1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/systm.h> 71 #include <sys/bio.h> 72 #include <sys/buf.h> 73 #include <sys/capsicum.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/gsb_crc32.h> 79 #include <sys/kernel.h> 80 #include <sys/mount.h> 81 #include <sys/priv.h> 82 #include <sys/proc.h> 83 #include <sys/stat.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 #include <sys/vnode.h> 89 90 #include <security/audit/audit.h> 91 92 #include <geom/geom.h> 93 #include <geom/geom_vfs.h> 94 95 #include <ufs/ufs/dir.h> 96 #include <ufs/ufs/extattr.h> 97 #include <ufs/ufs/quota.h> 98 #include <ufs/ufs/inode.h> 99 #include <ufs/ufs/ufs_extern.h> 100 #include <ufs/ufs/ufsmount.h> 101 102 #include <ufs/ffs/fs.h> 103 #include <ufs/ffs/ffs_extern.h> 104 #include <ufs/ffs/softdep.h> 105 106 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 107 int size, int rsize); 108 109 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 110 static ufs2_daddr_t 111 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 112 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 113 struct vnode *, ufs2_daddr_t, long, ino_t, 114 struct workhead *); 115 #ifdef INVARIANTS 116 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 117 #endif 118 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 119 static ino_t ffs_dirpref(struct inode *); 120 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 121 int, int); 122 static ufs2_daddr_t ffs_hashalloc 123 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 124 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 125 int); 126 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 127 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 128 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 129 static void ffs_ckhash_cg(struct buf *); 130 131 /* 132 * Allocate a block in the filesystem. 133 * 134 * The size of the requested block is given, which must be some 135 * multiple of fs_fsize and <= fs_bsize. 136 * A preference may be optionally specified. If a preference is given 137 * the following hierarchy is used to allocate a block: 138 * 1) allocate the requested block. 139 * 2) allocate a rotationally optimal block in the same cylinder. 140 * 3) allocate a block in the same cylinder group. 141 * 4) quadratically rehash into other cylinder groups, until an 142 * available block is located. 143 * If no block preference is given the following hierarchy is used 144 * to allocate a block: 145 * 1) allocate a block in the cylinder group that contains the 146 * inode for the file. 147 * 2) quadratically rehash into other cylinder groups, until an 148 * available block is located. 149 */ 150 int 151 ffs_alloc(struct inode *ip, 152 ufs2_daddr_t lbn, 153 ufs2_daddr_t bpref, 154 int size, 155 int flags, 156 struct ucred *cred, 157 ufs2_daddr_t *bnp) 158 { 159 struct fs *fs; 160 struct ufsmount *ump; 161 ufs2_daddr_t bno; 162 u_int cg, reclaimed; 163 int64_t delta; 164 #ifdef QUOTA 165 int error; 166 #endif 167 168 *bnp = 0; 169 ump = ITOUMP(ip); 170 fs = ump->um_fs; 171 mtx_assert(UFS_MTX(ump), MA_OWNED); 172 #ifdef INVARIANTS 173 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 174 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 175 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 176 fs->fs_fsmnt); 177 panic("ffs_alloc: bad size"); 178 } 179 if (cred == NOCRED) 180 panic("ffs_alloc: missing credential"); 181 #endif /* INVARIANTS */ 182 reclaimed = 0; 183 retry: 184 #ifdef QUOTA 185 UFS_UNLOCK(ump); 186 error = chkdq(ip, btodb(size), cred, 0); 187 if (error) 188 return (error); 189 UFS_LOCK(ump); 190 #endif 191 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 192 goto nospace; 193 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 194 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 195 goto nospace; 196 if (bpref >= fs->fs_size) 197 bpref = 0; 198 if (bpref == 0) 199 cg = ino_to_cg(fs, ip->i_number); 200 else 201 cg = dtog(fs, bpref); 202 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 203 if (bno > 0) { 204 delta = btodb(size); 205 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 206 if (flags & IO_EXT) 207 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 208 else 209 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 210 *bnp = bno; 211 return (0); 212 } 213 nospace: 214 #ifdef QUOTA 215 UFS_UNLOCK(ump); 216 /* 217 * Restore user's disk quota because allocation failed. 218 */ 219 (void) chkdq(ip, -btodb(size), cred, FORCE); 220 UFS_LOCK(ump); 221 #endif 222 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 223 reclaimed = 1; 224 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 225 goto retry; 226 } 227 if (ffs_fsfail_cleanup_locked(ump, 0)) { 228 UFS_UNLOCK(ump); 229 return (ENXIO); 230 } 231 if (reclaimed > 0 && 232 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 233 UFS_UNLOCK(ump); 234 ffs_fserr(fs, ip->i_number, "filesystem full"); 235 uprintf("\n%s: write failed, filesystem is full\n", 236 fs->fs_fsmnt); 237 } else { 238 UFS_UNLOCK(ump); 239 } 240 return (ENOSPC); 241 } 242 243 /* 244 * Reallocate a fragment to a bigger size 245 * 246 * The number and size of the old block is given, and a preference 247 * and new size is also specified. The allocator attempts to extend 248 * the original block. Failing that, the regular block allocator is 249 * invoked to get an appropriate block. 250 */ 251 int 252 ffs_realloccg(struct inode *ip, 253 ufs2_daddr_t lbprev, 254 ufs2_daddr_t bprev, 255 ufs2_daddr_t bpref, 256 int osize, 257 int nsize, 258 int flags, 259 struct ucred *cred, 260 struct buf **bpp) 261 { 262 struct vnode *vp; 263 struct fs *fs; 264 struct buf *bp; 265 struct ufsmount *ump; 266 u_int cg, request, reclaimed; 267 int error, gbflags; 268 ufs2_daddr_t bno; 269 int64_t delta; 270 271 vp = ITOV(ip); 272 ump = ITOUMP(ip); 273 fs = ump->um_fs; 274 bp = NULL; 275 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 276 #ifdef WITNESS 277 gbflags |= IS_SNAPSHOT(ip) ? GB_NOWITNESS : 0; 278 #endif 279 280 mtx_assert(UFS_MTX(ump), MA_OWNED); 281 #ifdef INVARIANTS 282 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 283 panic("ffs_realloccg: allocation on suspended filesystem"); 284 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 285 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 286 printf( 287 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 288 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 289 nsize, fs->fs_fsmnt); 290 panic("ffs_realloccg: bad size"); 291 } 292 if (cred == NOCRED) 293 panic("ffs_realloccg: missing credential"); 294 #endif /* INVARIANTS */ 295 reclaimed = 0; 296 retry: 297 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 298 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 299 goto nospace; 300 } 301 if (bprev == 0) { 302 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 303 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 304 fs->fs_fsmnt); 305 panic("ffs_realloccg: bad bprev"); 306 } 307 UFS_UNLOCK(ump); 308 /* 309 * Allocate the extra space in the buffer. 310 */ 311 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 312 if (error) { 313 return (error); 314 } 315 316 if (bp->b_blkno == bp->b_lblkno) { 317 if (lbprev >= UFS_NDADDR) 318 panic("ffs_realloccg: lbprev out of range"); 319 bp->b_blkno = fsbtodb(fs, bprev); 320 } 321 322 #ifdef QUOTA 323 error = chkdq(ip, btodb(nsize - osize), cred, 0); 324 if (error) { 325 brelse(bp); 326 return (error); 327 } 328 #endif 329 /* 330 * Check for extension in the existing location. 331 */ 332 *bpp = NULL; 333 cg = dtog(fs, bprev); 334 UFS_LOCK(ump); 335 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 336 if (bno) { 337 if (bp->b_blkno != fsbtodb(fs, bno)) 338 panic("ffs_realloccg: bad blockno"); 339 delta = btodb(nsize - osize); 340 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 341 if (flags & IO_EXT) 342 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 343 else 344 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 345 allocbuf(bp, nsize); 346 bp->b_flags |= B_DONE; 347 vfs_bio_bzero_buf(bp, osize, nsize - osize); 348 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 349 vfs_bio_set_valid(bp, osize, nsize - osize); 350 *bpp = bp; 351 return (0); 352 } 353 /* 354 * Allocate a new disk location. 355 */ 356 if (bpref >= fs->fs_size) 357 bpref = 0; 358 switch ((int)fs->fs_optim) { 359 case FS_OPTSPACE: 360 /* 361 * Allocate an exact sized fragment. Although this makes 362 * best use of space, we will waste time relocating it if 363 * the file continues to grow. If the fragmentation is 364 * less than half of the minimum free reserve, we choose 365 * to begin optimizing for time. 366 */ 367 request = nsize; 368 if (fs->fs_minfree <= 5 || 369 fs->fs_cstotal.cs_nffree > 370 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 371 break; 372 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 373 fs->fs_fsmnt); 374 fs->fs_optim = FS_OPTTIME; 375 break; 376 case FS_OPTTIME: 377 /* 378 * At this point we have discovered a file that is trying to 379 * grow a small fragment to a larger fragment. To save time, 380 * we allocate a full sized block, then free the unused portion. 381 * If the file continues to grow, the `ffs_fragextend' call 382 * above will be able to grow it in place without further 383 * copying. If aberrant programs cause disk fragmentation to 384 * grow within 2% of the free reserve, we choose to begin 385 * optimizing for space. 386 */ 387 request = fs->fs_bsize; 388 if (fs->fs_cstotal.cs_nffree < 389 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 390 break; 391 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 392 fs->fs_fsmnt); 393 fs->fs_optim = FS_OPTSPACE; 394 break; 395 default: 396 printf("dev = %s, optim = %ld, fs = %s\n", 397 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 398 panic("ffs_realloccg: bad optim"); 399 /* NOTREACHED */ 400 } 401 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 402 if (bno > 0) { 403 bp->b_blkno = fsbtodb(fs, bno); 404 if (!DOINGSOFTDEP(vp)) 405 /* 406 * The usual case is that a smaller fragment that 407 * was just allocated has been replaced with a bigger 408 * fragment or a full-size block. If it is marked as 409 * B_DELWRI, the current contents have not been written 410 * to disk. It is possible that the block was written 411 * earlier, but very uncommon. If the block has never 412 * been written, there is no need to send a BIO_DELETE 413 * for it when it is freed. The gain from avoiding the 414 * TRIMs for the common case of unwritten blocks far 415 * exceeds the cost of the write amplification for the 416 * uncommon case of failing to send a TRIM for a block 417 * that had been written. 418 */ 419 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 420 ip->i_number, vp->v_type, NULL, 421 (bp->b_flags & B_DELWRI) != 0 ? 422 NOTRIM_KEY : SINGLETON_KEY); 423 delta = btodb(nsize - osize); 424 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 425 if (flags & IO_EXT) 426 UFS_INODE_SET_FLAG(ip, IN_CHANGE); 427 else 428 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 429 allocbuf(bp, nsize); 430 bp->b_flags |= B_DONE; 431 vfs_bio_bzero_buf(bp, osize, nsize - osize); 432 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 433 vfs_bio_set_valid(bp, osize, nsize - osize); 434 *bpp = bp; 435 return (0); 436 } 437 #ifdef QUOTA 438 UFS_UNLOCK(ump); 439 /* 440 * Restore user's disk quota because allocation failed. 441 */ 442 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 443 UFS_LOCK(ump); 444 #endif 445 nospace: 446 /* 447 * no space available 448 */ 449 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 450 reclaimed = 1; 451 UFS_UNLOCK(ump); 452 if (bp) { 453 brelse(bp); 454 bp = NULL; 455 } 456 UFS_LOCK(ump); 457 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 458 goto retry; 459 } 460 if (bp) 461 brelse(bp); 462 if (ffs_fsfail_cleanup_locked(ump, 0)) { 463 UFS_UNLOCK(ump); 464 return (ENXIO); 465 } 466 if (reclaimed > 0 && 467 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 468 UFS_UNLOCK(ump); 469 ffs_fserr(fs, ip->i_number, "filesystem full"); 470 uprintf("\n%s: write failed, filesystem is full\n", 471 fs->fs_fsmnt); 472 } else { 473 UFS_UNLOCK(ump); 474 } 475 return (ENOSPC); 476 } 477 478 /* 479 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 480 * 481 * The vnode and an array of buffer pointers for a range of sequential 482 * logical blocks to be made contiguous is given. The allocator attempts 483 * to find a range of sequential blocks starting as close as possible 484 * from the end of the allocation for the logical block immediately 485 * preceding the current range. If successful, the physical block numbers 486 * in the buffer pointers and in the inode are changed to reflect the new 487 * allocation. If unsuccessful, the allocation is left unchanged. The 488 * success in doing the reallocation is returned. Note that the error 489 * return is not reflected back to the user. Rather the previous block 490 * allocation will be used. 491 */ 492 493 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 494 "FFS filesystem"); 495 496 static int doasyncfree = 1; 497 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 498 "do not force synchronous writes when blocks are reallocated"); 499 500 static int doreallocblks = 1; 501 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 502 "enable block reallocation"); 503 504 static int dotrimcons = 1; 505 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 506 "enable BIO_DELETE / TRIM consolidation"); 507 508 static int maxclustersearch = 10; 509 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 510 0, "max number of cylinder group to search for contigous blocks"); 511 512 #ifdef DIAGNOSTIC 513 static int prtrealloc = 0; 514 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 515 "print out FFS filesystem block reallocation operations"); 516 #endif 517 518 int 519 ffs_reallocblks( 520 struct vop_reallocblks_args /* { 521 struct vnode *a_vp; 522 struct cluster_save *a_buflist; 523 } */ *ap) 524 { 525 struct ufsmount *ump; 526 int error; 527 528 /* 529 * We used to skip reallocating the blocks of a file into a 530 * contiguous sequence if the underlying flash device requested 531 * BIO_DELETE notifications, because devices that benefit from 532 * BIO_DELETE also benefit from not moving the data. However, 533 * the destination for the data is usually moved before the data 534 * is written to the initially allocated location, so we rarely 535 * suffer the penalty of extra writes. With the addition of the 536 * consolidation of contiguous blocks into single BIO_DELETE 537 * operations, having fewer but larger contiguous blocks reduces 538 * the number of (slow and expensive) BIO_DELETE operations. So 539 * when doing BIO_DELETE consolidation, we do block reallocation. 