1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright 1998, 2000 Marshall Kirk McKusick. 5 * Copyright 2009, 2010 Jeffrey W. Roberson <jeff@FreeBSD.org> 6 * All rights reserved. 7 * 8 * The soft updates code is derived from the appendix of a University 9 * of Michigan technical report (Gregory R. Ganger and Yale N. Patt, 10 * "Soft Updates: A Solution to the Metadata Update Problem in File 11 * Systems", CSE-TR-254-95, August 1995). 12 * 13 * Further information about soft updates can be obtained from: 14 * 15 * Marshall Kirk McKusick http://www.mckusick.com/softdep/ 16 * 1614 Oxford Street mckusick@mckusick.com 17 * Berkeley, CA 94709-1608 +1-510-843-9542 18 * USA 19 * 20 * Redistribution and use in source and binary forms, with or without 21 * modification, are permitted provided that the following conditions 22 * are met: 23 * 24 * 1. Redistributions of source code must retain the above copyright 25 * notice, this list of conditions and the following disclaimer. 26 * 2. Redistributions in binary form must reproduce the above copyright 27 * notice, this list of conditions and the following disclaimer in the 28 * documentation and/or other materials provided with the distribution. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS ``AS IS'' AND ANY EXPRESS OR 31 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 32 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 33 * IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY DIRECT, INDIRECT, 34 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 35 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 36 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 37 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR 38 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE 39 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 40 * 41 * from: @(#)ffs_softdep.c 9.59 (McKusick) 6/21/00 42 */ 43 44 #include <sys/cdefs.h> 45 __FBSDID("$FreeBSD$"); 46 47 #include "opt_ffs.h" 48 #include "opt_quota.h" 49 #include "opt_ddb.h" 50 51 #include <sys/param.h> 52 #include <sys/kernel.h> 53 #include <sys/systm.h> 54 #include <sys/bio.h> 55 #include <sys/buf.h> 56 #include <sys/kdb.h> 57 #include <sys/kthread.h> 58 #include <sys/ktr.h> 59 #include <sys/limits.h> 60 #include <sys/lock.h> 61 #include <sys/malloc.h> 62 #include <sys/mount.h> 63 #include <sys/mutex.h> 64 #include <sys/namei.h> 65 #include <sys/priv.h> 66 #include <sys/proc.h> 67 #include <sys/racct.h> 68 #include <sys/rwlock.h> 69 #include <sys/stat.h> 70 #include <sys/sysctl.h> 71 #include <sys/syslog.h> 72 #include <sys/vnode.h> 73 #include <sys/conf.h> 74 75 #include <ufs/ufs/dir.h> 76 #include <ufs/ufs/extattr.h> 77 #include <ufs/ufs/quota.h> 78 #include <ufs/ufs/inode.h> 79 #include <ufs/ufs/ufsmount.h> 80 #include <ufs/ffs/fs.h> 81 #include <ufs/ffs/softdep.h> 82 #include <ufs/ffs/ffs_extern.h> 83 #include <ufs/ufs/ufs_extern.h> 84 85 #include <vm/vm.h> 86 #include <vm/vm_extern.h> 87 #include <vm/vm_object.h> 88 89 #include <geom/geom.h> 90 #include <geom/geom_vfs.h> 91 92 #include <ddb/ddb.h> 93 94 #define KTR_SUJ 0 /* Define to KTR_SPARE. */ 95 96 #ifndef SOFTUPDATES 97 98 int 99 softdep_flushfiles(oldmnt, flags, td) 100 struct mount *oldmnt; 101 int flags; 102 struct thread *td; 103 { 104 105 panic("softdep_flushfiles called"); 106 } 107 108 int 109 softdep_mount(devvp, mp, fs, cred) 110 struct vnode *devvp; 111 struct mount *mp; 112 struct fs *fs; 113 struct ucred *cred; 114 { 115 116 return (0); 117 } 118 119 void 120 softdep_initialize() 121 { 122 123 return; 124 } 125 126 void 127 softdep_uninitialize() 128 { 129 130 return; 131 } 132 133 void 134 softdep_unmount(mp) 135 struct mount *mp; 136 { 137 138 panic("softdep_unmount called"); 139 } 140 141 void 142 softdep_setup_sbupdate(ump, fs, bp) 143 struct ufsmount *ump; 144 struct fs *fs; 145 struct buf *bp; 146 { 147 148 panic("softdep_setup_sbupdate called"); 149 } 150 151 void 152 softdep_setup_inomapdep(bp, ip, newinum, mode) 153 struct buf *bp; 154 struct inode *ip; 155 ino_t newinum; 156 int mode; 157 { 158 159 panic("softdep_setup_inomapdep called"); 160 } 161 162 void 163 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 164 struct buf *bp; 165 struct mount *mp; 166 ufs2_daddr_t newblkno; 167 int frags; 168 int oldfrags; 169 { 170 171 panic("softdep_setup_blkmapdep called"); 172 } 173 174 void 175 softdep_setup_allocdirect(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 176 struct inode *ip; 177 ufs_lbn_t lbn; 178 ufs2_daddr_t newblkno; 179 ufs2_daddr_t oldblkno; 180 long newsize; 181 long oldsize; 182 struct buf *bp; 183 { 184 185 panic("softdep_setup_allocdirect called"); 186 } 187 188 void 189 softdep_setup_allocext(ip, lbn, newblkno, oldblkno, newsize, oldsize, bp) 190 struct inode *ip; 191 ufs_lbn_t lbn; 192 ufs2_daddr_t newblkno; 193 ufs2_daddr_t oldblkno; 194 long newsize; 195 long oldsize; 196 struct buf *bp; 197 { 198 199 panic("softdep_setup_allocext called"); 200 } 201 202 void 203 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 204 struct inode *ip; 205 ufs_lbn_t lbn; 206 struct buf *bp; 207 int ptrno; 208 ufs2_daddr_t newblkno; 209 ufs2_daddr_t oldblkno; 210 struct buf *nbp; 211 { 212 213 panic("softdep_setup_allocindir_page called"); 214 } 215 216 void 217 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 218 struct buf *nbp; 219 struct inode *ip; 220 struct buf *bp; 221 int ptrno; 222 ufs2_daddr_t newblkno; 223 { 224 225 panic("softdep_setup_allocindir_meta called"); 226 } 227 228 void 229 softdep_journal_freeblocks(ip, cred, length, flags) 230 struct inode *ip; 231 struct ucred *cred; 232 off_t length; 233 int flags; 234 { 235 236 panic("softdep_journal_freeblocks called"); 237 } 238 239 void 240 softdep_journal_fsync(ip) 241 struct inode *ip; 242 { 243 244 panic("softdep_journal_fsync called"); 245 } 246 247 void 248 softdep_setup_freeblocks(ip, length, flags) 249 struct inode *ip; 250 off_t length; 251 int flags; 252 { 253 254 panic("softdep_setup_freeblocks called"); 255 } 256 257 void 258 softdep_freefile(pvp, ino, mode) 259 struct vnode *pvp; 260 ino_t ino; 261 int mode; 262 { 263 264 panic("softdep_freefile called"); 265 } 266 267 int 268 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 269 struct buf *bp; 270 struct inode *dp; 271 off_t diroffset; 272 ino_t newinum; 273 struct buf *newdirbp; 274 int isnewblk; 275 { 276 277 panic("softdep_setup_directory_add called"); 278 } 279 280 void 281 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 282 struct buf *bp; 283 struct inode *dp; 284 caddr_t base; 285 caddr_t oldloc; 286 caddr_t newloc; 287 int entrysize; 288 { 289 290 panic("softdep_change_directoryentry_offset called"); 291 } 292 293 void 294 softdep_setup_remove(bp, dp, ip, isrmdir) 295 struct buf *bp; 296 struct inode *dp; 297 struct inode *ip; 298 int isrmdir; 299 { 300 301 panic("softdep_setup_remove called"); 302 } 303 304 void 305 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 306 struct buf *bp; 307 struct inode *dp; 308 struct inode *ip; 309 ino_t newinum; 310 int isrmdir; 311 { 312 313 panic("softdep_setup_directory_change called"); 314 } 315 316 void 317 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 318 struct mount *mp; 319 struct buf *bp; 320 ufs2_daddr_t blkno; 321 int frags; 322 struct workhead *wkhd; 323 { 324 325 panic("%s called", __FUNCTION__); 326 } 327 328 void 329 softdep_setup_inofree(mp, bp, ino, wkhd) 330 struct mount *mp; 331 struct buf *bp; 332 ino_t ino; 333 struct workhead *wkhd; 334 { 335 336 panic("%s called", __FUNCTION__); 337 } 338 339 void 340 softdep_setup_unlink(dp, ip) 341 struct inode *dp; 342 struct inode *ip; 343 { 344 345 panic("%s called", __FUNCTION__); 346 } 347 348 void 349 softdep_setup_link(dp, ip) 350 struct inode *dp; 351 struct inode *ip; 352 { 353 354 panic("%s called", __FUNCTION__); 355 } 356 357 void 358 softdep_revert_link(dp, ip) 359 struct inode *dp; 360 struct inode *ip; 361 { 362 363 panic("%s called", __FUNCTION__); 364 } 365 366 void 367 softdep_setup_rmdir(dp, ip) 368 struct inode *dp; 369 struct inode *ip; 370 { 371 372 panic("%s called", __FUNCTION__); 373 } 374 375 void 376 softdep_revert_rmdir(dp, ip) 377 struct inode *dp; 378 struct inode *ip; 379 { 380 381 panic("%s called", __FUNCTION__); 382 } 383 384 void 385 softdep_setup_create(dp, ip) 386 struct inode *dp; 387 struct inode *ip; 388 { 389 390 panic("%s called", __FUNCTION__); 391 } 392 393 void 394 softdep_revert_create(dp, ip) 395 struct inode *dp; 396 struct inode *ip; 397 { 398 399 panic("%s called", __FUNCTION__); 400 } 401 402 void 403 softdep_setup_mkdir(dp, ip) 404 struct inode *dp; 405 struct inode *ip; 406 { 407 408 panic("%s called", __FUNCTION__); 409 } 410 411 void 412 softdep_revert_mkdir(dp, ip) 413 struct inode *dp; 414 struct inode *ip; 415 { 416 417 panic("%s called", __FUNCTION__); 418 } 419 420 void 421 softdep_setup_dotdot_link(dp, ip) 422 struct inode *dp; 423 struct inode *ip; 424 { 425 426 panic("%s called", __FUNCTION__); 427 } 428 429 int 430 softdep_prealloc(vp, waitok) 431 struct vnode *vp; 432 int waitok; 433 { 434 435 panic("%s called", __FUNCTION__); 436 } 437 438 int 439 softdep_journal_lookup(mp, vpp) 440 struct mount *mp; 441 struct vnode **vpp; 442 { 443 444 return (ENOENT); 445 } 446 447 void 448 softdep_change_linkcnt(ip) 449 struct inode *ip; 450 { 451 452 panic("softdep_change_linkcnt called"); 453 } 454 455 void 456 softdep_load_inodeblock(ip) 457 struct inode *ip; 458 { 459 460 panic("softdep_load_inodeblock called"); 461 } 462 463 void 464 softdep_update_inodeblock(ip, bp, waitfor) 465 struct inode *ip; 466 struct buf *bp; 467 int waitfor; 468 { 469 470 panic("softdep_update_inodeblock called"); 471 } 472 473 int 474 softdep_fsync(vp) 475 struct vnode *vp; /* the "in_core" copy of the inode */ 476 { 477 478 return (0); 479 } 480 481 void 482 softdep_fsync_mountdev(vp) 483 struct vnode *vp; 484 { 485 486 return; 487 } 488 489 int 490 softdep_flushworklist(oldmnt, countp, td) 491 struct mount *oldmnt; 492 int *countp; 493 struct thread *td; 494 { 495 496 *countp = 0; 497 return (0); 498 } 499 500 int 501 softdep_sync_metadata(struct vnode *vp) 502 { 503 504 panic("softdep_sync_metadata called"); 505 } 506 507 int 508 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 509 { 510 511 panic("softdep_sync_buf called"); 512 } 513 514 int 515 softdep_slowdown(vp) 516 struct vnode *vp; 517 { 518 519 panic("softdep_slowdown called"); 520 } 521 522 int 523 softdep_request_cleanup(fs, vp, cred, resource) 524 struct fs *fs; 525 struct vnode *vp; 526 struct ucred *cred; 527 int resource; 528 { 529 530 return (0); 531 } 532 533 int 534 softdep_check_suspend(struct mount *mp, 535 struct vnode *devvp, 536 int softdep_depcnt, 537 int softdep_accdepcnt, 538 int secondary_writes, 539 int secondary_accwrites) 540 { 541 struct bufobj *bo; 542 int error; 543 544 (void) softdep_depcnt, 545 (void) softdep_accdepcnt; 546 547 bo = &devvp->v_bufobj; 548 ASSERT_BO_WLOCKED(bo); 549 550 MNT_ILOCK(mp); 551 while (mp->mnt_secondary_writes != 0) { 552 BO_UNLOCK(bo); 553 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 554 (PUSER - 1) | PDROP, "secwr", 0); 555 BO_LOCK(bo); 556 MNT_ILOCK(mp); 557 } 558 559 /* 560 * Reasons for needing more work before suspend: 561 * - Dirty buffers on devvp. 562 * - Secondary writes occurred after start of vnode sync loop 563 */ 564 error = 0; 565 if (bo->bo_numoutput > 0 || 566 bo->bo_dirty.bv_cnt > 0 || 567 secondary_writes != 0 || 568 mp->mnt_secondary_writes != 0 || 569 secondary_accwrites != mp->mnt_secondary_accwrites) 570 error = EAGAIN; 571 BO_UNLOCK(bo); 572 return (error); 573 } 574 575 void 576 softdep_get_depcounts(struct mount *mp, 577 int *softdepactivep, 578 int *softdepactiveaccp) 579 { 580 (void) mp; 581 *softdepactivep = 0; 582 *softdepactiveaccp = 0; 583 } 584 585 void 586 softdep_buf_append(bp, wkhd) 587 struct buf *bp; 588 struct workhead *wkhd; 589 { 590 591 panic("softdep_buf_appendwork called"); 592 } 593 594 void 595 softdep_inode_append(ip, cred, wkhd) 596 struct inode *ip; 597 struct ucred *cred; 598 struct workhead *wkhd; 599 { 600 601 panic("softdep_inode_appendwork called"); 602 } 603 604 void 605 softdep_freework(wkhd) 606 struct workhead *wkhd; 607 { 608 609 panic("softdep_freework called"); 610 } 611 612 int 613 softdep_prerename(fdvp, fvp, tdvp, tvp) 614 struct vnode *fdvp; 615 struct vnode *fvp; 616 struct vnode *tdvp; 617 struct vnode *tvp; 618 { 619 620 panic("softdep_prerename called"); 621 } 622 623 int 624 softdep_prelink(dvp, vp, cnp) 625 struct vnode *dvp; 626 struct vnode *vp; 627 struct componentname *cnp; 628 { 629 630 panic("softdep_prelink called"); 631 } 632 633 #else 634 635 FEATURE(softupdates, "FFS soft-updates support"); 636 637 static SYSCTL_NODE(_debug, OID_AUTO, softdep, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 638 "soft updates stats"); 639 static SYSCTL_NODE(_debug_softdep, OID_AUTO, total, 640 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 641 "total dependencies allocated"); 642 static SYSCTL_NODE(_debug_softdep, OID_AUTO, highuse, 643 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 644 "high use dependencies allocated"); 645 static SYSCTL_NODE(_debug_softdep, OID_AUTO, current, 646 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 647 "current dependencies allocated"); 648 static SYSCTL_NODE(_debug_softdep, OID_AUTO, write, 649 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 650 "current dependencies written"); 651 652 unsigned long dep_current[D_LAST + 1]; 653 unsigned long dep_highuse[D_LAST + 1]; 654 unsigned long dep_total[D_LAST + 1]; 655 unsigned long dep_write[D_LAST + 1]; 656 657 #define SOFTDEP_TYPE(type, str, long) \ 658 static MALLOC_DEFINE(M_ ## type, #str, long); \ 659 SYSCTL_ULONG(_debug_softdep_total, OID_AUTO, str, CTLFLAG_RD, \ 660 &dep_total[D_ ## type], 0, ""); \ 661 SYSCTL_ULONG(_debug_softdep_current, OID_AUTO, str, CTLFLAG_RD, \ 662 &dep_current[D_ ## type], 0, ""); \ 663 SYSCTL_ULONG(_debug_softdep_highuse, OID_AUTO, str, CTLFLAG_RD, \ 664 &dep_highuse[D_ ## type], 0, ""); \ 665 SYSCTL_ULONG(_debug_softdep_write, OID_AUTO, str, CTLFLAG_RD, \ 666 &dep_write[D_ ## type], 0, ""); 667 668 SOFTDEP_TYPE(PAGEDEP, pagedep, "File page dependencies"); 669 SOFTDEP_TYPE(INODEDEP, inodedep, "Inode dependencies"); 670 SOFTDEP_TYPE(BMSAFEMAP, bmsafemap, 671 "Block or frag allocated from cyl group map"); 672 SOFTDEP_TYPE(NEWBLK, newblk, "New block or frag allocation dependency"); 673 SOFTDEP_TYPE(ALLOCDIRECT, allocdirect, "Block or frag dependency for an inode"); 674 SOFTDEP_TYPE(INDIRDEP, indirdep, "Indirect block dependencies"); 675 SOFTDEP_TYPE(ALLOCINDIR, allocindir, "Block dependency for an indirect block"); 676 SOFTDEP_TYPE(FREEFRAG, freefrag, "Previously used frag for an inode"); 677 SOFTDEP_TYPE(FREEBLKS, freeblks, "Blocks freed from an inode"); 678 SOFTDEP_TYPE(FREEFILE, freefile, "Inode deallocated"); 679 SOFTDEP_TYPE(DIRADD, diradd, "New directory entry"); 680 SOFTDEP_TYPE(MKDIR, mkdir, "New directory"); 681 SOFTDEP_TYPE(DIRREM, dirrem, "Directory entry deleted"); 682 SOFTDEP_TYPE(NEWDIRBLK, newdirblk, "Unclaimed new directory block"); 683 SOFTDEP_TYPE(FREEWORK, freework, "free an inode block"); 684 SOFTDEP_TYPE(FREEDEP, freedep, "track a block free"); 685 SOFTDEP_TYPE(JADDREF, jaddref, "Journal inode ref add"); 686 SOFTDEP_TYPE(JREMREF, jremref, "Journal inode ref remove"); 687 SOFTDEP_TYPE(JMVREF, jmvref, "Journal inode ref move"); 688 SOFTDEP_TYPE(JNEWBLK, jnewblk, "Journal new block"); 689 SOFTDEP_TYPE(JFREEBLK, jfreeblk, "Journal free block"); 690 SOFTDEP_TYPE(JFREEFRAG, jfreefrag, "Journal free frag"); 691 SOFTDEP_TYPE(JSEG, jseg, "Journal segment"); 692 SOFTDEP_TYPE(JSEGDEP, jsegdep, "Journal segment complete"); 693 SOFTDEP_TYPE(SBDEP, sbdep, "Superblock write dependency"); 694 SOFTDEP_TYPE(JTRUNC, jtrunc, "Journal inode truncation"); 695 SOFTDEP_TYPE(JFSYNC, jfsync, "Journal fsync complete"); 696 697 static MALLOC_DEFINE(M_SENTINEL, "sentinel", "Worklist sentinel"); 698 699 static MALLOC_DEFINE(M_SAVEDINO, "savedino", "Saved inodes"); 700 static MALLOC_DEFINE(M_JBLOCKS, "jblocks", "Journal block locations"); 701 static MALLOC_DEFINE(M_MOUNTDATA, "softdep", "Softdep per-mount data"); 702 703 #define M_SOFTDEP_FLAGS (M_WAITOK) 704 705 /* 706 * translate from workitem type to memory type 707 * MUST match the defines above, such that memtype[D_XXX] == M_XXX 708 */ 709 static struct malloc_type *memtype[] = { 710 NULL, 711 M_PAGEDEP, 712 M_INODEDEP, 713 M_BMSAFEMAP, 714 M_NEWBLK, 715 M_ALLOCDIRECT, 716 M_INDIRDEP, 717 M_ALLOCINDIR, 718 M_FREEFRAG, 719 M_FREEBLKS, 720 M_FREEFILE, 721 M_DIRADD, 722 M_MKDIR, 723 M_DIRREM, 724 M_NEWDIRBLK, 725 M_FREEWORK, 726 M_FREEDEP, 727 M_JADDREF, 728 M_JREMREF, 729 M_JMVREF, 730 M_JNEWBLK, 731 M_JFREEBLK, 732 M_JFREEFRAG, 733 M_JSEG, 734 M_JSEGDEP, 735 M_SBDEP, 736 M_JTRUNC, 737 M_JFSYNC, 738 M_SENTINEL 739 }; 740 741 #define DtoM(type) (memtype[type]) 742 743 /* 744 * Names of malloc types. 745 */ 746 #define TYPENAME(type) \ 747 ((unsigned)(type) <= D_LAST && (unsigned)(type) >= D_FIRST ? \ 748 memtype[type]->ks_shortdesc : "???") 749 /* 750 * End system adaptation definitions. 751 */ 752 753 #define DOTDOT_OFFSET offsetof(struct dirtemplate, dotdot_ino) 754 #define DOT_OFFSET offsetof(struct dirtemplate, dot_ino) 755 756 /* 757 * Internal function prototypes. 758 */ 759 static void check_clear_deps(struct mount *); 760 static void softdep_error(char *, int); 761 static int softdep_prerename_vnode(struct ufsmount *, struct vnode *); 762 static int softdep_process_worklist(struct mount *, int); 763 static int softdep_waitidle(struct mount *, int); 764 static void drain_output(struct vnode *); 765 static struct buf *getdirtybuf(struct buf *, struct rwlock *, int); 766 static int check_inodedep_free(struct inodedep *); 767 static void clear_remove(struct mount *); 768 static void clear_inodedeps(struct mount *); 769 static void unlinked_inodedep(struct mount *, struct inodedep *); 770 static void clear_unlinked_inodedep(struct inodedep *); 771 static struct inodedep *first_unlinked_inodedep(struct ufsmount *); 772 static int flush_pagedep_deps(struct vnode *, struct mount *, 773 struct diraddhd *, struct buf *); 774 static int free_pagedep(struct pagedep *); 775 static int flush_newblk_dep(struct vnode *, struct mount *, ufs_lbn_t); 776 static int flush_inodedep_deps(struct vnode *, struct mount *, ino_t); 777 static int flush_deplist(struct allocdirectlst *, int, int *); 778 static int sync_cgs(struct mount *, int); 779 static int handle_written_filepage(struct pagedep *, struct buf *, int); 780 static int handle_written_sbdep(struct sbdep *, struct buf *); 781 static void initiate_write_sbdep(struct sbdep *); 782 static void diradd_inode_written(struct diradd *, struct inodedep *); 783 static int handle_written_indirdep(struct indirdep *, struct buf *, 784 struct buf**, int); 785 static int handle_written_inodeblock(struct inodedep *, struct buf *, int); 786 static int jnewblk_rollforward(struct jnewblk *, struct fs *, struct cg *, 787 uint8_t *); 788 static int handle_written_bmsafemap(struct bmsafemap *, struct buf *, int); 789 static void handle_written_jaddref(struct jaddref *); 790 static void handle_written_jremref(struct jremref *); 791 static void handle_written_jseg(struct jseg *, struct buf *); 792 static void handle_written_jnewblk(struct jnewblk *); 793 static void handle_written_jblkdep(struct jblkdep *); 794 static void handle_written_jfreefrag(struct jfreefrag *); 795 static void complete_jseg(struct jseg *); 796 static void complete_jsegs(struct jseg *); 797 static void jseg_write(struct ufsmount *ump, struct jseg *, uint8_t *); 798 static void jaddref_write(struct jaddref *, struct jseg *, uint8_t *); 799 static void jremref_write(struct jremref *, struct jseg *, uint8_t *); 800 static void jmvref_write(struct jmvref *, struct jseg *, uint8_t *); 801 static void jtrunc_write(struct jtrunc *, struct jseg *, uint8_t *); 802 static void jfsync_write(struct jfsync *, struct jseg *, uint8_t *data); 803 static void jnewblk_write(struct jnewblk *, struct jseg *, uint8_t *); 804 static void jfreeblk_write(struct jfreeblk *, struct jseg *, uint8_t *); 805 static void jfreefrag_write(struct jfreefrag *, struct jseg *, uint8_t *); 806 static inline void inoref_write(struct inoref *, struct jseg *, 807 struct jrefrec *); 808 static void handle_allocdirect_partdone(struct allocdirect *, 809 struct workhead *); 810 static struct jnewblk *cancel_newblk(struct newblk *, struct worklist *, 811 struct workhead *); 812 static void indirdep_complete(struct indirdep *); 813 static int indirblk_lookup(struct mount *, ufs2_daddr_t); 814 static void indirblk_insert(struct freework *); 815 static void indirblk_remove(struct freework *); 816 static void handle_allocindir_partdone(struct allocindir *); 817 static void initiate_write_filepage(struct pagedep *, struct buf *); 818 static void initiate_write_indirdep(struct indirdep*, struct buf *); 819 static void handle_written_mkdir(struct mkdir *, int); 820 static int jnewblk_rollback(struct jnewblk *, struct fs *, struct cg *, 821 uint8_t *); 822 static void initiate_write_bmsafemap(struct bmsafemap *, struct buf *); 823 static void initiate_write_inodeblock_ufs1(struct inodedep *, struct buf *); 824 static void initiate_write_inodeblock_ufs2(struct inodedep *, struct buf *); 825 static void handle_workitem_freefile(struct freefile *); 826 static int handle_workitem_remove(struct dirrem *, int); 827 static struct dirrem *newdirrem(struct buf *, struct inode *, 828 struct inode *, int, struct dirrem **); 829 static struct indirdep *indirdep_lookup(struct mount *, struct inode *, 830 struct buf *); 831 static void cancel_indirdep(struct indirdep *, struct buf *, 832 struct freeblks *); 833 static void free_indirdep(struct indirdep *); 834 static void free_diradd(struct diradd *, struct workhead *); 835 static void merge_diradd(struct inodedep *, struct diradd *); 836 static void complete_diradd(struct diradd *); 837 static struct diradd *diradd_lookup(struct pagedep *, int); 838 static struct jremref *cancel_diradd_dotdot(struct inode *, struct dirrem *, 839 struct jremref *); 840 static struct jremref *cancel_mkdir_dotdot(struct inode *, struct dirrem *, 841 struct jremref *); 842 static void cancel_diradd(struct diradd *, struct dirrem *, struct jremref *, 843 struct jremref *, struct jremref *); 844 static void dirrem_journal(struct dirrem *, struct jremref *, struct jremref *, 845 struct jremref *); 846 static void cancel_allocindir(struct allocindir *, struct buf *bp, 847 struct freeblks *, int); 848 static int setup_trunc_indir(struct freeblks *, struct inode *, 849 ufs_lbn_t, ufs_lbn_t, ufs2_daddr_t); 850 static void complete_trunc_indir(struct freework *); 851 static void trunc_indirdep(struct indirdep *, struct freeblks *, struct buf *, 852 int); 853 static void complete_mkdir(struct mkdir *); 854 static void free_newdirblk(struct newdirblk *); 855 static void free_jremref(struct jremref *); 856 static void free_jaddref(struct jaddref *); 857 static void free_jsegdep(struct jsegdep *); 858 static void free_jsegs(struct jblocks *); 859 static void rele_jseg(struct jseg *); 860 static void free_jseg(struct jseg *, struct jblocks *); 861 static void free_jnewblk(struct jnewblk *); 862 static void free_jblkdep(struct jblkdep *); 863 static void free_jfreefrag(struct jfreefrag *); 864 static void free_freedep(struct freedep *); 865 static void journal_jremref(struct dirrem *, struct jremref *, 866 struct inodedep *); 867 static void cancel_jnewblk(struct jnewblk *, struct workhead *); 868 static int cancel_jaddref(struct jaddref *, struct inodedep *, 869 struct workhead *); 870 static void cancel_jfreefrag(struct jfreefrag *); 871 static inline void setup_freedirect(struct freeblks *, struct inode *, 872 int, int); 873 static inline void setup_freeext(struct freeblks *, struct inode *, int, int); 874 static inline void setup_freeindir(struct freeblks *, struct inode *, int, 875 ufs_lbn_t, int); 876 static inline struct freeblks *newfreeblks(struct mount *, struct inode *); 877 static void freeblks_free(struct ufsmount *, struct freeblks *, int); 878 static void indir_trunc(struct freework *, ufs2_daddr_t, ufs_lbn_t); 879 static ufs2_daddr_t blkcount(struct fs *, ufs2_daddr_t, off_t); 880 static int trunc_check_buf(struct buf *, int *, ufs_lbn_t, int, int); 881 static void trunc_dependencies(struct inode *, struct freeblks *, ufs_lbn_t, 882 int, int); 883 static void trunc_pages(struct inode *, off_t, ufs2_daddr_t, int); 884 static int cancel_pagedep(struct pagedep *, struct freeblks *, int); 885 static int deallocate_dependencies(struct buf *, struct freeblks *, int); 886 static void newblk_freefrag(struct newblk*); 887 static void free_newblk(struct newblk *); 888 static void cancel_allocdirect(struct allocdirectlst *, 889 struct allocdirect *, struct freeblks *); 890 static int check_inode_unwritten(struct inodedep *); 891 static int free_inodedep(struct inodedep *); 892 static void freework_freeblock(struct freework *, u_long); 893 static void freework_enqueue(struct freework *); 894 static int handle_workitem_freeblocks(struct freeblks *, int); 895 static int handle_complete_freeblocks(struct freeblks *, int); 896 static void handle_workitem_indirblk(struct freework *); 897 static void handle_written_freework(struct freework *); 898 static void merge_inode_lists(struct allocdirectlst *,struct allocdirectlst *); 899 static struct worklist *jnewblk_merge(struct worklist *, struct worklist *, 900 struct workhead *); 901 static struct freefrag *setup_allocindir_phase2(struct buf *, struct inode *, 902 struct inodedep *, struct allocindir *, ufs_lbn_t); 903 static struct allocindir *newallocindir(struct inode *, int, ufs2_daddr_t, 904 ufs2_daddr_t, ufs_lbn_t); 905 static void handle_workitem_freefrag(struct freefrag *); 906 static struct freefrag *newfreefrag(struct inode *, ufs2_daddr_t, long, 907 ufs_lbn_t, u_long); 908 static void allocdirect_merge(struct allocdirectlst *, 909 struct allocdirect *, struct allocdirect *); 910 static struct freefrag *allocindir_merge(struct allocindir *, 911 struct allocindir *); 912 static int bmsafemap_find(struct bmsafemap_hashhead *, int, 913 struct bmsafemap **); 914 static struct bmsafemap *bmsafemap_lookup(struct mount *, struct buf *, 915 int cg, struct bmsafemap *); 916 static int newblk_find(struct newblk_hashhead *, ufs2_daddr_t, int, 917 struct newblk **); 918 static int newblk_lookup(struct mount *, ufs2_daddr_t, int, struct newblk **); 919 static int inodedep_find(struct inodedep_hashhead *, ino_t, 920 struct inodedep **); 921 static int inodedep_lookup(struct mount *, ino_t, int, struct inodedep **); 922 static int pagedep_lookup(struct mount *, struct buf *bp, ino_t, ufs_lbn_t, 923 int, struct pagedep **); 924 static int pagedep_find(struct pagedep_hashhead *, ino_t, ufs_lbn_t, 925 struct pagedep **); 926 static void pause_timer(void *); 927 static int request_cleanup(struct mount *, int); 928 static int softdep_request_cleanup_flush(struct mount *, struct ufsmount *); 929 static void schedule_cleanup(struct mount *); 930 static void softdep_ast_cleanup_proc(struct thread *); 931 static struct ufsmount *softdep_bp_to_mp(struct buf *bp); 932 static int process_worklist_item(struct mount *, int, int); 933 static void process_removes(struct vnode *); 934 static void process_truncates(struct vnode *); 935 static void jwork_move(struct workhead *, struct workhead *); 936 static void jwork_insert(struct workhead *, struct jsegdep *); 937 static void add_to_worklist(struct worklist *, int); 938 static void wake_worklist(struct worklist *); 939 static void wait_worklist(struct worklist *, char *); 940 static void remove_from_worklist(struct worklist *); 941 static void softdep_flush(void *); 942 static void softdep_flushjournal(struct mount *); 943 static int softdep_speedup(struct ufsmount *); 944 static void worklist_speedup(struct mount *); 945 static int journal_mount(struct mount *, struct fs *, struct ucred *); 946 static void journal_unmount(struct ufsmount *); 947 static int journal_space(struct ufsmount *, int); 948 static void journal_suspend(struct ufsmount *); 949 static int journal_unsuspend(struct ufsmount *ump); 950 static void add_to_journal(struct worklist *); 951 static void remove_from_journal(struct worklist *); 952 static bool softdep_excess_items(struct ufsmount *, int); 953 static void softdep_process_journal(struct mount *, struct worklist *, int); 954 static struct jremref *newjremref(struct dirrem *, struct inode *, 955 struct inode *ip, off_t, nlink_t); 956 static struct jaddref *newjaddref(struct inode *, ino_t, off_t, int16_t, 957 uint16_t); 958 static inline void newinoref(struct inoref *, ino_t, ino_t, off_t, nlink_t, 959 uint16_t); 960 static inline struct jsegdep *inoref_jseg(struct inoref *); 961 static struct jmvref *newjmvref(struct inode *, ino_t, off_t, off_t); 962 static struct jfreeblk *newjfreeblk(struct freeblks *, ufs_lbn_t, 963 ufs2_daddr_t, int); 964 static void adjust_newfreework(struct freeblks *, int); 965 static struct jtrunc *newjtrunc(struct freeblks *, off_t, int); 966 static void move_newblock_dep(struct jaddref *, struct inodedep *); 967 static void cancel_jfreeblk(struct freeblks *, ufs2_daddr_t); 968 static struct jfreefrag *newjfreefrag(struct freefrag *, struct inode *, 969 ufs2_daddr_t, long, ufs_lbn_t); 970 static struct freework *newfreework(struct ufsmount *, struct freeblks *, 971 struct freework *, ufs_lbn_t, ufs2_daddr_t, int, int, int); 972 static int jwait(struct worklist *, int); 973 static struct inodedep *inodedep_lookup_ip(struct inode *); 974 static int bmsafemap_backgroundwrite(struct bmsafemap *, struct buf *); 975 static struct freefile *handle_bufwait(struct inodedep *, struct workhead *); 976 static void handle_jwork(struct workhead *); 977 static struct mkdir *setup_newdir(struct diradd *, ino_t, ino_t, struct buf *, 978 struct mkdir **); 979 static struct jblocks *jblocks_create(void); 980 static ufs2_daddr_t jblocks_alloc(struct jblocks *, int, int *); 981 static void jblocks_free(struct jblocks *, struct mount *, int); 982 static void jblocks_destroy(struct jblocks *); 983 static void jblocks_add(struct jblocks *, ufs2_daddr_t, int); 984 985 /* 986 * Exported softdep operations. 987 */ 988 static void softdep_disk_io_initiation(struct buf *); 989 static void softdep_disk_write_complete(struct buf *); 990 static void softdep_deallocate_dependencies(struct buf *); 991 static int softdep_count_dependencies(struct buf *bp, int); 992 993 /* 994 * Global lock over all of soft updates. 995 */ 996 static struct mtx lk; 997 MTX_SYSINIT(softdep_lock, &lk, "global softdep", MTX_DEF); 998 999 #define ACQUIRE_GBLLOCK(lk) mtx_lock(lk) 1000 #define FREE_GBLLOCK(lk) mtx_unlock(lk) 1001 #define GBLLOCK_OWNED(lk) mtx_assert((lk), MA_OWNED) 1002 1003 /* 1004 * Per-filesystem soft-updates locking. 1005 */ 1006 #define LOCK_PTR(ump) (&(ump)->um_softdep->sd_fslock) 1007 #define TRY_ACQUIRE_LOCK(ump) rw_try_wlock(&(ump)->um_softdep->sd_fslock) 1008 #define ACQUIRE_LOCK(ump) rw_wlock(&(ump)->um_softdep->sd_fslock) 1009 #define FREE_LOCK(ump) rw_wunlock(&(ump)->um_softdep->sd_fslock) 1010 #define LOCK_OWNED(ump) rw_assert(&(ump)->um_softdep->sd_fslock, \ 1011 RA_WLOCKED) 1012 1013 #define BUF_AREC(bp) lockallowrecurse(&(bp)->b_lock) 1014 #define BUF_NOREC(bp) lockdisablerecurse(&(bp)->b_lock) 1015 1016 /* 1017 * Worklist queue management. 1018 * These routines require that the lock be held. 1019 */ 1020 #ifndef /* NOT */ INVARIANTS 1021 #define WORKLIST_INSERT(head, item) do { \ 1022 (item)->wk_state |= ONWORKLIST; \ 1023 LIST_INSERT_HEAD(head, item, wk_list); \ 1024 } while (0) 1025 #define WORKLIST_REMOVE(item) do { \ 1026 (item)->wk_state &= ~ONWORKLIST; \ 1027 LIST_REMOVE(item, wk_list); \ 1028 } while (0) 1029 #define WORKLIST_INSERT_UNLOCKED WORKLIST_INSERT 1030 #define WORKLIST_REMOVE_UNLOCKED WORKLIST_REMOVE 1031 1032 #else /* INVARIANTS */ 1033 static void worklist_insert(struct workhead *, struct worklist *, int, 1034 const char *, int); 1035 static void worklist_remove(struct worklist *, int, const char *, int); 1036 1037 #define WORKLIST_INSERT(head, item) \ 1038 worklist_insert(head, item, 1, __func__, __LINE__) 1039 #define WORKLIST_INSERT_UNLOCKED(head, item)\ 1040 worklist_insert(head, item, 0, __func__, __LINE__) 1041 #define WORKLIST_REMOVE(item)\ 1042 worklist_remove(item, 1, __func__, __LINE__) 1043 #define WORKLIST_REMOVE_UNLOCKED(item)\ 1044 worklist_remove(item, 0, __func__, __LINE__) 1045 1046 static void 1047 worklist_insert(head, item, locked, func, line) 1048 struct workhead *head; 1049 struct worklist *item; 1050 int locked; 1051 const char *func; 1052 int line; 1053 { 1054 1055 if (locked) 1056 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1057 if (item->wk_state & ONWORKLIST) 1058 panic("worklist_insert: %p %s(0x%X) already on list, " 1059 "added in function %s at line %d", 1060 item, TYPENAME(item->wk_type), item->wk_state, 1061 item->wk_func, item->wk_line); 1062 item->wk_state |= ONWORKLIST; 1063 item->wk_func = func; 1064 item->wk_line = line; 1065 LIST_INSERT_HEAD(head, item, wk_list); 1066 } 1067 1068 static void 1069 worklist_remove(item, locked, func, line) 1070 struct worklist *item; 1071 int locked; 1072 const char *func; 1073 int line; 1074 { 1075 1076 if (locked) 1077 LOCK_OWNED(VFSTOUFS(item->wk_mp)); 1078 if ((item->wk_state & ONWORKLIST) == 0) 1079 panic("worklist_remove: %p %s(0x%X) not on list, " 1080 "removed in function %s at line %d", 1081 item, TYPENAME(item->wk_type), item->wk_state, 1082 item->wk_func, item->wk_line); 1083 item->wk_state &= ~ONWORKLIST; 1084 item->wk_func = func; 1085 item->wk_line = line; 1086 LIST_REMOVE(item, wk_list); 1087 } 1088 #endif /* INVARIANTS */ 1089 1090 /* 1091 * Merge two jsegdeps keeping only the oldest one as newer references 1092 * can't be discarded until after older references. 1093 */ 1094 static inline struct jsegdep * 1095 jsegdep_merge(struct jsegdep *one, struct jsegdep *two) 1096 { 1097 struct jsegdep *swp; 1098 1099 if (two == NULL) 1100 return (one); 1101 1102 if (one->jd_seg->js_seq > two->jd_seg->js_seq) { 1103 swp = one; 1104 one = two; 1105 two = swp; 1106 } 1107 WORKLIST_REMOVE(&two->jd_list); 1108 free_jsegdep(two); 1109 1110 return (one); 1111 } 1112 1113 /* 1114 * If two freedeps are compatible free one to reduce list size. 1115 */ 1116 static inline struct freedep * 1117 freedep_merge(struct freedep *one, struct freedep *two) 1118 { 1119 if (two == NULL) 1120 return (one); 1121 1122 if (one->fd_freework == two->fd_freework) { 1123 WORKLIST_REMOVE(&two->fd_list); 1124 free_freedep(two); 1125 } 1126 return (one); 1127 } 1128 1129 /* 1130 * Move journal work from one list to another. Duplicate freedeps and 1131 * jsegdeps are coalesced to keep the lists as small as possible. 1132 */ 1133 static void 1134 jwork_move(dst, src) 1135 struct workhead *dst; 1136 struct workhead *src; 1137 { 1138 struct freedep *freedep; 1139 struct jsegdep *jsegdep; 1140 struct worklist *wkn; 1141 struct worklist *wk; 1142 1143 KASSERT(dst != src, 1144 ("jwork_move: dst == src")); 1145 freedep = NULL; 1146 jsegdep = NULL; 1147 LIST_FOREACH_SAFE(wk, dst, wk_list, wkn) { 1148 if (wk->wk_type == D_JSEGDEP) 1149 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1150 else if (wk->wk_type == D_FREEDEP) 1151 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1152 } 1153 1154 while ((wk = LIST_FIRST(src)) != NULL) { 1155 WORKLIST_REMOVE(wk); 1156 WORKLIST_INSERT(dst, wk); 1157 if (wk->wk_type == D_JSEGDEP) { 1158 jsegdep = jsegdep_merge(WK_JSEGDEP(wk), jsegdep); 1159 continue; 1160 } 1161 if (wk->wk_type == D_FREEDEP) 1162 freedep = freedep_merge(WK_FREEDEP(wk), freedep); 1163 } 1164 } 1165 1166 static void 1167 jwork_insert(dst, jsegdep) 1168 struct workhead *dst; 1169 struct jsegdep *jsegdep; 1170 { 1171 struct jsegdep *jsegdepn; 1172 struct worklist *wk; 1173 1174 LIST_FOREACH(wk, dst, wk_list) 1175 if (wk->wk_type == D_JSEGDEP) 1176 break; 1177 if (wk == NULL) { 1178 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1179 return; 1180 } 1181 jsegdepn = WK_JSEGDEP(wk); 1182 if (jsegdep->jd_seg->js_seq < jsegdepn->jd_seg->js_seq) { 1183 WORKLIST_REMOVE(wk); 1184 free_jsegdep(jsegdepn); 1185 WORKLIST_INSERT(dst, &jsegdep->jd_list); 1186 } else 1187 free_jsegdep(jsegdep); 1188 } 1189 1190 /* 1191 * Routines for tracking and managing workitems. 1192 */ 1193 static void workitem_free(struct worklist *, int); 1194 static void workitem_alloc(struct worklist *, int, struct mount *); 1195 static void workitem_reassign(struct worklist *, int); 1196 1197 #define WORKITEM_FREE(item, type) \ 1198 workitem_free((struct worklist *)(item), (type)) 1199 #define WORKITEM_REASSIGN(item, type) \ 1200 workitem_reassign((struct worklist *)(item), (type)) 1201 1202 static void 1203 workitem_free(item, type) 1204 struct worklist *item; 1205 int type; 1206 { 1207 struct ufsmount *ump; 1208 1209 #ifdef INVARIANTS 1210 if (item->wk_state & ONWORKLIST) 1211 panic("workitem_free: %s(0x%X) still on list, " 1212 "added in function %s at line %d", 1213 TYPENAME(item->wk_type), item->wk_state, 1214 item->wk_func, item->wk_line); 1215 if (item->wk_type != type && type != D_NEWBLK) 1216 panic("workitem_free: type mismatch %s != %s", 1217 TYPENAME(item->wk_type), TYPENAME(type)); 1218 #endif 1219 if (item->wk_state & IOWAITING) 1220 wakeup(item); 1221 ump = VFSTOUFS(item->wk_mp); 1222 LOCK_OWNED(ump); 1223 KASSERT(ump->softdep_deps > 0, 1224 ("workitem_free: %s: softdep_deps going negative", 1225 ump->um_fs->fs_fsmnt)); 1226 if (--ump->softdep_deps == 0 && ump->softdep_req) 1227 wakeup(&ump->softdep_deps); 1228 KASSERT(dep_current[item->wk_type] > 0, 1229 ("workitem_free: %s: dep_current[%s] going negative", 1230 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1231 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1232 ("workitem_free: %s: softdep_curdeps[%s] going negative", 1233 ump->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1234 atomic_subtract_long(&dep_current[item->wk_type], 1); 1235 ump->softdep_curdeps[item->wk_type] -= 1; 1236 LIST_REMOVE(item, wk_all); 1237 free(item, DtoM(type)); 1238 } 1239 1240 static void 1241 workitem_alloc(item, type, mp) 1242 struct worklist *item; 1243 int type; 1244 struct mount *mp; 1245 { 1246 struct ufsmount *ump; 1247 1248 item->wk_type = type; 1249 item->wk_mp = mp; 1250 item->wk_state = 0; 1251 1252 ump = VFSTOUFS(mp); 1253 ACQUIRE_GBLLOCK(&lk); 1254 dep_current[type]++; 1255 if (dep_current[type] > dep_highuse[type]) 1256 dep_highuse[type] = dep_current[type]; 1257 dep_total[type]++; 1258 FREE_GBLLOCK(&lk); 1259 ACQUIRE_LOCK(ump); 1260 ump->softdep_curdeps[type] += 1; 1261 ump->softdep_deps++; 1262 ump->softdep_accdeps++; 1263 LIST_INSERT_HEAD(&ump->softdep_alldeps[type], item, wk_all); 1264 FREE_LOCK(ump); 1265 } 1266 1267 static void 1268 workitem_reassign(item, newtype) 1269 struct worklist *item; 1270 int newtype; 1271 { 1272 struct ufsmount *ump; 1273 1274 ump = VFSTOUFS(item->wk_mp); 1275 LOCK_OWNED(ump); 1276 KASSERT(ump->softdep_curdeps[item->wk_type] > 0, 1277 ("workitem_reassign: %s: softdep_curdeps[%s] going negative", 1278 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1279 ump->softdep_curdeps[item->wk_type] -= 1; 1280 ump->softdep_curdeps[newtype] += 1; 1281 KASSERT(dep_current[item->wk_type] > 0, 1282 ("workitem_reassign: %s: dep_current[%s] going negative", 1283 VFSTOUFS(item->wk_mp)->um_fs->fs_fsmnt, TYPENAME(item->wk_type))); 1284 ACQUIRE_GBLLOCK(&lk); 1285 dep_current[newtype]++; 1286 dep_current[item->wk_type]--; 1287 if (dep_current[newtype] > dep_highuse[newtype]) 1288 dep_highuse[newtype] = dep_current[newtype]; 1289 dep_total[newtype]++; 1290 FREE_GBLLOCK(&lk); 1291 item->wk_type = newtype; 1292 LIST_REMOVE(item, wk_all); 1293 LIST_INSERT_HEAD(&ump->softdep_alldeps[newtype], item, wk_all); 1294 } 1295 1296 /* 1297 * Workitem queue management 1298 */ 1299 static int max_softdeps; /* maximum number of structs before slowdown */ 1300 static int tickdelay = 2; /* number of ticks to pause during slowdown */ 1301 static int proc_waiting; /* tracks whether we have a timeout posted */ 1302 static int *stat_countp; /* statistic to count in proc_waiting timeout */ 1303 static struct callout softdep_callout; 1304 static int req_clear_inodedeps; /* syncer process flush some inodedeps */ 1305 static int req_clear_remove; /* syncer process flush some freeblks */ 1306 static int softdep_flushcache = 0; /* Should we do BIO_FLUSH? */ 1307 1308 /* 1309 * runtime statistics 1310 */ 1311 static int stat_flush_threads; /* number of softdep flushing threads */ 1312 static int stat_worklist_push; /* number of worklist cleanups */ 1313 static int stat_delayed_inact; /* number of delayed inactivation cleanups */ 1314 static int stat_blk_limit_push; /* number of times block limit neared */ 1315 static int stat_ino_limit_push; /* number of times inode limit neared */ 1316 static int stat_blk_limit_hit; /* number of times block slowdown imposed */ 1317 static int stat_ino_limit_hit; /* number of times inode slowdown imposed */ 1318 static int stat_sync_limit_hit; /* number of synchronous slowdowns imposed */ 1319 static int stat_indir_blk_ptrs; /* bufs redirtied as indir ptrs not written */ 1320 static int stat_inode_bitmap; /* bufs redirtied as inode bitmap not written */ 1321 static int stat_direct_blk_ptrs;/* bufs redirtied as direct ptrs not written */ 1322 static int stat_dir_entry; /* bufs redirtied as dir entry cannot write */ 1323 static int stat_jaddref; /* bufs redirtied as ino bitmap can not write */ 1324 static int stat_jnewblk; /* bufs redirtied as blk bitmap can not write */ 1325 static int stat_journal_min; /* Times hit journal min threshold */ 1326 static int stat_journal_low; /* Times hit journal low threshold */ 1327 static int stat_journal_wait; /* Times blocked in jwait(). */ 1328 static int stat_jwait_filepage; /* Times blocked in jwait() for filepage. */ 1329 static int stat_jwait_freeblks; /* Times blocked in jwait() for freeblks. */ 1330 static int stat_jwait_inode; /* Times blocked in jwait() for inodes. */ 1331 static int stat_jwait_newblk; /* Times blocked in jwait() for newblks. */ 1332 static int stat_cleanup_high_delay; /* Maximum cleanup delay (in ticks) */ 1333 static int stat_cleanup_blkrequests; /* Number of block cleanup requests */ 1334 static int stat_cleanup_inorequests; /* Number of inode cleanup requests */ 1335 static int stat_cleanup_retries; /* Number of cleanups that needed to flush */ 1336 static int stat_cleanup_failures; /* Number of cleanup requests that failed */ 1337 static int stat_emptyjblocks; /* Number of potentially empty journal blocks */ 1338 1339 SYSCTL_INT(_debug_softdep, OID_AUTO, max_softdeps, CTLFLAG_RW, 1340 &max_softdeps, 0, ""); 1341 SYSCTL_INT(_debug_softdep, OID_AUTO, tickdelay, CTLFLAG_RW, 1342 &tickdelay, 0, ""); 1343 SYSCTL_INT(_debug_softdep, OID_AUTO, flush_threads, CTLFLAG_RD, 1344 &stat_flush_threads, 0, ""); 1345 SYSCTL_INT(_debug_softdep, OID_AUTO, worklist_push, 1346 CTLFLAG_RW | CTLFLAG_STATS, &stat_worklist_push, 0,""); 1347 SYSCTL_INT(_debug_softdep, OID_AUTO, delayed_inactivations, CTLFLAG_RD, 1348 &stat_delayed_inact, 0, ""); 1349 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_push, 1350 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_push, 0,""); 1351 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_push, 1352 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_push, 0,""); 1353 SYSCTL_INT(_debug_softdep, OID_AUTO, blk_limit_hit, 1354 CTLFLAG_RW | CTLFLAG_STATS, &stat_blk_limit_hit, 0, ""); 1355 SYSCTL_INT(_debug_softdep, OID_AUTO, ino_limit_hit, 1356 CTLFLAG_RW | CTLFLAG_STATS, &stat_ino_limit_hit, 0, ""); 1357 SYSCTL_INT(_debug_softdep, OID_AUTO, sync_limit_hit, 1358 CTLFLAG_RW | CTLFLAG_STATS, &stat_sync_limit_hit, 0, ""); 1359 SYSCTL_INT(_debug_softdep, OID_AUTO, indir_blk_ptrs, 1360 CTLFLAG_RW | CTLFLAG_STATS, &stat_indir_blk_ptrs, 0, ""); 1361 SYSCTL_INT(_debug_softdep, OID_AUTO, inode_bitmap, 1362 CTLFLAG_RW | CTLFLAG_STATS, &stat_inode_bitmap, 0, ""); 1363 SYSCTL_INT(_debug_softdep, OID_AUTO, direct_blk_ptrs, 1364 CTLFLAG_RW | CTLFLAG_STATS, &stat_direct_blk_ptrs, 0, ""); 1365 SYSCTL_INT(_debug_softdep, OID_AUTO, dir_entry, 1366 CTLFLAG_RW | CTLFLAG_STATS, &stat_dir_entry, 0, ""); 1367 SYSCTL_INT(_debug_softdep, OID_AUTO, jaddref_rollback, 1368 CTLFLAG_RW | CTLFLAG_STATS, &stat_jaddref, 0, ""); 1369 SYSCTL_INT(_debug_softdep, OID_AUTO, jnewblk_rollback, 1370 CTLFLAG_RW | CTLFLAG_STATS, &stat_jnewblk, 0, ""); 1371 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_low, 1372 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_low, 0, ""); 1373 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_min, 1374 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_min, 0, ""); 1375 SYSCTL_INT(_debug_softdep, OID_AUTO, journal_wait, 1376 CTLFLAG_RW | CTLFLAG_STATS, &stat_journal_wait, 0, ""); 1377 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_filepage, 1378 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_filepage, 0, ""); 1379 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_freeblks, 1380 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_freeblks, 0, ""); 1381 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_inode, 1382 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_inode, 0, ""); 1383 SYSCTL_INT(_debug_softdep, OID_AUTO, jwait_newblk, 1384 CTLFLAG_RW | CTLFLAG_STATS, &stat_jwait_newblk, 0, ""); 1385 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_blkrequests, 1386 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_blkrequests, 0, ""); 1387 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_inorequests, 1388 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_inorequests, 0, ""); 1389 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_high_delay, 1390 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_high_delay, 0, ""); 1391 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_retries, 1392 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_retries, 0, ""); 1393 SYSCTL_INT(_debug_softdep, OID_AUTO, cleanup_failures, 1394 CTLFLAG_RW | CTLFLAG_STATS, &stat_cleanup_failures, 0, ""); 1395 1396 SYSCTL_INT(_debug_softdep, OID_AUTO, flushcache, CTLFLAG_RW, 1397 &softdep_flushcache, 0, ""); 1398 SYSCTL_INT(_debug_softdep, OID_AUTO, emptyjblocks, CTLFLAG_RD, 1399 &stat_emptyjblocks, 0, ""); 1400 1401 SYSCTL_DECL(_vfs_ffs); 1402 1403 /* Whether to recompute the summary at mount time */ 1404 static int compute_summary_at_mount = 0; 1405 SYSCTL_INT(_vfs_ffs, OID_AUTO, compute_summary_at_mount, CTLFLAG_RW, 1406 &compute_summary_at_mount, 0, "Recompute summary at mount"); 1407 static int print_threads = 0; 1408 SYSCTL_INT(_debug_softdep, OID_AUTO, print_threads, CTLFLAG_RW, 1409 &print_threads, 0, "Notify flusher thread start/stop"); 1410 1411 /* List of all filesystems mounted with soft updates */ 1412 static TAILQ_HEAD(, mount_softdeps) softdepmounts; 1413 1414 static void 1415 get_parent_vp_unlock_bp(struct mount *mp, struct buf *bp, 1416 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp) 1417 { 1418 struct diradd *dap; 1419 1420 /* 1421 * Requeue unfinished dependencies before 1422 * unlocking buffer, which could make 1423 * diraddhdp invalid. 1424 */ 1425 ACQUIRE_LOCK(VFSTOUFS(mp)); 1426 while ((dap = LIST_FIRST(unfinishedp)) != NULL) { 1427 LIST_REMOVE(dap, da_pdlist); 1428 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 1429 } 1430 FREE_LOCK(VFSTOUFS(mp)); 1431 1432 bp->b_vflags &= ~BV_SCANNED; 1433 BUF_NOREC(bp); 1434 BUF_UNLOCK(bp); 1435 } 1436 1437 /* 1438 * This function fetches inode inum on mount point mp. We already 1439 * hold a locked vnode vp, and might have a locked buffer bp belonging 1440 * to vp. 1441 1442 * We must not block on acquiring the new inode lock as we will get 1443 * into a lock-order reversal with the buffer lock and possibly get a 1444 * deadlock. Thus if we cannot instantiate the requested vnode 1445 * without sleeping on its lock, we must unlock the vnode and the 1446 * buffer before doing a blocking on the vnode lock. We return 1447 * ERELOOKUP if we have had to unlock either the vnode or the buffer so 1448 * that the caller can reassess its state. 1449 * 1450 * Top-level VFS code (for syscalls and other consumers, e.g. callers 1451 * of VOP_FSYNC() in syncer) check for ERELOOKUP and restart at safe 1452 * point. 1453 * 1454 * Since callers expect to operate on fully constructed vnode, we also 1455 * recheck v_data after relock, and return ENOENT if NULL. 1456 * 1457 * If unlocking bp, we must unroll dequeueing its unfinished 1458 * dependencies, and clear scan flag, before unlocking. If unlocking 1459 * vp while it is under deactivation, we re-queue deactivation. 1460 */ 1461 static int 1462 get_parent_vp(struct vnode *vp, struct mount *mp, ino_t inum, struct buf *bp, 1463 struct diraddhd *diraddhdp, struct diraddhd *unfinishedp, 1464 struct vnode **rvp) 1465 { 1466 struct vnode *pvp; 1467 int error; 1468 bool bplocked; 1469 1470 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked"); 1471 for (bplocked = true, pvp = NULL;;) { 1472 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE | LK_NOWAIT, &pvp, 1473 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1474 if (error == 0) { 1475 /* 1476 * Since we could have unlocked vp, the inode 1477 * number could no longer indicate a 1478 * constructed node. In this case, we must 1479 * restart the syscall. 1480 */ 1481 if (VTOI(pvp)->i_mode == 0 || !bplocked) { 1482 if (bp != NULL && bplocked) 1483 get_parent_vp_unlock_bp(mp, bp, 1484 diraddhdp, unfinishedp); 1485 if (VTOI(pvp)->i_mode == 0) 1486 vgone(pvp); 1487 error = ERELOOKUP; 1488 goto out2; 1489 } 1490 goto out1; 1491 } 1492 if (bp != NULL && bplocked) { 1493 get_parent_vp_unlock_bp(mp, bp, diraddhdp, unfinishedp); 1494 bplocked = false; 1495 } 1496 1497 /* 1498 * Do not drop vnode lock while inactivating during 1499 * vunref. This would result in leaks of the VI flags 1500 * and reclaiming of non-truncated vnode. Instead, 1501 * re-schedule inactivation hoping that we would be 1502 * able to sync inode later. 1503 */ 1504 if ((vp->v_iflag & VI_DOINGINACT) != 0 && 1505 (vp->v_vflag & VV_UNREF) != 0) { 1506 VI_LOCK(vp); 1507 vp->v_iflag |= VI_OWEINACT; 1508 VI_UNLOCK(vp); 1509 return (ERELOOKUP); 1510 } 1511 1512 VOP_UNLOCK(vp); 1513 error = ffs_vgetf(mp, inum, LK_EXCLUSIVE, &pvp, 1514 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 1515 if (error != 0) { 1516 MPASS(error != ERELOOKUP); 1517 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1518 break; 1519 } 1520 if (VTOI(pvp)->i_mode == 0) { 1521 vgone(pvp); 1522 vput(pvp); 1523 pvp = NULL; 1524 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1525 error = ERELOOKUP; 1526 break; 1527 } 1528 error = vn_lock(vp, LK_EXCLUSIVE | LK_NOWAIT); 1529 if (error == 0) 1530 break; 1531 vput(pvp); 1532 pvp = NULL; 1533 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 1534 if (vp->v_data == NULL) { 1535 error = ENOENT; 1536 break; 1537 } 1538 } 1539 if (bp != NULL) { 1540 MPASS(!bplocked); 1541 error = ERELOOKUP; 1542 } 1543 out2: 1544 if (error != 0 && pvp != NULL) { 1545 vput(pvp); 1546 pvp = NULL; 1547 } 1548 out1: 1549 *rvp = pvp; 1550 ASSERT_VOP_ELOCKED(vp, "child vnode must be locked on return"); 1551 return (error); 1552 } 1553 1554 /* 1555 * This function cleans the worklist for a filesystem. 1556 * Each filesystem running with soft dependencies gets its own 1557 * thread to run in this function. The thread is started up in 1558 * softdep_mount and shutdown in softdep_unmount. They show up 1559 * as part of the kernel "bufdaemon" process whose process 1560 * entry is available in bufdaemonproc. 1561 */ 1562 static int searchfailed; 1563 extern struct proc *bufdaemonproc; 1564 static void 1565 softdep_flush(addr) 1566 void *addr; 1567 { 1568 struct mount *mp; 1569 struct thread *td; 1570 struct ufsmount *ump; 1571 int cleanups; 1572 1573 td = curthread; 1574 td->td_pflags |= TDP_NORUNNINGBUF; 1575 mp = (struct mount *)addr; 1576 ump = VFSTOUFS(mp); 1577 atomic_add_int(&stat_flush_threads, 1); 1578 ACQUIRE_LOCK(ump); 1579 ump->softdep_flags &= ~FLUSH_STARTING; 1580 wakeup(&ump->softdep_flushtd); 1581 FREE_LOCK(ump); 1582 if (print_threads) { 1583 if (stat_flush_threads == 1) 1584 printf("Running %s at pid %d\n", bufdaemonproc->p_comm, 1585 bufdaemonproc->p_pid); 1586 printf("Start thread %s\n", td->td_name); 1587 } 1588 for (;;) { 1589 while (softdep_process_worklist(mp, 0) > 0 || 1590 (MOUNTEDSUJ(mp) && 1591 VFSTOUFS(mp)->softdep_jblocks->jb_suspended)) 1592 kthread_suspend_check(); 1593 ACQUIRE_LOCK(ump); 1594 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1595 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, 1596 "sdflush", hz / 2); 1597 ump->softdep_flags &= ~FLUSH_CLEANUP; 1598 /* 1599 * Check to see if we are done and need to exit. 1600 */ 1601 if ((ump->softdep_flags & FLUSH_EXIT) == 0) { 1602 FREE_LOCK(ump); 1603 continue; 1604 } 1605 ump->softdep_flags &= ~FLUSH_EXIT; 1606 cleanups = ump->um_softdep->sd_cleanups; 1607 FREE_LOCK(ump); 1608 wakeup(&ump->softdep_flags); 1609 if (print_threads) { 1610 printf("Stop thread %s: searchfailed %d, " 1611 "did cleanups %d\n", 1612 td->td_name, searchfailed, cleanups); 1613 } 1614 atomic_subtract_int(&stat_flush_threads, 1); 1615 kthread_exit(); 1616 panic("kthread_exit failed\n"); 1617 } 1618 } 1619 1620 static void 1621 worklist_speedup(mp) 1622 struct mount *mp; 1623 { 1624 struct ufsmount *ump; 1625 1626 ump = VFSTOUFS(mp); 1627 LOCK_OWNED(ump); 1628 if ((ump->softdep_flags & (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1629 ump->softdep_flags |= FLUSH_CLEANUP; 1630 wakeup(&ump->softdep_flushtd); 1631 } 1632 1633 static void 1634 softdep_send_speedup(struct ufsmount *ump, off_t shortage, u_int flags) 1635 { 1636 struct buf *bp; 1637 1638 if ((ump->um_flags & UM_CANSPEEDUP) == 0) 1639 return; 1640 1641 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 1642 bp->b_iocmd = BIO_SPEEDUP; 1643 bp->b_ioflags = flags; 1644 bp->b_bcount = omin(shortage, LONG_MAX); 1645 g_vfs_strategy(ump->um_bo, bp); 1646 bufwait(bp); 1647 free(bp, M_TRIM); 1648 } 1649 1650 static int 1651 softdep_speedup(ump) 1652 struct ufsmount *ump; 1653 { 1654 struct ufsmount *altump; 1655 struct mount_softdeps *sdp; 1656 1657 LOCK_OWNED(ump); 1658 worklist_speedup(ump->um_mountp); 1659 bd_speedup(); 1660 /* 1661 * If we have global shortages, then we need other 1662 * filesystems to help with the cleanup. Here we wakeup a 1663 * flusher thread for a filesystem that is over its fair 1664 * share of resources. 1665 */ 1666 if (req_clear_inodedeps || req_clear_remove) { 1667 ACQUIRE_GBLLOCK(&lk); 1668 TAILQ_FOREACH(sdp, &softdepmounts, sd_next) { 1669 if ((altump = sdp->sd_ump) == ump) 1670 continue; 1671 if (((req_clear_inodedeps && 1672 altump->softdep_curdeps[D_INODEDEP] > 1673 max_softdeps / stat_flush_threads) || 1674 (req_clear_remove && 1675 altump->softdep_curdeps[D_DIRREM] > 1676 (max_softdeps / 2) / stat_flush_threads)) && 1677 TRY_ACQUIRE_LOCK(altump)) 1678 break; 1679 } 1680 if (sdp == NULL) { 1681 searchfailed++; 1682 FREE_GBLLOCK(&lk); 1683 } else { 1684 /* 1685 * Move to the end of the list so we pick a 1686 * different one on out next try. 1687 */ 1688 TAILQ_REMOVE(&softdepmounts, sdp, sd_next); 1689 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 1690 FREE_GBLLOCK(&lk); 1691 if ((altump->softdep_flags & 1692 (FLUSH_CLEANUP | FLUSH_EXIT)) == 0) 1693 altump->softdep_flags |= FLUSH_CLEANUP; 1694 altump->um_softdep->sd_cleanups++; 1695 wakeup(&altump->softdep_flushtd); 1696 FREE_LOCK(altump); 1697 } 1698 } 1699 return (speedup_syncer()); 1700 } 1701 1702 /* 1703 * Add an item to the end of the work queue. 1704 * This routine requires that the lock be held. 1705 * This is the only routine that adds items to the list. 1706 * The following routine is the only one that removes items 1707 * and does so in order from first to last. 1708 */ 1709 1710 #define WK_HEAD 0x0001 /* Add to HEAD. */ 1711 #define WK_NODELAY 0x0002 /* Process immediately. */ 1712 1713 static void 1714 add_to_worklist(wk, flags) 1715 struct worklist *wk; 1716 int flags; 1717 { 1718 struct ufsmount *ump; 1719 1720 ump = VFSTOUFS(wk->wk_mp); 1721 LOCK_OWNED(ump); 1722 if (wk->wk_state & ONWORKLIST) 1723 panic("add_to_worklist: %s(0x%X) already on list", 1724 TYPENAME(wk->wk_type), wk->wk_state); 1725 wk->wk_state |= ONWORKLIST; 1726 if (ump->softdep_on_worklist == 0) { 1727 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1728 ump->softdep_worklist_tail = wk; 1729 } else if (flags & WK_HEAD) { 1730 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, wk, wk_list); 1731 } else { 1732 LIST_INSERT_AFTER(ump->softdep_worklist_tail, wk, wk_list); 1733 ump->softdep_worklist_tail = wk; 1734 } 1735 ump->softdep_on_worklist += 1; 1736 if (flags & WK_NODELAY) 1737 worklist_speedup(wk->wk_mp); 1738 } 1739 1740 /* 1741 * Remove the item to be processed. If we are removing the last 1742 * item on the list, we need to recalculate the tail pointer. 1743 */ 1744 static void 1745 remove_from_worklist(wk) 1746 struct worklist *wk; 1747 { 1748 struct ufsmount *ump; 1749 1750 ump = VFSTOUFS(wk->wk_mp); 1751 if (ump->softdep_worklist_tail == wk) 1752 ump->softdep_worklist_tail = 1753 (struct worklist *)wk->wk_list.le_prev; 1754 WORKLIST_REMOVE(wk); 1755 ump->softdep_on_worklist -= 1; 1756 } 1757 1758 static void 1759 wake_worklist(wk) 1760 struct worklist *wk; 1761 { 1762 if (wk->wk_state & IOWAITING) { 1763 wk->wk_state &= ~IOWAITING; 1764 wakeup(wk); 1765 } 1766 } 1767 1768 static void 1769 wait_worklist(wk, wmesg) 1770 struct worklist *wk; 1771 char *wmesg; 1772 { 1773 struct ufsmount *ump; 1774 1775 ump = VFSTOUFS(wk->wk_mp); 1776 wk->wk_state |= IOWAITING; 1777 msleep(wk, LOCK_PTR(ump), PVM, wmesg, 0); 1778 } 1779 1780 /* 1781 * Process that runs once per second to handle items in the background queue. 1782 * 1783 * Note that we ensure that everything is done in the order in which they 1784 * appear in the queue. The code below depends on this property to ensure 1785 * that blocks of a file are freed before the inode itself is freed. This 1786 * ordering ensures that no new <vfsid, inum, lbn> triples will be generated 1787 * until all the old ones have been purged from the dependency lists. 1788 */ 1789 static int 1790 softdep_process_worklist(mp, full) 1791 struct mount *mp; 1792 int full; 1793 { 1794 int cnt, matchcnt; 1795 struct ufsmount *ump; 1796 long starttime; 1797 1798 KASSERT(mp != NULL, ("softdep_process_worklist: NULL mp")); 1799 ump = VFSTOUFS(mp); 1800 if (ump->um_softdep == NULL) 1801 return (0); 1802 matchcnt = 0; 1803 ACQUIRE_LOCK(ump); 1804 starttime = time_second; 1805 softdep_process_journal(mp, NULL, full ? MNT_WAIT : 0); 1806 check_clear_deps(mp); 1807 while (ump->softdep_on_worklist > 0) { 1808 if ((cnt = process_worklist_item(mp, 10, LK_NOWAIT)) == 0) 1809 break; 1810 else 1811 matchcnt += cnt; 1812 check_clear_deps(mp); 1813 /* 1814 * We do not generally want to stop for buffer space, but if 1815 * we are really being a buffer hog, we will stop and wait. 1816 */ 1817 if (should_yield()) { 1818 FREE_LOCK(ump); 1819 kern_yield(PRI_USER); 1820 bwillwrite(); 1821 ACQUIRE_LOCK(ump); 1822 } 1823 /* 1824 * Never allow processing to run for more than one 1825 * second. This gives the syncer thread the opportunity 1826 * to pause if appropriate. 1827 */ 1828 if (!full && starttime != time_second) 1829 break; 1830 } 1831 if (full == 0) 1832 journal_unsuspend(ump); 1833 FREE_LOCK(ump); 1834 return (matchcnt); 1835 } 1836 1837 /* 1838 * Process all removes associated with a vnode if we are running out of 1839 * journal space. Any other process which attempts to flush these will 1840 * be unable as we have the vnodes locked. 1841 */ 1842 static void 1843 process_removes(vp) 1844 struct vnode *vp; 1845 { 1846 struct inodedep *inodedep; 1847 struct dirrem *dirrem; 1848 struct ufsmount *ump; 1849 struct mount *mp; 1850 ino_t inum; 1851 1852 mp = vp->v_mount; 1853 ump = VFSTOUFS(mp); 1854 LOCK_OWNED(ump); 1855 inum = VTOI(vp)->i_number; 1856 for (;;) { 1857 top: 1858 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1859 return; 1860 LIST_FOREACH(dirrem, &inodedep->id_dirremhd, dm_inonext) { 1861 /* 1862 * If another thread is trying to lock this vnode 1863 * it will fail but we must wait for it to do so 1864 * before we can proceed. 1865 */ 1866 if (dirrem->dm_state & INPROGRESS) { 1867 wait_worklist(&dirrem->dm_list, "pwrwait"); 1868 goto top; 1869 } 1870 if ((dirrem->dm_state & (COMPLETE | ONWORKLIST)) == 1871 (COMPLETE | ONWORKLIST)) 1872 break; 1873 } 1874 if (dirrem == NULL) 1875 return; 1876 remove_from_worklist(&dirrem->dm_list); 1877 FREE_LOCK(ump); 1878 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 1879 panic("process_removes: suspended filesystem"); 1880 handle_workitem_remove(dirrem, 0); 1881 vn_finished_secondary_write(mp); 1882 ACQUIRE_LOCK(ump); 1883 } 1884 } 1885 1886 /* 1887 * Process all truncations associated with a vnode if we are running out 1888 * of journal space. This is called when the vnode lock is already held 1889 * and no other process can clear the truncation. This function returns 1890 * a value greater than zero if it did any work. 1891 */ 1892 static void 1893 process_truncates(vp) 1894 struct vnode *vp; 1895 { 1896 struct inodedep *inodedep; 1897 struct freeblks *freeblks; 1898 struct ufsmount *ump; 1899 struct mount *mp; 1900 ino_t inum; 1901 int cgwait; 1902 1903 mp = vp->v_mount; 1904 ump = VFSTOUFS(mp); 1905 LOCK_OWNED(ump); 1906 inum = VTOI(vp)->i_number; 1907 for (;;) { 1908 if (inodedep_lookup(mp, inum, 0, &inodedep) == 0) 1909 return; 1910 cgwait = 0; 1911 TAILQ_FOREACH(freeblks, &inodedep->id_freeblklst, fb_next) { 1912 /* Journal entries not yet written. */ 1913 if (!LIST_EMPTY(&freeblks->fb_jblkdephd)) { 1914 jwait(&LIST_FIRST( 1915 &freeblks->fb_jblkdephd)->jb_list, 1916 MNT_WAIT); 1917 break; 1918 } 1919 /* Another thread is executing this item. */ 1920 if (freeblks->fb_state & INPROGRESS) { 1921 wait_worklist(&freeblks->fb_list, "ptrwait"); 1922 break; 1923 } 1924 /* Freeblks is waiting on a inode write. */ 1925 if ((freeblks->fb_state & COMPLETE) == 0) { 1926 FREE_LOCK(ump); 1927 ffs_update(vp, 1); 1928 ACQUIRE_LOCK(ump); 1929 break; 1930 } 1931 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST)) == 1932 (ALLCOMPLETE | ONWORKLIST)) { 1933 remove_from_worklist(&freeblks->fb_list); 1934 freeblks->fb_state |= INPROGRESS; 1935 FREE_LOCK(ump); 1936 if (vn_start_secondary_write(NULL, &mp, 1937 V_NOWAIT)) 1938 panic("process_truncates: " 1939 "suspended filesystem"); 1940 handle_workitem_freeblocks(freeblks, 0); 1941 vn_finished_secondary_write(mp); 1942 ACQUIRE_LOCK(ump); 1943 break; 1944 } 1945 if (freeblks->fb_cgwait) 1946 cgwait++; 1947 } 1948 if (cgwait) { 1949 FREE_LOCK(ump); 1950 sync_cgs(mp, MNT_WAIT); 1951 ffs_sync_snap(mp, MNT_WAIT); 1952 ACQUIRE_LOCK(ump); 1953 continue; 1954 } 1955 if (freeblks == NULL) 1956 break; 1957 } 1958 return; 1959 } 1960 1961 /* 1962 * Process one item on the worklist. 