist *wk; 14044 struct ufsmount *ump; 14045 14046 if ((wk = LIST_FIRST(wkhd)) == NULL) 14047 return; 14048 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14049 ("softdep_freework called on non-softdep filesystem")); 14050 ump = VFSTOUFS(wk->wk_mp); 14051 ACQUIRE_LOCK(ump); 14052 handle_jwork(wkhd); 14053 FREE_LOCK(ump); 14054 } 14055 14056 static struct ufsmount * 14057 softdep_bp_to_mp(bp) 14058 struct buf *bp; 14059 { 14060 struct mount *mp; 14061 struct vnode *vp; 14062 14063 if (LIST_EMPTY(&bp->b_dep)) 14064 return (NULL); 14065 vp = bp->b_vp; 14066 KASSERT(vp != NULL, 14067 ("%s, buffer with dependencies lacks vnode", __func__)); 14068 14069 /* 14070 * The ump mount point is stable after we get a correct 14071 * pointer, since bp is locked and this prevents unmount from 14072 * proceeding. But to get to it, we cannot dereference bp->b_dep 14073 * head wk_mp, because we do not yet own SU ump lock and 14074 * workitem might be freed while dereferenced. 14075 */ 14076 retry: 14077 switch (vp->v_type) { 14078 case VCHR: 14079 VI_LOCK(vp); 14080 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14081 VI_UNLOCK(vp); 14082 if (mp == NULL) 14083 goto retry; 14084 break; 14085 case VREG: 14086 case VDIR: 14087 case VLNK: 14088 case VFIFO: 14089 case VSOCK: 14090 mp = vp->v_mount; 14091 break; 14092 case VBLK: 14093 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14094 /* FALLTHROUGH */ 14095 case VNON: 14096 case VBAD: 14097 case VMARKER: 14098 mp = NULL; 14099 break; 14100 default: 14101 vn_printf(vp, "unknown vnode type"); 14102 mp = NULL; 14103 break; 14104 } 14105 return (VFSTOUFS(mp)); 14106 } 14107 14108 /* 14109 * Function to determine if the buffer has outstanding dependencies 14110 * that will cause a roll-back if the buffer is written. If wantcount 14111 * is set, return number of dependencies, otherwise just yes or no. 14112 */ 14113 static int 14114 softdep_count_dependencies(bp, wantcount) 14115 struct buf *bp; 14116 int wantcount; 14117 { 14118 struct worklist *wk; 14119 struct ufsmount *ump; 14120 struct bmsafemap *bmsafemap; 14121 struct freework *freework; 14122 struct inodedep *inodedep; 14123 struct indirdep *indirdep; 14124 struct freeblks *freeblks; 14125 struct allocindir *aip; 14126 struct pagedep *pagedep; 14127 struct dirrem *dirrem; 14128 struct newblk *newblk; 14129 struct mkdir *mkdir; 14130 struct diradd *dap; 14131 int i, retval; 14132 14133 ump = softdep_bp_to_mp(bp); 14134 if (ump == NULL) 14135 return (0); 14136 retval = 0; 14137 ACQUIRE_LOCK(ump); 14138 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14139 switch (wk->wk_type) { 14140 14141 case D_INODEDEP: 14142 inodedep = WK_INODEDEP(wk); 14143 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14144 /* bitmap allocation dependency */ 14145 retval += 1; 14146 if (!wantcount) 14147 goto out; 14148 } 14149 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14150 /* direct block pointer dependency */ 14151 retval += 1; 14152 if (!wantcount) 14153 goto out; 14154 } 14155 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14156 /* direct block pointer dependency */ 14157 retval += 1; 14158 if (!wantcount) 14159 goto out; 14160 } 14161 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14162 /* Add reference dependency. */ 14163 retval += 1; 14164 if (!wantcount) 14165 goto out; 14166 } 14167 continue; 14168 14169 case D_INDIRDEP: 14170 indirdep = WK_INDIRDEP(wk); 14171 14172 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14173 /* indirect truncation dependency */ 14174 retval += 1; 14175 if (!wantcount) 14176 goto out; 14177 } 14178 14179 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14180 /* indirect block pointer dependency */ 14181 retval += 1; 14182 if (!wantcount) 14183 goto out; 14184 } 14185 continue; 14186 14187 case D_PAGEDEP: 14188 pagedep = WK_PAGEDEP(wk); 14189 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14190 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14191 /* Journal remove ref dependency. */ 14192 retval += 1; 14193 if (!wantcount) 14194 goto out; 