1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/gsb_crc32.h> 72 #include <sys/systm.h> 73 #include <sys/bio.h> 74 #include <sys/buf.h> 75 #include <sys/conf.h> 76 #include <sys/fcntl.h> 77 #include <sys/file.h> 78 #include <sys/filedesc.h> 79 #include <sys/priv.h> 80 #include <sys/proc.h> 81 #include <sys/vnode.h> 82 #include <sys/mount.h> 83 #include <sys/kernel.h> 84 #include <sys/syscallsubr.h> 85 #include <sys/sysctl.h> 86 #include <sys/syslog.h> 87 #include <sys/taskqueue.h> 88 89 #include <security/audit/audit.h> 90 91 #include <geom/geom.h> 92 #include <geom/geom_vfs.h> 93 94 #include <ufs/ufs/dir.h> 95 #include <ufs/ufs/extattr.h> 96 #include <ufs/ufs/quota.h> 97 #include <ufs/ufs/inode.h> 98 #include <ufs/ufs/ufs_extern.h> 99 #include <ufs/ufs/ufsmount.h> 100 101 #include <ufs/ffs/fs.h> 102 #include <ufs/ffs/ffs_extern.h> 103 #include <ufs/ffs/softdep.h> 104 105 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 106 int size, int rsize); 107 108 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 109 static ufs2_daddr_t 110 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 111 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 112 struct vnode *, ufs2_daddr_t, long, ino_t, 113 struct workhead *); 114 #ifdef INVARIANTS 115 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 116 #endif 117 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 118 static ino_t ffs_dirpref(struct inode *); 119 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 120 int, int); 121 static ufs2_daddr_t ffs_hashalloc 122 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 123 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 124 int); 125 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 126 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 127 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 128 static void ffs_ckhash_cg(struct buf *); 129 130 /* 131 * Allocate a block in the filesystem. 132 * 133 * The size of the requested block is given, which must be some 134 * multiple of fs_fsize and <= fs_bsize. 135 * A preference may be optionally specified. If a preference is given 136 * the following hierarchy is used to allocate a block: 137 * 1) allocate the requested block. 138 * 2) allocate a rotationally optimal block in the same cylinder. 139 * 3) allocate a block in the same cylinder group. 140 * 4) quadradically rehash into other cylinder groups, until an 141 * available block is located. 142 * If no block preference is given the following hierarchy is used 143 * to allocate a block: 144 * 1) allocate a block in the cylinder group that contains the 145 * inode for the file. 146 * 2) quadradically rehash into other cylinder groups, until an 147 * available block is located. 148 */ 149 int 150 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 151 struct inode *ip; 152 ufs2_daddr_t lbn, bpref; 153 int size, flags; 154 struct ucred *cred; 155 ufs2_daddr_t *bnp; 156 { 157 struct fs *fs; 158 struct ufsmount *ump; 159 ufs2_daddr_t bno; 160 u_int cg, reclaimed; 161 int64_t delta; 162 #ifdef QUOTA 163 int error; 164 #endif 165 166 *bnp = 0; 167 ump = ITOUMP(ip); 168 fs = ump->um_fs; 169 mtx_assert(UFS_MTX(ump), MA_OWNED); 170 #ifdef INVARIANTS 171 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 172 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 173 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 174 fs->fs_fsmnt); 175 panic("ffs_alloc: bad size"); 176 } 177 if (cred == NOCRED) 178 panic("ffs_alloc: missing credential"); 179 #endif /* INVARIANTS */ 180 reclaimed = 0; 181 retry: 182 #ifdef QUOTA 183 UFS_UNLOCK(ump); 184 error = chkdq(ip, btodb(size), cred, 0); 185 if (error) 186 return (error); 187 UFS_LOCK(ump); 188 #endif 189 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 190 goto nospace; 191 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 