1963 */ 1964 static int 1965 process_worklist_item(mp, target, flags) 1966 struct mount *mp; 1967 int target; 1968 int flags; 1969 { 1970 struct worklist sentinel; 1971 struct worklist *wk; 1972 struct ufsmount *ump; 1973 int matchcnt; 1974 int error; 1975 1976 KASSERT(mp != NULL, ("process_worklist_item: NULL mp")); 1977 /* 1978 * If we are being called because of a process doing a 1979 * copy-on-write, then it is not safe to write as we may 1980 * recurse into the copy-on-write routine. 1981 */ 1982 if (curthread->td_pflags & TDP_COWINPROGRESS) 1983 return (-1); 1984 PHOLD(curproc); /* Don't let the stack go away. */ 1985 ump = VFSTOUFS(mp); 1986 LOCK_OWNED(ump); 1987 matchcnt = 0; 1988 sentinel.wk_mp = NULL; 1989 sentinel.wk_type = D_SENTINEL; 1990 LIST_INSERT_HEAD(&ump->softdep_workitem_pending, &sentinel, wk_list); 1991 for (wk = LIST_NEXT(&sentinel, wk_list); wk != NULL; 1992 wk = LIST_NEXT(&sentinel, wk_list)) { 1993 if (wk->wk_type == D_SENTINEL) { 1994 LIST_REMOVE(&sentinel, wk_list); 1995 LIST_INSERT_AFTER(wk, &sentinel, wk_list); 1996 continue; 1997 } 1998 if (wk->wk_state & INPROGRESS) 1999 panic("process_worklist_item: %p already in progress.", 2000 wk); 2001 wk->wk_state |= INPROGRESS; 2002 remove_from_worklist(wk); 2003 FREE_LOCK(ump); 2004 if (vn_start_secondary_write(NULL, &mp, V_NOWAIT)) 2005 panic("process_worklist_item: suspended filesystem"); 2006 switch (wk->wk_type) { 2007 case D_DIRREM: 2008 /* removal of a directory entry */ 2009 error = handle_workitem_remove(WK_DIRREM(wk), flags); 2010 break; 2011 2012 case D_FREEBLKS: 2013 /* releasing blocks and/or fragments from a file */ 2014 error = handle_workitem_freeblocks(WK_FREEBLKS(wk), 2015 flags); 2016 break; 2017 2018 case D_FREEFRAG: 2019 /* releasing a fragment when replaced as a file grows */ 2020 handle_workitem_freefrag(WK_FREEFRAG(wk)); 2021 error = 0; 2022 break; 2023 2024 case D_FREEFILE: 2025 /* releasing an inode when its link count drops to 0 */ 2026 handle_workitem_freefile(WK_FREEFILE(wk)); 2027 error = 0; 2028 break; 2029 2030 default: 2031 panic("%s_process_worklist: Unknown type %s", 2032 "softdep", TYPENAME(wk->wk_type)); 2033 /* NOTREACHED */ 2034 } 2035 vn_finished_secondary_write(mp); 2036 ACQUIRE_LOCK(ump); 2037 if (error == 0) { 2038 if (++matchcnt == target) 2039 break; 2040 continue; 2041 } 2042 /* 2043 * We have to retry the worklist item later. Wake up any 2044 * waiters who may be able to complete it immediately and 2045 * add the item back to the head so we don't try to execute 2046 * it again. 2047 */ 2048 wk->wk_state &= ~INPROGRESS; 2049 wake_worklist(wk); 2050 add_to_worklist(wk, WK_HEAD); 2051 } 2052 /* Sentinal could've become the tail from remove_from_worklist. */ 2053 if (ump->softdep_worklist_tail == &sentinel) 2054 ump->softdep_worklist_tail = 2055 (struct worklist *)sentinel.wk_list.le_prev; 2056 LIST_REMOVE(&sentinel, wk_list); 2057 PRELE(curproc); 2058 return (matchcnt); 2059 } 2060 2061 /* 2062 * Move dependencies from one buffer to another. 2063 */ 2064 int 2065 softdep_move_dependencies(oldbp, newbp) 2066 struct buf *oldbp; 2067 struct buf *newbp; 2068 { 2069 struct worklist *wk, *wktail; 2070 struct ufsmount *ump; 2071 int dirty; 2072 2073 if ((wk = LIST_FIRST(&oldbp->b_dep)) == NULL) 2074 return (0); 2075 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 2076 ("softdep_move_dependencies called on non-softdep filesystem")); 2077 dirty = 0; 2078 wktail = NULL; 2079 ump = VFSTOUFS(wk->wk_mp); 2080 ACQUIRE_LOCK(ump); 2081 while ((wk = LIST_FIRST(&oldbp->b_dep)) != NULL) { 2082 LIST_REMOVE(wk, wk_list); 2083 if (wk->wk_type == D_BMSAFEMAP && 2084 bmsafemap_backgroundwrite(WK_BMSAFEMAP(wk), newbp)) 2085 dirty = 1; 2086 if (wktail == NULL) 2087 LIST_INSERT_HEAD(&newbp->b_dep, wk, wk_list); 2088 else 2089 LIST_INSERT_AFTER(wktail, wk, wk_list); 2090 wktail = wk; 2091 } 2092 FREE_LOCK(ump); 2093 2094 return (dirty); 2095 } 2096 2097 /* 2098 * Purge the work list of all items associated with a particular mount point. 2099 */ 2100 int 2101 softdep_flushworklist(oldmnt, countp, td) 2102 struct mount *oldmnt; 2103 int *countp; 2104 struct thread *td; 2105 { 2106 struct vnode *devvp; 2107 struct ufsmount *ump; 2108 int count, error; 2109 2110 /* 2111 * Alternately flush the block device associated with the mount 2112 * point and process any dependencies that the flushing 2113 * creates. We continue until no more worklist dependencies 2114 * are found. 2115 */ 2116 *countp = 0; 2117 error = 0; 2118 ump = VFSTOUFS(oldmnt); 2119 devvp = ump->um_devvp; 2120 while ((count = softdep_process_worklist(oldmnt, 1)) > 0) { 2121 *countp += count; 2122 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2123 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2124 VOP_UNLOCK(devvp); 2125 if (error != 0) 2126 break; 2127 } 2128 return (error); 2129 } 2130 2131 #define SU_WAITIDLE_RETRIES 20 2132 static int 2133 softdep_waitidle(struct mount *mp, int flags __unused) 2134 { 2135 struct ufsmount *ump; 2136 struct vnode *devvp; 2137 struct thread *td; 2138 int error, i; 2139 2140 ump = VFSTOUFS(mp); 2141 KASSERT(ump->um_softdep != NULL, 2142 ("softdep_waitidle called on non-softdep filesystem")); 2143 devvp = ump->um_devvp; 2144 td = curthread; 2145 error = 0; 2146 ACQUIRE_LOCK(ump); 2147 for (i = 0; i < SU_WAITIDLE_RETRIES && ump->softdep_deps != 0; i++) { 2148 ump->softdep_req = 1; 2149 KASSERT((flags & FORCECLOSE) == 0 || 2150 ump->softdep_on_worklist == 0, 2151 ("softdep_waitidle: work added after flush")); 2152 msleep(&ump->softdep_deps, LOCK_PTR(ump), PVM | PDROP, 2153 "softdeps", 10 * hz); 2154 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 2155 error = VOP_FSYNC(devvp, MNT_WAIT, td); 2156 VOP_UNLOCK(devvp); 2157 ACQUIRE_LOCK(ump); 2158 if (error != 0) 2159 break; 2160 } 2161 ump->softdep_req = 0; 2162 if (i == SU_WAITIDLE_RETRIES && error == 0 && ump->softdep_deps != 0) { 2163 error = EBUSY; 2164 printf("softdep_waitidle: Failed to flush worklist for %p\n", 2165 mp); 2166 } 2167 FREE_LOCK(ump); 2168 return (error); 2169 } 2170 2171 /* 2172 * Flush all vnodes and worklist items associated with a specified mount point. 2173 */ 2174 int 2175 softdep_flushfiles(oldmnt, flags, td) 2176 struct mount *oldmnt; 2177 int flags; 2178 struct thread *td; 2179 { 2180 struct ufsmount *ump; 2181 #ifdef QUOTA 2182 int i; 2183 #endif 2184 int error, early, depcount, loopcnt, retry_flush_count, retry; 2185 int morework; 2186 2187 ump = VFSTOUFS(oldmnt); 2188 KASSERT(ump->um_softdep != NULL, 2189 ("softdep_flushfiles called on non-softdep filesystem")); 2190 loopcnt = 10; 2191 retry_flush_count = 3; 2192 retry_flush: 2193 error = 0; 2194 2195 /* 2196 * Alternately flush the vnodes associated with the mount 2197 * point and process any dependencies that the flushing 2198 * creates. In theory, this loop can happen at most twice, 2199 * but we give it a few extra just to be sure. 2200 */ 2201 for (; loopcnt > 0; loopcnt--) { 2202 /* 2203 * Do another flush in case any vnodes were brought in 2204 * as part of the cleanup operations. 2205 */ 2206 early = retry_flush_count == 1 || (oldmnt->mnt_kern_flag & 2207 MNTK_UNMOUNT) == 0 ? 0 : EARLYFLUSH; 2208 if ((error = ffs_flushfiles(oldmnt, flags | early, td)) != 0) 2209 break; 2210 if ((error = softdep_flushworklist(oldmnt, &depcount, td)) != 0 || 2211 depcount == 0) 2212 break; 2213 } 2214 /* 2215 * If we are unmounting then it is an error to fail. If we 2216 * are simply trying to downgrade to read-only, then filesystem 2217 * activity can keep us busy forever, so we just fail with EBUSY. 2218 */ 2219 if (loopcnt == 0) { 2220 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) 2221 panic("softdep_flushfiles: looping"); 2222 error = EBUSY; 2223 } 2224 if (!error) 2225 error = softdep_waitidle(oldmnt, flags); 2226 if (!error) { 2227 if (oldmnt->mnt_kern_flag & MNTK_UNMOUNT) { 2228 retry = 0; 2229 MNT_ILOCK(oldmnt); 2230 morework = oldmnt->mnt_nvnodelistsize > 0; 2231 #ifdef QUOTA 2232 UFS_LOCK(ump); 2233 for (i = 0; i < MAXQUOTAS; i++) { 2234 if (ump->um_quotas[i] != NULLVP) 2235 morework = 1; 2236 } 2237 UFS_UNLOCK(ump); 2238 #endif 2239 if (morework) { 2240 if (--retry_flush_count > 0) { 2241 retry = 1; 2242 loopcnt = 3; 2243 } else 2244 error = EBUSY; 2245 } 2246 MNT_IUNLOCK(oldmnt); 2247 if (retry) 2248 goto retry_flush; 2249 } 2250 } 2251 return (error); 2252 } 2253 2254 /* 2255 * Structure hashing. 2256 * 2257 * There are four types of structures that can be looked up: 2258 * 1) pagedep structures identified by mount point, inode number, 2259 * and logical block. 2260 * 2) inodedep structures identified by mount point and inode number. 2261 * 3) newblk structures identified by mount point and 2262 * physical block number. 2263 * 4) bmsafemap structures identified by mount point and 2264 * cylinder group number. 2265 * 2266 * The "pagedep" and "inodedep" dependency structures are hashed 2267 * separately from the file blocks and inodes to which they correspond. 2268 * This separation helps when the in-memory copy of an inode or 2269 * file block must be replaced. It also obviates the need to access 2270 * an inode or file page when simply updating (or de-allocating) 2271 * dependency structures. Lookup of newblk structures is needed to 2272 * find newly allocated blocks when trying to associate them with 2273 * their allocdirect or allocindir structure. 2274 * 2275 * The lookup routines optionally create and hash a new instance when 2276 * an existing entry is not found. The bmsafemap lookup routine always 2277 * allocates a new structure if an existing one is not found. 2278 */ 2279 #define DEPALLOC 0x0001 /* allocate structure if lookup fails */ 2280 2281 /* 2282 * Structures and routines associated with pagedep caching. 2283 */ 2284 #define PAGEDEP_HASH(ump, inum, lbn) \ 2285 (&(ump)->pagedep_hashtbl[((inum) + (lbn)) & (ump)->pagedep_hash_size]) 2286 2287 static int 2288 pagedep_find(pagedephd, ino, lbn, pagedeppp) 2289 struct pagedep_hashhead *pagedephd; 2290 ino_t ino; 2291 ufs_lbn_t lbn; 2292 struct pagedep **pagedeppp; 2293 { 2294 struct pagedep *pagedep; 2295 2296 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 2297 if (ino == pagedep->pd_ino && lbn == pagedep->pd_lbn) { 2298 *pagedeppp = pagedep; 2299 return (1); 2300 } 2301 } 2302 *pagedeppp = NULL; 2303 return (0); 2304 } 2305 /* 2306 * Look up a pagedep. Return 1 if found, 0 otherwise. 2307 * If not found, allocate if DEPALLOC flag is passed. 2308 * Found or allocated entry is returned in pagedeppp. 2309 */ 2310 static int 2311 pagedep_lookup(mp, bp, ino, lbn, flags, pagedeppp) 2312 struct mount *mp; 2313 struct buf *bp; 2314 ino_t ino; 2315 ufs_lbn_t lbn; 2316 int flags; 2317 struct pagedep **pagedeppp; 2318 { 2319 struct pagedep *pagedep; 2320 struct pagedep_hashhead *pagedephd; 2321 struct worklist *wk; 2322 struct ufsmount *ump; 2323 int ret; 2324 int i; 2325 2326 ump = VFSTOUFS(mp); 2327 LOCK_OWNED(ump); 2328 if (bp) { 2329 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 2330 if (wk->wk_type == D_PAGEDEP) { 2331 *pagedeppp = WK_PAGEDEP(wk); 2332 return (1); 2333 } 2334 } 2335 } 2336 pagedephd = PAGEDEP_HASH(ump, ino, lbn); 2337 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2338 if (ret) { 2339 if (((*pagedeppp)->pd_state & ONWORKLIST) == 0 && bp) 2340 WORKLIST_INSERT(&bp->b_dep, &(*pagedeppp)->pd_list); 2341 return (1); 2342 } 2343 if ((flags & DEPALLOC) == 0) 2344 return (0); 2345 FREE_LOCK(ump); 2346 pagedep = malloc(sizeof(struct pagedep), 2347 M_PAGEDEP, M_SOFTDEP_FLAGS|M_ZERO); 2348 workitem_alloc(&pagedep->pd_list, D_PAGEDEP, mp); 2349 ACQUIRE_LOCK(ump); 2350 ret = pagedep_find(pagedephd, ino, lbn, pagedeppp); 2351 if (*pagedeppp) { 2352 /* 2353 * This should never happen since we only create pagedeps 2354 * with the vnode lock held. Could be an assert. 2355 */ 2356 WORKITEM_FREE(pagedep, D_PAGEDEP); 2357 return (ret); 2358 } 2359 pagedep->pd_ino = ino; 2360 pagedep->pd_lbn = lbn; 2361 LIST_INIT(&pagedep->pd_dirremhd); 2362 LIST_INIT(&pagedep->pd_pendinghd); 2363 for (i = 0; i < DAHASHSZ; i++) 2364 LIST_INIT(&pagedep->pd_diraddhd[i]); 2365 LIST_INSERT_HEAD(pagedephd, pagedep, pd_hash); 2366 WORKLIST_INSERT(&bp->b_dep, &pagedep->pd_list); 2367 *pagedeppp = pagedep; 2368 return (0); 2369 } 2370 2371 /* 2372 * Structures and routines associated with inodedep caching. 2373 */ 2374 #define INODEDEP_HASH(ump, inum) \ 2375 (&(ump)->inodedep_hashtbl[(inum) & (ump)->inodedep_hash_size]) 2376 2377 static int 2378 inodedep_find(inodedephd, inum, inodedeppp) 2379 struct inodedep_hashhead *inodedephd; 2380 ino_t inum; 2381 struct inodedep **inodedeppp; 2382 { 2383 struct inodedep *inodedep; 2384 2385 LIST_FOREACH(inodedep, inodedephd, id_hash) 2386 if (inum == inodedep->id_ino) 2387 break; 2388 if (inodedep) { 2389 *inodedeppp = inodedep; 2390 return (1); 2391 } 2392 *inodedeppp = NULL; 2393 2394 return (0); 2395 } 2396 /* 2397 * Look up an inodedep. Return 1 if found, 0 if not found. 2398 * If not found, allocate if DEPALLOC flag is passed. 2399 * Found or allocated entry is returned in inodedeppp. 2400 */ 2401 static int 2402 inodedep_lookup(mp, inum, flags, inodedeppp) 2403 struct mount *mp; 2404 ino_t inum; 2405 int flags; 2406 struct inodedep **inodedeppp; 2407 { 2408 struct inodedep *inodedep; 2409 struct inodedep_hashhead *inodedephd; 2410 struct ufsmount *ump; 2411 struct fs *fs; 2412 2413 ump = VFSTOUFS(mp); 2414 LOCK_OWNED(ump); 2415 fs = ump->um_fs; 2416 inodedephd = INODEDEP_HASH(ump, inum); 2417 2418 if (inodedep_find(inodedephd, inum, inodedeppp)) 2419 return (1); 2420 if ((flags & DEPALLOC) == 0) 2421 return (0); 2422 /* 2423 * If the system is over its limit and our filesystem is 2424 * responsible for more than our share of that usage and 2425 * we are not in a rush, request some inodedep cleanup. 2426 */ 2427 if (softdep_excess_items(ump, D_INODEDEP)) 2428 schedule_cleanup(mp); 2429 else 2430 FREE_LOCK(ump); 2431 inodedep = malloc(sizeof(struct inodedep), 2432 M_INODEDEP, M_SOFTDEP_FLAGS); 2433 workitem_alloc(&inodedep->id_list, D_INODEDEP, mp); 2434 ACQUIRE_LOCK(ump); 2435 if (inodedep_find(inodedephd, inum, inodedeppp)) { 2436 WORKITEM_FREE(inodedep, D_INODEDEP); 2437 return (1); 2438 } 2439 inodedep->id_fs = fs; 2440 inodedep->id_ino = inum; 2441 inodedep->id_state = ALLCOMPLETE; 2442 inodedep->id_nlinkdelta = 0; 2443 inodedep->id_nlinkwrote = -1; 2444 inodedep->id_savedino1 = NULL; 2445 inodedep->id_savedsize = -1; 2446 inodedep->id_savedextsize = -1; 2447 inodedep->id_savednlink = -1; 2448 inodedep->id_bmsafemap = NULL; 2449 inodedep->id_mkdiradd = NULL; 2450 LIST_INIT(&inodedep->id_dirremhd); 2451 LIST_INIT(&inodedep->id_pendinghd); 2452 LIST_INIT(&inodedep->id_inowait); 2453 LIST_INIT(&inodedep->id_bufwait); 2454 TAILQ_INIT(&inodedep->id_inoreflst); 2455 TAILQ_INIT(&inodedep->id_inoupdt); 2456 TAILQ_INIT(&inodedep->id_newinoupdt); 2457 TAILQ_INIT(&inodedep->id_extupdt); 2458 TAILQ_INIT(&inodedep->id_newextupdt); 2459 TAILQ_INIT(&inodedep->id_freeblklst); 2460 LIST_INSERT_HEAD(inodedephd, inodedep, id_hash); 2461 *inodedeppp = inodedep; 2462 return (0); 2463 } 2464 2465 /* 2466 * Structures and routines associated with newblk caching. 2467 */ 2468 #define NEWBLK_HASH(ump, inum) \ 2469 (&(ump)->newblk_hashtbl[(inum) & (ump)->newblk_hash_size]) 2470 2471 static int 2472 newblk_find(newblkhd, newblkno, flags, newblkpp) 2473 struct newblk_hashhead *newblkhd; 2474 ufs2_daddr_t newblkno; 2475 int flags; 2476 struct newblk **newblkpp; 2477 { 2478 struct newblk *newblk; 2479 2480 LIST_FOREACH(newblk, newblkhd, nb_hash) { 2481 if (newblkno != newblk->nb_newblkno) 2482 continue; 2483 /* 2484 * If we're creating a new dependency don't match those that 2485 * have already been converted to allocdirects. This is for 2486 * a frag extend. 2487 */ 2488 if ((flags & DEPALLOC) && newblk->nb_list.wk_type != D_NEWBLK) 2489 continue; 2490 break; 2491 } 2492 if (newblk) { 2493 *newblkpp = newblk; 2494 return (1); 2495 } 2496 *newblkpp = NULL; 2497 return (0); 2498 } 2499 2500 /* 2501 * Look up a newblk. Return 1 if found, 0 if not found. 2502 * If not found, allocate if DEPALLOC flag is passed. 2503 * Found or allocated entry is returned in newblkpp. 2504 */ 2505 static int 2506 newblk_lookup(mp, newblkno, flags, newblkpp) 2507 struct mount *mp; 2508 ufs2_daddr_t newblkno; 2509 int flags; 2510 struct newblk **newblkpp; 2511 { 2512 struct newblk *newblk; 2513 struct newblk_hashhead *newblkhd; 2514 struct ufsmount *ump; 2515 2516 ump = VFSTOUFS(mp); 2517 LOCK_OWNED(ump); 2518 newblkhd = NEWBLK_HASH(ump, newblkno); 2519 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) 2520 return (1); 2521 if ((flags & DEPALLOC) == 0) 2522 return (0); 2523 if (softdep_excess_items(ump, D_NEWBLK) || 2524 softdep_excess_items(ump, D_ALLOCDIRECT) || 2525 softdep_excess_items(ump, D_ALLOCINDIR)) 2526 schedule_cleanup(mp); 2527 else 2528 FREE_LOCK(ump); 2529 newblk = malloc(sizeof(union allblk), M_NEWBLK, 2530 M_SOFTDEP_FLAGS | M_ZERO); 2531 workitem_alloc(&newblk->nb_list, D_NEWBLK, mp); 2532 ACQUIRE_LOCK(ump); 2533 if (newblk_find(newblkhd, newblkno, flags, newblkpp)) { 2534 WORKITEM_FREE(newblk, D_NEWBLK); 2535 return (1); 2536 } 2537 newblk->nb_freefrag = NULL; 2538 LIST_INIT(&newblk->nb_indirdeps); 2539 LIST_INIT(&newblk->nb_newdirblk); 2540 LIST_INIT(&newblk->nb_jwork); 2541 newblk->nb_state = ATTACHED; 2542 newblk->nb_newblkno = newblkno; 2543 LIST_INSERT_HEAD(newblkhd, newblk, nb_hash); 2544 *newblkpp = newblk; 2545 return (0); 2546 } 2547 2548 /* 2549 * Structures and routines associated with freed indirect block caching. 2550 */ 2551 #define INDIR_HASH(ump, blkno) \ 2552 (&(ump)->indir_hashtbl[(blkno) & (ump)->indir_hash_size]) 2553 2554 /* 2555 * Lookup an indirect block in the indir hash table. The freework is 2556 * removed and potentially freed. The caller must do a blocking journal 2557 * write before writing to the blkno. 2558 */ 2559 static int 2560 indirblk_lookup(mp, blkno) 2561 struct mount *mp; 2562 ufs2_daddr_t blkno; 2563 { 2564 struct freework *freework; 2565 struct indir_hashhead *wkhd; 2566 struct ufsmount *ump; 2567 2568 ump = VFSTOUFS(mp); 2569 wkhd = INDIR_HASH(ump, blkno); 2570 TAILQ_FOREACH(freework, wkhd, fw_next) { 2571 if (freework->fw_blkno != blkno) 2572 continue; 2573 indirblk_remove(freework); 2574 return (1); 2575 } 2576 return (0); 2577 } 2578 2579 /* 2580 * Insert an indirect block represented by freework into the indirblk 2581 * hash table so that it may prevent the block from being re-used prior 2582 * to the journal being written. 2583 */ 2584 static void 2585 indirblk_insert(freework) 2586 struct freework *freework; 2587 { 2588 struct jblocks *jblocks; 2589 struct jseg *jseg; 2590 struct ufsmount *ump; 2591 2592 ump = VFSTOUFS(freework->fw_list.wk_mp); 2593 jblocks = ump->softdep_jblocks; 2594 jseg = TAILQ_LAST(&jblocks->jb_segs, jseglst); 2595 if (jseg == NULL) 2596 return; 2597 2598 LIST_INSERT_HEAD(&jseg->js_indirs, freework, fw_segs); 2599 TAILQ_INSERT_HEAD(INDIR_HASH(ump, freework->fw_blkno), freework, 2600 fw_next); 2601 freework->fw_state &= ~DEPCOMPLETE; 2602 } 2603 2604 static void 2605 indirblk_remove(freework) 2606 struct freework *freework; 2607 { 2608 struct ufsmount *ump; 2609 2610 ump = VFSTOUFS(freework->fw_list.wk_mp); 2611 LIST_REMOVE(freework, fw_segs); 2612 TAILQ_REMOVE(INDIR_HASH(ump, freework->fw_blkno), freework, fw_next); 2613 freework->fw_state |= DEPCOMPLETE; 2614 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 2615 WORKITEM_FREE(freework, D_FREEWORK); 2616 } 2617 2618 /* 2619 * Executed during filesystem system initialization before 2620 * mounting any filesystems. 2621 */ 2622 void 2623 softdep_initialize() 2624 { 2625 2626 TAILQ_INIT(&softdepmounts); 2627 #ifdef __LP64__ 2628 max_softdeps = desiredvnodes * 4; 2629 #else 2630 max_softdeps = desiredvnodes * 2; 2631 #endif 2632 2633 /* initialise bioops hack */ 2634 bioops.io_start = softdep_disk_io_initiation; 2635 bioops.io_complete = softdep_disk_write_complete; 2636 bioops.io_deallocate = softdep_deallocate_dependencies; 2637 bioops.io_countdeps = softdep_count_dependencies; 2638 softdep_ast_cleanup = softdep_ast_cleanup_proc; 2639 2640 /* Initialize the callout with an mtx. */ 2641 callout_init_mtx(&softdep_callout, &lk, 0); 2642 } 2643 2644 /* 2645 * Executed after all filesystems have been unmounted during 2646 * filesystem module unload. 2647 */ 2648 void 2649 softdep_uninitialize() 2650 { 2651 2652 /* clear bioops hack */ 2653 bioops.io_start = NULL; 2654 bioops.io_complete = NULL; 2655 bioops.io_deallocate = NULL; 2656 bioops.io_countdeps = NULL; 2657 softdep_ast_cleanup = NULL; 2658 2659 callout_drain(&softdep_callout); 2660 } 2661 2662 /* 2663 * Called at mount time to notify the dependency code that a 2664 * filesystem wishes to use it. 2665 */ 2666 int 2667 softdep_mount(devvp, mp, fs, cred) 2668 struct vnode *devvp; 2669 struct mount *mp; 2670 struct fs *fs; 2671 struct ucred *cred; 2672 { 2673 struct csum_total cstotal; 2674 struct mount_softdeps *sdp; 2675 struct ufsmount *ump; 2676 struct cg *cgp; 2677 struct buf *bp; 2678 u_int cyl, i; 2679 int error; 2680 2681 ump = VFSTOUFS(mp); 2682 2683 sdp = malloc(sizeof(struct mount_softdeps), M_MOUNTDATA, 2684 M_WAITOK | M_ZERO); 2685 rw_init(&sdp->sd_fslock, "SUrw"); 2686 sdp->sd_ump = ump; 2687 LIST_INIT(&sdp->sd_workitem_pending); 2688 LIST_INIT(&sdp->sd_journal_pending); 2689 TAILQ_INIT(&sdp->sd_unlinked); 2690 LIST_INIT(&sdp->sd_dirtycg); 2691 sdp->sd_worklist_tail = NULL; 2692 sdp->sd_on_worklist = 0; 2693 sdp->sd_deps = 0; 2694 LIST_INIT(&sdp->sd_mkdirlisthd); 2695 sdp->sd_pdhash = hashinit(desiredvnodes / 5, M_PAGEDEP, 2696 &sdp->sd_pdhashsize); 2697 sdp->sd_pdnextclean = 0; 2698 sdp->sd_idhash = hashinit(desiredvnodes, M_INODEDEP, 2699 &sdp->sd_idhashsize); 2700 sdp->sd_idnextclean = 0; 2701 sdp->sd_newblkhash = hashinit(max_softdeps / 2, M_NEWBLK, 2702 &sdp->sd_newblkhashsize); 2703 sdp->sd_bmhash = hashinit(1024, M_BMSAFEMAP, &sdp->sd_bmhashsize); 2704 i = 1 << (ffs(desiredvnodes / 10) - 1); 2705 sdp->sd_indirhash = malloc(i * sizeof(struct indir_hashhead), 2706 M_FREEWORK, M_WAITOK); 2707 sdp->sd_indirhashsize = i - 1; 2708 for (i = 0; i <= sdp->sd_indirhashsize; i++) 2709 TAILQ_INIT(&sdp->sd_indirhash[i]); 2710 for (i = 0; i <= D_LAST; i++) 2711 LIST_INIT(&sdp->sd_alldeps[i]); 2712 ACQUIRE_GBLLOCK(&lk); 2713 TAILQ_INSERT_TAIL(&softdepmounts, sdp, sd_next); 2714 FREE_GBLLOCK(&lk); 2715 2716 ump->um_softdep = sdp; 2717 MNT_ILOCK(mp); 2718 mp->mnt_flag = (mp->mnt_flag & ~MNT_ASYNC) | MNT_SOFTDEP; 2719 if ((mp->mnt_kern_flag & MNTK_SOFTDEP) == 0) { 2720 mp->mnt_kern_flag = (mp->mnt_kern_flag & ~MNTK_ASYNC) | 2721 MNTK_SOFTDEP | MNTK_NOASYNC; 2722 } 2723 MNT_IUNLOCK(mp); 2724 2725 if ((fs->fs_flags & FS_SUJ) && 2726 (error = journal_mount(mp, fs, cred)) != 0) { 2727 printf("Failed to start journal: %d\n", error); 2728 softdep_unmount(mp); 2729 return (error); 2730 } 2731 /* 2732 * Start our flushing thread in the bufdaemon process. 2733 */ 2734 ACQUIRE_LOCK(ump); 2735 ump->softdep_flags |= FLUSH_STARTING; 2736 FREE_LOCK(ump); 2737 kproc_kthread_add(&softdep_flush, mp, &bufdaemonproc, 2738 &ump->softdep_flushtd, 0, 0, "softdepflush", "%s worker", 2739 mp->mnt_stat.f_mntonname); 2740 ACQUIRE_LOCK(ump); 2741 while ((ump->softdep_flags & FLUSH_STARTING) != 0) { 2742 msleep(&ump->softdep_flushtd, LOCK_PTR(ump), PVM, "sdstart", 2743 hz / 2); 2744 } 2745 FREE_LOCK(ump); 2746 /* 2747 * When doing soft updates, the counters in the 2748 * superblock may have gotten out of sync. Recomputation 2749 * can take a long time and can be deferred for background 2750 * fsck. However, the old behavior of scanning the cylinder 2751 * groups and recalculating them at mount time is available 2752 * by setting vfs.ffs.compute_summary_at_mount to one. 2753 */ 2754 if (compute_summary_at_mount == 0 || fs->fs_clean != 0) 2755 return (0); 2756 bzero(&cstotal, sizeof cstotal); 2757 for (cyl = 0; cyl < fs->fs_ncg; cyl++) { 2758 if ((error = bread(devvp, fsbtodb(fs, cgtod(fs, cyl)), 2759 fs->fs_cgsize, cred, &bp)) != 0) { 2760 brelse(bp); 2761 softdep_unmount(mp); 2762 return (error); 2763 } 2764 cgp = (struct cg *)bp->b_data; 2765 cstotal.cs_nffree += cgp->cg_cs.cs_nffree; 2766 cstotal.cs_nbfree += cgp->cg_cs.cs_nbfree; 2767 cstotal.cs_nifree += cgp->cg_cs.cs_nifree; 2768 cstotal.cs_ndir += cgp->cg_cs.cs_ndir; 2769 fs->fs_cs(fs, cyl) = cgp->cg_cs; 2770 brelse(bp); 2771 } 2772 #ifdef INVARIANTS 2773 if (bcmp(&cstotal, &fs->fs_cstotal, sizeof cstotal)) 2774 printf("%s: superblock summary recomputed\n", fs->fs_fsmnt); 2775 #endif 2776 bcopy(&cstotal, &fs->fs_cstotal, sizeof cstotal); 2777 return (0); 2778 } 2779 2780 void 2781 softdep_unmount(mp) 2782 struct mount *mp; 2783 { 2784 struct ufsmount *ump; 2785 struct mount_softdeps *ums; 2786 2787 ump = VFSTOUFS(mp); 2788 KASSERT(ump->um_softdep != NULL, 2789 ("softdep_unmount called on non-softdep filesystem")); 2790 MNT_ILOCK(mp); 2791 mp->mnt_flag &= ~MNT_SOFTDEP; 2792 if ((mp->mnt_flag & MNT_SUJ) == 0) { 2793 MNT_IUNLOCK(mp); 2794 } else { 2795 mp->mnt_flag &= ~MNT_SUJ; 2796 MNT_IUNLOCK(mp); 2797 journal_unmount(ump); 2798 } 2799 /* 2800 * Shut down our flushing thread. Check for NULL is if 2801 * softdep_mount errors out before the thread has been created. 2802 */ 2803 if (ump->softdep_flushtd != NULL) { 2804 ACQUIRE_LOCK(ump); 2805 ump->softdep_flags |= FLUSH_EXIT; 2806 wakeup(&ump->softdep_flushtd); 2807 while ((ump->softdep_flags & FLUSH_EXIT) != 0) { 2808 msleep(&ump->softdep_flags, LOCK_PTR(ump), PVM, 2809 "sdwait", 0); 2810 } 2811 KASSERT((ump->softdep_flags & FLUSH_EXIT) == 0, 2812 ("Thread shutdown failed")); 2813 FREE_LOCK(ump); 2814 } 2815 2816 /* 2817 * We are no longer have softdep structure attached to ump. 2818 */ 2819 ums = ump->um_softdep; 2820 ACQUIRE_GBLLOCK(&lk); 2821 TAILQ_REMOVE(&softdepmounts, ums, sd_next); 2822 FREE_GBLLOCK(&lk); 2823 ump->um_softdep = NULL; 2824 2825 KASSERT(ums->sd_on_journal == 0, 2826 ("ump %p ums %p on_journal %d", ump, ums, ums->sd_on_journal)); 2827 KASSERT(ums->sd_on_worklist == 0, 2828 ("ump %p ums %p on_worklist %d", ump, ums, ums->sd_on_worklist)); 2829 KASSERT(ums->sd_deps == 0, 2830 ("ump %p ums %p deps %d", ump, ums, ums->sd_deps)); 2831 2832 /* 2833 * Free up our resources. 2834 */ 2835 rw_destroy(&ums->sd_fslock); 2836 hashdestroy(ums->sd_pdhash, M_PAGEDEP, ums->sd_pdhashsize); 2837 hashdestroy(ums->sd_idhash, M_INODEDEP, ums->sd_idhashsize); 2838 hashdestroy(ums->sd_newblkhash, M_NEWBLK, ums->sd_newblkhashsize); 2839 hashdestroy(ums->sd_bmhash, M_BMSAFEMAP, ums->sd_bmhashsize); 2840 free(ums->sd_indirhash, M_FREEWORK); 2841 #ifdef INVARIANTS 2842 for (int i = 0; i <= D_LAST; i++) { 2843 KASSERT(ums->sd_curdeps[i] == 0, 2844 ("Unmount %s: Dep type %s != 0 (%ld)", ump->um_fs->fs_fsmnt, 2845 TYPENAME(i), ums->sd_curdeps[i])); 2846 KASSERT(LIST_EMPTY(&ums->sd_alldeps[i]), 2847 ("Unmount %s: Dep type %s not empty (%p)", 2848 ump->um_fs->fs_fsmnt, 2849 TYPENAME(i), LIST_FIRST(&ums->sd_alldeps[i]))); 2850 } 2851 #endif 2852 free(ums, M_MOUNTDATA); 2853 } 2854 2855 static struct jblocks * 2856 jblocks_create(void) 2857 { 2858 struct jblocks *jblocks; 2859 2860 jblocks = malloc(sizeof(*jblocks), M_JBLOCKS, M_WAITOK | M_ZERO); 2861 TAILQ_INIT(&jblocks->jb_segs); 2862 jblocks->jb_avail = 10; 2863 jblocks->jb_extent = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2864 M_JBLOCKS, M_WAITOK | M_ZERO); 2865 2866 return (jblocks); 2867 } 2868 2869 static ufs2_daddr_t 2870 jblocks_alloc(jblocks, bytes, actual) 2871 struct jblocks *jblocks; 2872 int bytes; 2873 int *actual; 2874 { 2875 ufs2_daddr_t daddr; 2876 struct jextent *jext; 2877 int freecnt; 2878 int blocks; 2879 2880 blocks = bytes / DEV_BSIZE; 2881 jext = &jblocks->jb_extent[jblocks->jb_head]; 2882 freecnt = jext->je_blocks - jblocks->jb_off; 2883 if (freecnt == 0) { 2884 jblocks->jb_off = 0; 2885 if (++jblocks->jb_head > jblocks->jb_used) 2886 jblocks->jb_head = 0; 2887 jext = &jblocks->jb_extent[jblocks->jb_head]; 2888 freecnt = jext->je_blocks; 2889 } 2890 if (freecnt > blocks) 2891 freecnt = blocks; 2892 *actual = freecnt * DEV_BSIZE; 2893 daddr = jext->je_daddr + jblocks->jb_off; 2894 jblocks->jb_off += freecnt; 2895 jblocks->jb_free -= freecnt; 2896 2897 return (daddr); 2898 } 2899 2900 static void 2901 jblocks_free(jblocks, mp, bytes) 2902 struct jblocks *jblocks; 2903 struct mount *mp; 2904 int bytes; 2905 { 2906 2907 LOCK_OWNED(VFSTOUFS(mp)); 2908 jblocks->jb_free += bytes / DEV_BSIZE; 2909 if (jblocks->jb_suspended) 2910 worklist_speedup(mp); 2911 wakeup(jblocks); 2912 } 2913 2914 static void 2915 jblocks_destroy(jblocks) 2916 struct jblocks *jblocks; 2917 { 2918 2919 if (jblocks->jb_extent) 2920 free(jblocks->jb_extent, M_JBLOCKS); 2921 free(jblocks, M_JBLOCKS); 2922 } 2923 2924 static void 2925 jblocks_add(jblocks, daddr, blocks) 2926 struct jblocks *jblocks; 2927 ufs2_daddr_t daddr; 2928 int blocks; 2929 { 2930 struct jextent *jext; 2931 2932 jblocks->jb_blocks += blocks; 2933 jblocks->jb_free += blocks; 2934 jext = &jblocks->jb_extent[jblocks->jb_used]; 2935 /* Adding the first block. */ 2936 if (jext->je_daddr == 0) { 2937 jext->je_daddr = daddr; 2938 jext->je_blocks = blocks; 2939 return; 2940 } 2941 /* Extending the last extent. */ 2942 if (jext->je_daddr + jext->je_blocks == daddr) { 2943 jext->je_blocks += blocks; 2944 return; 2945 } 2946 /* Adding a new extent. */ 2947 if (++jblocks->jb_used == jblocks->jb_avail) { 2948 jblocks->jb_avail *= 2; 2949 jext = malloc(sizeof(struct jextent) * jblocks->jb_avail, 2950 M_JBLOCKS, M_WAITOK | M_ZERO); 2951 memcpy(jext, jblocks->jb_extent, 2952 sizeof(struct jextent) * jblocks->jb_used); 2953 free(jblocks->jb_extent, M_JBLOCKS); 2954 jblocks->jb_extent = jext; 2955 } 2956 jext = &jblocks->jb_extent[jblocks->jb_used]; 2957 jext->je_daddr = daddr; 2958 jext->je_blocks = blocks; 2959 return; 2960 } 2961 2962 int 2963 softdep_journal_lookup(mp, vpp) 2964 struct mount *mp; 2965 struct vnode **vpp; 2966 { 2967 struct componentname cnp; 2968 struct vnode *dvp; 2969 ino_t sujournal; 2970 int error; 2971 2972 error = VFS_VGET(mp, UFS_ROOTINO, LK_EXCLUSIVE, &dvp); 2973 if (error) 2974 return (error); 2975 bzero(&cnp, sizeof(cnp)); 2976 cnp.cn_nameiop = LOOKUP; 2977 cnp.cn_flags = ISLASTCN; 2978 cnp.cn_cred = curthread->td_ucred; 2979 cnp.cn_pnbuf = SUJ_FILE; 2980 cnp.cn_nameptr = SUJ_FILE; 2981 cnp.cn_namelen = strlen(SUJ_FILE); 2982 error = ufs_lookup_ino(dvp, NULL, &cnp, &sujournal); 2983 vput(dvp); 2984 if (error != 0) 2985 return (error); 2986 error = VFS_VGET(mp, sujournal, LK_EXCLUSIVE, vpp); 2987 return (error); 2988 } 2989 2990 /* 2991 * Open and verify the journal file. 2992 */ 2993 static int 2994 journal_mount(mp, fs, cred) 2995 struct mount *mp; 2996 struct fs *fs; 2997 struct ucred *cred; 2998 { 2999 struct jblocks *jblocks; 3000 struct ufsmount *ump; 3001 struct vnode *vp; 3002 struct inode *ip; 3003 ufs2_daddr_t blkno; 3004 int bcount; 3005 int error; 3006 int i; 3007 3008 ump = VFSTOUFS(mp); 3009 ump->softdep_journal_tail = NULL; 3010 ump->softdep_on_journal = 0; 3011 ump->softdep_accdeps = 0; 3012 ump->softdep_req = 0; 3013 ump->softdep_jblocks = NULL; 3014 error = softdep_journal_lookup(mp, &vp); 3015 if (error != 0) { 3016 printf("Failed to find journal. Use tunefs to create one\n"); 3017 return (error); 3018 } 3019 ip = VTOI(vp); 3020 if (ip->i_size < SUJ_MIN) { 3021 error = ENOSPC; 3022 goto out; 3023 } 3024 bcount = lblkno(fs, ip->i_size); /* Only use whole blocks. */ 3025 jblocks = jblocks_create(); 3026 for (i = 0; i < bcount; i++) { 3027 error = ufs_bmaparray(vp, i, &blkno, NULL, NULL, NULL); 3028 if (error) 3029 break; 3030 jblocks_add(jblocks, blkno, fsbtodb(fs, fs->fs_frag)); 3031 } 3032 if (error) { 3033 jblocks_destroy(jblocks); 3034 goto out; 3035 } 3036 jblocks->jb_low = jblocks->jb_free / 3; /* Reserve 33%. */ 3037 jblocks->jb_min = jblocks->jb_free / 10; /* Suspend at 10%. */ 3038 ump->softdep_jblocks = jblocks; 3039 3040 MNT_ILOCK(mp); 3041 mp->mnt_flag |= MNT_SUJ; 3042 MNT_IUNLOCK(mp); 3043 3044 /* 3045 * Only validate the journal contents if the 3046 * filesystem is clean, otherwise we write the logs 3047 * but they'll never be used. If the filesystem was 3048 * still dirty when we mounted it the journal is 3049 * invalid and a new journal can only be valid if it 3050 * starts from a clean mount. 3051 */ 3052 if (fs->fs_clean) { 3053 DIP_SET(ip, i_modrev, fs->fs_mtime); 3054 ip->i_flags |= IN_MODIFIED; 3055 ffs_update(vp, 1); 3056 } 3057 out: 3058 vput(vp); 3059 return (error); 3060 } 3061 3062 static void 3063 journal_unmount(ump) 3064 struct ufsmount *ump; 3065 { 3066 3067 if (ump->softdep_jblocks) 3068 jblocks_destroy(ump->softdep_jblocks); 3069 ump->softdep_jblocks = NULL; 3070 } 3071 3072 /* 3073 * Called when a journal record is ready to be written. Space is allocated 3074 * and the journal entry is created when the journal is flushed to stable 3075 * store. 3076 */ 3077 static void 3078 add_to_journal(wk) 3079 struct worklist *wk; 3080 { 3081 struct ufsmount *ump; 3082 3083 ump = VFSTOUFS(wk->wk_mp); 3084 LOCK_OWNED(ump); 3085 if (wk->wk_state & ONWORKLIST) 3086 panic("add_to_journal: %s(0x%X) already on list", 3087 TYPENAME(wk->wk_type), wk->wk_state); 3088 wk->wk_state |= ONWORKLIST | DEPCOMPLETE; 3089 if (LIST_EMPTY(&ump->softdep_journal_pending)) { 3090 ump->softdep_jblocks->jb_age = ticks; 3091 LIST_INSERT_HEAD(&ump->softdep_journal_pending, wk, wk_list); 3092 } else 3093 LIST_INSERT_AFTER(ump->softdep_journal_tail, wk, wk_list); 3094 ump->softdep_journal_tail = wk; 3095 ump->softdep_on_journal += 1; 3096 } 3097 3098 /* 3099 * Remove an arbitrary item for the journal worklist maintain the tail 3100 * pointer. This happens when a new operation obviates the need to 3101 * journal an old operation. 3102 */ 3103 static void 3104 remove_from_journal(wk) 3105 struct worklist *wk; 3106 { 3107 struct ufsmount *ump; 3108 3109 ump = VFSTOUFS(wk->wk_mp); 3110 LOCK_OWNED(ump); 3111 #ifdef INVARIANTS 3112 { 3113 struct worklist *wkn; 3114 3115 LIST_FOREACH(wkn, &ump->softdep_journal_pending, wk_list) 3116 if (wkn == wk) 3117 break; 3118 if (wkn == NULL) 3119 panic("remove_from_journal: %p is not in journal", wk); 3120 } 3121 #endif 3122 /* 3123 * We emulate a TAILQ to save space in most structures which do not 3124 * require TAILQ semantics. Here we must update the tail position 3125 * when removing the tail which is not the final entry. This works 3126 * only if the worklist linkage are at the beginning of the structure. 3127 */ 3128 if (ump->softdep_journal_tail == wk) 3129 ump->softdep_journal_tail = 3130 (struct worklist *)wk->wk_list.le_prev; 3131 WORKLIST_REMOVE(wk); 3132 ump->softdep_on_journal -= 1; 3133 } 3134 3135 /* 3136 * Check for journal space as well as dependency limits so the prelink 3137 * code can throttle both journaled and non-journaled filesystems. 3138 * Threshold is 0 for low and 1 for min. 3139 */ 3140 static int 3141 journal_space(ump, thresh) 3142 struct ufsmount *ump; 3143 int thresh; 3144 { 3145 struct jblocks *jblocks; 3146 int limit, avail; 3147 3148 jblocks = ump->softdep_jblocks; 3149 if (jblocks == NULL) 3150 return (1); 3151 /* 3152 * We use a tighter restriction here to prevent request_cleanup() 3153 * running in threads from running into locks we currently hold. 3154 * We have to be over the limit and our filesystem has to be 3155 * responsible for more than our share of that usage. 3156 */ 3157 limit = (max_softdeps / 10) * 9; 3158 if (dep_current[D_INODEDEP] > limit && 3159 ump->softdep_curdeps[D_INODEDEP] > limit / stat_flush_threads) 3160 return (0); 3161 if (thresh) 3162 thresh = jblocks->jb_min; 3163 else 3164 thresh = jblocks->jb_low; 3165 avail = (ump->softdep_on_journal * JREC_SIZE) / DEV_BSIZE; 3166 avail = jblocks->jb_free - avail; 3167 3168 return (avail > thresh); 3169 } 3170 3171 static void 3172 journal_suspend(ump) 3173 struct ufsmount *ump; 3174 { 3175 struct jblocks *jblocks; 3176 struct mount *mp; 3177 bool set; 3178 3179 mp = UFSTOVFS(ump); 3180 if ((mp->mnt_kern_flag & MNTK_SUSPEND) != 0) 3181 return; 3182 3183 jblocks = ump->softdep_jblocks; 3184 vfs_op_enter(mp); 3185 set = false; 3186 MNT_ILOCK(mp); 3187 if ((mp->mnt_kern_flag & MNTK_SUSPEND) == 0) { 3188 stat_journal_min++; 3189 mp->mnt_kern_flag |= MNTK_SUSPEND; 3190 mp->mnt_susp_owner = ump->softdep_flushtd; 3191 set = true; 3192 } 3193 jblocks->jb_suspended = 1; 3194 MNT_IUNLOCK(mp); 3195 if (!set) 3196 vfs_op_exit(mp); 3197 } 3198 3199 static int 3200 journal_unsuspend(struct ufsmount *ump) 3201 { 3202 struct jblocks *jblocks; 3203 struct mount *mp; 3204 3205 mp = UFSTOVFS(ump); 3206 jblocks = ump->softdep_jblocks; 3207 3208 if (jblocks != NULL && jblocks->jb_suspended && 3209 journal_space(ump, jblocks->jb_min)) { 3210 jblocks->jb_suspended = 0; 3211 FREE_LOCK(ump); 3212 mp->mnt_susp_owner = curthread; 3213 vfs_write_resume(mp, 0); 3214 ACQUIRE_LOCK(ump); 3215 return (1); 3216 } 3217 return (0); 3218 } 3219 3220 static void 3221 journal_check_space(struct ufsmount *ump) 3222 { 3223 struct mount *mp; 3224 3225 LOCK_OWNED(ump); 3226 3227 if (journal_space(ump, 0) == 0) { 3228 softdep_speedup(ump); 3229 mp = UFSTOVFS(ump); 3230 FREE_LOCK(ump); 3231 VFS_SYNC(mp, MNT_NOWAIT); 3232 ffs_sbupdate(ump, MNT_WAIT, 0); 3233 ACQUIRE_LOCK(ump); 3234 if (journal_space(ump, 1) == 0) 3235 journal_suspend(ump); 3236 } 3237 } 3238 3239 /* 3240 * Called before any allocation function to be certain that there is 3241 * sufficient space in the journal prior to creating any new records. 3242 * Since in the case of block allocation we may have multiple locked 3243 * buffers at the time of the actual allocation we can not block 3244 * when the journal records are created. Doing so would create a deadlock 3245 * if any of these buffers needed to be flushed to reclaim space. Instead 3246 * we require a sufficiently large amount of available space such that 3247 * each thread in the system could have passed this allocation check and 3248 * still have sufficient free space. With 20% of a minimum journal size 3249 * of 1MB we have 6553 records available. 3250 */ 3251 int 3252 softdep_prealloc(vp, waitok) 3253 struct vnode *vp; 3254 int waitok; 3255 { 3256 struct ufsmount *ump; 3257 3258 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 3259 ("softdep_prealloc called on non-softdep filesystem")); 3260 /* 3261 * Nothing to do if we are not running journaled soft updates. 3262 * If we currently hold the snapshot lock, we must avoid 3263 * handling other resources that could cause deadlock. Do not 3264 * touch quotas vnode since it is typically recursed with 3265 * other vnode locks held. 3266 */ 3267 if (DOINGSUJ(vp) == 0 || IS_SNAPSHOT(VTOI(vp)) || 3268 (vp->v_vflag & VV_SYSTEM) != 0) 3269 return (0); 3270 ump = VFSTOUFS(vp->v_mount); 3271 ACQUIRE_LOCK(ump); 3272 if (journal_space(ump, 0)) { 3273 FREE_LOCK(ump); 3274 return (0); 3275 } 3276 stat_journal_low++; 3277 FREE_LOCK(ump); 3278 if (waitok == MNT_NOWAIT) 3279 return (ENOSPC); 3280 /* 3281 * Attempt to sync this vnode once to flush any journal 3282 * work attached to it. 3283 */ 3284 if ((curthread->td_pflags & TDP_COWINPROGRESS) == 0) 3285 ffs_syncvnode(vp, waitok, 0); 3286 ACQUIRE_LOCK(ump); 3287 process_removes(vp); 3288 process_truncates(vp); 3289 journal_check_space(ump); 3290 FREE_LOCK(ump); 3291 3292 return (0); 3293 } 3294 3295 /* 3296 * Try hard to sync all data and metadata for the vnode, and workitems 3297 * flushing which might conflict with the vnode lock. This is a 3298 * helper for softdep_prerename(). 3299 */ 3300 static int 3301 softdep_prerename_vnode(ump, vp) 3302 struct ufsmount *ump; 3303 struct vnode *vp; 3304 { 3305 int error; 3306 3307 ASSERT_VOP_ELOCKED(vp, "prehandle"); 3308 if (vp->v_data == NULL) 3309 return (0); 3310 error = VOP_FSYNC(vp, MNT_WAIT, curthread); 3311 if (error != 0) 3312 return (error); 3313 ACQUIRE_LOCK(ump); 3314 process_removes(vp); 3315 process_truncates(vp); 3316 FREE_LOCK(ump); 3317 return (0); 3318 } 3319 3320 /* 3321 * Must be called from VOP_RENAME() after all vnodes are locked. 3322 * Ensures that there is enough journal space for rename. It is 3323 * sufficiently different from softdep_prelink() by having to handle 3324 * four vnodes. 3325 */ 3326 int 3327 softdep_prerename(fdvp, fvp, tdvp, tvp) 3328 struct vnode *fdvp; 3329 struct vnode *fvp; 3330 struct vnode *tdvp; 3331 struct vnode *tvp; 3332 { 3333 struct ufsmount *ump; 3334 int error; 3335 3336 ump = VFSTOUFS(fdvp->v_mount); 3337 3338 if (journal_space(ump, 0)) 3339 return (0); 3340 3341 VOP_UNLOCK(tdvp); 3342 VOP_UNLOCK(fvp); 3343 if (tvp != NULL && tvp != tdvp) 3344 VOP_UNLOCK(tvp); 3345 3346 error = softdep_prerename_vnode(ump, fdvp); 3347 VOP_UNLOCK(fdvp); 3348 if (error != 0) 3349 return (error); 3350 3351 VOP_LOCK(fvp, LK_EXCLUSIVE | LK_RETRY); 3352 error = softdep_prerename_vnode(ump, fvp); 3353 VOP_UNLOCK(fvp); 3354 if (error != 0) 3355 return (error); 3356 3357 if (tdvp != fdvp) { 3358 VOP_LOCK(tdvp, LK_EXCLUSIVE | LK_RETRY); 3359 error = softdep_prerename_vnode(ump, tdvp); 3360 VOP_UNLOCK(tdvp); 3361 if (error != 0) 3362 return (error); 3363 } 3364 3365 if (tvp != fvp && tvp != NULL) { 3366 VOP_LOCK(tvp, LK_EXCLUSIVE | LK_RETRY); 3367 error = softdep_prerename_vnode(ump, tvp); 3368 VOP_UNLOCK(tvp); 3369 if (error != 0) 3370 return (error); 3371 } 3372 3373 ACQUIRE_LOCK(ump); 3374 softdep_speedup(ump); 3375 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3376 journal_check_space(ump); 3377 FREE_LOCK(ump); 3378 return (ERELOOKUP); 3379 } 3380 3381 /* 3382 * Before adjusting a link count on a vnode verify that we have sufficient 3383 * journal space. If not, process operations that depend on the currently 3384 * locked pair of vnodes to try to flush space as the syncer, buf daemon, 3385 * and softdep flush threads can not acquire these locks to reclaim space. 3386 * 3387 * Returns 0 if all owned locks are still valid and were not dropped 3388 * in the process, in other case it returns either an error from sync, 3389 * or ERELOOKUP if any of the locks were re-acquired. In the later 3390 * case, the state of the vnodes cannot be relied upon and our VFS 3391 * syscall must be restarted at top level from the lookup. 3392 */ 3393 int 3394 softdep_prelink(dvp, vp, cnp) 3395 struct vnode *dvp; 3396 struct vnode *vp; 3397 struct componentname *cnp; 3398 { 3399 struct ufsmount *ump; 3400 struct nameidata *ndp; 3401 3402 ASSERT_VOP_ELOCKED(dvp, "prelink dvp"); 3403 if (vp != NULL) 3404 ASSERT_VOP_ELOCKED(vp, "prelink vp"); 3405 ump = VFSTOUFS(dvp->v_mount); 3406 3407 /* 3408 * Nothing to do if we have sufficient journal space. We skip 3409 * flushing when vp is a snapshot to avoid deadlock where 3410 * another thread is trying to update the inodeblock for dvp 3411 * and is waiting on snaplk that vp holds. 3412 */ 3413 if (journal_space(ump, 0) || (vp != NULL && IS_SNAPSHOT(VTOI(vp)))) 3414 return (0); 3415 3416 /* 3417 * Check if the journal space consumption can in theory be 3418 * accounted on dvp and vp. If the vnodes metadata was not 3419 * changed comparing with the previous round-trip into 3420 * softdep_prelink(), as indicated by the seqc generation 3421 * recorded in the nameidata, then there is no point in 3422 * starting the sync. 3423 */ 3424 ndp = __containerof(cnp, struct nameidata, ni_cnd); 3425 if (!seqc_in_modify(ndp->ni_dvp_seqc) && 3426 vn_seqc_consistent(dvp, ndp->ni_dvp_seqc) && 3427 (vp == NULL || (!seqc_in_modify(ndp->ni_vp_seqc) && 3428 vn_seqc_consistent(vp, ndp->ni_vp_seqc)))) 3429 return (0); 3430 3431 stat_journal_low++; 3432 if (vp != NULL) { 3433 VOP_UNLOCK(dvp); 3434 ffs_syncvnode(vp, MNT_NOWAIT, 0); 3435 vn_lock_pair(dvp, false, vp, true); 3436 if (dvp->v_data == NULL) 3437 goto out; 3438 } 3439 if (vp != NULL) 3440 VOP_UNLOCK(vp); 3441 ffs_syncvnode(dvp, MNT_WAIT, 0); 3442 /* Process vp before dvp as it may create .. removes. */ 3443 if (vp != NULL) { 3444 VOP_UNLOCK(dvp); 3445 vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); 3446 if (vp->v_data == NULL) { 3447 vn_lock_pair(dvp, false, vp, true); 3448 goto out; 3449 } 3450 ACQUIRE_LOCK(ump); 3451 process_removes(vp); 3452 process_truncates(vp); 3453 FREE_LOCK(ump); 3454 VOP_UNLOCK(vp); 3455 vn_lock(dvp, LK_EXCLUSIVE | LK_RETRY); 3456 if (dvp->v_data == NULL) { 3457 vn_lock_pair(dvp, true, vp, false); 3458 goto out; 3459 } 3460 } 3461 3462 ACQUIRE_LOCK(ump); 3463 process_removes(dvp); 3464 process_truncates(dvp); 3465 VOP_UNLOCK(dvp); 3466 softdep_speedup(ump); 3467 3468 process_worklist_item(UFSTOVFS(ump), 2, LK_NOWAIT); 3469 journal_check_space(ump); 3470 FREE_LOCK(ump); 3471 3472 vn_lock_pair(dvp, false, vp, false); 3473 out: 3474 ndp->ni_dvp_seqc = vn_seqc_read_any(dvp); 3475 if (vp != NULL) 3476 ndp->ni_vp_seqc = vn_seqc_read_any(vp); 3477 return (ERELOOKUP); 3478 } 3479 3480 static void 3481 jseg_write(ump, jseg, data) 3482 struct ufsmount *ump; 3483 struct jseg *jseg; 3484 uint8_t *data; 3485 { 3486 struct jsegrec *rec; 3487 3488 rec = (struct jsegrec *)data; 3489 rec->jsr_seq = jseg->js_seq; 3490 rec->jsr_oldest = jseg->js_oldseq; 3491 rec->jsr_cnt = jseg->js_cnt; 3492 rec->jsr_blocks = jseg->js_size / ump->um_devvp->v_bufobj.bo_bsize; 3493 rec->jsr_crc = 0; 3494 rec->jsr_time = ump->um_fs->fs_mtime; 3495 } 3496 3497 static inline void 3498 inoref_write(inoref, jseg, rec) 3499 struct inoref *inoref; 3500 struct jseg *jseg; 3501 struct jrefrec *rec; 3502 { 3503 3504 inoref->if_jsegdep->jd_seg = jseg; 3505 rec->jr_ino = inoref->if_ino; 3506 rec->jr_parent = inoref->if_parent; 3507 rec->jr_nlink = inoref->if_nlink; 3508 rec->jr_mode = inoref->if_mode; 3509 rec->jr_diroff = inoref->if_diroff; 3510 } 3511 3512 static void 3513 jaddref_write(jaddref, jseg, data) 3514 struct jaddref *jaddref; 3515 struct jseg *jseg; 3516 uint8_t *data; 3517 { 3518 struct jrefrec *rec; 3519 3520 rec = (struct jrefrec *)data; 3521 rec->jr_op = JOP_ADDREF; 3522 inoref_write(&jaddref->ja_ref, jseg, rec); 3523 } 3524 3525 static void 3526 jremref_write(jremref, jseg, data) 3527 struct jremref *jremref; 3528 struct jseg *jseg; 3529 uint8_t *data; 3530 { 3531 struct jrefrec *rec; 3532 3533 rec = (struct jrefrec *)data; 3534 rec->jr_op = JOP_REMREF; 3535 inoref_write(&jremref->jr_ref, jseg, rec); 3536 } 3537 3538 static void 3539 jmvref_write(jmvref, jseg, data) 3540 struct jmvref *jmvref; 3541 struct jseg *jseg; 3542 uint8_t *data; 3543 { 3544 struct jmvrec *rec; 3545 3546 rec = (struct jmvrec *)data; 3547 rec->jm_op = JOP_MVREF; 3548 rec->jm_ino = jmvref->jm_ino; 3549 rec->jm_parent = jmvref->jm_parent; 3550 rec->jm_oldoff = jmvref->jm_oldoff; 3551 rec->jm_newoff = jmvref->jm_newoff; 3552 } 3553 3554 static void 3555 jnewblk_write(jnewblk, jseg, data) 3556 struct jnewblk *jnewblk; 3557 struct jseg *jseg; 3558 uint8_t *data; 3559 { 3560 struct jblkrec *rec; 3561 3562 jnewblk->jn_jsegdep->jd_seg = jseg; 3563 rec = (struct jblkrec *)data; 3564 rec->jb_op = JOP_NEWBLK; 3565 rec->jb_ino = jnewblk->jn_ino; 3566 rec->jb_blkno = jnewblk->jn_blkno; 3567 rec->jb_lbn = jnewblk->jn_lbn; 3568 rec->jb_frags = jnewblk->jn_frags; 3569 rec->jb_oldfrags = jnewblk->jn_oldfrags; 3570 } 3571 3572 static void 3573 jfreeblk_write(jfreeblk, jseg, data) 3574 struct jfreeblk *jfreeblk; 3575 struct jseg *jseg; 3576 uint8_t *data; 3577 { 3578 struct jblkrec *rec; 3579 3580 jfreeblk->jf_dep.jb_jsegdep->jd_seg = jseg; 3581 rec = (struct jblkrec *)data; 3582 rec->jb_op = JOP_FREEBLK; 3583 rec->jb_ino = jfreeblk->jf_ino; 3584 rec->jb_blkno = jfreeblk->jf_blkno; 3585 rec->jb_lbn = jfreeblk->jf_lbn; 3586 rec->jb_frags = jfreeblk->jf_frags; 3587 rec->jb_oldfrags = 0; 3588 } 3589 3590 static void 3591 jfreefrag_write(jfreefrag, jseg, data) 3592 struct jfreefrag *jfreefrag; 3593 struct jseg *jseg; 3594 uint8_t *data; 3595 { 3596 struct jblkrec *rec; 3597 3598 jfreefrag->fr_jsegdep->jd_seg = jseg; 3599 rec = (struct jblkrec *)data; 3600 rec->jb_op = JOP_FREEBLK; 3601 rec->jb_ino = jfreefrag->fr_ino; 3602 rec->jb_blkno = jfreefrag->fr_blkno; 3603 rec->jb_lbn = jfreefrag->fr_lbn; 3604 rec->jb_frags = jfreefrag->fr_frags; 3605 rec->jb_oldfrags = 0; 3606 } 3607 3608 static void 3609 jtrunc_write(jtrunc, jseg, data) 3610 struct jtrunc *jtrunc; 3611 struct jseg *jseg; 3612 uint8_t *data; 3613 { 3614 struct jtrncrec *rec; 3615 3616 jtrunc->jt_dep.jb_jsegdep->jd_seg = jseg; 3617 rec = (struct jtrncrec *)data; 3618 rec->jt_op = JOP_TRUNC; 3619 rec->jt_ino = jtrunc->jt_ino; 3620 rec->jt_size = jtrunc->jt_size; 3621 rec->jt_extsize = jtrunc->jt_extsize; 3622 } 3623 3624 static void 3625 jfsync_write(jfsync, jseg, data) 3626 struct jfsync *jfsync; 3627 struct jseg *jseg; 3628 uint8_t *data; 3629 { 3630 struct jtrncrec *rec; 3631 3632 rec = (struct jtrncrec *)data; 3633 rec->jt_op = JOP_SYNC; 3634 rec->jt_ino = jfsync->jfs_ino; 3635 rec->jt_size = jfsync->jfs_size; 3636 rec->jt_extsize = jfsync->jfs_extsize; 3637 } 3638 3639 static void 3640 softdep_flushjournal(mp) 3641 struct mount *mp; 3642 { 3643 struct jblocks *jblocks; 3644 struct ufsmount *ump; 3645 3646 if (MOUNTEDSUJ(mp) == 0) 3647 return; 3648 ump = VFSTOUFS(mp); 3649 jblocks = ump->softdep_jblocks; 3650 ACQUIRE_LOCK(ump); 3651 while (ump->softdep_on_journal) { 3652 jblocks->jb_needseg = 1; 3653 softdep_process_journal(mp, NULL, MNT_WAIT); 3654 } 3655 FREE_LOCK(ump); 3656 } 3657 3658 static void softdep_synchronize_completed(struct bio *); 3659 static void softdep_synchronize(struct bio *, struct ufsmount *, void *); 3660 3661 static void 3662 softdep_synchronize_completed(bp) 3663 struct bio *bp; 3664 { 3665 struct jseg *oldest; 3666 struct jseg *jseg; 3667 struct ufsmount *ump; 3668 3669 /* 3670 * caller1 marks the last segment written before we issued the 3671 * synchronize cache. 3672 */ 3673 jseg = bp->bio_caller1; 3674 if (jseg == NULL) { 3675 g_destroy_bio(bp); 3676 return; 3677 } 3678 ump = VFSTOUFS(jseg->js_list.wk_mp); 3679 ACQUIRE_LOCK(ump); 3680 oldest = NULL; 3681 /* 3682 * Mark all the journal entries waiting on the synchronize cache 3683 * as completed so they may continue on. 3684 */ 3685 while (jseg != NULL && (jseg->js_state & COMPLETE) == 0) { 3686 jseg->js_state |= COMPLETE; 3687 oldest = jseg; 3688 jseg = TAILQ_PREV(jseg, jseglst, js_next); 3689 } 3690 /* 3691 * Restart deferred journal entry processing from the oldest 3692 * completed jseg. 3693 */ 3694 if (oldest) 3695 complete_jsegs(oldest); 3696 3697 FREE_LOCK(ump); 3698 g_destroy_bio(bp); 3699 } 3700 3701 /* 3702 * Send BIO_FLUSH/SYNCHRONIZE CACHE to the device to enforce write ordering 3703 * barriers. The journal must be written prior to any blocks that depend 3704 * on it and the journal can not be released until the blocks have be 3705 * written. This code handles both barriers simultaneously. 3706 */ 3707 static void 3708 softdep_synchronize(bp, ump, caller1) 3709 struct bio *bp; 3710 struct ufsmount *ump; 3711 void *caller1; 3712 { 3713 3714 bp->bio_cmd = BIO_FLUSH; 3715 bp->bio_flags |= BIO_ORDERED; 3716 bp->bio_data = NULL; 3717 bp->bio_offset = ump->um_cp->provider->mediasize; 3718 bp->bio_length = 0; 3719 bp->bio_done = softdep_synchronize_completed; 3720 bp->bio_caller1 = caller1; 3721 g_io_request(bp, ump->um_cp); 3722 } 3723 3724 /* 3725 * Flush some journal records to disk. 3726 */ 3727 static void 3728 softdep_process_journal(mp, needwk, flags) 3729 struct mount *mp; 3730 struct worklist *needwk; 3731 int flags; 3732 { 3733 struct jblocks *jblocks; 3734 struct ufsmount *ump; 3735 struct worklist *wk; 3736 struct jseg *jseg; 3737 struct buf *bp; 3738 struct bio *bio; 3739 uint8_t *data; 3740 struct fs *fs; 3741 int shouldflush; 3742 int segwritten; 3743 int jrecmin; /* Minimum records per block. */ 3744 int jrecmax; /* Maximum records per block. */ 3745 int size; 3746 int cnt; 3747 int off; 3748 int devbsize; 3749 3750 ump = VFSTOUFS(mp); 3751 if (ump->um_softdep == NULL || ump->um_softdep->sd_jblocks == NULL) 3752 return; 3753 shouldflush = softdep_flushcache; 3754 bio = NULL; 3755 jseg = NULL; 3756 LOCK_OWNED(ump); 3757 fs = ump->um_fs; 3758 jblocks = ump->softdep_jblocks; 3759 devbsize = ump->um_devvp->v_bufobj.bo_bsize; 3760 /* 3761 * We write anywhere between a disk block and fs block. The upper 3762 * bound is picked to prevent buffer cache fragmentation and limit 3763 * processing time per I/O. 3764 */ 3765 jrecmin = (devbsize / JREC_SIZE) - 1; /* -1 for seg header */ 3766 jrecmax = (fs->fs_bsize / devbsize) * jrecmin; 3767 segwritten = 0; 3768 for (;;) { 3769 cnt = ump->softdep_on_journal; 3770 /* 3771 * Criteria for writing a segment: 3772 * 1) We have a full block. 3773 * 2) We're called from jwait() and haven't found the 3774 * journal item yet. 3775 * 3) Always write if needseg is set. 3776 * 4) If we are called from process_worklist and have 3777 * not yet written anything we write a partial block 3778 * to enforce a 1 second maximum latency on journal 3779 * entries. 3780 */ 3781 if (cnt < (jrecmax - 1) && needwk == NULL && 3782 jblocks->jb_needseg == 0 && (segwritten || cnt == 0)) 3783 break; 3784 cnt++; 3785 /* 3786 * Verify some free journal space. softdep_prealloc() should 3787 * guarantee that we don't run out so this is indicative of 3788 * a problem with the flow control. Try to recover 3789 * gracefully in any event. 3790 */ 3791 while (jblocks->jb_free == 0) { 3792 if (flags != MNT_WAIT) 3793 break; 3794 printf("softdep: Out of journal space!\n"); 3795 softdep_speedup(ump); 3796 msleep(jblocks, LOCK_PTR(ump), PRIBIO, "jblocks", hz); 3797 } 3798 FREE_LOCK(ump); 3799 jseg = malloc(sizeof(*jseg), M_JSEG, M_SOFTDEP_FLAGS); 3800 workitem_alloc(&jseg->js_list, D_JSEG, mp); 3801 LIST_INIT(&jseg->js_entries); 3802 LIST_INIT(&jseg->js_indirs); 3803 jseg->js_state = ATTACHED; 3804 if (shouldflush == 0) 3805 jseg->js_state |= COMPLETE; 3806 else if (bio == NULL) 3807 bio = g_alloc_bio(); 3808 jseg->js_jblocks = jblocks; 3809 bp = geteblk(fs->fs_bsize, 0); 3810 ACQUIRE_LOCK(ump); 3811 /* 3812 * If there was a race while we were allocating the block 3813 * and jseg the entry we care about was likely written. 3814 * We bail out in both the WAIT and NOWAIT case and assume 3815 * the caller will loop if the entry it cares about is 3816 * not written. 3817 */ 3818 cnt = ump->softdep_on_journal; 3819 if (cnt + jblocks->jb_needseg == 0 || jblocks->jb_free == 0) { 3820 bp->b_flags |= B_INVAL | B_NOCACHE; 3821 WORKITEM_FREE(jseg, D_JSEG); 3822 FREE_LOCK(ump); 3823 brelse(bp); 3824 ACQUIRE_LOCK(ump); 3825 break; 3826 } 3827 /* 3828 * Calculate the disk block size required for the available 3829 * records rounded to the min size. 3830 */ 3831 if (cnt == 0) 3832 size = devbsize; 3833 else if (cnt < jrecmax) 3834 size = howmany(cnt, jrecmin) * devbsize; 3835 else 3836 size = fs->fs_bsize; 3837 /* 3838 * Allocate a disk block for this journal data and account 3839 * for truncation of the requested size if enough contiguous 3840 * space was not available. 3841 */ 3842 bp->b_blkno = jblocks_alloc(jblocks, size, &size); 3843 bp->b_lblkno = bp->b_blkno; 3844 bp->b_offset = bp->b_blkno * DEV_BSIZE; 3845 bp->b_bcount = size; 3846 bp->b_flags &= ~B_INVAL; 3847 bp->b_flags |= B_VALIDSUSPWRT | B_NOCOPY; 3848 /* 3849 * Initialize our jseg with cnt records. Assign the next 3850 * sequence number to it and link it in-order. 3851 */ 3852 cnt = MIN(cnt, (size / devbsize) * jrecmin); 3853 jseg->js_buf = bp; 3854 jseg->js_cnt = cnt; 3855 jseg->js_refs = cnt + 1; /* Self ref. */ 3856 jseg->js_size = size; 3857 jseg->js_seq = jblocks->jb_nextseq++; 3858 if (jblocks->jb_oldestseg == NULL) 3859 jblocks->jb_oldestseg = jseg; 3860 jseg->js_oldseq = jblocks->jb_oldestseg->js_seq; 3861 TAILQ_INSERT_TAIL(&jblocks->jb_segs, jseg, js_next); 3862 if (jblocks->jb_writeseg == NULL) 3863 jblocks->jb_writeseg = jseg; 3864 /* 3865 * Start filling in records from the pending list. 3866 */ 3867 data = bp->b_data; 3868 off = 0; 3869 3870 /* 3871 * Always put a header on the first block. 3872 * XXX As with below, there might not be a chance to get 3873 * into the loop. Ensure that something valid is written. 3874 */ 3875 jseg_write(ump, jseg, data); 3876 off += JREC_SIZE; 3877 data = bp->b_data + off; 3878 3879 /* 3880 * XXX Something is wrong here. There's no work to do, 3881 * but we need to perform and I/O and allow it to complete 3882 * anyways. 3883 */ 3884 if (LIST_EMPTY(&ump->softdep_journal_pending)) 3885 stat_emptyjblocks++; 3886 3887 while ((wk = LIST_FIRST(&ump->softdep_journal_pending)) 3888 != NULL) { 3889 if (cnt == 0) 3890 break; 3891 /* Place a segment header on every device block. */ 3892 if ((off % devbsize) == 0) { 3893 jseg_write(ump, jseg, data); 3894 off += JREC_SIZE; 3895 data = bp->b_data + off; 3896 } 3897 if (wk == needwk) 3898 needwk = NULL; 3899 remove_from_journal(wk); 3900 wk->wk_state |= INPROGRESS; 3901 WORKLIST_INSERT(&jseg->js_entries, wk); 3902 switch (wk->wk_type) { 3903 case D_JADDREF: 3904 jaddref_write(WK_JADDREF(wk), jseg, data); 3905 break; 3906 case D_JREMREF: 3907 jremref_write(WK_JREMREF(wk), jseg, data); 3908 break; 3909 case D_JMVREF: 3910 jmvref_write(WK_JMVREF(wk), jseg, data); 3911 break; 3912 case D_JNEWBLK: 3913 jnewblk_write(WK_JNEWBLK(wk), jseg, data); 3914 break; 3915 case D_JFREEBLK: 3916 jfreeblk_write(WK_JFREEBLK(wk), jseg, data); 3917 break; 3918 case D_JFREEFRAG: 3919 jfreefrag_write(WK_JFREEFRAG(wk), jseg, data); 3920 break; 3921 case D_JTRUNC: 3922 jtrunc_write(WK_JTRUNC(wk), jseg, data); 3923 break; 3924 case D_JFSYNC: 3925 jfsync_write(WK_JFSYNC(wk), jseg, data); 3926 break; 3927 default: 3928 panic("process_journal: Unknown type %s", 3929 TYPENAME(wk->wk_type)); 3930 /* NOTREACHED */ 3931 } 3932 off += JREC_SIZE; 3933 data = bp->b_data + off; 3934 cnt--; 3935 } 3936 3937 /* Clear any remaining space so we don't leak kernel data */ 3938 if (size > off) 3939 bzero(data, size - off); 3940 3941 /* 3942 * Write this one buffer and continue. 3943 */ 3944 segwritten = 1; 3945 jblocks->jb_needseg = 0; 3946 WORKLIST_INSERT(&bp->b_dep, &jseg->js_list); 3947 FREE_LOCK(ump); 3948 bp->b_xflags |= BX_CVTENXIO; 3949 pbgetvp(ump->um_devvp, bp); 3950 /* 3951 * We only do the blocking wait once we find the journal 3952 * entry we're looking for. 3953 */ 3954 if (needwk == NULL && flags == MNT_WAIT) 3955 bwrite(bp); 3956 else 3957 bawrite(bp); 3958 ACQUIRE_LOCK(ump); 3959 } 3960 /* 3961 * If we wrote a segment issue a synchronize cache so the journal 3962 * is reflected on disk before the data is written. Since reclaiming 3963 * journal space also requires writing a journal record this 3964 * process also enforces a barrier before reclamation. 3965 */ 3966 if (segwritten && shouldflush) { 3967 softdep_synchronize(bio, ump, 3968 TAILQ_LAST(&jblocks->jb_segs, jseglst)); 3969 } else if (bio) 3970 g_destroy_bio(bio); 3971 /* 3972 * If we've suspended the filesystem because we ran out of journal 3973 * space either try to sync it here to make some progress or 3974 * unsuspend it if we already have. 3975 */ 3976 if (flags == 0 && jblocks->jb_suspended) { 3977 if (journal_unsuspend(ump)) 3978 return; 3979 FREE_LOCK(ump); 3980 VFS_SYNC(mp, MNT_NOWAIT); 3981 ffs_sbupdate(ump, MNT_WAIT, 0); 3982 ACQUIRE_LOCK(ump); 3983 } 3984 } 3985 3986 /* 3987 * Complete a jseg, allowing all dependencies awaiting journal writes 3988 * to proceed. Each journal dependency also attaches a jsegdep to dependent 3989 * structures so that the journal segment can be freed to reclaim space. 3990 */ 3991 static void 3992 complete_jseg(jseg) 3993 struct jseg *jseg; 3994 { 3995 struct worklist *wk; 3996 struct jmvref *jmvref; 3997 #ifdef INVARIANTS 3998 int i = 0; 3999 #endif 4000 4001 while ((wk = LIST_FIRST(&jseg->js_entries)) != NULL) { 4002 WORKLIST_REMOVE(wk); 4003 wk->wk_state &= ~INPROGRESS; 4004 wk->wk_state |= COMPLETE; 4005 KASSERT(i++ < jseg->js_cnt, 4006 ("handle_written_jseg: overflow %d >= %d", 4007 i - 1, jseg->js_cnt)); 4008 switch (wk->wk_type) { 4009 case D_JADDREF: 4010 handle_written_jaddref(WK_JADDREF(wk)); 4011 break; 4012 case D_JREMREF: 4013 handle_written_jremref(WK_JREMREF(wk)); 4014 break; 4015 case D_JMVREF: 4016 rele_jseg(jseg); /* No jsegdep. */ 4017 jmvref = WK_JMVREF(wk); 4018 LIST_REMOVE(jmvref, jm_deps); 4019 if ((jmvref->jm_pagedep->pd_state & ONWORKLIST) == 0) 4020 free_pagedep(jmvref->jm_pagedep); 4021 WORKITEM_FREE(jmvref, D_JMVREF); 4022 break; 4023 case D_JNEWBLK: 4024 handle_written_jnewblk(WK_JNEWBLK(wk)); 4025 break; 4026 case D_JFREEBLK: 4027 handle_written_jblkdep(&WK_JFREEBLK(wk)->jf_dep); 4028 break; 4029 case D_JTRUNC: 4030 handle_written_jblkdep(&WK_JTRUNC(wk)->jt_dep); 4031 break; 4032 case D_JFSYNC: 4033 rele_jseg(jseg); /* No jsegdep. */ 4034 WORKITEM_FREE(wk, D_JFSYNC); 4035 break; 4036 case D_JFREEFRAG: 4037 handle_written_jfreefrag(WK_JFREEFRAG(wk)); 4038 break; 4039 default: 4040 panic("handle_written_jseg: Unknown type %s", 4041 TYPENAME(wk->wk_type)); 4042 /* NOTREACHED */ 4043 } 4044 } 4045 /* Release the self reference so the structure may be freed. */ 4046 rele_jseg(jseg); 4047 } 4048 4049 /* 4050 * Determine which jsegs are ready for completion processing. Waits for 4051 * synchronize cache to complete as well as forcing in-order completion 4052 * of journal entries. 