14195 } 14196 } 14197 for (i = 0; i < DAHASHSZ; i++) { 14198 14199 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14200 /* directory entry dependency */ 14201 retval += 1; 14202 if (!wantcount) 14203 goto out; 14204 } 14205 } 14206 continue; 14207 14208 case D_BMSAFEMAP: 14209 bmsafemap = WK_BMSAFEMAP(wk); 14210 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14211 /* Add reference dependency. */ 14212 retval += 1; 14213 if (!wantcount) 14214 goto out; 14215 } 14216 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14217 /* Allocate block dependency. */ 14218 retval += 1; 14219 if (!wantcount) 14220 goto out; 14221 } 14222 continue; 14223 14224 case D_FREEBLKS: 14225 freeblks = WK_FREEBLKS(wk); 14226 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14227 /* Freeblk journal dependency. */ 14228 retval += 1; 14229 if (!wantcount) 14230 goto out; 14231 } 14232 continue; 14233 14234 case D_ALLOCDIRECT: 14235 case D_ALLOCINDIR: 14236 newblk = WK_NEWBLK(wk); 14237 if (newblk->nb_jnewblk) { 14238 /* Journal allocate dependency. */ 14239 retval += 1; 14240 if (!wantcount) 14241 goto out; 14242 } 14243 continue; 14244 14245 case D_MKDIR: 14246 mkdir = WK_MKDIR(wk); 14247 if (mkdir->md_jaddref) { 14248 /* Journal reference dependency. */ 14249 retval += 1; 14250 if (!wantcount) 14251 goto out; 14252 } 14253 continue; 14254 14255 case D_FREEWORK: 14256 case D_FREEDEP: 14257 case D_JSEGDEP: 14258 case D_JSEG: 14259 case D_SBDEP: 14260 /* never a dependency on these blocks */ 14261 continue; 14262 14263 default: 14264 panic("softdep_count_dependencies: Unexpected type %s", 14265 TYPENAME(wk->wk_type)); 14266 /* NOTREACHED */ 14267 } 14268 } 14269 out: 14270 FREE_LOCK(ump); 14271 return (retval); 14272 } 14273 14274 /* 14275 * Acquire exclusive access to a buffer. 14276 * Must be called with a locked mtx parameter. 14277 * Return acquired buffer or NULL on failure. 14278 */ 14279 static struct buf * 14280 getdirtybuf(bp, lock, waitfor) 14281 struct buf *bp; 14282 struct rwlock *lock; 14283 int waitfor; 14284 { 14285 int error; 14286 14287 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14288 if (waitfor != MNT_WAIT) 14289 return (NULL); 14290 error = BUF_LOCK(bp, 14291 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14292 /* 14293 * Even if we successfully acquire bp here, we have dropped 14294 * lock, which may violates our guarantee. 14295 */ 14296 if (error == 0) 14297 BUF_UNLOCK(bp); 14298 else if (error != ENOLCK) 14299 panic("getdirtybuf: inconsistent lock: %d", error); 14300 rw_wlock(lock); 14301 return (NULL); 14302 } 14303 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14304 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14305 rw_wunlock(lock); 14306 BO_LOCK(bp->b_bufobj); 14307 BUF_UNLOCK(bp); 14308 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14309 bp->b_vflags |= BV_BKGRDWAIT; 14310 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14311 PRIBIO | PDROP, "getbuf", 0); 14312 } else 14313 BO_UNLOCK(bp->b_bufobj); 14314 rw_wlock(lock); 14315 return (NULL); 14316 } 14317 BUF_UNLOCK(bp); 14318 if (waitfor != MNT_WAIT) 14319 return (NULL); 14320 #ifdef DEBUG_VFS_LOCKS 14321 if (bp->b_vp->v_type != VCHR) 14322 ASSERT_BO_WLOCKED(bp->b_bufobj); 14323 #endif 14324 bp->b_vflags |= BV_BKGRDWAIT; 14325 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14326 return (NULL); 14327 } 14328 if ((bp->b_flags & B_DELWRI) == 0) { 14329 BUF_UNLOCK(bp); 14330 return (NULL); 14331 } 14332 bremfree(bp); 14333 return (bp); 14334 } 14335 14336 14337 /* 14338 * Check if it is safe to suspend the file system now. On entry, 14339 * the vnode interlock for devvp should be held. Return 0 with 14340 * the mount interlock held if the file system can be suspended now, 14341 * otherwise return EAGAIN with the mount interlock held. 14342 */ 14343 int 14344 softdep_check_suspend(struct mount *mp, 14345 struct vnode *devvp, 14346 int softdep_depcnt, 14347 int softdep_accdepcnt, 14348 int secondary_writes, 14349 int secondary_accwrites) 14350 { 14351 struct bufobj *bo; 14352 struct ufsmount *ump; 14353 struct inodedep *inodedep; 14354 int error, unlinked; 14355 14356 bo = &devvp->v_bufobj; 14357 ASSERT_BO_WLOCKED(bo); 14358 14359 /* 14360 * If we are not running with soft updates, then we need only 14361 * deal with secondary writes as we try to suspend. 