540 * 541 * Skip if reallocblks has been disabled globally. 542 */ 543 ump = ap->a_vp->v_mount->mnt_data; 544 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 545 doreallocblks == 0) 546 return (ENOSPC); 547 548 /* 549 * We can't wait in softdep prealloc as it may fsync and recurse 550 * here. Instead we simply fail to reallocate blocks if this 551 * rare condition arises. 552 */ 553 if (DOINGSUJ(ap->a_vp)) 554 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 555 return (ENOSPC); 556 vn_seqc_write_begin(ap->a_vp); 557 error = ump->um_fstype == UFS1 ? ffs_reallocblks_ufs1(ap) : 558 ffs_reallocblks_ufs2(ap); 559 vn_seqc_write_end(ap->a_vp); 560 return (error); 561 } 562 563 static int 564 ffs_reallocblks_ufs1( 565 struct vop_reallocblks_args /* { 566 struct vnode *a_vp; 567 struct cluster_save *a_buflist; 568 } */ *ap) 569 { 570 struct fs *fs; 571 struct inode *ip; 572 struct vnode *vp; 573 struct buf *sbp, *ebp, *bp; 574 ufs1_daddr_t *bap, *sbap, *ebap; 575 struct cluster_save *buflist; 576 struct ufsmount *ump; 577 ufs_lbn_t start_lbn, end_lbn; 578 ufs1_daddr_t soff, newblk, blkno; 579 ufs2_daddr_t pref; 580 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 581 int i, cg, len, start_lvl, end_lvl, ssize; 582 583 vp = ap->a_vp; 584 ip = VTOI(vp); 585 ump = ITOUMP(ip); 586 fs = ump->um_fs; 587 /* 588 * If we are not tracking block clusters or if we have less than 4% 589 * free blocks left, then do not attempt to cluster. Running with 590 * less than 5% free block reserve is not recommended and those that 591 * choose to do so do not expect to have good file layout. 592 */ 593 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 594 return (ENOSPC); 595 buflist = ap->a_buflist; 596 len = buflist->bs_nchildren; 597 start_lbn = buflist->bs_children[0]->b_lblkno; 598 end_lbn = start_lbn + len - 1; 599 #ifdef INVARIANTS 600 for (i = 0; i < len; i++) 601 if (!ffs_checkblk(ip, 602 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 603 panic("ffs_reallocblks: unallocated block 1"); 604 for (i = 1; i < len; i++) 605 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 606 panic("ffs_reallocblks: non-logical cluster"); 607 blkno = buflist->bs_children[0]->b_blkno; 608 ssize = fsbtodb(fs, fs->fs_frag); 609 for (i = 1; i < len - 1; i++) 610 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 611 panic("ffs_reallocblks: non-physical cluster %d", i); 612 #endif 613 /* 614 * If the cluster crosses the boundary for the first indirect 615 * block, leave space for the indirect block. Indirect blocks 616 * are initially laid out in a position after the last direct 617 * block. Block reallocation would usually destroy locality by 618 * moving the indirect block out of the way to make room for 619 * data blocks if we didn't compensate here. We should also do 620 * this for other indirect block boundaries, but it is only 621 * important for the first one. 622 */ 623 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 624 return (ENOSPC); 625 /* 626 * If the latest allocation is in a new cylinder group, assume that 627 * the filesystem has decided to move and do not force it back to 628 * the previous cylinder group. 629 */ 630 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 631 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 632 return (ENOSPC); 633 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 634 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 635 return (ENOSPC); 636 /* 637 * Get the starting offset and block map for the first block. 638 */ 639 if (start_lvl == 0) { 640 sbap = &ip->i_din1->di_db[0]; 641 soff = start_lbn; 642 } else { 643 idp = &start_ap[start_lvl - 1]; 644 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 645 brelse(sbp); 646 return (ENOSPC); 647 } 648 sbap = (ufs1_daddr_t *)sbp->b_data; 649 soff = idp->in_off; 650 } 651 /* 652 * If the block range spans two block maps, get the second map. 653 */ 654 ebap = NULL; 655 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 656 ssize = len; 657 } else { 658 #ifdef INVARIANTS 659 if (start_lvl > 0 && 660 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 661 panic("ffs_reallocblk: start == end"); 662 #endif 663 ssize = len - (idp->in_off + 1); 664 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 665 goto fail; 666 ebap = (ufs1_daddr_t *)ebp->b_data; 667 } 668 /* 669 * Find the preferred location for the cluster. If we have not 670 * previously failed at this endeavor, then follow our standard 671 * preference calculation. If we have failed at it, then pick up 672 * where we last ended our search. 673 */ 674 UFS_LOCK(ump); 675 if (ip->i_nextclustercg == -1) 676 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 677 else 678 pref = cgdata(fs, ip->i_nextclustercg); 679 /* 680 * Search the block map looking for an allocation of the desired size. 681 * To avoid wasting too much time, we limit the number of cylinder 682 * groups that we will search. 683 */ 684 cg = dtog(fs, pref); 685 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 686 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 687 break; 688 cg += 1; 689 if (cg >= fs->fs_ncg) 690 cg = 0; 691 } 692 /* 693 * If we have failed in our search, record where we gave up for 694 * next time. Otherwise, fall back to our usual search citerion. 695 */ 696 if (newblk == 0) { 697 ip->i_nextclustercg = cg; 698 UFS_UNLOCK(ump); 699 goto fail; 700 } 701 ip->i_nextclustercg = -1; 702 /* 703 * We have found a new contiguous block. 704 * 705 * First we have to replace the old block pointers with the new 706 * block pointers in the inode and indirect blocks associated 707 * with the file. 708 */ 709 #ifdef DIAGNOSTIC 710 if (prtrealloc) 711 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 712 (uintmax_t)ip->i_number, 713 (intmax_t)start_lbn, (intmax_t)end_lbn); 714 #endif 715 blkno = newblk; 716 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 717 if (i == ssize) { 718 bap = ebap; 719 soff = -i; 720 } 721 #ifdef INVARIANTS 722 if (!ffs_checkblk(ip, 723 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 724 panic("ffs_reallocblks: unallocated block 2"); 725 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 726 panic("ffs_reallocblks: alloc mismatch"); 727 #endif 728 #ifdef DIAGNOSTIC 729 if (prtrealloc) 730 printf(" %d,", *bap); 731 #endif 732 if (DOINGSOFTDEP(vp)) { 733 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 734 softdep_setup_allocdirect(ip, start_lbn + i, 735 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 736 buflist->bs_children[i]); 737 else 738 softdep_setup_allocindir_page(ip, start_lbn + i, 739 i < ssize ? sbp : ebp, soff + i, blkno, 740 *bap, buflist->bs_children[i]); 741 } 742 *bap++ = blkno; 743 } 744 /* 745 * Next we must write out the modified inode and indirect blocks. 746 * For strict correctness, the writes should be synchronous since 747 * the old block values may have been written to disk. In practise 748 * they are almost never written, but if we are concerned about 749 * strict correctness, the `doasyncfree' flag should be set to zero. 750 * 751 * The test on `doasyncfree' should be changed to test a flag 752 * that shows whether the associated buffers and inodes have 753 * been written. The flag should be set when the cluster is 754 * started and cleared whenever the buffer or inode is flushed. 755 * We can then check below to see if it is set, and do the 756 * synchronous write only when it has been cleared. 757 */ 758 if (sbap != &ip->i_din1->di_db[0]) { 759 if (doasyncfree) 760 bdwrite(sbp); 761 else 762 bwrite(sbp); 763 } else { 764 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 765 if (!doasyncfree) 766 ffs_update(vp, 1); 767 } 768 if (ssize < len) { 769 if (doasyncfree) 770 bdwrite(ebp); 771 else 772 bwrite(ebp); 773 } 774 /* 775 * Last, free the old blocks and assign the new blocks to the buffers. 776 */ 777 #ifdef DIAGNOSTIC 778 if (prtrealloc) 779 printf("\n\tnew:"); 780 #endif 781 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 782 bp = buflist->bs_children[i]; 783 if (!DOINGSOFTDEP(vp)) 784 /* 785 * The usual case is that a set of N-contiguous blocks 786 * that was just allocated has been replaced with a 787 * set of N+1-contiguous blocks. If they are marked as 788 * B_DELWRI, the current contents have not been written 789 * to disk. It is possible that the blocks were written 790 * earlier, but very uncommon. If the blocks have never 791 * been written, there is no need to send a BIO_DELETE 792 * for them when they are freed. The gain from avoiding 793 * the TRIMs for the common case of unwritten blocks 794 * far exceeds the cost of the write amplification for 795 * the uncommon case of failing to send a TRIM for the 796 * blocks that had been written. 797 */ 798 ffs_blkfree(ump, fs, ump->um_devvp, 799 dbtofsb(fs, bp->b_blkno), 800 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 801 (bp->b_flags & B_DELWRI) != 0 ? 802 NOTRIM_KEY : SINGLETON_KEY); 803 bp->b_blkno = fsbtodb(fs, blkno); 804 #ifdef INVARIANTS 805 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 806 panic("ffs_reallocblks: unallocated block 3"); 807 #endif 808 #ifdef DIAGNOSTIC 809 if (prtrealloc) 810 printf(" %d,", blkno); 811 #endif 812 } 813 #ifdef DIAGNOSTIC 814 if (prtrealloc) { 815 prtrealloc--; 816 printf("\n"); 817 } 818 #endif 819 return (0); 820 821 fail: 822 if (ssize < len) 823 brelse(ebp); 824 if (sbap != &ip->i_din1->di_db[0]) 825 brelse(sbp); 826 return (ENOSPC); 827 } 828 829 static int 830 ffs_reallocblks_ufs2( 831 struct vop_reallocblks_args /* { 832 struct vnode *a_vp; 833 struct cluster_save *a_buflist; 834 } */ *ap) 835 { 836 struct fs *fs; 837 struct inode *ip; 838 struct vnode *vp; 839 struct buf *sbp, *ebp, *bp; 840 ufs2_daddr_t *bap, *sbap, *ebap; 841 struct cluster_save *buflist; 842 struct ufsmount *ump; 843 ufs_lbn_t start_lbn, end_lbn; 844 ufs2_daddr_t soff, newblk, blkno, pref; 845 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 846 int i, cg, len, start_lvl, end_lvl, ssize; 847 848 vp = ap->a_vp; 849 ip = VTOI(vp); 850 ump = ITOUMP(ip); 851 fs = ump->um_fs; 852 /* 853 * If we are not tracking block clusters or if we have less than 4% 854 * free blocks left, then do not attempt to cluster. Running with 855 * less than 5% free block reserve is not recommended and those that 856 * choose to do so do not expect to have good file layout. 857 */ 858 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 859 return (ENOSPC); 860 buflist = ap->a_buflist; 861 len = buflist->bs_nchildren; 862 start_lbn = buflist->bs_children[0]->b_lblkno; 863 end_lbn = start_lbn + len - 1; 864 #ifdef INVARIANTS 865 for (i = 0; i < len; i++) 866 if (!ffs_checkblk(ip, 867 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 868 panic("ffs_reallocblks: unallocated block 1"); 869 for (i = 1; i < len; i++) 870 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 871 panic("ffs_reallocblks: non-logical cluster"); 872 blkno = buflist->bs_children[0]->b_blkno; 873 ssize = fsbtodb(fs, fs->fs_frag); 874 for (i = 1; i < len - 1; i++) 875 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 876 panic("ffs_reallocblks: non-physical cluster %d", i); 877 #endif 878 /* 879 * If the cluster crosses the boundary for the first indirect 880 * block, do not move anything in it. Indirect blocks are 881 * usually initially laid out in a position between the data 882 * blocks. Block reallocation would usually destroy locality by 883 * moving the indirect block out of the way to make room for 884 * data blocks if we didn't compensate here. We should also do 885 * this for other indirect block boundaries, but it is only 886 * important for the first one. 887 */ 888 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 889 return (ENOSPC); 890 /* 891 * If the latest allocation is in a new cylinder group, assume that 892 * the filesystem has decided to move and do not force it back to 893 * the previous cylinder group. 894 */ 895 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 896 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 897 return (ENOSPC); 898 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 899 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 900 return (ENOSPC); 901 /* 902 * Get the starting offset and block map for the first block. 