4053 */ 4054 static void 4055 complete_jsegs(jseg) 4056 struct jseg *jseg; 4057 { 4058 struct jblocks *jblocks; 4059 struct jseg *jsegn; 4060 4061 jblocks = jseg->js_jblocks; 4062 /* 4063 * Don't allow out of order completions. If this isn't the first 4064 * block wait for it to write before we're done. 4065 */ 4066 if (jseg != jblocks->jb_writeseg) 4067 return; 4068 /* Iterate through available jsegs processing their entries. */ 4069 while (jseg && (jseg->js_state & ALLCOMPLETE) == ALLCOMPLETE) { 4070 jblocks->jb_oldestwrseq = jseg->js_oldseq; 4071 jsegn = TAILQ_NEXT(jseg, js_next); 4072 complete_jseg(jseg); 4073 jseg = jsegn; 4074 } 4075 jblocks->jb_writeseg = jseg; 4076 /* 4077 * Attempt to free jsegs now that oldestwrseq may have advanced. 4078 */ 4079 free_jsegs(jblocks); 4080 } 4081 4082 /* 4083 * Mark a jseg as DEPCOMPLETE and throw away the buffer. Attempt to handle 4084 * the final completions. 4085 */ 4086 static void 4087 handle_written_jseg(jseg, bp) 4088 struct jseg *jseg; 4089 struct buf *bp; 4090 { 4091 4092 if (jseg->js_refs == 0) 4093 panic("handle_written_jseg: No self-reference on %p", jseg); 4094 jseg->js_state |= DEPCOMPLETE; 4095 /* 4096 * We'll never need this buffer again, set flags so it will be 4097 * discarded. 4098 */ 4099 bp->b_flags |= B_INVAL | B_NOCACHE; 4100 pbrelvp(bp); 4101 complete_jsegs(jseg); 4102 } 4103 4104 static inline struct jsegdep * 4105 inoref_jseg(inoref) 4106 struct inoref *inoref; 4107 { 4108 struct jsegdep *jsegdep; 4109 4110 jsegdep = inoref->if_jsegdep; 4111 inoref->if_jsegdep = NULL; 4112 4113 return (jsegdep); 4114 } 4115 4116 /* 4117 * Called once a jremref has made it to stable store. The jremref is marked 4118 * complete and we attempt to free it. Any pagedeps writes sleeping waiting 4119 * for the jremref to complete will be awoken by free_jremref. 4120 */ 4121 static void 4122 handle_written_jremref(jremref) 4123 struct jremref *jremref; 4124 { 4125 struct inodedep *inodedep; 4126 struct jsegdep *jsegdep; 4127 struct dirrem *dirrem; 4128 4129 /* Grab the jsegdep. */ 4130 jsegdep = inoref_jseg(&jremref->jr_ref); 4131 /* 4132 * Remove us from the inoref list. 4133 */ 4134 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 4135 0, &inodedep) == 0) 4136 panic("handle_written_jremref: Lost inodedep"); 4137 TAILQ_REMOVE(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 4138 /* 4139 * Complete the dirrem. 4140 */ 4141 dirrem = jremref->jr_dirrem; 4142 jremref->jr_dirrem = NULL; 4143 LIST_REMOVE(jremref, jr_deps); 4144 jsegdep->jd_state |= jremref->jr_state & MKDIR_PARENT; 4145 jwork_insert(&dirrem->dm_jwork, jsegdep); 4146 if (LIST_EMPTY(&dirrem->dm_jremrefhd) && 4147 (dirrem->dm_state & COMPLETE) != 0) 4148 add_to_worklist(&dirrem->dm_list, 0); 4149 free_jremref(jremref); 4150 } 4151 4152 /* 4153 * Called once a jaddref has made it to stable store. The dependency is 4154 * marked complete and any dependent structures are added to the inode 4155 * bufwait list to be completed as soon as it is written. If a bitmap write 4156 * depends on this entry we move the inode into the inodedephd of the 4157 * bmsafemap dependency and attempt to remove the jaddref from the bmsafemap. 4158 */ 4159 static void 4160 handle_written_jaddref(jaddref) 4161 struct jaddref *jaddref; 4162 { 4163 struct jsegdep *jsegdep; 4164 struct inodedep *inodedep; 4165 struct diradd *diradd; 4166 struct mkdir *mkdir; 4167 4168 /* Grab the jsegdep. */ 4169 jsegdep = inoref_jseg(&jaddref->ja_ref); 4170 mkdir = NULL; 4171 diradd = NULL; 4172 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4173 0, &inodedep) == 0) 4174 panic("handle_written_jaddref: Lost inodedep."); 4175 if (jaddref->ja_diradd == NULL) 4176 panic("handle_written_jaddref: No dependency"); 4177 if (jaddref->ja_diradd->da_list.wk_type == D_DIRADD) { 4178 diradd = jaddref->ja_diradd; 4179 WORKLIST_INSERT(&inodedep->id_bufwait, &diradd->da_list); 4180 } else if (jaddref->ja_state & MKDIR_PARENT) { 4181 mkdir = jaddref->ja_mkdir; 4182 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir->md_list); 4183 } else if (jaddref->ja_state & MKDIR_BODY) 4184 mkdir = jaddref->ja_mkdir; 4185 else 4186 panic("handle_written_jaddref: Unknown dependency %p", 4187 jaddref->ja_diradd); 4188 jaddref->ja_diradd = NULL; /* also clears ja_mkdir */ 4189 /* 4190 * Remove us from the inode list. 4191 */ 4192 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, if_deps); 4193 /* 4194 * The mkdir may be waiting on the jaddref to clear before freeing. 4195 */ 4196 if (mkdir) { 4197 KASSERT(mkdir->md_list.wk_type == D_MKDIR, 4198 ("handle_written_jaddref: Incorrect type for mkdir %s", 4199 TYPENAME(mkdir->md_list.wk_type))); 4200 mkdir->md_jaddref = NULL; 4201 diradd = mkdir->md_diradd; 4202 mkdir->md_state |= DEPCOMPLETE; 4203 complete_mkdir(mkdir); 4204 } 4205 jwork_insert(&diradd->da_jwork, jsegdep); 4206 if (jaddref->ja_state & NEWBLOCK) { 4207 inodedep->id_state |= ONDEPLIST; 4208 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_inodedephd, 4209 inodedep, id_deps); 4210 } 4211 free_jaddref(jaddref); 4212 } 4213 4214 /* 4215 * Called once a jnewblk journal is written. The allocdirect or allocindir 4216 * is placed in the bmsafemap to await notification of a written bitmap. If 4217 * the operation was canceled we add the segdep to the appropriate 4218 * dependency to free the journal space once the canceling operation 4219 * completes. 4220 */ 4221 static void 4222 handle_written_jnewblk(jnewblk) 4223 struct jnewblk *jnewblk; 4224 { 4225 struct bmsafemap *bmsafemap; 4226 struct freefrag *freefrag; 4227 struct freework *freework; 4228 struct jsegdep *jsegdep; 4229 struct newblk *newblk; 4230 4231 /* Grab the jsegdep. */ 4232 jsegdep = jnewblk->jn_jsegdep; 4233 jnewblk->jn_jsegdep = NULL; 4234 if (jnewblk->jn_dep == NULL) 4235 panic("handle_written_jnewblk: No dependency for the segdep."); 4236 switch (jnewblk->jn_dep->wk_type) { 4237 case D_NEWBLK: 4238 case D_ALLOCDIRECT: 4239 case D_ALLOCINDIR: 4240 /* 4241 * Add the written block to the bmsafemap so it can 4242 * be notified when the bitmap is on disk. 4243 */ 4244 newblk = WK_NEWBLK(jnewblk->jn_dep); 4245 newblk->nb_jnewblk = NULL; 4246 if ((newblk->nb_state & GOINGAWAY) == 0) { 4247 bmsafemap = newblk->nb_bmsafemap; 4248 newblk->nb_state |= ONDEPLIST; 4249 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, 4250 nb_deps); 4251 } 4252 jwork_insert(&newblk->nb_jwork, jsegdep); 4253 break; 4254 case D_FREEFRAG: 4255 /* 4256 * A newblock being removed by a freefrag when replaced by 4257 * frag extension. 4258 */ 4259 freefrag = WK_FREEFRAG(jnewblk->jn_dep); 4260 freefrag->ff_jdep = NULL; 4261 jwork_insert(&freefrag->ff_jwork, jsegdep); 4262 break; 4263 case D_FREEWORK: 4264 /* 4265 * A direct block was removed by truncate. 4266 */ 4267 freework = WK_FREEWORK(jnewblk->jn_dep); 4268 freework->fw_jnewblk = NULL; 4269 jwork_insert(&freework->fw_freeblks->fb_jwork, jsegdep); 4270 break; 4271 default: 4272 panic("handle_written_jnewblk: Unknown type %d.", 4273 jnewblk->jn_dep->wk_type); 4274 } 4275 jnewblk->jn_dep = NULL; 4276 free_jnewblk(jnewblk); 4277 } 4278 4279 /* 4280 * Cancel a jfreefrag that won't be needed, probably due to colliding with 4281 * an in-flight allocation that has not yet been committed. Divorce us 4282 * from the freefrag and mark it DEPCOMPLETE so that it may be added 4283 * to the worklist. 4284 */ 4285 static void 4286 cancel_jfreefrag(jfreefrag) 4287 struct jfreefrag *jfreefrag; 4288 { 4289 struct freefrag *freefrag; 4290 4291 if (jfreefrag->fr_jsegdep) { 4292 free_jsegdep(jfreefrag->fr_jsegdep); 4293 jfreefrag->fr_jsegdep = NULL; 4294 } 4295 freefrag = jfreefrag->fr_freefrag; 4296 jfreefrag->fr_freefrag = NULL; 4297 free_jfreefrag(jfreefrag); 4298 freefrag->ff_state |= DEPCOMPLETE; 4299 CTR1(KTR_SUJ, "cancel_jfreefrag: blkno %jd", freefrag->ff_blkno); 4300 } 4301 4302 /* 4303 * Free a jfreefrag when the parent freefrag is rendered obsolete. 4304 */ 4305 static void 4306 free_jfreefrag(jfreefrag) 4307 struct jfreefrag *jfreefrag; 4308 { 4309 4310 if (jfreefrag->fr_state & INPROGRESS) 4311 WORKLIST_REMOVE(&jfreefrag->fr_list); 4312 else if (jfreefrag->fr_state & ONWORKLIST) 4313 remove_from_journal(&jfreefrag->fr_list); 4314 if (jfreefrag->fr_freefrag != NULL) 4315 panic("free_jfreefrag: Still attached to a freefrag."); 4316 WORKITEM_FREE(jfreefrag, D_JFREEFRAG); 4317 } 4318 4319 /* 4320 * Called when the journal write for a jfreefrag completes. The parent 4321 * freefrag is added to the worklist if this completes its dependencies. 4322 */ 4323 static void 4324 handle_written_jfreefrag(jfreefrag) 4325 struct jfreefrag *jfreefrag; 4326 { 4327 struct jsegdep *jsegdep; 4328 struct freefrag *freefrag; 4329 4330 /* Grab the jsegdep. */ 4331 jsegdep = jfreefrag->fr_jsegdep; 4332 jfreefrag->fr_jsegdep = NULL; 4333 freefrag = jfreefrag->fr_freefrag; 4334 if (freefrag == NULL) 4335 panic("handle_written_jfreefrag: No freefrag."); 4336 freefrag->ff_state |= DEPCOMPLETE; 4337 freefrag->ff_jdep = NULL; 4338 jwork_insert(&freefrag->ff_jwork, jsegdep); 4339 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 4340 add_to_worklist(&freefrag->ff_list, 0); 4341 jfreefrag->fr_freefrag = NULL; 4342 free_jfreefrag(jfreefrag); 4343 } 4344 4345 /* 4346 * Called when the journal write for a jfreeblk completes. The jfreeblk 4347 * is removed from the freeblks list of pending journal writes and the 4348 * jsegdep is moved to the freeblks jwork to be completed when all blocks 4349 * have been reclaimed. 4350 */ 4351 static void 4352 handle_written_jblkdep(jblkdep) 4353 struct jblkdep *jblkdep; 4354 { 4355 struct freeblks *freeblks; 4356 struct jsegdep *jsegdep; 4357 4358 /* Grab the jsegdep. */ 4359 jsegdep = jblkdep->jb_jsegdep; 4360 jblkdep->jb_jsegdep = NULL; 4361 freeblks = jblkdep->jb_freeblks; 4362 LIST_REMOVE(jblkdep, jb_deps); 4363 jwork_insert(&freeblks->fb_jwork, jsegdep); 4364 /* 4365 * If the freeblks is all journaled, we can add it to the worklist. 4366 */ 4367 if (LIST_EMPTY(&freeblks->fb_jblkdephd) && 4368 (freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 4369 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 4370 4371 free_jblkdep(jblkdep); 4372 } 4373 4374 static struct jsegdep * 4375 newjsegdep(struct worklist *wk) 4376 { 4377 struct jsegdep *jsegdep; 4378 4379 jsegdep = malloc(sizeof(*jsegdep), M_JSEGDEP, M_SOFTDEP_FLAGS); 4380 workitem_alloc(&jsegdep->jd_list, D_JSEGDEP, wk->wk_mp); 4381 jsegdep->jd_seg = NULL; 4382 4383 return (jsegdep); 4384 } 4385 4386 static struct jmvref * 4387 newjmvref(dp, ino, oldoff, newoff) 4388 struct inode *dp; 4389 ino_t ino; 4390 off_t oldoff; 4391 off_t newoff; 4392 { 4393 struct jmvref *jmvref; 4394 4395 jmvref = malloc(sizeof(*jmvref), M_JMVREF, M_SOFTDEP_FLAGS); 4396 workitem_alloc(&jmvref->jm_list, D_JMVREF, ITOVFS(dp)); 4397 jmvref->jm_list.wk_state = ATTACHED | DEPCOMPLETE; 4398 jmvref->jm_parent = dp->i_number; 4399 jmvref->jm_ino = ino; 4400 jmvref->jm_oldoff = oldoff; 4401 jmvref->jm_newoff = newoff; 4402 4403 return (jmvref); 4404 } 4405 4406 /* 4407 * Allocate a new jremref that tracks the removal of ip from dp with the 4408 * directory entry offset of diroff. Mark the entry as ATTACHED and 4409 * DEPCOMPLETE as we have all the information required for the journal write 4410 * and the directory has already been removed from the buffer. The caller 4411 * is responsible for linking the jremref into the pagedep and adding it 4412 * to the journal to write. The MKDIR_PARENT flag is set if we're doing 4413 * a DOTDOT addition so handle_workitem_remove() can properly assign 4414 * the jsegdep when we're done. 4415 */ 4416 static struct jremref * 4417 newjremref(struct dirrem *dirrem, struct inode *dp, struct inode *ip, 4418 off_t diroff, nlink_t nlink) 4419 { 4420 struct jremref *jremref; 4421 4422 jremref = malloc(sizeof(*jremref), M_JREMREF, M_SOFTDEP_FLAGS); 4423 workitem_alloc(&jremref->jr_list, D_JREMREF, ITOVFS(dp)); 4424 jremref->jr_state = ATTACHED; 4425 newinoref(&jremref->jr_ref, ip->i_number, dp->i_number, diroff, 4426 nlink, ip->i_mode); 4427 jremref->jr_dirrem = dirrem; 4428 4429 return (jremref); 4430 } 4431 4432 static inline void 4433 newinoref(struct inoref *inoref, ino_t ino, ino_t parent, off_t diroff, 4434 nlink_t nlink, uint16_t mode) 4435 { 4436 4437 inoref->if_jsegdep = newjsegdep(&inoref->if_list); 4438 inoref->if_diroff = diroff; 4439 inoref->if_ino = ino; 4440 inoref->if_parent = parent; 4441 inoref->if_nlink = nlink; 4442 inoref->if_mode = mode; 4443 } 4444 4445 /* 4446 * Allocate a new jaddref to track the addition of ino to dp at diroff. The 4447 * directory offset may not be known until later. The caller is responsible 4448 * adding the entry to the journal when this information is available. nlink 4449 * should be the link count prior to the addition and mode is only required 4450 * to have the correct FMT. 4451 */ 4452 static struct jaddref * 4453 newjaddref(struct inode *dp, ino_t ino, off_t diroff, int16_t nlink, 4454 uint16_t mode) 4455 { 4456 struct jaddref *jaddref; 4457 4458 jaddref = malloc(sizeof(*jaddref), M_JADDREF, M_SOFTDEP_FLAGS); 4459 workitem_alloc(&jaddref->ja_list, D_JADDREF, ITOVFS(dp)); 4460 jaddref->ja_state = ATTACHED; 4461 jaddref->ja_mkdir = NULL; 4462 newinoref(&jaddref->ja_ref, ino, dp->i_number, diroff, nlink, mode); 4463 4464 return (jaddref); 4465 } 4466 4467 /* 4468 * Create a new free dependency for a freework. The caller is responsible 4469 * for adjusting the reference count when it has the lock held. The freedep 4470 * will track an outstanding bitmap write that will ultimately clear the 4471 * freework to continue. 4472 */ 4473 static struct freedep * 4474 newfreedep(struct freework *freework) 4475 { 4476 struct freedep *freedep; 4477 4478 freedep = malloc(sizeof(*freedep), M_FREEDEP, M_SOFTDEP_FLAGS); 4479 workitem_alloc(&freedep->fd_list, D_FREEDEP, freework->fw_list.wk_mp); 4480 freedep->fd_freework = freework; 4481 4482 return (freedep); 4483 } 4484 4485 /* 4486 * Free a freedep structure once the buffer it is linked to is written. If 4487 * this is the last reference to the freework schedule it for completion. 4488 */ 4489 static void 4490 free_freedep(freedep) 4491 struct freedep *freedep; 4492 { 4493 struct freework *freework; 4494 4495 freework = freedep->fd_freework; 4496 freework->fw_freeblks->fb_cgwait--; 4497 if (--freework->fw_ref == 0) 4498 freework_enqueue(freework); 4499 WORKITEM_FREE(freedep, D_FREEDEP); 4500 } 4501 4502 /* 4503 * Allocate a new freework structure that may be a level in an indirect 4504 * when parent is not NULL or a top level block when it is. The top level 4505 * freework structures are allocated without the per-filesystem lock held 4506 * and before the freeblks is visible outside of softdep_setup_freeblocks(). 4507 */ 4508 static struct freework * 4509 newfreework(ump, freeblks, parent, lbn, nb, frags, off, journal) 4510 struct ufsmount *ump; 4511 struct freeblks *freeblks; 4512 struct freework *parent; 4513 ufs_lbn_t lbn; 4514 ufs2_daddr_t nb; 4515 int frags; 4516 int off; 4517 int journal; 4518 { 4519 struct freework *freework; 4520 4521 freework = malloc(sizeof(*freework), M_FREEWORK, M_SOFTDEP_FLAGS); 4522 workitem_alloc(&freework->fw_list, D_FREEWORK, freeblks->fb_list.wk_mp); 4523 freework->fw_state = ATTACHED; 4524 freework->fw_jnewblk = NULL; 4525 freework->fw_freeblks = freeblks; 4526 freework->fw_parent = parent; 4527 freework->fw_lbn = lbn; 4528 freework->fw_blkno = nb; 4529 freework->fw_frags = frags; 4530 freework->fw_indir = NULL; 4531 freework->fw_ref = (MOUNTEDSUJ(UFSTOVFS(ump)) == 0 || 4532 lbn >= -UFS_NXADDR) ? 0 : NINDIR(ump->um_fs) + 1; 4533 freework->fw_start = freework->fw_off = off; 4534 if (journal) 4535 newjfreeblk(freeblks, lbn, nb, frags); 4536 if (parent == NULL) { 4537 ACQUIRE_LOCK(ump); 4538 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 4539 freeblks->fb_ref++; 4540 FREE_LOCK(ump); 4541 } 4542 4543 return (freework); 4544 } 4545 4546 /* 4547 * Eliminate a jfreeblk for a block that does not need journaling. 4548 */ 4549 static void 4550 cancel_jfreeblk(freeblks, blkno) 4551 struct freeblks *freeblks; 4552 ufs2_daddr_t blkno; 4553 { 4554 struct jfreeblk *jfreeblk; 4555 struct jblkdep *jblkdep; 4556 4557 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) { 4558 if (jblkdep->jb_list.wk_type != D_JFREEBLK) 4559 continue; 4560 jfreeblk = WK_JFREEBLK(&jblkdep->jb_list); 4561 if (jfreeblk->jf_blkno == blkno) 4562 break; 4563 } 4564 if (jblkdep == NULL) 4565 return; 4566 CTR1(KTR_SUJ, "cancel_jfreeblk: blkno %jd", blkno); 4567 free_jsegdep(jblkdep->jb_jsegdep); 4568 LIST_REMOVE(jblkdep, jb_deps); 4569 WORKITEM_FREE(jfreeblk, D_JFREEBLK); 4570 } 4571 4572 /* 4573 * Allocate a new jfreeblk to journal top level block pointer when truncating 4574 * a file. The caller must add this to the worklist when the per-filesystem 4575 * lock is held. 4576 */ 4577 static struct jfreeblk * 4578 newjfreeblk(freeblks, lbn, blkno, frags) 4579 struct freeblks *freeblks; 4580 ufs_lbn_t lbn; 4581 ufs2_daddr_t blkno; 4582 int frags; 4583 { 4584 struct jfreeblk *jfreeblk; 4585 4586 jfreeblk = malloc(sizeof(*jfreeblk), M_JFREEBLK, M_SOFTDEP_FLAGS); 4587 workitem_alloc(&jfreeblk->jf_dep.jb_list, D_JFREEBLK, 4588 freeblks->fb_list.wk_mp); 4589 jfreeblk->jf_dep.jb_jsegdep = newjsegdep(&jfreeblk->jf_dep.jb_list); 4590 jfreeblk->jf_dep.jb_freeblks = freeblks; 4591 jfreeblk->jf_ino = freeblks->fb_inum; 4592 jfreeblk->jf_lbn = lbn; 4593 jfreeblk->jf_blkno = blkno; 4594 jfreeblk->jf_frags = frags; 4595 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jfreeblk->jf_dep, jb_deps); 4596 4597 return (jfreeblk); 4598 } 4599 4600 /* 4601 * The journal is only prepared to handle full-size block numbers, so we 4602 * have to adjust the record to reflect the change to a full-size block. 4603 * For example, suppose we have a block made up of fragments 8-15 and 4604 * want to free its last two fragments. We are given a request that says: 4605 * FREEBLK ino=5, blkno=14, lbn=0, frags=2, oldfrags=0 4606 * where frags are the number of fragments to free and oldfrags are the 4607 * number of fragments to keep. To block align it, we have to change it to 4608 * have a valid full-size blkno, so it becomes: 4609 * FREEBLK ino=5, blkno=8, lbn=0, frags=2, oldfrags=6 4610 */ 4611 static void 4612 adjust_newfreework(freeblks, frag_offset) 4613 struct freeblks *freeblks; 4614 int frag_offset; 4615 { 4616 struct jfreeblk *jfreeblk; 4617 4618 KASSERT((LIST_FIRST(&freeblks->fb_jblkdephd) != NULL && 4619 LIST_FIRST(&freeblks->fb_jblkdephd)->jb_list.wk_type == D_JFREEBLK), 4620 ("adjust_newfreework: Missing freeblks dependency")); 4621 4622 jfreeblk = WK_JFREEBLK(LIST_FIRST(&freeblks->fb_jblkdephd)); 4623 jfreeblk->jf_blkno -= frag_offset; 4624 jfreeblk->jf_frags += frag_offset; 4625 } 4626 4627 /* 4628 * Allocate a new jtrunc to track a partial truncation. 4629 */ 4630 static struct jtrunc * 4631 newjtrunc(freeblks, size, extsize) 4632 struct freeblks *freeblks; 4633 off_t size; 4634 int extsize; 4635 { 4636 struct jtrunc *jtrunc; 4637 4638 jtrunc = malloc(sizeof(*jtrunc), M_JTRUNC, M_SOFTDEP_FLAGS); 4639 workitem_alloc(&jtrunc->jt_dep.jb_list, D_JTRUNC, 4640 freeblks->fb_list.wk_mp); 4641 jtrunc->jt_dep.jb_jsegdep = newjsegdep(&jtrunc->jt_dep.jb_list); 4642 jtrunc->jt_dep.jb_freeblks = freeblks; 4643 jtrunc->jt_ino = freeblks->fb_inum; 4644 jtrunc->jt_size = size; 4645 jtrunc->jt_extsize = extsize; 4646 LIST_INSERT_HEAD(&freeblks->fb_jblkdephd, &jtrunc->jt_dep, jb_deps); 4647 4648 return (jtrunc); 4649 } 4650 4651 /* 4652 * If we're canceling a new bitmap we have to search for another ref 4653 * to move into the bmsafemap dep. This might be better expressed 4654 * with another structure. 4655 */ 4656 static void 4657 move_newblock_dep(jaddref, inodedep) 4658 struct jaddref *jaddref; 4659 struct inodedep *inodedep; 4660 { 4661 struct inoref *inoref; 4662 struct jaddref *jaddrefn; 4663 4664 jaddrefn = NULL; 4665 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4666 inoref = TAILQ_NEXT(inoref, if_deps)) { 4667 if ((jaddref->ja_state & NEWBLOCK) && 4668 inoref->if_list.wk_type == D_JADDREF) { 4669 jaddrefn = (struct jaddref *)inoref; 4670 break; 4671 } 4672 } 4673 if (jaddrefn == NULL) 4674 return; 4675 jaddrefn->ja_state &= ~(ATTACHED | UNDONE); 4676 jaddrefn->ja_state |= jaddref->ja_state & 4677 (ATTACHED | UNDONE | NEWBLOCK); 4678 jaddref->ja_state &= ~(ATTACHED | UNDONE | NEWBLOCK); 4679 jaddref->ja_state |= ATTACHED; 4680 LIST_REMOVE(jaddref, ja_bmdeps); 4681 LIST_INSERT_HEAD(&inodedep->id_bmsafemap->sm_jaddrefhd, jaddrefn, 4682 ja_bmdeps); 4683 } 4684 4685 /* 4686 * Cancel a jaddref either before it has been written or while it is being 4687 * written. This happens when a link is removed before the add reaches 4688 * the disk. The jaddref dependency is kept linked into the bmsafemap 4689 * and inode to prevent the link count or bitmap from reaching the disk 4690 * until handle_workitem_remove() re-adjusts the counts and bitmaps as 4691 * required. 4692 * 4693 * Returns 1 if the canceled addref requires journaling of the remove and 4694 * 0 otherwise. 4695 */ 4696 static int 4697 cancel_jaddref(jaddref, inodedep, wkhd) 4698 struct jaddref *jaddref; 4699 struct inodedep *inodedep; 4700 struct workhead *wkhd; 4701 { 4702 struct inoref *inoref; 4703 struct jsegdep *jsegdep; 4704 int needsj; 4705 4706 KASSERT((jaddref->ja_state & COMPLETE) == 0, 4707 ("cancel_jaddref: Canceling complete jaddref")); 4708 if (jaddref->ja_state & (INPROGRESS | COMPLETE)) 4709 needsj = 1; 4710 else 4711 needsj = 0; 4712 if (inodedep == NULL) 4713 if (inodedep_lookup(jaddref->ja_list.wk_mp, jaddref->ja_ino, 4714 0, &inodedep) == 0) 4715 panic("cancel_jaddref: Lost inodedep"); 4716 /* 4717 * We must adjust the nlink of any reference operation that follows 4718 * us so that it is consistent with the in-memory reference. This 4719 * ensures that inode nlink rollbacks always have the correct link. 4720 */ 4721 if (needsj == 0) { 4722 for (inoref = TAILQ_NEXT(&jaddref->ja_ref, if_deps); inoref; 4723 inoref = TAILQ_NEXT(inoref, if_deps)) { 4724 if (inoref->if_state & GOINGAWAY) 4725 break; 4726 inoref->if_nlink--; 4727 } 4728 } 4729 jsegdep = inoref_jseg(&jaddref->ja_ref); 4730 if (jaddref->ja_state & NEWBLOCK) 4731 move_newblock_dep(jaddref, inodedep); 4732 wake_worklist(&jaddref->ja_list); 4733 jaddref->ja_mkdir = NULL; 4734 if (jaddref->ja_state & INPROGRESS) { 4735 jaddref->ja_state &= ~INPROGRESS; 4736 WORKLIST_REMOVE(&jaddref->ja_list); 4737 jwork_insert(wkhd, jsegdep); 4738 } else { 4739 free_jsegdep(jsegdep); 4740 if (jaddref->ja_state & DEPCOMPLETE) 4741 remove_from_journal(&jaddref->ja_list); 4742 } 4743 jaddref->ja_state |= (GOINGAWAY | DEPCOMPLETE); 4744 /* 4745 * Leave NEWBLOCK jaddrefs on the inodedep so handle_workitem_remove 4746 * can arrange for them to be freed with the bitmap. Otherwise we 4747 * no longer need this addref attached to the inoreflst and it 4748 * will incorrectly adjust nlink if we leave it. 4749 */ 4750 if ((jaddref->ja_state & NEWBLOCK) == 0) { 4751 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 4752 if_deps); 4753 jaddref->ja_state |= COMPLETE; 4754 free_jaddref(jaddref); 4755 return (needsj); 4756 } 4757 /* 4758 * Leave the head of the list for jsegdeps for fast merging. 4759 */ 4760 if (LIST_FIRST(wkhd) != NULL) { 4761 jaddref->ja_state |= ONWORKLIST; 4762 LIST_INSERT_AFTER(LIST_FIRST(wkhd), &jaddref->ja_list, wk_list); 4763 } else 4764 WORKLIST_INSERT(wkhd, &jaddref->ja_list); 4765 4766 return (needsj); 4767 } 4768 4769 /* 4770 * Attempt to free a jaddref structure when some work completes. This 4771 * should only succeed once the entry is written and all dependencies have 4772 * been notified. 4773 */ 4774 static void 4775 free_jaddref(jaddref) 4776 struct jaddref *jaddref; 4777 { 4778 4779 if ((jaddref->ja_state & ALLCOMPLETE) != ALLCOMPLETE) 4780 return; 4781 if (jaddref->ja_ref.if_jsegdep) 4782 panic("free_jaddref: segdep attached to jaddref %p(0x%X)\n", 4783 jaddref, jaddref->ja_state); 4784 if (jaddref->ja_state & NEWBLOCK) 4785 LIST_REMOVE(jaddref, ja_bmdeps); 4786 if (jaddref->ja_state & (INPROGRESS | ONWORKLIST)) 4787 panic("free_jaddref: Bad state %p(0x%X)", 4788 jaddref, jaddref->ja_state); 4789 if (jaddref->ja_mkdir != NULL) 4790 panic("free_jaddref: Work pending, 0x%X\n", jaddref->ja_state); 4791 WORKITEM_FREE(jaddref, D_JADDREF); 4792 } 4793 4794 /* 4795 * Free a jremref structure once it has been written or discarded. 4796 */ 4797 static void 4798 free_jremref(jremref) 4799 struct jremref *jremref; 4800 { 4801 4802 if (jremref->jr_ref.if_jsegdep) 4803 free_jsegdep(jremref->jr_ref.if_jsegdep); 4804 if (jremref->jr_state & INPROGRESS) 4805 panic("free_jremref: IO still pending"); 4806 WORKITEM_FREE(jremref, D_JREMREF); 4807 } 4808 4809 /* 4810 * Free a jnewblk structure. 4811 */ 4812 static void 4813 free_jnewblk(jnewblk) 4814 struct jnewblk *jnewblk; 4815 { 4816 4817 if ((jnewblk->jn_state & ALLCOMPLETE) != ALLCOMPLETE) 4818 return; 4819 LIST_REMOVE(jnewblk, jn_deps); 4820 if (jnewblk->jn_dep != NULL) 4821 panic("free_jnewblk: Dependency still attached."); 4822 WORKITEM_FREE(jnewblk, D_JNEWBLK); 4823 } 4824 4825 /* 4826 * Cancel a jnewblk which has been been made redundant by frag extension. 4827 */ 4828 static void 4829 cancel_jnewblk(jnewblk, wkhd) 4830 struct jnewblk *jnewblk; 4831 struct workhead *wkhd; 4832 { 4833 struct jsegdep *jsegdep; 4834 4835 CTR1(KTR_SUJ, "cancel_jnewblk: blkno %jd", jnewblk->jn_blkno); 4836 jsegdep = jnewblk->jn_jsegdep; 4837 if (jnewblk->jn_jsegdep == NULL || jnewblk->jn_dep == NULL) 4838 panic("cancel_jnewblk: Invalid state"); 4839 jnewblk->jn_jsegdep = NULL; 4840 jnewblk->jn_dep = NULL; 4841 jnewblk->jn_state |= GOINGAWAY; 4842 if (jnewblk->jn_state & INPROGRESS) { 4843 jnewblk->jn_state &= ~INPROGRESS; 4844 WORKLIST_REMOVE(&jnewblk->jn_list); 4845 jwork_insert(wkhd, jsegdep); 4846 } else { 4847 free_jsegdep(jsegdep); 4848 remove_from_journal(&jnewblk->jn_list); 4849 } 4850 wake_worklist(&jnewblk->jn_list); 4851 WORKLIST_INSERT(wkhd, &jnewblk->jn_list); 4852 } 4853 4854 static void 4855 free_jblkdep(jblkdep) 4856 struct jblkdep *jblkdep; 4857 { 4858 4859 if (jblkdep->jb_list.wk_type == D_JFREEBLK) 4860 WORKITEM_FREE(jblkdep, D_JFREEBLK); 4861 else if (jblkdep->jb_list.wk_type == D_JTRUNC) 4862 WORKITEM_FREE(jblkdep, D_JTRUNC); 4863 else 4864 panic("free_jblkdep: Unexpected type %s", 4865 TYPENAME(jblkdep->jb_list.wk_type)); 4866 } 4867 4868 /* 4869 * Free a single jseg once it is no longer referenced in memory or on 4870 * disk. Reclaim journal blocks and dependencies waiting for the segment 4871 * to disappear. 4872 */ 4873 static void 4874 free_jseg(jseg, jblocks) 4875 struct jseg *jseg; 4876 struct jblocks *jblocks; 4877 { 4878 struct freework *freework; 4879 4880 /* 4881 * Free freework structures that were lingering to indicate freed 4882 * indirect blocks that forced journal write ordering on reallocate. 4883 */ 4884 while ((freework = LIST_FIRST(&jseg->js_indirs)) != NULL) 4885 indirblk_remove(freework); 4886 if (jblocks->jb_oldestseg == jseg) 4887 jblocks->jb_oldestseg = TAILQ_NEXT(jseg, js_next); 4888 TAILQ_REMOVE(&jblocks->jb_segs, jseg, js_next); 4889 jblocks_free(jblocks, jseg->js_list.wk_mp, jseg->js_size); 4890 KASSERT(LIST_EMPTY(&jseg->js_entries), 4891 ("free_jseg: Freed jseg has valid entries.")); 4892 WORKITEM_FREE(jseg, D_JSEG); 4893 } 4894 4895 /* 4896 * Free all jsegs that meet the criteria for being reclaimed and update 4897 * oldestseg. 4898 */ 4899 static void 4900 free_jsegs(jblocks) 4901 struct jblocks *jblocks; 4902 { 4903 struct jseg *jseg; 4904 4905 /* 4906 * Free only those jsegs which have none allocated before them to 4907 * preserve the journal space ordering. 4908 */ 4909 while ((jseg = TAILQ_FIRST(&jblocks->jb_segs)) != NULL) { 4910 /* 4911 * Only reclaim space when nothing depends on this journal 4912 * set and another set has written that it is no longer 4913 * valid. 4914 */ 4915 if (jseg->js_refs != 0) { 4916 jblocks->jb_oldestseg = jseg; 4917 return; 4918 } 4919 if ((jseg->js_state & ALLCOMPLETE) != ALLCOMPLETE) 4920 break; 4921 if (jseg->js_seq > jblocks->jb_oldestwrseq) 4922 break; 4923 /* 4924 * We can free jsegs that didn't write entries when 4925 * oldestwrseq == js_seq. 4926 */ 4927 if (jseg->js_seq == jblocks->jb_oldestwrseq && 4928 jseg->js_cnt != 0) 4929 break; 4930 free_jseg(jseg, jblocks); 4931 } 4932 /* 4933 * If we exited the loop above we still must discover the 4934 * oldest valid segment. 4935 */ 4936 if (jseg) 4937 for (jseg = jblocks->jb_oldestseg; jseg != NULL; 4938 jseg = TAILQ_NEXT(jseg, js_next)) 4939 if (jseg->js_refs != 0) 4940 break; 4941 jblocks->jb_oldestseg = jseg; 4942 /* 4943 * The journal has no valid records but some jsegs may still be 4944 * waiting on oldestwrseq to advance. We force a small record 4945 * out to permit these lingering records to be reclaimed. 4946 */ 4947 if (jblocks->jb_oldestseg == NULL && !TAILQ_EMPTY(&jblocks->jb_segs)) 4948 jblocks->jb_needseg = 1; 4949 } 4950 4951 /* 4952 * Release one reference to a jseg and free it if the count reaches 0. This 4953 * should eventually reclaim journal space as well. 4954 */ 4955 static void 4956 rele_jseg(jseg) 4957 struct jseg *jseg; 4958 { 4959 4960 KASSERT(jseg->js_refs > 0, 4961 ("free_jseg: Invalid refcnt %d", jseg->js_refs)); 4962 if (--jseg->js_refs != 0) 4963 return; 4964 free_jsegs(jseg->js_jblocks); 4965 } 4966 4967 /* 4968 * Release a jsegdep and decrement the jseg count. 4969 */ 4970 static void 4971 free_jsegdep(jsegdep) 4972 struct jsegdep *jsegdep; 4973 { 4974 4975 if (jsegdep->jd_seg) 4976 rele_jseg(jsegdep->jd_seg); 4977 WORKITEM_FREE(jsegdep, D_JSEGDEP); 4978 } 4979 4980 /* 4981 * Wait for a journal item to make it to disk. Initiate journal processing 4982 * if required. 4983 */ 4984 static int 4985 jwait(wk, waitfor) 4986 struct worklist *wk; 4987 int waitfor; 4988 { 4989 4990 LOCK_OWNED(VFSTOUFS(wk->wk_mp)); 4991 /* 4992 * Blocking journal waits cause slow synchronous behavior. Record 4993 * stats on the frequency of these blocking operations. 4994 */ 4995 if (waitfor == MNT_WAIT) { 4996 stat_journal_wait++; 4997 switch (wk->wk_type) { 4998 case D_JREMREF: 4999 case D_JMVREF: 5000 stat_jwait_filepage++; 5001 break; 5002 case D_JTRUNC: 5003 case D_JFREEBLK: 5004 stat_jwait_freeblks++; 5005 break; 5006 case D_JNEWBLK: 5007 stat_jwait_newblk++; 5008 break; 5009 case D_JADDREF: 5010 stat_jwait_inode++; 5011 break; 5012 default: 5013 break; 5014 } 5015 } 5016 /* 5017 * If IO has not started we process the journal. We can't mark the 5018 * worklist item as IOWAITING because we drop the lock while 5019 * processing the journal and the worklist entry may be freed after 5020 * this point. The caller may call back in and re-issue the request. 5021 */ 5022 if ((wk->wk_state & INPROGRESS) == 0) { 5023 softdep_process_journal(wk->wk_mp, wk, waitfor); 5024 if (waitfor != MNT_WAIT) 5025 return (EBUSY); 5026 return (0); 5027 } 5028 if (waitfor != MNT_WAIT) 5029 return (EBUSY); 5030 wait_worklist(wk, "jwait"); 5031 return (0); 5032 } 5033 5034 /* 5035 * Lookup an inodedep based on an inode pointer and set the nlinkdelta as 5036 * appropriate. This is a convenience function to reduce duplicate code 5037 * for the setup and revert functions below. 5038 */ 5039 static struct inodedep * 5040 inodedep_lookup_ip(ip) 5041 struct inode *ip; 5042 { 5043 struct inodedep *inodedep; 5044 5045 KASSERT(ip->i_nlink >= ip->i_effnlink, 5046 ("inodedep_lookup_ip: bad delta")); 5047 (void) inodedep_lookup(ITOVFS(ip), ip->i_number, DEPALLOC, 5048 &inodedep); 5049 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 5050 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 5051 5052 return (inodedep); 5053 } 5054 5055 /* 5056 * Called prior to creating a new inode and linking it to a directory. The 5057 * jaddref structure must already be allocated by softdep_setup_inomapdep 5058 * and it is discovered here so we can initialize the mode and update 5059 * nlinkdelta. 5060 */ 5061 void 5062 softdep_setup_create(dp, ip) 5063 struct inode *dp; 5064 struct inode *ip; 5065 { 5066 struct inodedep *inodedep; 5067 struct jaddref *jaddref __diagused; 5068 struct vnode *dvp; 5069 5070 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5071 ("softdep_setup_create called on non-softdep filesystem")); 5072 KASSERT(ip->i_nlink == 1, 5073 ("softdep_setup_create: Invalid link count.")); 5074 dvp = ITOV(dp); 5075 ACQUIRE_LOCK(ITOUMP(dp)); 5076 inodedep = inodedep_lookup_ip(ip); 5077 if (DOINGSUJ(dvp)) { 5078 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5079 inoreflst); 5080 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 5081 ("softdep_setup_create: No addref structure present.")); 5082 } 5083 FREE_LOCK(ITOUMP(dp)); 5084 } 5085 5086 /* 5087 * Create a jaddref structure to track the addition of a DOTDOT link when 5088 * we are reparenting an inode as part of a rename. This jaddref will be 5089 * found by softdep_setup_directory_change. Adjusts nlinkdelta for 5090 * non-journaling softdep. 5091 */ 5092 void 5093 softdep_setup_dotdot_link(dp, ip) 5094 struct inode *dp; 5095 struct inode *ip; 5096 { 5097 struct inodedep *inodedep; 5098 struct jaddref *jaddref; 5099 struct vnode *dvp; 5100 5101 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5102 ("softdep_setup_dotdot_link called on non-softdep filesystem")); 5103 dvp = ITOV(dp); 5104 jaddref = NULL; 5105 /* 5106 * We don't set MKDIR_PARENT as this is not tied to a mkdir and 5107 * is used as a normal link would be. 5108 */ 5109 if (DOINGSUJ(dvp)) 5110 jaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5111 dp->i_effnlink - 1, dp->i_mode); 5112 ACQUIRE_LOCK(ITOUMP(dp)); 5113 inodedep = inodedep_lookup_ip(dp); 5114 if (jaddref) 5115 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5116 if_deps); 5117 FREE_LOCK(ITOUMP(dp)); 5118 } 5119 5120 /* 5121 * Create a jaddref structure to track a new link to an inode. The directory 5122 * offset is not known until softdep_setup_directory_add or 5123 * softdep_setup_directory_change. Adjusts nlinkdelta for non-journaling 5124 * softdep. 5125 */ 5126 void 5127 softdep_setup_link(dp, ip) 5128 struct inode *dp; 5129 struct inode *ip; 5130 { 5131 struct inodedep *inodedep; 5132 struct jaddref *jaddref; 5133 struct vnode *dvp; 5134 5135 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5136 ("softdep_setup_link called on non-softdep filesystem")); 5137 dvp = ITOV(dp); 5138 jaddref = NULL; 5139 if (DOINGSUJ(dvp)) 5140 jaddref = newjaddref(dp, ip->i_number, 0, ip->i_effnlink - 1, 5141 ip->i_mode); 5142 ACQUIRE_LOCK(ITOUMP(dp)); 5143 inodedep = inodedep_lookup_ip(ip); 5144 if (jaddref) 5145 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5146 if_deps); 5147 FREE_LOCK(ITOUMP(dp)); 5148 } 5149 5150 /* 5151 * Called to create the jaddref structures to track . and .. references as 5152 * well as lookup and further initialize the incomplete jaddref created 5153 * by softdep_setup_inomapdep when the inode was allocated. Adjusts 5154 * nlinkdelta for non-journaling softdep. 5155 */ 5156 void 5157 softdep_setup_mkdir(dp, ip) 5158 struct inode *dp; 5159 struct inode *ip; 5160 { 5161 struct inodedep *inodedep; 5162 struct jaddref *dotdotaddref; 5163 struct jaddref *dotaddref; 5164 struct jaddref *jaddref; 5165 struct vnode *dvp; 5166 5167 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5168 ("softdep_setup_mkdir called on non-softdep filesystem")); 5169 dvp = ITOV(dp); 5170 dotaddref = dotdotaddref = NULL; 5171 if (DOINGSUJ(dvp)) { 5172 dotaddref = newjaddref(ip, ip->i_number, DOT_OFFSET, 1, 5173 ip->i_mode); 5174 dotaddref->ja_state |= MKDIR_BODY; 5175 dotdotaddref = newjaddref(ip, dp->i_number, DOTDOT_OFFSET, 5176 dp->i_effnlink - 1, dp->i_mode); 5177 dotdotaddref->ja_state |= MKDIR_PARENT; 5178 } 5179 ACQUIRE_LOCK(ITOUMP(dp)); 5180 inodedep = inodedep_lookup_ip(ip); 5181 if (DOINGSUJ(dvp)) { 5182 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5183 inoreflst); 5184 KASSERT(jaddref != NULL, 5185 ("softdep_setup_mkdir: No addref structure present.")); 5186 KASSERT(jaddref->ja_parent == dp->i_number, 5187 ("softdep_setup_mkdir: bad parent %ju", 5188 (uintmax_t)jaddref->ja_parent)); 5189 TAILQ_INSERT_BEFORE(&jaddref->ja_ref, &dotaddref->ja_ref, 5190 if_deps); 5191 } 5192 inodedep = inodedep_lookup_ip(dp); 5193 if (DOINGSUJ(dvp)) 5194 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, 5195 &dotdotaddref->ja_ref, if_deps); 5196 FREE_LOCK(ITOUMP(dp)); 5197 } 5198 5199 /* 5200 * Called to track nlinkdelta of the inode and parent directories prior to 5201 * unlinking a directory. 5202 */ 5203 void 5204 softdep_setup_rmdir(dp, ip) 5205 struct inode *dp; 5206 struct inode *ip; 5207 { 5208 5209 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5210 ("softdep_setup_rmdir called on non-softdep filesystem")); 5211 ACQUIRE_LOCK(ITOUMP(dp)); 5212 (void) inodedep_lookup_ip(ip); 5213 (void) inodedep_lookup_ip(dp); 5214 FREE_LOCK(ITOUMP(dp)); 5215 } 5216 5217 /* 5218 * Called to track nlinkdelta of the inode and parent directories prior to 5219 * unlink. 5220 */ 5221 void 5222 softdep_setup_unlink(dp, ip) 5223 struct inode *dp; 5224 struct inode *ip; 5225 { 5226 5227 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5228 ("softdep_setup_unlink called on non-softdep filesystem")); 5229 ACQUIRE_LOCK(ITOUMP(dp)); 5230 (void) inodedep_lookup_ip(ip); 5231 (void) inodedep_lookup_ip(dp); 5232 FREE_LOCK(ITOUMP(dp)); 5233 } 5234 5235 /* 5236 * Called to release the journal structures created by a failed non-directory 5237 * creation. Adjusts nlinkdelta for non-journaling softdep. 5238 */ 5239 void 5240 softdep_revert_create(dp, ip) 5241 struct inode *dp; 5242 struct inode *ip; 5243 { 5244 struct inodedep *inodedep; 5245 struct jaddref *jaddref; 5246 struct vnode *dvp; 5247 5248 KASSERT(MOUNTEDSOFTDEP(ITOVFS((dp))) != 0, 5249 ("softdep_revert_create called on non-softdep filesystem")); 5250 dvp = ITOV(dp); 5251 ACQUIRE_LOCK(ITOUMP(dp)); 5252 inodedep = inodedep_lookup_ip(ip); 5253 if (DOINGSUJ(dvp)) { 5254 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5255 inoreflst); 5256 KASSERT(jaddref->ja_parent == dp->i_number, 5257 ("softdep_revert_create: addref parent mismatch")); 5258 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5259 } 5260 FREE_LOCK(ITOUMP(dp)); 5261 } 5262 5263 /* 5264 * Called to release the journal structures created by a failed link 5265 * addition. Adjusts nlinkdelta for non-journaling softdep. 5266 */ 5267 void 5268 softdep_revert_link(dp, ip) 5269 struct inode *dp; 5270 struct inode *ip; 5271 { 5272 struct inodedep *inodedep; 5273 struct jaddref *jaddref; 5274 struct vnode *dvp; 5275 5276 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5277 ("softdep_revert_link called on non-softdep filesystem")); 5278 dvp = ITOV(dp); 5279 ACQUIRE_LOCK(ITOUMP(dp)); 5280 inodedep = inodedep_lookup_ip(ip); 5281 if (DOINGSUJ(dvp)) { 5282 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5283 inoreflst); 5284 KASSERT(jaddref->ja_parent == dp->i_number, 5285 ("softdep_revert_link: addref parent mismatch")); 5286 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5287 } 5288 FREE_LOCK(ITOUMP(dp)); 5289 } 5290 5291 /* 5292 * Called to release the journal structures created by a failed mkdir 5293 * attempt. Adjusts nlinkdelta for non-journaling softdep. 5294 */ 5295 void 5296 softdep_revert_mkdir(dp, ip) 5297 struct inode *dp; 5298 struct inode *ip; 5299 { 5300 struct inodedep *inodedep; 5301 struct jaddref *jaddref; 5302 struct jaddref *dotaddref; 5303 struct vnode *dvp; 5304 5305 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5306 ("softdep_revert_mkdir called on non-softdep filesystem")); 5307 dvp = ITOV(dp); 5308 5309 ACQUIRE_LOCK(ITOUMP(dp)); 5310 inodedep = inodedep_lookup_ip(dp); 5311 if (DOINGSUJ(dvp)) { 5312 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5313 inoreflst); 5314 KASSERT(jaddref->ja_parent == ip->i_number, 5315 ("softdep_revert_mkdir: dotdot addref parent mismatch")); 5316 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5317 } 5318 inodedep = inodedep_lookup_ip(ip); 5319 if (DOINGSUJ(dvp)) { 5320 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 5321 inoreflst); 5322 KASSERT(jaddref->ja_parent == dp->i_number, 5323 ("softdep_revert_mkdir: addref parent mismatch")); 5324 dotaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 5325 inoreflst, if_deps); 5326 cancel_jaddref(jaddref, inodedep, &inodedep->id_inowait); 5327 KASSERT(dotaddref->ja_parent == ip->i_number, 5328 ("softdep_revert_mkdir: dot addref parent mismatch")); 5329 cancel_jaddref(dotaddref, inodedep, &inodedep->id_inowait); 5330 } 5331 FREE_LOCK(ITOUMP(dp)); 5332 } 5333 5334 /* 5335 * Called to correct nlinkdelta after a failed rmdir. 5336 */ 5337 void 5338 softdep_revert_rmdir(dp, ip) 5339 struct inode *dp; 5340 struct inode *ip; 5341 { 5342 5343 KASSERT(MOUNTEDSOFTDEP(ITOVFS(dp)) != 0, 5344 ("softdep_revert_rmdir called on non-softdep filesystem")); 5345 ACQUIRE_LOCK(ITOUMP(dp)); 5346 (void) inodedep_lookup_ip(ip); 5347 (void) inodedep_lookup_ip(dp); 5348 FREE_LOCK(ITOUMP(dp)); 5349 } 5350 5351 /* 5352 * Protecting the freemaps (or bitmaps). 5353 * 5354 * To eliminate the need to execute fsck before mounting a filesystem 5355 * after a power failure, one must (conservatively) guarantee that the 5356 * on-disk copy of the bitmaps never indicate that a live inode or block is 5357 * free. So, when a block or inode is allocated, the bitmap should be 5358 * updated (on disk) before any new pointers. When a block or inode is 5359 * freed, the bitmap should not be updated until all pointers have been 5360 * reset. The latter dependency is handled by the delayed de-allocation 5361 * approach described below for block and inode de-allocation. The former 5362 * dependency is handled by calling the following procedure when a block or 5363 * inode is allocated. When an inode is allocated an "inodedep" is created 5364 * with its DEPCOMPLETE flag cleared until its bitmap is written to disk. 5365 * Each "inodedep" is also inserted into the hash indexing structure so 5366 * that any additional link additions can be made dependent on the inode 5367 * allocation. 5368 * 5369 * The ufs filesystem maintains a number of free block counts (e.g., per 5370 * cylinder group, per cylinder and per <cylinder, rotational position> pair) 5371 * in addition to the bitmaps. These counts are used to improve efficiency 5372 * during allocation and therefore must be consistent with the bitmaps. 5373 * There is no convenient way to guarantee post-crash consistency of these 5374 * counts with simple update ordering, for two main reasons: (1) The counts 5375 * and bitmaps for a single cylinder group block are not in the same disk 5376 * sector. If a disk write is interrupted (e.g., by power failure), one may 5377 * be written and the other not. (2) Some of the counts are located in the 5378 * superblock rather than the cylinder group block. So, we focus our soft 5379 * updates implementation on protecting the bitmaps. When mounting a 5380 * filesystem, we recompute the auxiliary counts from the bitmaps. 5381 */ 5382 5383 /* 5384 * Called just after updating the cylinder group block to allocate an inode. 5385 */ 5386 void 5387 softdep_setup_inomapdep(bp, ip, newinum, mode) 5388 struct buf *bp; /* buffer for cylgroup block with inode map */ 5389 struct inode *ip; /* inode related to allocation */ 5390 ino_t newinum; /* new inode number being allocated */ 5391 int mode; 5392 { 5393 struct inodedep *inodedep; 5394 struct bmsafemap *bmsafemap; 5395 struct jaddref *jaddref; 5396 struct mount *mp; 5397 struct fs *fs; 5398 5399 mp = ITOVFS(ip); 5400 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5401 ("softdep_setup_inomapdep called on non-softdep filesystem")); 5402 fs = VFSTOUFS(mp)->um_fs; 5403 jaddref = NULL; 5404 5405 /* 5406 * Allocate the journal reference add structure so that the bitmap 5407 * can be dependent on it. 5408 */ 5409 if (MOUNTEDSUJ(mp)) { 5410 jaddref = newjaddref(ip, newinum, 0, 0, mode); 5411 jaddref->ja_state |= NEWBLOCK; 5412 } 5413 5414 /* 5415 * Create a dependency for the newly allocated inode. 5416 * Panic if it already exists as something is seriously wrong. 5417 * Otherwise add it to the dependency list for the buffer holding 5418 * the cylinder group map from which it was allocated. 5419 * 5420 * We have to preallocate a bmsafemap entry in case it is needed 5421 * in bmsafemap_lookup since once we allocate the inodedep, we 5422 * have to finish initializing it before we can FREE_LOCK(). 5423 * By preallocating, we avoid FREE_LOCK() while doing a malloc 5424 * in bmsafemap_lookup. We cannot call bmsafemap_lookup before 5425 * creating the inodedep as it can be freed during the time 5426 * that we FREE_LOCK() while allocating the inodedep. We must 5427 * call workitem_alloc() before entering the locked section as 5428 * it also acquires the lock and we must avoid trying doing so 5429 * recursively. 5430 */ 5431 bmsafemap = malloc(sizeof(struct bmsafemap), 5432 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5433 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5434 ACQUIRE_LOCK(ITOUMP(ip)); 5435 if ((inodedep_lookup(mp, newinum, DEPALLOC, &inodedep))) 5436 panic("softdep_setup_inomapdep: dependency %p for new" 5437 "inode already exists", inodedep); 5438 bmsafemap = bmsafemap_lookup(mp, bp, ino_to_cg(fs, newinum), bmsafemap); 5439 if (jaddref) { 5440 LIST_INSERT_HEAD(&bmsafemap->sm_jaddrefhd, jaddref, ja_bmdeps); 5441 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jaddref->ja_ref, 5442 if_deps); 5443 } else { 5444 inodedep->id_state |= ONDEPLIST; 5445 LIST_INSERT_HEAD(&bmsafemap->sm_inodedephd, inodedep, id_deps); 5446 } 5447 inodedep->id_bmsafemap = bmsafemap; 5448 inodedep->id_state &= ~DEPCOMPLETE; 5449 FREE_LOCK(ITOUMP(ip)); 5450 } 5451 5452 /* 5453 * Called just after updating the cylinder group block to 5454 * allocate block or fragment. 5455 */ 5456 void 5457 softdep_setup_blkmapdep(bp, mp, newblkno, frags, oldfrags) 5458 struct buf *bp; /* buffer for cylgroup block with block map */ 5459 struct mount *mp; /* filesystem doing allocation */ 5460 ufs2_daddr_t newblkno; /* number of newly allocated block */ 5461 int frags; /* Number of fragments. */ 5462 int oldfrags; /* Previous number of fragments for extend. */ 5463 { 5464 struct newblk *newblk; 5465 struct bmsafemap *bmsafemap; 5466 struct jnewblk *jnewblk; 5467 struct ufsmount *ump; 5468 struct fs *fs; 5469 5470 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5471 ("softdep_setup_blkmapdep called on non-softdep filesystem")); 5472 ump = VFSTOUFS(mp); 5473 fs = ump->um_fs; 5474 jnewblk = NULL; 5475 /* 5476 * Create a dependency for the newly allocated block. 5477 * Add it to the dependency list for the buffer holding 5478 * the cylinder group map from which it was allocated. 5479 */ 5480 if (MOUNTEDSUJ(mp)) { 5481 jnewblk = malloc(sizeof(*jnewblk), M_JNEWBLK, M_SOFTDEP_FLAGS); 5482 workitem_alloc(&jnewblk->jn_list, D_JNEWBLK, mp); 5483 jnewblk->jn_jsegdep = newjsegdep(&jnewblk->jn_list); 5484 jnewblk->jn_state = ATTACHED; 5485 jnewblk->jn_blkno = newblkno; 5486 jnewblk->jn_frags = frags; 5487 jnewblk->jn_oldfrags = oldfrags; 5488 #ifdef INVARIANTS 5489 { 5490 struct cg *cgp; 5491 uint8_t *blksfree; 5492 long bno; 5493 int i; 5494 5495 cgp = (struct cg *)bp->b_data; 5496 blksfree = cg_blksfree(cgp); 5497 bno = dtogd(fs, jnewblk->jn_blkno); 5498 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; 5499 i++) { 5500 if (isset(blksfree, bno + i)) 5501 panic("softdep_setup_blkmapdep: " 5502 "free fragment %d from %d-%d " 5503 "state 0x%X dep %p", i, 5504 jnewblk->jn_oldfrags, 5505 jnewblk->jn_frags, 5506 jnewblk->jn_state, 5507 jnewblk->jn_dep); 5508 } 5509 } 5510 #endif 5511 } 5512 5513 CTR3(KTR_SUJ, 5514 "softdep_setup_blkmapdep: blkno %jd frags %d oldfrags %d", 5515 newblkno, frags, oldfrags); 5516 ACQUIRE_LOCK(ump); 5517 if (newblk_lookup(mp, newblkno, DEPALLOC, &newblk) != 0) 5518 panic("softdep_setup_blkmapdep: found block"); 5519 newblk->nb_bmsafemap = bmsafemap = bmsafemap_lookup(mp, bp, 5520 dtog(fs, newblkno), NULL); 5521 if (jnewblk) { 5522 jnewblk->jn_dep = (struct worklist *)newblk; 5523 LIST_INSERT_HEAD(&bmsafemap->sm_jnewblkhd, jnewblk, jn_deps); 5524 } else { 5525 newblk->nb_state |= ONDEPLIST; 5526 LIST_INSERT_HEAD(&bmsafemap->sm_newblkhd, newblk, nb_deps); 5527 } 5528 newblk->nb_bmsafemap = bmsafemap; 5529 newblk->nb_jnewblk = jnewblk; 5530 FREE_LOCK(ump); 5531 } 5532 5533 #define BMSAFEMAP_HASH(ump, cg) \ 5534 (&(ump)->bmsafemap_hashtbl[(cg) & (ump)->bmsafemap_hash_size]) 5535 5536 static int 5537 bmsafemap_find(bmsafemaphd, cg, bmsafemapp) 5538 struct bmsafemap_hashhead *bmsafemaphd; 5539 int cg; 5540 struct bmsafemap **bmsafemapp; 5541 { 5542 struct bmsafemap *bmsafemap; 5543 5544 LIST_FOREACH(bmsafemap, bmsafemaphd, sm_hash) 5545 if (bmsafemap->sm_cg == cg) 5546 break; 5547 if (bmsafemap) { 5548 *bmsafemapp = bmsafemap; 5549 return (1); 5550 } 5551 *bmsafemapp = NULL; 5552 5553 return (0); 5554 } 5555 5556 /* 5557 * Find the bmsafemap associated with a cylinder group buffer. 5558 * If none exists, create one. The buffer must be locked when 5559 * this routine is called and this routine must be called with 5560 * the softdep lock held. To avoid giving up the lock while 5561 * allocating a new bmsafemap, a preallocated bmsafemap may be 5562 * provided. If it is provided but not needed, it is freed. 5563 */ 5564 static struct bmsafemap * 5565 bmsafemap_lookup(mp, bp, cg, newbmsafemap) 5566 struct mount *mp; 5567 struct buf *bp; 5568 int cg; 5569 struct bmsafemap *newbmsafemap; 5570 { 5571 struct bmsafemap_hashhead *bmsafemaphd; 5572 struct bmsafemap *bmsafemap, *collision; 5573 struct worklist *wk; 5574 struct ufsmount *ump; 5575 5576 ump = VFSTOUFS(mp); 5577 LOCK_OWNED(ump); 5578 KASSERT(bp != NULL, ("bmsafemap_lookup: missing buffer")); 5579 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 5580 if (wk->wk_type == D_BMSAFEMAP) { 5581 if (newbmsafemap) 5582 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5583 return (WK_BMSAFEMAP(wk)); 5584 } 5585 } 5586 bmsafemaphd = BMSAFEMAP_HASH(ump, cg); 5587 if (bmsafemap_find(bmsafemaphd, cg, &bmsafemap) == 1) { 5588 if (newbmsafemap) 5589 WORKITEM_FREE(newbmsafemap, D_BMSAFEMAP); 5590 return (bmsafemap); 5591 } 5592 if (newbmsafemap) { 5593 bmsafemap = newbmsafemap; 5594 } else { 5595 FREE_LOCK(ump); 5596 bmsafemap = malloc(sizeof(struct bmsafemap), 5597 M_BMSAFEMAP, M_SOFTDEP_FLAGS); 5598 workitem_alloc(&bmsafemap->sm_list, D_BMSAFEMAP, mp); 5599 ACQUIRE_LOCK(ump); 5600 } 5601 bmsafemap->sm_buf = bp; 5602 LIST_INIT(&bmsafemap->sm_inodedephd); 5603 LIST_INIT(&bmsafemap->sm_inodedepwr); 5604 LIST_INIT(&bmsafemap->sm_newblkhd); 5605 LIST_INIT(&bmsafemap->sm_newblkwr); 5606 LIST_INIT(&bmsafemap->sm_jaddrefhd); 5607 LIST_INIT(&bmsafemap->sm_jnewblkhd); 5608 LIST_INIT(&bmsafemap->sm_freehd); 5609 LIST_INIT(&bmsafemap->sm_freewr); 5610 if (bmsafemap_find(bmsafemaphd, cg, &collision) == 1) { 5611 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 5612 return (collision); 5613 } 5614 bmsafemap->sm_cg = cg; 5615 LIST_INSERT_HEAD(bmsafemaphd, bmsafemap, sm_hash); 5616 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 5617 WORKLIST_INSERT(&bp->b_dep, &bmsafemap->sm_list); 5618 return (bmsafemap); 5619 } 5620 5621 /* 5622 * Direct block allocation dependencies. 5623 * 5624 * When a new block is allocated, the corresponding disk locations must be 5625 * initialized (with zeros or new data) before the on-disk inode points to 5626 * them. Also, the freemap from which the block was allocated must be 5627 * updated (on disk) before the inode's pointer. These two dependencies are 5628 * independent of each other and are needed for all file blocks and indirect 5629 * blocks that are pointed to directly by the inode. Just before the 5630 * "in-core" version of the inode is updated with a newly allocated block 5631 * number, a procedure (below) is called to setup allocation dependency 5632 * structures. These structures are removed when the corresponding 5633 * dependencies are satisfied or when the block allocation becomes obsolete 5634 * (i.e., the file is deleted, the block is de-allocated, or the block is a 5635 * fragment that gets upgraded). All of these cases are handled in 5636 * procedures described later. 5637 * 5638 * When a file extension causes a fragment to be upgraded, either to a larger 5639 * fragment or to a full block, the on-disk location may change (if the 5640 * previous fragment could not simply be extended). In this case, the old 5641 * fragment must be de-allocated, but not until after the inode's pointer has 5642 * been updated. In most cases, this is handled by later procedures, which 5643 * will construct a "freefrag" structure to be added to the workitem queue 5644 * when the inode update is complete (or obsolete). The main exception to 5645 * this is when an allocation occurs while a pending allocation dependency 5646 * (for the same block pointer) remains. This case is handled in the main 5647 * allocation dependency setup procedure by immediately freeing the 5648 * unreferenced fragments. 5649 */ 5650 void 5651 softdep_setup_allocdirect(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 5652 struct inode *ip; /* inode to which block is being added */ 5653 ufs_lbn_t off; /* block pointer within inode */ 5654 ufs2_daddr_t newblkno; /* disk block number being added */ 5655 ufs2_daddr_t oldblkno; /* previous block number, 0 unless frag */ 5656 long newsize; /* size of new block */ 5657 long oldsize; /* size of new block */ 5658 struct buf *bp; /* bp for allocated block */ 5659 { 5660 struct allocdirect *adp, *oldadp; 5661 struct allocdirectlst *adphead; 5662 struct freefrag *freefrag; 5663 struct inodedep *inodedep; 5664 struct pagedep *pagedep; 5665 struct jnewblk *jnewblk; 5666 struct newblk *newblk; 5667 struct mount *mp; 5668 ufs_lbn_t lbn; 5669 5670 lbn = bp->b_lblkno; 5671 mp = ITOVFS(ip); 5672 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 5673 ("softdep_setup_allocdirect called on non-softdep filesystem")); 5674 if (oldblkno && oldblkno != newblkno) 5675 /* 5676 * The usual case is that a smaller fragment that 5677 * was just allocated has been replaced with a bigger 5678 * fragment or a full-size block. If it is marked as 5679 * B_DELWRI, the current contents have not been written 5680 * to disk. It is possible that the block was written 5681 * earlier, but very uncommon. If the block has never 5682 * been written, there is no need to send a BIO_DELETE 5683 * for it when it is freed. The gain from avoiding the 5684 * TRIMs for the common case of unwritten blocks far 5685 * exceeds the cost of the write amplification for the 5686 * uncommon case of failing to send a TRIM for a block 5687 * that had been written. 5688 */ 5689 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 5690 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 5691 else 5692 freefrag = NULL; 5693 5694 CTR6(KTR_SUJ, 5695 "softdep_setup_allocdirect: ino %d blkno %jd oldblkno %jd " 5696 "off %jd newsize %ld oldsize %d", 5697 ip->i_number, newblkno, oldblkno, off, newsize, oldsize); 5698 ACQUIRE_LOCK(ITOUMP(ip)); 5699 if (off >= UFS_NDADDR) { 5700 if (lbn > 0) 5701 panic("softdep_setup_allocdirect: bad lbn %jd, off %jd", 5702 lbn, off); 5703 /* allocating an indirect block */ 5704 if (oldblkno != 0) 5705 panic("softdep_setup_allocdirect: non-zero indir"); 5706 } else { 5707 if (off != lbn) 5708 panic("softdep_setup_allocdirect: lbn %jd != off %jd", 5709 lbn, off); 5710 /* 5711 * Allocating a direct block. 5712 * 5713 * If we are allocating a directory block, then we must 5714 * allocate an associated pagedep to track additions and 5715 * deletions. 5716 */ 5717 if ((ip->i_mode & IFMT) == IFDIR) 5718 pagedep_lookup(mp, bp, ip->i_number, off, DEPALLOC, 5719 &pagedep); 5720 } 5721 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 5722 panic("softdep_setup_allocdirect: lost block"); 5723 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 5724 ("softdep_setup_allocdirect: newblk already initialized")); 5725 /* 5726 * Convert the newblk to an allocdirect. 5727 */ 5728 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 5729 adp = (struct allocdirect *)newblk; 5730 newblk->nb_freefrag = freefrag; 5731 adp->ad_offset = off; 5732 adp->ad_oldblkno = oldblkno; 5733 adp->ad_newsize = newsize; 5734 adp->ad_oldsize = oldsize; 5735 5736 /* 5737 * Finish initializing the journal. 5738 */ 5739 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 5740 jnewblk->jn_ino = ip->i_number; 5741 jnewblk->jn_lbn = lbn; 5742 add_to_journal(&jnewblk->jn_list); 5743 } 5744 if (freefrag && freefrag->ff_jdep != NULL && 5745 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 5746 add_to_journal(freefrag->ff_jdep); 5747 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 5748 adp->ad_inodedep = inodedep; 5749 5750 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 5751 /* 5752 * The list of allocdirects must be kept in sorted and ascending 5753 * order so that the rollback routines can quickly determine the 5754 * first uncommitted block (the size of the file stored on disk 5755 * ends at the end of the lowest committed fragment, or if there 5756 * are no fragments, at the end of the highest committed block). 5757 * Since files generally grow, the typical case is that the new 5758 * block is to be added at the end of the list. We speed this 5759 * special case by checking against the last allocdirect in the 5760 * list before laboriously traversing the list looking for the 5761 * insertion point. 5762 */ 5763 adphead = &inodedep->id_newinoupdt; 5764 oldadp = TAILQ_LAST(adphead, allocdirectlst); 5765 if (oldadp == NULL || oldadp->ad_offset <= off) { 5766 /* insert at end of list */ 5767 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 5768 if (oldadp != NULL && oldadp->ad_offset == off) 5769 allocdirect_merge(adphead, adp, oldadp); 5770 FREE_LOCK(ITOUMP(ip)); 5771 return; 5772 } 5773 TAILQ_FOREACH(oldadp, adphead, ad_next) { 5774 if (oldadp->ad_offset >= off) 5775 break; 5776 } 5777 if (oldadp == NULL) 5778 panic("softdep_setup_allocdirect: lost entry"); 5779 /* insert in middle of list */ 5780 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 5781 if (oldadp->ad_offset == off) 5782 allocdirect_merge(adphead, adp, oldadp); 5783 5784 FREE_LOCK(ITOUMP(ip)); 5785 } 5786 5787 /* 5788 * Merge a newer and older journal record to be stored either in a 5789 * newblock or freefrag. This handles aggregating journal records for 5790 * fragment allocation into a second record as well as replacing a 5791 * journal free with an aborted journal allocation. A segment for the 5792 * oldest record will be placed on wkhd if it has been written. If not 5793 * the segment for the newer record will suffice. 5794 */ 5795 static struct worklist * 5796 jnewblk_merge(new, old, wkhd) 5797 struct worklist *new; 5798 struct worklist *old; 5799 struct workhead *wkhd; 5800 { 5801 struct jnewblk *njnewblk; 5802 struct jnewblk *jnewblk; 5803 5804 /* Handle NULLs to simplify callers. */ 5805 if (new == NULL) 5806 return (old); 5807 if (old == NULL) 5808 return (new); 5809 /* Replace a jfreefrag with a jnewblk. */ 5810 if (new->wk_type == D_JFREEFRAG) { 5811 if (WK_JNEWBLK(old)->jn_blkno != WK_JFREEFRAG(new)->fr_blkno) 5812 panic("jnewblk_merge: blkno mismatch: %p, %p", 5813 old, new); 5814 cancel_jfreefrag(WK_JFREEFRAG(new)); 5815 return (old); 5816 } 5817 if (old->wk_type != D_JNEWBLK || new->wk_type != D_JNEWBLK) 5818 panic("jnewblk_merge: Bad type: old %d new %d\n", 5819 old->wk_type, new->wk_type); 5820 /* 5821 * Handle merging of two jnewblk records that describe 5822 * different sets of fragments in the same block. 5823 */ 5824 jnewblk = WK_JNEWBLK(old); 5825 njnewblk = WK_JNEWBLK(new); 5826 if (jnewblk->jn_blkno != njnewblk->jn_blkno) 5827 panic("jnewblk_merge: Merging disparate blocks."); 5828 /* 5829 * The record may be rolled back in the cg. 5830 */ 5831 if (jnewblk->jn_state & UNDONE) { 5832 jnewblk->jn_state &= ~UNDONE; 5833 njnewblk->jn_state |= UNDONE; 5834 njnewblk->jn_state &= ~ATTACHED; 5835 } 5836 /* 5837 * We modify the newer addref and free the older so that if neither 5838 * has been written the most up-to-date copy will be on disk. If 5839 * both have been written but rolled back we only temporarily need 5840 * one of them to fix the bits when the cg write completes. 5841 */ 5842 jnewblk->jn_state |= ATTACHED | COMPLETE; 5843 njnewblk->jn_oldfrags = jnewblk->jn_oldfrags; 5844 cancel_jnewblk(jnewblk, wkhd); 5845 WORKLIST_REMOVE(&jnewblk->jn_list); 5846 free_jnewblk(jnewblk); 5847 return (new); 5848 } 5849 5850 /* 5851 * Replace an old allocdirect dependency with a newer one. 5852 */ 5853 static void 5854 allocdirect_merge(adphead, newadp, oldadp) 5855 struct allocdirectlst *adphead; /* head of list holding allocdirects */ 5856 struct allocdirect *newadp; /* allocdirect being added */ 5857 struct allocdirect *oldadp; /* existing allocdirect being checked */ 5858 { 5859 struct worklist *wk; 5860 struct freefrag *freefrag; 5861 5862 freefrag = NULL; 5863 LOCK_OWNED(VFSTOUFS(newadp->ad_list.wk_mp)); 5864 if (newadp->ad_oldblkno != oldadp->ad_newblkno || 5865 newadp->ad_oldsize != oldadp->ad_newsize || 5866 newadp->ad_offset >= UFS_NDADDR) 5867 panic("%s %jd != new %jd || old size %ld != new %ld", 5868 "allocdirect_merge: old blkno", 5869 (intmax_t)newadp->ad_oldblkno, 5870 (intmax_t)oldadp->ad_newblkno, 5871 newadp->ad_oldsize, oldadp->ad_newsize); 5872 newadp->ad_oldblkno = oldadp->ad_oldblkno; 5873 newadp->ad_oldsize = oldadp->ad_oldsize; 5874 /* 5875 * If the old dependency had a fragment to free or had never 5876 * previously had a block allocated, then the new dependency 5877 * can immediately post its freefrag and adopt the old freefrag. 5878 * This action is done by swapping the freefrag dependencies. 5879 * The new dependency gains the old one's freefrag, and the 5880 * old one gets the new one and then immediately puts it on 5881 * the worklist when it is freed by free_newblk. It is 5882 * not possible to do this swap when the old dependency had a 5883 * non-zero size but no previous fragment to free. This condition 5884 * arises when the new block is an extension of the old block. 5885 * Here, the first part of the fragment allocated to the new 5886 * dependency is part of the block currently claimed on disk by 5887 * the old dependency, so cannot legitimately be freed until the 5888 * conditions for the new dependency are fulfilled. 