14362 */ 14363 if (MOUNTEDSOFTDEP(mp) == 0) { 14364 MNT_ILOCK(mp); 14365 while (mp->mnt_secondary_writes != 0) { 14366 BO_UNLOCK(bo); 14367 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14368 (PUSER - 1) | PDROP, "secwr", 0); 14369 BO_LOCK(bo); 14370 MNT_ILOCK(mp); 14371 } 14372 14373 /* 14374 * Reasons for needing more work before suspend: 14375 * - Dirty buffers on devvp. 14376 * - Secondary writes occurred after start of vnode sync loop 14377 */ 14378 error = 0; 14379 if (bo->bo_numoutput > 0 || 14380 bo->bo_dirty.bv_cnt > 0 || 14381 secondary_writes != 0 || 14382 mp->mnt_secondary_writes != 0 || 14383 secondary_accwrites != mp->mnt_secondary_accwrites) 14384 error = EAGAIN; 14385 BO_UNLOCK(bo); 14386 return (error); 14387 } 14388 14389 /* 14390 * If we are running with soft updates, then we need to coordinate 14391 * with them as we try to suspend. 14392 */ 14393 ump = VFSTOUFS(mp); 14394 for (;;) { 14395 if (!TRY_ACQUIRE_LOCK(ump)) { 14396 BO_UNLOCK(bo); 14397 ACQUIRE_LOCK(ump); 14398 FREE_LOCK(ump); 14399 BO_LOCK(bo); 14400 continue; 14401 } 14402 MNT_ILOCK(mp); 14403 if (mp->mnt_secondary_writes != 0) { 14404 FREE_LOCK(ump); 14405 BO_UNLOCK(bo); 14406 msleep(&mp->mnt_secondary_writes, 14407 MNT_MTX(mp), 14408 (PUSER - 1) | PDROP, "secwr", 0); 14409 BO_LOCK(bo); 14410 continue; 14411 } 14412 break; 14413 } 14414 14415 unlinked = 0; 14416 if (MOUNTEDSUJ(mp)) { 14417 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14418 inodedep != NULL; 14419 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14420 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14421 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14422 UNLINKONLIST) || 14423 !check_inodedep_free(inodedep)) 14424 continue; 14425 unlinked++; 14426 } 14427 } 14428 14429 /* 14430 * Reasons for needing more work before suspend: 14431 * - Dirty buffers on devvp. 14432 * - Softdep activity occurred after start of vnode sync loop 14433 * - Secondary writes occurred after start of vnode sync loop 14434 */ 14435 error = 0; 14436 if (bo->bo_numoutput > 0 || 14437 bo->bo_dirty.bv_cnt > 0 || 14438 softdep_depcnt != unlinked || 14439 ump->softdep_deps != unlinked || 14440 softdep_accdepcnt != ump->softdep_accdeps || 14441 secondary_writes != 0 || 14442 mp->mnt_secondary_writes != 0 || 14443 secondary_accwrites != mp->mnt_secondary_accwrites) 14444 error = EAGAIN; 14445 FREE_LOCK(ump); 14446 BO_UNLOCK(bo); 14447 return (error); 14448 } 14449 14450 14451 /* 14452 * Get the number of dependency structures for the file system, both 14453 * the current number and the total number allocated. These will 14454 * later be used to detect that softdep processing has occurred. 14455 */ 14456 void 14457 softdep_get_depcounts(struct mount *mp, 14458 int *softdep_depsp, 14459 int *softdep_accdepsp) 14460 { 14461 struct ufsmount *ump; 14462 14463 if (MOUNTEDSOFTDEP(mp) == 0) { 14464 *softdep_depsp = 0; 14465 *softdep_accdepsp = 0; 14466 return; 14467 } 14468 ump = VFSTOUFS(mp); 14469 ACQUIRE_LOCK(ump); 14470 *softdep_depsp = ump->softdep_deps; 14471 *softdep_accdepsp = ump->softdep_accdeps; 14472 FREE_LOCK(ump); 14473 } 14474 14475 /* 14476 * Wait for pending output on a vnode to complete. 14477 */ 14478 static void 14479 drain_output(vp) 14480 struct vnode *vp; 14481 { 14482 14483 ASSERT_VOP_LOCKED(vp, "drain_output"); 14484 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14485 } 14486 14487 /* 14488 * Called whenever a buffer that is being invalidated or reallocated 14489 * contains dependencies. This should only happen if an I/O error has 14490 * occurred. The routine is called with the buffer locked. 