903 */ 904 if (start_lvl == 0) { 905 sbap = &ip->i_din2->di_db[0]; 906 soff = start_lbn; 907 } else { 908 idp = &start_ap[start_lvl - 1]; 909 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 910 brelse(sbp); 911 return (ENOSPC); 912 } 913 sbap = (ufs2_daddr_t *)sbp->b_data; 914 soff = idp->in_off; 915 } 916 /* 917 * If the block range spans two block maps, get the second map. 918 */ 919 ebap = NULL; 920 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 921 ssize = len; 922 } else { 923 #ifdef INVARIANTS 924 if (start_lvl > 0 && 925 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 926 panic("ffs_reallocblk: start == end"); 927 #endif 928 ssize = len - (idp->in_off + 1); 929 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 930 goto fail; 931 ebap = (ufs2_daddr_t *)ebp->b_data; 932 } 933 /* 934 * Find the preferred location for the cluster. If we have not 935 * previously failed at this endeavor, then follow our standard 936 * preference calculation. If we have failed at it, then pick up 937 * where we last ended our search. 938 */ 939 UFS_LOCK(ump); 940 if (ip->i_nextclustercg == -1) 941 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 942 else 943 pref = cgdata(fs, ip->i_nextclustercg); 944 /* 945 * Search the block map looking for an allocation of the desired size. 946 * To avoid wasting too much time, we limit the number of cylinder 947 * groups that we will search. 948 */ 949 cg = dtog(fs, pref); 950 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 951 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 952 break; 953 cg += 1; 954 if (cg >= fs->fs_ncg) 955 cg = 0; 956 } 957 /* 958 * If we have failed in our search, record where we gave up for 959 * next time. Otherwise, fall back to our usual search citerion. 960 */ 961 if (newblk == 0) { 962 ip->i_nextclustercg = cg; 963 UFS_UNLOCK(ump); 964 goto fail; 965 } 966 ip->i_nextclustercg = -1; 967 /* 968 * We have found a new contiguous block. 969 * 970 * First we have to replace the old block pointers with the new 971 * block pointers in the inode and indirect blocks associated 972 * with the file. 973 */ 974 #ifdef DIAGNOSTIC 975 if (prtrealloc) 976 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 977 (intmax_t)start_lbn, (intmax_t)end_lbn); 978 #endif 979 blkno = newblk; 980 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 981 if (i == ssize) { 982 bap = ebap; 983 soff = -i; 984 } 985 #ifdef INVARIANTS 986 if (!ffs_checkblk(ip, 987 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 988 panic("ffs_reallocblks: unallocated block 2"); 989 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 990 panic("ffs_reallocblks: alloc mismatch"); 991 #endif 992 #ifdef DIAGNOSTIC 993 if (prtrealloc) 994 printf(" %jd,", (intmax_t)*bap); 995 #endif 996 if (DOINGSOFTDEP(vp)) { 997 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 998 softdep_setup_allocdirect(ip, start_lbn + i, 999 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 1000 buflist->bs_children[i]); 1001 else 1002 softdep_setup_allocindir_page(ip, start_lbn + i, 1003 i < ssize ? sbp : ebp, soff + i, blkno, 1004 *bap, buflist->bs_children[i]); 1005 } 1006 *bap++ = blkno; 1007 } 1008 /* 1009 * Next we must write out the modified inode and indirect blocks. 1010 * For strict correctness, the writes should be synchronous since 1011 * the old block values may have been written to disk. In practise 1012 * they are almost never written, but if we are concerned about 1013 * strict correctness, the `doasyncfree' flag should be set to zero. 1014 * 1015 * The test on `doasyncfree' should be changed to test a flag 1016 * that shows whether the associated buffers and inodes have 1017 * been written. The flag should be set when the cluster is 1018 * started and cleared whenever the buffer or inode is flushed. 1019 * We can then check below to see if it is set, and do the 1020 * synchronous write only when it has been cleared. 1021 */ 1022 if (sbap != &ip->i_din2->di_db[0]) { 1023 if (doasyncfree) 1024 bdwrite(sbp); 1025 else 1026 bwrite(sbp); 1027 } else { 1028 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_UPDATE); 1029 if (!doasyncfree) 1030 ffs_update(vp, 1); 1031 } 1032 if (ssize < len) { 1033 if (doasyncfree) 1034 bdwrite(ebp); 1035 else 1036 bwrite(ebp); 1037 } 1038 /* 1039 * Last, free the old blocks and assign the new blocks to the buffers. 1040 */ 1041 #ifdef DIAGNOSTIC 1042 if (prtrealloc) 1043 printf("\n\tnew:"); 1044 #endif 1045 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1046 bp = buflist->bs_children[i]; 1047 if (!DOINGSOFTDEP(vp)) 1048 /* 1049 * The usual case is that a set of N-contiguous blocks 1050 * that was just allocated has been replaced with a 1051 * set of N+1-contiguous blocks. If they are marked as 1052 * B_DELWRI, the current contents have not been written 1053 * to disk. It is possible that the blocks were written 1054 * earlier, but very uncommon. If the blocks have never 1055 * been written, there is no need to send a BIO_DELETE 1056 * for them when they are freed. The gain from avoiding 1057 * the TRIMs for the common case of unwritten blocks 1058 * far exceeds the cost of the write amplification for 1059 * the uncommon case of failing to send a TRIM for the 1060 * blocks that had been written. 1061 */ 1062 ffs_blkfree(ump, fs, ump->um_devvp, 1063 dbtofsb(fs, bp->b_blkno), 1064 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1065 (bp->b_flags & B_DELWRI) != 0 ? 1066 NOTRIM_KEY : SINGLETON_KEY); 1067 bp->b_blkno = fsbtodb(fs, blkno); 1068 #ifdef INVARIANTS 1069 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1070 panic("ffs_reallocblks: unallocated block 3"); 1071 #endif 1072 #ifdef DIAGNOSTIC 1073 if (prtrealloc) 1074 printf(" %jd,", (intmax_t)blkno); 1075 #endif 1076 } 1077 #ifdef DIAGNOSTIC 1078 if (prtrealloc) { 1079 prtrealloc--; 1080 printf("\n"); 1081 } 1082 #endif 1083 return (0); 1084 1085 fail: 1086 if (ssize < len) 1087 brelse(ebp); 1088 if (sbap != &ip->i_din2->di_db[0]) 1089 brelse(sbp); 1090 return (ENOSPC); 1091 } 1092 1093 /* 1094 * Allocate an inode in the filesystem. 1095 * 1096 * If allocating a directory, use ffs_dirpref to select the inode. 1097 * If allocating in a directory, the following hierarchy is followed: 1098 * 1) allocate the preferred inode. 1099 * 2) allocate an inode in the same cylinder group. 1100 * 3) quadratically rehash into other cylinder groups, until an 1101 * available inode is located. 1102 * If no inode preference is given the following hierarchy is used 1103 * to allocate an inode: 1104 * 1) allocate an inode in cylinder group 0. 1105 * 2) quadratically rehash into other cylinder groups, until an 1106 * available inode is located. 1107 */ 1108 int 1109 ffs_valloc(struct vnode *pvp, 1110 int mode, 1111 struct ucred *cred, 1112 struct vnode **vpp) 1113 { 1114 struct inode *pip; 1115 struct fs *fs; 1116 struct inode *ip; 1117 struct timespec ts; 1118 struct ufsmount *ump; 1119 ino_t ino, ipref; 1120 u_int cg; 1121 int error, reclaimed; 1122 1123 *vpp = NULL; 1124 pip = VTOI(pvp); 1125 ump = ITOUMP(pip); 1126 fs = ump->um_fs; 1127 1128 UFS_LOCK(ump); 1129 reclaimed = 0; 1130 retry: 1131 if (fs->fs_cstotal.cs_nifree == 0) 1132 goto noinodes; 1133 1134 if ((mode & IFMT) == IFDIR) 1135 ipref = ffs_dirpref(pip); 1136 else 1137 ipref = pip->i_number; 1138 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1139 ipref = 0; 1140 cg = ino_to_cg(fs, ipref); 1141 /* 1142 * Track number of dirs created one after another 1143 * in a same cg without intervening by files. 1144 */ 1145 if ((mode & IFMT) == IFDIR) { 1146 if (fs->fs_contigdirs[cg] < 255) 1147 fs->fs_contigdirs[cg]++; 1148 } else { 1149 if (fs->fs_contigdirs[cg] > 0) 1150 fs->fs_contigdirs[cg]--; 1151 } 1152 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1153 (allocfcn_t *)ffs_nodealloccg); 1154 if (ino == 0) 1155 goto noinodes; 1156 /* 1157 * Get rid of the cached old vnode, force allocation of a new vnode 1158 * for this inode. If this fails, release the allocated ino and 1159 * return the error. 1160 */ 1161 if ((error = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1162 FFSV_FORCEINSMQ | FFSV_REPLACE | FFSV_NEWINODE)) != 0) { 1163 ffs_vfree(pvp, ino, mode); 1164 return (error); 1165 } 1166 /* 1167 * We got an inode, so check mode and panic if it is already allocated. 1168 */ 1169 ip = VTOI(*vpp); 1170 if (ip->i_mode) { 1171 printf("mode = 0%o, inum = %ju, fs = %s\n", 1172 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1173 panic("ffs_valloc: dup alloc"); 1174 } 1175 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1176 printf("free inode %s/%lu had %ld blocks\n", 1177 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1178 DIP_SET(ip, i_blocks, 0); 1179 } 1180 ip->i_flags = 0; 1181 DIP_SET(ip, i_flags, 0); 1182 /* 1183 * Set up a new generation number for this inode. 1184 */ 1185 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1186 ip->i_gen = arc4random(); 1187 DIP_SET(ip, i_gen, ip->i_gen); 1188 if (fs->fs_magic == FS_UFS2_MAGIC) { 1189 vfs_timestamp(&ts); 1190 ip->i_din2->di_birthtime = ts.tv_sec; 1191 ip->i_din2->di_birthnsec = ts.tv_nsec; 1192 } 1193 ip->i_flag = 0; 1194 (*vpp)->v_vflag = 0; 1195 (*vpp)->v_type = VNON; 1196 if (fs->fs_magic == FS_UFS2_MAGIC) { 1197 (*vpp)->v_op = &ffs_vnodeops2; 1198 UFS_INODE_SET_FLAG(ip, IN_UFS2); 1199 } else { 1200 (*vpp)->v_op = &ffs_vnodeops1; 1201 } 1202 return (0); 1203 noinodes: 1204 if (reclaimed == 0) { 1205 reclaimed = 1; 1206 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1207 goto retry; 1208 } 1209 if (ffs_fsfail_cleanup_locked(ump, 0)) { 1210 UFS_UNLOCK(ump); 1211 return (ENXIO); 1212 } 1213 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1214 UFS_UNLOCK(ump); 1215 ffs_fserr(fs, pip->i_number, "out of inodes"); 1216 uprintf("\n%s: create/symlink failed, no inodes free\n", 1217 fs->fs_fsmnt); 1218 } else { 1219 UFS_UNLOCK(ump); 1220 } 1221 return (ENOSPC); 1222 } 1223 1224 /* 1225 * Find a cylinder group to place a directory. 1226 * 1227 * The policy implemented by this algorithm is to allocate a 1228 * directory inode in the same cylinder group as its parent 1229 * directory, but also to reserve space for its files inodes 1230 * and data. Restrict the number of directories which may be 1231 * allocated one after another in the same cylinder group 1232 * without intervening allocation of files. 1233 * 1234 * If we allocate a first level directory then force allocation 1235 * in another cylinder group. 1236 */ 1237 static ino_t 1238 ffs_dirpref(struct inode *pip) 1239 { 1240 struct fs *fs; 1241 int cg, prefcg, dirsize, cgsize; 1242 u_int avgifree, avgbfree, avgndir, curdirsize; 1243 u_int minifree, minbfree, maxndir; 1244 u_int mincg, minndir; 1245 u_int maxcontigdirs; 1246 1247 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1248 fs = ITOFS(pip); 1249 1250 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1251 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1252 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1253 1254 /* 1255 * Force allocation in another cg if creating a first level dir. 1256 */ 1257 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1258 if (ITOV(pip)->v_vflag & VV_ROOT) { 1259 prefcg = arc4random() % fs->fs_ncg; 1260 mincg = prefcg; 1261 minndir = fs->fs_ipg; 1262 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1263 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1264 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1265 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1266 mincg = cg; 1267 minndir = fs->fs_cs(fs, cg).cs_ndir; 1268 } 1269 for (cg = 0; cg < prefcg; cg++) 1270 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1271 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1272 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1273 mincg = cg; 1274 minndir = fs->fs_cs(fs, cg).cs_ndir; 1275 } 1276 return ((ino_t)(fs->fs_ipg * mincg)); 1277 } 1278 1279 /* 1280 * Count various limits which used for 1281 * optimal allocation of a directory inode. 1282 */ 1283 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1284 minifree = avgifree - avgifree / 4; 1285 if (minifree < 1) 1286 minifree = 1; 1287 minbfree = avgbfree - avgbfree / 4; 1288 if (minbfree < 1) 1289 minbfree = 1; 1290 cgsize = fs->fs_fsize * fs->fs_fpg; 1291 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1292 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1293 if (dirsize < curdirsize) 1294 dirsize = curdirsize; 1295 if (dirsize <= 0) 1296 maxcontigdirs = 0; /* dirsize overflowed */ 1297 else 1298 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1299 if (fs->fs_avgfpdir > 0) 1300 maxcontigdirs = min(maxcontigdirs, 1301 fs->fs_ipg / fs->fs_avgfpdir); 1302 if (maxcontigdirs == 0) 1303 maxcontigdirs = 1; 1304 1305 /* 1306 * Limit number of dirs in one cg and reserve space for 1307 * regular files, but only if we have no deficit in 1308 * inodes or space. 1309 * 1310 * We are trying to find a suitable cylinder group nearby 1311 * our preferred cylinder group to place a new directory. 1312 * We scan from our preferred cylinder group forward looking 1313 * for a cylinder group that meets our criterion. If we get 1314 * to the final cylinder group and do not find anything, 1315 * we start scanning forwards from the beginning of the 1316 * filesystem. While it might seem sensible to start scanning 1317 * backwards or even to alternate looking forward and backward, 1318 * this approach fails badly when the filesystem is nearly full. 1319 * Specifically, we first search all the areas that have no space 1320 * and finally try the one preceding that. We repeat this on 1321 * every request and in the case of the final block end up 1322 * searching the entire filesystem. By jumping to the front 1323 * of the filesystem, our future forward searches always look 1324 * in new cylinder groups so finds every possible block after 1325 * one pass over the filesystem. 