5889 */ 5890 freefrag = newadp->ad_freefrag; 5891 if (oldadp->ad_freefrag != NULL || oldadp->ad_oldblkno == 0) { 5892 newadp->ad_freefrag = oldadp->ad_freefrag; 5893 oldadp->ad_freefrag = freefrag; 5894 } 5895 /* 5896 * If we are tracking a new directory-block allocation, 5897 * move it from the old allocdirect to the new allocdirect. 5898 */ 5899 if ((wk = LIST_FIRST(&oldadp->ad_newdirblk)) != NULL) { 5900 WORKLIST_REMOVE(wk); 5901 if (!LIST_EMPTY(&oldadp->ad_newdirblk)) 5902 panic("allocdirect_merge: extra newdirblk"); 5903 WORKLIST_INSERT(&newadp->ad_newdirblk, wk); 5904 } 5905 TAILQ_REMOVE(adphead, oldadp, ad_next); 5906 /* 5907 * We need to move any journal dependencies over to the freefrag 5908 * that releases this block if it exists. Otherwise we are 5909 * extending an existing block and we'll wait until that is 5910 * complete to release the journal space and extend the 5911 * new journal to cover this old space as well. 5912 */ 5913 if (freefrag == NULL) { 5914 if (oldadp->ad_newblkno != newadp->ad_newblkno) 5915 panic("allocdirect_merge: %jd != %jd", 5916 oldadp->ad_newblkno, newadp->ad_newblkno); 5917 newadp->ad_block.nb_jnewblk = (struct jnewblk *) 5918 jnewblk_merge(&newadp->ad_block.nb_jnewblk->jn_list, 5919 &oldadp->ad_block.nb_jnewblk->jn_list, 5920 &newadp->ad_block.nb_jwork); 5921 oldadp->ad_block.nb_jnewblk = NULL; 5922 cancel_newblk(&oldadp->ad_block, NULL, 5923 &newadp->ad_block.nb_jwork); 5924 } else { 5925 wk = (struct worklist *) cancel_newblk(&oldadp->ad_block, 5926 &freefrag->ff_list, &freefrag->ff_jwork); 5927 freefrag->ff_jdep = jnewblk_merge(freefrag->ff_jdep, wk, 5928 &freefrag->ff_jwork); 5929 } 5930 free_newblk(&oldadp->ad_block); 5931 } 5932 5933 /* 5934 * Allocate a jfreefrag structure to journal a single block free. 5935 */ 5936 static struct jfreefrag * 5937 newjfreefrag(freefrag, ip, blkno, size, lbn) 5938 struct freefrag *freefrag; 5939 struct inode *ip; 5940 ufs2_daddr_t blkno; 5941 long size; 5942 ufs_lbn_t lbn; 5943 { 5944 struct jfreefrag *jfreefrag; 5945 struct fs *fs; 5946 5947 fs = ITOFS(ip); 5948 jfreefrag = malloc(sizeof(struct jfreefrag), M_JFREEFRAG, 5949 M_SOFTDEP_FLAGS); 5950 workitem_alloc(&jfreefrag->fr_list, D_JFREEFRAG, ITOVFS(ip)); 5951 jfreefrag->fr_jsegdep = newjsegdep(&jfreefrag->fr_list); 5952 jfreefrag->fr_state = ATTACHED | DEPCOMPLETE; 5953 jfreefrag->fr_ino = ip->i_number; 5954 jfreefrag->fr_lbn = lbn; 5955 jfreefrag->fr_blkno = blkno; 5956 jfreefrag->fr_frags = numfrags(fs, size); 5957 jfreefrag->fr_freefrag = freefrag; 5958 5959 return (jfreefrag); 5960 } 5961 5962 /* 5963 * Allocate a new freefrag structure. 5964 */ 5965 static struct freefrag * 5966 newfreefrag(ip, blkno, size, lbn, key) 5967 struct inode *ip; 5968 ufs2_daddr_t blkno; 5969 long size; 5970 ufs_lbn_t lbn; 5971 u_long key; 5972 { 5973 struct freefrag *freefrag; 5974 struct ufsmount *ump; 5975 struct fs *fs; 5976 5977 CTR4(KTR_SUJ, "newfreefrag: ino %d blkno %jd size %ld lbn %jd", 5978 ip->i_number, blkno, size, lbn); 5979 ump = ITOUMP(ip); 5980 fs = ump->um_fs; 5981 if (fragnum(fs, blkno) + numfrags(fs, size) > fs->fs_frag) 5982 panic("newfreefrag: frag size"); 5983 freefrag = malloc(sizeof(struct freefrag), 5984 M_FREEFRAG, M_SOFTDEP_FLAGS); 5985 workitem_alloc(&freefrag->ff_list, D_FREEFRAG, UFSTOVFS(ump)); 5986 freefrag->ff_state = ATTACHED; 5987 LIST_INIT(&freefrag->ff_jwork); 5988 freefrag->ff_inum = ip->i_number; 5989 freefrag->ff_vtype = ITOV(ip)->v_type; 5990 freefrag->ff_blkno = blkno; 5991 freefrag->ff_fragsize = size; 5992 freefrag->ff_key = key; 5993 5994 if (MOUNTEDSUJ(UFSTOVFS(ump))) { 5995 freefrag->ff_jdep = (struct worklist *) 5996 newjfreefrag(freefrag, ip, blkno, size, lbn); 5997 } else { 5998 freefrag->ff_state |= DEPCOMPLETE; 5999 freefrag->ff_jdep = NULL; 6000 } 6001 6002 return (freefrag); 6003 } 6004 6005 /* 6006 * This workitem de-allocates fragments that were replaced during 6007 * file block allocation. 6008 */ 6009 static void 6010 handle_workitem_freefrag(freefrag) 6011 struct freefrag *freefrag; 6012 { 6013 struct ufsmount *ump = VFSTOUFS(freefrag->ff_list.wk_mp); 6014 struct workhead wkhd; 6015 6016 CTR3(KTR_SUJ, 6017 "handle_workitem_freefrag: ino %d blkno %jd size %ld", 6018 freefrag->ff_inum, freefrag->ff_blkno, freefrag->ff_fragsize); 6019 /* 6020 * It would be illegal to add new completion items to the 6021 * freefrag after it was schedule to be done so it must be 6022 * safe to modify the list head here. 6023 */ 6024 LIST_INIT(&wkhd); 6025 ACQUIRE_LOCK(ump); 6026 LIST_SWAP(&freefrag->ff_jwork, &wkhd, worklist, wk_list); 6027 /* 6028 * If the journal has not been written we must cancel it here. 6029 */ 6030 if (freefrag->ff_jdep) { 6031 if (freefrag->ff_jdep->wk_type != D_JNEWBLK) 6032 panic("handle_workitem_freefrag: Unexpected type %d\n", 6033 freefrag->ff_jdep->wk_type); 6034 cancel_jnewblk(WK_JNEWBLK(freefrag->ff_jdep), &wkhd); 6035 } 6036 FREE_LOCK(ump); 6037 ffs_blkfree(ump, ump->um_fs, ump->um_devvp, freefrag->ff_blkno, 6038 freefrag->ff_fragsize, freefrag->ff_inum, freefrag->ff_vtype, 6039 &wkhd, freefrag->ff_key); 6040 ACQUIRE_LOCK(ump); 6041 WORKITEM_FREE(freefrag, D_FREEFRAG); 6042 FREE_LOCK(ump); 6043 } 6044 6045 /* 6046 * Set up a dependency structure for an external attributes data block. 6047 * This routine follows much of the structure of softdep_setup_allocdirect. 6048 * See the description of softdep_setup_allocdirect above for details. 6049 */ 6050 void 6051 softdep_setup_allocext(ip, off, newblkno, oldblkno, newsize, oldsize, bp) 6052 struct inode *ip; 6053 ufs_lbn_t off; 6054 ufs2_daddr_t newblkno; 6055 ufs2_daddr_t oldblkno; 6056 long newsize; 6057 long oldsize; 6058 struct buf *bp; 6059 { 6060 struct allocdirect *adp, *oldadp; 6061 struct allocdirectlst *adphead; 6062 struct freefrag *freefrag; 6063 struct inodedep *inodedep; 6064 struct jnewblk *jnewblk; 6065 struct newblk *newblk; 6066 struct mount *mp; 6067 struct ufsmount *ump; 6068 ufs_lbn_t lbn; 6069 6070 mp = ITOVFS(ip); 6071 ump = VFSTOUFS(mp); 6072 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6073 ("softdep_setup_allocext called on non-softdep filesystem")); 6074 KASSERT(off < UFS_NXADDR, 6075 ("softdep_setup_allocext: lbn %lld > UFS_NXADDR", (long long)off)); 6076 6077 lbn = bp->b_lblkno; 6078 if (oldblkno && oldblkno != newblkno) 6079 /* 6080 * The usual case is that a smaller fragment that 6081 * was just allocated has been replaced with a bigger 6082 * fragment or a full-size block. If it is marked as 6083 * B_DELWRI, the current contents have not been written 6084 * to disk. It is possible that the block was written 6085 * earlier, but very uncommon. If the block has never 6086 * been written, there is no need to send a BIO_DELETE 6087 * for it when it is freed. The gain from avoiding the 6088 * TRIMs for the common case of unwritten blocks far 6089 * exceeds the cost of the write amplification for the 6090 * uncommon case of failing to send a TRIM for a block 6091 * that had been written. 6092 */ 6093 freefrag = newfreefrag(ip, oldblkno, oldsize, lbn, 6094 (bp->b_flags & B_DELWRI) != 0 ? NOTRIM_KEY : SINGLETON_KEY); 6095 else 6096 freefrag = NULL; 6097 6098 ACQUIRE_LOCK(ump); 6099 if (newblk_lookup(mp, newblkno, 0, &newblk) == 0) 6100 panic("softdep_setup_allocext: lost block"); 6101 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6102 ("softdep_setup_allocext: newblk already initialized")); 6103 /* 6104 * Convert the newblk to an allocdirect. 6105 */ 6106 WORKITEM_REASSIGN(newblk, D_ALLOCDIRECT); 6107 adp = (struct allocdirect *)newblk; 6108 newblk->nb_freefrag = freefrag; 6109 adp->ad_offset = off; 6110 adp->ad_oldblkno = oldblkno; 6111 adp->ad_newsize = newsize; 6112 adp->ad_oldsize = oldsize; 6113 adp->ad_state |= EXTDATA; 6114 6115 /* 6116 * Finish initializing the journal. 6117 */ 6118 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6119 jnewblk->jn_ino = ip->i_number; 6120 jnewblk->jn_lbn = lbn; 6121 add_to_journal(&jnewblk->jn_list); 6122 } 6123 if (freefrag && freefrag->ff_jdep != NULL && 6124 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6125 add_to_journal(freefrag->ff_jdep); 6126 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6127 adp->ad_inodedep = inodedep; 6128 6129 WORKLIST_INSERT(&bp->b_dep, &newblk->nb_list); 6130 /* 6131 * The list of allocdirects must be kept in sorted and ascending 6132 * order so that the rollback routines can quickly determine the 6133 * first uncommitted block (the size of the file stored on disk 6134 * ends at the end of the lowest committed fragment, or if there 6135 * are no fragments, at the end of the highest committed block). 6136 * Since files generally grow, the typical case is that the new 6137 * block is to be added at the end of the list. We speed this 6138 * special case by checking against the last allocdirect in the 6139 * list before laboriously traversing the list looking for the 6140 * insertion point. 6141 */ 6142 adphead = &inodedep->id_newextupdt; 6143 oldadp = TAILQ_LAST(adphead, allocdirectlst); 6144 if (oldadp == NULL || oldadp->ad_offset <= off) { 6145 /* insert at end of list */ 6146 TAILQ_INSERT_TAIL(adphead, adp, ad_next); 6147 if (oldadp != NULL && oldadp->ad_offset == off) 6148 allocdirect_merge(adphead, adp, oldadp); 6149 FREE_LOCK(ump); 6150 return; 6151 } 6152 TAILQ_FOREACH(oldadp, adphead, ad_next) { 6153 if (oldadp->ad_offset >= off) 6154 break; 6155 } 6156 if (oldadp == NULL) 6157 panic("softdep_setup_allocext: lost entry"); 6158 /* insert in middle of list */ 6159 TAILQ_INSERT_BEFORE(oldadp, adp, ad_next); 6160 if (oldadp->ad_offset == off) 6161 allocdirect_merge(adphead, adp, oldadp); 6162 FREE_LOCK(ump); 6163 } 6164 6165 /* 6166 * Indirect block allocation dependencies. 6167 * 6168 * The same dependencies that exist for a direct block also exist when 6169 * a new block is allocated and pointed to by an entry in a block of 6170 * indirect pointers. The undo/redo states described above are also 6171 * used here. Because an indirect block contains many pointers that 6172 * may have dependencies, a second copy of the entire in-memory indirect 6173 * block is kept. The buffer cache copy is always completely up-to-date. 6174 * The second copy, which is used only as a source for disk writes, 6175 * contains only the safe pointers (i.e., those that have no remaining 6176 * update dependencies). The second copy is freed when all pointers 6177 * are safe. The cache is not allowed to replace indirect blocks with 6178 * pending update dependencies. If a buffer containing an indirect 6179 * block with dependencies is written, these routines will mark it 6180 * dirty again. It can only be successfully written once all the 6181 * dependencies are removed. The ffs_fsync routine in conjunction with 6182 * softdep_sync_metadata work together to get all the dependencies 6183 * removed so that a file can be successfully written to disk. Three 6184 * procedures are used when setting up indirect block pointer 6185 * dependencies. The division is necessary because of the organization 6186 * of the "balloc" routine and because of the distinction between file 6187 * pages and file metadata blocks. 6188 */ 6189 6190 /* 6191 * Allocate a new allocindir structure. 6192 */ 6193 static struct allocindir * 6194 newallocindir(ip, ptrno, newblkno, oldblkno, lbn) 6195 struct inode *ip; /* inode for file being extended */ 6196 int ptrno; /* offset of pointer in indirect block */ 6197 ufs2_daddr_t newblkno; /* disk block number being added */ 6198 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6199 ufs_lbn_t lbn; 6200 { 6201 struct newblk *newblk; 6202 struct allocindir *aip; 6203 struct freefrag *freefrag; 6204 struct jnewblk *jnewblk; 6205 6206 if (oldblkno) 6207 freefrag = newfreefrag(ip, oldblkno, ITOFS(ip)->fs_bsize, lbn, 6208 SINGLETON_KEY); 6209 else 6210 freefrag = NULL; 6211 ACQUIRE_LOCK(ITOUMP(ip)); 6212 if (newblk_lookup(ITOVFS(ip), newblkno, 0, &newblk) == 0) 6213 panic("new_allocindir: lost block"); 6214 KASSERT(newblk->nb_list.wk_type == D_NEWBLK, 6215 ("newallocindir: newblk already initialized")); 6216 WORKITEM_REASSIGN(newblk, D_ALLOCINDIR); 6217 newblk->nb_freefrag = freefrag; 6218 aip = (struct allocindir *)newblk; 6219 aip->ai_offset = ptrno; 6220 aip->ai_oldblkno = oldblkno; 6221 aip->ai_lbn = lbn; 6222 if ((jnewblk = newblk->nb_jnewblk) != NULL) { 6223 jnewblk->jn_ino = ip->i_number; 6224 jnewblk->jn_lbn = lbn; 6225 add_to_journal(&jnewblk->jn_list); 6226 } 6227 if (freefrag && freefrag->ff_jdep != NULL && 6228 freefrag->ff_jdep->wk_type == D_JFREEFRAG) 6229 add_to_journal(freefrag->ff_jdep); 6230 return (aip); 6231 } 6232 6233 /* 6234 * Called just before setting an indirect block pointer 6235 * to a newly allocated file page. 6236 */ 6237 void 6238 softdep_setup_allocindir_page(ip, lbn, bp, ptrno, newblkno, oldblkno, nbp) 6239 struct inode *ip; /* inode for file being extended */ 6240 ufs_lbn_t lbn; /* allocated block number within file */ 6241 struct buf *bp; /* buffer with indirect blk referencing page */ 6242 int ptrno; /* offset of pointer in indirect block */ 6243 ufs2_daddr_t newblkno; /* disk block number being added */ 6244 ufs2_daddr_t oldblkno; /* previous block number, 0 if none */ 6245 struct buf *nbp; /* buffer holding allocated page */ 6246 { 6247 struct inodedep *inodedep; 6248 struct freefrag *freefrag; 6249 struct allocindir *aip; 6250 struct pagedep *pagedep; 6251 struct mount *mp; 6252 struct ufsmount *ump; 6253 6254 mp = ITOVFS(ip); 6255 ump = VFSTOUFS(mp); 6256 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6257 ("softdep_setup_allocindir_page called on non-softdep filesystem")); 6258 KASSERT(lbn == nbp->b_lblkno, 6259 ("softdep_setup_allocindir_page: lbn %jd != lblkno %jd", 6260 lbn, bp->b_lblkno)); 6261 CTR4(KTR_SUJ, 6262 "softdep_setup_allocindir_page: ino %d blkno %jd oldblkno %jd " 6263 "lbn %jd", ip->i_number, newblkno, oldblkno, lbn); 6264 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_page"); 6265 aip = newallocindir(ip, ptrno, newblkno, oldblkno, lbn); 6266 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6267 /* 6268 * If we are allocating a directory page, then we must 6269 * allocate an associated pagedep to track additions and 6270 * deletions. 6271 */ 6272 if ((ip->i_mode & IFMT) == IFDIR) 6273 pagedep_lookup(mp, nbp, ip->i_number, lbn, DEPALLOC, &pagedep); 6274 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6275 freefrag = setup_allocindir_phase2(bp, ip, inodedep, aip, lbn); 6276 FREE_LOCK(ump); 6277 if (freefrag) 6278 handle_workitem_freefrag(freefrag); 6279 } 6280 6281 /* 6282 * Called just before setting an indirect block pointer to a 6283 * newly allocated indirect block. 6284 */ 6285 void 6286 softdep_setup_allocindir_meta(nbp, ip, bp, ptrno, newblkno) 6287 struct buf *nbp; /* newly allocated indirect block */ 6288 struct inode *ip; /* inode for file being extended */ 6289 struct buf *bp; /* indirect block referencing allocated block */ 6290 int ptrno; /* offset of pointer in indirect block */ 6291 ufs2_daddr_t newblkno; /* disk block number being added */ 6292 { 6293 struct inodedep *inodedep; 6294 struct allocindir *aip; 6295 struct ufsmount *ump; 6296 ufs_lbn_t lbn; 6297 6298 ump = ITOUMP(ip); 6299 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 6300 ("softdep_setup_allocindir_meta called on non-softdep filesystem")); 6301 CTR3(KTR_SUJ, 6302 "softdep_setup_allocindir_meta: ino %d blkno %jd ptrno %d", 6303 ip->i_number, newblkno, ptrno); 6304 lbn = nbp->b_lblkno; 6305 ASSERT_VOP_LOCKED(ITOV(ip), "softdep_setup_allocindir_meta"); 6306 aip = newallocindir(ip, ptrno, newblkno, 0, lbn); 6307 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 6308 WORKLIST_INSERT(&nbp->b_dep, &aip->ai_block.nb_list); 6309 if (setup_allocindir_phase2(bp, ip, inodedep, aip, lbn)) 6310 panic("softdep_setup_allocindir_meta: Block already existed"); 6311 FREE_LOCK(ump); 6312 } 6313 6314 static void 6315 indirdep_complete(indirdep) 6316 struct indirdep *indirdep; 6317 { 6318 struct allocindir *aip; 6319 6320 LIST_REMOVE(indirdep, ir_next); 6321 indirdep->ir_state |= DEPCOMPLETE; 6322 6323 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) { 6324 LIST_REMOVE(aip, ai_next); 6325 free_newblk(&aip->ai_block); 6326 } 6327 /* 6328 * If this indirdep is not attached to a buf it was simply waiting 6329 * on completion to clear completehd. free_indirdep() asserts 6330 * that nothing is dangling. 6331 */ 6332 if ((indirdep->ir_state & ONWORKLIST) == 0) 6333 free_indirdep(indirdep); 6334 } 6335 6336 static struct indirdep * 6337 indirdep_lookup(mp, ip, bp) 6338 struct mount *mp; 6339 struct inode *ip; 6340 struct buf *bp; 6341 { 6342 struct indirdep *indirdep, *newindirdep; 6343 struct newblk *newblk; 6344 struct ufsmount *ump; 6345 struct worklist *wk; 6346 struct fs *fs; 6347 ufs2_daddr_t blkno; 6348 6349 ump = VFSTOUFS(mp); 6350 LOCK_OWNED(ump); 6351 indirdep = NULL; 6352 newindirdep = NULL; 6353 fs = ump->um_fs; 6354 for (;;) { 6355 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 6356 if (wk->wk_type != D_INDIRDEP) 6357 continue; 6358 indirdep = WK_INDIRDEP(wk); 6359 break; 6360 } 6361 /* Found on the buffer worklist, no new structure to free. */ 6362 if (indirdep != NULL && newindirdep == NULL) 6363 return (indirdep); 6364 if (indirdep != NULL && newindirdep != NULL) 6365 panic("indirdep_lookup: simultaneous create"); 6366 /* None found on the buffer and a new structure is ready. */ 6367 if (indirdep == NULL && newindirdep != NULL) 6368 break; 6369 /* None found and no new structure available. */ 6370 FREE_LOCK(ump); 6371 newindirdep = malloc(sizeof(struct indirdep), 6372 M_INDIRDEP, M_SOFTDEP_FLAGS); 6373 workitem_alloc(&newindirdep->ir_list, D_INDIRDEP, mp); 6374 newindirdep->ir_state = ATTACHED; 6375 if (I_IS_UFS1(ip)) 6376 newindirdep->ir_state |= UFS1FMT; 6377 TAILQ_INIT(&newindirdep->ir_trunc); 6378 newindirdep->ir_saveddata = NULL; 6379 LIST_INIT(&newindirdep->ir_deplisthd); 6380 LIST_INIT(&newindirdep->ir_donehd); 6381 LIST_INIT(&newindirdep->ir_writehd); 6382 LIST_INIT(&newindirdep->ir_completehd); 6383 if (bp->b_blkno == bp->b_lblkno) { 6384 ufs_bmaparray(bp->b_vp, bp->b_lblkno, &blkno, bp, 6385 NULL, NULL); 6386 bp->b_blkno = blkno; 6387 } 6388 newindirdep->ir_freeblks = NULL; 6389 newindirdep->ir_savebp = 6390 getblk(ump->um_devvp, bp->b_blkno, bp->b_bcount, 0, 0, 0); 6391 newindirdep->ir_bp = bp; 6392 BUF_KERNPROC(newindirdep->ir_savebp); 6393 bcopy(bp->b_data, newindirdep->ir_savebp->b_data, bp->b_bcount); 6394 ACQUIRE_LOCK(ump); 6395 } 6396 indirdep = newindirdep; 6397 WORKLIST_INSERT(&bp->b_dep, &indirdep->ir_list); 6398 /* 6399 * If the block is not yet allocated we don't set DEPCOMPLETE so 6400 * that we don't free dependencies until the pointers are valid. 6401 * This could search b_dep for D_ALLOCDIRECT/D_ALLOCINDIR rather 6402 * than using the hash. 6403 */ 6404 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk)) 6405 LIST_INSERT_HEAD(&newblk->nb_indirdeps, indirdep, ir_next); 6406 else 6407 indirdep->ir_state |= DEPCOMPLETE; 6408 return (indirdep); 6409 } 6410 6411 /* 6412 * Called to finish the allocation of the "aip" allocated 6413 * by one of the two routines above. 6414 */ 6415 static struct freefrag * 6416 setup_allocindir_phase2(bp, ip, inodedep, aip, lbn) 6417 struct buf *bp; /* in-memory copy of the indirect block */ 6418 struct inode *ip; /* inode for file being extended */ 6419 struct inodedep *inodedep; /* Inodedep for ip */ 6420 struct allocindir *aip; /* allocindir allocated by the above routines */ 6421 ufs_lbn_t lbn; /* Logical block number for this block. */ 6422 { 6423 struct fs *fs __diagused; 6424 struct indirdep *indirdep; 6425 struct allocindir *oldaip; 6426 struct freefrag *freefrag; 6427 struct mount *mp; 6428 struct ufsmount *ump; 6429 6430 mp = ITOVFS(ip); 6431 ump = VFSTOUFS(mp); 6432 LOCK_OWNED(ump); 6433 fs = ump->um_fs; 6434 if (bp->b_lblkno >= 0) 6435 panic("setup_allocindir_phase2: not indir blk"); 6436 KASSERT(aip->ai_offset >= 0 && aip->ai_offset < NINDIR(fs), 6437 ("setup_allocindir_phase2: Bad offset %d", aip->ai_offset)); 6438 indirdep = indirdep_lookup(mp, ip, bp); 6439 KASSERT(indirdep->ir_savebp != NULL, 6440 ("setup_allocindir_phase2 NULL ir_savebp")); 6441 aip->ai_indirdep = indirdep; 6442 /* 6443 * Check for an unwritten dependency for this indirect offset. If 6444 * there is, merge the old dependency into the new one. This happens 6445 * as a result of reallocblk only. 6446 */ 6447 freefrag = NULL; 6448 if (aip->ai_oldblkno != 0) { 6449 LIST_FOREACH(oldaip, &indirdep->ir_deplisthd, ai_next) { 6450 if (oldaip->ai_offset == aip->ai_offset) { 6451 freefrag = allocindir_merge(aip, oldaip); 6452 goto done; 6453 } 6454 } 6455 LIST_FOREACH(oldaip, &indirdep->ir_donehd, ai_next) { 6456 if (oldaip->ai_offset == aip->ai_offset) { 6457 freefrag = allocindir_merge(aip, oldaip); 6458 goto done; 6459 } 6460 } 6461 } 6462 done: 6463 LIST_INSERT_HEAD(&indirdep->ir_deplisthd, aip, ai_next); 6464 return (freefrag); 6465 } 6466 6467 /* 6468 * Merge two allocindirs which refer to the same block. Move newblock 6469 * dependencies and setup the freefrags appropriately. 6470 */ 6471 static struct freefrag * 6472 allocindir_merge(aip, oldaip) 6473 struct allocindir *aip; 6474 struct allocindir *oldaip; 6475 { 6476 struct freefrag *freefrag; 6477 struct worklist *wk; 6478 6479 if (oldaip->ai_newblkno != aip->ai_oldblkno) 6480 panic("allocindir_merge: blkno"); 6481 aip->ai_oldblkno = oldaip->ai_oldblkno; 6482 freefrag = aip->ai_freefrag; 6483 aip->ai_freefrag = oldaip->ai_freefrag; 6484 oldaip->ai_freefrag = NULL; 6485 KASSERT(freefrag != NULL, ("setup_allocindir_phase2: No freefrag")); 6486 /* 6487 * If we are tracking a new directory-block allocation, 6488 * move it from the old allocindir to the new allocindir. 6489 */ 6490 if ((wk = LIST_FIRST(&oldaip->ai_newdirblk)) != NULL) { 6491 WORKLIST_REMOVE(wk); 6492 if (!LIST_EMPTY(&oldaip->ai_newdirblk)) 6493 panic("allocindir_merge: extra newdirblk"); 6494 WORKLIST_INSERT(&aip->ai_newdirblk, wk); 6495 } 6496 /* 6497 * We can skip journaling for this freefrag and just complete 6498 * any pending journal work for the allocindir that is being 6499 * removed after the freefrag completes. 6500 */ 6501 if (freefrag->ff_jdep) 6502 cancel_jfreefrag(WK_JFREEFRAG(freefrag->ff_jdep)); 6503 LIST_REMOVE(oldaip, ai_next); 6504 freefrag->ff_jdep = (struct worklist *)cancel_newblk(&oldaip->ai_block, 6505 &freefrag->ff_list, &freefrag->ff_jwork); 6506 free_newblk(&oldaip->ai_block); 6507 6508 return (freefrag); 6509 } 6510 6511 static inline void 6512 setup_freedirect(freeblks, ip, i, needj) 6513 struct freeblks *freeblks; 6514 struct inode *ip; 6515 int i; 6516 int needj; 6517 { 6518 struct ufsmount *ump; 6519 ufs2_daddr_t blkno; 6520 int frags; 6521 6522 blkno = DIP(ip, i_db[i]); 6523 if (blkno == 0) 6524 return; 6525 DIP_SET(ip, i_db[i], 0); 6526 ump = ITOUMP(ip); 6527 frags = sblksize(ump->um_fs, ip->i_size, i); 6528 frags = numfrags(ump->um_fs, frags); 6529 newfreework(ump, freeblks, NULL, i, blkno, frags, 0, needj); 6530 } 6531 6532 static inline void 6533 setup_freeext(freeblks, ip, i, needj) 6534 struct freeblks *freeblks; 6535 struct inode *ip; 6536 int i; 6537 int needj; 6538 { 6539 struct ufsmount *ump; 6540 ufs2_daddr_t blkno; 6541 int frags; 6542 6543 blkno = ip->i_din2->di_extb[i]; 6544 if (blkno == 0) 6545 return; 6546 ip->i_din2->di_extb[i] = 0; 6547 ump = ITOUMP(ip); 6548 frags = sblksize(ump->um_fs, ip->i_din2->di_extsize, i); 6549 frags = numfrags(ump->um_fs, frags); 6550 newfreework(ump, freeblks, NULL, -1 - i, blkno, frags, 0, needj); 6551 } 6552 6553 static inline void 6554 setup_freeindir(freeblks, ip, i, lbn, needj) 6555 struct freeblks *freeblks; 6556 struct inode *ip; 6557 int i; 6558 ufs_lbn_t lbn; 6559 int needj; 6560 { 6561 struct ufsmount *ump; 6562 ufs2_daddr_t blkno; 6563 6564 blkno = DIP(ip, i_ib[i]); 6565 if (blkno == 0) 6566 return; 6567 DIP_SET(ip, i_ib[i], 0); 6568 ump = ITOUMP(ip); 6569 newfreework(ump, freeblks, NULL, lbn, blkno, ump->um_fs->fs_frag, 6570 0, needj); 6571 } 6572 6573 static inline struct freeblks * 6574 newfreeblks(mp, ip) 6575 struct mount *mp; 6576 struct inode *ip; 6577 { 6578 struct freeblks *freeblks; 6579 6580 freeblks = malloc(sizeof(struct freeblks), 6581 M_FREEBLKS, M_SOFTDEP_FLAGS|M_ZERO); 6582 workitem_alloc(&freeblks->fb_list, D_FREEBLKS, mp); 6583 LIST_INIT(&freeblks->fb_jblkdephd); 6584 LIST_INIT(&freeblks->fb_jwork); 6585 freeblks->fb_ref = 0; 6586 freeblks->fb_cgwait = 0; 6587 freeblks->fb_state = ATTACHED; 6588 freeblks->fb_uid = ip->i_uid; 6589 freeblks->fb_inum = ip->i_number; 6590 freeblks->fb_vtype = ITOV(ip)->v_type; 6591 freeblks->fb_modrev = DIP(ip, i_modrev); 6592 freeblks->fb_devvp = ITODEVVP(ip); 6593 freeblks->fb_chkcnt = 0; 6594 freeblks->fb_len = 0; 6595 6596 return (freeblks); 6597 } 6598 6599 static void 6600 trunc_indirdep(indirdep, freeblks, bp, off) 6601 struct indirdep *indirdep; 6602 struct freeblks *freeblks; 6603 struct buf *bp; 6604 int off; 6605 { 6606 struct allocindir *aip, *aipn; 6607 6608 /* 6609 * The first set of allocindirs won't be in savedbp. 6610 */ 6611 LIST_FOREACH_SAFE(aip, &indirdep->ir_deplisthd, ai_next, aipn) 6612 if (aip->ai_offset > off) 6613 cancel_allocindir(aip, bp, freeblks, 1); 6614 LIST_FOREACH_SAFE(aip, &indirdep->ir_donehd, ai_next, aipn) 6615 if (aip->ai_offset > off) 6616 cancel_allocindir(aip, bp, freeblks, 1); 6617 /* 6618 * These will exist in savedbp. 6619 */ 6620 LIST_FOREACH_SAFE(aip, &indirdep->ir_writehd, ai_next, aipn) 6621 if (aip->ai_offset > off) 6622 cancel_allocindir(aip, NULL, freeblks, 0); 6623 LIST_FOREACH_SAFE(aip, &indirdep->ir_completehd, ai_next, aipn) 6624 if (aip->ai_offset > off) 6625 cancel_allocindir(aip, NULL, freeblks, 0); 6626 } 6627 6628 /* 6629 * Follow the chain of indirects down to lastlbn creating a freework 6630 * structure for each. This will be used to start indir_trunc() at 6631 * the right offset and create the journal records for the parrtial 6632 * truncation. A second step will handle the truncated dependencies. 6633 */ 6634 static int 6635 setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno) 6636 struct freeblks *freeblks; 6637 struct inode *ip; 6638 ufs_lbn_t lbn; 6639 ufs_lbn_t lastlbn; 6640 ufs2_daddr_t blkno; 6641 { 6642 struct indirdep *indirdep; 6643 struct indirdep *indirn; 6644 struct freework *freework; 6645 struct newblk *newblk; 6646 struct mount *mp; 6647 struct ufsmount *ump; 6648 struct buf *bp; 6649 uint8_t *start; 6650 uint8_t *end; 6651 ufs_lbn_t lbnadd; 6652 int level; 6653 int error; 6654 int off; 6655 6656 freework = NULL; 6657 if (blkno == 0) 6658 return (0); 6659 mp = freeblks->fb_list.wk_mp; 6660 ump = VFSTOUFS(mp); 6661 /* 6662 * Here, calls to VOP_BMAP() will fail. However, we already have 6663 * the on-disk address, so we just pass it to bread() instead of 6664 * having bread() attempt to calculate it using VOP_BMAP(). 6665 */ 6666 error = ffs_breadz(ump, ITOV(ip), lbn, blkptrtodb(ump, blkno), 6667 (int)mp->mnt_stat.f_iosize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 6668 if (error) 6669 return (error); 6670 level = lbn_level(lbn); 6671 lbnadd = lbn_offset(ump->um_fs, level); 6672 /* 6673 * Compute the offset of the last block we want to keep. Store 6674 * in the freework the first block we want to completely free. 6675 */ 6676 off = (lastlbn - -(lbn + level)) / lbnadd; 6677 if (off + 1 == NINDIR(ump->um_fs)) 6678 goto nowork; 6679 freework = newfreework(ump, freeblks, NULL, lbn, blkno, 0, off + 1, 0); 6680 /* 6681 * Link the freework into the indirdep. This will prevent any new 6682 * allocations from proceeding until we are finished with the 6683 * truncate and the block is written. 6684 */ 6685 ACQUIRE_LOCK(ump); 6686 indirdep = indirdep_lookup(mp, ip, bp); 6687 if (indirdep->ir_freeblks) 6688 panic("setup_trunc_indir: indirdep already truncated."); 6689 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, freework, fw_next); 6690 freework->fw_indir = indirdep; 6691 /* 6692 * Cancel any allocindirs that will not make it to disk. 6693 * We have to do this for all copies of the indirdep that 6694 * live on this newblk. 6695 */ 6696 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 6697 if (newblk_lookup(mp, dbtofsb(ump->um_fs, bp->b_blkno), 0, 6698 &newblk) == 0) 6699 panic("setup_trunc_indir: lost block"); 6700 LIST_FOREACH(indirn, &newblk->nb_indirdeps, ir_next) 6701 trunc_indirdep(indirn, freeblks, bp, off); 6702 } else 6703 trunc_indirdep(indirdep, freeblks, bp, off); 6704 FREE_LOCK(ump); 6705 /* 6706 * Creation is protected by the buf lock. The saveddata is only 6707 * needed if a full truncation follows a partial truncation but it 6708 * is difficult to allocate in that case so we fetch it anyway. 6709 */ 6710 if (indirdep->ir_saveddata == NULL) 6711 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 6712 M_SOFTDEP_FLAGS); 6713 nowork: 6714 /* Fetch the blkno of the child and the zero start offset. */ 6715 if (I_IS_UFS1(ip)) { 6716 blkno = ((ufs1_daddr_t *)bp->b_data)[off]; 6717 start = (uint8_t *)&((ufs1_daddr_t *)bp->b_data)[off+1]; 6718 } else { 6719 blkno = ((ufs2_daddr_t *)bp->b_data)[off]; 6720 start = (uint8_t *)&((ufs2_daddr_t *)bp->b_data)[off+1]; 6721 } 6722 if (freework) { 6723 /* Zero the truncated pointers. */ 6724 end = bp->b_data + bp->b_bcount; 6725 bzero(start, end - start); 6726 bdwrite(bp); 6727 } else 6728 bqrelse(bp); 6729 if (level == 0) 6730 return (0); 6731 lbn++; /* adjust level */ 6732 lbn -= (off * lbnadd); 6733 return setup_trunc_indir(freeblks, ip, lbn, lastlbn, blkno); 6734 } 6735 6736 /* 6737 * Complete the partial truncation of an indirect block setup by 6738 * setup_trunc_indir(). This zeros the truncated pointers in the saved 6739 * copy and writes them to disk before the freeblks is allowed to complete. 6740 */ 6741 static void 6742 complete_trunc_indir(freework) 6743 struct freework *freework; 6744 { 6745 struct freework *fwn; 6746 struct indirdep *indirdep; 6747 struct ufsmount *ump; 6748 struct buf *bp; 6749 uintptr_t start; 6750 int count; 6751 6752 ump = VFSTOUFS(freework->fw_list.wk_mp); 6753 LOCK_OWNED(ump); 6754 indirdep = freework->fw_indir; 6755 for (;;) { 6756 bp = indirdep->ir_bp; 6757 /* See if the block was discarded. */ 6758 if (bp == NULL) 6759 break; 6760 /* Inline part of getdirtybuf(). We dont want bremfree. */ 6761 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) == 0) 6762 break; 6763 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 6764 LOCK_PTR(ump)) == 0) 6765 BUF_UNLOCK(bp); 6766 ACQUIRE_LOCK(ump); 6767 } 6768 freework->fw_state |= DEPCOMPLETE; 6769 TAILQ_REMOVE(&indirdep->ir_trunc, freework, fw_next); 6770 /* 6771 * Zero the pointers in the saved copy. 6772 */ 6773 if (indirdep->ir_state & UFS1FMT) 6774 start = sizeof(ufs1_daddr_t); 6775 else 6776 start = sizeof(ufs2_daddr_t); 6777 start *= freework->fw_start; 6778 count = indirdep->ir_savebp->b_bcount - start; 6779 start += (uintptr_t)indirdep->ir_savebp->b_data; 6780 bzero((char *)start, count); 6781 /* 6782 * We need to start the next truncation in the list if it has not 6783 * been started yet. 6784 */ 6785 fwn = TAILQ_FIRST(&indirdep->ir_trunc); 6786 if (fwn != NULL) { 6787 if (fwn->fw_freeblks == indirdep->ir_freeblks) 6788 TAILQ_REMOVE(&indirdep->ir_trunc, fwn, fw_next); 6789 if ((fwn->fw_state & ONWORKLIST) == 0) 6790 freework_enqueue(fwn); 6791 } 6792 /* 6793 * If bp is NULL the block was fully truncated, restore 6794 * the saved block list otherwise free it if it is no 6795 * longer needed. 6796 */ 6797 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 6798 if (bp == NULL) 6799 bcopy(indirdep->ir_saveddata, 6800 indirdep->ir_savebp->b_data, 6801 indirdep->ir_savebp->b_bcount); 6802 free(indirdep->ir_saveddata, M_INDIRDEP); 6803 indirdep->ir_saveddata = NULL; 6804 } 6805 /* 6806 * When bp is NULL there is a full truncation pending. We 6807 * must wait for this full truncation to be journaled before 6808 * we can release this freework because the disk pointers will 6809 * never be written as zero. 6810 */ 6811 if (bp == NULL) { 6812 if (LIST_EMPTY(&indirdep->ir_freeblks->fb_jblkdephd)) 6813 handle_written_freework(freework); 6814 else 6815 WORKLIST_INSERT(&indirdep->ir_freeblks->fb_freeworkhd, 6816 &freework->fw_list); 6817 if (fwn == NULL) { 6818 freework->fw_indir = (void *)0x0000deadbeef0000; 6819 bp = indirdep->ir_savebp; 6820 indirdep->ir_savebp = NULL; 6821 free_indirdep(indirdep); 6822 FREE_LOCK(ump); 6823 brelse(bp); 6824 ACQUIRE_LOCK(ump); 6825 } 6826 } else { 6827 /* Complete when the real copy is written. */ 6828 WORKLIST_INSERT(&bp->b_dep, &freework->fw_list); 6829 BUF_UNLOCK(bp); 6830 } 6831 } 6832 6833 /* 6834 * Calculate the number of blocks we are going to release where datablocks 6835 * is the current total and length is the new file size. 6836 */ 6837 static ufs2_daddr_t 6838 blkcount(fs, datablocks, length) 6839 struct fs *fs; 6840 ufs2_daddr_t datablocks; 6841 off_t length; 6842 { 6843 off_t totblks, numblks; 6844 6845 totblks = 0; 6846 numblks = howmany(length, fs->fs_bsize); 6847 if (numblks <= UFS_NDADDR) { 6848 totblks = howmany(length, fs->fs_fsize); 6849 goto out; 6850 } 6851 totblks = blkstofrags(fs, numblks); 6852 numblks -= UFS_NDADDR; 6853 /* 6854 * Count all single, then double, then triple indirects required. 6855 * Subtracting one indirects worth of blocks for each pass 6856 * acknowledges one of each pointed to by the inode. 6857 */ 6858 for (;;) { 6859 totblks += blkstofrags(fs, howmany(numblks, NINDIR(fs))); 6860 numblks -= NINDIR(fs); 6861 if (numblks <= 0) 6862 break; 6863 numblks = howmany(numblks, NINDIR(fs)); 6864 } 6865 out: 6866 totblks = fsbtodb(fs, totblks); 6867 /* 6868 * Handle sparse files. We can't reclaim more blocks than the inode 6869 * references. We will correct it later in handle_complete_freeblks() 6870 * when we know the real count. 6871 */ 6872 if (totblks > datablocks) 6873 return (0); 6874 return (datablocks - totblks); 6875 } 6876 6877 /* 6878 * Handle freeblocks for journaled softupdate filesystems. 6879 * 6880 * Contrary to normal softupdates, we must preserve the block pointers in 6881 * indirects until their subordinates are free. This is to avoid journaling 6882 * every block that is freed which may consume more space than the journal 6883 * itself. The recovery program will see the free block journals at the 6884 * base of the truncated area and traverse them to reclaim space. The 6885 * pointers in the inode may be cleared immediately after the journal 6886 * records are written because each direct and indirect pointer in the 6887 * inode is recorded in a journal. This permits full truncation to proceed 6888 * asynchronously. The write order is journal -> inode -> cgs -> indirects. 6889 * 6890 * The algorithm is as follows: 6891 * 1) Traverse the in-memory state and create journal entries to release 6892 * the relevant blocks and full indirect trees. 6893 * 2) Traverse the indirect block chain adding partial truncation freework 6894 * records to indirects in the path to lastlbn. The freework will 6895 * prevent new allocation dependencies from being satisfied in this 6896 * indirect until the truncation completes. 6897 * 3) Read and lock the inode block, performing an update with the new size 6898 * and pointers. This prevents truncated data from becoming valid on 6899 * disk through step 4. 6900 * 4) Reap unsatisfied dependencies that are beyond the truncated area, 6901 * eliminate journal work for those records that do not require it. 6902 * 5) Schedule the journal records to be written followed by the inode block. 6903 * 6) Allocate any necessary frags for the end of file. 6904 * 7) Zero any partially truncated blocks. 6905 * 6906 * From this truncation proceeds asynchronously using the freework and 6907 * indir_trunc machinery. The file will not be extended again into a 6908 * partially truncated indirect block until all work is completed but 6909 * the normal dependency mechanism ensures that it is rolled back/forward 6910 * as appropriate. Further truncation may occur without delay and is 6911 * serialized in indir_trunc(). 6912 */ 6913 void 6914 softdep_journal_freeblocks(ip, cred, length, flags) 6915 struct inode *ip; /* The inode whose length is to be reduced */ 6916 struct ucred *cred; 6917 off_t length; /* The new length for the file */ 6918 int flags; /* IO_EXT and/or IO_NORMAL */ 6919 { 6920 struct freeblks *freeblks, *fbn; 6921 struct worklist *wk, *wkn; 6922 struct inodedep *inodedep; 6923 struct jblkdep *jblkdep; 6924 struct allocdirect *adp, *adpn; 6925 struct ufsmount *ump; 6926 struct fs *fs; 6927 struct buf *bp; 6928 struct vnode *vp; 6929 struct mount *mp; 6930 daddr_t dbn; 6931 ufs2_daddr_t extblocks, datablocks; 6932 ufs_lbn_t tmpval, lbn, lastlbn; 6933 int frags, lastoff, iboff, allocblock, needj, error, i; 6934 6935 ump = ITOUMP(ip); 6936 mp = UFSTOVFS(ump); 6937 fs = ump->um_fs; 6938 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 6939 ("softdep_journal_freeblocks called on non-softdep filesystem")); 6940 vp = ITOV(ip); 6941 needj = 1; 6942 iboff = -1; 6943 allocblock = 0; 6944 extblocks = 0; 6945 datablocks = 0; 6946 frags = 0; 6947 freeblks = newfreeblks(mp, ip); 6948 ACQUIRE_LOCK(ump); 6949 /* 6950 * If we're truncating a removed file that will never be written 6951 * we don't need to journal the block frees. The canceled journals 6952 * for the allocations will suffice. 6953 */ 6954 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 6955 if ((inodedep->id_state & (UNLINKED | DEPCOMPLETE)) == UNLINKED && 6956 length == 0) 6957 needj = 0; 6958 CTR3(KTR_SUJ, "softdep_journal_freeblks: ip %d length %ld needj %d", 6959 ip->i_number, length, needj); 6960 FREE_LOCK(ump); 6961 /* 6962 * Calculate the lbn that we are truncating to. This results in -1 6963 * if we're truncating the 0 bytes. So it is the last lbn we want 6964 * to keep, not the first lbn we want to truncate. 6965 */ 6966 lastlbn = lblkno(fs, length + fs->fs_bsize - 1) - 1; 6967 lastoff = blkoff(fs, length); 6968 /* 6969 * Compute frags we are keeping in lastlbn. 0 means all. 6970 */ 6971 if (lastlbn >= 0 && lastlbn < UFS_NDADDR) { 6972 frags = fragroundup(fs, lastoff); 6973 /* adp offset of last valid allocdirect. */ 6974 iboff = lastlbn; 6975 } else if (lastlbn > 0) 6976 iboff = UFS_NDADDR; 6977 if (fs->fs_magic == FS_UFS2_MAGIC) 6978 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 6979 /* 6980 * Handle normal data blocks and indirects. This section saves 6981 * values used after the inode update to complete frag and indirect 6982 * truncation. 6983 */ 6984 if ((flags & IO_NORMAL) != 0) { 6985 /* 6986 * Handle truncation of whole direct and indirect blocks. 6987 */ 6988 for (i = iboff + 1; i < UFS_NDADDR; i++) 6989 setup_freedirect(freeblks, ip, i, needj); 6990 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 6991 i < UFS_NIADDR; 6992 i++, lbn += tmpval, tmpval *= NINDIR(fs)) { 6993 /* Release a whole indirect tree. */ 6994 if (lbn > lastlbn) { 6995 setup_freeindir(freeblks, ip, i, -lbn -i, 6996 needj); 6997 continue; 6998 } 6999 iboff = i + UFS_NDADDR; 7000 /* 7001 * Traverse partially truncated indirect tree. 7002 */ 7003 if (lbn <= lastlbn && lbn + tmpval - 1 > lastlbn) 7004 setup_trunc_indir(freeblks, ip, -lbn - i, 7005 lastlbn, DIP(ip, i_ib[i])); 7006 } 7007 /* 7008 * Handle partial truncation to a frag boundary. 7009 */ 7010 if (frags) { 7011 ufs2_daddr_t blkno; 7012 long oldfrags; 7013 7014 oldfrags = blksize(fs, ip, lastlbn); 7015 blkno = DIP(ip, i_db[lastlbn]); 7016 if (blkno && oldfrags != frags) { 7017 oldfrags -= frags; 7018 oldfrags = numfrags(fs, oldfrags); 7019 blkno += numfrags(fs, frags); 7020 newfreework(ump, freeblks, NULL, lastlbn, 7021 blkno, oldfrags, 0, needj); 7022 if (needj) 7023 adjust_newfreework(freeblks, 7024 numfrags(fs, frags)); 7025 } else if (blkno == 0) 7026 allocblock = 1; 7027 } 7028 /* 7029 * Add a journal record for partial truncate if we are 7030 * handling indirect blocks. Non-indirects need no extra 7031 * journaling. 7032 */ 7033 if (length != 0 && lastlbn >= UFS_NDADDR) { 7034 UFS_INODE_SET_FLAG(ip, IN_TRUNCATED); 7035 newjtrunc(freeblks, length, 0); 7036 } 7037 ip->i_size = length; 7038 DIP_SET(ip, i_size, ip->i_size); 7039 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7040 datablocks = DIP(ip, i_blocks) - extblocks; 7041 if (length != 0) 7042 datablocks = blkcount(fs, datablocks, length); 7043 freeblks->fb_len = length; 7044 } 7045 if ((flags & IO_EXT) != 0) { 7046 for (i = 0; i < UFS_NXADDR; i++) 7047 setup_freeext(freeblks, ip, i, needj); 7048 ip->i_din2->di_extsize = 0; 7049 datablocks += extblocks; 7050 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7051 } 7052 #ifdef QUOTA 7053 /* Reference the quotas in case the block count is wrong in the end. */ 7054 quotaref(vp, freeblks->fb_quota); 7055 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7056 #endif 7057 freeblks->fb_chkcnt = -datablocks; 7058 UFS_LOCK(ump); 7059 fs->fs_pendingblocks += datablocks; 7060 UFS_UNLOCK(ump); 7061 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7062 /* 7063 * Handle truncation of incomplete alloc direct dependencies. We 7064 * hold the inode block locked to prevent incomplete dependencies 7065 * from reaching the disk while we are eliminating those that 7066 * have been truncated. This is a partially inlined ffs_update(). 7067 */ 7068 ufs_itimes(vp); 7069 ip->i_flag &= ~(IN_LAZYACCESS | IN_LAZYMOD | IN_MODIFIED); 7070 dbn = fsbtodb(fs, ino_to_fsba(fs, ip->i_number)); 7071 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, (int)fs->fs_bsize, 7072 NULL, NULL, 0, cred, 0, NULL, &bp); 7073 if (error) { 7074 softdep_error("softdep_journal_freeblocks", error); 7075 return; 7076 } 7077 if (bp->b_bufsize == fs->fs_bsize) 7078 bp->b_flags |= B_CLUSTEROK; 7079 softdep_update_inodeblock(ip, bp, 0); 7080 if (ump->um_fstype == UFS1) { 7081 *((struct ufs1_dinode *)bp->b_data + 7082 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din1; 7083 } else { 7084 ffs_update_dinode_ckhash(fs, ip->i_din2); 7085 *((struct ufs2_dinode *)bp->b_data + 7086 ino_to_fsbo(fs, ip->i_number)) = *ip->i_din2; 7087 } 7088 ACQUIRE_LOCK(ump); 7089 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7090 if ((inodedep->id_state & IOSTARTED) != 0) 7091 panic("softdep_setup_freeblocks: inode busy"); 7092 /* 7093 * Add the freeblks structure to the list of operations that 7094 * must await the zero'ed inode being written to disk. If we 7095 * still have a bitmap dependency (needj), then the inode 7096 * has never been written to disk, so we can process the 7097 * freeblks below once we have deleted the dependencies. 7098 */ 7099 if (needj) 7100 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7101 else 7102 freeblks->fb_state |= COMPLETE; 7103 if ((flags & IO_NORMAL) != 0) { 7104 TAILQ_FOREACH_SAFE(adp, &inodedep->id_inoupdt, ad_next, adpn) { 7105 if (adp->ad_offset > iboff) 7106 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7107 freeblks); 7108 /* 7109 * Truncate the allocdirect. We could eliminate 7110 * or modify journal records as well. 7111 */ 7112 else if (adp->ad_offset == iboff && frags) 7113 adp->ad_newsize = frags; 7114 } 7115 } 7116 if ((flags & IO_EXT) != 0) 7117 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7118 cancel_allocdirect(&inodedep->id_extupdt, adp, 7119 freeblks); 7120 /* 7121 * Scan the bufwait list for newblock dependencies that will never 7122 * make it to disk. 7123 */ 7124 LIST_FOREACH_SAFE(wk, &inodedep->id_bufwait, wk_list, wkn) { 7125 if (wk->wk_type != D_ALLOCDIRECT) 7126 continue; 7127 adp = WK_ALLOCDIRECT(wk); 7128 if (((flags & IO_NORMAL) != 0 && (adp->ad_offset > iboff)) || 7129 ((flags & IO_EXT) != 0 && (adp->ad_state & EXTDATA))) { 7130 cancel_jfreeblk(freeblks, adp->ad_newblkno); 7131 cancel_newblk(WK_NEWBLK(wk), NULL, &freeblks->fb_jwork); 7132 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7133 } 7134 } 7135 /* 7136 * Add journal work. 7137 */ 7138 LIST_FOREACH(jblkdep, &freeblks->fb_jblkdephd, jb_deps) 7139 add_to_journal(&jblkdep->jb_list); 7140 FREE_LOCK(ump); 7141 bdwrite(bp); 7142 /* 7143 * Truncate dependency structures beyond length. 7144 */ 7145 trunc_dependencies(ip, freeblks, lastlbn, frags, flags); 7146 /* 7147 * This is only set when we need to allocate a fragment because 7148 * none existed at the end of a frag-sized file. It handles only 7149 * allocating a new, zero filled block. 7150 */ 7151 if (allocblock) { 7152 ip->i_size = length - lastoff; 7153 DIP_SET(ip, i_size, ip->i_size); 7154 error = UFS_BALLOC(vp, length - 1, 1, cred, BA_CLRBUF, &bp); 7155 if (error != 0) { 7156 softdep_error("softdep_journal_freeblks", error); 7157 return; 7158 } 7159 ip->i_size = length; 7160 DIP_SET(ip, i_size, length); 7161 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_UPDATE); 7162 allocbuf(bp, frags); 7163 ffs_update(vp, 0); 7164 bawrite(bp); 7165 } else if (lastoff != 0 && vp->v_type != VDIR) { 7166 int size; 7167 7168 /* 7169 * Zero the end of a truncated frag or block. 7170 */ 7171 size = sblksize(fs, length, lastlbn); 7172 error = bread(vp, lastlbn, size, cred, &bp); 7173 if (error == 0) { 7174 bzero((char *)bp->b_data + lastoff, size - lastoff); 7175 bawrite(bp); 7176 } else if (!ffs_fsfail_cleanup(ump, error)) { 7177 softdep_error("softdep_journal_freeblks", error); 7178 return; 7179 } 7180 } 7181 ACQUIRE_LOCK(ump); 7182 inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7183 TAILQ_INSERT_TAIL(&inodedep->id_freeblklst, freeblks, fb_next); 7184 freeblks->fb_state |= DEPCOMPLETE | ONDEPLIST; 7185 /* 7186 * We zero earlier truncations so they don't erroneously 7187 * update i_blocks. 7188 */ 7189 if (freeblks->fb_len == 0 && (flags & IO_NORMAL) != 0) 7190 TAILQ_FOREACH(fbn, &inodedep->id_freeblklst, fb_next) 7191 fbn->fb_len = 0; 7192 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE && 7193 LIST_EMPTY(&freeblks->fb_jblkdephd)) 7194 freeblks->fb_state |= INPROGRESS; 7195 else 7196 freeblks = NULL; 7197 FREE_LOCK(ump); 7198 if (freeblks) 7199 handle_workitem_freeblocks(freeblks, 0); 7200 trunc_pages(ip, length, extblocks, flags); 7201 7202 } 7203 7204 /* 7205 * Flush a JOP_SYNC to the journal. 7206 */ 7207 void 7208 softdep_journal_fsync(ip) 7209 struct inode *ip; 7210 { 7211 struct jfsync *jfsync; 7212 struct ufsmount *ump; 7213 7214 ump = ITOUMP(ip); 7215 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7216 ("softdep_journal_fsync called on non-softdep filesystem")); 7217 if ((ip->i_flag & IN_TRUNCATED) == 0) 7218 return; 7219 ip->i_flag &= ~IN_TRUNCATED; 7220 jfsync = malloc(sizeof(*jfsync), M_JFSYNC, M_SOFTDEP_FLAGS | M_ZERO); 7221 workitem_alloc(&jfsync->jfs_list, D_JFSYNC, UFSTOVFS(ump)); 7222 jfsync->jfs_size = ip->i_size; 7223 jfsync->jfs_ino = ip->i_number; 7224 ACQUIRE_LOCK(ump); 7225 add_to_journal(&jfsync->jfs_list); 7226 jwait(&jfsync->jfs_list, MNT_WAIT); 7227 FREE_LOCK(ump); 7228 } 7229 7230 /* 7231 * Block de-allocation dependencies. 7232 * 7233 * When blocks are de-allocated, the on-disk pointers must be nullified before 7234 * the blocks are made available for use by other files. (The true 7235 * requirement is that old pointers must be nullified before new on-disk 7236 * pointers are set. We chose this slightly more stringent requirement to 7237 * reduce complexity.) Our implementation handles this dependency by updating 7238 * the inode (or indirect block) appropriately but delaying the actual block 7239 * de-allocation (i.e., freemap and free space count manipulation) until 7240 * after the updated versions reach stable storage. After the disk is 7241 * updated, the blocks can be safely de-allocated whenever it is convenient. 7242 * This implementation handles only the common case of reducing a file's 7243 * length to zero. Other cases are handled by the conventional synchronous 7244 * write approach. 7245 * 7246 * The ffs implementation with which we worked double-checks 7247 * the state of the block pointers and file size as it reduces 7248 * a file's length. Some of this code is replicated here in our 7249 * soft updates implementation. The freeblks->fb_chkcnt field is 7250 * used to transfer a part of this information to the procedure 7251 * that eventually de-allocates the blocks. 7252 * 7253 * This routine should be called from the routine that shortens 7254 * a file's length, before the inode's size or block pointers 7255 * are modified. It will save the block pointer information for 7256 * later release and zero the inode so that the calling routine 7257 * can release it. 7258 */ 7259 void 7260 softdep_setup_freeblocks(ip, length, flags) 7261 struct inode *ip; /* The inode whose length is to be reduced */ 7262 off_t length; /* The new length for the file */ 7263 int flags; /* IO_EXT and/or IO_NORMAL */ 7264 { 7265 struct ufs1_dinode *dp1; 7266 struct ufs2_dinode *dp2; 7267 struct freeblks *freeblks; 7268 struct inodedep *inodedep; 7269 struct allocdirect *adp; 7270 struct ufsmount *ump; 7271 struct buf *bp; 7272 struct fs *fs; 7273 ufs2_daddr_t extblocks, datablocks; 7274 struct mount *mp; 7275 int i, delay, error; 7276 ufs_lbn_t tmpval; 7277 ufs_lbn_t lbn; 7278 7279 ump = ITOUMP(ip); 7280 mp = UFSTOVFS(ump); 7281 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 7282 ("softdep_setup_freeblocks called on non-softdep filesystem")); 7283 CTR2(KTR_SUJ, "softdep_setup_freeblks: ip %d length %ld", 7284 ip->i_number, length); 7285 KASSERT(length == 0, ("softdep_setup_freeblocks: non-zero length")); 7286 fs = ump->um_fs; 7287 if ((error = bread(ump->um_devvp, 7288 fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 7289 (int)fs->fs_bsize, NOCRED, &bp)) != 0) { 7290 if (!ffs_fsfail_cleanup(ump, error)) 7291 softdep_error("softdep_setup_freeblocks", error); 7292 return; 7293 } 7294 freeblks = newfreeblks(mp, ip); 7295 extblocks = 0; 7296 datablocks = 0; 7297 if (fs->fs_magic == FS_UFS2_MAGIC) 7298 extblocks = btodb(fragroundup(fs, ip->i_din2->di_extsize)); 7299 if ((flags & IO_NORMAL) != 0) { 7300 for (i = 0; i < UFS_NDADDR; i++) 7301 setup_freedirect(freeblks, ip, i, 0); 7302 for (i = 0, tmpval = NINDIR(fs), lbn = UFS_NDADDR; 7303 i < UFS_NIADDR; 7304 i++, lbn += tmpval, tmpval *= NINDIR(fs)) 7305 setup_freeindir(freeblks, ip, i, -lbn -i, 0); 7306 ip->i_size = 0; 7307 DIP_SET(ip, i_size, 0); 7308 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7309 datablocks = DIP(ip, i_blocks) - extblocks; 7310 } 7311 if ((flags & IO_EXT) != 0) { 7312 for (i = 0; i < UFS_NXADDR; i++) 7313 setup_freeext(freeblks, ip, i, 0); 7314 ip->i_din2->di_extsize = 0; 7315 datablocks += extblocks; 7316 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE); 7317 } 7318 #ifdef QUOTA 7319 /* Reference the quotas in case the block count is wrong in the end. */ 7320 quotaref(ITOV(ip), freeblks->fb_quota); 7321 (void) chkdq(ip, -datablocks, NOCRED, FORCE); 7322 #endif 7323 freeblks->fb_chkcnt = -datablocks; 7324 UFS_LOCK(ump); 7325 fs->fs_pendingblocks += datablocks; 7326 UFS_UNLOCK(ump); 7327 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - datablocks); 7328 /* 7329 * Push the zero'ed inode to its disk buffer so that we are free 7330 * to delete its dependencies below. Once the dependencies are gone 7331 * the buffer can be safely released. 7332 */ 7333 if (ump->um_fstype == UFS1) { 7334 dp1 = ((struct ufs1_dinode *)bp->b_data + 7335 ino_to_fsbo(fs, ip->i_number)); 7336 ip->i_din1->di_freelink = dp1->di_freelink; 7337 *dp1 = *ip->i_din1; 7338 } else { 7339 dp2 = ((struct ufs2_dinode *)bp->b_data + 7340 ino_to_fsbo(fs, ip->i_number)); 7341 ip->i_din2->di_freelink = dp2->di_freelink; 7342 ffs_update_dinode_ckhash(fs, ip->i_din2); 7343 *dp2 = *ip->i_din2; 7344 } 7345 /* 7346 * Find and eliminate any inode dependencies. 7347 */ 7348 ACQUIRE_LOCK(ump); 7349 (void) inodedep_lookup(mp, ip->i_number, DEPALLOC, &inodedep); 7350 if ((inodedep->id_state & IOSTARTED) != 0) 7351 panic("softdep_setup_freeblocks: inode busy"); 7352 /* 7353 * Add the freeblks structure to the list of operations that 7354 * must await the zero'ed inode being written to disk. If we 7355 * still have a bitmap dependency (delay == 0), then the inode 7356 * has never been written to disk, so we can process the 7357 * freeblks below once we have deleted the dependencies. 7358 */ 7359 delay = (inodedep->id_state & DEPCOMPLETE); 7360 if (delay) 7361 WORKLIST_INSERT(&bp->b_dep, &freeblks->fb_list); 7362 else 7363 freeblks->fb_state |= COMPLETE; 7364 /* 7365 * Because the file length has been truncated to zero, any 7366 * pending block allocation dependency structures associated 7367 * with this inode are obsolete and can simply be de-allocated. 7368 * We must first merge the two dependency lists to get rid of 7369 * any duplicate freefrag structures, then purge the merged list. 7370 * If we still have a bitmap dependency, then the inode has never 7371 * been written to disk, so we can free any fragments without delay. 7372 */ 7373 if (flags & IO_NORMAL) { 7374 merge_inode_lists(&inodedep->id_newinoupdt, 7375 &inodedep->id_inoupdt); 7376 while ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 7377 cancel_allocdirect(&inodedep->id_inoupdt, adp, 7378 freeblks); 7379 } 7380 if (flags & IO_EXT) { 7381 merge_inode_lists(&inodedep->id_newextupdt, 7382 &inodedep->id_extupdt); 7383 while ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 7384 cancel_allocdirect(&inodedep->id_extupdt, adp, 7385 freeblks); 7386 } 7387 FREE_LOCK(ump); 7388 bdwrite(bp); 7389 trunc_dependencies(ip, freeblks, -1, 0, flags); 7390 ACQUIRE_LOCK(ump); 7391 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 7392 (void) free_inodedep(inodedep); 7393 freeblks->fb_state |= DEPCOMPLETE; 7394 /* 7395 * If the inode with zeroed block pointers is now on disk 7396 * we can start freeing blocks. 7397 */ 7398 if ((freeblks->fb_state & ALLCOMPLETE) == ALLCOMPLETE) 7399 freeblks->fb_state |= INPROGRESS; 7400 else 7401 freeblks = NULL; 7402 FREE_LOCK(ump); 7403 if (freeblks) 7404 handle_workitem_freeblocks(freeblks, 0); 7405 trunc_pages(ip, length, extblocks, flags); 7406 } 7407 7408 /* 7409 * Eliminate pages from the page cache that back parts of this inode and 7410 * adjust the vnode pager's idea of our size. This prevents stale data 7411 * from hanging around in the page cache. 7412 */ 7413 static void 7414 trunc_pages(ip, length, extblocks, flags) 7415 struct inode *ip; 7416 off_t length; 7417 ufs2_daddr_t extblocks; 7418 int flags; 7419 { 7420 struct vnode *vp; 7421 struct fs *fs; 7422 ufs_lbn_t lbn; 7423 off_t end, extend; 7424 7425 vp = ITOV(ip); 7426 fs = ITOFS(ip); 7427 extend = OFF_TO_IDX(lblktosize(fs, -extblocks)); 7428 if ((flags & IO_EXT) != 0) 7429 vn_pages_remove(vp, extend, 0); 7430 if ((flags & IO_NORMAL) == 0) 7431 return; 7432 BO_LOCK(&vp->v_bufobj); 7433 drain_output(vp); 7434 BO_UNLOCK(&vp->v_bufobj); 7435 /* 7436 * The vnode pager eliminates file pages we eliminate indirects 7437 * below. 7438 */ 7439 vnode_pager_setsize(vp, length); 7440 /* 7441 * Calculate the end based on the last indirect we want to keep. If 7442 * the block extends into indirects we can just use the negative of 7443 * its lbn. Doubles and triples exist at lower numbers so we must 7444 * be careful not to remove those, if they exist. double and triple 7445 * indirect lbns do not overlap with others so it is not important 7446 * to verify how many levels are required. 7447 */ 7448 lbn = lblkno(fs, length); 7449 if (lbn >= UFS_NDADDR) { 7450 /* Calculate the virtual lbn of the triple indirect. */ 7451 lbn = -lbn - (UFS_NIADDR - 1); 7452 end = OFF_TO_IDX(lblktosize(fs, lbn)); 7453 } else 7454 end = extend; 7455 vn_pages_remove(vp, OFF_TO_IDX(OFF_MAX), end); 7456 } 7457 7458 /* 7459 * See if the buf bp is in the range eliminated by truncation. 7460 */ 7461 static int 7462 trunc_check_buf(bp, blkoffp, lastlbn, lastoff, flags) 7463 struct buf *bp; 7464 int *blkoffp; 7465 ufs_lbn_t lastlbn; 7466 int lastoff; 7467 int flags; 7468 { 7469 ufs_lbn_t lbn; 7470 7471 *blkoffp = 0; 7472 /* Only match ext/normal blocks as appropriate. */ 7473 if (((flags & IO_EXT) == 0 && (bp->b_xflags & BX_ALTDATA)) || 7474 ((flags & IO_NORMAL) == 0 && (bp->b_xflags & BX_ALTDATA) == 0)) 7475 return (0); 7476 /* ALTDATA is always a full truncation. */ 7477 if ((bp->b_xflags & BX_ALTDATA) != 0) 7478 return (1); 7479 /* -1 is full truncation. */ 7480 if (lastlbn == -1) 7481 return (1); 7482 /* 7483 * If this is a partial truncate we only want those 7484 * blocks and indirect blocks that cover the range 7485 * we're after. 7486 */ 7487 lbn = bp->b_lblkno; 7488 if (lbn < 0) 7489 lbn = -(lbn + lbn_level(lbn)); 7490 if (lbn < lastlbn) 7491 return (0); 7492 /* Here we only truncate lblkno if it's partial. */ 7493 if (lbn == lastlbn) { 7494 if (lastoff == 0) 7495 return (0); 7496 *blkoffp = lastoff; 7497 } 7498 return (1); 7499 } 7500 7501 /* 7502 * Eliminate any dependencies that exist in memory beyond lblkno:off 7503 */ 7504 static void 7505 trunc_dependencies(ip, freeblks, lastlbn, lastoff, flags) 7506 struct inode *ip; 7507 struct freeblks *freeblks; 7508 ufs_lbn_t lastlbn; 7509 int lastoff; 7510 int flags; 7511 { 7512 struct bufobj *bo; 7513 struct vnode *vp; 7514 struct buf *bp; 7515 int blkoff; 7516 7517 /* 7518 * We must wait for any I/O in progress to finish so that 7519 * all potential buffers on the dirty list will be visible. 7520 * Once they are all there, walk the list and get rid of 7521 * any dependencies. 7522 */ 7523 vp = ITOV(ip); 7524 bo = &vp->v_bufobj; 7525 BO_LOCK(bo); 7526 drain_output(vp); 7527 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) 7528 bp->b_vflags &= ~BV_SCANNED; 7529 restart: 7530 TAILQ_FOREACH(bp, &bo->bo_dirty.bv_hd, b_bobufs) { 7531 if (bp->b_vflags & BV_SCANNED) 7532 continue; 7533 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7534 bp->b_vflags |= BV_SCANNED; 7535 continue; 7536 } 7537 KASSERT(bp->b_bufobj == bo, ("Wrong object in buffer")); 7538 if ((bp = getdirtybuf(bp, BO_LOCKPTR(bo), MNT_WAIT)) == NULL) 7539 goto restart; 7540 BO_UNLOCK(bo); 7541 if (deallocate_dependencies(bp, freeblks, blkoff)) 7542 bqrelse(bp); 7543 else 7544 brelse(bp); 7545 BO_LOCK(bo); 7546 goto restart; 7547 } 7548 /* 7549 * Now do the work of vtruncbuf while also matching indirect blocks. 7550 */ 7551 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) 7552 bp->b_vflags &= ~BV_SCANNED; 7553 cleanrestart: 7554 TAILQ_FOREACH(bp, &bo->bo_clean.bv_hd, b_bobufs) { 7555 if (bp->b_vflags & BV_SCANNED) 7556 continue; 7557 if (!trunc_check_buf(bp, &blkoff, lastlbn, lastoff, flags)) { 7558 bp->b_vflags |= BV_SCANNED; 7559 continue; 7560 } 7561 if (BUF_LOCK(bp, 7562 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, 7563 BO_LOCKPTR(bo)) == ENOLCK) { 7564 BO_LOCK(bo); 7565 goto cleanrestart; 7566 } 7567 BO_LOCK(bo); 7568 bp->b_vflags |= BV_SCANNED; 7569 BO_UNLOCK(bo); 7570 bremfree(bp); 7571 if (blkoff != 0) { 7572 allocbuf(bp, blkoff); 7573 bqrelse(bp); 7574 } else { 7575 bp->b_flags |= B_INVAL | B_NOCACHE | B_RELBUF; 7576 brelse(bp); 7577 } 7578 BO_LOCK(bo); 7579 goto cleanrestart; 7580 } 7581 drain_output(vp); 7582 BO_UNLOCK(bo); 7583 } 7584 7585 static int 7586 cancel_pagedep(pagedep, freeblks, blkoff) 7587 struct pagedep *pagedep; 7588 struct freeblks *freeblks; 7589 int blkoff; 7590 { 7591 struct jremref *jremref; 7592 struct jmvref *jmvref; 7593 struct dirrem *dirrem, *tmp; 7594 int i; 7595 7596 /* 7597 * Copy any directory remove dependencies to the list 7598 * to be processed after the freeblks proceeds. If 7599 * directory entry never made it to disk they 7600 * can be dumped directly onto the work list. 7601 */ 7602 LIST_FOREACH_SAFE(dirrem, &pagedep->pd_dirremhd, dm_next, tmp) { 7603 /* Skip this directory removal if it is intended to remain. */ 7604 if (dirrem->dm_offset < blkoff) 7605 continue; 7606 /* 7607 * If there are any dirrems we wait for the journal write 7608 * to complete and then restart the buf scan as the lock 7609 * has been dropped. 7610 */ 7611 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) { 7612 jwait(&jremref->jr_list, MNT_WAIT); 7613 return (ERESTART); 7614 } 7615 LIST_REMOVE(dirrem, dm_next); 7616 dirrem->dm_dirinum = pagedep->pd_ino; 7617 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &dirrem->dm_list); 7618 } 7619 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) { 7620 jwait(&jmvref->jm_list, MNT_WAIT); 7621 return (ERESTART); 7622 } 7623 /* 7624 * When we're partially truncating a pagedep we just want to flush 7625 * journal entries and return. There can not be any adds in the 7626 * truncated portion of the directory and newblk must remain if 7627 * part of the block remains. 7628 */ 7629 if (blkoff != 0) { 7630 struct diradd *dap; 7631 7632 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 7633 if (dap->da_offset > blkoff) 7634 panic("cancel_pagedep: diradd %p off %d > %d", 7635 dap, dap->da_offset, blkoff); 7636 for (i = 0; i < DAHASHSZ; i++) 7637 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) 7638 if (dap->da_offset > blkoff) 7639 panic("cancel_pagedep: diradd %p off %d > %d", 7640 dap, dap->da_offset, blkoff); 7641 return (0); 7642 } 7643 /* 7644 * There should be no directory add dependencies present 7645 * as the directory could not be truncated until all 7646 * children were removed. 7647 */ 7648 KASSERT(LIST_FIRST(&pagedep->pd_pendinghd) == NULL, 7649 ("deallocate_dependencies: pendinghd != NULL")); 7650 for (i = 0; i < DAHASHSZ; i++) 7651 KASSERT(LIST_FIRST(&pagedep->pd_diraddhd[i]) == NULL, 7652 ("deallocate_dependencies: diraddhd != NULL")); 7653 if ((pagedep->pd_state & NEWBLOCK) != 0) 7654 free_newdirblk(pagedep->pd_newdirblk); 7655 if (free_pagedep(pagedep) == 0) 7656 panic("Failed to free pagedep %p", pagedep); 7657 return (0); 7658 } 7659 7660 /* 7661 * Reclaim any dependency structures from a buffer that is about to 7662 * be reallocated to a new vnode. The buffer must be locked, thus, 7663 * no I/O completion operations can occur while we are manipulating 7664 * its associated dependencies. The mutex is held so that other I/O's 7665 * associated with related dependencies do not occur. 