14491 */ 14492 static void 14493 softdep_deallocate_dependencies(bp) 14494 struct buf *bp; 14495 { 14496 14497 if ((bp->b_ioflags & BIO_ERROR) == 0) 14498 panic("softdep_deallocate_dependencies: dangling deps"); 14499 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14500 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14501 else 14502 printf("softdep_deallocate_dependencies: " 14503 "got error %d while accessing filesystem\n", bp->b_error); 14504 if (bp->b_error != ENXIO) 14505 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14506 } 14507 14508 /* 14509 * Function to handle asynchronous write errors in the filesystem. 14510 */ 14511 static void 14512 softdep_error(func, error) 14513 char *func; 14514 int error; 14515 { 14516 14517 /* XXX should do something better! */ 14518 printf("%s: got error %d while accessing filesystem\n", func, error); 14519 } 14520 14521 #ifdef DDB 14522 14523 /* exported to ffs_vfsops.c */ 14524 extern void db_print_ffs(struct ufsmount *ump); 14525 void 14526 db_print_ffs(struct ufsmount *ump) 14527 { 14528 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 14529 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 14530 db_printf(" fs %p su_wl %d su_deps %d su_req %d\n", 14531 ump->um_fs, ump->softdep_on_worklist, 14532 ump->softdep_deps, ump->softdep_req); 14533 } 14534 14535 static void 14536 worklist_print(struct worklist *wk, int verbose) 14537 { 14538 14539 if (!verbose) { 14540 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 14541 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 14542 return; 14543 } 14544 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 14545 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 14546 LIST_NEXT(wk, wk_list)); 14547 db_print_ffs(VFSTOUFS(wk->wk_mp)); 14548 } 14549 14550 static void 14551 inodedep_print(struct inodedep *inodedep, int verbose) 14552 { 14553 14554 worklist_print(&inodedep->id_list, 0); 14555 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 14556 inodedep->id_fs, 14557 (intmax_t)inodedep->id_ino, 14558 (intmax_t)fsbtodb(inodedep->id_fs, 14559 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 14560 (intmax_t)inodedep->id_nlinkdelta, 14561 (intmax_t)inodedep->id_savednlink); 14562 14563 if (verbose == 0) 14564 return; 14565 14566 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 14567 inodedep->id_bmsafemap, 14568 inodedep->id_mkdiradd, 14569 TAILQ_FIRST(&inodedep->id_inoreflst)); 14570 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 14571 LIST_FIRST(&inodedep->id_dirremhd), 14572 LIST_FIRST(&inodedep->id_pendinghd), 14573 LIST_FIRST(&inodedep->id_bufwait)); 14574 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 14575 LIST_FIRST(&inodedep->id_inowait), 14576 TAILQ_FIRST(&inodedep->id_inoupdt), 14577 TAILQ_FIRST(&inodedep->id_newinoupdt)); 14578 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 14579 TAILQ_FIRST(&inodedep->id_extupdt), 14580 TAILQ_FIRST(&inodedep->id_newextupdt), 14581 TAILQ_FIRST(&inodedep->id_freeblklst)); 14582 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 14583 inodedep->id_savedino1, 14584 (intmax_t)inodedep->id_savedsize, 14585 (intmax_t)inodedep->id_savedextsize); 14586 } 14587 14588 static void 14589 newblk_print(struct newblk *nbp) 14590 { 14591 14592 worklist_print(&nbp->nb_list, 0); 14593 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 14594 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 14595 &nbp->nb_jnewblk, 14596 &nbp->nb_bmsafemap, 14597 &nbp->nb_freefrag); 14598 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 14599 LIST_FIRST(&nbp->nb_indirdeps), 14600 LIST_FIRST(&nbp->nb_newdirblk), 14601 LIST_FIRST(&nbp->nb_jwork)); 14602 } 14603 14604 static void 14605 allocdirect_print(struct allocdirect *adp) 14606 { 14607 14608 newblk_print(&adp->ad_block); 14609 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 14610 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 14611 db_printf(" offset %d, inodedep %p\n", 14612 adp->ad_offset, adp->ad_inodedep); 14613 } 14614 14615 static void 14616 allocindir_print(struct allocindir *aip) 14617 { 14618 14619 newblk_print(&aip->ai_block); 14620 db_printf(" oldblkno %jd, lbn %jd\n", 14621 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 