192 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 193 goto nospace; 194 if (bpref >= fs->fs_size) 195 bpref = 0; 196 if (bpref == 0) 197 cg = ino_to_cg(fs, ip->i_number); 198 else 199 cg = dtog(fs, bpref); 200 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 201 if (bno > 0) { 202 delta = btodb(size); 203 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 204 if (flags & IO_EXT) 205 ip->i_flag |= IN_CHANGE; 206 else 207 ip->i_flag |= IN_CHANGE | IN_UPDATE; 208 *bnp = bno; 209 return (0); 210 } 211 nospace: 212 #ifdef QUOTA 213 UFS_UNLOCK(ump); 214 /* 215 * Restore user's disk quota because allocation failed. 216 */ 217 (void) chkdq(ip, -btodb(size), cred, FORCE); 218 UFS_LOCK(ump); 219 #endif 220 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 221 reclaimed = 1; 222 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 223 goto retry; 224 } 225 if (reclaimed > 0 && 226 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 227 UFS_UNLOCK(ump); 228 ffs_fserr(fs, ip->i_number, "filesystem full"); 229 uprintf("\n%s: write failed, filesystem is full\n", 230 fs->fs_fsmnt); 231 } else { 232 UFS_UNLOCK(ump); 233 } 234 return (ENOSPC); 235 } 236 237 /* 238 * Reallocate a fragment to a bigger size 239 * 240 * The number and size of the old block is given, and a preference 241 * and new size is also specified. The allocator attempts to extend 242 * the original block. Failing that, the regular block allocator is 243 * invoked to get an appropriate block. 244 */ 245 int 246 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 247 struct inode *ip; 248 ufs2_daddr_t lbprev; 249 ufs2_daddr_t bprev; 250 ufs2_daddr_t bpref; 251 int osize, nsize, flags; 252 struct ucred *cred; 253 struct buf **bpp; 254 { 255 struct vnode *vp; 256 struct fs *fs; 257 struct buf *bp; 258 struct ufsmount *ump; 259 u_int cg, request, reclaimed; 260 int error, gbflags; 261 ufs2_daddr_t bno; 262 int64_t delta; 263 264 vp = ITOV(ip); 265 ump = ITOUMP(ip); 266 fs = ump->um_fs; 267 bp = NULL; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= UFS_NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 *bpp = NULL; 324 cg = dtog(fs, bprev); 325 UFS_LOCK(ump); 326 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 327 if (bno) { 328 if (bp->b_blkno != fsbtodb(fs, bno)) 329 panic("ffs_realloccg: bad blockno"); 330 delta = btodb(nsize - osize); 331 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 332 if (flags & IO_EXT) 333 ip->i_flag |= IN_CHANGE; 334 else 335 ip->i_flag |= IN_CHANGE | IN_UPDATE; 336 allocbuf(bp, nsize); 337 bp->b_flags |= B_DONE; 338 vfs_bio_bzero_buf(bp, osize, nsize - osize); 339 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 340 vfs_bio_set_valid(bp, osize, nsize - osize); 341 *bpp = bp; 342 return (0); 343 } 344 /* 345 * Allocate a new disk location. 346 */ 347 if (bpref >= fs->fs_size) 348 bpref = 0; 349 switch ((int)fs->fs_optim) { 350 case FS_OPTSPACE: 351 /* 352 * Allocate an exact sized fragment. Although this makes 353 * best use of space, we will waste time relocating it if 354 * the file continues to grow. If the fragmentation is 355 * less than half of the minimum free reserve, we choose 356 * to begin optimizing for time. 357 */ 358 request = nsize; 359 if (fs->fs_minfree <= 5 || 360 fs->fs_cstotal.cs_nffree > 361 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 362 break; 363 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 364 fs->fs_fsmnt); 365 fs->fs_optim = FS_OPTTIME; 366 break; 367 case FS_OPTTIME: 368 /* 369 * At this point we have discovered a file that is trying to 370 * grow a small fragment to a larger fragment. To save time, 371 * we allocate a full sized block, then free the unused portion. 