7666 */ 7667 static int 7668 deallocate_dependencies(bp, freeblks, off) 7669 struct buf *bp; 7670 struct freeblks *freeblks; 7671 int off; 7672 { 7673 struct indirdep *indirdep; 7674 struct pagedep *pagedep; 7675 struct worklist *wk, *wkn; 7676 struct ufsmount *ump; 7677 7678 ump = softdep_bp_to_mp(bp); 7679 if (ump == NULL) 7680 goto done; 7681 ACQUIRE_LOCK(ump); 7682 LIST_FOREACH_SAFE(wk, &bp->b_dep, wk_list, wkn) { 7683 switch (wk->wk_type) { 7684 case D_INDIRDEP: 7685 indirdep = WK_INDIRDEP(wk); 7686 if (bp->b_lblkno >= 0 || 7687 bp->b_blkno != indirdep->ir_savebp->b_lblkno) 7688 panic("deallocate_dependencies: not indir"); 7689 cancel_indirdep(indirdep, bp, freeblks); 7690 continue; 7691 7692 case D_PAGEDEP: 7693 pagedep = WK_PAGEDEP(wk); 7694 if (cancel_pagedep(pagedep, freeblks, off)) { 7695 FREE_LOCK(ump); 7696 return (ERESTART); 7697 } 7698 continue; 7699 7700 case D_ALLOCINDIR: 7701 /* 7702 * Simply remove the allocindir, we'll find it via 7703 * the indirdep where we can clear pointers if 7704 * needed. 7705 */ 7706 WORKLIST_REMOVE(wk); 7707 continue; 7708 7709 case D_FREEWORK: 7710 /* 7711 * A truncation is waiting for the zero'd pointers 7712 * to be written. It can be freed when the freeblks 7713 * is journaled. 7714 */ 7715 WORKLIST_REMOVE(wk); 7716 wk->wk_state |= ONDEPLIST; 7717 WORKLIST_INSERT(&freeblks->fb_freeworkhd, wk); 7718 break; 7719 7720 case D_ALLOCDIRECT: 7721 if (off != 0) 7722 continue; 7723 /* FALLTHROUGH */ 7724 default: 7725 panic("deallocate_dependencies: Unexpected type %s", 7726 TYPENAME(wk->wk_type)); 7727 /* NOTREACHED */ 7728 } 7729 } 7730 FREE_LOCK(ump); 7731 done: 7732 /* 7733 * Don't throw away this buf, we were partially truncating and 7734 * some deps may always remain. 7735 */ 7736 if (off) { 7737 allocbuf(bp, off); 7738 bp->b_vflags |= BV_SCANNED; 7739 return (EBUSY); 7740 } 7741 bp->b_flags |= B_INVAL | B_NOCACHE; 7742 7743 return (0); 7744 } 7745 7746 /* 7747 * An allocdirect is being canceled due to a truncate. We must make sure 7748 * the journal entry is released in concert with the blkfree that releases 7749 * the storage. Completed journal entries must not be released until the 7750 * space is no longer pointed to by the inode or in the bitmap. 7751 */ 7752 static void 7753 cancel_allocdirect(adphead, adp, freeblks) 7754 struct allocdirectlst *adphead; 7755 struct allocdirect *adp; 7756 struct freeblks *freeblks; 7757 { 7758 struct freework *freework; 7759 struct newblk *newblk; 7760 struct worklist *wk; 7761 7762 TAILQ_REMOVE(adphead, adp, ad_next); 7763 newblk = (struct newblk *)adp; 7764 freework = NULL; 7765 /* 7766 * Find the correct freework structure. 7767 */ 7768 LIST_FOREACH(wk, &freeblks->fb_freeworkhd, wk_list) { 7769 if (wk->wk_type != D_FREEWORK) 7770 continue; 7771 freework = WK_FREEWORK(wk); 7772 if (freework->fw_blkno == newblk->nb_newblkno) 7773 break; 7774 } 7775 if (freework == NULL) 7776 panic("cancel_allocdirect: Freework not found"); 7777 /* 7778 * If a newblk exists at all we still have the journal entry that 7779 * initiated the allocation so we do not need to journal the free. 7780 */ 7781 cancel_jfreeblk(freeblks, freework->fw_blkno); 7782 /* 7783 * If the journal hasn't been written the jnewblk must be passed 7784 * to the call to ffs_blkfree that reclaims the space. We accomplish 7785 * this by linking the journal dependency into the freework to be 7786 * freed when freework_freeblock() is called. If the journal has 7787 * been written we can simply reclaim the journal space when the 7788 * freeblks work is complete. 7789 */ 7790 freework->fw_jnewblk = cancel_newblk(newblk, &freework->fw_list, 7791 &freeblks->fb_jwork); 7792 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 7793 } 7794 7795 /* 7796 * Cancel a new block allocation. May be an indirect or direct block. We 7797 * remove it from various lists and return any journal record that needs to 7798 * be resolved by the caller. 7799 * 7800 * A special consideration is made for indirects which were never pointed 7801 * at on disk and will never be found once this block is released. 7802 */ 7803 static struct jnewblk * 7804 cancel_newblk(newblk, wk, wkhd) 7805 struct newblk *newblk; 7806 struct worklist *wk; 7807 struct workhead *wkhd; 7808 { 7809 struct jnewblk *jnewblk; 7810 7811 CTR1(KTR_SUJ, "cancel_newblk: blkno %jd", newblk->nb_newblkno); 7812 7813 newblk->nb_state |= GOINGAWAY; 7814 /* 7815 * Previously we traversed the completedhd on each indirdep 7816 * attached to this newblk to cancel them and gather journal 7817 * work. Since we need only the oldest journal segment and 7818 * the lowest point on the tree will always have the oldest 7819 * journal segment we are free to release the segments 7820 * of any subordinates and may leave the indirdep list to 7821 * indirdep_complete() when this newblk is freed. 7822 */ 7823 if (newblk->nb_state & ONDEPLIST) { 7824 newblk->nb_state &= ~ONDEPLIST; 7825 LIST_REMOVE(newblk, nb_deps); 7826 } 7827 if (newblk->nb_state & ONWORKLIST) 7828 WORKLIST_REMOVE(&newblk->nb_list); 7829 /* 7830 * If the journal entry hasn't been written we save a pointer to 7831 * the dependency that frees it until it is written or the 7832 * superseding operation completes. 7833 */ 7834 jnewblk = newblk->nb_jnewblk; 7835 if (jnewblk != NULL && wk != NULL) { 7836 newblk->nb_jnewblk = NULL; 7837 jnewblk->jn_dep = wk; 7838 } 7839 if (!LIST_EMPTY(&newblk->nb_jwork)) 7840 jwork_move(wkhd, &newblk->nb_jwork); 7841 /* 7842 * When truncating we must free the newdirblk early to remove 7843 * the pagedep from the hash before returning. 7844 */ 7845 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7846 free_newdirblk(WK_NEWDIRBLK(wk)); 7847 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7848 panic("cancel_newblk: extra newdirblk"); 7849 7850 return (jnewblk); 7851 } 7852 7853 /* 7854 * Schedule the freefrag associated with a newblk to be released once 7855 * the pointers are written and the previous block is no longer needed. 7856 */ 7857 static void 7858 newblk_freefrag(newblk) 7859 struct newblk *newblk; 7860 { 7861 struct freefrag *freefrag; 7862 7863 if (newblk->nb_freefrag == NULL) 7864 return; 7865 freefrag = newblk->nb_freefrag; 7866 newblk->nb_freefrag = NULL; 7867 freefrag->ff_state |= COMPLETE; 7868 if ((freefrag->ff_state & ALLCOMPLETE) == ALLCOMPLETE) 7869 add_to_worklist(&freefrag->ff_list, 0); 7870 } 7871 7872 /* 7873 * Free a newblk. Generate a new freefrag work request if appropriate. 7874 * This must be called after the inode pointer and any direct block pointers 7875 * are valid or fully removed via truncate or frag extension. 7876 */ 7877 static void 7878 free_newblk(newblk) 7879 struct newblk *newblk; 7880 { 7881 struct indirdep *indirdep; 7882 struct worklist *wk; 7883 7884 KASSERT(newblk->nb_jnewblk == NULL, 7885 ("free_newblk: jnewblk %p still attached", newblk->nb_jnewblk)); 7886 KASSERT(newblk->nb_list.wk_type != D_NEWBLK, 7887 ("free_newblk: unclaimed newblk")); 7888 LOCK_OWNED(VFSTOUFS(newblk->nb_list.wk_mp)); 7889 newblk_freefrag(newblk); 7890 if (newblk->nb_state & ONDEPLIST) 7891 LIST_REMOVE(newblk, nb_deps); 7892 if (newblk->nb_state & ONWORKLIST) 7893 WORKLIST_REMOVE(&newblk->nb_list); 7894 LIST_REMOVE(newblk, nb_hash); 7895 if ((wk = LIST_FIRST(&newblk->nb_newdirblk)) != NULL) 7896 free_newdirblk(WK_NEWDIRBLK(wk)); 7897 if (!LIST_EMPTY(&newblk->nb_newdirblk)) 7898 panic("free_newblk: extra newdirblk"); 7899 while ((indirdep = LIST_FIRST(&newblk->nb_indirdeps)) != NULL) 7900 indirdep_complete(indirdep); 7901 handle_jwork(&newblk->nb_jwork); 7902 WORKITEM_FREE(newblk, D_NEWBLK); 7903 } 7904 7905 /* 7906 * Free a newdirblk. Clear the NEWBLOCK flag on its associated pagedep. 7907 */ 7908 static void 7909 free_newdirblk(newdirblk) 7910 struct newdirblk *newdirblk; 7911 { 7912 struct pagedep *pagedep; 7913 struct diradd *dap; 7914 struct worklist *wk; 7915 7916 LOCK_OWNED(VFSTOUFS(newdirblk->db_list.wk_mp)); 7917 WORKLIST_REMOVE(&newdirblk->db_list); 7918 /* 7919 * If the pagedep is still linked onto the directory buffer 7920 * dependency chain, then some of the entries on the 7921 * pd_pendinghd list may not be committed to disk yet. In 7922 * this case, we will simply clear the NEWBLOCK flag and 7923 * let the pd_pendinghd list be processed when the pagedep 7924 * is next written. If the pagedep is no longer on the buffer 7925 * dependency chain, then all the entries on the pd_pending 7926 * list are committed to disk and we can free them here. 7927 */ 7928 pagedep = newdirblk->db_pagedep; 7929 pagedep->pd_state &= ~NEWBLOCK; 7930 if ((pagedep->pd_state & ONWORKLIST) == 0) { 7931 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 7932 free_diradd(dap, NULL); 7933 /* 7934 * If no dependencies remain, the pagedep will be freed. 7935 */ 7936 free_pagedep(pagedep); 7937 } 7938 /* Should only ever be one item in the list. */ 7939 while ((wk = LIST_FIRST(&newdirblk->db_mkdir)) != NULL) { 7940 WORKLIST_REMOVE(wk); 7941 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 7942 } 7943 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 7944 } 7945 7946 /* 7947 * Prepare an inode to be freed. The actual free operation is not 7948 * done until the zero'ed inode has been written to disk. 7949 */ 7950 void 7951 softdep_freefile(pvp, ino, mode) 7952 struct vnode *pvp; 7953 ino_t ino; 7954 int mode; 7955 { 7956 struct inode *ip = VTOI(pvp); 7957 struct inodedep *inodedep; 7958 struct freefile *freefile; 7959 struct freeblks *freeblks; 7960 struct ufsmount *ump; 7961 7962 ump = ITOUMP(ip); 7963 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 7964 ("softdep_freefile called on non-softdep filesystem")); 7965 /* 7966 * This sets up the inode de-allocation dependency. 7967 */ 7968 freefile = malloc(sizeof(struct freefile), 7969 M_FREEFILE, M_SOFTDEP_FLAGS); 7970 workitem_alloc(&freefile->fx_list, D_FREEFILE, pvp->v_mount); 7971 freefile->fx_mode = mode; 7972 freefile->fx_oldinum = ino; 7973 freefile->fx_devvp = ump->um_devvp; 7974 LIST_INIT(&freefile->fx_jwork); 7975 UFS_LOCK(ump); 7976 ump->um_fs->fs_pendinginodes += 1; 7977 UFS_UNLOCK(ump); 7978 7979 /* 7980 * If the inodedep does not exist, then the zero'ed inode has 7981 * been written to disk. If the allocated inode has never been 7982 * written to disk, then the on-disk inode is zero'ed. In either 7983 * case we can free the file immediately. If the journal was 7984 * canceled before being written the inode will never make it to 7985 * disk and we must send the canceled journal entrys to 7986 * ffs_freefile() to be cleared in conjunction with the bitmap. 7987 * Any blocks waiting on the inode to write can be safely freed 7988 * here as it will never been written. 7989 */ 7990 ACQUIRE_LOCK(ump); 7991 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 7992 if (inodedep) { 7993 /* 7994 * Clear out freeblks that no longer need to reference 7995 * this inode. 7996 */ 7997 while ((freeblks = 7998 TAILQ_FIRST(&inodedep->id_freeblklst)) != NULL) { 7999 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, 8000 fb_next); 8001 freeblks->fb_state &= ~ONDEPLIST; 8002 } 8003 /* 8004 * Remove this inode from the unlinked list. 8005 */ 8006 if (inodedep->id_state & UNLINKED) { 8007 /* 8008 * Save the journal work to be freed with the bitmap 8009 * before we clear UNLINKED. Otherwise it can be lost 8010 * if the inode block is written. 8011 */ 8012 handle_bufwait(inodedep, &freefile->fx_jwork); 8013 clear_unlinked_inodedep(inodedep); 8014 /* 8015 * Re-acquire inodedep as we've dropped the 8016 * per-filesystem lock in clear_unlinked_inodedep(). 8017 */ 8018 inodedep_lookup(pvp->v_mount, ino, 0, &inodedep); 8019 } 8020 } 8021 if (inodedep == NULL || check_inode_unwritten(inodedep)) { 8022 FREE_LOCK(ump); 8023 handle_workitem_freefile(freefile); 8024 return; 8025 } 8026 if ((inodedep->id_state & DEPCOMPLETE) == 0) 8027 inodedep->id_state |= GOINGAWAY; 8028 WORKLIST_INSERT(&inodedep->id_inowait, &freefile->fx_list); 8029 FREE_LOCK(ump); 8030 if (ip->i_number == ino) 8031 UFS_INODE_SET_FLAG(ip, IN_MODIFIED); 8032 } 8033 8034 /* 8035 * Check to see if an inode has never been written to disk. If 8036 * so free the inodedep and return success, otherwise return failure. 8037 * 8038 * If we still have a bitmap dependency, then the inode has never 8039 * been written to disk. Drop the dependency as it is no longer 8040 * necessary since the inode is being deallocated. We set the 8041 * ALLCOMPLETE flags since the bitmap now properly shows that the 8042 * inode is not allocated. Even if the inode is actively being 8043 * written, it has been rolled back to its zero'ed state, so we 8044 * are ensured that a zero inode is what is on the disk. For short 8045 * lived files, this change will usually result in removing all the 8046 * dependencies from the inode so that it can be freed immediately. 8047 */ 8048 static int 8049 check_inode_unwritten(inodedep) 8050 struct inodedep *inodedep; 8051 { 8052 8053 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8054 8055 if ((inodedep->id_state & (DEPCOMPLETE | UNLINKED)) != 0 || 8056 !LIST_EMPTY(&inodedep->id_dirremhd) || 8057 !LIST_EMPTY(&inodedep->id_pendinghd) || 8058 !LIST_EMPTY(&inodedep->id_bufwait) || 8059 !LIST_EMPTY(&inodedep->id_inowait) || 8060 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8061 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8062 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8063 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8064 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8065 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8066 inodedep->id_mkdiradd != NULL || 8067 inodedep->id_nlinkdelta != 0) 8068 return (0); 8069 /* 8070 * Another process might be in initiate_write_inodeblock_ufs[12] 8071 * trying to allocate memory without holding "Softdep Lock". 8072 */ 8073 if ((inodedep->id_state & IOSTARTED) != 0 && 8074 inodedep->id_savedino1 == NULL) 8075 return (0); 8076 8077 if (inodedep->id_state & ONDEPLIST) 8078 LIST_REMOVE(inodedep, id_deps); 8079 inodedep->id_state &= ~ONDEPLIST; 8080 inodedep->id_state |= ALLCOMPLETE; 8081 inodedep->id_bmsafemap = NULL; 8082 if (inodedep->id_state & ONWORKLIST) 8083 WORKLIST_REMOVE(&inodedep->id_list); 8084 if (inodedep->id_savedino1 != NULL) { 8085 free(inodedep->id_savedino1, M_SAVEDINO); 8086 inodedep->id_savedino1 = NULL; 8087 } 8088 if (free_inodedep(inodedep) == 0) 8089 panic("check_inode_unwritten: busy inode"); 8090 return (1); 8091 } 8092 8093 static int 8094 check_inodedep_free(inodedep) 8095 struct inodedep *inodedep; 8096 { 8097 8098 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8099 if ((inodedep->id_state & ALLCOMPLETE) != ALLCOMPLETE || 8100 !LIST_EMPTY(&inodedep->id_dirremhd) || 8101 !LIST_EMPTY(&inodedep->id_pendinghd) || 8102 !LIST_EMPTY(&inodedep->id_bufwait) || 8103 !LIST_EMPTY(&inodedep->id_inowait) || 8104 !TAILQ_EMPTY(&inodedep->id_inoreflst) || 8105 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 8106 !TAILQ_EMPTY(&inodedep->id_newinoupdt) || 8107 !TAILQ_EMPTY(&inodedep->id_extupdt) || 8108 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 8109 !TAILQ_EMPTY(&inodedep->id_freeblklst) || 8110 inodedep->id_mkdiradd != NULL || 8111 inodedep->id_nlinkdelta != 0 || 8112 inodedep->id_savedino1 != NULL) 8113 return (0); 8114 return (1); 8115 } 8116 8117 /* 8118 * Try to free an inodedep structure. Return 1 if it could be freed. 8119 */ 8120 static int 8121 free_inodedep(inodedep) 8122 struct inodedep *inodedep; 8123 { 8124 8125 LOCK_OWNED(VFSTOUFS(inodedep->id_list.wk_mp)); 8126 if ((inodedep->id_state & (ONWORKLIST | UNLINKED)) != 0 || 8127 !check_inodedep_free(inodedep)) 8128 return (0); 8129 if (inodedep->id_state & ONDEPLIST) 8130 LIST_REMOVE(inodedep, id_deps); 8131 LIST_REMOVE(inodedep, id_hash); 8132 WORKITEM_FREE(inodedep, D_INODEDEP); 8133 return (1); 8134 } 8135 8136 /* 8137 * Free the block referenced by a freework structure. The parent freeblks 8138 * structure is released and completed when the final cg bitmap reaches 8139 * the disk. This routine may be freeing a jnewblk which never made it to 8140 * disk in which case we do not have to wait as the operation is undone 8141 * in memory immediately. 8142 */ 8143 static void 8144 freework_freeblock(freework, key) 8145 struct freework *freework; 8146 u_long key; 8147 { 8148 struct freeblks *freeblks; 8149 struct jnewblk *jnewblk; 8150 struct ufsmount *ump; 8151 struct workhead wkhd; 8152 struct fs *fs; 8153 int bsize; 8154 int needj; 8155 8156 ump = VFSTOUFS(freework->fw_list.wk_mp); 8157 LOCK_OWNED(ump); 8158 /* 8159 * Handle partial truncate separately. 8160 */ 8161 if (freework->fw_indir) { 8162 complete_trunc_indir(freework); 8163 return; 8164 } 8165 freeblks = freework->fw_freeblks; 8166 fs = ump->um_fs; 8167 needj = MOUNTEDSUJ(freeblks->fb_list.wk_mp) != 0; 8168 bsize = lfragtosize(fs, freework->fw_frags); 8169 LIST_INIT(&wkhd); 8170 /* 8171 * DEPCOMPLETE is cleared in indirblk_insert() if the block lives 8172 * on the indirblk hashtable and prevents premature freeing. 8173 */ 8174 freework->fw_state |= DEPCOMPLETE; 8175 /* 8176 * SUJ needs to wait for the segment referencing freed indirect 8177 * blocks to expire so that we know the checker will not confuse 8178 * a re-allocated indirect block with its old contents. 8179 */ 8180 if (needj && freework->fw_lbn <= -UFS_NDADDR) 8181 indirblk_insert(freework); 8182 /* 8183 * If we are canceling an existing jnewblk pass it to the free 8184 * routine, otherwise pass the freeblk which will ultimately 8185 * release the freeblks. If we're not journaling, we can just 8186 * free the freeblks immediately. 8187 */ 8188 jnewblk = freework->fw_jnewblk; 8189 if (jnewblk != NULL) { 8190 cancel_jnewblk(jnewblk, &wkhd); 8191 needj = 0; 8192 } else if (needj) { 8193 freework->fw_state |= DELAYEDFREE; 8194 freeblks->fb_cgwait++; 8195 WORKLIST_INSERT(&wkhd, &freework->fw_list); 8196 } 8197 FREE_LOCK(ump); 8198 freeblks_free(ump, freeblks, btodb(bsize)); 8199 CTR4(KTR_SUJ, 8200 "freework_freeblock: ino %jd blkno %jd lbn %jd size %d", 8201 freeblks->fb_inum, freework->fw_blkno, freework->fw_lbn, bsize); 8202 ffs_blkfree(ump, fs, freeblks->fb_devvp, freework->fw_blkno, bsize, 8203 freeblks->fb_inum, freeblks->fb_vtype, &wkhd, key); 8204 ACQUIRE_LOCK(ump); 8205 /* 8206 * The jnewblk will be discarded and the bits in the map never 8207 * made it to disk. We can immediately free the freeblk. 8208 */ 8209 if (needj == 0) 8210 handle_written_freework(freework); 8211 } 8212 8213 /* 8214 * We enqueue freework items that need processing back on the freeblks and 8215 * add the freeblks to the worklist. This makes it easier to find all work 8216 * required to flush a truncation in process_truncates(). 8217 */ 8218 static void 8219 freework_enqueue(freework) 8220 struct freework *freework; 8221 { 8222 struct freeblks *freeblks; 8223 8224 freeblks = freework->fw_freeblks; 8225 if ((freework->fw_state & INPROGRESS) == 0) 8226 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &freework->fw_list); 8227 if ((freeblks->fb_state & 8228 (ONWORKLIST | INPROGRESS | ALLCOMPLETE)) == ALLCOMPLETE && 8229 LIST_EMPTY(&freeblks->fb_jblkdephd)) 8230 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8231 } 8232 8233 /* 8234 * Start, continue, or finish the process of freeing an indirect block tree. 8235 * The free operation may be paused at any point with fw_off containing the 8236 * offset to restart from. This enables us to implement some flow control 8237 * for large truncates which may fan out and generate a huge number of 8238 * dependencies. 8239 */ 8240 static void 8241 handle_workitem_indirblk(freework) 8242 struct freework *freework; 8243 { 8244 struct freeblks *freeblks; 8245 struct ufsmount *ump; 8246 struct fs *fs; 8247 8248 freeblks = freework->fw_freeblks; 8249 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8250 fs = ump->um_fs; 8251 if (freework->fw_state & DEPCOMPLETE) { 8252 handle_written_freework(freework); 8253 return; 8254 } 8255 if (freework->fw_off == NINDIR(fs)) { 8256 freework_freeblock(freework, SINGLETON_KEY); 8257 return; 8258 } 8259 freework->fw_state |= INPROGRESS; 8260 FREE_LOCK(ump); 8261 indir_trunc(freework, fsbtodb(fs, freework->fw_blkno), 8262 freework->fw_lbn); 8263 ACQUIRE_LOCK(ump); 8264 } 8265 8266 /* 8267 * Called when a freework structure attached to a cg buf is written. The 8268 * ref on either the parent or the freeblks structure is released and 8269 * the freeblks is added back to the worklist if there is more work to do. 8270 */ 8271 static void 8272 handle_written_freework(freework) 8273 struct freework *freework; 8274 { 8275 struct freeblks *freeblks; 8276 struct freework *parent; 8277 8278 freeblks = freework->fw_freeblks; 8279 parent = freework->fw_parent; 8280 if (freework->fw_state & DELAYEDFREE) 8281 freeblks->fb_cgwait--; 8282 freework->fw_state |= COMPLETE; 8283 if ((freework->fw_state & ALLCOMPLETE) == ALLCOMPLETE) 8284 WORKITEM_FREE(freework, D_FREEWORK); 8285 if (parent) { 8286 if (--parent->fw_ref == 0) 8287 freework_enqueue(parent); 8288 return; 8289 } 8290 if (--freeblks->fb_ref != 0) 8291 return; 8292 if ((freeblks->fb_state & (ALLCOMPLETE | ONWORKLIST | INPROGRESS)) == 8293 ALLCOMPLETE && LIST_EMPTY(&freeblks->fb_jblkdephd)) 8294 add_to_worklist(&freeblks->fb_list, WK_NODELAY); 8295 } 8296 8297 /* 8298 * This workitem routine performs the block de-allocation. 8299 * The workitem is added to the pending list after the updated 8300 * inode block has been written to disk. As mentioned above, 8301 * checks regarding the number of blocks de-allocated (compared 8302 * to the number of blocks allocated for the file) are also 8303 * performed in this function. 8304 */ 8305 static int 8306 handle_workitem_freeblocks(freeblks, flags) 8307 struct freeblks *freeblks; 8308 int flags; 8309 { 8310 struct freework *freework; 8311 struct newblk *newblk; 8312 struct allocindir *aip; 8313 struct ufsmount *ump; 8314 struct worklist *wk; 8315 u_long key; 8316 8317 KASSERT(LIST_EMPTY(&freeblks->fb_jblkdephd), 8318 ("handle_workitem_freeblocks: Journal entries not written.")); 8319 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8320 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8321 ACQUIRE_LOCK(ump); 8322 while ((wk = LIST_FIRST(&freeblks->fb_freeworkhd)) != NULL) { 8323 WORKLIST_REMOVE(wk); 8324 switch (wk->wk_type) { 8325 case D_DIRREM: 8326 wk->wk_state |= COMPLETE; 8327 add_to_worklist(wk, 0); 8328 continue; 8329 8330 case D_ALLOCDIRECT: 8331 free_newblk(WK_NEWBLK(wk)); 8332 continue; 8333 8334 case D_ALLOCINDIR: 8335 aip = WK_ALLOCINDIR(wk); 8336 freework = NULL; 8337 if (aip->ai_state & DELAYEDFREE) { 8338 FREE_LOCK(ump); 8339 freework = newfreework(ump, freeblks, NULL, 8340 aip->ai_lbn, aip->ai_newblkno, 8341 ump->um_fs->fs_frag, 0, 0); 8342 ACQUIRE_LOCK(ump); 8343 } 8344 newblk = WK_NEWBLK(wk); 8345 if (newblk->nb_jnewblk) { 8346 freework->fw_jnewblk = newblk->nb_jnewblk; 8347 newblk->nb_jnewblk->jn_dep = &freework->fw_list; 8348 newblk->nb_jnewblk = NULL; 8349 } 8350 free_newblk(newblk); 8351 continue; 8352 8353 case D_FREEWORK: 8354 freework = WK_FREEWORK(wk); 8355 if (freework->fw_lbn <= -UFS_NDADDR) 8356 handle_workitem_indirblk(freework); 8357 else 8358 freework_freeblock(freework, key); 8359 continue; 8360 default: 8361 panic("handle_workitem_freeblocks: Unknown type %s", 8362 TYPENAME(wk->wk_type)); 8363 } 8364 } 8365 if (freeblks->fb_ref != 0) { 8366 freeblks->fb_state &= ~INPROGRESS; 8367 wake_worklist(&freeblks->fb_list); 8368 freeblks = NULL; 8369 } 8370 FREE_LOCK(ump); 8371 ffs_blkrelease_finish(ump, key); 8372 if (freeblks) 8373 return handle_complete_freeblocks(freeblks, flags); 8374 return (0); 8375 } 8376 8377 /* 8378 * Handle completion of block free via truncate. This allows fs_pending 8379 * to track the actual free block count more closely than if we only updated 8380 * it at the end. We must be careful to handle cases where the block count 8381 * on free was incorrect. 8382 */ 8383 static void 8384 freeblks_free(ump, freeblks, blocks) 8385 struct ufsmount *ump; 8386 struct freeblks *freeblks; 8387 int blocks; 8388 { 8389 struct fs *fs; 8390 ufs2_daddr_t remain; 8391 8392 UFS_LOCK(ump); 8393 remain = -freeblks->fb_chkcnt; 8394 freeblks->fb_chkcnt += blocks; 8395 if (remain > 0) { 8396 if (remain < blocks) 8397 blocks = remain; 8398 fs = ump->um_fs; 8399 fs->fs_pendingblocks -= blocks; 8400 } 8401 UFS_UNLOCK(ump); 8402 } 8403 8404 /* 8405 * Once all of the freework workitems are complete we can retire the 8406 * freeblocks dependency and any journal work awaiting completion. This 8407 * can not be called until all other dependencies are stable on disk. 8408 */ 8409 static int 8410 handle_complete_freeblocks(freeblks, flags) 8411 struct freeblks *freeblks; 8412 int flags; 8413 { 8414 struct inodedep *inodedep; 8415 struct inode *ip; 8416 struct vnode *vp; 8417 struct fs *fs; 8418 struct ufsmount *ump; 8419 ufs2_daddr_t spare; 8420 8421 ump = VFSTOUFS(freeblks->fb_list.wk_mp); 8422 fs = ump->um_fs; 8423 flags = LK_EXCLUSIVE | flags; 8424 spare = freeblks->fb_chkcnt; 8425 8426 /* 8427 * If we did not release the expected number of blocks we may have 8428 * to adjust the inode block count here. Only do so if it wasn't 8429 * a truncation to zero and the modrev still matches. 8430 */ 8431 if (spare && freeblks->fb_len != 0) { 8432 if (ffs_vgetf(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8433 flags, &vp, FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP) != 0) 8434 return (EBUSY); 8435 ip = VTOI(vp); 8436 if (ip->i_mode == 0) { 8437 vgone(vp); 8438 } else if (DIP(ip, i_modrev) == freeblks->fb_modrev) { 8439 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) - spare); 8440 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 8441 /* 8442 * We must wait so this happens before the 8443 * journal is reclaimed. 8444 */ 8445 ffs_update(vp, 1); 8446 } 8447 vput(vp); 8448 } 8449 if (spare < 0) { 8450 UFS_LOCK(ump); 8451 fs->fs_pendingblocks += spare; 8452 UFS_UNLOCK(ump); 8453 } 8454 #ifdef QUOTA 8455 /* Handle spare. */ 8456 if (spare) 8457 quotaadj(freeblks->fb_quota, ump, -spare); 8458 quotarele(freeblks->fb_quota); 8459 #endif 8460 ACQUIRE_LOCK(ump); 8461 if (freeblks->fb_state & ONDEPLIST) { 8462 inodedep_lookup(freeblks->fb_list.wk_mp, freeblks->fb_inum, 8463 0, &inodedep); 8464 TAILQ_REMOVE(&inodedep->id_freeblklst, freeblks, fb_next); 8465 freeblks->fb_state &= ~ONDEPLIST; 8466 if (TAILQ_EMPTY(&inodedep->id_freeblklst)) 8467 free_inodedep(inodedep); 8468 } 8469 /* 8470 * All of the freeblock deps must be complete prior to this call 8471 * so it's now safe to complete earlier outstanding journal entries. 8472 */ 8473 handle_jwork(&freeblks->fb_jwork); 8474 WORKITEM_FREE(freeblks, D_FREEBLKS); 8475 FREE_LOCK(ump); 8476 return (0); 8477 } 8478 8479 /* 8480 * Release blocks associated with the freeblks and stored in the indirect 8481 * block dbn. If level is greater than SINGLE, the block is an indirect block 8482 * and recursive calls to indirtrunc must be used to cleanse other indirect 8483 * blocks. 8484 * 8485 * This handles partial and complete truncation of blocks. Partial is noted 8486 * with goingaway == 0. In this case the freework is completed after the 8487 * zero'd indirects are written to disk. For full truncation the freework 8488 * is completed after the block is freed. 8489 */ 8490 static void 8491 indir_trunc(freework, dbn, lbn) 8492 struct freework *freework; 8493 ufs2_daddr_t dbn; 8494 ufs_lbn_t lbn; 8495 { 8496 struct freework *nfreework; 8497 struct workhead wkhd; 8498 struct freeblks *freeblks; 8499 struct buf *bp; 8500 struct fs *fs; 8501 struct indirdep *indirdep; 8502 struct mount *mp; 8503 struct ufsmount *ump; 8504 ufs1_daddr_t *bap1; 8505 ufs2_daddr_t nb, nnb, *bap2; 8506 ufs_lbn_t lbnadd, nlbn; 8507 u_long key; 8508 int nblocks, ufs1fmt, freedblocks; 8509 int goingaway, freedeps, needj, level, cnt, i, error; 8510 8511 freeblks = freework->fw_freeblks; 8512 mp = freeblks->fb_list.wk_mp; 8513 ump = VFSTOUFS(mp); 8514 fs = ump->um_fs; 8515 /* 8516 * Get buffer of block pointers to be freed. There are three cases: 8517 * 8518 * 1) Partial truncate caches the indirdep pointer in the freework 8519 * which provides us a back copy to the save bp which holds the 8520 * pointers we want to clear. When this completes the zero 8521 * pointers are written to the real copy. 8522 * 2) The indirect is being completely truncated, cancel_indirdep() 8523 * eliminated the real copy and placed the indirdep on the saved 8524 * copy. The indirdep and buf are discarded when this completes. 8525 * 3) The indirect was not in memory, we read a copy off of the disk 8526 * using the devvp and drop and invalidate the buffer when we're 8527 * done. 8528 */ 8529 goingaway = 1; 8530 indirdep = NULL; 8531 if (freework->fw_indir != NULL) { 8532 goingaway = 0; 8533 indirdep = freework->fw_indir; 8534 bp = indirdep->ir_savebp; 8535 if (bp == NULL || bp->b_blkno != dbn) 8536 panic("indir_trunc: Bad saved buf %p blkno %jd", 8537 bp, (intmax_t)dbn); 8538 } else if ((bp = incore(&freeblks->fb_devvp->v_bufobj, dbn)) != NULL) { 8539 /* 8540 * The lock prevents the buf dep list from changing and 8541 * indirects on devvp should only ever have one dependency. 8542 */ 8543 indirdep = WK_INDIRDEP(LIST_FIRST(&bp->b_dep)); 8544 if (indirdep == NULL || (indirdep->ir_state & GOINGAWAY) == 0) 8545 panic("indir_trunc: Bad indirdep %p from buf %p", 8546 indirdep, bp); 8547 } else { 8548 error = ffs_breadz(ump, freeblks->fb_devvp, dbn, dbn, 8549 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, &bp); 8550 if (error) 8551 return; 8552 } 8553 ACQUIRE_LOCK(ump); 8554 /* Protects against a race with complete_trunc_indir(). */ 8555 freework->fw_state &= ~INPROGRESS; 8556 /* 8557 * If we have an indirdep we need to enforce the truncation order 8558 * and discard it when it is complete. 8559 */ 8560 if (indirdep) { 8561 if (freework != TAILQ_FIRST(&indirdep->ir_trunc) && 8562 !TAILQ_EMPTY(&indirdep->ir_trunc)) { 8563 /* 8564 * Add the complete truncate to the list on the 8565 * indirdep to enforce in-order processing. 8566 */ 8567 if (freework->fw_indir == NULL) 8568 TAILQ_INSERT_TAIL(&indirdep->ir_trunc, 8569 freework, fw_next); 8570 FREE_LOCK(ump); 8571 return; 8572 } 8573 /* 8574 * If we're goingaway, free the indirdep. Otherwise it will 8575 * linger until the write completes. 8576 */ 8577 if (goingaway) { 8578 KASSERT(indirdep->ir_savebp == bp, 8579 ("indir_trunc: losing ir_savebp %p", 8580 indirdep->ir_savebp)); 8581 indirdep->ir_savebp = NULL; 8582 free_indirdep(indirdep); 8583 } 8584 } 8585 FREE_LOCK(ump); 8586 /* Initialize pointers depending on block size. */ 8587 if (ump->um_fstype == UFS1) { 8588 bap1 = (ufs1_daddr_t *)bp->b_data; 8589 nb = bap1[freework->fw_off]; 8590 ufs1fmt = 1; 8591 bap2 = NULL; 8592 } else { 8593 bap2 = (ufs2_daddr_t *)bp->b_data; 8594 nb = bap2[freework->fw_off]; 8595 ufs1fmt = 0; 8596 bap1 = NULL; 8597 } 8598 level = lbn_level(lbn); 8599 needj = MOUNTEDSUJ(UFSTOVFS(ump)) != 0; 8600 lbnadd = lbn_offset(fs, level); 8601 nblocks = btodb(fs->fs_bsize); 8602 nfreework = freework; 8603 freedeps = 0; 8604 cnt = 0; 8605 /* 8606 * Reclaim blocks. Traverses into nested indirect levels and 8607 * arranges for the current level to be freed when subordinates 8608 * are free when journaling. 8609 */ 8610 key = ffs_blkrelease_start(ump, freeblks->fb_devvp, freeblks->fb_inum); 8611 for (i = freework->fw_off; i < NINDIR(fs); i++, nb = nnb) { 8612 if (UFS_CHECK_BLKNO(mp, freeblks->fb_inum, nb, 8613 fs->fs_bsize) != 0) 8614 nb = 0; 8615 if (i != NINDIR(fs) - 1) { 8616 if (ufs1fmt) 8617 nnb = bap1[i+1]; 8618 else 8619 nnb = bap2[i+1]; 8620 } else 8621 nnb = 0; 8622 if (nb == 0) 8623 continue; 8624 cnt++; 8625 if (level != 0) { 8626 nlbn = (lbn + 1) - (i * lbnadd); 8627 if (needj != 0) { 8628 nfreework = newfreework(ump, freeblks, freework, 8629 nlbn, nb, fs->fs_frag, 0, 0); 8630 freedeps++; 8631 } 8632 indir_trunc(nfreework, fsbtodb(fs, nb), nlbn); 8633 } else { 8634 struct freedep *freedep; 8635 8636 /* 8637 * Attempt to aggregate freedep dependencies for 8638 * all blocks being released to the same CG. 8639 */ 8640 LIST_INIT(&wkhd); 8641 if (needj != 0 && 8642 (nnb == 0 || (dtog(fs, nb) != dtog(fs, nnb)))) { 8643 freedep = newfreedep(freework); 8644 WORKLIST_INSERT_UNLOCKED(&wkhd, 8645 &freedep->fd_list); 8646 freedeps++; 8647 } 8648 CTR3(KTR_SUJ, 8649 "indir_trunc: ino %jd blkno %jd size %d", 8650 freeblks->fb_inum, nb, fs->fs_bsize); 8651 ffs_blkfree(ump, fs, freeblks->fb_devvp, nb, 8652 fs->fs_bsize, freeblks->fb_inum, 8653 freeblks->fb_vtype, &wkhd, key); 8654 } 8655 } 8656 ffs_blkrelease_finish(ump, key); 8657 if (goingaway) { 8658 bp->b_flags |= B_INVAL | B_NOCACHE; 8659 brelse(bp); 8660 } 8661 freedblocks = 0; 8662 if (level == 0) 8663 freedblocks = (nblocks * cnt); 8664 if (needj == 0) 8665 freedblocks += nblocks; 8666 freeblks_free(ump, freeblks, freedblocks); 8667 /* 8668 * If we are journaling set up the ref counts and offset so this 8669 * indirect can be completed when its children are free. 8670 */ 8671 if (needj) { 8672 ACQUIRE_LOCK(ump); 8673 freework->fw_off = i; 8674 freework->fw_ref += freedeps; 8675 freework->fw_ref -= NINDIR(fs) + 1; 8676 if (level == 0) 8677 freeblks->fb_cgwait += freedeps; 8678 if (freework->fw_ref == 0) 8679 freework_freeblock(freework, SINGLETON_KEY); 8680 FREE_LOCK(ump); 8681 return; 8682 } 8683 /* 8684 * If we're not journaling we can free the indirect now. 8685 */ 8686 dbn = dbtofsb(fs, dbn); 8687 CTR3(KTR_SUJ, 8688 "indir_trunc 2: ino %jd blkno %jd size %d", 8689 freeblks->fb_inum, dbn, fs->fs_bsize); 8690 ffs_blkfree(ump, fs, freeblks->fb_devvp, dbn, fs->fs_bsize, 8691 freeblks->fb_inum, freeblks->fb_vtype, NULL, SINGLETON_KEY); 8692 /* Non SUJ softdep does single-threaded truncations. */ 8693 if (freework->fw_blkno == dbn) { 8694 freework->fw_state |= ALLCOMPLETE; 8695 ACQUIRE_LOCK(ump); 8696 handle_written_freework(freework); 8697 FREE_LOCK(ump); 8698 } 8699 return; 8700 } 8701 8702 /* 8703 * Cancel an allocindir when it is removed via truncation. When bp is not 8704 * NULL the indirect never appeared on disk and is scheduled to be freed 8705 * independently of the indir so we can more easily track journal work. 8706 */ 8707 static void 8708 cancel_allocindir(aip, bp, freeblks, trunc) 8709 struct allocindir *aip; 8710 struct buf *bp; 8711 struct freeblks *freeblks; 8712 int trunc; 8713 { 8714 struct indirdep *indirdep; 8715 struct freefrag *freefrag; 8716 struct newblk *newblk; 8717 8718 newblk = (struct newblk *)aip; 8719 LIST_REMOVE(aip, ai_next); 8720 /* 8721 * We must eliminate the pointer in bp if it must be freed on its 8722 * own due to partial truncate or pending journal work. 8723 */ 8724 if (bp && (trunc || newblk->nb_jnewblk)) { 8725 /* 8726 * Clear the pointer and mark the aip to be freed 8727 * directly if it never existed on disk. 8728 */ 8729 aip->ai_state |= DELAYEDFREE; 8730 indirdep = aip->ai_indirdep; 8731 if (indirdep->ir_state & UFS1FMT) 8732 ((ufs1_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8733 else 8734 ((ufs2_daddr_t *)bp->b_data)[aip->ai_offset] = 0; 8735 } 8736 /* 8737 * When truncating the previous pointer will be freed via 8738 * savedbp. Eliminate the freefrag which would dup free. 8739 */ 8740 if (trunc && (freefrag = newblk->nb_freefrag) != NULL) { 8741 newblk->nb_freefrag = NULL; 8742 if (freefrag->ff_jdep) 8743 cancel_jfreefrag( 8744 WK_JFREEFRAG(freefrag->ff_jdep)); 8745 jwork_move(&freeblks->fb_jwork, &freefrag->ff_jwork); 8746 WORKITEM_FREE(freefrag, D_FREEFRAG); 8747 } 8748 /* 8749 * If the journal hasn't been written the jnewblk must be passed 8750 * to the call to ffs_blkfree that reclaims the space. We accomplish 8751 * this by leaving the journal dependency on the newblk to be freed 8752 * when a freework is created in handle_workitem_freeblocks(). 8753 */ 8754 cancel_newblk(newblk, NULL, &freeblks->fb_jwork); 8755 WORKLIST_INSERT(&freeblks->fb_freeworkhd, &newblk->nb_list); 8756 } 8757 8758 /* 8759 * Create the mkdir dependencies for . and .. in a new directory. Link them 8760 * in to a newdirblk so any subsequent additions are tracked properly. The 8761 * caller is responsible for adding the mkdir1 dependency to the journal 8762 * and updating id_mkdiradd. This function returns with the per-filesystem 8763 * lock held. 8764 */ 8765 static struct mkdir * 8766 setup_newdir(dap, newinum, dinum, newdirbp, mkdirp) 8767 struct diradd *dap; 8768 ino_t newinum; 8769 ino_t dinum; 8770 struct buf *newdirbp; 8771 struct mkdir **mkdirp; 8772 { 8773 struct newblk *newblk; 8774 struct pagedep *pagedep; 8775 struct inodedep *inodedep; 8776 struct newdirblk *newdirblk; 8777 struct mkdir *mkdir1, *mkdir2; 8778 struct worklist *wk; 8779 struct jaddref *jaddref; 8780 struct ufsmount *ump; 8781 struct mount *mp; 8782 8783 mp = dap->da_list.wk_mp; 8784 ump = VFSTOUFS(mp); 8785 newdirblk = malloc(sizeof(struct newdirblk), M_NEWDIRBLK, 8786 M_SOFTDEP_FLAGS); 8787 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8788 LIST_INIT(&newdirblk->db_mkdir); 8789 mkdir1 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8790 workitem_alloc(&mkdir1->md_list, D_MKDIR, mp); 8791 mkdir1->md_state = ATTACHED | MKDIR_BODY; 8792 mkdir1->md_diradd = dap; 8793 mkdir1->md_jaddref = NULL; 8794 mkdir2 = malloc(sizeof(struct mkdir), M_MKDIR, M_SOFTDEP_FLAGS); 8795 workitem_alloc(&mkdir2->md_list, D_MKDIR, mp); 8796 mkdir2->md_state = ATTACHED | MKDIR_PARENT; 8797 mkdir2->md_diradd = dap; 8798 mkdir2->md_jaddref = NULL; 8799 if (MOUNTEDSUJ(mp) == 0) { 8800 mkdir1->md_state |= DEPCOMPLETE; 8801 mkdir2->md_state |= DEPCOMPLETE; 8802 } 8803 /* 8804 * Dependency on "." and ".." being written to disk. 8805 */ 8806 mkdir1->md_buf = newdirbp; 8807 ACQUIRE_LOCK(VFSTOUFS(mp)); 8808 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir1, md_mkdirs); 8809 /* 8810 * We must link the pagedep, allocdirect, and newdirblk for 8811 * the initial file page so the pointer to the new directory 8812 * is not written until the directory contents are live and 8813 * any subsequent additions are not marked live until the 8814 * block is reachable via the inode. 8815 */ 8816 if (pagedep_lookup(mp, newdirbp, newinum, 0, 0, &pagedep) == 0) 8817 panic("setup_newdir: lost pagedep"); 8818 LIST_FOREACH(wk, &newdirbp->b_dep, wk_list) 8819 if (wk->wk_type == D_ALLOCDIRECT) 8820 break; 8821 if (wk == NULL) 8822 panic("setup_newdir: lost allocdirect"); 8823 if (pagedep->pd_state & NEWBLOCK) 8824 panic("setup_newdir: NEWBLOCK already set"); 8825 newblk = WK_NEWBLK(wk); 8826 pagedep->pd_state |= NEWBLOCK; 8827 pagedep->pd_newdirblk = newdirblk; 8828 newdirblk->db_pagedep = pagedep; 8829 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 8830 WORKLIST_INSERT(&newdirblk->db_mkdir, &mkdir1->md_list); 8831 /* 8832 * Look up the inodedep for the parent directory so that we 8833 * can link mkdir2 into the pending dotdot jaddref or 8834 * the inode write if there is none. If the inode is 8835 * ALLCOMPLETE and no jaddref is present all dependencies have 8836 * been satisfied and mkdir2 can be freed. 8837 */ 8838 inodedep_lookup(mp, dinum, 0, &inodedep); 8839 if (MOUNTEDSUJ(mp)) { 8840 if (inodedep == NULL) 8841 panic("setup_newdir: Lost parent."); 8842 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8843 inoreflst); 8844 KASSERT(jaddref != NULL && jaddref->ja_parent == newinum && 8845 (jaddref->ja_state & MKDIR_PARENT), 8846 ("setup_newdir: bad dotdot jaddref %p", jaddref)); 8847 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8848 mkdir2->md_jaddref = jaddref; 8849 jaddref->ja_mkdir = mkdir2; 8850 } else if (inodedep == NULL || 8851 (inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 8852 dap->da_state &= ~MKDIR_PARENT; 8853 WORKITEM_FREE(mkdir2, D_MKDIR); 8854 mkdir2 = NULL; 8855 } else { 8856 LIST_INSERT_HEAD(&ump->softdep_mkdirlisthd, mkdir2, md_mkdirs); 8857 WORKLIST_INSERT(&inodedep->id_bufwait, &mkdir2->md_list); 8858 } 8859 *mkdirp = mkdir2; 8860 8861 return (mkdir1); 8862 } 8863 8864 /* 8865 * Directory entry addition dependencies. 8866 * 8867 * When adding a new directory entry, the inode (with its incremented link 8868 * count) must be written to disk before the directory entry's pointer to it. 8869 * Also, if the inode is newly allocated, the corresponding freemap must be 8870 * updated (on disk) before the directory entry's pointer. These requirements 8871 * are met via undo/redo on the directory entry's pointer, which consists 8872 * simply of the inode number. 8873 * 8874 * As directory entries are added and deleted, the free space within a 8875 * directory block can become fragmented. The ufs filesystem will compact 8876 * a fragmented directory block to make space for a new entry. When this 8877 * occurs, the offsets of previously added entries change. Any "diradd" 8878 * dependency structures corresponding to these entries must be updated with 8879 * the new offsets. 8880 */ 8881 8882 /* 8883 * This routine is called after the in-memory inode's link 8884 * count has been incremented, but before the directory entry's 8885 * pointer to the inode has been set. 8886 */ 8887 int 8888 softdep_setup_directory_add(bp, dp, diroffset, newinum, newdirbp, isnewblk) 8889 struct buf *bp; /* buffer containing directory block */ 8890 struct inode *dp; /* inode for directory */ 8891 off_t diroffset; /* offset of new entry in directory */ 8892 ino_t newinum; /* inode referenced by new directory entry */ 8893 struct buf *newdirbp; /* non-NULL => contents of new mkdir */ 8894 int isnewblk; /* entry is in a newly allocated block */ 8895 { 8896 int offset; /* offset of new entry within directory block */ 8897 ufs_lbn_t lbn; /* block in directory containing new entry */ 8898 struct fs *fs; 8899 struct diradd *dap; 8900 struct newblk *newblk; 8901 struct pagedep *pagedep; 8902 struct inodedep *inodedep; 8903 struct newdirblk *newdirblk; 8904 struct mkdir *mkdir1, *mkdir2; 8905 struct jaddref *jaddref; 8906 struct ufsmount *ump; 8907 struct mount *mp; 8908 int isindir; 8909 8910 mp = ITOVFS(dp); 8911 ump = VFSTOUFS(mp); 8912 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 8913 ("softdep_setup_directory_add called on non-softdep filesystem")); 8914 /* 8915 * Whiteouts have no dependencies. 8916 */ 8917 if (newinum == UFS_WINO) { 8918 if (newdirbp != NULL) 8919 bdwrite(newdirbp); 8920 return (0); 8921 } 8922 jaddref = NULL; 8923 mkdir1 = mkdir2 = NULL; 8924 fs = ump->um_fs; 8925 lbn = lblkno(fs, diroffset); 8926 offset = blkoff(fs, diroffset); 8927 dap = malloc(sizeof(struct diradd), M_DIRADD, 8928 M_SOFTDEP_FLAGS|M_ZERO); 8929 workitem_alloc(&dap->da_list, D_DIRADD, mp); 8930 dap->da_offset = offset; 8931 dap->da_newinum = newinum; 8932 dap->da_state = ATTACHED; 8933 LIST_INIT(&dap->da_jwork); 8934 isindir = bp->b_lblkno >= UFS_NDADDR; 8935 newdirblk = NULL; 8936 if (isnewblk && 8937 (isindir ? blkoff(fs, diroffset) : fragoff(fs, diroffset)) == 0) { 8938 newdirblk = malloc(sizeof(struct newdirblk), 8939 M_NEWDIRBLK, M_SOFTDEP_FLAGS); 8940 workitem_alloc(&newdirblk->db_list, D_NEWDIRBLK, mp); 8941 LIST_INIT(&newdirblk->db_mkdir); 8942 } 8943 /* 8944 * If we're creating a new directory setup the dependencies and set 8945 * the dap state to wait for them. Otherwise it's COMPLETE and 8946 * we can move on. 8947 */ 8948 if (newdirbp == NULL) { 8949 dap->da_state |= DEPCOMPLETE; 8950 ACQUIRE_LOCK(ump); 8951 } else { 8952 dap->da_state |= MKDIR_BODY | MKDIR_PARENT; 8953 mkdir1 = setup_newdir(dap, newinum, dp->i_number, newdirbp, 8954 &mkdir2); 8955 } 8956 /* 8957 * Link into parent directory pagedep to await its being written. 8958 */ 8959 pagedep_lookup(mp, bp, dp->i_number, lbn, DEPALLOC, &pagedep); 8960 #ifdef INVARIANTS 8961 if (diradd_lookup(pagedep, offset) != NULL) 8962 panic("softdep_setup_directory_add: %p already at off %d\n", 8963 diradd_lookup(pagedep, offset), offset); 8964 #endif 8965 dap->da_pagedep = pagedep; 8966 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], dap, 8967 da_pdlist); 8968 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 8969 /* 8970 * If we're journaling, link the diradd into the jaddref so it 8971 * may be completed after the journal entry is written. Otherwise, 8972 * link the diradd into its inodedep. If the inode is not yet 8973 * written place it on the bufwait list, otherwise do the post-inode 8974 * write processing to put it on the id_pendinghd list. 8975 */ 8976 if (MOUNTEDSUJ(mp)) { 8977 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 8978 inoreflst); 8979 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 8980 ("softdep_setup_directory_add: bad jaddref %p", jaddref)); 8981 jaddref->ja_diroff = diroffset; 8982 jaddref->ja_diradd = dap; 8983 add_to_journal(&jaddref->ja_list); 8984 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) 8985 diradd_inode_written(dap, inodedep); 8986 else 8987 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 8988 /* 8989 * Add the journal entries for . and .. links now that the primary 8990 * link is written. 8991 */ 8992 if (mkdir1 != NULL && MOUNTEDSUJ(mp)) { 8993 jaddref = (struct jaddref *)TAILQ_PREV(&jaddref->ja_ref, 8994 inoreflst, if_deps); 8995 KASSERT(jaddref != NULL && 8996 jaddref->ja_ino == jaddref->ja_parent && 8997 (jaddref->ja_state & MKDIR_BODY), 8998 ("softdep_setup_directory_add: bad dot jaddref %p", 8999 jaddref)); 9000 mkdir1->md_jaddref = jaddref; 9001 jaddref->ja_mkdir = mkdir1; 9002 /* 9003 * It is important that the dotdot journal entry 9004 * is added prior to the dot entry since dot writes 9005 * both the dot and dotdot links. These both must 9006 * be added after the primary link for the journal 9007 * to remain consistent. 9008 */ 9009 add_to_journal(&mkdir2->md_jaddref->ja_list); 9010 add_to_journal(&jaddref->ja_list); 9011 } 9012 /* 9013 * If we are adding a new directory remember this diradd so that if 9014 * we rename it we can keep the dot and dotdot dependencies. If 9015 * we are adding a new name for an inode that has a mkdiradd we 9016 * must be in rename and we have to move the dot and dotdot 9017 * dependencies to this new name. The old name is being orphaned 9018 * soon. 9019 */ 9020 if (mkdir1 != NULL) { 9021 if (inodedep->id_mkdiradd != NULL) 9022 panic("softdep_setup_directory_add: Existing mkdir"); 9023 inodedep->id_mkdiradd = dap; 9024 } else if (inodedep->id_mkdiradd) 9025 merge_diradd(inodedep, dap); 9026 if (newdirblk != NULL) { 9027 /* 9028 * There is nothing to do if we are already tracking 9029 * this block. 9030 */ 9031 if ((pagedep->pd_state & NEWBLOCK) != 0) { 9032 WORKITEM_FREE(newdirblk, D_NEWDIRBLK); 9033 FREE_LOCK(ump); 9034 return (0); 9035 } 9036 if (newblk_lookup(mp, dbtofsb(fs, bp->b_blkno), 0, &newblk) 9037 == 0) 9038 panic("softdep_setup_directory_add: lost entry"); 9039 WORKLIST_INSERT(&newblk->nb_newdirblk, &newdirblk->db_list); 9040 pagedep->pd_state |= NEWBLOCK; 9041 pagedep->pd_newdirblk = newdirblk; 9042 newdirblk->db_pagedep = pagedep; 9043 FREE_LOCK(ump); 9044 /* 9045 * If we extended into an indirect signal direnter to sync. 9046 */ 9047 if (isindir) 9048 return (1); 9049 return (0); 9050 } 9051 FREE_LOCK(ump); 9052 return (0); 9053 } 9054 9055 /* 9056 * This procedure is called to change the offset of a directory 9057 * entry when compacting a directory block which must be owned 9058 * exclusively by the caller. Note that the actual entry movement 9059 * must be done in this procedure to ensure that no I/O completions 9060 * occur while the move is in progress. 9061 */ 9062 void 9063 softdep_change_directoryentry_offset(bp, dp, base, oldloc, newloc, entrysize) 9064 struct buf *bp; /* Buffer holding directory block. */ 9065 struct inode *dp; /* inode for directory */ 9066 caddr_t base; /* address of dp->i_offset */ 9067 caddr_t oldloc; /* address of old directory location */ 9068 caddr_t newloc; /* address of new directory location */ 9069 int entrysize; /* size of directory entry */ 9070 { 9071 int offset, oldoffset, newoffset; 9072 struct pagedep *pagedep; 9073 struct jmvref *jmvref; 9074 struct diradd *dap; 9075 struct direct *de; 9076 struct mount *mp; 9077 struct ufsmount *ump; 9078 ufs_lbn_t lbn; 9079 int flags; 9080 9081 mp = ITOVFS(dp); 9082 ump = VFSTOUFS(mp); 9083 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9084 ("softdep_change_directoryentry_offset called on " 9085 "non-softdep filesystem")); 9086 de = (struct direct *)oldloc; 9087 jmvref = NULL; 9088 flags = 0; 9089 /* 9090 * Moves are always journaled as it would be too complex to 9091 * determine if any affected adds or removes are present in the 9092 * journal. 9093 */ 9094 if (MOUNTEDSUJ(mp)) { 9095 flags = DEPALLOC; 9096 jmvref = newjmvref(dp, de->d_ino, 9097 I_OFFSET(dp) + (oldloc - base), 9098 I_OFFSET(dp) + (newloc - base)); 9099 } 9100 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9101 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9102 oldoffset = offset + (oldloc - base); 9103 newoffset = offset + (newloc - base); 9104 ACQUIRE_LOCK(ump); 9105 if (pagedep_lookup(mp, bp, dp->i_number, lbn, flags, &pagedep) == 0) 9106 goto done; 9107 dap = diradd_lookup(pagedep, oldoffset); 9108 if (dap) { 9109 dap->da_offset = newoffset; 9110 newoffset = DIRADDHASH(newoffset); 9111 oldoffset = DIRADDHASH(oldoffset); 9112 if ((dap->da_state & ALLCOMPLETE) != ALLCOMPLETE && 9113 newoffset != oldoffset) { 9114 LIST_REMOVE(dap, da_pdlist); 9115 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[newoffset], 9116 dap, da_pdlist); 9117 } 9118 } 9119 done: 9120 if (jmvref) { 9121 jmvref->jm_pagedep = pagedep; 9122 LIST_INSERT_HEAD(&pagedep->pd_jmvrefhd, jmvref, jm_deps); 9123 add_to_journal(&jmvref->jm_list); 9124 } 9125 bcopy(oldloc, newloc, entrysize); 9126 FREE_LOCK(ump); 9127 } 9128 9129 /* 9130 * Move the mkdir dependencies and journal work from one diradd to another 9131 * when renaming a directory. The new name must depend on the mkdir deps 9132 * completing as the old name did. Directories can only have one valid link 9133 * at a time so one must be canonical. 9134 */ 9135 static void 9136 merge_diradd(inodedep, newdap) 9137 struct inodedep *inodedep; 9138 struct diradd *newdap; 9139 { 9140 struct diradd *olddap; 9141 struct mkdir *mkdir, *nextmd; 9142 struct ufsmount *ump; 9143 short state; 9144 9145 olddap = inodedep->id_mkdiradd; 9146 inodedep->id_mkdiradd = newdap; 9147 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9148 newdap->da_state &= ~DEPCOMPLETE; 9149 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9150 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9151 mkdir = nextmd) { 9152 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9153 if (mkdir->md_diradd != olddap) 9154 continue; 9155 mkdir->md_diradd = newdap; 9156 state = mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY); 9157 newdap->da_state |= state; 9158 olddap->da_state &= ~state; 9159 if ((olddap->da_state & 9160 (MKDIR_PARENT | MKDIR_BODY)) == 0) 9161 break; 9162 } 9163 if ((olddap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9164 panic("merge_diradd: unfound ref"); 9165 } 9166 /* 9167 * Any mkdir related journal items are not safe to be freed until 9168 * the new name is stable. 9169 */ 9170 jwork_move(&newdap->da_jwork, &olddap->da_jwork); 9171 olddap->da_state |= DEPCOMPLETE; 9172 complete_diradd(olddap); 9173 } 9174 9175 /* 9176 * Move the diradd to the pending list when all diradd dependencies are 9177 * complete. 9178 */ 9179 static void 9180 complete_diradd(dap) 9181 struct diradd *dap; 9182 { 9183 struct pagedep *pagedep; 9184 9185 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 9186 if (dap->da_state & DIRCHG) 9187 pagedep = dap->da_previous->dm_pagedep; 9188 else 9189 pagedep = dap->da_pagedep; 9190 LIST_REMOVE(dap, da_pdlist); 9191 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9192 } 9193 } 9194 9195 /* 9196 * Cancel a diradd when a dirrem overlaps with it. We must cancel the journal 9197 * add entries and conditonally journal the remove. 9198 */ 9199 static void 9200 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref) 9201 struct diradd *dap; 9202 struct dirrem *dirrem; 9203 struct jremref *jremref; 9204 struct jremref *dotremref; 9205 struct jremref *dotdotremref; 9206 { 9207 struct inodedep *inodedep; 9208 struct jaddref *jaddref; 9209 struct inoref *inoref; 9210 struct ufsmount *ump; 9211 struct mkdir *mkdir; 9212 9213 /* 9214 * If no remove references were allocated we're on a non-journaled 9215 * filesystem and can skip the cancel step. 9216 */ 9217 if (jremref == NULL) { 9218 free_diradd(dap, NULL); 9219 return; 9220 } 9221 /* 9222 * Cancel the primary name an free it if it does not require 9223 * journaling. 9224 */ 9225 if (inodedep_lookup(dap->da_list.wk_mp, dap->da_newinum, 9226 0, &inodedep) != 0) { 9227 /* Abort the addref that reference this diradd. */ 9228 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 9229 if (inoref->if_list.wk_type != D_JADDREF) 9230 continue; 9231 jaddref = (struct jaddref *)inoref; 9232 if (jaddref->ja_diradd != dap) 9233 continue; 9234 if (cancel_jaddref(jaddref, inodedep, 9235 &dirrem->dm_jwork) == 0) { 9236 free_jremref(jremref); 9237 jremref = NULL; 9238 } 9239 break; 9240 } 9241 } 9242 /* 9243 * Cancel subordinate names and free them if they do not require 9244 * journaling. 9245 */ 9246 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9247 ump = VFSTOUFS(dap->da_list.wk_mp); 9248 LIST_FOREACH(mkdir, &ump->softdep_mkdirlisthd, md_mkdirs) { 9249 if (mkdir->md_diradd != dap) 9250 continue; 9251 if ((jaddref = mkdir->md_jaddref) == NULL) 9252 continue; 9253 mkdir->md_jaddref = NULL; 9254 if (mkdir->md_state & MKDIR_PARENT) { 9255 if (cancel_jaddref(jaddref, NULL, 9256 &dirrem->dm_jwork) == 0) { 9257 free_jremref(dotdotremref); 9258 dotdotremref = NULL; 9259 } 9260 } else { 9261 if (cancel_jaddref(jaddref, inodedep, 9262 &dirrem->dm_jwork) == 0) { 9263 free_jremref(dotremref); 9264 dotremref = NULL; 9265 } 9266 } 9267 } 9268 } 9269 9270 if (jremref) 9271 journal_jremref(dirrem, jremref, inodedep); 9272 if (dotremref) 9273 journal_jremref(dirrem, dotremref, inodedep); 9274 if (dotdotremref) 9275 journal_jremref(dirrem, dotdotremref, NULL); 9276 jwork_move(&dirrem->dm_jwork, &dap->da_jwork); 9277 free_diradd(dap, &dirrem->dm_jwork); 9278 } 9279 9280 /* 9281 * Free a diradd dependency structure. 9282 */ 9283 static void 9284 free_diradd(dap, wkhd) 9285 struct diradd *dap; 9286 struct workhead *wkhd; 9287 { 9288 struct dirrem *dirrem; 9289 struct pagedep *pagedep; 9290 struct inodedep *inodedep; 9291 struct mkdir *mkdir, *nextmd; 9292 struct ufsmount *ump; 9293 9294 ump = VFSTOUFS(dap->da_list.wk_mp); 9295 LOCK_OWNED(ump); 9296 LIST_REMOVE(dap, da_pdlist); 9297 if (dap->da_state & ONWORKLIST) 9298 WORKLIST_REMOVE(&dap->da_list); 9299 if ((dap->da_state & DIRCHG) == 0) { 9300 pagedep = dap->da_pagedep; 9301 } else { 9302 dirrem = dap->da_previous; 9303 pagedep = dirrem->dm_pagedep; 9304 dirrem->dm_dirinum = pagedep->pd_ino; 9305 dirrem->dm_state |= COMPLETE; 9306 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9307 add_to_worklist(&dirrem->dm_list, 0); 9308 } 9309 if (inodedep_lookup(pagedep->pd_list.wk_mp, dap->da_newinum, 9310 0, &inodedep) != 0) 9311 if (inodedep->id_mkdiradd == dap) 9312 inodedep->id_mkdiradd = NULL; 9313 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) { 9314 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9315 mkdir = nextmd) { 9316 nextmd = LIST_NEXT(mkdir, md_mkdirs); 9317 if (mkdir->md_diradd != dap) 9318 continue; 9319 dap->da_state &= 9320 ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 9321 LIST_REMOVE(mkdir, md_mkdirs); 9322 if (mkdir->md_state & ONWORKLIST) 9323 WORKLIST_REMOVE(&mkdir->md_list); 9324 if (mkdir->md_jaddref != NULL) 9325 panic("free_diradd: Unexpected jaddref"); 9326 WORKITEM_FREE(mkdir, D_MKDIR); 9327 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) 9328 break; 9329 } 9330 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) != 0) 9331 panic("free_diradd: unfound ref"); 9332 } 9333 if (inodedep) 9334 free_inodedep(inodedep); 9335 /* 9336 * Free any journal segments waiting for the directory write. 9337 */ 9338 handle_jwork(&dap->da_jwork); 9339 WORKITEM_FREE(dap, D_DIRADD); 9340 } 9341 9342 /* 9343 * Directory entry removal dependencies. 9344 * 9345 * When removing a directory entry, the entry's inode pointer must be 9346 * zero'ed on disk before the corresponding inode's link count is decremented 9347 * (possibly freeing the inode for re-use). This dependency is handled by 9348 * updating the directory entry but delaying the inode count reduction until 9349 * after the directory block has been written to disk. After this point, the 9350 * inode count can be decremented whenever it is convenient. 9351 */ 9352 9353 /* 9354 * This routine should be called immediately after removing 9355 * a directory entry. The inode's link count should not be 9356 * decremented by the calling procedure -- the soft updates 9357 * code will do this task when it is safe. 9358 */ 9359 void 9360 softdep_setup_remove(bp, dp, ip, isrmdir) 9361 struct buf *bp; /* buffer containing directory block */ 9362 struct inode *dp; /* inode for the directory being modified */ 9363 struct inode *ip; /* inode for directory entry being removed */ 9364 int isrmdir; /* indicates if doing RMDIR */ 9365 { 9366 struct dirrem *dirrem, *prevdirrem; 9367 struct inodedep *inodedep; 9368 struct ufsmount *ump; 9369 int direct; 9370 9371 ump = ITOUMP(ip); 9372 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9373 ("softdep_setup_remove called on non-softdep filesystem")); 9374 /* 9375 * Allocate a new dirrem if appropriate and ACQUIRE_LOCK. We want 9376 * newdirrem() to setup the full directory remove which requires 9377 * isrmdir > 1. 9378 */ 9379 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9380 /* 9381 * Add the dirrem to the inodedep's pending remove list for quick 9382 * discovery later. 9383 */ 9384 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) 9385 panic("softdep_setup_remove: Lost inodedep."); 9386 KASSERT((inodedep->id_state & UNLINKED) == 0, ("inode unlinked")); 9387 dirrem->dm_state |= ONDEPLIST; 9388 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9389 9390 /* 9391 * If the COMPLETE flag is clear, then there were no active 9392 * entries and we want to roll back to a zeroed entry until 9393 * the new inode is committed to disk. If the COMPLETE flag is 9394 * set then we have deleted an entry that never made it to 9395 * disk. If the entry we deleted resulted from a name change, 9396 * then the old name still resides on disk. We cannot delete 9397 * its inode (returned to us in prevdirrem) until the zeroed 9398 * directory entry gets to disk. The new inode has never been 9399 * referenced on the disk, so can be deleted immediately. 9400 */ 9401 if ((dirrem->dm_state & COMPLETE) == 0) { 9402 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, dirrem, 9403 dm_next); 9404 FREE_LOCK(ump); 9405 } else { 9406 if (prevdirrem != NULL) 9407 LIST_INSERT_HEAD(&dirrem->dm_pagedep->pd_dirremhd, 9408 prevdirrem, dm_next); 9409 dirrem->dm_dirinum = dirrem->dm_pagedep->pd_ino; 9410 direct = LIST_EMPTY(&dirrem->dm_jremrefhd); 9411 FREE_LOCK(ump); 9412 if (direct) 9413 handle_workitem_remove(dirrem, 0); 9414 } 9415 } 9416 9417 /* 9418 * Check for an entry matching 'offset' on both the pd_dirraddhd list and the 9419 * pd_pendinghd list of a pagedep. 9420 */ 9421 static struct diradd * 9422 diradd_lookup(pagedep, offset) 9423 struct pagedep *pagedep; 9424 int offset; 9425 { 9426 struct diradd *dap; 9427 9428 LIST_FOREACH(dap, &pagedep->pd_diraddhd[DIRADDHASH(offset)], da_pdlist) 9429 if (dap->da_offset == offset) 9430 return (dap); 9431 LIST_FOREACH(dap, &pagedep->pd_pendinghd, da_pdlist) 9432 if (dap->da_offset == offset) 9433 return (dap); 9434 return (NULL); 9435 } 9436 9437 /* 9438 * Search for a .. diradd dependency in a directory that is being removed. 9439 * If the directory was renamed to a new parent we have a diradd rather 9440 * than a mkdir for the .. entry. We need to cancel it now before 9441 * it is found in truncate(). 9442 */ 9443 static struct jremref * 9444 cancel_diradd_dotdot(ip, dirrem, jremref) 9445 struct inode *ip; 9446 struct dirrem *dirrem; 9447 struct jremref *jremref; 9448 { 9449 struct pagedep *pagedep; 9450 struct diradd *dap; 9451 struct worklist *wk; 9452 9453 if (pagedep_lookup(ITOVFS(ip), NULL, ip->i_number, 0, 0, &pagedep) == 0) 9454 return (jremref); 9455 dap = diradd_lookup(pagedep, DOTDOT_OFFSET); 9456 if (dap == NULL) 9457 return (jremref); 9458 cancel_diradd(dap, dirrem, jremref, NULL, NULL); 9459 /* 9460 * Mark any journal work as belonging to the parent so it is freed 9461 * with the .. reference. 9462 */ 9463 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9464 wk->wk_state |= MKDIR_PARENT; 9465 return (NULL); 9466 } 9467 9468 /* 9469 * Cancel the MKDIR_PARENT mkdir component of a diradd when we're going to 9470 * replace it with a dirrem/diradd pair as a result of re-parenting a 9471 * directory. This ensures that we don't simultaneously have a mkdir and 9472 * a diradd for the same .. entry. 