14622 db_printf(" offset %d, indirdep %p\n", 14623 aip->ai_offset, aip->ai_indirdep); 14624 } 14625 14626 static void 14627 mkdir_print(struct mkdir *mkdir) 14628 { 14629 14630 worklist_print(&mkdir->md_list, 0); 14631 db_printf(" diradd %p, jaddref %p, buf %p\n", 14632 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 14633 } 14634 14635 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 14636 { 14637 14638 if (have_addr == 0) { 14639 db_printf("inodedep address required\n"); 14640 return; 14641 } 14642 inodedep_print((struct inodedep*)addr, 1); 14643 } 14644 14645 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 14646 { 14647 struct inodedep_hashhead *inodedephd; 14648 struct inodedep *inodedep; 14649 struct ufsmount *ump; 14650 int cnt; 14651 14652 if (have_addr == 0) { 14653 db_printf("ufsmount address required\n"); 14654 return; 14655 } 14656 ump = (struct ufsmount *)addr; 14657 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 14658 inodedephd = &ump->inodedep_hashtbl[cnt]; 14659 LIST_FOREACH(inodedep, inodedephd, id_hash) { 14660 inodedep_print(inodedep, 0); 14661 } 14662 } 14663 } 14664 14665 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 14666 { 14667 14668 if (have_addr == 0) { 14669 db_printf("worklist address required\n"); 14670 return; 14671 } 14672 worklist_print((struct worklist *)addr, 1); 14673 } 14674 14675 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 14676 { 14677 struct worklist *wk; 14678 struct workhead *wkhd; 14679 14680 if (have_addr == 0) { 14681 db_printf("worklist address required " 14682 "(for example value in bp->b_dep)\n"); 14683 return; 14684 } 14685 /* 14686 * We often do not have the address of the worklist head but 14687 * instead a pointer to its first entry (e.g., we have the 14688 * contents of bp->b_dep rather than &bp->b_dep). But the back 14689 * pointer of bp->b_dep will point at the head of the list, so 14690 * we cheat and use that instead. If we are in the middle of 14691 * a list we will still get the same result, so nothing 14692 * unexpected will result. 14693 */ 14694 wk = (struct worklist *)addr; 14695 if (wk == NULL) 14696 return; 14697 wkhd = (struct workhead *)wk->wk_list.le_prev; 14698 LIST_FOREACH(wk, wkhd, wk_list) { 14699 switch(wk->wk_type) { 14700 case D_INODEDEP: 14701 inodedep_print(WK_INODEDEP(wk), 0); 14702 continue; 14703 case D_ALLOCDIRECT: 14704 allocdirect_print(WK_ALLOCDIRECT(wk)); 14705 continue; 14706 case D_ALLOCINDIR: 14707 allocindir_print(WK_ALLOCINDIR(wk)); 14708 continue; 14709 case D_MKDIR: 14710 mkdir_print(WK_MKDIR(wk)); 14711 continue; 14712 default: 14713 worklist_print(wk, 0); 14714 continue; 14715 } 14716 } 14717 } 14718 14719 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 14720 { 14721 if (have_addr == 0) { 14722 db_printf("mkdir address required\n"); 14723 return; 14724 } 14725 mkdir_print((struct mkdir *)addr); 14726 } 14727 14728 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 14729 { 14730 struct mkdirlist *mkdirlisthd; 14731 struct mkdir *mkdir; 14732 14733 if (have_addr == 0) { 14734 db_printf("mkdir listhead address required\n"); 14735 return; 14736 } 14737 mkdirlisthd = (struct mkdirlist *)addr; 14738 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 14739 mkdir_print(mkdir); 14740 if (mkdir->md_diradd != NULL) { 14741 db_printf(" "); 14742 worklist_print(&mkdir->md_diradd->da_list, 0); 14743 } 14744 if (mkdir->md_jaddref != NULL) { 14745 db_printf(" "); 14746 worklist_print(&mkdir->md_jaddref->ja_list, 0); 14747 } 14748 } 14749 } 14750 14751 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 14752 { 14753 if (have_addr == 0) { 14754 db_printf("allocdirect address required\n"); 14755 return; 14756 } 14757 allocdirect_print((struct allocdirect *)addr); 14758 } 14759 14760 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 14761 { 14762 if (have_addr == 0) { 14763 db_printf("allocindir address required\n"); 14764 return; 14765 } 14766 allocindir_print((struct allocindir *)addr); 14767 } 14768 14769 #endif /* DDB */ 14770 14771 #endif /* SOFTUPDATES */ 14772