372 * If the file continues to grow, the `ffs_fragextend' call 373 * above will be able to grow it in place without further 374 * copying. If aberrant programs cause disk fragmentation to 375 * grow within 2% of the free reserve, we choose to begin 376 * optimizing for space. 377 */ 378 request = fs->fs_bsize; 379 if (fs->fs_cstotal.cs_nffree < 380 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 381 break; 382 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 383 fs->fs_fsmnt); 384 fs->fs_optim = FS_OPTSPACE; 385 break; 386 default: 387 printf("dev = %s, optim = %ld, fs = %s\n", 388 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 389 panic("ffs_realloccg: bad optim"); 390 /* NOTREACHED */ 391 } 392 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 393 if (bno > 0) { 394 bp->b_blkno = fsbtodb(fs, bno); 395 if (!DOINGSOFTDEP(vp)) 396 /* 397 * The usual case is that a smaller fragment that 398 * was just allocated has been replaced with a bigger 399 * fragment or a full-size block. If it is marked as 400 * B_DELWRI, the current contents have not been written 401 * to disk. It is possible that the block was written 402 * earlier, but very uncommon. If the block has never 403 * been written, there is no need to send a BIO_DELETE 404 * for it when it is freed. The gain from avoiding the 405 * TRIMs for the common case of unwritten blocks far 406 * exceeds the cost of the write amplification for the 407 * uncommon case of failing to send a TRIM for a block 408 * that had been written. 409 */ 410 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 411 ip->i_number, vp->v_type, NULL, 412 (bp->b_flags & B_DELWRI) != 0 ? 413 NOTRIM_KEY : SINGLETON_KEY); 414 delta = btodb(nsize - osize); 415 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 416 if (flags & IO_EXT) 417 ip->i_flag |= IN_CHANGE; 418 else 419 ip->i_flag |= IN_CHANGE | IN_UPDATE; 420 allocbuf(bp, nsize); 421 bp->b_flags |= B_DONE; 422 vfs_bio_bzero_buf(bp, osize, nsize - osize); 423 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 424 vfs_bio_set_valid(bp, osize, nsize - osize); 425 *bpp = bp; 426 return (0); 427 } 428 #ifdef QUOTA 429 UFS_UNLOCK(ump); 430 /* 431 * Restore user's disk quota because allocation failed. 432 */ 433 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 434 UFS_LOCK(ump); 435 #endif 436 nospace: 437 /* 438 * no space available 439 */ 440 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 441 reclaimed = 1; 442 UFS_UNLOCK(ump); 443 if (bp) { 444 brelse(bp); 445 bp = NULL; 446 } 447 UFS_LOCK(ump); 448 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 449 goto retry; 450 } 451 if (reclaimed > 0 && 452 ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 453 UFS_UNLOCK(ump); 454 ffs_fserr(fs, ip->i_number, "filesystem full"); 455 uprintf("\n%s: write failed, filesystem is full\n", 456 fs->fs_fsmnt); 457 } else { 458 UFS_UNLOCK(ump); 459 } 460 if (bp) 461 brelse(bp); 462 return (ENOSPC); 463 } 464 465 /* 466 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 467 * 468 * The vnode and an array of buffer pointers for a range of sequential 469 * logical blocks to be made contiguous is given. The allocator attempts 470 * to find a range of sequential blocks starting as close as possible 471 * from the end of the allocation for the logical block immediately 472 * preceding the current range. If successful, the physical block numbers 473 * in the buffer pointers and in the inode are changed to reflect the new 474 * allocation. If unsuccessful, the allocation is left unchanged. The 475 * success in doing the reallocation is returned. Note that the error 476 * return is not reflected back to the user. Rather the previous block 477 * allocation will be used. 478 */ 479 480 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 481 482 static int doasyncfree = 1; 483 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 484 "do not force synchronous writes when blocks are reallocated"); 485 486 