1326 */ 1327 prefcg = ino_to_cg(fs, pip->i_number); 1328 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1329 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1330 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1331 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1332 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1333 return ((ino_t)(fs->fs_ipg * cg)); 1334 } 1335 for (cg = 0; cg < prefcg; cg++) 1336 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1337 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1338 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1339 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1340 return ((ino_t)(fs->fs_ipg * cg)); 1341 } 1342 /* 1343 * This is a backstop when we have deficit in space. 1344 */ 1345 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1346 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1347 return ((ino_t)(fs->fs_ipg * cg)); 1348 for (cg = 0; cg < prefcg; cg++) 1349 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1350 break; 1351 return ((ino_t)(fs->fs_ipg * cg)); 1352 } 1353 1354 /* 1355 * Select the desired position for the next block in a file. The file is 1356 * logically divided into sections. The first section is composed of the 1357 * direct blocks and the next fs_maxbpg blocks. Each additional section 1358 * contains fs_maxbpg blocks. 1359 * 1360 * If no blocks have been allocated in the first section, the policy is to 1361 * request a block in the same cylinder group as the inode that describes 1362 * the file. The first indirect is allocated immediately following the last 1363 * direct block and the data blocks for the first indirect immediately 1364 * follow it. 1365 * 1366 * If no blocks have been allocated in any other section, the indirect 1367 * block(s) are allocated in the same cylinder group as its inode in an 1368 * area reserved immediately following the inode blocks. The policy for 1369 * the data blocks is to place them in a cylinder group with a greater than 1370 * average number of free blocks. An appropriate cylinder group is found 1371 * by using a rotor that sweeps the cylinder groups. When a new group of 1372 * blocks is needed, the sweep begins in the cylinder group following the 1373 * cylinder group from which the previous allocation was made. The sweep 1374 * continues until a cylinder group with greater than the average number 1375 * of free blocks is found. If the allocation is for the first block in an 1376 * indirect block or the previous block is a hole, then the information on 1377 * the previous allocation is unavailable; here a best guess is made based 1378 * on the logical block number being allocated. 1379 * 1380 * If a section is already partially allocated, the policy is to 1381 * allocate blocks contiguously within the section if possible. 1382 */ 1383 ufs2_daddr_t 1384 ffs_blkpref_ufs1(struct inode *ip, 1385 ufs_lbn_t lbn, 1386 int indx, 1387 ufs1_daddr_t *bap) 1388 { 1389 struct fs *fs; 1390 u_int cg, inocg; 1391 u_int avgbfree, startcg; 1392 ufs2_daddr_t pref, prevbn; 1393 1394 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1395 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1396 fs = ITOFS(ip); 1397 /* 1398 * Allocation of indirect blocks is indicated by passing negative 1399 * values in indx: -1 for single indirect, -2 for double indirect, 1400 * -3 for triple indirect. As noted below, we attempt to allocate 1401 * the first indirect inline with the file data. For all later 1402 * indirect blocks, the data is often allocated in other cylinder 1403 * groups. However to speed random file access and to speed up 1404 * fsck, the filesystem reserves the first fs_metaspace blocks 1405 * (typically half of fs_minfree) of the data area of each cylinder 1406 * group to hold these later indirect blocks. 1407 */ 1408 inocg = ino_to_cg(fs, ip->i_number); 1409 if (indx < 0) { 1410 /* 1411 * Our preference for indirect blocks is the zone at the 1412 * beginning of the inode's cylinder group data area that 1413 * we try to reserve for indirect blocks. 1414 */ 1415 pref = cgmeta(fs, inocg); 1416 /* 1417 * If we are allocating the first indirect block, try to 1418 * place it immediately following the last direct block. 1419 */ 1420 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1421 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1422 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1423 return (pref); 1424 } 1425 /* 1426 * If we are allocating the first data block in the first indirect 1427 * block and the indirect has been allocated in the data block area, 1428 * try to place it immediately following the indirect block. 1429 */ 1430 if (lbn == UFS_NDADDR) { 1431 pref = ip->i_din1->di_ib[0]; 1432 if (pref != 0 && pref >= cgdata(fs, inocg) && 1433 pref < cgbase(fs, inocg + 1)) 1434 return (pref + fs->fs_frag); 1435 } 1436 /* 1437 * If we are at the beginning of a file, or we have already allocated 1438 * the maximum number of blocks per cylinder group, or we do not 1439 * have a block allocated immediately preceding us, then we need 1440 * to decide where to start allocating new blocks. 1441 */ 1442 if (indx == 0) { 1443 prevbn = 0; 1444 } else { 1445 prevbn = bap[indx - 1]; 1446 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1447 fs->fs_bsize) != 0) 1448 prevbn = 0; 1449 } 1450 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1451 /* 1452 * If we are allocating a directory data block, we want 1453 * to place it in the metadata area. 1454 */ 1455 if ((ip->i_mode & IFMT) == IFDIR) 1456 return (cgmeta(fs, inocg)); 1457 /* 1458 * Until we fill all the direct and all the first indirect's 1459 * blocks, we try to allocate in the data area of the inode's 1460 * cylinder group. 1461 */ 1462 if (lbn < UFS_NDADDR + NINDIR(fs)) 1463 return (cgdata(fs, inocg)); 1464 /* 1465 * Find a cylinder with greater than average number of 1466 * unused data blocks. 1467 */ 1468 if (indx == 0 || prevbn == 0) 1469 startcg = inocg + lbn / fs->fs_maxbpg; 1470 else 1471 startcg = dtog(fs, prevbn) + 1; 1472 startcg %= fs->fs_ncg; 1473 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1474 for (cg = startcg; cg < fs->fs_ncg; cg++) 1475 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1476 fs->fs_cgrotor = cg; 1477 return (cgdata(fs, cg)); 1478 } 1479 for (cg = 0; cg <= startcg; cg++) 1480 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1481 fs->fs_cgrotor = cg; 1482 return (cgdata(fs, cg)); 1483 } 1484 return (0); 1485 } 1486 /* 1487 * Otherwise, we just always try to lay things out contiguously. 1488 */ 1489 return (prevbn + fs->fs_frag); 1490 } 1491 1492 /* 1493 * Same as above, but for UFS2 1494 */ 1495 ufs2_daddr_t 1496 ffs_blkpref_ufs2(struct inode *ip, 1497 ufs_lbn_t lbn, 1498 int indx, 1499 ufs2_daddr_t *bap) 1500 { 1501 struct fs *fs; 1502 u_int cg, inocg; 1503 u_int avgbfree, startcg; 1504 ufs2_daddr_t pref, prevbn; 1505 1506 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1507 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1508 fs = ITOFS(ip); 1509 /* 1510 * Allocation of indirect blocks is indicated by passing negative 1511 * values in indx: -1 for single indirect, -2 for double indirect, 1512 * -3 for triple indirect. As noted below, we attempt to allocate 1513 * the first indirect inline with the file data. For all later 1514 * indirect blocks, the data is often allocated in other cylinder 1515 * groups. However to speed random file access and to speed up 1516 * fsck, the filesystem reserves the first fs_metaspace blocks 1517 * (typically half of fs_minfree) of the data area of each cylinder 1518 * group to hold these later indirect blocks. 1519 */ 1520 inocg = ino_to_cg(fs, ip->i_number); 1521 if (indx < 0) { 1522 /* 1523 * Our preference for indirect blocks is the zone at the 1524 * beginning of the inode's cylinder group data area that 1525 * we try to reserve for indirect blocks. 1526 */ 1527 pref = cgmeta(fs, inocg); 1528 /* 1529 * If we are allocating the first indirect block, try to 1530 * place it immediately following the last direct block. 1531 */ 1532 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1533 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1534 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1535 return (pref); 1536 } 1537 /* 1538 * If we are allocating the first data block in the first indirect 1539 * block and the indirect has been allocated in the data block area, 1540 * try to place it immediately following the indirect block. 1541 */ 1542 if (lbn == UFS_NDADDR) { 1543 pref = ip->i_din2->di_ib[0]; 1544 if (pref != 0 && pref >= cgdata(fs, inocg) && 1545 pref < cgbase(fs, inocg + 1)) 1546 return (pref + fs->fs_frag); 1547 } 1548 /* 1549 * If we are at the beginning of a file, or we have already allocated 1550 * the maximum number of blocks per cylinder group, or we do not 1551 * have a block allocated immediately preceding us, then we need 1552 * to decide where to start allocating new blocks. 1553 */ 1554 if (indx == 0) { 1555 prevbn = 0; 1556 } else { 1557 prevbn = bap[indx - 1]; 1558 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1559 fs->fs_bsize) != 0) 1560 prevbn = 0; 1561 } 1562 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1563 /* 1564 * If we are allocating a directory data block, we want 1565 * to place it in the metadata area. 1566 */ 1567 if ((ip->i_mode & IFMT) == IFDIR) 1568 return (cgmeta(fs, inocg)); 1569 /* 1570 * Until we fill all the direct and all the first indirect's 1571 * blocks, we try to allocate in the data area of the inode's 1572 * cylinder group. 1573 */ 1574 if (lbn < UFS_NDADDR + NINDIR(fs)) 1575 return (cgdata(fs, inocg)); 1576 /* 1577 * Find a cylinder with greater than average number of 1578 * unused data blocks. 1579 */ 1580 if (indx == 0 || prevbn == 0) 1581 startcg = inocg + lbn / fs->fs_maxbpg; 1582 else 1583 startcg = dtog(fs, prevbn) + 1; 1584 startcg %= fs->fs_ncg; 1585 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1586 for (cg = startcg; cg < fs->fs_ncg; cg++) 1587 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1588 fs->fs_cgrotor = cg; 1589 return (cgdata(fs, cg)); 1590 } 1591 for (cg = 0; cg <= startcg; cg++) 1592 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1593 fs->fs_cgrotor = cg; 1594 return (cgdata(fs, cg)); 1595 } 1596 return (0); 1597 } 1598 /* 1599 * Otherwise, we just always try to lay things out contiguously. 1600 */ 1601 return (prevbn + fs->fs_frag); 1602 } 1603 1604 /* 1605 * Implement the cylinder overflow algorithm. 1606 * 1607 * The policy implemented by this algorithm is: 1608 * 1) allocate the block in its requested cylinder group. 1609 * 2) quadratically rehash on the cylinder group number. 1610 * 3) brute force search for a free block. 1611 * 1612 * Must be called with the UFS lock held. Will release the lock on success 1613 * and return with it held on failure. 1614 */ 1615 /*VARARGS5*/ 1616 static ufs2_daddr_t 1617 ffs_hashalloc(struct inode *ip, 1618 u_int cg, 1619 ufs2_daddr_t pref, 1620 int size, /* Search size for data blocks, mode for inodes */ 1621 int rsize, /* Real allocated size. */ 1622 allocfcn_t *allocator) 1623 { 1624 struct fs *fs; 1625 ufs2_daddr_t result; 1626 u_int i, icg = cg; 1627 1628 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1629 #ifdef INVARIANTS 1630 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1631 panic("ffs_hashalloc: allocation on suspended filesystem"); 1632 #endif 1633 fs = ITOFS(ip); 1634 /* 1635 * 1: preferred cylinder group 1636 */ 1637 result = (*allocator)(ip, cg, pref, size, rsize); 1638 if (result) 1639 return (result); 1640 /* 1641 * 2: quadratic rehash 1642 */ 1643 for (i = 1; i < fs->fs_ncg; i *= 2) { 1644 cg += i; 1645 if (cg >= fs->fs_ncg) 1646 cg -= fs->fs_ncg; 1647 result = (*allocator)(ip, cg, 0, size, rsize); 1648 if (result) 1649 return (result); 1650 } 1651 /* 1652 * 3: brute force search 1653 * Note that we start at i == 2, since 0 was checked initially, 1654 * and 1 is always checked in the quadratic rehash. 1655 */ 1656 cg = (icg + 2) % fs->fs_ncg; 1657 for (i = 2; i < fs->fs_ncg; i++) { 1658 result = (*allocator)(ip, cg, 0, size, rsize); 1659 if (result) 1660 return (result); 1661 cg++; 1662 if (cg == fs->fs_ncg) 1663 cg = 0; 1664 } 1665 return (0); 1666 } 1667 1668 /* 1669 * Determine whether a fragment can be extended. 1670 * 1671 * Check to see if the necessary fragments are available, and 1672 * if they are, allocate them. 1673 */ 1674 static ufs2_daddr_t 1675 ffs_fragextend(struct inode *ip, 1676 u_int cg, 1677 ufs2_daddr_t bprev, 1678 int osize, 1679 int nsize) 1680 { 1681 struct fs *fs; 1682 struct cg *cgp; 1683 struct buf *bp; 1684 struct ufsmount *ump; 1685 int nffree; 1686 long bno; 1687 int frags, bbase; 1688 int i, error; 1689 u_int8_t *blksfree; 1690 1691 ump = ITOUMP(ip); 1692 fs = ump->um_fs; 1693 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1694 return (0); 1695 frags = numfrags(fs, nsize); 1696 bbase = fragnum(fs, bprev); 1697 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1698 /* cannot extend across a block boundary */ 1699 return (0); 1700 } 1701 UFS_UNLOCK(ump); 1702 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) 1703 goto fail; 1704 bno = dtogd(fs, bprev); 1705 blksfree = cg_blksfree(cgp); 1706 for (i = numfrags(fs, osize); i < frags; i++) 1707 if (isclr(blksfree, bno + i)) 1708 goto fail; 1709 /* 1710 * the current fragment can be extended 1711 * deduct the count on fragment being extended into 1712 * increase the count on the remaining fragment (if any) 1713 * allocate the extended piece 1714 */ 1715 for (i = frags; i < fs->fs_frag - bbase; i++) 1716 if (isclr(blksfree, bno + i)) 1717 break; 1718 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1719 if (i != frags) 1720 cgp->cg_frsum[i - frags]++; 1721 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1722 clrbit(blksfree, bno + i); 1723 cgp->cg_cs.cs_nffree--; 1724 nffree++; 1725 } 1726 UFS_LOCK(ump); 1727 fs->fs_cstotal.cs_nffree -= nffree; 1728 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1729 fs->fs_fmod = 1; 1730 ACTIVECLEAR(fs, cg); 1731 UFS_UNLOCK(ump); 1732 if (DOINGSOFTDEP(ITOV(ip))) 1733 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1734 frags, numfrags(fs, osize)); 1735 bdwrite(bp); 1736 return (bprev); 1737 1738 fail: 1739 brelse(bp); 1740 UFS_LOCK(ump); 1741 return (0); 1742 1743 } 1744 1745 /* 1746 * Determine whether a block can be allocated. 