9473 */ 9474 static struct jremref * 9475 cancel_mkdir_dotdot(ip, dirrem, jremref) 9476 struct inode *ip; 9477 struct dirrem *dirrem; 9478 struct jremref *jremref; 9479 { 9480 struct inodedep *inodedep; 9481 struct jaddref *jaddref; 9482 struct ufsmount *ump; 9483 struct mkdir *mkdir; 9484 struct diradd *dap; 9485 struct mount *mp; 9486 9487 mp = ITOVFS(ip); 9488 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9489 return (jremref); 9490 dap = inodedep->id_mkdiradd; 9491 if (dap == NULL || (dap->da_state & MKDIR_PARENT) == 0) 9492 return (jremref); 9493 ump = VFSTOUFS(inodedep->id_list.wk_mp); 9494 for (mkdir = LIST_FIRST(&ump->softdep_mkdirlisthd); mkdir; 9495 mkdir = LIST_NEXT(mkdir, md_mkdirs)) 9496 if (mkdir->md_diradd == dap && mkdir->md_state & MKDIR_PARENT) 9497 break; 9498 if (mkdir == NULL) 9499 panic("cancel_mkdir_dotdot: Unable to find mkdir\n"); 9500 if ((jaddref = mkdir->md_jaddref) != NULL) { 9501 mkdir->md_jaddref = NULL; 9502 jaddref->ja_state &= ~MKDIR_PARENT; 9503 if (inodedep_lookup(mp, jaddref->ja_ino, 0, &inodedep) == 0) 9504 panic("cancel_mkdir_dotdot: Lost parent inodedep"); 9505 if (cancel_jaddref(jaddref, inodedep, &dirrem->dm_jwork)) { 9506 journal_jremref(dirrem, jremref, inodedep); 9507 jremref = NULL; 9508 } 9509 } 9510 if (mkdir->md_state & ONWORKLIST) 9511 WORKLIST_REMOVE(&mkdir->md_list); 9512 mkdir->md_state |= ALLCOMPLETE; 9513 complete_mkdir(mkdir); 9514 return (jremref); 9515 } 9516 9517 static void 9518 journal_jremref(dirrem, jremref, inodedep) 9519 struct dirrem *dirrem; 9520 struct jremref *jremref; 9521 struct inodedep *inodedep; 9522 { 9523 9524 if (inodedep == NULL) 9525 if (inodedep_lookup(jremref->jr_list.wk_mp, 9526 jremref->jr_ref.if_ino, 0, &inodedep) == 0) 9527 panic("journal_jremref: Lost inodedep"); 9528 LIST_INSERT_HEAD(&dirrem->dm_jremrefhd, jremref, jr_deps); 9529 TAILQ_INSERT_TAIL(&inodedep->id_inoreflst, &jremref->jr_ref, if_deps); 9530 add_to_journal(&jremref->jr_list); 9531 } 9532 9533 static void 9534 dirrem_journal(dirrem, jremref, dotremref, dotdotremref) 9535 struct dirrem *dirrem; 9536 struct jremref *jremref; 9537 struct jremref *dotremref; 9538 struct jremref *dotdotremref; 9539 { 9540 struct inodedep *inodedep; 9541 9542 if (inodedep_lookup(jremref->jr_list.wk_mp, jremref->jr_ref.if_ino, 0, 9543 &inodedep) == 0) 9544 panic("dirrem_journal: Lost inodedep"); 9545 journal_jremref(dirrem, jremref, inodedep); 9546 if (dotremref) 9547 journal_jremref(dirrem, dotremref, inodedep); 9548 if (dotdotremref) 9549 journal_jremref(dirrem, dotdotremref, NULL); 9550 } 9551 9552 /* 9553 * Allocate a new dirrem if appropriate and return it along with 9554 * its associated pagedep. Called without a lock, returns with lock. 9555 */ 9556 static struct dirrem * 9557 newdirrem(bp, dp, ip, isrmdir, prevdirremp) 9558 struct buf *bp; /* buffer containing directory block */ 9559 struct inode *dp; /* inode for the directory being modified */ 9560 struct inode *ip; /* inode for directory entry being removed */ 9561 int isrmdir; /* indicates if doing RMDIR */ 9562 struct dirrem **prevdirremp; /* previously referenced inode, if any */ 9563 { 9564 int offset; 9565 ufs_lbn_t lbn; 9566 struct diradd *dap; 9567 struct dirrem *dirrem; 9568 struct pagedep *pagedep; 9569 struct jremref *jremref; 9570 struct jremref *dotremref; 9571 struct jremref *dotdotremref; 9572 struct vnode *dvp; 9573 struct ufsmount *ump; 9574 9575 /* 9576 * Whiteouts have no deletion dependencies. 9577 */ 9578 if (ip == NULL) 9579 panic("newdirrem: whiteout"); 9580 dvp = ITOV(dp); 9581 ump = ITOUMP(dp); 9582 9583 /* 9584 * If the system is over its limit and our filesystem is 9585 * responsible for more than our share of that usage and 9586 * we are not a snapshot, request some inodedep cleanup. 9587 * Limiting the number of dirrem structures will also limit 9588 * the number of freefile and freeblks structures. 9589 */ 9590 ACQUIRE_LOCK(ump); 9591 if (!IS_SNAPSHOT(ip) && softdep_excess_items(ump, D_DIRREM)) 9592 schedule_cleanup(UFSTOVFS(ump)); 9593 else 9594 FREE_LOCK(ump); 9595 dirrem = malloc(sizeof(struct dirrem), M_DIRREM, M_SOFTDEP_FLAGS | 9596 M_ZERO); 9597 workitem_alloc(&dirrem->dm_list, D_DIRREM, dvp->v_mount); 9598 LIST_INIT(&dirrem->dm_jremrefhd); 9599 LIST_INIT(&dirrem->dm_jwork); 9600 dirrem->dm_state = isrmdir ? RMDIR : 0; 9601 dirrem->dm_oldinum = ip->i_number; 9602 *prevdirremp = NULL; 9603 /* 9604 * Allocate remove reference structures to track journal write 9605 * dependencies. We will always have one for the link and 9606 * when doing directories we will always have one more for dot. 9607 * When renaming a directory we skip the dotdot link change so 9608 * this is not needed. 9609 */ 9610 jremref = dotremref = dotdotremref = NULL; 9611 if (DOINGSUJ(dvp)) { 9612 if (isrmdir) { 9613 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9614 ip->i_effnlink + 2); 9615 dotremref = newjremref(dirrem, ip, ip, DOT_OFFSET, 9616 ip->i_effnlink + 1); 9617 dotdotremref = newjremref(dirrem, ip, dp, DOTDOT_OFFSET, 9618 dp->i_effnlink + 1); 9619 dotdotremref->jr_state |= MKDIR_PARENT; 9620 } else 9621 jremref = newjremref(dirrem, dp, ip, I_OFFSET(dp), 9622 ip->i_effnlink + 1); 9623 } 9624 ACQUIRE_LOCK(ump); 9625 lbn = lblkno(ump->um_fs, I_OFFSET(dp)); 9626 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9627 pagedep_lookup(UFSTOVFS(ump), bp, dp->i_number, lbn, DEPALLOC, 9628 &pagedep); 9629 dirrem->dm_pagedep = pagedep; 9630 dirrem->dm_offset = offset; 9631 /* 9632 * If we're renaming a .. link to a new directory, cancel any 9633 * existing MKDIR_PARENT mkdir. If it has already been canceled 9634 * the jremref is preserved for any potential diradd in this 9635 * location. This can not coincide with a rmdir. 9636 */ 9637 if (I_OFFSET(dp) == DOTDOT_OFFSET) { 9638 if (isrmdir) 9639 panic("newdirrem: .. directory change during remove?"); 9640 jremref = cancel_mkdir_dotdot(dp, dirrem, jremref); 9641 } 9642 /* 9643 * If we're removing a directory search for the .. dependency now and 9644 * cancel it. Any pending journal work will be added to the dirrem 9645 * to be completed when the workitem remove completes. 9646 */ 9647 if (isrmdir) 9648 dotdotremref = cancel_diradd_dotdot(ip, dirrem, dotdotremref); 9649 /* 9650 * Check for a diradd dependency for the same directory entry. 9651 * If present, then both dependencies become obsolete and can 9652 * be de-allocated. 9653 */ 9654 dap = diradd_lookup(pagedep, offset); 9655 if (dap == NULL) { 9656 /* 9657 * Link the jremref structures into the dirrem so they are 9658 * written prior to the pagedep. 9659 */ 9660 if (jremref) 9661 dirrem_journal(dirrem, jremref, dotremref, 9662 dotdotremref); 9663 return (dirrem); 9664 } 9665 /* 9666 * Must be ATTACHED at this point. 9667 */ 9668 if ((dap->da_state & ATTACHED) == 0) 9669 panic("newdirrem: not ATTACHED"); 9670 if (dap->da_newinum != ip->i_number) 9671 panic("newdirrem: inum %ju should be %ju", 9672 (uintmax_t)ip->i_number, (uintmax_t)dap->da_newinum); 9673 /* 9674 * If we are deleting a changed name that never made it to disk, 9675 * then return the dirrem describing the previous inode (which 9676 * represents the inode currently referenced from this entry on disk). 9677 */ 9678 if ((dap->da_state & DIRCHG) != 0) { 9679 *prevdirremp = dap->da_previous; 9680 dap->da_state &= ~DIRCHG; 9681 dap->da_pagedep = pagedep; 9682 } 9683 /* 9684 * We are deleting an entry that never made it to disk. 9685 * Mark it COMPLETE so we can delete its inode immediately. 9686 */ 9687 dirrem->dm_state |= COMPLETE; 9688 cancel_diradd(dap, dirrem, jremref, dotremref, dotdotremref); 9689 #ifdef INVARIANTS 9690 if (isrmdir == 0) { 9691 struct worklist *wk; 9692 9693 LIST_FOREACH(wk, &dirrem->dm_jwork, wk_list) 9694 if (wk->wk_state & (MKDIR_BODY | MKDIR_PARENT)) 9695 panic("bad wk %p (0x%X)\n", wk, wk->wk_state); 9696 } 9697 #endif 9698 9699 return (dirrem); 9700 } 9701 9702 /* 9703 * Directory entry change dependencies. 9704 * 9705 * Changing an existing directory entry requires that an add operation 9706 * be completed first followed by a deletion. The semantics for the addition 9707 * are identical to the description of adding a new entry above except 9708 * that the rollback is to the old inode number rather than zero. Once 9709 * the addition dependency is completed, the removal is done as described 9710 * in the removal routine above. 9711 */ 9712 9713 /* 9714 * This routine should be called immediately after changing 9715 * a directory entry. The inode's link count should not be 9716 * decremented by the calling procedure -- the soft updates 9717 * code will perform this task when it is safe. 9718 */ 9719 void 9720 softdep_setup_directory_change(bp, dp, ip, newinum, isrmdir) 9721 struct buf *bp; /* buffer containing directory block */ 9722 struct inode *dp; /* inode for the directory being modified */ 9723 struct inode *ip; /* inode for directory entry being removed */ 9724 ino_t newinum; /* new inode number for changed entry */ 9725 int isrmdir; /* indicates if doing RMDIR */ 9726 { 9727 int offset; 9728 struct diradd *dap = NULL; 9729 struct dirrem *dirrem, *prevdirrem; 9730 struct pagedep *pagedep; 9731 struct inodedep *inodedep; 9732 struct jaddref *jaddref; 9733 struct mount *mp; 9734 struct ufsmount *ump; 9735 9736 mp = ITOVFS(dp); 9737 ump = VFSTOUFS(mp); 9738 offset = blkoff(ump->um_fs, I_OFFSET(dp)); 9739 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 9740 ("softdep_setup_directory_change called on non-softdep filesystem")); 9741 9742 /* 9743 * Whiteouts do not need diradd dependencies. 9744 */ 9745 if (newinum != UFS_WINO) { 9746 dap = malloc(sizeof(struct diradd), 9747 M_DIRADD, M_SOFTDEP_FLAGS|M_ZERO); 9748 workitem_alloc(&dap->da_list, D_DIRADD, mp); 9749 dap->da_state = DIRCHG | ATTACHED | DEPCOMPLETE; 9750 dap->da_offset = offset; 9751 dap->da_newinum = newinum; 9752 LIST_INIT(&dap->da_jwork); 9753 } 9754 9755 /* 9756 * Allocate a new dirrem and ACQUIRE_LOCK. 9757 */ 9758 dirrem = newdirrem(bp, dp, ip, isrmdir, &prevdirrem); 9759 pagedep = dirrem->dm_pagedep; 9760 /* 9761 * The possible values for isrmdir: 9762 * 0 - non-directory file rename 9763 * 1 - directory rename within same directory 9764 * inum - directory rename to new directory of given inode number 9765 * When renaming to a new directory, we are both deleting and 9766 * creating a new directory entry, so the link count on the new 9767 * directory should not change. Thus we do not need the followup 9768 * dirrem which is usually done in handle_workitem_remove. We set 9769 * the DIRCHG flag to tell handle_workitem_remove to skip the 9770 * followup dirrem. 9771 */ 9772 if (isrmdir > 1) 9773 dirrem->dm_state |= DIRCHG; 9774 9775 /* 9776 * Whiteouts have no additional dependencies, 9777 * so just put the dirrem on the correct list. 9778 */ 9779 if (newinum == UFS_WINO) { 9780 if ((dirrem->dm_state & COMPLETE) == 0) { 9781 LIST_INSERT_HEAD(&pagedep->pd_dirremhd, dirrem, 9782 dm_next); 9783 } else { 9784 dirrem->dm_dirinum = pagedep->pd_ino; 9785 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9786 add_to_worklist(&dirrem->dm_list, 0); 9787 } 9788 FREE_LOCK(ump); 9789 return; 9790 } 9791 /* 9792 * Add the dirrem to the inodedep's pending remove list for quick 9793 * discovery later. A valid nlinkdelta ensures that this lookup 9794 * will not fail. 9795 */ 9796 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 9797 panic("softdep_setup_directory_change: Lost inodedep."); 9798 dirrem->dm_state |= ONDEPLIST; 9799 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 9800 9801 /* 9802 * If the COMPLETE flag is clear, then there were no active 9803 * entries and we want to roll back to the previous inode until 9804 * the new inode is committed to disk. If the COMPLETE flag is 9805 * set, then we have deleted an entry that never made it to disk. 9806 * If the entry we deleted resulted from a name change, then the old 9807 * inode reference still resides on disk. Any rollback that we do 9808 * needs to be to that old inode (returned to us in prevdirrem). If 9809 * the entry we deleted resulted from a create, then there is 9810 * no entry on the disk, so we want to roll back to zero rather 9811 * than the uncommitted inode. In either of the COMPLETE cases we 9812 * want to immediately free the unwritten and unreferenced inode. 9813 */ 9814 if ((dirrem->dm_state & COMPLETE) == 0) { 9815 dap->da_previous = dirrem; 9816 } else { 9817 if (prevdirrem != NULL) { 9818 dap->da_previous = prevdirrem; 9819 } else { 9820 dap->da_state &= ~DIRCHG; 9821 dap->da_pagedep = pagedep; 9822 } 9823 dirrem->dm_dirinum = pagedep->pd_ino; 9824 if (LIST_EMPTY(&dirrem->dm_jremrefhd)) 9825 add_to_worklist(&dirrem->dm_list, 0); 9826 } 9827 /* 9828 * Lookup the jaddref for this journal entry. We must finish 9829 * initializing it and make the diradd write dependent on it. 9830 * If we're not journaling, put it on the id_bufwait list if the 9831 * inode is not yet written. If it is written, do the post-inode 9832 * write processing to put it on the id_pendinghd list. 9833 */ 9834 inodedep_lookup(mp, newinum, DEPALLOC, &inodedep); 9835 if (MOUNTEDSUJ(mp)) { 9836 jaddref = (struct jaddref *)TAILQ_LAST(&inodedep->id_inoreflst, 9837 inoreflst); 9838 KASSERT(jaddref != NULL && jaddref->ja_parent == dp->i_number, 9839 ("softdep_setup_directory_change: bad jaddref %p", 9840 jaddref)); 9841 jaddref->ja_diroff = I_OFFSET(dp); 9842 jaddref->ja_diradd = dap; 9843 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9844 dap, da_pdlist); 9845 add_to_journal(&jaddref->ja_list); 9846 } else if ((inodedep->id_state & ALLCOMPLETE) == ALLCOMPLETE) { 9847 dap->da_state |= COMPLETE; 9848 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, da_pdlist); 9849 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 9850 } else { 9851 LIST_INSERT_HEAD(&pagedep->pd_diraddhd[DIRADDHASH(offset)], 9852 dap, da_pdlist); 9853 WORKLIST_INSERT(&inodedep->id_bufwait, &dap->da_list); 9854 } 9855 /* 9856 * If we're making a new name for a directory that has not been 9857 * committed when need to move the dot and dotdot references to 9858 * this new name. 9859 */ 9860 if (inodedep->id_mkdiradd && I_OFFSET(dp) != DOTDOT_OFFSET) 9861 merge_diradd(inodedep, dap); 9862 FREE_LOCK(ump); 9863 } 9864 9865 /* 9866 * Called whenever the link count on an inode is changed. 9867 * It creates an inode dependency so that the new reference(s) 9868 * to the inode cannot be committed to disk until the updated 9869 * inode has been written. 9870 */ 9871 void 9872 softdep_change_linkcnt(ip) 9873 struct inode *ip; /* the inode with the increased link count */ 9874 { 9875 struct inodedep *inodedep; 9876 struct ufsmount *ump; 9877 9878 ump = ITOUMP(ip); 9879 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9880 ("softdep_change_linkcnt called on non-softdep filesystem")); 9881 ACQUIRE_LOCK(ump); 9882 inodedep_lookup(UFSTOVFS(ump), ip->i_number, DEPALLOC, &inodedep); 9883 if (ip->i_nlink < ip->i_effnlink) 9884 panic("softdep_change_linkcnt: bad delta"); 9885 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 9886 FREE_LOCK(ump); 9887 } 9888 9889 /* 9890 * Attach a sbdep dependency to the superblock buf so that we can keep 9891 * track of the head of the linked list of referenced but unlinked inodes. 9892 */ 9893 void 9894 softdep_setup_sbupdate(ump, fs, bp) 9895 struct ufsmount *ump; 9896 struct fs *fs; 9897 struct buf *bp; 9898 { 9899 struct sbdep *sbdep; 9900 struct worklist *wk; 9901 9902 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 9903 ("softdep_setup_sbupdate called on non-softdep filesystem")); 9904 LIST_FOREACH(wk, &bp->b_dep, wk_list) 9905 if (wk->wk_type == D_SBDEP) 9906 break; 9907 if (wk != NULL) 9908 return; 9909 sbdep = malloc(sizeof(struct sbdep), M_SBDEP, M_SOFTDEP_FLAGS); 9910 workitem_alloc(&sbdep->sb_list, D_SBDEP, UFSTOVFS(ump)); 9911 sbdep->sb_fs = fs; 9912 sbdep->sb_ump = ump; 9913 ACQUIRE_LOCK(ump); 9914 WORKLIST_INSERT(&bp->b_dep, &sbdep->sb_list); 9915 FREE_LOCK(ump); 9916 } 9917 9918 /* 9919 * Return the first unlinked inodedep which is ready to be the head of the 9920 * list. The inodedep and all those after it must have valid next pointers. 9921 */ 9922 static struct inodedep * 9923 first_unlinked_inodedep(ump) 9924 struct ufsmount *ump; 9925 { 9926 struct inodedep *inodedep; 9927 struct inodedep *idp; 9928 9929 LOCK_OWNED(ump); 9930 for (inodedep = TAILQ_LAST(&ump->softdep_unlinked, inodedeplst); 9931 inodedep; inodedep = idp) { 9932 if ((inodedep->id_state & UNLINKNEXT) == 0) 9933 return (NULL); 9934 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 9935 if (idp == NULL || (idp->id_state & UNLINKNEXT) == 0) 9936 break; 9937 if ((inodedep->id_state & UNLINKPREV) == 0) 9938 break; 9939 } 9940 return (inodedep); 9941 } 9942 9943 /* 9944 * Set the sujfree unlinked head pointer prior to writing a superblock. 9945 */ 9946 static void 9947 initiate_write_sbdep(sbdep) 9948 struct sbdep *sbdep; 9949 { 9950 struct inodedep *inodedep; 9951 struct fs *bpfs; 9952 struct fs *fs; 9953 9954 bpfs = sbdep->sb_fs; 9955 fs = sbdep->sb_ump->um_fs; 9956 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9957 if (inodedep) { 9958 fs->fs_sujfree = inodedep->id_ino; 9959 inodedep->id_state |= UNLINKPREV; 9960 } else 9961 fs->fs_sujfree = 0; 9962 bpfs->fs_sujfree = fs->fs_sujfree; 9963 /* 9964 * Because we have made changes to the superblock, we need to 9965 * recompute its check-hash. 9966 */ 9967 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 9968 } 9969 9970 /* 9971 * After a superblock is written determine whether it must be written again 9972 * due to a changing unlinked list head. 9973 */ 9974 static int 9975 handle_written_sbdep(sbdep, bp) 9976 struct sbdep *sbdep; 9977 struct buf *bp; 9978 { 9979 struct inodedep *inodedep; 9980 struct fs *fs; 9981 9982 LOCK_OWNED(sbdep->sb_ump); 9983 fs = sbdep->sb_fs; 9984 /* 9985 * If the superblock doesn't match the in-memory list start over. 9986 */ 9987 inodedep = first_unlinked_inodedep(sbdep->sb_ump); 9988 if ((inodedep && fs->fs_sujfree != inodedep->id_ino) || 9989 (inodedep == NULL && fs->fs_sujfree != 0)) { 9990 bdirty(bp); 9991 return (1); 9992 } 9993 WORKITEM_FREE(sbdep, D_SBDEP); 9994 if (fs->fs_sujfree == 0) 9995 return (0); 9996 /* 9997 * Now that we have a record of this inode in stable store allow it 9998 * to be written to free up pending work. Inodes may see a lot of 9999 * write activity after they are unlinked which we must not hold up. 10000 */ 10001 for (; inodedep != NULL; inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 10002 if ((inodedep->id_state & UNLINKLINKS) != UNLINKLINKS) 10003 panic("handle_written_sbdep: Bad inodedep %p (0x%X)", 10004 inodedep, inodedep->id_state); 10005 if (inodedep->id_state & UNLINKONLIST) 10006 break; 10007 inodedep->id_state |= DEPCOMPLETE | UNLINKONLIST; 10008 } 10009 10010 return (0); 10011 } 10012 10013 /* 10014 * Mark an inodedep as unlinked and insert it into the in-memory unlinked list. 10015 */ 10016 static void 10017 unlinked_inodedep(mp, inodedep) 10018 struct mount *mp; 10019 struct inodedep *inodedep; 10020 { 10021 struct ufsmount *ump; 10022 10023 ump = VFSTOUFS(mp); 10024 LOCK_OWNED(ump); 10025 if (MOUNTEDSUJ(mp) == 0) 10026 return; 10027 ump->um_fs->fs_fmod = 1; 10028 if (inodedep->id_state & UNLINKED) 10029 panic("unlinked_inodedep: %p already unlinked\n", inodedep); 10030 inodedep->id_state |= UNLINKED; 10031 TAILQ_INSERT_HEAD(&ump->softdep_unlinked, inodedep, id_unlinked); 10032 } 10033 10034 /* 10035 * Remove an inodedep from the unlinked inodedep list. This may require 10036 * disk writes if the inode has made it that far. 10037 */ 10038 static void 10039 clear_unlinked_inodedep(inodedep) 10040 struct inodedep *inodedep; 10041 { 10042 struct ufs2_dinode *dip; 10043 struct ufsmount *ump; 10044 struct inodedep *idp; 10045 struct inodedep *idn; 10046 struct fs *fs, *bpfs; 10047 struct buf *bp; 10048 daddr_t dbn; 10049 ino_t ino; 10050 ino_t nino; 10051 ino_t pino; 10052 int error; 10053 10054 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10055 fs = ump->um_fs; 10056 ino = inodedep->id_ino; 10057 error = 0; 10058 for (;;) { 10059 LOCK_OWNED(ump); 10060 KASSERT((inodedep->id_state & UNLINKED) != 0, 10061 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10062 inodedep)); 10063 /* 10064 * If nothing has yet been written simply remove us from 10065 * the in memory list and return. This is the most common 10066 * case where handle_workitem_remove() loses the final 10067 * reference. 10068 */ 10069 if ((inodedep->id_state & UNLINKLINKS) == 0) 10070 break; 10071 /* 10072 * If we have a NEXT pointer and no PREV pointer we can simply 10073 * clear NEXT's PREV and remove ourselves from the list. Be 10074 * careful not to clear PREV if the superblock points at 10075 * next as well. 10076 */ 10077 idn = TAILQ_NEXT(inodedep, id_unlinked); 10078 if ((inodedep->id_state & UNLINKLINKS) == UNLINKNEXT) { 10079 if (idn && fs->fs_sujfree != idn->id_ino) 10080 idn->id_state &= ~UNLINKPREV; 10081 break; 10082 } 10083 /* 10084 * Here we have an inodedep which is actually linked into 10085 * the list. We must remove it by forcing a write to the 10086 * link before us, whether it be the superblock or an inode. 10087 * Unfortunately the list may change while we're waiting 10088 * on the buf lock for either resource so we must loop until 10089 * we lock the right one. If both the superblock and an 10090 * inode point to this inode we must clear the inode first 10091 * followed by the superblock. 10092 */ 10093 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10094 pino = 0; 10095 if (idp && (idp->id_state & UNLINKNEXT)) 10096 pino = idp->id_ino; 10097 FREE_LOCK(ump); 10098 if (pino == 0) { 10099 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10100 (int)fs->fs_sbsize, 0, 0, 0); 10101 } else { 10102 dbn = fsbtodb(fs, ino_to_fsba(fs, pino)); 10103 error = ffs_breadz(ump, ump->um_devvp, dbn, dbn, 10104 (int)fs->fs_bsize, NULL, NULL, 0, NOCRED, 0, NULL, 10105 &bp); 10106 } 10107 ACQUIRE_LOCK(ump); 10108 if (error) 10109 break; 10110 /* If the list has changed restart the loop. */ 10111 idp = TAILQ_PREV(inodedep, inodedeplst, id_unlinked); 10112 nino = 0; 10113 if (idp && (idp->id_state & UNLINKNEXT)) 10114 nino = idp->id_ino; 10115 if (nino != pino || 10116 (inodedep->id_state & UNLINKPREV) != UNLINKPREV) { 10117 FREE_LOCK(ump); 10118 brelse(bp); 10119 ACQUIRE_LOCK(ump); 10120 continue; 10121 } 10122 nino = 0; 10123 idn = TAILQ_NEXT(inodedep, id_unlinked); 10124 if (idn) 10125 nino = idn->id_ino; 10126 /* 10127 * Remove us from the in memory list. After this we cannot 10128 * access the inodedep. 10129 */ 10130 KASSERT((inodedep->id_state & UNLINKED) != 0, 10131 ("clear_unlinked_inodedep: inodedep %p not unlinked", 10132 inodedep)); 10133 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10134 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10135 FREE_LOCK(ump); 10136 /* 10137 * The predecessor's next pointer is manually updated here 10138 * so that the NEXT flag is never cleared for an element 10139 * that is in the list. 10140 */ 10141 if (pino == 0) { 10142 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10143 bpfs = (struct fs *)bp->b_data; 10144 ffs_oldfscompat_write(bpfs, ump); 10145 softdep_setup_sbupdate(ump, bpfs, bp); 10146 /* 10147 * Because we may have made changes to the superblock, 10148 * we need to recompute its check-hash. 10149 */ 10150 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10151 } else if (fs->fs_magic == FS_UFS1_MAGIC) { 10152 ((struct ufs1_dinode *)bp->b_data + 10153 ino_to_fsbo(fs, pino))->di_freelink = nino; 10154 } else { 10155 dip = (struct ufs2_dinode *)bp->b_data + 10156 ino_to_fsbo(fs, pino); 10157 dip->di_freelink = nino; 10158 ffs_update_dinode_ckhash(fs, dip); 10159 } 10160 /* 10161 * If the bwrite fails we have no recourse to recover. The 10162 * filesystem is corrupted already. 10163 */ 10164 bwrite(bp); 10165 ACQUIRE_LOCK(ump); 10166 /* 10167 * If the superblock pointer still needs to be cleared force 10168 * a write here. 10169 */ 10170 if (fs->fs_sujfree == ino) { 10171 FREE_LOCK(ump); 10172 bp = getblk(ump->um_devvp, btodb(fs->fs_sblockloc), 10173 (int)fs->fs_sbsize, 0, 0, 0); 10174 bcopy((caddr_t)fs, bp->b_data, (u_int)fs->fs_sbsize); 10175 bpfs = (struct fs *)bp->b_data; 10176 ffs_oldfscompat_write(bpfs, ump); 10177 softdep_setup_sbupdate(ump, bpfs, bp); 10178 /* 10179 * Because we may have made changes to the superblock, 10180 * we need to recompute its check-hash. 10181 */ 10182 bpfs->fs_ckhash = ffs_calc_sbhash(bpfs); 10183 bwrite(bp); 10184 ACQUIRE_LOCK(ump); 10185 } 10186 10187 if (fs->fs_sujfree != ino) 10188 return; 10189 panic("clear_unlinked_inodedep: Failed to clear free head"); 10190 } 10191 if (inodedep->id_ino == fs->fs_sujfree) 10192 panic("clear_unlinked_inodedep: Freeing head of free list"); 10193 inodedep->id_state &= ~(UNLINKED | UNLINKLINKS | UNLINKONLIST); 10194 TAILQ_REMOVE(&ump->softdep_unlinked, inodedep, id_unlinked); 10195 return; 10196 } 10197 10198 /* 10199 * This workitem decrements the inode's link count. 10200 * If the link count reaches zero, the file is removed. 10201 */ 10202 static int 10203 handle_workitem_remove(dirrem, flags) 10204 struct dirrem *dirrem; 10205 int flags; 10206 { 10207 struct inodedep *inodedep; 10208 struct workhead dotdotwk; 10209 struct worklist *wk; 10210 struct ufsmount *ump; 10211 struct mount *mp; 10212 struct vnode *vp; 10213 struct inode *ip; 10214 ino_t oldinum; 10215 10216 if (dirrem->dm_state & ONWORKLIST) 10217 panic("handle_workitem_remove: dirrem %p still on worklist", 10218 dirrem); 10219 oldinum = dirrem->dm_oldinum; 10220 mp = dirrem->dm_list.wk_mp; 10221 ump = VFSTOUFS(mp); 10222 flags |= LK_EXCLUSIVE; 10223 if (ffs_vgetf(mp, oldinum, flags, &vp, FFSV_FORCEINSMQ | 10224 FFSV_FORCEINODEDEP) != 0) 10225 return (EBUSY); 10226 ip = VTOI(vp); 10227 MPASS(ip->i_mode != 0); 10228 ACQUIRE_LOCK(ump); 10229 if ((inodedep_lookup(mp, oldinum, 0, &inodedep)) == 0) 10230 panic("handle_workitem_remove: lost inodedep"); 10231 if (dirrem->dm_state & ONDEPLIST) 10232 LIST_REMOVE(dirrem, dm_inonext); 10233 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 10234 ("handle_workitem_remove: Journal entries not written.")); 10235 10236 /* 10237 * Move all dependencies waiting on the remove to complete 10238 * from the dirrem to the inode inowait list to be completed 10239 * after the inode has been updated and written to disk. 10240 * 10241 * Any marked MKDIR_PARENT are saved to be completed when the 10242 * dotdot ref is removed unless DIRCHG is specified. For 10243 * directory change operations there will be no further 10244 * directory writes and the jsegdeps need to be moved along 10245 * with the rest to be completed when the inode is free or 10246 * stable in the inode free list. 10247 */ 10248 LIST_INIT(&dotdotwk); 10249 while ((wk = LIST_FIRST(&dirrem->dm_jwork)) != NULL) { 10250 WORKLIST_REMOVE(wk); 10251 if ((dirrem->dm_state & DIRCHG) == 0 && 10252 wk->wk_state & MKDIR_PARENT) { 10253 wk->wk_state &= ~MKDIR_PARENT; 10254 WORKLIST_INSERT(&dotdotwk, wk); 10255 continue; 10256 } 10257 WORKLIST_INSERT(&inodedep->id_inowait, wk); 10258 } 10259 LIST_SWAP(&dirrem->dm_jwork, &dotdotwk, worklist, wk_list); 10260 /* 10261 * Normal file deletion. 10262 */ 10263 if ((dirrem->dm_state & RMDIR) == 0) { 10264 ip->i_nlink--; 10265 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: file ino " 10266 "%ju negative i_nlink %d", (intmax_t)ip->i_number, 10267 ip->i_nlink)); 10268 DIP_SET(ip, i_nlink, ip->i_nlink); 10269 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10270 if (ip->i_nlink < ip->i_effnlink) 10271 panic("handle_workitem_remove: bad file delta"); 10272 if (ip->i_nlink == 0) 10273 unlinked_inodedep(mp, inodedep); 10274 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10275 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10276 ("handle_workitem_remove: worklist not empty. %s", 10277 TYPENAME(LIST_FIRST(&dirrem->dm_jwork)->wk_type))); 10278 WORKITEM_FREE(dirrem, D_DIRREM); 10279 FREE_LOCK(ump); 10280 goto out; 10281 } 10282 /* 10283 * Directory deletion. Decrement reference count for both the 10284 * just deleted parent directory entry and the reference for ".". 10285 * Arrange to have the reference count on the parent decremented 10286 * to account for the loss of "..". 10287 */ 10288 ip->i_nlink -= 2; 10289 KASSERT(ip->i_nlink >= 0, ("handle_workitem_remove: directory ino " 10290 "%ju negative i_nlink %d", (intmax_t)ip->i_number, ip->i_nlink)); 10291 DIP_SET(ip, i_nlink, ip->i_nlink); 10292 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10293 if (ip->i_nlink < ip->i_effnlink) 10294 panic("handle_workitem_remove: bad dir delta"); 10295 if (ip->i_nlink == 0) 10296 unlinked_inodedep(mp, inodedep); 10297 inodedep->id_nlinkdelta = ip->i_nlink - ip->i_effnlink; 10298 /* 10299 * Rename a directory to a new parent. Since, we are both deleting 10300 * and creating a new directory entry, the link count on the new 10301 * directory should not change. Thus we skip the followup dirrem. 10302 */ 10303 if (dirrem->dm_state & DIRCHG) { 10304 KASSERT(LIST_EMPTY(&dirrem->dm_jwork), 10305 ("handle_workitem_remove: DIRCHG and worklist not empty.")); 10306 WORKITEM_FREE(dirrem, D_DIRREM); 10307 FREE_LOCK(ump); 10308 goto out; 10309 } 10310 dirrem->dm_state = ONDEPLIST; 10311 dirrem->dm_oldinum = dirrem->dm_dirinum; 10312 /* 10313 * Place the dirrem on the parent's diremhd list. 10314 */ 10315 if (inodedep_lookup(mp, dirrem->dm_oldinum, 0, &inodedep) == 0) 10316 panic("handle_workitem_remove: lost dir inodedep"); 10317 LIST_INSERT_HEAD(&inodedep->id_dirremhd, dirrem, dm_inonext); 10318 /* 10319 * If the allocated inode has never been written to disk, then 10320 * the on-disk inode is zero'ed and we can remove the file 10321 * immediately. When journaling if the inode has been marked 10322 * unlinked and not DEPCOMPLETE we know it can never be written. 10323 */ 10324 inodedep_lookup(mp, oldinum, 0, &inodedep); 10325 if (inodedep == NULL || 10326 (inodedep->id_state & (DEPCOMPLETE | UNLINKED)) == UNLINKED || 10327 check_inode_unwritten(inodedep)) { 10328 FREE_LOCK(ump); 10329 vput(vp); 10330 return handle_workitem_remove(dirrem, flags); 10331 } 10332 WORKLIST_INSERT(&inodedep->id_inowait, &dirrem->dm_list); 10333 FREE_LOCK(ump); 10334 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 10335 out: 10336 ffs_update(vp, 0); 10337 vput(vp); 10338 return (0); 10339 } 10340 10341 /* 10342 * Inode de-allocation dependencies. 10343 * 10344 * When an inode's link count is reduced to zero, it can be de-allocated. We 10345 * found it convenient to postpone de-allocation until after the inode is 10346 * written to disk with its new link count (zero). At this point, all of the 10347 * on-disk inode's block pointers are nullified and, with careful dependency 10348 * list ordering, all dependencies related to the inode will be satisfied and 10349 * the corresponding dependency structures de-allocated. So, if/when the 10350 * inode is reused, there will be no mixing of old dependencies with new 10351 * ones. This artificial dependency is set up by the block de-allocation 10352 * procedure above (softdep_setup_freeblocks) and completed by the 10353 * following procedure. 10354 */ 10355 static void 10356 handle_workitem_freefile(freefile) 10357 struct freefile *freefile; 10358 { 10359 struct workhead wkhd; 10360 struct fs *fs; 10361 struct ufsmount *ump; 10362 int error; 10363 #ifdef INVARIANTS 10364 struct inodedep *idp; 10365 #endif 10366 10367 ump = VFSTOUFS(freefile->fx_list.wk_mp); 10368 fs = ump->um_fs; 10369 #ifdef INVARIANTS 10370 ACQUIRE_LOCK(ump); 10371 error = inodedep_lookup(UFSTOVFS(ump), freefile->fx_oldinum, 0, &idp); 10372 FREE_LOCK(ump); 10373 if (error) 10374 panic("handle_workitem_freefile: inodedep %p survived", idp); 10375 #endif 10376 UFS_LOCK(ump); 10377 fs->fs_pendinginodes -= 1; 10378 UFS_UNLOCK(ump); 10379 LIST_INIT(&wkhd); 10380 LIST_SWAP(&freefile->fx_jwork, &wkhd, worklist, wk_list); 10381 if ((error = ffs_freefile(ump, fs, freefile->fx_devvp, 10382 freefile->fx_oldinum, freefile->fx_mode, &wkhd)) != 0) 10383 softdep_error("handle_workitem_freefile", error); 10384 ACQUIRE_LOCK(ump); 10385 WORKITEM_FREE(freefile, D_FREEFILE); 10386 FREE_LOCK(ump); 10387 } 10388 10389 /* 10390 * Helper function which unlinks marker element from work list and returns 10391 * the next element on the list. 10392 */ 10393 static __inline struct worklist * 10394 markernext(struct worklist *marker) 10395 { 10396 struct worklist *next; 10397 10398 next = LIST_NEXT(marker, wk_list); 10399 LIST_REMOVE(marker, wk_list); 10400 return next; 10401 } 10402 10403 /* 10404 * Disk writes. 10405 * 10406 * The dependency structures constructed above are most actively used when file 10407 * system blocks are written to disk. No constraints are placed on when a 10408 * block can be written, but unsatisfied update dependencies are made safe by 10409 * modifying (or replacing) the source memory for the duration of the disk 10410 * write. When the disk write completes, the memory block is again brought 10411 * up-to-date. 10412 * 10413 * In-core inode structure reclamation. 10414 * 10415 * Because there are a finite number of "in-core" inode structures, they are 10416 * reused regularly. By transferring all inode-related dependencies to the 10417 * in-memory inode block and indexing them separately (via "inodedep"s), we 10418 * can allow "in-core" inode structures to be reused at any time and avoid 10419 * any increase in contention. 10420 * 10421 * Called just before entering the device driver to initiate a new disk I/O. 10422 * The buffer must be locked, thus, no I/O completion operations can occur 10423 * while we are manipulating its associated dependencies. 10424 */ 10425 static void 10426 softdep_disk_io_initiation(bp) 10427 struct buf *bp; /* structure describing disk write to occur */ 10428 { 10429 struct worklist *wk; 10430 struct worklist marker; 10431 struct inodedep *inodedep; 10432 struct freeblks *freeblks; 10433 struct jblkdep *jblkdep; 10434 struct newblk *newblk; 10435 struct ufsmount *ump; 10436 10437 /* 10438 * We only care about write operations. There should never 10439 * be dependencies for reads. 10440 */ 10441 if (bp->b_iocmd != BIO_WRITE) 10442 panic("softdep_disk_io_initiation: not write"); 10443 10444 if (bp->b_vflags & BV_BKGRDINPROG) 10445 panic("softdep_disk_io_initiation: Writing buffer with " 10446 "background write in progress: %p", bp); 10447 10448 ump = softdep_bp_to_mp(bp); 10449 if (ump == NULL) 10450 return; 10451 10452 marker.wk_type = D_LAST + 1; /* Not a normal workitem */ 10453 PHOLD(curproc); /* Don't swap out kernel stack */ 10454 ACQUIRE_LOCK(ump); 10455 /* 10456 * Do any necessary pre-I/O processing. 10457 */ 10458 for (wk = LIST_FIRST(&bp->b_dep); wk != NULL; 10459 wk = markernext(&marker)) { 10460 LIST_INSERT_AFTER(wk, &marker, wk_list); 10461 switch (wk->wk_type) { 10462 case D_PAGEDEP: 10463 initiate_write_filepage(WK_PAGEDEP(wk), bp); 10464 continue; 10465 10466 case D_INODEDEP: 10467 inodedep = WK_INODEDEP(wk); 10468 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) 10469 initiate_write_inodeblock_ufs1(inodedep, bp); 10470 else 10471 initiate_write_inodeblock_ufs2(inodedep, bp); 10472 continue; 10473 10474 case D_INDIRDEP: 10475 initiate_write_indirdep(WK_INDIRDEP(wk), bp); 10476 continue; 10477 10478 case D_BMSAFEMAP: 10479 initiate_write_bmsafemap(WK_BMSAFEMAP(wk), bp); 10480 continue; 10481 10482 case D_JSEG: 10483 WK_JSEG(wk)->js_buf = NULL; 10484 continue; 10485 10486 case D_FREEBLKS: 10487 freeblks = WK_FREEBLKS(wk); 10488 jblkdep = LIST_FIRST(&freeblks->fb_jblkdephd); 10489 /* 10490 * We have to wait for the freeblks to be journaled 10491 * before we can write an inodeblock with updated 10492 * pointers. Be careful to arrange the marker so 10493 * we revisit the freeblks if it's not removed by 10494 * the first jwait(). 10495 */ 10496 if (jblkdep != NULL) { 10497 LIST_REMOVE(&marker, wk_list); 10498 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10499 jwait(&jblkdep->jb_list, MNT_WAIT); 10500 } 10501 continue; 10502 case D_ALLOCDIRECT: 10503 case D_ALLOCINDIR: 10504 /* 10505 * We have to wait for the jnewblk to be journaled 10506 * before we can write to a block if the contents 10507 * may be confused with an earlier file's indirect 10508 * at recovery time. Handle the marker as described 10509 * above. 10510 */ 10511 newblk = WK_NEWBLK(wk); 10512 if (newblk->nb_jnewblk != NULL && 10513 indirblk_lookup(newblk->nb_list.wk_mp, 10514 newblk->nb_newblkno)) { 10515 LIST_REMOVE(&marker, wk_list); 10516 LIST_INSERT_BEFORE(wk, &marker, wk_list); 10517 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 10518 } 10519 continue; 10520 10521 case D_SBDEP: 10522 initiate_write_sbdep(WK_SBDEP(wk)); 10523 continue; 10524 10525 case D_MKDIR: 10526 case D_FREEWORK: 10527 case D_FREEDEP: 10528 case D_JSEGDEP: 10529 continue; 10530 10531 default: 10532 panic("handle_disk_io_initiation: Unexpected type %s", 10533 TYPENAME(wk->wk_type)); 10534 /* NOTREACHED */ 10535 } 10536 } 10537 FREE_LOCK(ump); 10538 PRELE(curproc); /* Allow swapout of kernel stack */ 10539 } 10540 10541 /* 10542 * Called from within the procedure above to deal with unsatisfied 10543 * allocation dependencies in a directory. The buffer must be locked, 10544 * thus, no I/O completion operations can occur while we are 10545 * manipulating its associated dependencies. 10546 */ 10547 static void 10548 initiate_write_filepage(pagedep, bp) 10549 struct pagedep *pagedep; 10550 struct buf *bp; 10551 { 10552 struct jremref *jremref; 10553 struct jmvref *jmvref; 10554 struct dirrem *dirrem; 10555 struct diradd *dap; 10556 struct direct *ep; 10557 int i; 10558 10559 if (pagedep->pd_state & IOSTARTED) { 10560 /* 10561 * This can only happen if there is a driver that does not 10562 * understand chaining. Here biodone will reissue the call 10563 * to strategy for the incomplete buffers. 10564 */ 10565 printf("initiate_write_filepage: already started\n"); 10566 return; 10567 } 10568 pagedep->pd_state |= IOSTARTED; 10569 /* 10570 * Wait for all journal remove dependencies to hit the disk. 10571 * We can not allow any potentially conflicting directory adds 10572 * to be visible before removes and rollback is too difficult. 10573 * The per-filesystem lock may be dropped and re-acquired, however 10574 * we hold the buf locked so the dependency can not go away. 10575 */ 10576 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) 10577 while ((jremref = LIST_FIRST(&dirrem->dm_jremrefhd)) != NULL) 10578 jwait(&jremref->jr_list, MNT_WAIT); 10579 while ((jmvref = LIST_FIRST(&pagedep->pd_jmvrefhd)) != NULL) 10580 jwait(&jmvref->jm_list, MNT_WAIT); 10581 for (i = 0; i < DAHASHSZ; i++) { 10582 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 10583 ep = (struct direct *) 10584 ((char *)bp->b_data + dap->da_offset); 10585 if (ep->d_ino != dap->da_newinum) 10586 panic("%s: dir inum %ju != new %ju", 10587 "initiate_write_filepage", 10588 (uintmax_t)ep->d_ino, 10589 (uintmax_t)dap->da_newinum); 10590 if (dap->da_state & DIRCHG) 10591 ep->d_ino = dap->da_previous->dm_oldinum; 10592 else 10593 ep->d_ino = 0; 10594 dap->da_state &= ~ATTACHED; 10595 dap->da_state |= UNDONE; 10596 } 10597 } 10598 } 10599 10600 /* 10601 * Version of initiate_write_inodeblock that handles UFS1 dinodes. 10602 * Note that any bug fixes made to this routine must be done in the 10603 * version found below. 10604 * 10605 * Called from within the procedure above to deal with unsatisfied 10606 * allocation dependencies in an inodeblock. The buffer must be 10607 * locked, thus, no I/O completion operations can occur while we 10608 * are manipulating its associated dependencies. 10609 */ 10610 static void 10611 initiate_write_inodeblock_ufs1(inodedep, bp) 10612 struct inodedep *inodedep; 10613 struct buf *bp; /* The inode block */ 10614 { 10615 struct allocdirect *adp, *lastadp; 10616 struct ufs1_dinode *dp; 10617 struct ufs1_dinode *sip; 10618 struct inoref *inoref; 10619 struct ufsmount *ump; 10620 struct fs *fs; 10621 ufs_lbn_t i; 10622 #ifdef INVARIANTS 10623 ufs_lbn_t prevlbn = 0; 10624 #endif 10625 int deplist __diagused; 10626 10627 if (inodedep->id_state & IOSTARTED) 10628 panic("initiate_write_inodeblock_ufs1: already started"); 10629 inodedep->id_state |= IOSTARTED; 10630 fs = inodedep->id_fs; 10631 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10632 LOCK_OWNED(ump); 10633 dp = (struct ufs1_dinode *)bp->b_data + 10634 ino_to_fsbo(fs, inodedep->id_ino); 10635 10636 /* 10637 * If we're on the unlinked list but have not yet written our 10638 * next pointer initialize it here. 10639 */ 10640 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10641 struct inodedep *inon; 10642 10643 inon = TAILQ_NEXT(inodedep, id_unlinked); 10644 dp->di_freelink = inon ? inon->id_ino : 0; 10645 } 10646 /* 10647 * If the bitmap is not yet written, then the allocated 10648 * inode cannot be written to disk. 10649 */ 10650 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10651 if (inodedep->id_savedino1 != NULL) 10652 panic("initiate_write_inodeblock_ufs1: I/O underway"); 10653 FREE_LOCK(ump); 10654 sip = malloc(sizeof(struct ufs1_dinode), 10655 M_SAVEDINO, M_SOFTDEP_FLAGS); 10656 ACQUIRE_LOCK(ump); 10657 inodedep->id_savedino1 = sip; 10658 *inodedep->id_savedino1 = *dp; 10659 bzero((caddr_t)dp, sizeof(struct ufs1_dinode)); 10660 dp->di_gen = inodedep->id_savedino1->di_gen; 10661 dp->di_freelink = inodedep->id_savedino1->di_freelink; 10662 return; 10663 } 10664 /* 10665 * If no dependencies, then there is nothing to roll back. 10666 */ 10667 inodedep->id_savedsize = dp->di_size; 10668 inodedep->id_savedextsize = 0; 10669 inodedep->id_savednlink = dp->di_nlink; 10670 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10671 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10672 return; 10673 /* 10674 * Revert the link count to that of the first unwritten journal entry. 10675 */ 10676 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10677 if (inoref) 10678 dp->di_nlink = inoref->if_nlink; 10679 /* 10680 * Set the dependencies to busy. 10681 */ 10682 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10683 adp = TAILQ_NEXT(adp, ad_next)) { 10684 #ifdef INVARIANTS 10685 if (deplist != 0 && prevlbn >= adp->ad_offset) 10686 panic("softdep_write_inodeblock: lbn order"); 10687 prevlbn = adp->ad_offset; 10688 if (adp->ad_offset < UFS_NDADDR && 10689 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10690 panic("initiate_write_inodeblock_ufs1: " 10691 "direct pointer #%jd mismatch %d != %jd", 10692 (intmax_t)adp->ad_offset, 10693 dp->di_db[adp->ad_offset], 10694 (intmax_t)adp->ad_newblkno); 10695 if (adp->ad_offset >= UFS_NDADDR && 10696 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10697 panic("initiate_write_inodeblock_ufs1: " 10698 "indirect pointer #%jd mismatch %d != %jd", 10699 (intmax_t)adp->ad_offset - UFS_NDADDR, 10700 dp->di_ib[adp->ad_offset - UFS_NDADDR], 10701 (intmax_t)adp->ad_newblkno); 10702 deplist |= 1 << adp->ad_offset; 10703 if ((adp->ad_state & ATTACHED) == 0) 10704 panic("initiate_write_inodeblock_ufs1: " 10705 "Unknown state 0x%x", adp->ad_state); 10706 #endif /* INVARIANTS */ 10707 adp->ad_state &= ~ATTACHED; 10708 adp->ad_state |= UNDONE; 10709 } 10710 /* 10711 * The on-disk inode cannot claim to be any larger than the last 10712 * fragment that has been written. Otherwise, the on-disk inode 10713 * might have fragments that were not the last block in the file 10714 * which would corrupt the filesystem. 10715 */ 10716 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10717 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10718 if (adp->ad_offset >= UFS_NDADDR) 10719 break; 10720 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10721 /* keep going until hitting a rollback to a frag */ 10722 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10723 continue; 10724 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10725 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10726 #ifdef INVARIANTS 10727 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10728 panic("initiate_write_inodeblock_ufs1: " 10729 "lost dep1"); 10730 #endif /* INVARIANTS */ 10731 dp->di_db[i] = 0; 10732 } 10733 for (i = 0; i < UFS_NIADDR; i++) { 10734 #ifdef INVARIANTS 10735 if (dp->di_ib[i] != 0 && 10736 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10737 panic("initiate_write_inodeblock_ufs1: " 10738 "lost dep2"); 10739 #endif /* INVARIANTS */ 10740 dp->di_ib[i] = 0; 10741 } 10742 return; 10743 } 10744 /* 10745 * If we have zero'ed out the last allocated block of the file, 10746 * roll back the size to the last currently allocated block. 10747 * We know that this last allocated block is a full-sized as 10748 * we already checked for fragments in the loop above. 10749 */ 10750 if (lastadp != NULL && 10751 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10752 for (i = lastadp->ad_offset; i >= 0; i--) 10753 if (dp->di_db[i] != 0) 10754 break; 10755 dp->di_size = (i + 1) * fs->fs_bsize; 10756 } 10757 /* 10758 * The only dependencies are for indirect blocks. 10759 * 10760 * The file size for indirect block additions is not guaranteed. 10761 * Such a guarantee would be non-trivial to achieve. The conventional 10762 * synchronous write implementation also does not make this guarantee. 10763 * Fsck should catch and fix discrepancies. Arguably, the file size 10764 * can be over-estimated without destroying integrity when the file 10765 * moves into the indirect blocks (i.e., is large). If we want to 10766 * postpone fsck, we are stuck with this argument. 10767 */ 10768 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 10769 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 10770 } 10771 10772 /* 10773 * Version of initiate_write_inodeblock that handles UFS2 dinodes. 10774 * Note that any bug fixes made to this routine must be done in the 10775 * version found above. 10776 * 10777 * Called from within the procedure above to deal with unsatisfied 10778 * allocation dependencies in an inodeblock. The buffer must be 10779 * locked, thus, no I/O completion operations can occur while we 10780 * are manipulating its associated dependencies. 10781 */ 10782 static void 10783 initiate_write_inodeblock_ufs2(inodedep, bp) 10784 struct inodedep *inodedep; 10785 struct buf *bp; /* The inode block */ 10786 { 10787 struct allocdirect *adp, *lastadp; 10788 struct ufs2_dinode *dp; 10789 struct ufs2_dinode *sip; 10790 struct inoref *inoref; 10791 struct ufsmount *ump; 10792 struct fs *fs; 10793 ufs_lbn_t i; 10794 #ifdef INVARIANTS 10795 ufs_lbn_t prevlbn = 0; 10796 #endif 10797 int deplist __diagused; 10798 10799 if (inodedep->id_state & IOSTARTED) 10800 panic("initiate_write_inodeblock_ufs2: already started"); 10801 inodedep->id_state |= IOSTARTED; 10802 fs = inodedep->id_fs; 10803 ump = VFSTOUFS(inodedep->id_list.wk_mp); 10804 LOCK_OWNED(ump); 10805 dp = (struct ufs2_dinode *)bp->b_data + 10806 ino_to_fsbo(fs, inodedep->id_ino); 10807 10808 /* 10809 * If we're on the unlinked list but have not yet written our 10810 * next pointer initialize it here. 10811 */ 10812 if ((inodedep->id_state & (UNLINKED | UNLINKNEXT)) == UNLINKED) { 10813 struct inodedep *inon; 10814 10815 inon = TAILQ_NEXT(inodedep, id_unlinked); 10816 dp->di_freelink = inon ? inon->id_ino : 0; 10817 ffs_update_dinode_ckhash(fs, dp); 10818 } 10819 /* 10820 * If the bitmap is not yet written, then the allocated 10821 * inode cannot be written to disk. 10822 */ 10823 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 10824 if (inodedep->id_savedino2 != NULL) 10825 panic("initiate_write_inodeblock_ufs2: I/O underway"); 10826 FREE_LOCK(ump); 10827 sip = malloc(sizeof(struct ufs2_dinode), 10828 M_SAVEDINO, M_SOFTDEP_FLAGS); 10829 ACQUIRE_LOCK(ump); 10830 inodedep->id_savedino2 = sip; 10831 *inodedep->id_savedino2 = *dp; 10832 bzero((caddr_t)dp, sizeof(struct ufs2_dinode)); 10833 dp->di_gen = inodedep->id_savedino2->di_gen; 10834 dp->di_freelink = inodedep->id_savedino2->di_freelink; 10835 return; 10836 } 10837 /* 10838 * If no dependencies, then there is nothing to roll back. 10839 */ 10840 inodedep->id_savedsize = dp->di_size; 10841 inodedep->id_savedextsize = dp->di_extsize; 10842 inodedep->id_savednlink = dp->di_nlink; 10843 if (TAILQ_EMPTY(&inodedep->id_inoupdt) && 10844 TAILQ_EMPTY(&inodedep->id_extupdt) && 10845 TAILQ_EMPTY(&inodedep->id_inoreflst)) 10846 return; 10847 /* 10848 * Revert the link count to that of the first unwritten journal entry. 10849 */ 10850 inoref = TAILQ_FIRST(&inodedep->id_inoreflst); 10851 if (inoref) 10852 dp->di_nlink = inoref->if_nlink; 10853 10854 /* 10855 * Set the ext data dependencies to busy. 10856 */ 10857 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10858 adp = TAILQ_NEXT(adp, ad_next)) { 10859 #ifdef INVARIANTS 10860 if (deplist != 0 && prevlbn >= adp->ad_offset) 10861 panic("initiate_write_inodeblock_ufs2: lbn order"); 10862 prevlbn = adp->ad_offset; 10863 if (dp->di_extb[adp->ad_offset] != adp->ad_newblkno) 10864 panic("initiate_write_inodeblock_ufs2: " 10865 "ext pointer #%jd mismatch %jd != %jd", 10866 (intmax_t)adp->ad_offset, 10867 (intmax_t)dp->di_extb[adp->ad_offset], 10868 (intmax_t)adp->ad_newblkno); 10869 deplist |= 1 << adp->ad_offset; 10870 if ((adp->ad_state & ATTACHED) == 0) 10871 panic("initiate_write_inodeblock_ufs2: Unknown " 10872 "state 0x%x", adp->ad_state); 10873 #endif /* INVARIANTS */ 10874 adp->ad_state &= ~ATTACHED; 10875 adp->ad_state |= UNDONE; 10876 } 10877 /* 10878 * The on-disk inode cannot claim to be any larger than the last 10879 * fragment that has been written. Otherwise, the on-disk inode 10880 * might have fragments that were not the last block in the ext 10881 * data which would corrupt the filesystem. 10882 */ 10883 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; 10884 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10885 dp->di_extb[adp->ad_offset] = adp->ad_oldblkno; 10886 /* keep going until hitting a rollback to a frag */ 10887 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10888 continue; 10889 dp->di_extsize = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10890 for (i = adp->ad_offset + 1; i < UFS_NXADDR; i++) { 10891 #ifdef INVARIANTS 10892 if (dp->di_extb[i] != 0 && (deplist & (1 << i)) == 0) 10893 panic("initiate_write_inodeblock_ufs2: " 10894 "lost dep1"); 10895 #endif /* INVARIANTS */ 10896 dp->di_extb[i] = 0; 10897 } 10898 lastadp = NULL; 10899 break; 10900 } 10901 /* 10902 * If we have zero'ed out the last allocated block of the ext 10903 * data, roll back the size to the last currently allocated block. 10904 * We know that this last allocated block is a full-sized as 10905 * we already checked for fragments in the loop above. 10906 */ 10907 if (lastadp != NULL && 10908 dp->di_extsize <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10909 for (i = lastadp->ad_offset; i >= 0; i--) 10910 if (dp->di_extb[i] != 0) 10911 break; 10912 dp->di_extsize = (i + 1) * fs->fs_bsize; 10913 } 10914 /* 10915 * Set the file data dependencies to busy. 10916 */ 10917 for (deplist = 0, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10918 adp = TAILQ_NEXT(adp, ad_next)) { 10919 #ifdef INVARIANTS 10920 if (deplist != 0 && prevlbn >= adp->ad_offset) 10921 panic("softdep_write_inodeblock: lbn order"); 10922 if ((adp->ad_state & ATTACHED) == 0) 10923 panic("inodedep %p and adp %p not attached", inodedep, adp); 10924 prevlbn = adp->ad_offset; 10925 if (!ffs_fsfail_cleanup(ump, 0) && 10926 adp->ad_offset < UFS_NDADDR && 10927 dp->di_db[adp->ad_offset] != adp->ad_newblkno) 10928 panic("initiate_write_inodeblock_ufs2: " 10929 "direct pointer #%jd mismatch %jd != %jd", 10930 (intmax_t)adp->ad_offset, 10931 (intmax_t)dp->di_db[adp->ad_offset], 10932 (intmax_t)adp->ad_newblkno); 10933 if (!ffs_fsfail_cleanup(ump, 0) && 10934 adp->ad_offset >= UFS_NDADDR && 10935 dp->di_ib[adp->ad_offset - UFS_NDADDR] != adp->ad_newblkno) 10936 panic("initiate_write_inodeblock_ufs2: " 10937 "indirect pointer #%jd mismatch %jd != %jd", 10938 (intmax_t)adp->ad_offset - UFS_NDADDR, 10939 (intmax_t)dp->di_ib[adp->ad_offset - UFS_NDADDR], 10940 (intmax_t)adp->ad_newblkno); 10941 deplist |= 1 << adp->ad_offset; 10942 if ((adp->ad_state & ATTACHED) == 0) 10943 panic("initiate_write_inodeblock_ufs2: Unknown " 10944 "state 0x%x", adp->ad_state); 10945 #endif /* INVARIANTS */ 10946 adp->ad_state &= ~ATTACHED; 10947 adp->ad_state |= UNDONE; 10948 } 10949 /* 10950 * The on-disk inode cannot claim to be any larger than the last 10951 * fragment that has been written. Otherwise, the on-disk inode 10952 * might have fragments that were not the last block in the file 10953 * which would corrupt the filesystem. 10954 */ 10955 for (lastadp = NULL, adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; 10956 lastadp = adp, adp = TAILQ_NEXT(adp, ad_next)) { 10957 if (adp->ad_offset >= UFS_NDADDR) 10958 break; 10959 dp->di_db[adp->ad_offset] = adp->ad_oldblkno; 10960 /* keep going until hitting a rollback to a frag */ 10961 if (adp->ad_oldsize == 0 || adp->ad_oldsize == fs->fs_bsize) 10962 continue; 10963 dp->di_size = fs->fs_bsize * adp->ad_offset + adp->ad_oldsize; 10964 for (i = adp->ad_offset + 1; i < UFS_NDADDR; i++) { 10965 #ifdef INVARIANTS 10966 if (dp->di_db[i] != 0 && (deplist & (1 << i)) == 0) 10967 panic("initiate_write_inodeblock_ufs2: " 10968 "lost dep2"); 10969 #endif /* INVARIANTS */ 10970 dp->di_db[i] = 0; 10971 } 10972 for (i = 0; i < UFS_NIADDR; i++) { 10973 #ifdef INVARIANTS 10974 if (dp->di_ib[i] != 0 && 10975 (deplist & ((1 << UFS_NDADDR) << i)) == 0) 10976 panic("initiate_write_inodeblock_ufs2: " 10977 "lost dep3"); 10978 #endif /* INVARIANTS */ 10979 dp->di_ib[i] = 0; 10980 } 10981 ffs_update_dinode_ckhash(fs, dp); 10982 return; 10983 } 10984 /* 10985 * If we have zero'ed out the last allocated block of the file, 10986 * roll back the size to the last currently allocated block. 10987 * We know that this last allocated block is a full-sized as 10988 * we already checked for fragments in the loop above. 10989 */ 10990 if (lastadp != NULL && 10991 dp->di_size <= (lastadp->ad_offset + 1) * fs->fs_bsize) { 10992 for (i = lastadp->ad_offset; i >= 0; i--) 10993 if (dp->di_db[i] != 0) 10994 break; 10995 dp->di_size = (i + 1) * fs->fs_bsize; 10996 } 10997 /* 10998 * The only dependencies are for indirect blocks. 10999 * 11000 * The file size for indirect block additions is not guaranteed. 11001 * Such a guarantee would be non-trivial to achieve. The conventional 11002 * synchronous write implementation also does not make this guarantee. 11003 * Fsck should catch and fix discrepancies. Arguably, the file size 11004 * can be over-estimated without destroying integrity when the file 11005 * moves into the indirect blocks (i.e., is large). If we want to 11006 * postpone fsck, we are stuck with this argument. 11007 */ 11008 for (; adp; adp = TAILQ_NEXT(adp, ad_next)) 11009 dp->di_ib[adp->ad_offset - UFS_NDADDR] = 0; 11010 ffs_update_dinode_ckhash(fs, dp); 11011 } 11012 11013 /* 11014 * Cancel an indirdep as a result of truncation. Release all of the 11015 * children allocindirs and place their journal work on the appropriate 11016 * list. 11017 */ 11018 static void 11019 cancel_indirdep(indirdep, bp, freeblks) 11020 struct indirdep *indirdep; 11021 struct buf *bp; 11022 struct freeblks *freeblks; 11023 { 11024 struct allocindir *aip; 11025 11026 /* 11027 * None of the indirect pointers will ever be visible, 11028 * so they can simply be tossed. GOINGAWAY ensures 11029 * that allocated pointers will be saved in the buffer 11030 * cache until they are freed. Note that they will 11031 * only be able to be found by their physical address 11032 * since the inode mapping the logical address will 11033 * be gone. The save buffer used for the safe copy 11034 * was allocated in setup_allocindir_phase2 using 11035 * the physical address so it could be used for this 11036 * purpose. Hence we swap the safe copy with the real 11037 * copy, allowing the safe copy to be freed and holding 11038 * on to the real copy for later use in indir_trunc. 11039 */ 11040 if (indirdep->ir_state & GOINGAWAY) 11041 panic("cancel_indirdep: already gone"); 11042 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 11043 indirdep->ir_state |= DEPCOMPLETE; 11044 LIST_REMOVE(indirdep, ir_next); 11045 } 11046 indirdep->ir_state |= GOINGAWAY; 11047 /* 11048 * Pass in bp for blocks still have journal writes 11049 * pending so we can cancel them on their own. 11050 */ 11051 while ((aip = LIST_FIRST(&indirdep->ir_deplisthd)) != NULL) 11052 cancel_allocindir(aip, bp, freeblks, 0); 11053 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) 11054 cancel_allocindir(aip, NULL, freeblks, 0); 11055 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) 11056 cancel_allocindir(aip, NULL, freeblks, 0); 11057 while ((aip = LIST_FIRST(&indirdep->ir_completehd)) != NULL) 11058 cancel_allocindir(aip, NULL, freeblks, 0); 11059 /* 11060 * If there are pending partial truncations we need to keep the 11061 * old block copy around until they complete. This is because 11062 * the current b_data is not a perfect superset of the available 11063 * blocks. 11064 */ 11065 if (TAILQ_EMPTY(&indirdep->ir_trunc)) 11066 bcopy(bp->b_data, indirdep->ir_savebp->b_data, bp->b_bcount); 11067 else 11068 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11069 WORKLIST_REMOVE(&indirdep->ir_list); 11070 WORKLIST_INSERT(&indirdep->ir_savebp->b_dep, &indirdep->ir_list); 11071 indirdep->ir_bp = NULL; 11072 indirdep->ir_freeblks = freeblks; 11073 } 11074 11075 /* 11076 * Free an indirdep once it no longer has new pointers to track. 11077 */ 11078 static void 11079 free_indirdep(indirdep) 11080 struct indirdep *indirdep; 11081 { 11082 11083 KASSERT(TAILQ_EMPTY(&indirdep->ir_trunc), 11084 ("free_indirdep: Indir trunc list not empty.")); 11085 KASSERT(LIST_EMPTY(&indirdep->ir_completehd), 11086 ("free_indirdep: Complete head not empty.")); 11087 KASSERT(LIST_EMPTY(&indirdep->ir_writehd), 11088 ("free_indirdep: write head not empty.")); 11089 KASSERT(LIST_EMPTY(&indirdep->ir_donehd), 11090 ("free_indirdep: done head not empty.")); 11091 KASSERT(LIST_EMPTY(&indirdep->ir_deplisthd), 11092 ("free_indirdep: deplist head not empty.")); 11093 KASSERT((indirdep->ir_state & DEPCOMPLETE), 11094 ("free_indirdep: %p still on newblk list.", indirdep)); 11095 KASSERT(indirdep->ir_saveddata == NULL, 11096 ("free_indirdep: %p still has saved data.", indirdep)); 11097 KASSERT(indirdep->ir_savebp == NULL, 11098 ("free_indirdep: %p still has savebp buffer.", indirdep)); 11099 if (indirdep->ir_state & ONWORKLIST) 11100 WORKLIST_REMOVE(&indirdep->ir_list); 11101 WORKITEM_FREE(indirdep, D_INDIRDEP); 11102 } 11103 11104 /* 11105 * Called before a write to an indirdep. This routine is responsible for 11106 * rolling back pointers to a safe state which includes only those 11107 * allocindirs which have been completed. 11108 */ 11109 static void 11110 initiate_write_indirdep(indirdep, bp) 11111 struct indirdep *indirdep; 11112 struct buf *bp; 11113 { 11114 struct ufsmount *ump; 11115 11116 indirdep->ir_state |= IOSTARTED; 11117 if (indirdep->ir_state & GOINGAWAY) 11118 panic("disk_io_initiation: indirdep gone"); 11119 /* 11120 * If there are no remaining dependencies, this will be writing 11121 * the real pointers. 11122 */ 11123 if (LIST_EMPTY(&indirdep->ir_deplisthd) && 11124 TAILQ_EMPTY(&indirdep->ir_trunc)) 11125 return; 11126 /* 11127 * Replace up-to-date version with safe version. 11128 */ 11129 if (indirdep->ir_saveddata == NULL) { 11130 ump = VFSTOUFS(indirdep->ir_list.wk_mp); 11131 LOCK_OWNED(ump); 11132 FREE_LOCK(ump); 11133 indirdep->ir_saveddata = malloc(bp->b_bcount, M_INDIRDEP, 11134 M_SOFTDEP_FLAGS); 11135 ACQUIRE_LOCK(ump); 11136 } 11137 indirdep->ir_state &= ~ATTACHED; 11138 indirdep->ir_state |= UNDONE; 11139 bcopy(bp->b_data, indirdep->ir_saveddata, bp->b_bcount); 11140 bcopy(indirdep->ir_savebp->b_data, bp->b_data, 11141 bp->b_bcount); 11142 } 11143 11144 /* 11145 * Called when an inode has been cleared in a cg bitmap. This finally 11146 * eliminates any canceled jaddrefs 11147 */ 11148 void 11149 softdep_setup_inofree(mp, bp, ino, wkhd) 11150 struct mount *mp; 11151 struct buf *bp; 11152 ino_t ino; 11153 struct workhead *wkhd; 11154 { 11155 struct worklist *wk, *wkn; 11156 struct inodedep *inodedep; 11157 struct ufsmount *ump; 11158 uint8_t *inosused; 11159 struct cg *cgp; 11160 struct fs *fs; 11161 11162 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 11163 ("softdep_setup_inofree called on non-softdep filesystem")); 11164 ump = VFSTOUFS(mp); 11165 ACQUIRE_LOCK(ump); 11166 if (!ffs_fsfail_cleanup(ump, 0)) { 11167 fs = ump->um_fs; 11168 cgp = (struct cg *)bp->b_data; 11169 inosused = cg_inosused(cgp); 11170 if (isset(inosused, ino % fs->fs_ipg)) 11171 panic("softdep_setup_inofree: inode %ju not freed.", 11172 (uintmax_t)ino); 11173 } 11174 if (inodedep_lookup(mp, ino, 0, &inodedep)) 11175 panic("softdep_setup_inofree: ino %ju has existing inodedep %p", 11176 (uintmax_t)ino, inodedep); 11177 if (wkhd) { 11178 LIST_FOREACH_SAFE(wk, wkhd, wk_list, wkn) { 11179 if (wk->wk_type != D_JADDREF) 11180 continue; 11181 WORKLIST_REMOVE(wk); 11182 /* 11183 * We can free immediately even if the jaddref 11184 * isn't attached in a background write as now 11185 * the bitmaps are reconciled. 11186 */ 11187 wk->wk_state |= COMPLETE | ATTACHED; 11188 free_jaddref(WK_JADDREF(wk)); 11189 } 11190 jwork_move(&bp->b_dep, wkhd); 11191 } 11192 FREE_LOCK(ump); 11193 } 11194 11195 /* 11196 * Called via ffs_blkfree() after a set of frags has been cleared from a cg 11197 * map. Any dependencies waiting for the write to clear are added to the 11198 * buf's list and any jnewblks that are being canceled are discarded 11199 * immediately. 11200 */ 11201 void 11202 softdep_setup_blkfree(mp, bp, blkno, frags, wkhd) 11203 struct mount *mp; 11204 struct buf *bp; 11205 ufs2_daddr_t blkno; 11206 int frags; 11207 struct workhead *wkhd; 11208 { 11209 struct bmsafemap *bmsafemap; 11210 struct jnewblk *jnewblk; 11211 struct ufsmount *ump; 11212 struct worklist *wk; 11213 struct fs *fs; 11214 #ifdef INVARIANTS 11215 uint8_t *blksfree; 11216 struct cg *cgp; 11217 ufs2_daddr_t jstart; 11218 ufs2_daddr_t jend; 11219 ufs2_daddr_t end; 11220 long bno; 11221 int i; 11222 #endif 11223 11224 CTR3(KTR_SUJ, 11225 "softdep_setup_blkfree: blkno %jd frags %d wk head %p", 11226 blkno, frags, wkhd); 11227 11228 ump = VFSTOUFS(mp); 11229 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 11230 ("softdep_setup_blkfree called on non-softdep filesystem")); 11231 ACQUIRE_LOCK(ump); 11232 /* Lookup the bmsafemap so we track when it is dirty. */ 11233 fs = ump->um_fs; 11234 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11235 /* 11236 * Detach any jnewblks which have been canceled. They must linger 11237 * until the bitmap is cleared again by ffs_blkfree() to prevent 11238 * an unjournaled allocation from hitting the disk. 11239 */ 11240 if (wkhd) { 11241 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11242 CTR2(KTR_SUJ, 11243 "softdep_setup_blkfree: blkno %jd wk type %d", 11244 blkno, wk->wk_type); 11245 WORKLIST_REMOVE(wk); 11246 if (wk->wk_type != D_JNEWBLK) { 11247 WORKLIST_INSERT(&bmsafemap->sm_freehd, wk); 11248 continue; 11249 } 11250 jnewblk = WK_JNEWBLK(wk); 11251 KASSERT(jnewblk->jn_state & GOINGAWAY, 11252 ("softdep_setup_blkfree: jnewblk not canceled.")); 11253 #ifdef INVARIANTS 11254 /* 11255 * Assert that this block is free in the bitmap 11256 * before we discard the jnewblk. 