1747 * 1748 * Check to see if a block of the appropriate size is available, 1749 * and if it is, allocate it. 1750 */ 1751 static ufs2_daddr_t 1752 ffs_alloccg(struct inode *ip, 1753 u_int cg, 1754 ufs2_daddr_t bpref, 1755 int size, 1756 int rsize) 1757 { 1758 struct fs *fs; 1759 struct cg *cgp; 1760 struct buf *bp; 1761 struct ufsmount *ump; 1762 ufs1_daddr_t bno; 1763 ufs2_daddr_t blkno; 1764 int i, allocsiz, error, frags; 1765 u_int8_t *blksfree; 1766 1767 ump = ITOUMP(ip); 1768 fs = ump->um_fs; 1769 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1770 return (0); 1771 UFS_UNLOCK(ump); 1772 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0 || 1773 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1774 goto fail; 1775 if (size == fs->fs_bsize) { 1776 UFS_LOCK(ump); 1777 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1778 ACTIVECLEAR(fs, cg); 1779 UFS_UNLOCK(ump); 1780 bdwrite(bp); 1781 return (blkno); 1782 } 1783 /* 1784 * check to see if any fragments are already available 1785 * allocsiz is the size which will be allocated, hacking 1786 * it down to a smaller size if necessary 1787 */ 1788 blksfree = cg_blksfree(cgp); 1789 frags = numfrags(fs, size); 1790 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1791 if (cgp->cg_frsum[allocsiz] != 0) 1792 break; 1793 if (allocsiz == fs->fs_frag) { 1794 /* 1795 * no fragments were available, so a block will be 1796 * allocated, and hacked up 1797 */ 1798 if (cgp->cg_cs.cs_nbfree == 0) 1799 goto fail; 1800 UFS_LOCK(ump); 1801 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1802 ACTIVECLEAR(fs, cg); 1803 UFS_UNLOCK(ump); 1804 bdwrite(bp); 1805 return (blkno); 1806 } 1807 KASSERT(size == rsize, 1808 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1809 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1810 if (bno < 0) 1811 goto fail; 1812 for (i = 0; i < frags; i++) 1813 clrbit(blksfree, bno + i); 1814 cgp->cg_cs.cs_nffree -= frags; 1815 cgp->cg_frsum[allocsiz]--; 1816 if (frags != allocsiz) 1817 cgp->cg_frsum[allocsiz - frags]++; 1818 UFS_LOCK(ump); 1819 fs->fs_cstotal.cs_nffree -= frags; 1820 fs->fs_cs(fs, cg).cs_nffree -= frags; 1821 fs->fs_fmod = 1; 1822 blkno = cgbase(fs, cg) + bno; 1823 ACTIVECLEAR(fs, cg); 1824 UFS_UNLOCK(ump); 1825 if (DOINGSOFTDEP(ITOV(ip))) 1826 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1827 bdwrite(bp); 1828 return (blkno); 1829 1830 fail: 1831 brelse(bp); 1832 UFS_LOCK(ump); 1833 return (0); 1834 } 1835 1836 /* 1837 * Allocate a block in a cylinder group. 1838 * 1839 * This algorithm implements the following policy: 1840 * 1) allocate the requested block. 1841 * 2) allocate a rotationally optimal block in the same cylinder. 1842 * 3) allocate the next available block on the block rotor for the 1843 * specified cylinder group. 1844 * Note that this routine only allocates fs_bsize blocks; these 1845 * blocks may be fragmented by the routine that allocates them. 1846 */ 1847 static ufs2_daddr_t 1848 ffs_alloccgblk(struct inode *ip, 1849 struct buf *bp, 1850 ufs2_daddr_t bpref, 1851 int size) 1852 { 1853 struct fs *fs; 1854 struct cg *cgp; 1855 struct ufsmount *ump; 1856 ufs1_daddr_t bno; 1857 ufs2_daddr_t blkno; 1858 u_int8_t *blksfree; 1859 int i, cgbpref; 1860 1861 ump = ITOUMP(ip); 1862 fs = ump->um_fs; 1863 mtx_assert(UFS_MTX(ump), MA_OWNED); 1864 cgp = (struct cg *)bp->b_data; 1865 blksfree = cg_blksfree(cgp); 1866 if (bpref == 0) { 1867 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1868 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1869 /* map bpref to correct zone in this cg */ 1870 if (bpref < cgdata(fs, cgbpref)) 1871 bpref = cgmeta(fs, cgp->cg_cgx); 1872 else 1873 bpref = cgdata(fs, cgp->cg_cgx); 1874 } 1875 /* 1876 * if the requested block is available, use it 1877 */ 1878 bno = dtogd(fs, blknum(fs, bpref)); 1879 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1880 goto gotit; 1881 /* 1882 * Take the next available block in this cylinder group. 1883 */ 1884 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1885 if (bno < 0) 1886 return (0); 1887 /* Update cg_rotor only if allocated from the data zone */ 1888 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1889 cgp->cg_rotor = bno; 1890 gotit: 1891 blkno = fragstoblks(fs, bno); 1892 ffs_clrblock(fs, blksfree, (long)blkno); 1893 ffs_clusteracct(fs, cgp, blkno, -1); 1894 cgp->cg_cs.cs_nbfree--; 1895 fs->fs_cstotal.cs_nbfree--; 1896 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1897 fs->fs_fmod = 1; 1898 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1899 /* 1900 * If the caller didn't want the whole block free the frags here. 1901 */ 1902 size = numfrags(fs, size); 1903 if (size != fs->fs_frag) { 1904 bno = dtogd(fs, blkno); 1905 for (i = size; i < fs->fs_frag; i++) 1906 setbit(blksfree, bno + i); 1907 i = fs->fs_frag - size; 1908 cgp->cg_cs.cs_nffree += i; 1909 fs->fs_cstotal.cs_nffree += i; 1910 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1911 fs->fs_fmod = 1; 1912 cgp->cg_frsum[i]++; 1913 } 1914 /* XXX Fixme. */ 1915 UFS_UNLOCK(ump); 1916 if (DOINGSOFTDEP(ITOV(ip))) 1917 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1918 UFS_LOCK(ump); 1919 return (blkno); 1920 } 1921 1922 /* 1923 * Determine whether a cluster can be allocated. 1924 * 1925 * We do not currently check for optimal rotational layout if there 1926 * are multiple choices in the same cylinder group. Instead we just 1927 * take the first one that we find following bpref. 1928 */ 1929 static ufs2_daddr_t 1930 ffs_clusteralloc(struct inode *ip, 1931 u_int cg, 1932 ufs2_daddr_t bpref, 1933 int len) 1934 { 1935 struct fs *fs; 1936 struct cg *cgp; 1937 struct buf *bp; 1938 struct ufsmount *ump; 1939 int i, run, bit, map, got, error; 1940 ufs2_daddr_t bno; 1941 u_char *mapp; 1942 int32_t *lp; 1943 u_int8_t *blksfree; 1944 1945 ump = ITOUMP(ip); 1946 fs = ump->um_fs; 1947 if (fs->fs_maxcluster[cg] < len) 1948 return (0); 1949 UFS_UNLOCK(ump); 1950 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 1951 UFS_LOCK(ump); 1952 return (0); 1953 } 1954 /* 1955 * Check to see if a cluster of the needed size (or bigger) is 1956 * available in this cylinder group. 1957 */ 1958 lp = &cg_clustersum(cgp)[len]; 1959 for (i = len; i <= fs->fs_contigsumsize; i++) 1960 if (*lp++ > 0) 1961 break; 1962 if (i > fs->fs_contigsumsize) { 1963 /* 1964 * This is the first time looking for a cluster in this 1965 * cylinder group. Update the cluster summary information 1966 * to reflect the true maximum sized cluster so that 1967 * future cluster allocation requests can avoid reading 1968 * the cylinder group map only to find no clusters. 1969 */ 1970 lp = &cg_clustersum(cgp)[len - 1]; 1971 for (i = len - 1; i > 0; i--) 1972 if (*lp-- > 0) 1973 break; 1974 UFS_LOCK(ump); 1975 fs->fs_maxcluster[cg] = i; 1976 brelse(bp); 1977 return (0); 1978 } 1979 /* 1980 * Search the cluster map to find a big enough cluster. 1981 * We take the first one that we find, even if it is larger 1982 * than we need as we prefer to get one close to the previous 1983 * block allocation. We do not search before the current 1984 * preference point as we do not want to allocate a block 1985 * that is allocated before the previous one (as we will 1986 * then have to wait for another pass of the elevator 1987 * algorithm before it will be read). We prefer to fail and 1988 * be recalled to try an allocation in the next cylinder group. 1989 */ 1990 if (dtog(fs, bpref) != cg) 1991 bpref = cgdata(fs, cg); 1992 else 1993 bpref = blknum(fs, bpref); 1994 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1995 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1996 map = *mapp++; 1997 bit = 1 << (bpref % NBBY); 1998 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1999 if ((map & bit) == 0) { 2000 run = 0; 2001 } else { 2002 run++; 2003 if (run == len) 2004 break; 2005 } 2006 if ((got & (NBBY - 1)) != (NBBY - 1)) { 2007 bit <<= 1; 2008 } else { 2009 map = *mapp++; 2010 bit = 1; 2011 } 2012 } 2013 if (got >= cgp->cg_nclusterblks) { 2014 UFS_LOCK(ump); 2015 brelse(bp); 2016 return (0); 2017 } 2018 /* 2019 * Allocate the cluster that we have found. 2020 */ 2021 blksfree = cg_blksfree(cgp); 2022 for (i = 1; i <= len; i++) 2023 if (!ffs_isblock(fs, blksfree, got - run + i)) 2024 panic("ffs_clusteralloc: map mismatch"); 2025 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2026 if (dtog(fs, bno) != cg) 2027 panic("ffs_clusteralloc: allocated out of group"); 2028 len = blkstofrags(fs, len); 2029 UFS_LOCK(ump); 2030 for (i = 0; i < len; i += fs->fs_frag) 2031 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2032 panic("ffs_clusteralloc: lost block"); 2033 ACTIVECLEAR(fs, cg); 2034 UFS_UNLOCK(ump); 2035 bdwrite(bp); 2036 return (bno); 2037 } 2038 2039 static inline struct buf * 2040 getinobuf(struct inode *ip, 2041 u_int cg, 2042 u_int32_t cginoblk, 2043 int gbflags) 2044 { 2045 struct fs *fs; 2046 2047 fs = ITOFS(ip); 2048 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2049 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2050 gbflags)); 2051 } 2052 2053 /* 2054 * Synchronous inode initialization is needed only when barrier writes do not 2055 * work as advertised, and will impose a heavy cost on file creation in a newly 2056 * created filesystem. 2057 */ 2058 static int doasyncinodeinit = 1; 2059 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2060 &doasyncinodeinit, 0, 2061 "Perform inode block initialization using asynchronous writes"); 2062 2063 /* 2064 * Determine whether an inode can be allocated. 2065 * 2066 * Check to see if an inode is available, and if it is, 2067 * allocate it using the following policy: 2068 * 1) allocate the requested inode. 2069 * 2) allocate the next available inode after the requested 2070 * inode in the specified cylinder group. 2071 */ 2072 static ufs2_daddr_t 2073 ffs_nodealloccg(struct inode *ip, 2074 u_int cg, 2075 ufs2_daddr_t ipref, 2076 int mode, 2077 int unused) 2078 { 2079 struct fs *fs; 2080 struct cg *cgp; 2081 struct buf *bp, *ibp; 2082 struct ufsmount *ump; 2083 u_int8_t *inosused, *loc; 2084 struct ufs2_dinode *dp2; 2085 int error, start, len, i; 2086 u_int32_t old_initediblk; 2087 2088 ump = ITOUMP(ip); 2089 fs = ump->um_fs; 2090 check_nifree: 2091 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2092 return (0); 2093 UFS_UNLOCK(ump); 2094 if ((error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp)) != 0) { 2095 UFS_LOCK(ump); 2096 return (0); 2097 } 2098 restart: 2099 if (cgp->cg_cs.cs_nifree == 0) { 2100 brelse(bp); 2101 UFS_LOCK(ump); 2102 return (0); 2103 } 2104 inosused = cg_inosused(cgp); 2105 if (ipref) { 2106 ipref %= fs->fs_ipg; 2107 if (isclr(inosused, ipref)) 2108 goto gotit; 2109 } 2110 start = cgp->cg_irotor / NBBY; 2111 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2112 loc = memcchr(&inosused[start], 0xff, len); 2113 if (loc == NULL) { 2114 len = start + 1; 2115 start = 0; 2116 loc = memcchr(&inosused[start], 0xff, len); 2117 if (loc == NULL) { 2118 printf("cg = %d, irotor = %ld, fs = %s\n", 2119 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2120 panic("ffs_nodealloccg: map corrupted"); 2121 /* NOTREACHED */ 2122 } 2123 } 2124 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2125 gotit: 2126 /* 2127 * Check to see if we need to initialize more inodes. 2128 */ 2129 if (fs->fs_magic == FS_UFS2_MAGIC && 2130 ipref + INOPB(fs) > cgp->cg_initediblk && 2131 cgp->cg_initediblk < cgp->cg_niblk) { 2132 old_initediblk = cgp->cg_initediblk; 2133 2134 /* 2135 * Free the cylinder group lock before writing the 2136 * initialized inode block. Entering the 2137 * babarrierwrite() with the cylinder group lock 2138 * causes lock order violation between the lock and 2139 * snaplk. 2140 * 2141 * Another thread can decide to initialize the same 2142 * inode block, but whichever thread first gets the 2143 * cylinder group lock after writing the newly 2144 * allocated inode block will update it and the other 2145 * will realize that it has lost and leave the 2146 * cylinder group unchanged. 2147 */ 2148 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2149 brelse(bp); 2150 if (ibp == NULL) { 2151 /* 2152 * The inode block buffer is already owned by 2153 * another thread, which must initialize it. 2154 * Wait on the buffer to allow another thread 2155 * to finish the updates, with dropped cg 2156 * buffer lock, then retry. 2157 */ 2158 ibp = getinobuf(ip, cg, old_initediblk, 0); 2159 brelse(ibp); 2160 UFS_LOCK(ump); 2161 goto check_nifree; 2162 } 2163 bzero(ibp->b_data, (int)fs->fs_bsize); 2164 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2165 for (i = 0; i < INOPB(fs); i++) { 2166 while (dp2->di_gen == 0) 2167 dp2->di_gen = arc4random(); 2168 dp2++; 2169 } 2170 2171 /* 2172 * Rather than adding a soft updates dependency to ensure 2173 * that the new inode block is written before it is claimed 2174 * by the cylinder group map, we just do a barrier write 2175 * here. The barrier write will ensure that the inode block 2176 * gets written before the updated cylinder group map can be 2177 * written. The barrier write should only slow down bulk 2178 * loading of newly created filesystems. 2179 */ 2180 if (doasyncinodeinit) 2181 babarrierwrite(ibp); 2182 else 2183 bwrite(ibp); 2184 2185 /* 2186 * After the inode block is written, try to update the 2187 * cg initediblk pointer. If another thread beat us 2188 * to it, then leave it unchanged as the other thread 2189 * has already set it correctly. 2190 */ 2191 error = ffs_getcg(fs, ump->um_devvp, cg, 0, &bp, &cgp); 2192 UFS_LOCK(ump); 2193 ACTIVECLEAR(fs, cg); 2194 UFS_UNLOCK(ump); 2195 if (error != 0) 2196 return (error); 2197 if (cgp->cg_initediblk == old_initediblk) 2198 cgp->cg_initediblk += INOPB(fs); 2199 goto restart; 2200 } 2201 cgp->cg_irotor = ipref; 2202 UFS_LOCK(ump); 2203 ACTIVECLEAR(fs, cg); 2204 setbit(inosused, ipref); 2205 cgp->cg_cs.cs_nifree--; 2206 fs->fs_cstotal.cs_nifree--; 2207 fs->fs_cs(fs, cg).cs_nifree--; 2208 fs->fs_fmod = 1; 2209 if ((mode & IFMT) == IFDIR) { 2210 cgp->cg_cs.cs_ndir++; 2211 fs->fs_cstotal.cs_ndir++; 2212 fs->fs_cs(fs, cg).cs_ndir++; 2213 } 2214 UFS_UNLOCK(ump); 2215 if (DOINGSOFTDEP(ITOV(ip))) 2216 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2217 bdwrite(bp); 2218 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2219 } 2220 2221 /* 2222 * Free a block or fragment. 2223 * 2224 * The specified block or fragment is placed back in the 2225 * free map. If a fragment is deallocated, a possible 2226 * block reassembly is checked. 2227 */ 2228 static void 2229 ffs_blkfree_cg(struct ufsmount *ump, 2230 struct fs *fs, 2231 struct vnode *devvp, 2232 ufs2_daddr_t bno, 2233 long size, 2234 ino_t inum, 2235 struct workhead *dephd) 2236 { 2237 struct mount *mp; 2238 struct cg *cgp; 2239 struct buf *bp; 2240 daddr_t dbn; 2241 ufs1_daddr_t fragno, cgbno; 2242 int i, blk, frags, bbase, error; 2243 u_int cg; 2244 u_int8_t *blksfree; 2245 struct cdev *dev; 2246 2247 cg = dtog(fs, bno); 2248 if (devvp->v_type == VREG) { 2249 /* devvp is a snapshot */ 2250 MPASS(devvp->v_mount->mnt_data == ump); 2251 dev = ump->um_devvp->v_rdev; 2252 } else if (devvp->v_type == VCHR) { 2253 /* 2254 * devvp is a normal disk device 2255 * XXXKIB: devvp is not locked there, v_rdev access depends on 2256 * busy mount, which prevents mntfs devvp from reclamation. 2257 */ 2258 dev = devvp->v_rdev; 2259 } else 2260 return; 2261 #ifdef INVARIANTS 2262 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2263 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2264 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2265 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2266 size, fs->fs_fsmnt); 2267 panic("ffs_blkfree_cg: bad size"); 2268 } 2269 #endif 2270 if ((u_int)bno >= fs->fs_size) { 2271 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2272 (u_long)inum); 2273 ffs_fserr(fs, inum, "bad block"); 2274 return; 2275 } 2276 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2277 if (!ffs_fsfail_cleanup(ump, error) || 2278 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2279 return; 2280 if (devvp->v_type == VREG) 2281 dbn = fragstoblks(fs, cgtod(fs, cg)); 2282 else 2283 dbn = fsbtodb(fs, cgtod(fs, cg)); 2284 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2285 KASSERT(error == 0, ("getblkx failed")); 2286 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2287 numfrags(fs, size), dephd); 2288 bp->b_flags |= B_RELBUF | B_NOCACHE; 2289 bp->b_flags &= ~B_CACHE; 2290 bawrite(bp); 2291 return; 2292 } 2293 cgbno = dtogd(fs, bno); 2294 blksfree = cg_blksfree(cgp); 2295 UFS_LOCK(ump); 2296 if (size == fs->fs_bsize) { 2297 fragno = fragstoblks(fs, cgbno); 2298 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2299 if (devvp->v_type == VREG) { 2300 UFS_UNLOCK(ump); 2301 /* devvp is a snapshot */ 2302 brelse(bp); 2303 return; 2304 } 2305 printf("dev = %s, block = %jd, fs = %s\n", 2306 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2307 panic("ffs_blkfree_cg: freeing free block"); 2308 } 2309 ffs_setblock(fs, blksfree, fragno); 2310 ffs_clusteracct(fs, cgp, fragno, 1); 2311 cgp->cg_cs.cs_nbfree++; 2312 fs->fs_cstotal.cs_nbfree++; 2313 fs->fs_cs(fs, cg).cs_nbfree++; 2314 } else { 2315 bbase = cgbno - fragnum(fs, cgbno); 2316 /* 2317 * decrement the counts associated with the old frags 2318 */ 2319 blk = blkmap(fs, blksfree, bbase); 2320 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2321 /* 2322 * deallocate the fragment 2323 */ 2324 frags = numfrags(fs, size); 2325 for (i = 0; i < frags; i++) { 2326 if (isset(blksfree, cgbno + i)) { 2327 printf("dev = %s, block = %jd, fs = %s\n", 2328 devtoname(dev), (intmax_t)(bno + i), 2329 fs->fs_fsmnt); 2330 panic("ffs_blkfree_cg: freeing free frag"); 2331 } 2332 setbit(blksfree, cgbno + i); 2333 } 2334 cgp->cg_cs.cs_nffree += i; 2335 fs->fs_cstotal.cs_nffree += i; 2336 fs->fs_cs(fs, cg).cs_nffree += i; 2337 /* 2338 * add back in counts associated with the new frags 2339 */ 2340 blk = blkmap(fs, blksfree, bbase); 2341 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2342 /* 2343 * if a complete block has been reassembled, account for it 2344 */ 2345 fragno = fragstoblks(fs, bbase); 2346 if (ffs_isblock(fs, blksfree, fragno)) { 2347 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2348 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2349 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2350 ffs_clusteracct(fs, cgp, fragno, 1); 2351 cgp->cg_cs.cs_nbfree++; 2352 fs->fs_cstotal.cs_nbfree++; 2353 fs->fs_cs(fs, cg).cs_nbfree++; 2354 } 2355 } 2356 fs->fs_fmod = 1; 2357 ACTIVECLEAR(fs, cg); 2358 UFS_UNLOCK(ump); 2359 mp = UFSTOVFS(ump); 2360 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2361 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2362 numfrags(fs, size), dephd); 2363 bdwrite(bp); 2364 } 2365 2366 /* 2367 * Structures and routines associated with trim management. 2368 * 2369 * The following requests are passed to trim_lookup to indicate 2370 * the actions that should be taken. 2371 */ 2372 #define NEW 1 /* if found, error else allocate and hash it */ 2373 #define OLD 2 /* if not found, error, else return it */ 2374 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2375 #define DONE 4 /* if not found, error else unhash and return it */ 2376 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2377 2378 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2379 2380 #define TRIMLIST_HASH(ump, key) \ 2381 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2382 2383 /* 2384 * These structures describe each of the block free requests aggregated 2385 * together to make up a trim request. 2386 */ 2387 struct trim_blkreq { 2388 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2389 ufs2_daddr_t bno; 2390 long size; 2391 struct workhead *pdephd; 2392 struct workhead dephd; 2393 }; 2394 2395 /* 2396 * Description of a trim request. 2397 */ 2398 struct ffs_blkfree_trim_params { 2399 TAILQ_HEAD(, trim_blkreq) blklist; 2400 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2401 struct task task; 2402 struct ufsmount *ump; 2403 struct vnode *devvp; 2404 ino_t inum; 2405 ufs2_daddr_t bno; 2406 long size; 2407 long key; 2408 }; 2409 2410 static void ffs_blkfree_trim_completed(struct buf *); 2411 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2412 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2413 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2414 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2415 2416 /* 2417 * Called on trim completion to start a task to free the associated block(s). 2418 */ 2419 static void 2420 ffs_blkfree_trim_completed(struct buf *bp) 2421 { 2422 struct ffs_blkfree_trim_params *tp; 2423 2424 tp = bp->b_fsprivate1; 2425 free(bp, M_TRIM); 2426 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2427 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2428 } 2429 2430 /* 2431 * Trim completion task that free associated block(s). 2432 */ 2433 static void 2434 ffs_blkfree_trim_task(void *ctx, int pending) 2435 { 2436 struct ffs_blkfree_trim_params *tp; 2437 struct trim_blkreq *blkelm; 2438 struct ufsmount *ump; 2439 2440 tp = ctx; 2441 ump = tp->ump; 2442 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2443 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2444 blkelm->size, tp->inum, blkelm->pdephd); 2445 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2446 free(blkelm, M_TRIM); 2447 } 2448 vn_finished_secondary_write(UFSTOVFS(ump)); 2449 UFS_LOCK(ump); 2450 ump->um_trim_inflight -= 1; 2451 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2452 UFS_UNLOCK(ump); 2453 free(tp, M_TRIM); 2454 } 2455 2456 /* 2457 * Lookup a trim request by inode number. 2458 * Allocate if requested (NEW, REPLACE, SINGLE). 2459 */ 2460 static struct ffs_blkfree_trim_params * 2461 trim_lookup(struct ufsmount *ump, 2462 struct vnode *devvp, 2463 ufs2_daddr_t bno, 2464 long size, 2465 ino_t inum, 2466 u_long key, 2467 int alloctype) 2468 { 2469 struct trimlist_hashhead *tphashhead; 2470 struct ffs_blkfree_trim_params *tp, *ntp; 2471 2472 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2473 if (alloctype != SINGLE) { 2474 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2475 UFS_LOCK(ump); 2476 tphashhead = TRIMLIST_HASH(ump, key); 2477 LIST_FOREACH(tp, tphashhead, hashlist) 2478 if (key == tp->key) 2479 break; 2480 } 2481 switch (alloctype) { 2482 case NEW: 2483 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2484 break; 2485 case OLD: 2486 KASSERT(tp != NULL, 2487 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2488 UFS_UNLOCK(ump); 2489 free(ntp, M_TRIM); 2490 return (tp); 2491 case REPLACE: 2492 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2493 LIST_REMOVE(tp, hashlist); 2494 /* tp will be freed by caller */ 2495 break; 2496 case DONE: 2497 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2498 LIST_REMOVE(tp, hashlist); 2499 UFS_UNLOCK(ump); 2500 free(ntp, M_TRIM); 2501 return (tp); 2502 } 2503 TAILQ_INIT(&ntp->blklist); 2504 ntp->ump = ump; 2505 ntp->devvp = devvp; 2506 ntp->bno = bno; 2507 ntp->size = size; 2508 ntp->inum = inum; 2509 ntp->key = key; 2510 if (alloctype != SINGLE) { 2511 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2512 UFS_UNLOCK(ump); 2513 } 2514 return (ntp); 2515 } 2516 2517 /* 2518 * Dispatch a trim request. 2519 */ 2520 static void 2521 ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *tp) 2522 { 2523 struct ufsmount *ump; 2524 struct mount *mp; 2525 struct buf *bp; 2526 2527 /* 2528 * Postpone the set of the free bit in the cg bitmap until the 2529 * BIO_DELETE is completed. Otherwise, due to disk queue 2530 * reordering, TRIM might be issued after we reuse the block 2531 * and write some new data into it. 2532 */ 2533 ump = tp->ump; 2534 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2535 bp->b_iocmd = BIO_DELETE; 2536 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2537 bp->b_iodone = ffs_blkfree_trim_completed; 2538 bp->b_bcount = tp->size; 2539 bp->b_fsprivate1 = tp; 2540 UFS_LOCK(ump); 2541 ump->um_trim_total += 1; 2542 ump->um_trim_inflight += 1; 2543 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2544 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2545 UFS_UNLOCK(ump); 2546 2547 mp = UFSTOVFS(ump); 2548 vn_start_secondary_write(NULL, &mp, 0); 2549 g_vfs_strategy(ump->um_bo, bp); 2550 } 2551 2552 /* 2553 * Allocate a new key to use to identify a range of blocks. 2554 */ 2555 u_long 2556 ffs_blkrelease_start(struct ufsmount *ump, 2557 struct vnode *devvp, 2558 ino_t inum) 2559 { 2560 static u_long masterkey; 2561 u_long key; 2562 2563 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2564 return (SINGLETON_KEY); 2565 do { 2566 key = atomic_fetchadd_long(&masterkey, 1); 2567 } while (key < FIRST_VALID_KEY); 2568 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2569 return (key); 2570 } 2571 2572 /* 2573 * Deallocate a key that has been used to identify a range of blocks. 2574 */ 2575 void 2576 ffs_blkrelease_finish(struct ufsmount *ump, u_long key) 2577 { 2578 struct ffs_blkfree_trim_params *tp; 2579 2580 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2581 return; 2582 /* 2583 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2584 * a file deletion is active, specifically after a call 2585 * to ffs_blkrelease_start() but before the call to 2586 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2587 * have handed out SINGLETON_KEY rather than starting a 2588 * collection sequence. Thus if we get a SINGLETON_KEY 2589 * passed to ffs_blkrelease_finish(), we just return rather 2590 * than trying to finish the nonexistent sequence. 2591 */ 2592 if (key == SINGLETON_KEY) { 2593 #ifdef INVARIANTS 2594 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2595 ump->um_mountp->mnt_stat.f_mntonname); 2596 #endif 2597 return; 2598 } 2599 /* 2600 * We are done with sending blocks using this key. Look up the key 2601 * using the DONE alloctype (in tp) to request that it be unhashed 2602 * as we will not be adding to it. If the key has never been used, 2603 * tp->size will be zero, so we can just free tp. Otherwise the call 2604 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2605 * tp to be issued (and then tp to be freed). 