11257 */ 11258 cgp = (struct cg *)bp->b_data; 11259 blksfree = cg_blksfree(cgp); 11260 bno = dtogd(fs, jnewblk->jn_blkno); 11261 for (i = jnewblk->jn_oldfrags; 11262 i < jnewblk->jn_frags; i++) { 11263 if (isset(blksfree, bno + i)) 11264 continue; 11265 panic("softdep_setup_blkfree: not free"); 11266 } 11267 #endif 11268 /* 11269 * Even if it's not attached we can free immediately 11270 * as the new bitmap is correct. 11271 */ 11272 wk->wk_state |= COMPLETE | ATTACHED; 11273 free_jnewblk(jnewblk); 11274 } 11275 } 11276 11277 #ifdef INVARIANTS 11278 /* 11279 * Assert that we are not freeing a block which has an outstanding 11280 * allocation dependency. 11281 */ 11282 fs = VFSTOUFS(mp)->um_fs; 11283 bmsafemap = bmsafemap_lookup(mp, bp, dtog(fs, blkno), NULL); 11284 end = blkno + frags; 11285 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11286 /* 11287 * Don't match against blocks that will be freed when the 11288 * background write is done. 11289 */ 11290 if ((jnewblk->jn_state & (ATTACHED | COMPLETE | DEPCOMPLETE)) == 11291 (COMPLETE | DEPCOMPLETE)) 11292 continue; 11293 jstart = jnewblk->jn_blkno + jnewblk->jn_oldfrags; 11294 jend = jnewblk->jn_blkno + jnewblk->jn_frags; 11295 if ((blkno >= jstart && blkno < jend) || 11296 (end > jstart && end <= jend)) { 11297 printf("state 0x%X %jd - %d %d dep %p\n", 11298 jnewblk->jn_state, jnewblk->jn_blkno, 11299 jnewblk->jn_oldfrags, jnewblk->jn_frags, 11300 jnewblk->jn_dep); 11301 panic("softdep_setup_blkfree: " 11302 "%jd-%jd(%d) overlaps with %jd-%jd", 11303 blkno, end, frags, jstart, jend); 11304 } 11305 } 11306 #endif 11307 FREE_LOCK(ump); 11308 } 11309 11310 /* 11311 * Revert a block allocation when the journal record that describes it 11312 * is not yet written. 11313 */ 11314 static int 11315 jnewblk_rollback(jnewblk, fs, cgp, blksfree) 11316 struct jnewblk *jnewblk; 11317 struct fs *fs; 11318 struct cg *cgp; 11319 uint8_t *blksfree; 11320 { 11321 ufs1_daddr_t fragno; 11322 long cgbno, bbase; 11323 int frags, blk; 11324 int i; 11325 11326 frags = 0; 11327 cgbno = dtogd(fs, jnewblk->jn_blkno); 11328 /* 11329 * We have to test which frags need to be rolled back. We may 11330 * be operating on a stale copy when doing background writes. 11331 */ 11332 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) 11333 if (isclr(blksfree, cgbno + i)) 11334 frags++; 11335 if (frags == 0) 11336 return (0); 11337 /* 11338 * This is mostly ffs_blkfree() sans some validation and 11339 * superblock updates. 11340 */ 11341 if (frags == fs->fs_frag) { 11342 fragno = fragstoblks(fs, cgbno); 11343 ffs_setblock(fs, blksfree, fragno); 11344 ffs_clusteracct(fs, cgp, fragno, 1); 11345 cgp->cg_cs.cs_nbfree++; 11346 } else { 11347 cgbno += jnewblk->jn_oldfrags; 11348 bbase = cgbno - fragnum(fs, cgbno); 11349 /* Decrement the old frags. */ 11350 blk = blkmap(fs, blksfree, bbase); 11351 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 11352 /* Deallocate the fragment */ 11353 for (i = 0; i < frags; i++) 11354 setbit(blksfree, cgbno + i); 11355 cgp->cg_cs.cs_nffree += frags; 11356 /* Add back in counts associated with the new frags */ 11357 blk = blkmap(fs, blksfree, bbase); 11358 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 11359 /* If a complete block has been reassembled, account for it. */ 11360 fragno = fragstoblks(fs, bbase); 11361 if (ffs_isblock(fs, blksfree, fragno)) { 11362 cgp->cg_cs.cs_nffree -= fs->fs_frag; 11363 ffs_clusteracct(fs, cgp, fragno, 1); 11364 cgp->cg_cs.cs_nbfree++; 11365 } 11366 } 11367 stat_jnewblk++; 11368 jnewblk->jn_state &= ~ATTACHED; 11369 jnewblk->jn_state |= UNDONE; 11370 11371 return (frags); 11372 } 11373 11374 static void 11375 initiate_write_bmsafemap(bmsafemap, bp) 11376 struct bmsafemap *bmsafemap; 11377 struct buf *bp; /* The cg block. */ 11378 { 11379 struct jaddref *jaddref; 11380 struct jnewblk *jnewblk; 11381 uint8_t *inosused; 11382 uint8_t *blksfree; 11383 struct cg *cgp; 11384 struct fs *fs; 11385 ino_t ino; 11386 11387 /* 11388 * If this is a background write, we did this at the time that 11389 * the copy was made, so do not need to do it again. 11390 */ 11391 if (bmsafemap->sm_state & IOSTARTED) 11392 return; 11393 bmsafemap->sm_state |= IOSTARTED; 11394 /* 11395 * Clear any inode allocations which are pending journal writes. 11396 */ 11397 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd) != NULL) { 11398 cgp = (struct cg *)bp->b_data; 11399 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11400 inosused = cg_inosused(cgp); 11401 LIST_FOREACH(jaddref, &bmsafemap->sm_jaddrefhd, ja_bmdeps) { 11402 ino = jaddref->ja_ino % fs->fs_ipg; 11403 if (isset(inosused, ino)) { 11404 if ((jaddref->ja_mode & IFMT) == IFDIR) 11405 cgp->cg_cs.cs_ndir--; 11406 cgp->cg_cs.cs_nifree++; 11407 clrbit(inosused, ino); 11408 jaddref->ja_state &= ~ATTACHED; 11409 jaddref->ja_state |= UNDONE; 11410 stat_jaddref++; 11411 } else 11412 panic("initiate_write_bmsafemap: inode %ju " 11413 "marked free", (uintmax_t)jaddref->ja_ino); 11414 } 11415 } 11416 /* 11417 * Clear any block allocations which are pending journal writes. 11418 */ 11419 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 11420 cgp = (struct cg *)bp->b_data; 11421 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 11422 blksfree = cg_blksfree(cgp); 11423 LIST_FOREACH(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps) { 11424 if (jnewblk_rollback(jnewblk, fs, cgp, blksfree)) 11425 continue; 11426 panic("initiate_write_bmsafemap: block %jd " 11427 "marked free", jnewblk->jn_blkno); 11428 } 11429 } 11430 /* 11431 * Move allocation lists to the written lists so they can be 11432 * cleared once the block write is complete. 11433 */ 11434 LIST_SWAP(&bmsafemap->sm_inodedephd, &bmsafemap->sm_inodedepwr, 11435 inodedep, id_deps); 11436 LIST_SWAP(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 11437 newblk, nb_deps); 11438 LIST_SWAP(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, worklist, 11439 wk_list); 11440 } 11441 11442 void 11443 softdep_handle_error(struct buf *bp) 11444 { 11445 struct ufsmount *ump; 11446 11447 ump = softdep_bp_to_mp(bp); 11448 if (ump == NULL) 11449 return; 11450 11451 if (ffs_fsfail_cleanup(ump, bp->b_error)) { 11452 /* 11453 * No future writes will succeed, so the on-disk image is safe. 11454 * Pretend that this write succeeded so that the softdep state 11455 * will be cleaned up naturally. 11456 */ 11457 bp->b_ioflags &= ~BIO_ERROR; 11458 bp->b_error = 0; 11459 } 11460 } 11461 11462 /* 11463 * This routine is called during the completion interrupt 11464 * service routine for a disk write (from the procedure called 11465 * by the device driver to inform the filesystem caches of 11466 * a request completion). It should be called early in this 11467 * procedure, before the block is made available to other 11468 * processes or other routines are called. 11469 * 11470 */ 11471 static void 11472 softdep_disk_write_complete(bp) 11473 struct buf *bp; /* describes the completed disk write */ 11474 { 11475 struct worklist *wk; 11476 struct worklist *owk; 11477 struct ufsmount *ump; 11478 struct workhead reattach; 11479 struct freeblks *freeblks; 11480 struct buf *sbp; 11481 11482 ump = softdep_bp_to_mp(bp); 11483 KASSERT(LIST_EMPTY(&bp->b_dep) || ump != NULL, 11484 ("softdep_disk_write_complete: softdep_bp_to_mp returned NULL " 11485 "with outstanding dependencies for buffer %p", bp)); 11486 if (ump == NULL) 11487 return; 11488 if ((bp->b_ioflags & BIO_ERROR) != 0) 11489 softdep_handle_error(bp); 11490 /* 11491 * If an error occurred while doing the write, then the data 11492 * has not hit the disk and the dependencies cannot be processed. 11493 * But we do have to go through and roll forward any dependencies 11494 * that were rolled back before the disk write. 11495 */ 11496 sbp = NULL; 11497 ACQUIRE_LOCK(ump); 11498 if ((bp->b_ioflags & BIO_ERROR) != 0 && (bp->b_flags & B_INVAL) == 0) { 11499 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 11500 switch (wk->wk_type) { 11501 case D_PAGEDEP: 11502 handle_written_filepage(WK_PAGEDEP(wk), bp, 0); 11503 continue; 11504 11505 case D_INODEDEP: 11506 handle_written_inodeblock(WK_INODEDEP(wk), 11507 bp, 0); 11508 continue; 11509 11510 case D_BMSAFEMAP: 11511 handle_written_bmsafemap(WK_BMSAFEMAP(wk), 11512 bp, 0); 11513 continue; 11514 11515 case D_INDIRDEP: 11516 handle_written_indirdep(WK_INDIRDEP(wk), 11517 bp, &sbp, 0); 11518 continue; 11519 default: 11520 /* nothing to roll forward */ 11521 continue; 11522 } 11523 } 11524 FREE_LOCK(ump); 11525 if (sbp) 11526 brelse(sbp); 11527 return; 11528 } 11529 LIST_INIT(&reattach); 11530 11531 /* 11532 * Ump SU lock must not be released anywhere in this code segment. 11533 */ 11534 owk = NULL; 11535 while ((wk = LIST_FIRST(&bp->b_dep)) != NULL) { 11536 WORKLIST_REMOVE(wk); 11537 atomic_add_long(&dep_write[wk->wk_type], 1); 11538 if (wk == owk) 11539 panic("duplicate worklist: %p\n", wk); 11540 owk = wk; 11541 switch (wk->wk_type) { 11542 case D_PAGEDEP: 11543 if (handle_written_filepage(WK_PAGEDEP(wk), bp, 11544 WRITESUCCEEDED)) 11545 WORKLIST_INSERT(&reattach, wk); 11546 continue; 11547 11548 case D_INODEDEP: 11549 if (handle_written_inodeblock(WK_INODEDEP(wk), bp, 11550 WRITESUCCEEDED)) 11551 WORKLIST_INSERT(&reattach, wk); 11552 continue; 11553 11554 case D_BMSAFEMAP: 11555 if (handle_written_bmsafemap(WK_BMSAFEMAP(wk), bp, 11556 WRITESUCCEEDED)) 11557 WORKLIST_INSERT(&reattach, wk); 11558 continue; 11559 11560 case D_MKDIR: 11561 handle_written_mkdir(WK_MKDIR(wk), MKDIR_BODY); 11562 continue; 11563 11564 case D_ALLOCDIRECT: 11565 wk->wk_state |= COMPLETE; 11566 handle_allocdirect_partdone(WK_ALLOCDIRECT(wk), NULL); 11567 continue; 11568 11569 case D_ALLOCINDIR: 11570 wk->wk_state |= COMPLETE; 11571 handle_allocindir_partdone(WK_ALLOCINDIR(wk)); 11572 continue; 11573 11574 case D_INDIRDEP: 11575 if (handle_written_indirdep(WK_INDIRDEP(wk), bp, &sbp, 11576 WRITESUCCEEDED)) 11577 WORKLIST_INSERT(&reattach, wk); 11578 continue; 11579 11580 case D_FREEBLKS: 11581 wk->wk_state |= COMPLETE; 11582 freeblks = WK_FREEBLKS(wk); 11583 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE && 11584 LIST_EMPTY(&freeblks->fb_jblkdephd)) 11585 add_to_worklist(wk, WK_NODELAY); 11586 continue; 11587 11588 case D_FREEWORK: 11589 handle_written_freework(WK_FREEWORK(wk)); 11590 break; 11591 11592 case D_JSEGDEP: 11593 free_jsegdep(WK_JSEGDEP(wk)); 11594 continue; 11595 11596 case D_JSEG: 11597 handle_written_jseg(WK_JSEG(wk), bp); 11598 continue; 11599 11600 case D_SBDEP: 11601 if (handle_written_sbdep(WK_SBDEP(wk), bp)) 11602 WORKLIST_INSERT(&reattach, wk); 11603 continue; 11604 11605 case D_FREEDEP: 11606 free_freedep(WK_FREEDEP(wk)); 11607 continue; 11608 11609 default: 11610 panic("handle_disk_write_complete: Unknown type %s", 11611 TYPENAME(wk->wk_type)); 11612 /* NOTREACHED */ 11613 } 11614 } 11615 /* 11616 * Reattach any requests that must be redone. 11617 */ 11618 while ((wk = LIST_FIRST(&reattach)) != NULL) { 11619 WORKLIST_REMOVE(wk); 11620 WORKLIST_INSERT(&bp->b_dep, wk); 11621 } 11622 FREE_LOCK(ump); 11623 if (sbp) 11624 brelse(sbp); 11625 } 11626 11627 /* 11628 * Called from within softdep_disk_write_complete above. 11629 */ 11630 static void 11631 handle_allocdirect_partdone(adp, wkhd) 11632 struct allocdirect *adp; /* the completed allocdirect */ 11633 struct workhead *wkhd; /* Work to do when inode is writtne. */ 11634 { 11635 struct allocdirectlst *listhead; 11636 struct allocdirect *listadp; 11637 struct inodedep *inodedep; 11638 long bsize; 11639 11640 LOCK_OWNED(VFSTOUFS(adp->ad_block.nb_list.wk_mp)); 11641 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11642 return; 11643 /* 11644 * The on-disk inode cannot claim to be any larger than the last 11645 * fragment that has been written. Otherwise, the on-disk inode 11646 * might have fragments that were not the last block in the file 11647 * which would corrupt the filesystem. Thus, we cannot free any 11648 * allocdirects after one whose ad_oldblkno claims a fragment as 11649 * these blocks must be rolled back to zero before writing the inode. 11650 * We check the currently active set of allocdirects in id_inoupdt 11651 * or id_extupdt as appropriate. 11652 */ 11653 inodedep = adp->ad_inodedep; 11654 bsize = inodedep->id_fs->fs_bsize; 11655 if (adp->ad_state & EXTDATA) 11656 listhead = &inodedep->id_extupdt; 11657 else 11658 listhead = &inodedep->id_inoupdt; 11659 TAILQ_FOREACH(listadp, listhead, ad_next) { 11660 /* found our block */ 11661 if (listadp == adp) 11662 break; 11663 /* continue if ad_oldlbn is not a fragment */ 11664 if (listadp->ad_oldsize == 0 || 11665 listadp->ad_oldsize == bsize) 11666 continue; 11667 /* hit a fragment */ 11668 return; 11669 } 11670 /* 11671 * If we have reached the end of the current list without 11672 * finding the just finished dependency, then it must be 11673 * on the future dependency list. Future dependencies cannot 11674 * be freed until they are moved to the current list. 11675 */ 11676 if (listadp == NULL) { 11677 #ifdef INVARIANTS 11678 if (adp->ad_state & EXTDATA) 11679 listhead = &inodedep->id_newextupdt; 11680 else 11681 listhead = &inodedep->id_newinoupdt; 11682 TAILQ_FOREACH(listadp, listhead, ad_next) 11683 /* found our block */ 11684 if (listadp == adp) 11685 break; 11686 if (listadp == NULL) 11687 panic("handle_allocdirect_partdone: lost dep"); 11688 #endif /* INVARIANTS */ 11689 return; 11690 } 11691 /* 11692 * If we have found the just finished dependency, then queue 11693 * it along with anything that follows it that is complete. 11694 * Since the pointer has not yet been written in the inode 11695 * as the dependency prevents it, place the allocdirect on the 11696 * bufwait list where it will be freed once the pointer is 11697 * valid. 11698 */ 11699 if (wkhd == NULL) 11700 wkhd = &inodedep->id_bufwait; 11701 for (; adp; adp = listadp) { 11702 listadp = TAILQ_NEXT(adp, ad_next); 11703 if ((adp->ad_state & ALLCOMPLETE) != ALLCOMPLETE) 11704 return; 11705 TAILQ_REMOVE(listhead, adp, ad_next); 11706 WORKLIST_INSERT(wkhd, &adp->ad_block.nb_list); 11707 } 11708 } 11709 11710 /* 11711 * Called from within softdep_disk_write_complete above. This routine 11712 * completes successfully written allocindirs. 11713 */ 11714 static void 11715 handle_allocindir_partdone(aip) 11716 struct allocindir *aip; /* the completed allocindir */ 11717 { 11718 struct indirdep *indirdep; 11719 11720 if ((aip->ai_state & ALLCOMPLETE) != ALLCOMPLETE) 11721 return; 11722 indirdep = aip->ai_indirdep; 11723 LIST_REMOVE(aip, ai_next); 11724 /* 11725 * Don't set a pointer while the buffer is undergoing IO or while 11726 * we have active truncations. 11727 */ 11728 if (indirdep->ir_state & UNDONE || !TAILQ_EMPTY(&indirdep->ir_trunc)) { 11729 LIST_INSERT_HEAD(&indirdep->ir_donehd, aip, ai_next); 11730 return; 11731 } 11732 if (indirdep->ir_state & UFS1FMT) 11733 ((ufs1_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11734 aip->ai_newblkno; 11735 else 11736 ((ufs2_daddr_t *)indirdep->ir_savebp->b_data)[aip->ai_offset] = 11737 aip->ai_newblkno; 11738 /* 11739 * Await the pointer write before freeing the allocindir. 11740 */ 11741 LIST_INSERT_HEAD(&indirdep->ir_writehd, aip, ai_next); 11742 } 11743 11744 /* 11745 * Release segments held on a jwork list. 11746 */ 11747 static void 11748 handle_jwork(wkhd) 11749 struct workhead *wkhd; 11750 { 11751 struct worklist *wk; 11752 11753 while ((wk = LIST_FIRST(wkhd)) != NULL) { 11754 WORKLIST_REMOVE(wk); 11755 switch (wk->wk_type) { 11756 case D_JSEGDEP: 11757 free_jsegdep(WK_JSEGDEP(wk)); 11758 continue; 11759 case D_FREEDEP: 11760 free_freedep(WK_FREEDEP(wk)); 11761 continue; 11762 case D_FREEFRAG: 11763 rele_jseg(WK_JSEG(WK_FREEFRAG(wk)->ff_jdep)); 11764 WORKITEM_FREE(wk, D_FREEFRAG); 11765 continue; 11766 case D_FREEWORK: 11767 handle_written_freework(WK_FREEWORK(wk)); 11768 continue; 11769 default: 11770 panic("handle_jwork: Unknown type %s\n", 11771 TYPENAME(wk->wk_type)); 11772 } 11773 } 11774 } 11775 11776 /* 11777 * Handle the bufwait list on an inode when it is safe to release items 11778 * held there. This normally happens after an inode block is written but 11779 * may be delayed and handled later if there are pending journal items that 11780 * are not yet safe to be released. 11781 */ 11782 static struct freefile * 11783 handle_bufwait(inodedep, refhd) 11784 struct inodedep *inodedep; 11785 struct workhead *refhd; 11786 { 11787 struct jaddref *jaddref; 11788 struct freefile *freefile; 11789 struct worklist *wk; 11790 11791 freefile = NULL; 11792 while ((wk = LIST_FIRST(&inodedep->id_bufwait)) != NULL) { 11793 WORKLIST_REMOVE(wk); 11794 switch (wk->wk_type) { 11795 case D_FREEFILE: 11796 /* 11797 * We defer adding freefile to the worklist 11798 * until all other additions have been made to 11799 * ensure that it will be done after all the 11800 * old blocks have been freed. 11801 */ 11802 if (freefile != NULL) 11803 panic("handle_bufwait: freefile"); 11804 freefile = WK_FREEFILE(wk); 11805 continue; 11806 11807 case D_MKDIR: 11808 handle_written_mkdir(WK_MKDIR(wk), MKDIR_PARENT); 11809 continue; 11810 11811 case D_DIRADD: 11812 diradd_inode_written(WK_DIRADD(wk), inodedep); 11813 continue; 11814 11815 case D_FREEFRAG: 11816 wk->wk_state |= COMPLETE; 11817 if ((wk->wk_state & ALLCOMPLETE) == ALLCOMPLETE) 11818 add_to_worklist(wk, 0); 11819 continue; 11820 11821 case D_DIRREM: 11822 wk->wk_state |= COMPLETE; 11823 add_to_worklist(wk, 0); 11824 continue; 11825 11826 case D_ALLOCDIRECT: 11827 case D_ALLOCINDIR: 11828 free_newblk(WK_NEWBLK(wk)); 11829 continue; 11830 11831 case D_JNEWBLK: 11832 wk->wk_state |= COMPLETE; 11833 free_jnewblk(WK_JNEWBLK(wk)); 11834 continue; 11835 11836 /* 11837 * Save freed journal segments and add references on 11838 * the supplied list which will delay their release 11839 * until the cg bitmap is cleared on disk. 11840 */ 11841 case D_JSEGDEP: 11842 if (refhd == NULL) 11843 free_jsegdep(WK_JSEGDEP(wk)); 11844 else 11845 WORKLIST_INSERT(refhd, wk); 11846 continue; 11847 11848 case D_JADDREF: 11849 jaddref = WK_JADDREF(wk); 11850 TAILQ_REMOVE(&inodedep->id_inoreflst, &jaddref->ja_ref, 11851 if_deps); 11852 /* 11853 * Transfer any jaddrefs to the list to be freed with 11854 * the bitmap if we're handling a removed file. 11855 */ 11856 if (refhd == NULL) { 11857 wk->wk_state |= COMPLETE; 11858 free_jaddref(jaddref); 11859 } else 11860 WORKLIST_INSERT(refhd, wk); 11861 continue; 11862 11863 default: 11864 panic("handle_bufwait: Unknown type %p(%s)", 11865 wk, TYPENAME(wk->wk_type)); 11866 /* NOTREACHED */ 11867 } 11868 } 11869 return (freefile); 11870 } 11871 /* 11872 * Called from within softdep_disk_write_complete above to restore 11873 * in-memory inode block contents to their most up-to-date state. Note 11874 * that this routine is always called from interrupt level with further 11875 * interrupts from this device blocked. 11876 * 11877 * If the write did not succeed, we will do all the roll-forward 11878 * operations, but we will not take the actions that will allow its 11879 * dependencies to be processed. 11880 */ 11881 static int 11882 handle_written_inodeblock(inodedep, bp, flags) 11883 struct inodedep *inodedep; 11884 struct buf *bp; /* buffer containing the inode block */ 11885 int flags; 11886 { 11887 struct freefile *freefile; 11888 struct allocdirect *adp, *nextadp; 11889 struct ufs1_dinode *dp1 = NULL; 11890 struct ufs2_dinode *dp2 = NULL; 11891 struct workhead wkhd; 11892 int hadchanges, fstype; 11893 ino_t freelink; 11894 11895 LIST_INIT(&wkhd); 11896 hadchanges = 0; 11897 freefile = NULL; 11898 if ((inodedep->id_state & IOSTARTED) == 0) 11899 panic("handle_written_inodeblock: not started"); 11900 inodedep->id_state &= ~IOSTARTED; 11901 if (inodedep->id_fs->fs_magic == FS_UFS1_MAGIC) { 11902 fstype = UFS1; 11903 dp1 = (struct ufs1_dinode *)bp->b_data + 11904 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11905 freelink = dp1->di_freelink; 11906 } else { 11907 fstype = UFS2; 11908 dp2 = (struct ufs2_dinode *)bp->b_data + 11909 ino_to_fsbo(inodedep->id_fs, inodedep->id_ino); 11910 freelink = dp2->di_freelink; 11911 } 11912 /* 11913 * Leave this inodeblock dirty until it's in the list. 11914 */ 11915 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) == UNLINKED && 11916 (flags & WRITESUCCEEDED)) { 11917 struct inodedep *inon; 11918 11919 inon = TAILQ_NEXT(inodedep, id_unlinked); 11920 if ((inon == NULL && freelink == 0) || 11921 (inon && inon->id_ino == freelink)) { 11922 if (inon) 11923 inon->id_state |= UNLINKPREV; 11924 inodedep->id_state |= UNLINKNEXT; 11925 } 11926 hadchanges = 1; 11927 } 11928 /* 11929 * If we had to rollback the inode allocation because of 11930 * bitmaps being incomplete, then simply restore it. 11931 * Keep the block dirty so that it will not be reclaimed until 11932 * all associated dependencies have been cleared and the 11933 * corresponding updates written to disk. 11934 */ 11935 if (inodedep->id_savedino1 != NULL) { 11936 hadchanges = 1; 11937 if (fstype == UFS1) 11938 *dp1 = *inodedep->id_savedino1; 11939 else 11940 *dp2 = *inodedep->id_savedino2; 11941 free(inodedep->id_savedino1, M_SAVEDINO); 11942 inodedep->id_savedino1 = NULL; 11943 if ((bp->b_flags & B_DELWRI) == 0) 11944 stat_inode_bitmap++; 11945 bdirty(bp); 11946 /* 11947 * If the inode is clear here and GOINGAWAY it will never 11948 * be written. Process the bufwait and clear any pending 11949 * work which may include the freefile. 11950 */ 11951 if (inodedep->id_state & GOINGAWAY) 11952 goto bufwait; 11953 return (1); 11954 } 11955 if (flags & WRITESUCCEEDED) 11956 inodedep->id_state |= COMPLETE; 11957 /* 11958 * Roll forward anything that had to be rolled back before 11959 * the inode could be updated. 11960 */ 11961 for (adp = TAILQ_FIRST(&inodedep->id_inoupdt); adp; adp = nextadp) { 11962 nextadp = TAILQ_NEXT(adp, ad_next); 11963 if (adp->ad_state & ATTACHED) 11964 panic("handle_written_inodeblock: new entry"); 11965 if (fstype == UFS1) { 11966 if (adp->ad_offset < UFS_NDADDR) { 11967 if (dp1->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11968 panic("%s %s #%jd mismatch %d != %jd", 11969 "handle_written_inodeblock:", 11970 "direct pointer", 11971 (intmax_t)adp->ad_offset, 11972 dp1->di_db[adp->ad_offset], 11973 (intmax_t)adp->ad_oldblkno); 11974 dp1->di_db[adp->ad_offset] = adp->ad_newblkno; 11975 } else { 11976 if (dp1->di_ib[adp->ad_offset - UFS_NDADDR] != 11977 0) 11978 panic("%s: %s #%jd allocated as %d", 11979 "handle_written_inodeblock", 11980 "indirect pointer", 11981 (intmax_t)adp->ad_offset - 11982 UFS_NDADDR, 11983 dp1->di_ib[adp->ad_offset - 11984 UFS_NDADDR]); 11985 dp1->di_ib[adp->ad_offset - UFS_NDADDR] = 11986 adp->ad_newblkno; 11987 } 11988 } else { 11989 if (adp->ad_offset < UFS_NDADDR) { 11990 if (dp2->di_db[adp->ad_offset]!=adp->ad_oldblkno) 11991 panic("%s: %s #%jd %s %jd != %jd", 11992 "handle_written_inodeblock", 11993 "direct pointer", 11994 (intmax_t)adp->ad_offset, "mismatch", 11995 (intmax_t)dp2->di_db[adp->ad_offset], 11996 (intmax_t)adp->ad_oldblkno); 11997 dp2->di_db[adp->ad_offset] = adp->ad_newblkno; 11998 } else { 11999 if (dp2->di_ib[adp->ad_offset - UFS_NDADDR] != 12000 0) 12001 panic("%s: %s #%jd allocated as %jd", 12002 "handle_written_inodeblock", 12003 "indirect pointer", 12004 (intmax_t)adp->ad_offset - 12005 UFS_NDADDR, 12006 (intmax_t) 12007 dp2->di_ib[adp->ad_offset - 12008 UFS_NDADDR]); 12009 dp2->di_ib[adp->ad_offset - UFS_NDADDR] = 12010 adp->ad_newblkno; 12011 } 12012 } 12013 adp->ad_state &= ~UNDONE; 12014 adp->ad_state |= ATTACHED; 12015 hadchanges = 1; 12016 } 12017 for (adp = TAILQ_FIRST(&inodedep->id_extupdt); adp; adp = nextadp) { 12018 nextadp = TAILQ_NEXT(adp, ad_next); 12019 if (adp->ad_state & ATTACHED) 12020 panic("handle_written_inodeblock: new entry"); 12021 if (dp2->di_extb[adp->ad_offset] != adp->ad_oldblkno) 12022 panic("%s: direct pointers #%jd %s %jd != %jd", 12023 "handle_written_inodeblock", 12024 (intmax_t)adp->ad_offset, "mismatch", 12025 (intmax_t)dp2->di_extb[adp->ad_offset], 12026 (intmax_t)adp->ad_oldblkno); 12027 dp2->di_extb[adp->ad_offset] = adp->ad_newblkno; 12028 adp->ad_state &= ~UNDONE; 12029 adp->ad_state |= ATTACHED; 12030 hadchanges = 1; 12031 } 12032 if (hadchanges && (bp->b_flags & B_DELWRI) == 0) 12033 stat_direct_blk_ptrs++; 12034 /* 12035 * Reset the file size to its most up-to-date value. 12036 */ 12037 if (inodedep->id_savedsize == -1 || inodedep->id_savedextsize == -1) 12038 panic("handle_written_inodeblock: bad size"); 12039 if (inodedep->id_savednlink > UFS_LINK_MAX) 12040 panic("handle_written_inodeblock: Invalid link count " 12041 "%jd for inodedep %p", (uintmax_t)inodedep->id_savednlink, 12042 inodedep); 12043 if (fstype == UFS1) { 12044 if (dp1->di_nlink != inodedep->id_savednlink) { 12045 dp1->di_nlink = inodedep->id_savednlink; 12046 hadchanges = 1; 12047 } 12048 if (dp1->di_size != inodedep->id_savedsize) { 12049 dp1->di_size = inodedep->id_savedsize; 12050 hadchanges = 1; 12051 } 12052 } else { 12053 if (dp2->di_nlink != inodedep->id_savednlink) { 12054 dp2->di_nlink = inodedep->id_savednlink; 12055 hadchanges = 1; 12056 } 12057 if (dp2->di_size != inodedep->id_savedsize) { 12058 dp2->di_size = inodedep->id_savedsize; 12059 hadchanges = 1; 12060 } 12061 if (dp2->di_extsize != inodedep->id_savedextsize) { 12062 dp2->di_extsize = inodedep->id_savedextsize; 12063 hadchanges = 1; 12064 } 12065 } 12066 inodedep->id_savedsize = -1; 12067 inodedep->id_savedextsize = -1; 12068 inodedep->id_savednlink = -1; 12069 /* 12070 * If there were any rollbacks in the inode block, then it must be 12071 * marked dirty so that its will eventually get written back in 12072 * its correct form. 12073 */ 12074 if (hadchanges) { 12075 if (fstype == UFS2) 12076 ffs_update_dinode_ckhash(inodedep->id_fs, dp2); 12077 bdirty(bp); 12078 } 12079 bufwait: 12080 /* 12081 * If the write did not succeed, we have done all the roll-forward 12082 * operations, but we cannot take the actions that will allow its 12083 * dependencies to be processed. 12084 */ 12085 if ((flags & WRITESUCCEEDED) == 0) 12086 return (hadchanges); 12087 /* 12088 * Process any allocdirects that completed during the update. 12089 */ 12090 if ((adp = TAILQ_FIRST(&inodedep->id_inoupdt)) != NULL) 12091 handle_allocdirect_partdone(adp, &wkhd); 12092 if ((adp = TAILQ_FIRST(&inodedep->id_extupdt)) != NULL) 12093 handle_allocdirect_partdone(adp, &wkhd); 12094 /* 12095 * Process deallocations that were held pending until the 12096 * inode had been written to disk. Freeing of the inode 12097 * is delayed until after all blocks have been freed to 12098 * avoid creation of new <vfsid, inum, lbn> triples 12099 * before the old ones have been deleted. Completely 12100 * unlinked inodes are not processed until the unlinked 12101 * inode list is written or the last reference is removed. 12102 */ 12103 if ((inodedep->id_state & (UNLINKED | UNLINKONLIST)) != UNLINKED) { 12104 freefile = handle_bufwait(inodedep, NULL); 12105 if (freefile && !LIST_EMPTY(&wkhd)) { 12106 WORKLIST_INSERT(&wkhd, &freefile->fx_list); 12107 freefile = NULL; 12108 } 12109 } 12110 /* 12111 * Move rolled forward dependency completions to the bufwait list 12112 * now that those that were already written have been processed. 12113 */ 12114 if (!LIST_EMPTY(&wkhd) && hadchanges == 0) 12115 panic("handle_written_inodeblock: bufwait but no changes"); 12116 jwork_move(&inodedep->id_bufwait, &wkhd); 12117 12118 if (freefile != NULL) { 12119 /* 12120 * If the inode is goingaway it was never written. Fake up 12121 * the state here so free_inodedep() can succeed. 12122 */ 12123 if (inodedep->id_state & GOINGAWAY) 12124 inodedep->id_state |= COMPLETE | DEPCOMPLETE; 12125 if (free_inodedep(inodedep) == 0) 12126 panic("handle_written_inodeblock: live inodedep %p", 12127 inodedep); 12128 add_to_worklist(&freefile->fx_list, 0); 12129 return (0); 12130 } 12131 12132 /* 12133 * If no outstanding dependencies, free it. 12134 */ 12135 if (free_inodedep(inodedep) || 12136 (TAILQ_FIRST(&inodedep->id_inoreflst) == 0 && 12137 TAILQ_FIRST(&inodedep->id_inoupdt) == 0 && 12138 TAILQ_FIRST(&inodedep->id_extupdt) == 0 && 12139 LIST_FIRST(&inodedep->id_bufwait) == 0)) 12140 return (0); 12141 return (hadchanges); 12142 } 12143 12144 /* 12145 * Perform needed roll-forwards and kick off any dependencies that 12146 * can now be processed. 12147 * 12148 * If the write did not succeed, we will do all the roll-forward 12149 * operations, but we will not take the actions that will allow its 12150 * dependencies to be processed. 12151 */ 12152 static int 12153 handle_written_indirdep(indirdep, bp, bpp, flags) 12154 struct indirdep *indirdep; 12155 struct buf *bp; 12156 struct buf **bpp; 12157 int flags; 12158 { 12159 struct allocindir *aip; 12160 struct buf *sbp; 12161 int chgs; 12162 12163 if (indirdep->ir_state & GOINGAWAY) 12164 panic("handle_written_indirdep: indirdep gone"); 12165 if ((indirdep->ir_state & IOSTARTED) == 0) 12166 panic("handle_written_indirdep: IO not started"); 12167 chgs = 0; 12168 /* 12169 * If there were rollbacks revert them here. 12170 */ 12171 if (indirdep->ir_saveddata) { 12172 bcopy(indirdep->ir_saveddata, bp->b_data, bp->b_bcount); 12173 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12174 free(indirdep->ir_saveddata, M_INDIRDEP); 12175 indirdep->ir_saveddata = NULL; 12176 } 12177 chgs = 1; 12178 } 12179 indirdep->ir_state &= ~(UNDONE | IOSTARTED); 12180 indirdep->ir_state |= ATTACHED; 12181 /* 12182 * If the write did not succeed, we have done all the roll-forward 12183 * operations, but we cannot take the actions that will allow its 12184 * dependencies to be processed. 12185 */ 12186 if ((flags & WRITESUCCEEDED) == 0) { 12187 stat_indir_blk_ptrs++; 12188 bdirty(bp); 12189 return (1); 12190 } 12191 /* 12192 * Move allocindirs with written pointers to the completehd if 12193 * the indirdep's pointer is not yet written. Otherwise 12194 * free them here. 12195 */ 12196 while ((aip = LIST_FIRST(&indirdep->ir_writehd)) != NULL) { 12197 LIST_REMOVE(aip, ai_next); 12198 if ((indirdep->ir_state & DEPCOMPLETE) == 0) { 12199 LIST_INSERT_HEAD(&indirdep->ir_completehd, aip, 12200 ai_next); 12201 newblk_freefrag(&aip->ai_block); 12202 continue; 12203 } 12204 free_newblk(&aip->ai_block); 12205 } 12206 /* 12207 * Move allocindirs that have finished dependency processing from 12208 * the done list to the write list after updating the pointers. 12209 */ 12210 if (TAILQ_EMPTY(&indirdep->ir_trunc)) { 12211 while ((aip = LIST_FIRST(&indirdep->ir_donehd)) != NULL) { 12212 handle_allocindir_partdone(aip); 12213 if (aip == LIST_FIRST(&indirdep->ir_donehd)) 12214 panic("disk_write_complete: not gone"); 12215 chgs = 1; 12216 } 12217 } 12218 /* 12219 * Preserve the indirdep if there were any changes or if it is not 12220 * yet valid on disk. 12221 */ 12222 if (chgs) { 12223 stat_indir_blk_ptrs++; 12224 bdirty(bp); 12225 return (1); 12226 } 12227 /* 12228 * If there were no changes we can discard the savedbp and detach 12229 * ourselves from the buf. We are only carrying completed pointers 12230 * in this case. 12231 */ 12232 sbp = indirdep->ir_savebp; 12233 sbp->b_flags |= B_INVAL | B_NOCACHE; 12234 indirdep->ir_savebp = NULL; 12235 indirdep->ir_bp = NULL; 12236 if (*bpp != NULL) 12237 panic("handle_written_indirdep: bp already exists."); 12238 *bpp = sbp; 12239 /* 12240 * The indirdep may not be freed until its parent points at it. 12241 */ 12242 if (indirdep->ir_state & DEPCOMPLETE) 12243 free_indirdep(indirdep); 12244 12245 return (0); 12246 } 12247 12248 /* 12249 * Process a diradd entry after its dependent inode has been written. 12250 */ 12251 static void 12252 diradd_inode_written(dap, inodedep) 12253 struct diradd *dap; 12254 struct inodedep *inodedep; 12255 { 12256 12257 LOCK_OWNED(VFSTOUFS(dap->da_list.wk_mp)); 12258 dap->da_state |= COMPLETE; 12259 complete_diradd(dap); 12260 WORKLIST_INSERT(&inodedep->id_pendinghd, &dap->da_list); 12261 } 12262 12263 /* 12264 * Returns true if the bmsafemap will have rollbacks when written. Must only 12265 * be called with the per-filesystem lock and the buf lock on the cg held. 12266 */ 12267 static int 12268 bmsafemap_backgroundwrite(bmsafemap, bp) 12269 struct bmsafemap *bmsafemap; 12270 struct buf *bp; 12271 { 12272 int dirty; 12273 12274 LOCK_OWNED(VFSTOUFS(bmsafemap->sm_list.wk_mp)); 12275 dirty = !LIST_EMPTY(&bmsafemap->sm_jaddrefhd) | 12276 !LIST_EMPTY(&bmsafemap->sm_jnewblkhd); 12277 /* 12278 * If we're initiating a background write we need to process the 12279 * rollbacks as they exist now, not as they exist when IO starts. 12280 * No other consumers will look at the contents of the shadowed 12281 * buf so this is safe to do here. 12282 */ 12283 if (bp->b_xflags & BX_BKGRDMARKER) 12284 initiate_write_bmsafemap(bmsafemap, bp); 12285 12286 return (dirty); 12287 } 12288 12289 /* 12290 * Re-apply an allocation when a cg write is complete. 12291 */ 12292 static int 12293 jnewblk_rollforward(jnewblk, fs, cgp, blksfree) 12294 struct jnewblk *jnewblk; 12295 struct fs *fs; 12296 struct cg *cgp; 12297 uint8_t *blksfree; 12298 { 12299 ufs1_daddr_t fragno; 12300 ufs2_daddr_t blkno; 12301 long cgbno, bbase; 12302 int frags, blk; 12303 int i; 12304 12305 frags = 0; 12306 cgbno = dtogd(fs, jnewblk->jn_blkno); 12307 for (i = jnewblk->jn_oldfrags; i < jnewblk->jn_frags; i++) { 12308 if (isclr(blksfree, cgbno + i)) 12309 panic("jnewblk_rollforward: re-allocated fragment"); 12310 frags++; 12311 } 12312 if (frags == fs->fs_frag) { 12313 blkno = fragstoblks(fs, cgbno); 12314 ffs_clrblock(fs, blksfree, (long)blkno); 12315 ffs_clusteracct(fs, cgp, blkno, -1); 12316 cgp->cg_cs.cs_nbfree--; 12317 } else { 12318 bbase = cgbno - fragnum(fs, cgbno); 12319 cgbno += jnewblk->jn_oldfrags; 12320 /* If a complete block had been reassembled, account for it. */ 12321 fragno = fragstoblks(fs, bbase); 12322 if (ffs_isblock(fs, blksfree, fragno)) { 12323 cgp->cg_cs.cs_nffree += fs->fs_frag; 12324 ffs_clusteracct(fs, cgp, fragno, -1); 12325 cgp->cg_cs.cs_nbfree--; 12326 } 12327 /* Decrement the old frags. */ 12328 blk = blkmap(fs, blksfree, bbase); 12329 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 12330 /* Allocate the fragment */ 12331 for (i = 0; i < frags; i++) 12332 clrbit(blksfree, cgbno + i); 12333 cgp->cg_cs.cs_nffree -= frags; 12334 /* Add back in counts associated with the new frags */ 12335 blk = blkmap(fs, blksfree, bbase); 12336 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 12337 } 12338 return (frags); 12339 } 12340 12341 /* 12342 * Complete a write to a bmsafemap structure. Roll forward any bitmap 12343 * changes if it's not a background write. Set all written dependencies 12344 * to DEPCOMPLETE and free the structure if possible. 12345 * 12346 * If the write did not succeed, we will do all the roll-forward 12347 * operations, but we will not take the actions that will allow its 12348 * dependencies to be processed. 12349 */ 12350 static int 12351 handle_written_bmsafemap(bmsafemap, bp, flags) 12352 struct bmsafemap *bmsafemap; 12353 struct buf *bp; 12354 int flags; 12355 { 12356 struct newblk *newblk; 12357 struct inodedep *inodedep; 12358 struct jaddref *jaddref, *jatmp; 12359 struct jnewblk *jnewblk, *jntmp; 12360 struct ufsmount *ump; 12361 uint8_t *inosused; 12362 uint8_t *blksfree; 12363 struct cg *cgp; 12364 struct fs *fs; 12365 ino_t ino; 12366 int foreground; 12367 int chgs; 12368 12369 if ((bmsafemap->sm_state & IOSTARTED) == 0) 12370 panic("handle_written_bmsafemap: Not started\n"); 12371 ump = VFSTOUFS(bmsafemap->sm_list.wk_mp); 12372 chgs = 0; 12373 bmsafemap->sm_state &= ~IOSTARTED; 12374 foreground = (bp->b_xflags & BX_BKGRDMARKER) == 0; 12375 /* 12376 * If write was successful, release journal work that was waiting 12377 * on the write. Otherwise move the work back. 12378 */ 12379 if (flags & WRITESUCCEEDED) 12380 handle_jwork(&bmsafemap->sm_freewr); 12381 else 12382 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12383 worklist, wk_list); 12384 12385 /* 12386 * Restore unwritten inode allocation pending jaddref writes. 12387 */ 12388 if (!LIST_EMPTY(&bmsafemap->sm_jaddrefhd)) { 12389 cgp = (struct cg *)bp->b_data; 12390 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12391 inosused = cg_inosused(cgp); 12392 LIST_FOREACH_SAFE(jaddref, &bmsafemap->sm_jaddrefhd, 12393 ja_bmdeps, jatmp) { 12394 if ((jaddref->ja_state & UNDONE) == 0) 12395 continue; 12396 ino = jaddref->ja_ino % fs->fs_ipg; 12397 if (isset(inosused, ino)) 12398 panic("handle_written_bmsafemap: " 12399 "re-allocated inode"); 12400 /* Do the roll-forward only if it's a real copy. */ 12401 if (foreground) { 12402 if ((jaddref->ja_mode & IFMT) == IFDIR) 12403 cgp->cg_cs.cs_ndir++; 12404 cgp->cg_cs.cs_nifree--; 12405 setbit(inosused, ino); 12406 chgs = 1; 12407 } 12408 jaddref->ja_state &= ~UNDONE; 12409 jaddref->ja_state |= ATTACHED; 12410 free_jaddref(jaddref); 12411 } 12412 } 12413 /* 12414 * Restore any block allocations which are pending journal writes. 12415 */ 12416 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd) != NULL) { 12417 cgp = (struct cg *)bp->b_data; 12418 fs = VFSTOUFS(bmsafemap->sm_list.wk_mp)->um_fs; 12419 blksfree = cg_blksfree(cgp); 12420 LIST_FOREACH_SAFE(jnewblk, &bmsafemap->sm_jnewblkhd, jn_deps, 12421 jntmp) { 12422 if ((jnewblk->jn_state & UNDONE) == 0) 12423 continue; 12424 /* Do the roll-forward only if it's a real copy. */ 12425 if (foreground && 12426 jnewblk_rollforward(jnewblk, fs, cgp, blksfree)) 12427 chgs = 1; 12428 jnewblk->jn_state &= ~(UNDONE | NEWBLOCK); 12429 jnewblk->jn_state |= ATTACHED; 12430 free_jnewblk(jnewblk); 12431 } 12432 } 12433 /* 12434 * If the write did not succeed, we have done all the roll-forward 12435 * operations, but we cannot take the actions that will allow its 12436 * dependencies to be processed. 12437 */ 12438 if ((flags & WRITESUCCEEDED) == 0) { 12439 LIST_CONCAT(&bmsafemap->sm_newblkhd, &bmsafemap->sm_newblkwr, 12440 newblk, nb_deps); 12441 LIST_CONCAT(&bmsafemap->sm_freehd, &bmsafemap->sm_freewr, 12442 worklist, wk_list); 12443 if (foreground) 12444 bdirty(bp); 12445 return (1); 12446 } 12447 while ((newblk = LIST_FIRST(&bmsafemap->sm_newblkwr))) { 12448 newblk->nb_state |= DEPCOMPLETE; 12449 newblk->nb_state &= ~ONDEPLIST; 12450 newblk->nb_bmsafemap = NULL; 12451 LIST_REMOVE(newblk, nb_deps); 12452 if (newblk->nb_list.wk_type == D_ALLOCDIRECT) 12453 handle_allocdirect_partdone( 12454 WK_ALLOCDIRECT(&newblk->nb_list), NULL); 12455 else if (newblk->nb_list.wk_type == D_ALLOCINDIR) 12456 handle_allocindir_partdone( 12457 WK_ALLOCINDIR(&newblk->nb_list)); 12458 else if (newblk->nb_list.wk_type != D_NEWBLK) 12459 panic("handle_written_bmsafemap: Unexpected type: %s", 12460 TYPENAME(newblk->nb_list.wk_type)); 12461 } 12462 while ((inodedep = LIST_FIRST(&bmsafemap->sm_inodedepwr)) != NULL) { 12463 inodedep->id_state |= DEPCOMPLETE; 12464 inodedep->id_state &= ~ONDEPLIST; 12465 LIST_REMOVE(inodedep, id_deps); 12466 inodedep->id_bmsafemap = NULL; 12467 } 12468 LIST_REMOVE(bmsafemap, sm_next); 12469 if (chgs == 0 && LIST_EMPTY(&bmsafemap->sm_jaddrefhd) && 12470 LIST_EMPTY(&bmsafemap->sm_jnewblkhd) && 12471 LIST_EMPTY(&bmsafemap->sm_newblkhd) && 12472 LIST_EMPTY(&bmsafemap->sm_inodedephd) && 12473 LIST_EMPTY(&bmsafemap->sm_freehd)) { 12474 LIST_REMOVE(bmsafemap, sm_hash); 12475 WORKITEM_FREE(bmsafemap, D_BMSAFEMAP); 12476 return (0); 12477 } 12478 LIST_INSERT_HEAD(&ump->softdep_dirtycg, bmsafemap, sm_next); 12479 if (foreground) 12480 bdirty(bp); 12481 return (1); 12482 } 12483 12484 /* 12485 * Try to free a mkdir dependency. 12486 */ 12487 static void 12488 complete_mkdir(mkdir) 12489 struct mkdir *mkdir; 12490 { 12491 struct diradd *dap; 12492 12493 if ((mkdir->md_state & ALLCOMPLETE) != ALLCOMPLETE) 12494 return; 12495 LIST_REMOVE(mkdir, md_mkdirs); 12496 dap = mkdir->md_diradd; 12497 dap->da_state &= ~(mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)); 12498 if ((dap->da_state & (MKDIR_PARENT | MKDIR_BODY)) == 0) { 12499 dap->da_state |= DEPCOMPLETE; 12500 complete_diradd(dap); 12501 } 12502 WORKITEM_FREE(mkdir, D_MKDIR); 12503 } 12504 12505 /* 12506 * Handle the completion of a mkdir dependency. 12507 */ 12508 static void 12509 handle_written_mkdir(mkdir, type) 12510 struct mkdir *mkdir; 12511 int type; 12512 { 12513 12514 if ((mkdir->md_state & (MKDIR_PARENT | MKDIR_BODY)) != type) 12515 panic("handle_written_mkdir: bad type"); 12516 mkdir->md_state |= COMPLETE; 12517 complete_mkdir(mkdir); 12518 } 12519 12520 static int 12521 free_pagedep(pagedep) 12522 struct pagedep *pagedep; 12523 { 12524 int i; 12525 12526 if (pagedep->pd_state & NEWBLOCK) 12527 return (0); 12528 if (!LIST_EMPTY(&pagedep->pd_dirremhd)) 12529 return (0); 12530 for (i = 0; i < DAHASHSZ; i++) 12531 if (!LIST_EMPTY(&pagedep->pd_diraddhd[i])) 12532 return (0); 12533 if (!LIST_EMPTY(&pagedep->pd_pendinghd)) 12534 return (0); 12535 if (!LIST_EMPTY(&pagedep->pd_jmvrefhd)) 12536 return (0); 12537 if (pagedep->pd_state & ONWORKLIST) 12538 WORKLIST_REMOVE(&pagedep->pd_list); 12539 LIST_REMOVE(pagedep, pd_hash); 12540 WORKITEM_FREE(pagedep, D_PAGEDEP); 12541 12542 return (1); 12543 } 12544 12545 /* 12546 * Called from within softdep_disk_write_complete above. 12547 * A write operation was just completed. Removed inodes can 12548 * now be freed and associated block pointers may be committed. 12549 * Note that this routine is always called from interrupt level 12550 * with further interrupts from this device blocked. 12551 * 12552 * If the write did not succeed, we will do all the roll-forward 12553 * operations, but we will not take the actions that will allow its 12554 * dependencies to be processed. 12555 */ 12556 static int 12557 handle_written_filepage(pagedep, bp, flags) 12558 struct pagedep *pagedep; 12559 struct buf *bp; /* buffer containing the written page */ 12560 int flags; 12561 { 12562 struct dirrem *dirrem; 12563 struct diradd *dap, *nextdap; 12564 struct direct *ep; 12565 int i, chgs; 12566 12567 if ((pagedep->pd_state & IOSTARTED) == 0) 12568 panic("handle_written_filepage: not started"); 12569 pagedep->pd_state &= ~IOSTARTED; 12570 if ((flags & WRITESUCCEEDED) == 0) 12571 goto rollforward; 12572 /* 12573 * Process any directory removals that have been committed. 12574 */ 12575 while ((dirrem = LIST_FIRST(&pagedep->pd_dirremhd)) != NULL) { 12576 LIST_REMOVE(dirrem, dm_next); 12577 dirrem->dm_state |= COMPLETE; 12578 dirrem->dm_dirinum = pagedep->pd_ino; 12579 KASSERT(LIST_EMPTY(&dirrem->dm_jremrefhd), 12580 ("handle_written_filepage: Journal entries not written.")); 12581 add_to_worklist(&dirrem->dm_list, 0); 12582 } 12583 /* 12584 * Free any directory additions that have been committed. 12585 * If it is a newly allocated block, we have to wait until 12586 * the on-disk directory inode claims the new block. 12587 */ 12588 if ((pagedep->pd_state & NEWBLOCK) == 0) 12589 while ((dap = LIST_FIRST(&pagedep->pd_pendinghd)) != NULL) 12590 free_diradd(dap, NULL); 12591 rollforward: 12592 /* 12593 * Uncommitted directory entries must be restored. 12594 */ 12595 for (chgs = 0, i = 0; i < DAHASHSZ; i++) { 12596 for (dap = LIST_FIRST(&pagedep->pd_diraddhd[i]); dap; 12597 dap = nextdap) { 12598 nextdap = LIST_NEXT(dap, da_pdlist); 12599 if (dap->da_state & ATTACHED) 12600 panic("handle_written_filepage: attached"); 12601 ep = (struct direct *) 12602 ((char *)bp->b_data + dap->da_offset); 12603 ep->d_ino = dap->da_newinum; 12604 dap->da_state &= ~UNDONE; 12605 dap->da_state |= ATTACHED; 12606 chgs = 1; 12607 /* 12608 * If the inode referenced by the directory has 12609 * been written out, then the dependency can be 12610 * moved to the pending list. 12611 */ 12612 if ((dap->da_state & ALLCOMPLETE) == ALLCOMPLETE) { 12613 LIST_REMOVE(dap, da_pdlist); 12614 LIST_INSERT_HEAD(&pagedep->pd_pendinghd, dap, 12615 da_pdlist); 12616 } 12617 } 12618 } 12619 /* 12620 * If there were any rollbacks in the directory, then it must be 12621 * marked dirty so that its will eventually get written back in 12622 * its correct form. 12623 */ 12624 if (chgs || (flags & WRITESUCCEEDED) == 0) { 12625 if ((bp->b_flags & B_DELWRI) == 0) 12626 stat_dir_entry++; 12627 bdirty(bp); 12628 return (1); 12629 } 12630 /* 12631 * If we are not waiting for a new directory block to be 12632 * claimed by its inode, then the pagedep will be freed. 12633 * Otherwise it will remain to track any new entries on 12634 * the page in case they are fsync'ed. 12635 */ 12636 free_pagedep(pagedep); 12637 return (0); 12638 } 12639 12640 /* 12641 * Writing back in-core inode structures. 12642 * 12643 * The filesystem only accesses an inode's contents when it occupies an 12644 * "in-core" inode structure. These "in-core" structures are separate from 12645 * the page frames used to cache inode blocks. Only the latter are 12646 * transferred to/from the disk. So, when the updated contents of the 12647 * "in-core" inode structure are copied to the corresponding in-memory inode 12648 * block, the dependencies are also transferred. The following procedure is 12649 * called when copying a dirty "in-core" inode to a cached inode block. 12650 */ 12651 12652 /* 12653 * Called when an inode is loaded from disk. If the effective link count 12654 * differed from the actual link count when it was last flushed, then we 12655 * need to ensure that the correct effective link count is put back. 12656 */ 12657 void 12658 softdep_load_inodeblock(ip) 12659 struct inode *ip; /* the "in_core" copy of the inode */ 12660 { 12661 struct inodedep *inodedep; 12662 struct ufsmount *ump; 12663 12664 ump = ITOUMP(ip); 12665 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 12666 ("softdep_load_inodeblock called on non-softdep filesystem")); 12667 /* 12668 * Check for alternate nlink count. 12669 */ 12670 ip->i_effnlink = ip->i_nlink; 12671 ACQUIRE_LOCK(ump); 12672 if (inodedep_lookup(UFSTOVFS(ump), ip->i_number, 0, &inodedep) == 0) { 12673 FREE_LOCK(ump); 12674 return; 12675 } 12676 if (ip->i_nlink != inodedep->id_nlinkwrote && 12677 inodedep->id_nlinkwrote != -1) { 12678 KASSERT(ip->i_nlink == 0 && 12679 (ump->um_flags & UM_FSFAIL_CLEANUP) != 0, 12680 ("read bad i_nlink value")); 12681 ip->i_effnlink = ip->i_nlink = inodedep->id_nlinkwrote; 12682 } 12683 ip->i_effnlink -= inodedep->id_nlinkdelta; 12684 KASSERT(ip->i_effnlink >= 0, 12685 ("softdep_load_inodeblock: negative i_effnlink")); 12686 FREE_LOCK(ump); 12687 } 12688 12689 /* 12690 * This routine is called just before the "in-core" inode 12691 * information is to be copied to the in-memory inode block. 12692 * Recall that an inode block contains several inodes. If 12693 * the force flag is set, then the dependencies will be 12694 * cleared so that the update can always be made. Note that 12695 * the buffer is locked when this routine is called, so we 12696 * will never be in the middle of writing the inode block 12697 * to disk. 12698 */ 12699 void 12700 softdep_update_inodeblock(ip, bp, waitfor) 12701 struct inode *ip; /* the "in_core" copy of the inode */ 12702 struct buf *bp; /* the buffer containing the inode block */ 12703 int waitfor; /* nonzero => update must be allowed */ 12704 { 12705 struct inodedep *inodedep; 12706 struct inoref *inoref; 12707 struct ufsmount *ump; 12708 struct worklist *wk; 12709 struct mount *mp; 12710 struct buf *ibp; 12711 struct fs *fs; 12712 int error; 12713 12714 ump = ITOUMP(ip); 12715 mp = UFSTOVFS(ump); 12716 KASSERT(MOUNTEDSOFTDEP(mp) != 0, 12717 ("softdep_update_inodeblock called on non-softdep filesystem")); 12718 fs = ump->um_fs; 12719 /* 12720 * Preserve the freelink that is on disk. clear_unlinked_inodedep() 12721 * does not have access to the in-core ip so must write directly into 12722 * the inode block buffer when setting freelink. 12723 */ 12724 if (fs->fs_magic == FS_UFS1_MAGIC) 12725 DIP_SET(ip, i_freelink, ((struct ufs1_dinode *)bp->b_data + 12726 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12727 else 12728 DIP_SET(ip, i_freelink, ((struct ufs2_dinode *)bp->b_data + 12729 ino_to_fsbo(fs, ip->i_number))->di_freelink); 12730 /* 12731 * If the effective link count is not equal to the actual link 12732 * count, then we must track the difference in an inodedep while 12733 * the inode is (potentially) tossed out of the cache. Otherwise, 12734 * if there is no existing inodedep, then there are no dependencies 12735 * to track. 12736 */ 12737 ACQUIRE_LOCK(ump); 12738 again: 12739 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12740 FREE_LOCK(ump); 12741 if (ip->i_effnlink != ip->i_nlink) 12742 panic("softdep_update_inodeblock: bad link count"); 12743 return; 12744 } 12745 KASSERT(ip->i_nlink >= inodedep->id_nlinkdelta, 12746 ("softdep_update_inodeblock inconsistent ip %p i_nlink %d " 12747 "inodedep %p id_nlinkdelta %jd", 12748 ip, ip->i_nlink, inodedep, (intmax_t)inodedep->id_nlinkdelta)); 12749 inodedep->id_nlinkwrote = ip->i_nlink; 12750 if (inodedep->id_nlinkdelta != ip->i_nlink - ip->i_effnlink) 12751 panic("softdep_update_inodeblock: bad delta"); 12752 /* 12753 * If we're flushing all dependencies we must also move any waiting 12754 * for journal writes onto the bufwait list prior to I/O. 12755 */ 12756 if (waitfor) { 12757 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12758 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12759 == DEPCOMPLETE) { 12760 jwait(&inoref->if_list, MNT_WAIT); 12761 goto again; 12762 } 12763 } 12764 } 12765 /* 12766 * Changes have been initiated. Anything depending on these 12767 * changes cannot occur until this inode has been written. 12768 */ 12769 inodedep->id_state &= ~COMPLETE; 12770 if ((inodedep->id_state & ONWORKLIST) == 0) 12771 WORKLIST_INSERT(&bp->b_dep, &inodedep->id_list); 12772 /* 12773 * Any new dependencies associated with the incore inode must 12774 * now be moved to the list associated with the buffer holding 12775 * the in-memory copy of the inode. Once merged process any 12776 * allocdirects that are completed by the merger. 12777 */ 12778 merge_inode_lists(&inodedep->id_newinoupdt, &inodedep->id_inoupdt); 12779 if (!TAILQ_EMPTY(&inodedep->id_inoupdt)) 12780 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_inoupdt), 12781 NULL); 12782 merge_inode_lists(&inodedep->id_newextupdt, &inodedep->id_extupdt); 12783 if (!TAILQ_EMPTY(&inodedep->id_extupdt)) 12784 handle_allocdirect_partdone(TAILQ_FIRST(&inodedep->id_extupdt), 12785 NULL); 12786 /* 12787 * Now that the inode has been pushed into the buffer, the 12788 * operations dependent on the inode being written to disk 12789 * can be moved to the id_bufwait so that they will be 12790 * processed when the buffer I/O completes. 12791 */ 12792 while ((wk = LIST_FIRST(&inodedep->id_inowait)) != NULL) { 12793 WORKLIST_REMOVE(wk); 12794 WORKLIST_INSERT(&inodedep->id_bufwait, wk); 12795 } 12796 /* 12797 * Newly allocated inodes cannot be written until the bitmap 12798 * that allocates them have been written (indicated by 12799 * DEPCOMPLETE being set in id_state). If we are doing a 12800 * forced sync (e.g., an fsync on a file), we force the bitmap 12801 * to be written so that the update can be done. 12802 */ 12803 if (waitfor == 0) { 12804 FREE_LOCK(ump); 12805 return; 12806 } 12807 retry: 12808 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) != 0) { 12809 FREE_LOCK(ump); 12810 return; 12811 } 12812 ibp = inodedep->id_bmsafemap->sm_buf; 12813 ibp = getdirtybuf(ibp, LOCK_PTR(ump), MNT_WAIT); 12814 if (ibp == NULL) { 12815 /* 12816 * If ibp came back as NULL, the dependency could have been 12817 * freed while we slept. Look it up again, and check to see 12818 * that it has completed. 12819 */ 12820 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) 12821 goto retry; 12822 FREE_LOCK(ump); 12823 return; 12824 } 12825 FREE_LOCK(ump); 12826 if ((error = bwrite(ibp)) != 0) 12827 softdep_error("softdep_update_inodeblock: bwrite", error); 12828 } 12829 12830 /* 12831 * Merge the a new inode dependency list (such as id_newinoupdt) into an 12832 * old inode dependency list (such as id_inoupdt). 12833 */ 12834 static void 12835 merge_inode_lists(newlisthead, oldlisthead) 12836 struct allocdirectlst *newlisthead; 12837 struct allocdirectlst *oldlisthead; 12838 { 12839 struct allocdirect *listadp, *newadp; 12840 12841 newadp = TAILQ_FIRST(newlisthead); 12842 if (newadp != NULL) 12843 LOCK_OWNED(VFSTOUFS(newadp->ad_block.nb_list.wk_mp)); 12844 for (listadp = TAILQ_FIRST(oldlisthead); listadp && newadp;) { 12845 if (listadp->ad_offset < newadp->ad_offset) { 12846 listadp = TAILQ_NEXT(listadp, ad_next); 12847 continue; 12848 } 12849 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12850 TAILQ_INSERT_BEFORE(listadp, newadp, ad_next); 12851 if (listadp->ad_offset == newadp->ad_offset) { 12852 allocdirect_merge(oldlisthead, newadp, 12853 listadp); 12854 listadp = newadp; 12855 } 12856 newadp = TAILQ_FIRST(newlisthead); 12857 } 12858 while ((newadp = TAILQ_FIRST(newlisthead)) != NULL) { 12859 TAILQ_REMOVE(newlisthead, newadp, ad_next); 12860 TAILQ_INSERT_TAIL(oldlisthead, newadp, ad_next); 12861 } 12862 } 12863 12864 /* 12865 * If we are doing an fsync, then we must ensure that any directory 12866 * entries for the inode have been written after the inode gets to disk. 12867 */ 12868 int 12869 softdep_fsync(vp) 12870 struct vnode *vp; /* the "in_core" copy of the inode */ 12871 { 12872 struct inodedep *inodedep; 12873 struct pagedep *pagedep; 12874 struct inoref *inoref; 12875 struct ufsmount *ump; 12876 struct worklist *wk; 12877 struct diradd *dap; 12878 struct mount *mp; 12879 struct vnode *pvp; 12880 struct inode *ip; 12881 struct buf *bp; 12882 struct fs *fs; 12883 struct thread *td = curthread; 12884 int error, flushparent, pagedep_new_block; 12885 ino_t parentino; 12886 ufs_lbn_t lbn; 12887 12888 ip = VTOI(vp); 12889 mp = vp->v_mount; 12890 ump = VFSTOUFS(mp); 12891 fs = ump->um_fs; 12892 if (MOUNTEDSOFTDEP(mp) == 0) 12893 return (0); 12894 ACQUIRE_LOCK(ump); 12895 restart: 12896 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) { 12897 FREE_LOCK(ump); 12898 return (0); 12899 } 12900 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 12901 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 12902 == DEPCOMPLETE) { 12903 jwait(&inoref->if_list, MNT_WAIT); 12904 goto restart; 12905 } 12906 } 12907 if (!LIST_EMPTY(&inodedep->id_inowait) || 12908 !TAILQ_EMPTY(&inodedep->id_extupdt) || 12909 !TAILQ_EMPTY(&inodedep->id_newextupdt) || 12910 !TAILQ_EMPTY(&inodedep->id_inoupdt) || 12911 !TAILQ_EMPTY(&inodedep->id_newinoupdt)) 12912 panic("softdep_fsync: pending ops %p", inodedep); 12913 for (error = 0, flushparent = 0; ; ) { 12914 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) == NULL) 12915 break; 12916 if (wk->wk_type != D_DIRADD) 12917 panic("softdep_fsync: Unexpected type %s", 12918 TYPENAME(wk->wk_type)); 12919 dap = WK_DIRADD(wk); 12920 /* 12921 * Flush our parent if this directory entry has a MKDIR_PARENT 12922 * dependency or is contained in a newly allocated block. 12923 */ 12924 if (dap->da_state & DIRCHG) 12925 pagedep = dap->da_previous->dm_pagedep; 12926 else 12927 pagedep = dap->da_pagedep; 12928 parentino = pagedep->pd_ino; 12929 lbn = pagedep->pd_lbn; 12930 if ((dap->da_state & (MKDIR_BODY | COMPLETE)) != COMPLETE) 12931 panic("softdep_fsync: dirty"); 12932 if ((dap->da_state & MKDIR_PARENT) || 12933 (pagedep->pd_state & NEWBLOCK)) 12934 flushparent = 1; 12935 else 12936 flushparent = 0; 12937 /* 12938 * If we are being fsync'ed as part of vgone'ing this vnode, 12939 * then we will not be able to release and recover the 12940 * vnode below, so we just have to give up on writing its 12941 * directory entry out. It will eventually be written, just 12942 * not now, but then the user was not asking to have it 12943 * written, so we are not breaking any promises. 12944 */ 12945 if (VN_IS_DOOMED(vp)) 12946 break; 12947 /* 12948 * We prevent deadlock by always fetching inodes from the 12949 * root, moving down the directory tree. Thus, when fetching 12950 * our parent directory, we first try to get the lock. If 12951 * that fails, we must unlock ourselves before requesting 12952 * the lock on our parent. See the comment in ufs_lookup 12953 * for details on possible races. 12954 */ 12955 FREE_LOCK(ump); 12956 error = get_parent_vp(vp, mp, parentino, NULL, NULL, NULL, 12957 &pvp); 12958 if (error == ERELOOKUP) 12959 error = 0; 12960 if (error != 0) 12961 return (error); 12962 /* 12963 * All MKDIR_PARENT dependencies and all the NEWBLOCK pagedeps 12964 * that are contained in direct blocks will be resolved by 12965 * doing a ffs_update. Pagedeps contained in indirect blocks 12966 * may require a complete sync'ing of the directory. So, we 12967 * try the cheap and fast ffs_update first, and if that fails, 12968 * then we do the slower ffs_syncvnode of the directory. 12969 */ 12970 if (flushparent) { 12971 int locked; 12972 12973 if ((error = ffs_update(pvp, 1)) != 0) { 12974 vput(pvp); 12975 return (error); 12976 } 12977 ACQUIRE_LOCK(ump); 12978 locked = 1; 12979 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) != 0) { 12980 if ((wk = LIST_FIRST(&inodedep->id_pendinghd)) != NULL) { 12981 if (wk->wk_type != D_DIRADD) 12982 panic("softdep_fsync: Unexpected type %s", 12983 TYPENAME(wk->wk_type)); 12984 dap = WK_DIRADD(wk); 12985 if (dap->da_state & DIRCHG) 12986 pagedep = dap->da_previous->dm_pagedep; 12987 else 12988 pagedep = dap->da_pagedep; 12989 pagedep_new_block = pagedep->pd_state & NEWBLOCK; 12990 FREE_LOCK(ump); 12991 locked = 0; 12992 if (pagedep_new_block && (error = 12993 ffs_syncvnode(pvp, MNT_WAIT, 0))) { 12994 vput(pvp); 12995 return (error); 12996 } 12997 } 12998 } 12999 if (locked) 13000 FREE_LOCK(ump); 13001 } 13002 /* 13003 * Flush directory page containing the inode's name. 13004 */ 13005 error = bread(pvp, lbn, blksize(fs, VTOI(pvp), lbn), td->td_ucred, 13006 &bp); 13007 if (error == 0) 13008 error = bwrite(bp); 13009 else 13010 brelse(bp); 13011 vput(pvp); 13012 if (!ffs_fsfail_cleanup(ump, error)) 13013 return (error); 13014 ACQUIRE_LOCK(ump); 13015 if (inodedep_lookup(mp, ip->i_number, 0, &inodedep) == 0) 13016 break; 13017 } 13018 FREE_LOCK(ump); 13019 return (0); 13020 } 13021 13022 /* 13023 * Flush all the dirty bitmaps associated with the block device 13024 * before flushing the rest of the dirty blocks so as to reduce 13025 * the number of dependencies that will have to be rolled back. 13026 * 13027 * XXX Unused? 13028 */ 13029 void 13030 softdep_fsync_mountdev(vp) 13031 struct vnode *vp; 13032 { 13033 struct buf *bp, *nbp; 13034 struct worklist *wk; 13035 struct bufobj *bo; 13036 13037 if (!vn_isdisk(vp)) 13038 panic("softdep_fsync_mountdev: vnode not a disk"); 13039 bo = &vp->v_bufobj; 13040 restart: 13041 BO_LOCK(bo); 13042 TAILQ_FOREACH_SAFE(bp, &bo->bo_dirty.bv_hd, b_bobufs, nbp) { 13043 /* 13044 * If it is already scheduled, skip to the next buffer. 13045 */ 13046 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL)) 13047 continue; 13048 13049 if ((bp->b_flags & B_DELWRI) == 0) 13050 panic("softdep_fsync_mountdev: not dirty"); 13051 /* 13052 * We are only interested in bitmaps with outstanding 13053 * dependencies. 13054 */ 13055 if ((wk = LIST_FIRST(&bp->b_dep)) == NULL || 13056 wk->wk_type != D_BMSAFEMAP || 13057 (bp->b_vflags & BV_BKGRDINPROG)) { 13058 BUF_UNLOCK(bp); 13059 continue; 13060 } 13061 BO_UNLOCK(bo); 13062 bremfree(bp); 13063 (void) bawrite(bp); 13064 goto restart; 13065 } 13066 drain_output(vp); 13067 BO_UNLOCK(bo); 13068 } 13069 13070 /* 13071 * Sync all cylinder groups that were dirty at the time this function is 13072 * called. Newly dirtied cgs will be inserted before the sentinel. This 13073 * is used to flush freedep activity that may be holding up writes to a 13074 * indirect block. 13075 */ 13076 static int 13077 sync_cgs(mp, waitfor) 13078 struct mount *mp; 13079 int waitfor; 13080 { 13081 struct bmsafemap *bmsafemap; 13082 struct bmsafemap *sentinel; 13083 struct ufsmount *ump; 13084 struct buf *bp; 13085 int error; 13086 13087 sentinel = malloc(sizeof(*sentinel), M_BMSAFEMAP, M_ZERO | M_WAITOK); 13088 sentinel->sm_cg = -1; 13089 ump = VFSTOUFS(mp); 13090 error = 0; 13091 ACQUIRE_LOCK(ump); 13092 LIST_INSERT_HEAD(&ump->softdep_dirtycg, sentinel, sm_next); 13093 for (bmsafemap = LIST_NEXT(sentinel, sm_next); bmsafemap != NULL; 13094 bmsafemap = LIST_NEXT(sentinel, sm_next)) { 13095 /* Skip sentinels and cgs with no work to release. */ 13096 if (bmsafemap->sm_cg == -1 || 13097 (LIST_EMPTY(&bmsafemap->sm_freehd) && 13098 LIST_EMPTY(&bmsafemap->sm_freewr))) { 13099 LIST_REMOVE(sentinel, sm_next); 13100 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13101 continue; 13102 } 13103 /* 13104 * If we don't get the lock and we're waiting try again, if 13105 * not move on to the next buf and try to sync it. 13106 */ 13107 bp = getdirtybuf(bmsafemap->sm_buf, LOCK_PTR(ump), waitfor); 13108 if (bp == NULL && waitfor == MNT_WAIT) 13109 continue; 13110 LIST_REMOVE(sentinel, sm_next); 13111 LIST_INSERT_AFTER(bmsafemap, sentinel, sm_next); 13112 if (bp == NULL) 13113 continue; 13114 FREE_LOCK(ump); 13115 if (waitfor == MNT_NOWAIT) 13116 bawrite(bp); 13117 else 13118 error = bwrite(bp); 13119 ACQUIRE_LOCK(ump); 13120 if (error) 13121 break; 13122 } 13123 LIST_REMOVE(sentinel, sm_next); 13124 FREE_LOCK(ump); 13125 free(sentinel, M_BMSAFEMAP); 13126 return (error); 13127 } 13128 13129 /* 13130 * This routine is called when we are trying to synchronously flush a 13131 * file. This routine must eliminate any filesystem metadata dependencies 13132 * so that the syncing routine can succeed. 13133 */ 13134 int 13135 softdep_sync_metadata(struct vnode *vp) 13136 { 13137 struct inode *ip; 13138 int error; 13139 13140 ip = VTOI(vp); 13141 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13142 ("softdep_sync_metadata called on non-softdep filesystem")); 13143 /* 13144 * Ensure that any direct block dependencies have been cleared, 13145 * truncations are started, and inode references are journaled. 13146 */ 13147 ACQUIRE_LOCK(VFSTOUFS(vp->v_mount)); 13148 /* 13149 * Write all journal records to prevent rollbacks on devvp. 13150 */ 13151 if (vp->v_type == VCHR) 13152 softdep_flushjournal(vp->v_mount); 13153 error = flush_inodedep_deps(vp, vp->v_mount, ip->i_number); 13154 /* 13155 * Ensure that all truncates are written so we won't find deps on 13156 * indirect blocks. 13157 */ 13158 process_truncates(vp); 13159 FREE_LOCK(VFSTOUFS(vp->v_mount)); 13160 13161 return (error); 13162 } 13163 13164 /* 13165 * This routine is called when we are attempting to sync a buf with 13166 * dependencies. If waitfor is MNT_NOWAIT it attempts to schedule any 13167 * other IO it can but returns EBUSY if the buffer is not yet able to 13168 * be written. Dependencies which will not cause rollbacks will always 13169 * return 0. 13170 */ 13171 int 13172 softdep_sync_buf(struct vnode *vp, struct buf *bp, int waitfor) 13173 { 13174 struct indirdep *indirdep; 13175 struct pagedep *pagedep; 13176 struct allocindir *aip; 13177 struct newblk *newblk; 13178 struct ufsmount *ump; 13179 struct buf *nbp; 13180 struct worklist *wk; 13181 int i, error; 13182 13183 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13184 ("softdep_sync_buf called on non-softdep filesystem")); 13185 /* 13186 * For VCHR we just don't want to force flush any dependencies that 13187 * will cause rollbacks. 13188 */ 13189 if (vp->v_type == VCHR) { 13190 if (waitfor == MNT_NOWAIT && softdep_count_dependencies(bp, 0)) 13191 return (EBUSY); 13192 return (0); 13193 } 13194 ump = VFSTOUFS(vp->v_mount); 13195 ACQUIRE_LOCK(ump); 13196 /* 13197 * As we hold the buffer locked, none of its dependencies 13198 * will disappear. 13199 */ 13200 error = 0; 13201 top: 13202 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 13203 switch (wk->wk_type) { 13204 case D_ALLOCDIRECT: 13205 case D_ALLOCINDIR: 13206 newblk = WK_NEWBLK(wk); 13207 if (newblk->nb_jnewblk != NULL) { 13208 if (waitfor == MNT_NOWAIT) { 13209 error = EBUSY; 13210 goto out_unlock; 13211 } 13212 jwait(&newblk->nb_jnewblk->jn_list, waitfor); 13213 goto top; 13214 } 13215 if (newblk->nb_state & DEPCOMPLETE || 13216 waitfor == MNT_NOWAIT) 13217 continue; 13218 nbp = newblk->nb_bmsafemap->sm_buf; 13219 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13220 if (nbp == NULL) 13221 goto top; 13222 FREE_LOCK(ump); 13223 if ((error = bwrite(nbp)) != 0) 13224 goto out; 13225 ACQUIRE_LOCK(ump); 13226 continue; 13227 13228 case D_INDIRDEP: 13229 indirdep = WK_INDIRDEP(wk); 13230 if (waitfor == MNT_NOWAIT) { 13231 if (!TAILQ_EMPTY(&indirdep->ir_trunc) || 13232 !LIST_EMPTY(&indirdep->ir_deplisthd)) { 13233 error = EBUSY; 13234 goto out_unlock; 13235 } 13236 } 13237 if (!TAILQ_EMPTY(&indirdep->ir_trunc)) 13238 panic("softdep_sync_buf: truncation pending."); 13239 restart: 13240 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 13241 newblk = (struct newblk *)aip; 13242 if (newblk->nb_jnewblk != NULL) { 13243 jwait(&newblk->nb_jnewblk->jn_list, 13244 waitfor); 13245 goto restart; 13246 } 13247 if (newblk->nb_state & DEPCOMPLETE) 13248 continue; 13249 nbp = newblk->nb_bmsafemap->sm_buf; 13250 nbp = getdirtybuf(nbp, LOCK_PTR(ump), waitfor); 13251 if (nbp == NULL) 13252 goto restart; 13253 FREE_LOCK(ump); 13254 if ((error = bwrite(nbp)) != 0) 13255 goto out; 13256 ACQUIRE_LOCK(ump); 13257 goto restart; 13258 } 13259 continue; 13260 13261 case D_PAGEDEP: 13262 /* 13263 * Only flush directory entries in synchronous passes. 13264 */ 13265 if (waitfor != MNT_WAIT) { 13266 error = EBUSY; 13267 goto out_unlock; 13268 } 13269 /* 13270 * While syncing snapshots, we must allow recursive 13271 * lookups. 13272 */ 13273 BUF_AREC(bp); 13274 /* 13275 * We are trying to sync a directory that may 13276 * have dependencies on both its own metadata 13277 * and/or dependencies on the inodes of any 13278 * recently allocated files. We walk its diradd 13279 * lists pushing out the associated inode. 13280 */ 13281 pagedep = WK_PAGEDEP(wk); 13282 for (i = 0; i < DAHASHSZ; i++) { 13283 if (LIST_FIRST(&pagedep->pd_diraddhd[i]) == 0) 13284 continue; 13285 error = flush_pagedep_deps(vp, wk->wk_mp, 13286 &pagedep->pd_diraddhd[i], bp); 13287 if (error != 0) { 13288 if (error != ERELOOKUP) 13289 BUF_NOREC(bp); 13290 goto out_unlock; 13291 } 13292 } 13293 BUF_NOREC(bp); 13294 continue; 13295 13296 case D_FREEWORK: 13297 case D_FREEDEP: 13298 case D_JSEGDEP: 13299 case D_JNEWBLK: 13300 continue; 13301 13302 default: 13303 panic("softdep_sync_buf: Unknown type %s", 13304 TYPENAME(wk->wk_type)); 13305 /* NOTREACHED */ 13306 } 13307 } 13308 out_unlock: 13309 FREE_LOCK(ump); 13310 out: 13311 return (error); 13312 } 13313 13314 /* 13315 * Flush the dependencies associated with an inodedep. 13316 */ 13317 static int 13318 flush_inodedep_deps(vp, mp, ino) 13319 struct vnode *vp; 13320 struct mount *mp; 13321 ino_t ino; 13322 { 13323 struct inodedep *inodedep; 13324 struct inoref *inoref; 13325 struct ufsmount *ump; 13326 int error, waitfor; 13327 13328 /* 13329 * This work is done in two passes. The first pass grabs most 13330 * of the buffers and begins asynchronously writing them. The 13331 * only way to wait for these asynchronous writes is to sleep 13332 * on the filesystem vnode which may stay busy for a long time 13333 * if the filesystem is active. So, instead, we make a second 13334 * pass over the dependencies blocking on each write. In the 13335 * usual case we will be blocking against a write that we 13336 * initiated, so when it is done the dependency will have been 13337 * resolved. Thus the second pass is expected to end quickly. 13338 * We give a brief window at the top of the loop to allow 13339 * any pending I/O to complete. 13340 */ 13341 ump = VFSTOUFS(mp); 13342 LOCK_OWNED(ump); 13343 for (error = 0, waitfor = MNT_NOWAIT; ; ) { 13344 if (error) 13345 return (error); 13346 FREE_LOCK(ump); 13347 ACQUIRE_LOCK(ump); 13348 restart: 13349 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 13350 return (0); 13351 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13352 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13353 == DEPCOMPLETE) { 13354 jwait(&inoref->if_list, MNT_WAIT); 13355 goto restart; 13356 } 13357 } 13358 if (flush_deplist(&inodedep->id_inoupdt, waitfor, &error) || 13359 flush_deplist(&inodedep->id_newinoupdt, waitfor, &error) || 13360 flush_deplist(&inodedep->id_extupdt, waitfor, &error) || 13361 flush_deplist(&inodedep->id_newextupdt, waitfor, &error)) 13362 continue; 13363 /* 13364 * If pass2, we are done, otherwise do pass 2. 13365 */ 13366 if (waitfor == MNT_WAIT) 13367 break; 13368 waitfor = MNT_WAIT; 13369 } 13370 /* 13371 * Try freeing inodedep in case all dependencies have been removed. 13372 */ 13373 if (inodedep_lookup(mp, ino, 0, &inodedep) != 0) 13374 (void) free_inodedep(inodedep); 13375 return (0); 13376 } 13377 13378 /* 13379 * Flush an inode dependency list. 13380 */ 13381 static int 13382 flush_deplist(listhead, waitfor, errorp) 13383 struct allocdirectlst *listhead; 13384 int waitfor; 13385 int *errorp; 13386 { 13387 struct allocdirect *adp; 13388 struct newblk *newblk; 13389 struct ufsmount *ump; 13390 struct buf *bp; 13391 13392 if ((adp = TAILQ_FIRST(listhead)) == NULL) 13393 return (0); 13394 ump = VFSTOUFS(adp->ad_list.wk_mp); 13395 LOCK_OWNED(ump); 13396 TAILQ_FOREACH(adp, listhead, ad_next) { 13397 newblk = (struct newblk *)adp; 13398 if (newblk->nb_jnewblk != NULL) { 13399 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13400 return (1); 13401 } 13402 if (newblk->nb_state & DEPCOMPLETE) 13403 continue; 13404 bp = newblk->nb_bmsafemap->sm_buf; 13405 bp = getdirtybuf(bp, LOCK_PTR(ump), waitfor); 13406 if (bp == NULL) { 13407 if (waitfor == MNT_NOWAIT) 13408 continue; 13409 return (1); 13410 } 13411 FREE_LOCK(ump); 13412 if (waitfor == MNT_NOWAIT) 13413 bawrite(bp); 13414 else 13415 *errorp = bwrite(bp); 13416 ACQUIRE_LOCK(ump); 13417 return (1); 13418 } 13419 return (0); 13420 } 13421 13422 /* 13423 * Flush dependencies associated with an allocdirect block. 13424 */ 13425 static int 13426 flush_newblk_dep(vp, mp, lbn) 13427 struct vnode *vp; 13428 struct mount *mp; 13429 ufs_lbn_t lbn; 13430 { 13431 struct newblk *newblk; 13432 struct ufsmount *ump; 13433 struct bufobj *bo; 13434 struct inode *ip; 13435 struct buf *bp; 13436 ufs2_daddr_t blkno; 13437 int error; 13438 13439 error = 0; 13440 bo = &vp->v_bufobj; 13441 ip = VTOI(vp); 13442 blkno = DIP(ip, i_db[lbn]); 13443 if (blkno == 0) 13444 panic("flush_newblk_dep: Missing block"); 13445 ump = VFSTOUFS(mp); 13446 ACQUIRE_LOCK(ump); 13447 /* 13448 * Loop until all dependencies related to this block are satisfied. 13449 * We must be careful to restart after each sleep in case a write 13450 * completes some part of this process for us. 13451 */ 13452 for (;;) { 13453 if (newblk_lookup(mp, blkno, 0, &newblk) == 0) { 13454 FREE_LOCK(ump); 13455 break; 13456 } 13457 if (newblk->nb_list.wk_type != D_ALLOCDIRECT) 13458 panic("flush_newblk_dep: Bad newblk %p", newblk); 13459 /* 13460 * Flush the journal. 13461 */ 13462 if (newblk->nb_jnewblk != NULL) { 13463 jwait(&newblk->nb_jnewblk->jn_list, MNT_WAIT); 13464 continue; 13465 } 13466 /* 13467 * Write the bitmap dependency. 13468 */ 13469 if ((newblk->nb_state & DEPCOMPLETE) == 0) { 13470 bp = newblk->nb_bmsafemap->sm_buf; 13471 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13472 if (bp == NULL) 13473 continue; 13474 FREE_LOCK(ump); 13475 error = bwrite(bp); 13476 if (error) 13477 break; 13478 ACQUIRE_LOCK(ump); 13479 continue; 13480 } 13481 /* 13482 * Write the buffer. 13483 */ 13484 FREE_LOCK(ump); 13485 BO_LOCK(bo); 13486 bp = gbincore(bo, lbn); 13487 if (bp != NULL) { 13488 error = BUF_LOCK(bp, LK_EXCLUSIVE | LK_SLEEPFAIL | 13489 LK_INTERLOCK, BO_LOCKPTR(bo)); 13490 if (error == ENOLCK) { 13491 ACQUIRE_LOCK(ump); 13492 error = 0; 13493 continue; /* Slept, retry */ 13494 } 13495 if (error != 0) 13496 break; /* Failed */ 13497 if (bp->b_flags & B_DELWRI) { 13498 bremfree(bp); 13499 error = bwrite(bp); 13500 if (error) 13501 break; 13502 } else 13503 BUF_UNLOCK(bp); 13504 } else 13505 BO_UNLOCK(bo); 13506 /* 13507 * We have to wait for the direct pointers to 13508 * point at the newdirblk before the dependency 13509 * will go away. 13510 */ 13511 error = ffs_update(vp, 1); 13512 if (error) 13513 break; 13514 ACQUIRE_LOCK(ump); 13515 } 13516 return (error); 13517 } 13518 13519 /* 13520 * Eliminate a pagedep dependency by flushing out all its diradd dependencies. 13521 */ 13522 static int 13523 flush_pagedep_deps(pvp, mp, diraddhdp, locked_bp) 13524 struct vnode *pvp; 13525 struct mount *mp; 13526 struct diraddhd *diraddhdp; 13527 struct buf *locked_bp; 13528 { 13529 struct inodedep *inodedep; 13530 struct inoref *inoref; 13531 struct ufsmount *ump; 13532 struct diradd *dap; 13533 struct vnode *vp; 13534 int error = 0; 13535 struct buf *bp; 13536 ino_t inum; 13537 struct diraddhd unfinished; 13538 13539 LIST_INIT(&unfinished); 13540 ump = VFSTOUFS(mp); 13541 LOCK_OWNED(ump); 13542 restart: 13543 while ((dap = LIST_FIRST(diraddhdp)) != NULL) { 13544 /* 13545 * Flush ourselves if this directory entry 13546 * has a MKDIR_PARENT dependency. 13547 */ 13548 if (dap->da_state & MKDIR_PARENT) { 13549 FREE_LOCK(ump); 13550 if ((error = ffs_update(pvp, 1)) != 0) 13551 break; 13552 ACQUIRE_LOCK(ump); 13553 /* 13554 * If that cleared dependencies, go on to next. 13555 */ 13556 if (dap != LIST_FIRST(diraddhdp)) 13557 continue; 13558 /* 13559 * All MKDIR_PARENT dependencies and all the 13560 * NEWBLOCK pagedeps that are contained in direct 13561 * blocks were resolved by doing above ffs_update. 13562 * Pagedeps contained in indirect blocks may 13563 * require a complete sync'ing of the directory. 13564 * We are in the midst of doing a complete sync, 13565 * so if they are not resolved in this pass we 13566 * defer them for now as they will be sync'ed by 13567 * our caller shortly. 13568 */ 13569 LIST_REMOVE(dap, da_pdlist); 13570 LIST_INSERT_HEAD(&unfinished, dap, da_pdlist); 13571 continue; 13572 } 13573 /* 13574 * A newly allocated directory must have its "." and 13575 * ".." entries written out before its name can be 13576 * committed in its parent. 13577 */ 13578 inum = dap->da_newinum; 13579 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13580 panic("flush_pagedep_deps: lost inode1"); 13581 /* 13582 * Wait for any pending journal adds to complete so we don't 13583 * cause rollbacks while syncing. 13584 */ 13585 TAILQ_FOREACH(inoref, &inodedep->id_inoreflst, if_deps) { 13586 if ((inoref->if_state & (DEPCOMPLETE | GOINGAWAY)) 13587 == DEPCOMPLETE) { 13588 jwait(&inoref->if_list, MNT_WAIT); 13589 goto restart; 13590 } 13591 } 13592 if (dap->da_state & MKDIR_BODY) { 13593 FREE_LOCK(ump); 13594 error = get_parent_vp(pvp, mp, inum, locked_bp, 13595 diraddhdp, &unfinished, &vp); 13596 if (error != 0) 13597 break; 13598 error = flush_newblk_dep(vp, mp, 0); 13599 /* 13600 * If we still have the dependency we might need to 13601 * update the vnode to sync the new link count to 13602 * disk. 13603 */ 13604 if (error == 0 && dap == LIST_FIRST(diraddhdp)) 13605 error = ffs_update(vp, 1); 13606 vput(vp); 13607 if (error != 0) 13608 break; 13609 ACQUIRE_LOCK(ump); 13610 /* 13611 * If that cleared dependencies, go on to next. 13612 */ 13613 if (dap != LIST_FIRST(diraddhdp)) 13614 continue; 13615 if (dap->da_state & MKDIR_BODY) { 13616 inodedep_lookup(UFSTOVFS(ump), inum, 0, 13617 &inodedep); 13618 panic("flush_pagedep_deps: MKDIR_BODY " 13619 "inodedep %p dap %p vp %p", 13620 inodedep, dap, vp); 13621 } 13622 } 13623 /* 13624 * Flush the inode on which the directory entry depends. 13625 * Having accounted for MKDIR_PARENT and MKDIR_BODY above, 13626 * the only remaining dependency is that the updated inode 13627 * count must get pushed to disk. The inode has already 13628 * been pushed into its inode buffer (via VOP_UPDATE) at 13629 * the time of the reference count change. So we need only 13630 * locate that buffer, ensure that there will be no rollback 13631 * caused by a bitmap dependency, then write the inode buffer. 13632 */ 13633 retry: 13634 if (inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep) == 0) 13635 panic("flush_pagedep_deps: lost inode"); 13636 /* 13637 * If the inode still has bitmap dependencies, 13638 * push them to disk. 13639 */ 13640 if ((inodedep->id_state & (DEPCOMPLETE | GOINGAWAY)) == 0) { 13641 bp = inodedep->id_bmsafemap->sm_buf; 13642 bp = getdirtybuf(bp, LOCK_PTR(ump), MNT_WAIT); 13643 if (bp == NULL) 13644 goto retry; 13645 FREE_LOCK(ump); 13646 if ((error = bwrite(bp)) != 0) 13647 break; 13648 ACQUIRE_LOCK(ump); 13649 if (dap != LIST_FIRST(diraddhdp)) 13650 continue; 13651 } 13652 /* 13653 * If the inode is still sitting in a buffer waiting 13654 * to be written or waiting for the link count to be 13655 * adjusted update it here to flush it to disk. 13656 */ 13657 if (dap == LIST_FIRST(diraddhdp)) { 13658 FREE_LOCK(ump); 13659 error = get_parent_vp(pvp, mp, inum, locked_bp, 13660 diraddhdp, &unfinished, &vp); 13661 if (error != 0) 13662 break; 13663 error = ffs_update(vp, 1); 13664 vput(vp); 13665 if (error) 13666 break; 13667 ACQUIRE_LOCK(ump); 13668 } 13669 /* 13670 * If we have failed to get rid of all the dependencies 13671 * then something is seriously wrong. 13672 */ 13673 if (dap == LIST_FIRST(diraddhdp)) { 13674 inodedep_lookup(UFSTOVFS(ump), inum, 0, &inodedep); 13675 panic("flush_pagedep_deps: failed to flush " 13676 "inodedep %p ino %ju dap %p", 13677 inodedep, (uintmax_t)inum, dap); 13678 } 13679 } 13680 if (error) 13681 ACQUIRE_LOCK(ump); 13682 while ((dap = LIST_FIRST(&unfinished)) != NULL) { 13683 LIST_REMOVE(dap, da_pdlist); 13684 LIST_INSERT_HEAD(diraddhdp, dap, da_pdlist); 13685 } 13686 return (error); 13687 } 13688 13689 /* 13690 * A large burst of file addition or deletion activity can drive the 13691 * memory load excessively high. First attempt to slow things down 13692 * using the techniques below. If that fails, this routine requests 13693 * the offending operations to fall back to running synchronously 13694 * until the memory load returns to a reasonable level. 13695 */ 13696 int 13697 softdep_slowdown(vp) 13698 struct vnode *vp; 13699 { 13700 struct ufsmount *ump; 13701 int jlow; 13702 int max_softdeps_hard; 13703 13704 KASSERT(MOUNTEDSOFTDEP(vp->v_mount) != 0, 13705 ("softdep_slowdown called on non-softdep filesystem")); 13706 ump = VFSTOUFS(vp->v_mount); 13707 ACQUIRE_LOCK(ump); 13708 jlow = 0; 13709 /* 13710 * Check for journal space if needed. 13711 */ 13712 if (DOINGSUJ(vp)) { 13713 if (journal_space(ump, 0) == 0) 13714 jlow = 1; 13715 } 13716 /* 13717 * If the system is under its limits and our filesystem is 13718 * not responsible for more than our share of the usage and 13719 * we are not low on journal space, then no need to slow down. 13720 */ 13721 max_softdeps_hard = max_softdeps * 11 / 10; 13722 if (dep_current[D_DIRREM] < max_softdeps_hard / 2 && 13723 dep_current[D_INODEDEP] < max_softdeps_hard && 13724 dep_current[D_INDIRDEP] < max_softdeps_hard / 1000 && 13725 dep_current[D_FREEBLKS] < max_softdeps_hard && jlow == 0 && 13726 ump->softdep_curdeps[D_DIRREM] < 13727 (max_softdeps_hard / 2) / stat_flush_threads && 13728 ump->softdep_curdeps[D_INODEDEP] < 13729 max_softdeps_hard / stat_flush_threads && 13730 ump->softdep_curdeps[D_INDIRDEP] < 13731 (max_softdeps_hard / 1000) / stat_flush_threads && 13732 ump->softdep_curdeps[D_FREEBLKS] < 13733 max_softdeps_hard / stat_flush_threads) { 13734 FREE_LOCK(ump); 13735 return (0); 13736 } 13737 /* 13738 * If the journal is low or our filesystem is over its limit 13739 * then speedup the cleanup. 13740 */ 13741 if (ump->softdep_curdeps[D_INDIRDEP] < 13742 (max_softdeps_hard / 1000) / stat_flush_threads || jlow) 13743 softdep_speedup(ump); 13744 stat_sync_limit_hit += 1; 13745 FREE_LOCK(ump); 13746 /* 13747 * We only slow down the rate at which new dependencies are 13748 * generated if we are not using journaling. With journaling, 13749 * the cleanup should always be sufficient to keep things 13750 * under control. 13751 */ 13752 if (DOINGSUJ(vp)) 13753 return (0); 13754 return (1); 13755 } 13756 13757 static int 13758 softdep_request_cleanup_filter(struct vnode *vp, void *arg __unused) 13759 { 13760 return ((vp->v_iflag & VI_OWEINACT) != 0 && vp->v_usecount == 0 && 13761 ((vp->v_vflag & VV_NOSYNC) != 0 || VTOI(vp)->i_effnlink == 0)); 13762 } 13763 13764 static void 13765 softdep_request_cleanup_inactivate(struct mount *mp) 13766 { 13767 struct vnode *vp, *mvp; 13768 int error; 13769 13770 MNT_VNODE_FOREACH_LAZY(vp, mp, mvp, softdep_request_cleanup_filter, 13771 NULL) { 13772 vholdl(vp); 13773 vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_RETRY); 13774 VI_LOCK(vp); 13775 if (vp->v_data != NULL && vp->v_usecount == 0) { 13776 while ((vp->v_iflag & VI_OWEINACT) != 0) { 13777 error = vinactive(vp); 13778 if (error != 0 && error != ERELOOKUP) 13779 break; 13780 } 13781 atomic_add_int(&stat_delayed_inact, 1); 13782 } 13783 VOP_UNLOCK(vp); 13784 vdropl(vp); 13785 } 13786 } 13787 13788 /* 13789 * Called by the allocation routines when they are about to fail 13790 * in the hope that we can free up the requested resource (inodes 13791 * or disk space). 13792 * 13793 * First check to see if the work list has anything on it. If it has, 13794 * clean up entries until we successfully free the requested resource. 13795 * Because this process holds inodes locked, we cannot handle any remove 13796 * requests that might block on a locked inode as that could lead to 13797 * deadlock. If the worklist yields none of the requested resource, 13798 * start syncing out vnodes to free up the needed space. 13799 */ 13800 int 13801 softdep_request_cleanup(fs, vp, cred, resource) 13802 struct fs *fs; 13803 struct vnode *vp; 13804 struct ucred *cred; 13805 int resource; 13806 { 13807 struct ufsmount *ump; 13808 struct mount *mp; 13809 long starttime; 13810 ufs2_daddr_t needed; 13811 int error, failed_vnode; 13812 13813 /* 13814 * If we are being called because of a process doing a 13815 * copy-on-write, then it is not safe to process any 13816 * worklist items as we will recurse into the copyonwrite 13817 * routine. This will result in an incoherent snapshot. 13818 * If the vnode that we hold is a snapshot, we must avoid 13819 * handling other resources that could cause deadlock. 13820 */ 13821 if ((curthread->td_pflags & TDP_COWINPROGRESS) || IS_SNAPSHOT(VTOI(vp))) 13822 return (0); 13823 13824 if (resource == FLUSH_BLOCKS_WAIT) 13825 stat_cleanup_blkrequests += 1; 13826 else 13827 stat_cleanup_inorequests += 1; 13828 13829 mp = vp->v_mount; 13830 ump = VFSTOUFS(mp); 13831 mtx_assert(UFS_MTX(ump), MA_OWNED); 13832 UFS_UNLOCK(ump); 13833 error = ffs_update(vp, 1); 13834 if (error != 0 || MOUNTEDSOFTDEP(mp) == 0) { 13835 UFS_LOCK(ump); 13836 return (0); 13837 } 13838 /* 13839 * If we are in need of resources, start by cleaning up 13840 * any block removals associated with our inode. 13841 */ 13842 ACQUIRE_LOCK(ump); 13843 process_removes(vp); 13844 process_truncates(vp); 13845 FREE_LOCK(ump); 13846 /* 13847 * Now clean up at least as many resources as we will need. 13848 * 13849 * When requested to clean up inodes, the number that are needed 13850 * is set by the number of simultaneous writers (mnt_writeopcount) 13851 * plus a bit of slop (2) in case some more writers show up while 13852 * we are cleaning. 13853 * 13854 * When requested to free up space, the amount of space that 13855 * we need is enough blocks to allocate a full-sized segment 13856 * (fs_contigsumsize). The number of such segments that will 13857 * be needed is set by the number of simultaneous writers 13858 * (mnt_writeopcount) plus a bit of slop (2) in case some more 13859 * writers show up while we are cleaning. 13860 * 13861 * Additionally, if we are unpriviledged and allocating space, 13862 * we need to ensure that we clean up enough blocks to get the 13863 * needed number of blocks over the threshold of the minimum 13864 * number of blocks required to be kept free by the filesystem 13865 * (fs_minfree). 13866 */ 13867 if (resource == FLUSH_INODES_WAIT) { 13868 needed = vfs_mount_fetch_counter(vp->v_mount, 13869 MNT_COUNT_WRITEOPCOUNT) + 2; 13870 } else if (resource == FLUSH_BLOCKS_WAIT) { 13871 needed = (vfs_mount_fetch_counter(vp->v_mount, 13872 MNT_COUNT_WRITEOPCOUNT) + 2) * fs->fs_contigsumsize; 13873 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE)) 13874 needed += fragstoblks(fs, 13875 roundup((fs->fs_dsize * fs->fs_minfree / 100) - 13876 fs->fs_cstotal.cs_nffree, fs->fs_frag)); 13877 } else { 13878 printf("softdep_request_cleanup: Unknown resource type %d\n", 13879 resource); 13880 UFS_LOCK(ump); 13881 return (0); 13882 } 13883 starttime = time_second; 13884 retry: 13885 if (resource == FLUSH_BLOCKS_WAIT && 13886 fs->fs_cstotal.cs_nbfree <= needed) 13887 softdep_send_speedup(ump, needed * fs->fs_bsize, 13888 BIO_SPEEDUP_TRIM); 13889 if ((resource == FLUSH_BLOCKS_WAIT && ump->softdep_on_worklist > 0 && 13890 fs->fs_cstotal.cs_nbfree <= needed) || 13891 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13892 fs->fs_cstotal.cs_nifree <= needed)) { 13893 ACQUIRE_LOCK(ump); 13894 if (ump->softdep_on_worklist > 0 && 13895 process_worklist_item(UFSTOVFS(ump), 13896 ump->softdep_on_worklist, LK_NOWAIT) != 0) 13897 stat_worklist_push += 1; 13898 FREE_LOCK(ump); 13899 } 13900 13901 /* 13902 * Check that there are vnodes pending inactivation. As they 13903 * have been unlinked, inactivating them will free up their 13904 * inodes. 13905 */ 13906 ACQUIRE_LOCK(ump); 13907 if (resource == FLUSH_INODES_WAIT && 13908 fs->fs_cstotal.cs_nifree <= needed && 13909 fs->fs_pendinginodes <= needed) { 13910 if ((ump->um_softdep->sd_flags & FLUSH_DI_ACTIVE) == 0) { 13911 ump->um_softdep->sd_flags |= FLUSH_DI_ACTIVE; 13912 FREE_LOCK(ump); 13913 softdep_request_cleanup_inactivate(mp); 13914 ACQUIRE_LOCK(ump); 13915 ump->um_softdep->sd_flags &= ~FLUSH_DI_ACTIVE; 13916 wakeup(&ump->um_softdep->sd_flags); 13917 } else { 13918 while ((ump->um_softdep->sd_flags & 13919 FLUSH_DI_ACTIVE) != 0) { 13920 msleep(&ump->um_softdep->sd_flags, 13921 LOCK_PTR(ump), PVM, "ffsvina", hz); 13922 } 13923 } 13924 } 13925 FREE_LOCK(ump); 13926 13927 /* 13928 * If we still need resources and there are no more worklist 13929 * entries to process to obtain them, we have to start flushing 13930 * the dirty vnodes to force the release of additional requests 13931 * to the worklist that we can then process to reap addition 13932 * resources. We walk the vnodes associated with the mount point 13933 * until we get the needed worklist requests that we can reap. 13934 * 13935 * If there are several threads all needing to clean the same 13936 * mount point, only one is allowed to walk the mount list. 13937 * When several threads all try to walk the same mount list, 13938 * they end up competing with each other and often end up in 13939 * livelock. This approach ensures that forward progress is 13940 * made at the cost of occational ENOSPC errors being returned 13941 * that might otherwise have been avoided. 13942 */ 13943 error = 1; 13944 if ((resource == FLUSH_BLOCKS_WAIT && 13945 fs->fs_cstotal.cs_nbfree <= needed) || 13946 (resource == FLUSH_INODES_WAIT && fs->fs_pendinginodes > 0 && 13947 fs->fs_cstotal.cs_nifree <= needed)) { 13948 ACQUIRE_LOCK(ump); 13949 if ((ump->um_softdep->sd_flags & FLUSH_RC_ACTIVE) == 0) { 13950 ump->um_softdep->sd_flags |= FLUSH_RC_ACTIVE; 13951 FREE_LOCK(ump); 13952 failed_vnode = softdep_request_cleanup_flush(mp, ump); 13953 ACQUIRE_LOCK(ump); 13954 ump->um_softdep->sd_flags &= ~FLUSH_RC_ACTIVE; 13955 wakeup(&ump->um_softdep->sd_flags); 13956 FREE_LOCK(ump); 13957 if (ump->softdep_on_worklist > 0) { 13958 stat_cleanup_retries += 1; 13959 if (!failed_vnode) 13960 goto retry; 13961 } 13962 } else { 13963 while ((ump->um_softdep->sd_flags & 13964 FLUSH_RC_ACTIVE) != 0) { 13965 msleep(&ump->um_softdep->sd_flags, 13966 LOCK_PTR(ump), PVM, "ffsrca", hz); 13967 } 13968 FREE_LOCK(ump); 13969 error = 0; 13970 } 13971 stat_cleanup_failures += 1; 13972 } 13973 if (time_second - starttime > stat_cleanup_high_delay) 13974 stat_cleanup_high_delay = time_second - starttime; 13975 UFS_LOCK(ump); 13976 return (error); 13977 } 13978 13979 /* 13980 * Scan the vnodes for the specified mount point flushing out any 13981 * vnodes that can be locked without waiting. Finally, try to flush 13982 * the device associated with the mount point if it can be locked 13983 * without waiting. 13984 * 13985 * We return 0 if we were able to lock every vnode in our scan. 13986 * If we had to skip one or more vnodes, we return 1. 13987 */ 13988 static int 13989 softdep_request_cleanup_flush(mp, ump) 13990 struct mount *mp; 13991 struct ufsmount *ump; 13992 { 13993 struct thread *td; 13994 struct vnode *lvp, *mvp; 13995 int failed_vnode; 13996 13997 failed_vnode = 0; 13998 td = curthread; 13999 MNT_VNODE_FOREACH_ALL(lvp, mp, mvp) { 14000 if (TAILQ_FIRST(&lvp->v_bufobj.bo_dirty.bv_hd) == 0) { 14001 VI_UNLOCK(lvp); 14002 continue; 14003 } 14004 if (vget(lvp, LK_EXCLUSIVE | LK_INTERLOCK | LK_NOWAIT) != 0) { 14005 failed_vnode = 1; 14006 continue; 14007 } 14008 if (lvp->v_vflag & VV_NOSYNC) { /* unlinked */ 14009 vput(lvp); 14010 continue; 14011 } 14012 (void) ffs_syncvnode(lvp, MNT_NOWAIT, 0); 14013 vput(lvp); 14014 } 14015 lvp = ump->um_devvp; 14016 if (vn_lock(lvp, LK_EXCLUSIVE | LK_NOWAIT) == 0) { 14017 VOP_FSYNC(lvp, MNT_NOWAIT, td); 14018 VOP_UNLOCK(lvp); 14019 } 14020 return (failed_vnode); 14021 } 14022 14023 static bool 14024 softdep_excess_items(struct ufsmount *ump, int item) 14025 { 14026 14027 KASSERT(item >= 0 && item < D_LAST, ("item %d", item)); 14028 return (dep_current[item] > max_softdeps && 14029 ump->softdep_curdeps[item] > max_softdeps / 14030 stat_flush_threads); 14031 } 14032 14033 static void 14034 schedule_cleanup(struct mount *mp) 14035 { 14036 struct ufsmount *ump; 14037 struct thread *td; 14038 14039 ump = VFSTOUFS(mp); 14040 LOCK_OWNED(ump); 14041 FREE_LOCK(ump); 14042 td = curthread; 14043 if ((td->td_pflags & TDP_KTHREAD) != 0 && 14044 (td->td_proc->p_flag2 & P2_AST_SU) == 0) { 14045 /* 14046 * No ast is delivered to kernel threads, so nobody 14047 * would deref the mp. Some kernel threads 14048 * explicitely check for AST, e.g. NFS daemon does 14049 * this in the serving loop. 14050 */ 14051 return; 14052 } 14053 if (td->td_su != NULL) 14054 vfs_rel(td->td_su); 14055 vfs_ref(mp); 14056 td->td_su = mp; 14057 thread_lock(td); 14058 td->td_flags |= TDF_ASTPENDING; 14059 thread_unlock(td); 14060 } 14061 14062 static void 14063 softdep_ast_cleanup_proc(struct thread *td) 14064 { 14065 struct mount *mp; 14066 struct ufsmount *ump; 14067 int error; 14068 bool req; 14069 14070 while ((mp = td->td_su) != NULL) { 14071 td->td_su = NULL; 14072 error = vfs_busy(mp, MBF_NOWAIT); 14073 vfs_rel(mp); 14074 if (error != 0) 14075 return; 14076 if (ffs_own_mount(mp) && MOUNTEDSOFTDEP(mp)) { 14077 ump = VFSTOUFS(mp); 14078 for (;;) { 14079 req = false; 14080 ACQUIRE_LOCK(ump); 14081 if (softdep_excess_items(ump, D_INODEDEP)) { 14082 req = true; 14083 request_cleanup(mp, FLUSH_INODES); 14084 } 14085 if (softdep_excess_items(ump, D_DIRREM)) { 14086 req = true; 14087 request_cleanup(mp, FLUSH_BLOCKS); 14088 } 14089 FREE_LOCK(ump); 14090 if (softdep_excess_items(ump, D_NEWBLK) || 14091 softdep_excess_items(ump, D_ALLOCDIRECT) || 14092 softdep_excess_items(ump, D_ALLOCINDIR)) { 14093 error = vn_start_write(NULL, &mp, 14094 V_WAIT); 14095 if (error == 0) { 14096 req = true; 14097 VFS_SYNC(mp, MNT_WAIT); 14098 vn_finished_write(mp); 14099 } 14100 } 14101 if ((td->td_pflags & TDP_KTHREAD) != 0 || !req) 14102 break; 14103 } 14104 } 14105 vfs_unbusy(mp); 14106 } 14107 if ((mp = td->td_su) != NULL) { 14108 td->td_su = NULL; 14109 vfs_rel(mp); 14110 } 14111 } 14112 14113 /* 14114 * If memory utilization has gotten too high, deliberately slow things 14115 * down and speed up the I/O processing. 14116 */ 14117 static int 14118 request_cleanup(mp, resource) 14119 struct mount *mp; 14120 int resource; 14121 { 14122 struct thread *td = curthread; 14123 struct ufsmount *ump; 14124 14125 ump = VFSTOUFS(mp); 14126 LOCK_OWNED(ump); 14127 /* 14128 * We never hold up the filesystem syncer or buf daemon. 14129 */ 14130 if (td->td_pflags & (TDP_SOFTDEP|TDP_NORUNNINGBUF)) 14131 return (0); 14132 /* 14133 * First check to see if the work list has gotten backlogged. 14134 * If it has, co-opt this process to help clean up two entries. 14135 * Because this process may hold inodes locked, we cannot 14136 * handle any remove requests that might block on a locked 14137 * inode as that could lead to deadlock. We set TDP_SOFTDEP 14138 * to avoid recursively processing the worklist. 14139 */ 14140 if (ump->softdep_on_worklist > max_softdeps / 10) { 14141 td->td_pflags |= TDP_SOFTDEP; 14142 process_worklist_item(mp, 2, LK_NOWAIT); 14143 td->td_pflags &= ~TDP_SOFTDEP; 14144 stat_worklist_push += 2; 14145 return(1); 14146 } 14147 /* 14148 * Next, we attempt to speed up the syncer process. If that 14149 * is successful, then we allow the process to continue. 14150 */ 14151 if (softdep_speedup(ump) && 14152 resource != FLUSH_BLOCKS_WAIT && 14153 resource != FLUSH_INODES_WAIT) 14154 return(0); 14155 /* 14156 * If we are resource constrained on inode dependencies, try 14157 * flushing some dirty inodes. Otherwise, we are constrained 14158 * by file deletions, so try accelerating flushes of directories 14159 * with removal dependencies. We would like to do the cleanup 14160 * here, but we probably hold an inode locked at this point and 14161 * that might deadlock against one that we try to clean. So, 14162 * the best that we can do is request the syncer daemon to do 14163 * the cleanup for us. 14164 */ 14165 switch (resource) { 14166 case FLUSH_INODES: 14167 case FLUSH_INODES_WAIT: 14168 ACQUIRE_GBLLOCK(&lk); 14169 stat_ino_limit_push += 1; 14170 req_clear_inodedeps += 1; 14171 FREE_GBLLOCK(&lk); 14172 stat_countp = &stat_ino_limit_hit; 14173 break; 14174 14175 case FLUSH_BLOCKS: 14176 case FLUSH_BLOCKS_WAIT: 14177 ACQUIRE_GBLLOCK(&lk); 14178 stat_blk_limit_push += 1; 14179 req_clear_remove += 1; 14180 FREE_GBLLOCK(&lk); 14181 stat_countp = &stat_blk_limit_hit; 14182 break; 14183 14184 default: 14185 panic("request_cleanup: unknown type"); 14186 } 14187 /* 14188 * Hopefully the syncer daemon will catch up and awaken us. 14189 * We wait at most tickdelay before proceeding in any case. 14190 */ 14191 ACQUIRE_GBLLOCK(&lk); 14192 FREE_LOCK(ump); 14193 proc_waiting += 1; 14194 if (callout_pending(&softdep_callout) == FALSE) 14195 callout_reset(&softdep_callout, tickdelay > 2 ? tickdelay : 2, 14196 pause_timer, 0); 14197 14198 if ((td->td_pflags & TDP_KTHREAD) == 0) 14199 msleep((caddr_t)&proc_waiting, &lk, PPAUSE, "softupdate", 0); 14200 proc_waiting -= 1; 14201 FREE_GBLLOCK(&lk); 14202 ACQUIRE_LOCK(ump); 14203 return (1); 14204 } 14205 14206 /* 14207 * Awaken processes pausing in request_cleanup and clear proc_waiting 14208 * to indicate that there is no longer a timer running. Pause_timer 14209 * will be called with the global softdep mutex (&lk) locked. 14210 */ 14211 static void 14212 pause_timer(arg) 14213 void *arg; 14214 { 14215 14216 GBLLOCK_OWNED(&lk); 14217 /* 14218 * The callout_ API has acquired mtx and will hold it around this 14219 * function call. 14220 */ 14221 *stat_countp += proc_waiting; 14222 wakeup(&proc_waiting); 14223 } 14224 14225 /* 14226 * If requested, try removing inode or removal dependencies. 14227 */ 14228 static void 14229 check_clear_deps(mp) 14230 struct mount *mp; 14231 { 14232 struct ufsmount *ump; 14233 bool suj_susp; 14234 14235 /* 14236 * Tell the lower layers that any TRIM or WRITE transactions that have 14237 * been delayed for performance reasons should proceed to help alleviate 14238 * the shortage faster. The race between checking req_* and the softdep 14239 * mutex (lk) is fine since this is an advisory operation that at most 14240 * causes deferred work to be done sooner. 14241 */ 14242 ump = VFSTOUFS(mp); 14243 suj_susp = ump->um_softdep->sd_jblocks != NULL && 14244 ump->softdep_jblocks->jb_suspended; 14245 if (req_clear_remove || req_clear_inodedeps || suj_susp) { 14246 FREE_LOCK(ump); 14247 softdep_send_speedup(ump, 0, BIO_SPEEDUP_TRIM | BIO_SPEEDUP_WRITE); 14248 ACQUIRE_LOCK(ump); 14249 } 14250 14251 /* 14252 * If we are suspended, it may be because of our using 14253 * too many inodedeps, so help clear them out. 14254 */ 14255 if (suj_susp) 14256 clear_inodedeps(mp); 14257 14258 /* 14259 * General requests for cleanup of backed up dependencies 14260 */ 14261 ACQUIRE_GBLLOCK(&lk); 14262 if (req_clear_inodedeps) { 14263 req_clear_inodedeps -= 1; 14264 FREE_GBLLOCK(&lk); 14265 clear_inodedeps(mp); 14266 ACQUIRE_GBLLOCK(&lk); 14267 wakeup(&proc_waiting); 14268 } 14269 if (req_clear_remove) { 14270 req_clear_remove -= 1; 14271 FREE_GBLLOCK(&lk); 14272 clear_remove(mp); 14273 ACQUIRE_GBLLOCK(&lk); 14274 wakeup(&proc_waiting); 14275 } 14276 FREE_GBLLOCK(&lk); 14277 } 14278 14279 /* 14280 * Flush out a directory with at least one removal dependency in an effort to 14281 * reduce the number of dirrem, freefile, and freeblks dependency structures. 14282 */ 14283 static void 14284 clear_remove(mp) 14285 struct mount *mp; 14286 { 14287 struct pagedep_hashhead *pagedephd; 14288 struct pagedep *pagedep; 14289 struct ufsmount *ump; 14290 struct vnode *vp; 14291 struct bufobj *bo; 14292 int error, cnt; 14293 ino_t ino; 14294 14295 ump = VFSTOUFS(mp); 14296 LOCK_OWNED(ump); 14297 14298 for (cnt = 0; cnt <= ump->pagedep_hash_size; cnt++) { 14299 pagedephd = &ump->pagedep_hashtbl[ump->pagedep_nextclean++]; 14300 if (ump->pagedep_nextclean > ump->pagedep_hash_size) 14301 ump->pagedep_nextclean = 0; 14302 LIST_FOREACH(pagedep, pagedephd, pd_hash) { 14303 if (LIST_EMPTY(&pagedep->pd_dirremhd)) 14304 continue; 14305 ino = pagedep->pd_ino; 14306 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14307 continue; 14308 FREE_LOCK(ump); 14309 14310 /* 14311 * Let unmount clear deps 14312 */ 14313 error = vfs_busy(mp, MBF_NOWAIT); 14314 if (error != 0) 14315 goto finish_write; 14316 error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14317 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP); 14318 vfs_unbusy(mp); 14319 if (error != 0) { 14320 softdep_error("clear_remove: vget", error); 14321 goto finish_write; 14322 } 14323 MPASS(VTOI(vp)->i_mode != 0); 14324 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14325 softdep_error("clear_remove: fsync", error); 14326 bo = &vp->v_bufobj; 14327 BO_LOCK(bo); 14328 drain_output(vp); 14329 BO_UNLOCK(bo); 14330 vput(vp); 14331 finish_write: 14332 vn_finished_write(mp); 14333 ACQUIRE_LOCK(ump); 14334 return; 14335 } 14336 } 14337 } 14338 14339 /* 14340 * Clear out a block of dirty inodes in an effort to reduce 14341 * the number of inodedep dependency structures. 14342 */ 14343 static void 14344 clear_inodedeps(mp) 14345 struct mount *mp; 14346 { 14347 struct inodedep_hashhead *inodedephd; 14348 struct inodedep *inodedep; 14349 struct ufsmount *ump; 14350 struct vnode *vp; 14351 struct fs *fs; 14352 int error, cnt; 14353 ino_t firstino, lastino, ino; 14354 14355 ump = VFSTOUFS(mp); 14356 fs = ump->um_fs; 14357 LOCK_OWNED(ump); 14358 /* 14359 * Pick a random inode dependency to be cleared. 14360 * We will then gather up all the inodes in its block 14361 * that have dependencies and flush them out. 14362 */ 14363 for (cnt = 0; cnt <= ump->inodedep_hash_size; cnt++) { 14364 inodedephd = &ump->inodedep_hashtbl[ump->inodedep_nextclean++]; 14365 if (ump->inodedep_nextclean > ump->inodedep_hash_size) 14366 ump->inodedep_nextclean = 0; 14367 if ((inodedep = LIST_FIRST(inodedephd)) != NULL) 14368 break; 14369 } 14370 if (inodedep == NULL) 14371 return; 14372 /* 14373 * Find the last inode in the block with dependencies. 14374 */ 14375 firstino = rounddown2(inodedep->id_ino, INOPB(fs)); 14376 for (lastino = firstino + INOPB(fs) - 1; lastino > firstino; lastino--) 14377 if (inodedep_lookup(mp, lastino, 0, &inodedep) != 0) 14378 break; 14379 /* 14380 * Asynchronously push all but the last inode with dependencies. 14381 * Synchronously push the last inode with dependencies to ensure 14382 * that the inode block gets written to free up the inodedeps. 14383 */ 14384 for (ino = firstino; ino <= lastino; ino++) { 14385 if (inodedep_lookup(mp, ino, 0, &inodedep) == 0) 14386 continue; 14387 if (vn_start_write(NULL, &mp, V_NOWAIT) != 0) 14388 continue; 14389 FREE_LOCK(ump); 14390 error = vfs_busy(mp, MBF_NOWAIT); /* Let unmount clear deps */ 14391 if (error != 0) { 14392 vn_finished_write(mp); 14393 ACQUIRE_LOCK(ump); 14394 return; 14395 } 14396 if ((error = ffs_vgetf(mp, ino, LK_EXCLUSIVE, &vp, 14397 FFSV_FORCEINSMQ | FFSV_FORCEINODEDEP)) != 0) { 14398 softdep_error("clear_inodedeps: vget", error); 14399 vfs_unbusy(mp); 14400 vn_finished_write(mp); 14401 ACQUIRE_LOCK(ump); 14402 return; 14403 } 14404 vfs_unbusy(mp); 14405 if (VTOI(vp)->i_mode == 0) { 14406 vgone(vp); 14407 } else if (ino == lastino) { 14408 do { 14409 error = ffs_syncvnode(vp, MNT_WAIT, 0); 14410 } while (error == ERELOOKUP); 14411 if (error != 0) 14412 softdep_error("clear_inodedeps: fsync1", error); 14413 } else { 14414 if ((error = ffs_syncvnode(vp, MNT_NOWAIT, 0))) 14415 softdep_error("clear_inodedeps: fsync2", error); 14416 BO_LOCK(&vp->v_bufobj); 14417 drain_output(vp); 14418 BO_UNLOCK(&vp->v_bufobj); 14419 } 14420 vput(vp); 14421 vn_finished_write(mp); 14422 ACQUIRE_LOCK(ump); 14423 } 14424 } 14425 14426 void 14427 softdep_buf_append(bp, wkhd) 14428 struct buf *bp; 14429 struct workhead *wkhd; 14430 { 14431 struct worklist *wk; 14432 struct ufsmount *ump; 14433 14434 if ((wk = LIST_FIRST(wkhd)) == NULL) 14435 return; 14436 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14437 ("softdep_buf_append called on non-softdep filesystem")); 14438 ump = VFSTOUFS(wk->wk_mp); 14439 ACQUIRE_LOCK(ump); 14440 while ((wk = LIST_FIRST(wkhd)) != NULL) { 14441 WORKLIST_REMOVE(wk); 14442 WORKLIST_INSERT(&bp->b_dep, wk); 14443 } 14444 FREE_LOCK(ump); 14445 14446 } 14447 14448 void 14449 softdep_inode_append(ip, cred, wkhd) 14450 struct inode *ip; 14451 struct ucred *cred; 14452 struct workhead *wkhd; 14453 { 14454 struct buf *bp; 14455 struct fs *fs; 14456 struct ufsmount *ump; 14457 int error; 14458 14459 ump = ITOUMP(ip); 14460 KASSERT(MOUNTEDSOFTDEP(UFSTOVFS(ump)) != 0, 14461 ("softdep_inode_append called on non-softdep filesystem")); 14462 fs = ump->um_fs; 14463 error = bread(ump->um_devvp, fsbtodb(fs, ino_to_fsba(fs, ip->i_number)), 14464 (int)fs->fs_bsize, cred, &bp); 14465 if (error) { 14466 bqrelse(bp); 14467 softdep_freework(wkhd); 14468 return; 14469 } 14470 softdep_buf_append(bp, wkhd); 14471 bqrelse(bp); 14472 } 14473 14474 void 14475 softdep_freework(wkhd) 14476 struct workhead *wkhd; 14477 { 14478 struct worklist *wk; 14479 struct ufsmount *ump; 14480 14481 if ((wk = LIST_FIRST(wkhd)) == NULL) 14482 return; 14483 KASSERT(MOUNTEDSOFTDEP(wk->wk_mp) != 0, 14484 ("softdep_freework called on non-softdep filesystem")); 14485 ump = VFSTOUFS(wk->wk_mp); 14486 ACQUIRE_LOCK(ump); 14487 handle_jwork(wkhd); 14488 FREE_LOCK(ump); 14489 } 14490 14491 static struct ufsmount * 14492 softdep_bp_to_mp(bp) 14493 struct buf *bp; 14494 { 14495 struct mount *mp; 14496 struct vnode *vp; 14497 14498 if (LIST_EMPTY(&bp->b_dep)) 14499 return (NULL); 14500 vp = bp->b_vp; 14501 KASSERT(vp != NULL, 14502 ("%s, buffer with dependencies lacks vnode", __func__)); 14503 14504 /* 14505 * The ump mount point is stable after we get a correct 14506 * pointer, since bp is locked and this prevents unmount from 14507 * proceeding. But to get to it, we cannot dereference bp->b_dep 14508 * head wk_mp, because we do not yet own SU ump lock and 14509 * workitem might be freed while dereferenced. 14510 */ 14511 retry: 14512 switch (vp->v_type) { 14513 case VCHR: 14514 VI_LOCK(vp); 14515 mp = vp->v_type == VCHR ? vp->v_rdev->si_mountpt : NULL; 14516 VI_UNLOCK(vp); 14517 if (mp == NULL) 14518 goto retry; 14519 break; 14520 case VREG: 14521 case VDIR: 14522 case VLNK: 14523 case VFIFO: 14524 case VSOCK: 14525 mp = vp->v_mount; 14526 break; 14527 case VBLK: 14528 vn_printf(vp, "softdep_bp_to_mp: unexpected block device\n"); 14529 /* FALLTHROUGH */ 14530 case VNON: 14531 case VBAD: 14532 case VMARKER: 14533 mp = NULL; 14534 break; 14535 default: 14536 vn_printf(vp, "unknown vnode type"); 14537 mp = NULL; 14538 break; 14539 } 14540 return (VFSTOUFS(mp)); 14541 } 14542 14543 /* 14544 * Function to determine if the buffer has outstanding dependencies 14545 * that will cause a roll-back if the buffer is written. If wantcount 14546 * is set, return number of dependencies, otherwise just yes or no. 14547 */ 14548 static int 14549 softdep_count_dependencies(bp, wantcount) 14550 struct buf *bp; 14551 int wantcount; 14552 { 14553 struct worklist *wk; 14554 struct ufsmount *ump; 14555 struct bmsafemap *bmsafemap; 14556 struct freework *freework; 14557 struct inodedep *inodedep; 14558 struct indirdep *indirdep; 14559 struct freeblks *freeblks; 14560 struct allocindir *aip; 14561 struct pagedep *pagedep; 14562 struct dirrem *dirrem; 14563 struct newblk *newblk; 14564 struct mkdir *mkdir; 14565 struct diradd *dap; 14566 int i, retval; 14567 14568 ump = softdep_bp_to_mp(bp); 14569 if (ump == NULL) 14570 return (0); 14571 retval = 0; 14572 ACQUIRE_LOCK(ump); 14573 LIST_FOREACH(wk, &bp->b_dep, wk_list) { 14574 switch (wk->wk_type) { 14575 case D_INODEDEP: 14576 inodedep = WK_INODEDEP(wk); 14577 if ((inodedep->id_state & DEPCOMPLETE) == 0) { 14578 /* bitmap allocation dependency */ 14579 retval += 1; 14580 if (!wantcount) 14581 goto out; 14582 } 14583 if (TAILQ_FIRST(&inodedep->id_inoupdt)) { 14584 /* direct block pointer dependency */ 14585 retval += 1; 14586 if (!wantcount) 14587 goto out; 14588 } 14589 if (TAILQ_FIRST(&inodedep->id_extupdt)) { 14590 /* direct block pointer dependency */ 14591 retval += 1; 14592 if (!wantcount) 14593 goto out; 14594 } 14595 if (TAILQ_FIRST(&inodedep->id_inoreflst)) { 14596 /* Add reference dependency. */ 14597 retval += 1; 14598 if (!wantcount) 14599 goto out; 14600 } 14601 continue; 14602 14603 case D_INDIRDEP: 14604 indirdep = WK_INDIRDEP(wk); 14605 14606 TAILQ_FOREACH(freework, &indirdep->ir_trunc, fw_next) { 14607 /* indirect truncation dependency */ 14608 retval += 1; 14609 if (!wantcount) 14610 goto out; 14611 } 14612 14613 LIST_FOREACH(aip, &indirdep->ir_deplisthd, ai_next) { 14614 /* indirect block pointer dependency */ 14615 retval += 1; 14616 if (!wantcount) 14617 goto out; 14618 } 14619 continue; 14620 14621 case D_PAGEDEP: 14622 pagedep = WK_PAGEDEP(wk); 14623 LIST_FOREACH(dirrem, &pagedep->pd_dirremhd, dm_next) { 14624 if (LIST_FIRST(&dirrem->dm_jremrefhd)) { 14625 /* Journal remove ref dependency. */ 14626 retval += 1; 14627 if (!wantcount) 14628 goto out; 14629 } 14630 } 14631 for (i = 0; i < DAHASHSZ; i++) { 14632 LIST_FOREACH(dap, &pagedep->pd_diraddhd[i], da_pdlist) { 14633 /* directory entry dependency */ 14634 retval += 1; 14635 if (!wantcount) 14636 goto out; 14637 } 14638 } 14639 continue; 14640 14641 case D_BMSAFEMAP: 14642 bmsafemap = WK_BMSAFEMAP(wk); 14643 if (LIST_FIRST(&bmsafemap->sm_jaddrefhd)) { 14644 /* Add reference dependency. */ 14645 retval += 1; 14646 if (!wantcount) 14647 goto out; 14648 } 14649 if (LIST_FIRST(&bmsafemap->sm_jnewblkhd)) { 14650 /* Allocate block dependency. */ 14651 retval += 1; 14652 if (!wantcount) 14653 goto out; 14654 } 14655 continue; 14656 14657 case D_FREEBLKS: 14658 freeblks = WK_FREEBLKS(wk); 14659 if (LIST_FIRST(&freeblks->fb_jblkdephd)) { 14660 /* Freeblk journal dependency. */ 14661 retval += 1; 14662 if (!wantcount) 14663 goto out; 14664 } 14665 continue; 14666 14667 case D_ALLOCDIRECT: 14668 case D_ALLOCINDIR: 14669 newblk = WK_NEWBLK(wk); 14670 if (newblk->nb_jnewblk) { 14671 /* Journal allocate dependency. */ 14672 retval += 1; 14673 if (!wantcount) 14674 goto out; 14675 } 14676 continue; 14677 14678 case D_MKDIR: 14679 mkdir = WK_MKDIR(wk); 14680 if (mkdir->md_jaddref) { 14681 /* Journal reference dependency. */ 14682 retval += 1; 14683 if (!wantcount) 14684 goto out; 14685 } 14686 continue; 14687 14688 case D_FREEWORK: 14689 case D_FREEDEP: 14690 case D_JSEGDEP: 14691 case D_JSEG: 14692 case D_SBDEP: 14693 /* never a dependency on these blocks */ 14694 continue; 14695 14696 default: 14697 panic("softdep_count_dependencies: Unexpected type %s", 14698 TYPENAME(wk->wk_type)); 14699 /* NOTREACHED */ 14700 } 14701 } 14702 out: 14703 FREE_LOCK(ump); 14704 return (retval); 14705 } 14706 14707 /* 14708 * Acquire exclusive access to a buffer. 14709 * Must be called with a locked mtx parameter. 14710 * Return acquired buffer or NULL on failure. 14711 */ 14712 static struct buf * 14713 getdirtybuf(bp, lock, waitfor) 14714 struct buf *bp; 14715 struct rwlock *lock; 14716 int waitfor; 14717 { 14718 int error; 14719 14720 if (BUF_LOCK(bp, LK_EXCLUSIVE | LK_NOWAIT, NULL) != 0) { 14721 if (waitfor != MNT_WAIT) 14722 return (NULL); 14723 error = BUF_LOCK(bp, 14724 LK_EXCLUSIVE | LK_SLEEPFAIL | LK_INTERLOCK, lock); 14725 /* 14726 * Even if we successfully acquire bp here, we have dropped 14727 * lock, which may violates our guarantee. 14728 */ 14729 if (error == 0) 14730 BUF_UNLOCK(bp); 14731 else if (error != ENOLCK) 14732 panic("getdirtybuf: inconsistent lock: %d", error); 14733 rw_wlock(lock); 14734 return (NULL); 14735 } 14736 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14737 if (lock != BO_LOCKPTR(bp->b_bufobj) && waitfor == MNT_WAIT) { 14738 rw_wunlock(lock); 14739 BO_LOCK(bp->b_bufobj); 14740 BUF_UNLOCK(bp); 14741 if ((bp->b_vflags & BV_BKGRDINPROG) != 0) { 14742 bp->b_vflags |= BV_BKGRDWAIT; 14743 msleep(&bp->b_xflags, BO_LOCKPTR(bp->b_bufobj), 14744 PRIBIO | PDROP, "getbuf", 0); 14745 } else 14746 BO_UNLOCK(bp->b_bufobj); 14747 rw_wlock(lock); 14748 return (NULL); 14749 } 14750 BUF_UNLOCK(bp); 14751 if (waitfor != MNT_WAIT) 14752 return (NULL); 14753 #ifdef DEBUG_VFS_LOCKS 14754 if (bp->b_vp->v_type != VCHR) 14755 ASSERT_BO_WLOCKED(bp->b_bufobj); 14756 #endif 14757 bp->b_vflags |= BV_BKGRDWAIT; 14758 rw_sleep(&bp->b_xflags, lock, PRIBIO, "getbuf", 0); 14759 return (NULL); 14760 } 14761 if ((bp->b_flags & B_DELWRI) == 0) { 14762 BUF_UNLOCK(bp); 14763 return (NULL); 14764 } 14765 bremfree(bp); 14766 return (bp); 14767 } 14768 14769 /* 14770 * Check if it is safe to suspend the file system now. On entry, 14771 * the vnode interlock for devvp should be held. Return 0 with 14772 * the mount interlock held if the file system can be suspended now, 14773 * otherwise return EAGAIN with the mount interlock held. 14774 */ 14775 int 14776 softdep_check_suspend(struct mount *mp, 14777 struct vnode *devvp, 14778 int softdep_depcnt, 14779 int softdep_accdepcnt, 14780 int secondary_writes, 14781 int secondary_accwrites) 14782 { 14783 struct buf *bp; 14784 struct bufobj *bo; 14785 struct ufsmount *ump; 14786 struct inodedep *inodedep; 14787 struct indirdep *indirdep; 14788 struct worklist *wk, *nextwk; 14789 int error, unlinked; 14790 14791 bo = &devvp->v_bufobj; 14792 ASSERT_BO_WLOCKED(bo); 14793 14794 /* 14795 * If we are not running with soft updates, then we need only 14796 * deal with secondary writes as we try to suspend. 14797 */ 14798 if (MOUNTEDSOFTDEP(mp) == 0) { 14799 MNT_ILOCK(mp); 14800 while (mp->mnt_secondary_writes != 0) { 14801 BO_UNLOCK(bo); 14802 msleep(&mp->mnt_secondary_writes, MNT_MTX(mp), 14803 (PUSER - 1) | PDROP, "secwr", 0); 14804 BO_LOCK(bo); 14805 MNT_ILOCK(mp); 14806 } 14807 14808 /* 14809 * Reasons for needing more work before suspend: 14810 * - Dirty buffers on devvp. 14811 * - Secondary writes occurred after start of vnode sync loop 14812 */ 14813 error = 0; 14814 if (bo->bo_numoutput > 0 || 14815 bo->bo_dirty.bv_cnt > 0 || 14816 secondary_writes != 0 || 14817 mp->mnt_secondary_writes != 0 || 14818 secondary_accwrites != mp->mnt_secondary_accwrites) 14819 error = EAGAIN; 14820 BO_UNLOCK(bo); 14821 return (error); 14822 } 14823 14824 /* 14825 * If we are running with soft updates, then we need to coordinate 14826 * with them as we try to suspend. 14827 */ 14828 ump = VFSTOUFS(mp); 14829 for (;;) { 14830 if (!TRY_ACQUIRE_LOCK(ump)) { 14831 BO_UNLOCK(bo); 14832 ACQUIRE_LOCK(ump); 14833 FREE_LOCK(ump); 14834 BO_LOCK(bo); 14835 continue; 14836 } 14837 MNT_ILOCK(mp); 14838 if (mp->mnt_secondary_writes != 0) { 14839 FREE_LOCK(ump); 14840 BO_UNLOCK(bo); 14841 msleep(&mp->mnt_secondary_writes, 14842 MNT_MTX(mp), 14843 (PUSER - 1) | PDROP, "secwr", 0); 14844 BO_LOCK(bo); 14845 continue; 14846 } 14847 break; 14848 } 14849 14850 unlinked = 0; 14851 if (MOUNTEDSUJ(mp)) { 14852 for (inodedep = TAILQ_FIRST(&ump->softdep_unlinked); 14853 inodedep != NULL; 14854 inodedep = TAILQ_NEXT(inodedep, id_unlinked)) { 14855 if ((inodedep->id_state & (UNLINKED | UNLINKLINKS | 14856 UNLINKONLIST)) != (UNLINKED | UNLINKLINKS | 14857 UNLINKONLIST) || 14858 !check_inodedep_free(inodedep)) 14859 continue; 14860 unlinked++; 14861 } 14862 } 14863 14864 /* 14865 * XXX Check for orphaned indirdep dependency structures. 14866 * 14867 * During forcible unmount after a disk failure there is a 14868 * bug that causes one or more indirdep dependency structures 14869 * to fail to be deallocated. We check for them here and clean 14870 * them up so that the unmount can succeed. 14871 */ 14872 if ((ump->um_flags & UM_FSFAIL_CLEANUP) != 0 && ump->softdep_deps > 0 && 14873 ump->softdep_deps == ump->softdep_curdeps[D_INDIRDEP]) { 14874 LIST_FOREACH_SAFE(wk, &ump->softdep_alldeps[D_INDIRDEP], 14875 wk_all, nextwk) { 14876 indirdep = WK_INDIRDEP(wk); 14877 if ((indirdep->ir_state & (GOINGAWAY | DEPCOMPLETE)) != 14878 (GOINGAWAY | DEPCOMPLETE) || 14879 !TAILQ_EMPTY(&indirdep->ir_trunc) || 14880 !LIST_EMPTY(&indirdep->ir_completehd) || 14881 !LIST_EMPTY(&indirdep->ir_writehd) || 14882 !LIST_EMPTY(&indirdep->ir_donehd) || 14883 !LIST_EMPTY(&indirdep->ir_deplisthd) || 14884 indirdep->ir_saveddata != NULL || 14885 indirdep->ir_savebp == NULL) { 14886 printf("%s: skipping orphaned indirdep %p\n", 14887 __FUNCTION__, indirdep); 14888 continue; 14889 } 14890 printf("%s: freeing orphaned indirdep %p\n", 14891 __FUNCTION__, indirdep); 14892 bp = indirdep->ir_savebp; 14893 indirdep->ir_savebp = NULL; 14894 free_indirdep(indirdep); 14895 FREE_LOCK(ump); 14896 brelse(bp); 14897 while (!TRY_ACQUIRE_LOCK(ump)) { 14898 BO_UNLOCK(bo); 14899 ACQUIRE_LOCK(ump); 14900 FREE_LOCK(ump); 14901 BO_LOCK(bo); 14902 } 14903 } 14904 } 14905 14906 /* 14907 * Reasons for needing more work before suspend: 14908 * - Dirty buffers on devvp. 14909 * - Dependency structures still exist 14910 * - Softdep activity occurred after start of vnode sync loop 14911 * - Secondary writes occurred after start of vnode sync loop 14912 */ 14913 error = 0; 14914 if (bo->bo_numoutput > 0 || 14915 bo->bo_dirty.bv_cnt > 0 || 14916 softdep_depcnt != unlinked || 14917 ump->softdep_deps != unlinked || 14918 softdep_accdepcnt != ump->softdep_accdeps || 14919 secondary_writes != 0 || 14920 mp->mnt_secondary_writes != 0 || 14921 secondary_accwrites != mp->mnt_secondary_accwrites) 14922 error = EAGAIN; 14923 FREE_LOCK(ump); 14924 BO_UNLOCK(bo); 14925 return (error); 14926 } 14927 14928 /* 14929 * Get the number of dependency structures for the file system, both 14930 * the current number and the total number allocated. These will 14931 * later be used to detect that softdep processing has occurred. 14932 */ 14933 void 14934 softdep_get_depcounts(struct mount *mp, 14935 int *softdep_depsp, 14936 int *softdep_accdepsp) 14937 { 14938 struct ufsmount *ump; 14939 14940 if (MOUNTEDSOFTDEP(mp) == 0) { 14941 *softdep_depsp = 0; 14942 *softdep_accdepsp = 0; 14943 return; 14944 } 14945 ump = VFSTOUFS(mp); 14946 ACQUIRE_LOCK(ump); 14947 *softdep_depsp = ump->softdep_deps; 14948 *softdep_accdepsp = ump->softdep_accdeps; 14949 FREE_LOCK(ump); 14950 } 14951 14952 /* 14953 * Wait for pending output on a vnode to complete. 14954 */ 14955 static void 14956 drain_output(vp) 14957 struct vnode *vp; 14958 { 14959 14960 ASSERT_VOP_LOCKED(vp, "drain_output"); 14961 (void)bufobj_wwait(&vp->v_bufobj, 0, 0); 14962 } 14963 14964 /* 14965 * Called whenever a buffer that is being invalidated or reallocated 14966 * contains dependencies. This should only happen if an I/O error has 14967 * occurred. The routine is called with the buffer locked. 14968 */ 14969 static void 14970 softdep_deallocate_dependencies(bp) 14971 struct buf *bp; 14972 { 14973 14974 if ((bp->b_ioflags & BIO_ERROR) == 0) 14975 panic("softdep_deallocate_dependencies: dangling deps"); 14976 if (bp->b_vp != NULL && bp->b_vp->v_mount != NULL) 14977 softdep_error(bp->b_vp->v_mount->mnt_stat.f_mntonname, bp->b_error); 14978 else 14979 printf("softdep_deallocate_dependencies: " 14980 "got error %d while accessing filesystem\n", bp->b_error); 14981 if (bp->b_error != ENXIO) 14982 panic("softdep_deallocate_dependencies: unrecovered I/O error"); 14983 } 14984 14985 /* 14986 * Function to handle asynchronous write errors in the filesystem. 14987 */ 14988 static void 14989 softdep_error(func, error) 14990 char *func; 14991 int error; 14992 { 14993 14994 /* XXX should do something better! */ 14995 printf("%s: got error %d while accessing filesystem\n", func, error); 14996 } 14997 14998 #ifdef DDB 14999 15000 /* exported to ffs_vfsops.c */ 15001 extern void db_print_ffs(struct ufsmount *ump); 15002 void 15003 db_print_ffs(struct ufsmount *ump) 15004 { 15005 db_printf("mp %p (%s) devvp %p\n", ump->um_mountp, 15006 ump->um_mountp->mnt_stat.f_mntonname, ump->um_devvp); 15007 db_printf(" fs %p ", ump->um_fs); 15008 15009 if (ump->um_softdep != NULL) { 15010 db_printf("su_wl %d su_deps %d su_req %d\n", 15011 ump->softdep_on_worklist, ump->softdep_deps, 15012 ump->softdep_req); 15013 } else { 15014 db_printf("su disabled\n"); 15015 } 15016 } 15017 15018 static void 15019 worklist_print(struct worklist *wk, int verbose) 15020 { 15021 15022 if (!verbose) { 15023 db_printf("%s: %p state 0x%b\n", TYPENAME(wk->wk_type), wk, 15024 (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS); 15025 return; 15026 } 15027 db_printf("worklist: %p type %s state 0x%b next %p\n ", wk, 15028 TYPENAME(wk->wk_type), (u_int)wk->wk_state, PRINT_SOFTDEP_FLAGS, 15029 LIST_NEXT(wk, wk_list)); 15030 db_print_ffs(VFSTOUFS(wk->wk_mp)); 15031 } 15032 15033 static void 15034 inodedep_print(struct inodedep *inodedep, int verbose) 15035 { 15036 15037 worklist_print(&inodedep->id_list, 0); 15038 db_printf(" fs %p ino %jd inoblk %jd delta %jd nlink %jd\n", 15039 inodedep->id_fs, 15040 (intmax_t)inodedep->id_ino, 15041 (intmax_t)fsbtodb(inodedep->id_fs, 15042 ino_to_fsba(inodedep->id_fs, inodedep->id_ino)), 15043 (intmax_t)inodedep->id_nlinkdelta, 15044 (intmax_t)inodedep->id_savednlink); 15045 15046 if (verbose == 0) 15047 return; 15048 15049 db_printf(" bmsafemap %p, mkdiradd %p, inoreflst %p\n", 15050 inodedep->id_bmsafemap, 15051 inodedep->id_mkdiradd, 15052 TAILQ_FIRST(&inodedep->id_inoreflst)); 15053 db_printf(" dirremhd %p, pendinghd %p, bufwait %p\n", 15054 LIST_FIRST(&inodedep->id_dirremhd), 15055 LIST_FIRST(&inodedep->id_pendinghd), 15056 LIST_FIRST(&inodedep->id_bufwait)); 15057 db_printf(" inowait %p, inoupdt %p, newinoupdt %p\n", 15058 LIST_FIRST(&inodedep->id_inowait), 15059 TAILQ_FIRST(&inodedep->id_inoupdt), 15060 TAILQ_FIRST(&inodedep->id_newinoupdt)); 15061 db_printf(" extupdt %p, newextupdt %p, freeblklst %p\n", 15062 TAILQ_FIRST(&inodedep->id_extupdt), 15063 TAILQ_FIRST(&inodedep->id_newextupdt), 15064 TAILQ_FIRST(&inodedep->id_freeblklst)); 15065 db_printf(" saveino %p, savedsize %jd, savedextsize %jd\n", 15066 inodedep->id_savedino1, 15067 (intmax_t)inodedep->id_savedsize, 15068 (intmax_t)inodedep->id_savedextsize); 15069 } 15070 15071 static void 15072 newblk_print(struct newblk *nbp) 15073 { 15074 15075 worklist_print(&nbp->nb_list, 0); 15076 db_printf(" newblkno %jd\n", (intmax_t)nbp->nb_newblkno); 15077 db_printf(" jnewblk %p, bmsafemap %p, freefrag %p\n", 15078 &nbp->nb_jnewblk, 15079 &nbp->nb_bmsafemap, 15080 &nbp->nb_freefrag); 15081 db_printf(" indirdeps %p, newdirblk %p, jwork %p\n", 15082 LIST_FIRST(&nbp->nb_indirdeps), 15083 LIST_FIRST(&nbp->nb_newdirblk), 15084 LIST_FIRST(&nbp->nb_jwork)); 15085 } 15086 15087 static void 15088 allocdirect_print(struct allocdirect *adp) 15089 { 15090 15091 newblk_print(&adp->ad_block); 15092 db_printf(" oldblkno %jd, oldsize %ld, newsize %ld\n", 15093 adp->ad_oldblkno, adp->ad_oldsize, adp->ad_newsize); 15094 db_printf(" offset %d, inodedep %p\n", 15095 adp->ad_offset, adp->ad_inodedep); 15096 } 15097 15098 static void 15099 allocindir_print(struct allocindir *aip) 15100 { 15101 15102 newblk_print(&aip->ai_block); 15103 db_printf(" oldblkno %jd, lbn %jd\n", 15104 (intmax_t)aip->ai_oldblkno, (intmax_t)aip->ai_lbn); 15105 db_printf(" offset %d, indirdep %p\n", 15106 aip->ai_offset, aip->ai_indirdep); 15107 } 15108 15109 static void 15110 mkdir_print(struct mkdir *mkdir) 15111 { 15112 15113 worklist_print(&mkdir->md_list, 0); 15114 db_printf(" diradd %p, jaddref %p, buf %p\n", 15115 mkdir->md_diradd, mkdir->md_jaddref, mkdir->md_buf); 15116 } 15117 15118 DB_SHOW_COMMAND(sd_inodedep, db_show_sd_inodedep) 15119 { 15120 15121 if (have_addr == 0) { 15122 db_printf("inodedep address required\n"); 15123 return; 15124 } 15125 inodedep_print((struct inodedep*)addr, 1); 15126 } 15127 15128 DB_SHOW_COMMAND(sd_allinodedeps, db_show_sd_allinodedeps) 15129 { 15130 struct inodedep_hashhead *inodedephd; 15131 struct inodedep *inodedep; 15132 struct ufsmount *ump; 15133 int cnt; 15134 15135 if (have_addr == 0) { 15136 db_printf("ufsmount address required\n"); 15137 return; 15138 } 15139 ump = (struct ufsmount *)addr; 15140 for (cnt = 0; cnt < ump->inodedep_hash_size; cnt++) { 15141 inodedephd = &ump->inodedep_hashtbl[cnt]; 15142 LIST_FOREACH(inodedep, inodedephd, id_hash) { 15143 inodedep_print(inodedep, 0); 15144 } 15145 } 15146 } 15147 15148 DB_SHOW_COMMAND(sd_worklist, db_show_sd_worklist) 15149 { 15150 15151 if (have_addr == 0) { 15152 db_printf("worklist address required\n"); 15153 return; 15154 } 15155 worklist_print((struct worklist *)addr, 1); 15156 } 15157 15158 DB_SHOW_COMMAND(sd_workhead, db_show_sd_workhead) 15159 { 15160 struct worklist *wk; 15161 struct workhead *wkhd; 15162 15163 if (have_addr == 0) { 15164 db_printf("worklist address required " 15165 "(for example value in bp->b_dep)\n"); 15166 return; 15167 } 15168 /* 15169 * We often do not have the address of the worklist head but 15170 * instead a pointer to its first entry (e.g., we have the 15171 * contents of bp->b_dep rather than &bp->b_dep). But the back 15172 * pointer of bp->b_dep will point at the head of the list, so 15173 * we cheat and use that instead. If we are in the middle of 15174 * a list we will still get the same result, so nothing 15175 * unexpected will result. 15176 */ 15177 wk = (struct worklist *)addr; 15178 if (wk == NULL) 15179 return; 15180 wkhd = (struct workhead *)wk->wk_list.le_prev; 15181 LIST_FOREACH(wk, wkhd, wk_list) { 15182 switch(wk->wk_type) { 15183 case D_INODEDEP: 15184 inodedep_print(WK_INODEDEP(wk), 0); 15185 continue; 15186 case D_ALLOCDIRECT: 15187 allocdirect_print(WK_ALLOCDIRECT(wk)); 15188 continue; 15189 case D_ALLOCINDIR: 15190 allocindir_print(WK_ALLOCINDIR(wk)); 15191 continue; 15192 case D_MKDIR: 15193 mkdir_print(WK_MKDIR(wk)); 15194 continue; 15195 default: 15196 worklist_print(wk, 0); 15197 continue; 15198 } 15199 } 15200 } 15201 15202 DB_SHOW_COMMAND(sd_mkdir, db_show_sd_mkdir) 15203 { 15204 if (have_addr == 0) { 15205 db_printf("mkdir address required\n"); 15206 return; 15207 } 15208 mkdir_print((struct mkdir *)addr); 15209 } 15210 15211 DB_SHOW_COMMAND(sd_mkdir_list, db_show_sd_mkdir_list) 15212 { 15213 struct mkdirlist *mkdirlisthd; 15214 struct mkdir *mkdir; 15215 15216 if (have_addr == 0) { 15217 db_printf("mkdir listhead address required\n"); 15218 return; 15219 } 15220 mkdirlisthd = (struct mkdirlist *)addr; 15221 LIST_FOREACH(mkdir, mkdirlisthd, md_mkdirs) { 15222 mkdir_print(mkdir); 15223 if (mkdir->md_diradd != NULL) { 15224 db_printf(" "); 15225 worklist_print(&mkdir->md_diradd->da_list, 0); 15226 } 15227 if (mkdir->md_jaddref != NULL) { 15228 db_printf(" "); 15229 worklist_print(&mkdir->md_jaddref->ja_list, 0); 15230 } 15231 } 15232 } 15233 15234 DB_SHOW_COMMAND(sd_allocdirect, db_show_sd_allocdirect) 15235 { 15236 if (have_addr == 0) { 15237 db_printf("allocdirect address required\n"); 15238 return; 15239 } 15240 allocdirect_print((struct allocdirect *)addr); 15241 } 15242 15243 DB_SHOW_COMMAND(sd_allocindir, db_show_sd_allocindir) 15244 { 15245 if (have_addr == 0) { 15246 db_printf("allocindir address required\n"); 15247 return; 15248 } 15249 allocindir_print((struct allocindir *)addr); 15250 } 15251 15252 #endif /* DDB */ 15253 15254 #endif /* SOFTUPDATES */ 15255