2606 */ 2607 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2608 if (tp->size == 0) 2609 free(tp, M_TRIM); 2610 else 2611 ffs_blkfree_sendtrim(tp); 2612 } 2613 2614 /* 2615 * Setup to free a block or fragment. 2616 * 2617 * Check for snapshots that might want to claim the block. 2618 * If trims are requested, prepare a trim request. Attempt to 2619 * aggregate consecutive blocks into a single trim request. 2620 */ 2621 void 2622 ffs_blkfree(struct ufsmount *ump, 2623 struct fs *fs, 2624 struct vnode *devvp, 2625 ufs2_daddr_t bno, 2626 long size, 2627 ino_t inum, 2628 enum vtype vtype, 2629 struct workhead *dephd, 2630 u_long key) 2631 { 2632 struct ffs_blkfree_trim_params *tp, *ntp; 2633 struct trim_blkreq *blkelm; 2634 2635 /* 2636 * Check to see if a snapshot wants to claim the block. 2637 * Check that devvp is a normal disk device, not a snapshot, 2638 * it has a snapshot(s) associated with it, and one of the 2639 * snapshots wants to claim the block. 2640 */ 2641 if (devvp->v_type == VCHR && 2642 (devvp->v_vflag & VV_COPYONWRITE) && 2643 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2644 return; 2645 } 2646 /* 2647 * Nothing to delay if TRIM is not required for this block or TRIM 2648 * is disabled or the operation is performed on a snapshot. 2649 */ 2650 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2651 devvp->v_type == VREG) { 2652 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2653 return; 2654 } 2655 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2656 blkelm->bno = bno; 2657 blkelm->size = size; 2658 if (dephd == NULL) { 2659 blkelm->pdephd = NULL; 2660 } else { 2661 LIST_INIT(&blkelm->dephd); 2662 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2663 blkelm->pdephd = &blkelm->dephd; 2664 } 2665 if (key == SINGLETON_KEY) { 2666 /* 2667 * Just a single non-contiguous piece. Use the SINGLE 2668 * alloctype to return a trim request that will not be 2669 * hashed for future lookup. 2670 */ 2671 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2672 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2673 ffs_blkfree_sendtrim(tp); 2674 return; 2675 } 2676 /* 2677 * The callers of this function are not tracking whether or not 2678 * the blocks are contiguous. They are just saying that they 2679 * are freeing a set of blocks. It is this code that determines 2680 * the pieces of that range that are actually contiguous. 2681 * 2682 * Calling ffs_blkrelease_start() will have created an entry 2683 * that we will use. 2684 */ 2685 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2686 if (tp->size == 0) { 2687 /* 2688 * First block of a potential range, set block and size 2689 * for the trim block. 2690 */ 2691 tp->bno = bno; 2692 tp->size = size; 2693 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2694 return; 2695 } 2696 /* 2697 * If this block is a continuation of the range (either 2698 * follows at the end or preceeds in the front) then we 2699 * add it to the front or back of the list and return. 2700 * 2701 * If it is not a continuation of the trim that we were 2702 * building, using the REPLACE alloctype, we request that 2703 * the old trim request (still in tp) be unhashed and a 2704 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2705 * call causes the block range described by tp to be issued 2706 * (and then tp to be freed). 2707 */ 2708 if (bno + numfrags(fs, size) == tp->bno) { 2709 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2710 tp->bno = bno; 2711 tp->size += size; 2712 return; 2713 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2714 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2715 tp->size += size; 2716 return; 2717 } 2718 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2719 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2720 ffs_blkfree_sendtrim(tp); 2721 } 2722 2723 #ifdef INVARIANTS 2724 /* 2725 * Verify allocation of a block or fragment. Returns true if block or 2726 * fragment is allocated, false if it is free. 2727 */ 2728 static int 2729 ffs_checkblk(struct inode *ip, 2730 ufs2_daddr_t bno, 2731 long size) 2732 { 2733 struct fs *fs; 2734 struct cg *cgp; 2735 struct buf *bp; 2736 ufs1_daddr_t cgbno; 2737 int i, error, frags, free; 2738 u_int8_t *blksfree; 2739 2740 fs = ITOFS(ip); 2741 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2742 printf("bsize = %ld, size = %ld, fs = %s\n", 2743 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2744 panic("ffs_checkblk: bad size"); 2745 } 2746 if ((u_int)bno >= fs->fs_size) 2747 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2748 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), 0, &bp, &cgp); 2749 if (error) 2750 panic("ffs_checkblk: cylinder group read failed"); 2751 blksfree = cg_blksfree(cgp); 2752 cgbno = dtogd(fs, bno); 2753 if (size == fs->fs_bsize) { 2754 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2755 } else { 2756 frags = numfrags(fs, size); 2757 for (free = 0, i = 0; i < frags; i++) 2758 if (isset(blksfree, cgbno + i)) 2759 free++; 2760 if (free != 0 && free != frags) 2761 panic("ffs_checkblk: partially free fragment"); 2762 } 2763 brelse(bp); 2764 return (!free); 2765 } 2766 #endif /* INVARIANTS */ 2767 2768 /* 2769 * Free an inode. 2770 */ 2771 int 2772 ffs_vfree(struct vnode *pvp, 2773 ino_t ino, 2774 int mode) 2775 { 2776 struct ufsmount *ump; 2777 2778 if (DOINGSOFTDEP(pvp)) { 2779 softdep_freefile(pvp, ino, mode); 2780 return (0); 2781 } 2782 ump = VFSTOUFS(pvp->v_mount); 2783 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2784 } 2785 2786 /* 2787 * Do the actual free operation. 2788 * The specified inode is placed back in the free map. 2789 */ 2790 int 2791 ffs_freefile(struct ufsmount *ump, 2792 struct fs *fs, 2793 struct vnode *devvp, 2794 ino_t ino, 2795 int mode, 2796 struct workhead *wkhd) 2797 { 2798 struct cg *cgp; 2799 struct buf *bp; 2800 daddr_t dbn; 2801 int error; 2802 u_int cg; 2803 u_int8_t *inosused; 2804 struct cdev *dev; 2805 ino_t cgino; 2806 2807 cg = ino_to_cg(fs, ino); 2808 if (devvp->v_type == VREG) { 2809 /* devvp is a snapshot */ 2810 MPASS(devvp->v_mount->mnt_data == ump); 2811 dev = ump->um_devvp->v_rdev; 2812 } else if (devvp->v_type == VCHR) { 2813 /* devvp is a normal disk device */ 2814 dev = devvp->v_rdev; 2815 } else { 2816 bp = NULL; 2817 return (0); 2818 } 2819 if (ino >= fs->fs_ipg * fs->fs_ncg) 2820 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2821 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2822 if ((error = ffs_getcg(fs, devvp, cg, GB_CVTENXIO, &bp, &cgp)) != 0) { 2823 if (!ffs_fsfail_cleanup(ump, error) || 2824 !MOUNTEDSOFTDEP(UFSTOVFS(ump)) || devvp->v_type != VCHR) 2825 return (error); 2826 if (devvp->v_type == VREG) 2827 dbn = fragstoblks(fs, cgtod(fs, cg)); 2828 else 2829 dbn = fsbtodb(fs, cgtod(fs, cg)); 2830 error = getblkx(devvp, dbn, dbn, fs->fs_cgsize, 0, 0, 0, &bp); 2831 KASSERT(error == 0, ("getblkx failed")); 2832 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2833 bp->b_flags |= B_RELBUF | B_NOCACHE; 2834 bp->b_flags &= ~B_CACHE; 2835 bawrite(bp); 2836 return (error); 2837 } 2838 inosused = cg_inosused(cgp); 2839 cgino = ino % fs->fs_ipg; 2840 if (isclr(inosused, cgino)) { 2841 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2842 (uintmax_t)ino, fs->fs_fsmnt); 2843 if (fs->fs_ronly == 0) 2844 panic("ffs_freefile: freeing free inode"); 2845 } 2846 clrbit(inosused, cgino); 2847 if (cgino < cgp->cg_irotor) 2848 cgp->cg_irotor = cgino; 2849 cgp->cg_cs.cs_nifree++; 2850 UFS_LOCK(ump); 2851 fs->fs_cstotal.cs_nifree++; 2852 fs->fs_cs(fs, cg).cs_nifree++; 2853 if ((mode & IFMT) == IFDIR) { 2854 cgp->cg_cs.cs_ndir--; 2855 fs->fs_cstotal.cs_ndir--; 2856 fs->fs_cs(fs, cg).cs_ndir--; 2857 } 2858 fs->fs_fmod = 1; 2859 ACTIVECLEAR(fs, cg); 2860 UFS_UNLOCK(ump); 2861 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2862 softdep_setup_inofree(UFSTOVFS(ump), bp, ino, wkhd); 2863 bdwrite(bp); 2864 return (0); 2865 } 2866 2867 /* 2868 * Check to see if a file is free. 2869 * Used to check for allocated files in snapshots. 2870 */ 2871 int 2872 ffs_checkfreefile(struct fs *fs, 2873 struct vnode *devvp, 2874 ino_t ino) 2875 { 2876 struct cg *cgp; 2877 struct buf *bp; 2878 int ret, error; 2879 u_int cg; 2880 u_int8_t *inosused; 2881 2882 cg = ino_to_cg(fs, ino); 2883 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2884 return (1); 2885 if (ino >= fs->fs_ipg * fs->fs_ncg) 2886 return (1); 2887 if ((error = ffs_getcg(fs, devvp, cg, 0, &bp, &cgp)) != 0) 2888 return (1); 2889 inosused = cg_inosused(cgp); 2890 ino %= fs->fs_ipg; 2891 ret = isclr(inosused, ino); 2892 brelse(bp); 2893 return (ret); 2894 } 2895 2896 /* 2897 * Find a block of the specified size in the specified cylinder group. 2898 * 2899 * It is a panic if a request is made to find a block if none are 2900 * available. 2901 */ 2902 static ufs1_daddr_t 2903 ffs_mapsearch(struct fs *fs, 2904 struct cg *cgp, 2905 ufs2_daddr_t bpref, 2906 int allocsiz) 2907 { 2908 ufs1_daddr_t bno; 2909 int start, len, loc, i; 2910 int blk, field, subfield, pos; 2911 u_int8_t *blksfree; 2912 2913 /* 2914 * find the fragment by searching through the free block 2915 * map for an appropriate bit pattern 2916 */ 2917 if (bpref) 2918 start = dtogd(fs, bpref) / NBBY; 2919 else 2920 start = cgp->cg_frotor / NBBY; 2921 blksfree = cg_blksfree(cgp); 2922 len = howmany(fs->fs_fpg, NBBY) - start; 2923 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2924 fragtbl[fs->fs_frag], 2925 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2926 if (loc == 0) { 2927 len = start + 1; 2928 start = 0; 2929 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2930 fragtbl[fs->fs_frag], 2931 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2932 if (loc == 0) { 2933 printf("start = %d, len = %d, fs = %s\n", 2934 start, len, fs->fs_fsmnt); 2935 panic("ffs_alloccg: map corrupted"); 2936 /* NOTREACHED */ 2937 } 2938 } 2939 bno = (start + len - loc) * NBBY; 2940 cgp->cg_frotor = bno; 2941 /* 2942 * found the byte in the map 2943 * sift through the bits to find the selected frag 2944 */ 2945 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2946 blk = blkmap(fs, blksfree, bno); 2947 blk <<= 1; 2948 field = around[allocsiz]; 2949 subfield = inside[allocsiz]; 2950 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2951 if ((blk & field) == subfield) 2952 return (bno + pos); 2953 field <<= 1; 2954 subfield <<= 1; 2955 } 2956 } 2957 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2958 panic("ffs_alloccg: block not in map"); 2959 return (-1); 2960 } 2961 2962 static const struct statfs * 2963 ffs_getmntstat(struct vnode *devvp) 2964 { 2965 2966 if (devvp->v_type == VCHR) 2967 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2968 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2969 } 2970 2971 /* 2972 * Fetch and verify a cylinder group. 2973 */ 2974 int 2975 ffs_getcg(struct fs *fs, 2976 struct vnode *devvp, 2977 u_int cg, 2978 int flags, 2979 struct buf **bpp, 2980 struct cg **cgpp) 2981 { 2982 struct buf *bp; 2983 struct cg *cgp; 2984 const struct statfs *sfs; 2985 daddr_t blkno; 2986 int error; 2987 2988 *bpp = NULL; 2989 *cgpp = NULL; 2990 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2991 flags |= GB_CKHASH; 2992 if (devvp->v_type == VREG) 2993 blkno = fragstoblks(fs, cgtod(fs, cg)); 2994 else 2995 blkno = fsbtodb(fs, cgtod(fs, cg)); 2996 error = breadn_flags(devvp, blkno, blkno, (int)fs->fs_cgsize, NULL, 2997 NULL, 0, NOCRED, flags, ffs_ckhash_cg, &bp); 2998 if (error != 0) 2999 return (error); 3000 cgp = (struct cg *)bp->b_data; 3001 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 3002 (bp->b_flags & B_CKHASH) != 0 && 3003 cgp->cg_ckhash != bp->b_ckhash) { 3004 sfs = ffs_getmntstat(devvp); 3005 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 3006 "0x%x != bp: 0x%jx\n", 3007 devvp->v_type == VCHR ? "" : "snapshot of ", 3008 sfs->f_mntfromname, sfs->f_mntonname, 3009 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 3010 bp->b_flags &= ~B_CKHASH; 3011 bp->b_flags |= B_INVAL | B_NOCACHE; 3012 brelse(bp); 3013 return (EIO); 3014 } 3015 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 3016 sfs = ffs_getmntstat(devvp); 3017 printf("UFS %s%s (%s)", 3018 devvp->v_type == VCHR ? "" : "snapshot of ", 3019 sfs->f_mntfromname, sfs->f_mntonname); 3020 if (!cg_chkmagic(cgp)) 3021 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 3022 cg, cgp->cg_magic, CG_MAGIC); 3023 else 3024 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 3025 cgp->cg_cgx); 3026 bp->b_flags &= ~B_CKHASH; 3027 bp->b_flags |= B_INVAL | B_NOCACHE; 3028 brelse(bp); 3029 return (EIO); 3030 } 3031 bp->b_flags &= ~B_CKHASH; 3032 bp->b_xflags |= BX_BKGRDWRITE; 3033 /* 3034 * If we are using check hashes on the cylinder group then we want 3035 * to limit changing the cylinder group time to when we are actually 3036 * going to write it to disk so that its check hash remains correct 3037 * in memory. If the CK_CYLGRP flag is set the time is updated in 3038 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3039 * update the time here as we have done historically. 3040 */ 3041 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3042 bp->b_xflags |= BX_CYLGRP; 3043 else 3044 cgp->cg_old_time = cgp->cg_time = time_second; 3045 *bpp = bp; 3046 *cgpp = cgp; 3047 return (0); 3048 } 3049 3050 static void 3051 ffs_ckhash_cg(struct buf *bp) 3052 { 3053 uint32_t ckhash; 3054 struct cg *cgp; 3055 3056 cgp = (struct cg *)bp->b_data; 3057 ckhash = cgp->cg_ckhash; 3058 cgp->cg_ckhash = 0; 3059 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3060 cgp->cg_ckhash = ckhash; 3061 } 3062 3063 /* 3064 * Fserr prints the name of a filesystem with an error diagnostic. 3065 * 3066 * The form of the error message is: 3067 * fs: error message 3068 */ 3069 void 3070 ffs_fserr(struct fs *fs, 3071 ino_t inum, 3072 char *cp) 3073 { 3074 struct thread *td = curthread; /* XXX */ 3075 struct proc *p = td->td_proc; 3076 3077 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3078 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3079 fs->fs_fsmnt, cp); 3080 } 3081 3082 /* 3083 * This function provides the capability for the fsck program to 3084 * update an active filesystem. Fourteen operations are provided: 3085 * 3086 * adjrefcnt(inode, amt) - adjusts the reference count on the 3087 * specified inode by the specified amount. Under normal 3088 * operation the count should always go down. Decrementing 3089 * the count to zero will cause the inode to be freed. 3090 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3091 * inode by the specified amount. 3092 * setsize(inode, size) - set the size of the inode to the 3093 * specified size. 3094 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3095 * adjust the superblock summary. 3096 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3097 * are marked as free. Inodes should never have to be marked 3098 * as in use. 3099 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3100 * are marked as free. Inodes should never have to be marked 3101 * as in use. 3102 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3103 * are marked as free. Blocks should never have to be marked 3104 * as in use. 3105 * setflags(flags, set/clear) - the fs_flags field has the specified 3106 * flags set (second parameter +1) or cleared (second parameter -1). 3107 * setcwd(dirinode) - set the current directory to dirinode in the 3108 * filesystem associated with the snapshot. 3109 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3110 * in the current directory is oldvalue then change it to newvalue. 3111 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3112 * with nameptr in the current directory is oldvalue then unlink it. 3113 */ 3114 3115 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3116 3117 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, 3118 CTLFLAG_WR | CTLTYPE_STRUCT | CTLFLAG_NEEDGIANT, 3119 0, 0, sysctl_ffs_fsck, "S,fsck", 3120 "Adjust Inode Reference Count"); 3121 3122 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, 3123 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3124 "Adjust Inode Used Blocks Count"); 3125 3126 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, 3127 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3128 "Set the inode size"); 3129 3130 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, 3131 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3132 "Adjust number of directories"); 3133 3134 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, 3135 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3136 "Adjust number of free blocks"); 3137 3138 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, 3139 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3140 "Adjust number of free inodes"); 3141 3142 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, 3143 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3144 "Adjust number of free frags"); 3145 3146 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, 3147 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3148 "Adjust number of free clusters"); 3149 3150 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, 3151 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3152 "Free Range of Directory Inodes"); 3153 3154 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, 3155 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3156 "Free Range of File Inodes"); 3157 3158 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, 3159 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3160 "Free Range of Blocks"); 3161 3162 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, 3163 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3164 "Change Filesystem Flags"); 3165 3166 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, 3167 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3168 "Set Current Working Directory"); 3169 3170 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, 3171 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3172 "Change Value of .. Entry"); 3173 3174 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, 3175 CTLFLAG_WR | CTLFLAG_NEEDGIANT, sysctl_ffs_fsck, 3176 "Unlink a Duplicate Name"); 3177 3178 #ifdef DIAGNOSTIC 3179 static int fsckcmds = 0; 3180 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3181 "print out fsck_ffs-based filesystem update commands"); 3182 #endif /* DIAGNOSTIC */ 3183 3184 static int 3185 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3186 { 3187 struct thread *td = curthread; 3188 struct fsck_cmd cmd; 3189 struct ufsmount *ump; 3190 struct vnode *vp, *dvp, *fdvp; 3191 struct inode *ip, *dp; 3192 struct mount *mp; 3193 struct fs *fs; 3194 struct pwd *pwd; 3195 ufs2_daddr_t blkno; 3196 long blkcnt, blksize; 3197 u_long key; 3198 struct file *fp; 3199 cap_rights_t rights; 3200 int filetype, error; 3201 3202 if (req->newptr == NULL || req->newlen > sizeof(cmd)) 3203 return (EBADRPC); 3204 if ((error = SYSCTL_IN(req, &cmd, sizeof(cmd))) != 0) 3205 return (error); 3206 if (cmd.version != FFS_CMD_VERSION) 3207 return (ERPCMISMATCH); 3208 if ((error = getvnode(td, cmd.handle, 3209 cap_rights_init_one(&rights, CAP_FSCK), &fp)) != 0) 3210 return (error); 3211 vp = fp->f_vnode; 3212 if (vp->v_type != VREG && vp->v_type != VDIR) { 3213 fdrop(fp, td); 3214 return (EINVAL); 3215 } 3216 vn_start_write(vp, &mp, V_WAIT); 3217 if (mp == NULL || 3218 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3219 vn_finished_write(mp); 3220 fdrop(fp, td); 3221 return (EINVAL); 3222 } 3223 ump = VFSTOUFS(mp); 3224 if (mp->mnt_flag & MNT_RDONLY) { 3225 vn_finished_write(mp); 3226 fdrop(fp, td); 3227 return (EROFS); 3228 } 3229 fs = ump->um_fs; 3230 filetype = IFREG; 3231 3232 switch (oidp->oid_number) { 3233 case FFS_SET_FLAGS: 3234 #ifdef DIAGNOSTIC 3235 if (fsckcmds) 3236 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3237 cmd.size > 0 ? "set" : "clear"); 3238 #endif /* DIAGNOSTIC */ 3239 if (cmd.size > 0) 3240 fs->fs_flags |= (long)cmd.value; 3241 else 3242 fs->fs_flags &= ~(long)cmd.value; 3243 break; 3244 3245 case FFS_ADJ_REFCNT: 3246 #ifdef DIAGNOSTIC 3247 if (fsckcmds) { 3248 printf("%s: adjust inode %jd link count by %jd\n", 3249 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3250 (intmax_t)cmd.size); 3251 } 3252 #endif /* DIAGNOSTIC */ 3253 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3254 break; 3255 ip = VTOI(vp); 3256 ip->i_nlink += cmd.size; 3257 DIP_SET(ip, i_nlink, ip->i_nlink); 3258 ip->i_effnlink += cmd.size; 3259 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3260 error = ffs_update(vp, 1); 3261 if (DOINGSOFTDEP(vp)) 3262 softdep_change_linkcnt(ip); 3263 vput(vp); 3264 break; 3265 3266 case FFS_ADJ_BLKCNT: 3267 #ifdef DIAGNOSTIC 3268 if (fsckcmds) { 3269 printf("%s: adjust inode %jd block count by %jd\n", 3270 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3271 (intmax_t)cmd.size); 3272 } 3273 #endif /* DIAGNOSTIC */ 3274 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3275 break; 3276 ip = VTOI(vp); 3277 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3278 UFS_INODE_SET_FLAG(ip, IN_CHANGE | IN_MODIFIED); 3279 error = ffs_update(vp, 1); 3280 vput(vp); 3281 break; 3282 3283 case FFS_SET_SIZE: 3284 #ifdef DIAGNOSTIC 3285 if (fsckcmds) { 3286 printf("%s: set inode %jd size to %jd\n", 3287 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3288 (intmax_t)cmd.size); 3289 } 3290 #endif /* DIAGNOSTIC */ 3291 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3292 break; 3293 ip = VTOI(vp); 3294 DIP_SET(ip, i_size, cmd.size); 3295 UFS_INODE_SET_FLAG(ip, IN_SIZEMOD | IN_CHANGE | IN_MODIFIED); 3296 error = ffs_update(vp, 1); 3297 vput(vp); 3298 break; 3299 3300 case FFS_DIR_FREE: 3301 filetype = IFDIR; 3302 /* fall through */ 3303 3304 case FFS_FILE_FREE: 3305 #ifdef DIAGNOSTIC 3306 if (fsckcmds) { 3307 if (cmd.size == 1) 3308 printf("%s: free %s inode %ju\n", 3309 mp->mnt_stat.f_mntonname, 3310 filetype == IFDIR ? "directory" : "file", 3311 (uintmax_t)cmd.value); 3312 else 3313 printf("%s: free %s inodes %ju-%ju\n", 3314 mp->mnt_stat.f_mntonname, 3315 filetype == IFDIR ? "directory" : "file", 3316 (uintmax_t)cmd.value, 3317 (uintmax_t)(cmd.value + cmd.size - 1)); 3318 } 3319 #endif /* DIAGNOSTIC */ 3320 while (cmd.size > 0) { 3321 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3322 cmd.value, filetype, NULL))) 3323 break; 3324 cmd.size -= 1; 3325 cmd.value += 1; 3326 } 3327 break; 3328 3329 case FFS_BLK_FREE: 3330 #ifdef DIAGNOSTIC 3331 if (fsckcmds) { 3332 if (cmd.size == 1) 3333 printf("%s: free block %jd\n", 3334 mp->mnt_stat.f_mntonname, 3335 (intmax_t)cmd.value); 3336 else 3337 printf("%s: free blocks %jd-%jd\n", 3338 mp->mnt_stat.f_mntonname, 3339 (intmax_t)cmd.value, 3340 (intmax_t)cmd.value + cmd.size - 1); 3341 } 3342 #endif /* DIAGNOSTIC */ 3343 blkno = cmd.value; 3344 blkcnt = cmd.size; 3345 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3346 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3347 while (blkcnt > 0) { 3348 if (blkcnt < blksize) 3349 blksize = blkcnt; 3350 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3351 blksize * fs->fs_fsize, UFS_ROOTINO, 3352 VDIR, NULL, key); 3353 blkno += blksize; 3354 blkcnt -= blksize; 3355 blksize = fs->fs_frag; 3356 } 3357 ffs_blkrelease_finish(ump, key); 3358 break; 3359 3360 /* 3361 * Adjust superblock summaries. fsck(8) is expected to 3362 * submit deltas when necessary. 3363 */ 3364 case FFS_ADJ_NDIR: 3365 #ifdef DIAGNOSTIC 3366 if (fsckcmds) { 3367 printf("%s: adjust number of directories by %jd\n", 3368 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3369 } 3370 #endif /* DIAGNOSTIC */ 3371 fs->fs_cstotal.cs_ndir += cmd.value; 3372 break; 3373 3374 case FFS_ADJ_NBFREE: 3375 #ifdef DIAGNOSTIC 3376 if (fsckcmds) { 3377 printf("%s: adjust number of free blocks by %+jd\n", 3378 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3379 } 3380 #endif /* DIAGNOSTIC */ 3381 fs->fs_cstotal.cs_nbfree += cmd.value; 3382 break; 3383 3384 case FFS_ADJ_NIFREE: 3385 #ifdef DIAGNOSTIC 3386 if (fsckcmds) { 3387 printf("%s: adjust number of free inodes by %+jd\n", 3388 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3389 } 3390 #endif /* DIAGNOSTIC */ 3391 fs->fs_cstotal.cs_nifree += cmd.value; 3392 break; 3393 3394 case FFS_ADJ_NFFREE: 3395 #ifdef DIAGNOSTIC 3396 if (fsckcmds) { 3397 printf("%s: adjust number of free frags by %+jd\n", 3398 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3399 } 3400 #endif /* DIAGNOSTIC */ 3401 fs->fs_cstotal.cs_nffree += cmd.value; 3402 break; 3403 3404 case FFS_ADJ_NUMCLUSTERS: 3405 #ifdef DIAGNOSTIC 3406 if (fsckcmds) { 3407 printf("%s: adjust number of free clusters by %+jd\n", 3408 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3409 } 3410 #endif /* DIAGNOSTIC */ 3411 fs->fs_cstotal.cs_numclusters += cmd.value; 3412 break; 3413 3414 case FFS_SET_CWD: 3415 #ifdef DIAGNOSTIC 3416 if (fsckcmds) { 3417 printf("%s: set current directory to inode %jd\n", 3418 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3419 } 3420 #endif /* DIAGNOSTIC */ 3421 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3422 break; 3423 AUDIT_ARG_VNODE1(vp); 3424 if ((error = change_dir(vp, td)) != 0) { 3425 vput(vp); 3426 break; 3427 } 3428 VOP_UNLOCK(vp); 3429 pwd_chdir(td, vp); 3430 break; 3431 3432 case FFS_SET_DOTDOT: 3433 #ifdef DIAGNOSTIC 3434 if (fsckcmds) { 3435 printf("%s: change .. in cwd from %jd to %jd\n", 3436 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3437 (intmax_t)cmd.size); 3438 } 3439 #endif /* DIAGNOSTIC */ 3440 /* 3441 * First we have to get and lock the parent directory 3442 * to which ".." points. 3443 */ 3444 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3445 if (error) 3446 break; 3447 /* 3448 * Now we get and lock the child directory containing "..". 3449 */ 3450 pwd = pwd_hold(td); 3451 dvp = pwd->pwd_cdir; 3452 if ((error = vget(dvp, LK_EXCLUSIVE)) != 0) { 3453 vput(fdvp); 3454 pwd_drop(pwd); 3455 break; 3456 } 3457 dp = VTOI(dvp); 3458 SET_I_OFFSET(dp, 12); /* XXX mastertemplate.dot_reclen */ 3459 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3460 DT_DIR, 0); 3461 cache_purge(fdvp); 3462 cache_purge(dvp); 3463 vput(dvp); 3464 vput(fdvp); 3465 pwd_drop(pwd); 3466 break; 3467 3468 case FFS_UNLINK: 3469 #ifdef DIAGNOSTIC 3470 if (fsckcmds) { 3471 char buf[32]; 3472 3473 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3474 strncpy(buf, "Name_too_long", 32); 3475 printf("%s: unlink %s (inode %jd)\n", 3476 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3477 } 3478 #endif /* DIAGNOSTIC */ 3479 /* 3480 * kern_funlinkat will do its own start/finish writes and 3481 * they do not nest, so drop ours here. Setting mp == NULL 3482 * indicates that vn_finished_write is not needed down below. 3483 */ 3484 vn_finished_write(mp); 3485 mp = NULL; 3486 error = kern_funlinkat(td, AT_FDCWD, 3487 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3488 0, (ino_t)cmd.size); 3489 break; 3490 3491 default: 3492 #ifdef DIAGNOSTIC 3493 if (fsckcmds) { 3494 printf("Invalid request %d from fsck\n", 3495 oidp->oid_number); 3496 } 3497 #endif /* DIAGNOSTIC */ 3498 error = EINVAL; 3499 break; 3500 } 3501 fdrop(fp, td); 3502 vn_finished_write(mp); 3503 return (error); 3504 } 3505