static int doreallocblks = 1; 487 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 488 "enable block reallocation"); 489 490 static int dotrimcons = 1; 491 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 492 "enable BIO_DELETE / TRIM consolidation"); 493 494 static int maxclustersearch = 10; 495 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 496 0, "max number of cylinder group to search for contigous blocks"); 497 498 #ifdef DIAGNOSTIC 499 static int prtrealloc = 0; 500 SYSCTL_INT(_debug, OID_AUTO, ffs_prtrealloc, CTLFLAG_RW, &prtrealloc, 0, 501 "print out FFS filesystem block reallocation operations"); 502 #endif 503 504 int 505 ffs_reallocblks(ap) 506 struct vop_reallocblks_args /* { 507 struct vnode *a_vp; 508 struct cluster_save *a_buflist; 509 } */ *ap; 510 { 511 struct ufsmount *ump; 512 513 /* 514 * We used to skip reallocating the blocks of a file into a 515 * contiguous sequence if the underlying flash device requested 516 * BIO_DELETE notifications, because devices that benefit from 517 * BIO_DELETE also benefit from not moving the data. However, 518 * the destination for the data is usually moved before the data 519 * is written to the initially allocated location, so we rarely 520 * suffer the penalty of extra writes. With the addition of the 521 * consolidation of contiguous blocks into single BIO_DELETE 522 * operations, having fewer but larger contiguous blocks reduces 523 * the number of (slow and expensive) BIO_DELETE operations. So 524 * when doing BIO_DELETE consolidation, we do block reallocation. 525 * 526 * Skip if reallocblks has been disabled globally. 527 */ 528 ump = ap->a_vp->v_mount->mnt_data; 529 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 530 doreallocblks == 0) 531 return (ENOSPC); 532 533 /* 534 * We can't wait in softdep prealloc as it may fsync and recurse 535 * here. Instead we simply fail to reallocate blocks if this 536 * rare condition arises. 537 */ 538 if (DOINGSOFTDEP(ap->a_vp)) 539 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 540 return (ENOSPC); 541 if (ump->um_fstype == UFS1) 542 return (ffs_reallocblks_ufs1(ap)); 543 return (ffs_reallocblks_ufs2(ap)); 544 } 545 546 static int 547 ffs_reallocblks_ufs1(ap) 548 struct vop_reallocblks_args /* { 549 struct vnode *a_vp; 550 struct cluster_save *a_buflist; 551 } */ *ap; 552 { 553 struct fs *fs; 554 struct inode *ip; 555 struct vnode *vp; 556 struct buf *sbp, *ebp, *bp; 557 ufs1_daddr_t *bap, *sbap, *ebap; 558 struct cluster_save *buflist; 559 struct ufsmount *ump; 560 ufs_lbn_t start_lbn, end_lbn; 561 ufs1_daddr_t soff, newblk, blkno; 562 ufs2_daddr_t pref; 563 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 564 int i, cg, len, start_lvl, end_lvl, ssize; 565 566 vp = ap->a_vp; 567 ip = VTOI(vp); 568 ump = ITOUMP(ip); 569 fs = ump->um_fs; 570 /* 571 * If we are not tracking block clusters or if we have less than 4% 572 * free blocks left, then do not attempt to cluster. Running with 573 * less than 5% free block reserve is not recommended and those that 574 * choose to do so do not expect to have good file layout. 575 */ 576 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 577 return (ENOSPC); 578 buflist = ap->a_buflist; 579 len = buflist->bs_nchildren; 580 start_lbn = buflist->bs_children[0]->b_lblkno; 581 end_lbn = start_lbn + len - 1; 582 #ifdef INVARIANTS 583 for (i = 0; i < len; i++) 584 if (!ffs_checkblk(ip, 585 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 586 panic("ffs_reallocblks: unallocated block 1"); 587 for (i = 1; i < len; i++) 588 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 589 panic("ffs_reallocblks: non-logical cluster"); 590 blkno = buflist->bs_children[0]->b_blkno; 591 ssize = fsbtodb(fs, fs->fs_frag); 592 for (i = 1; i < len - 1; i++) 593 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 594 panic("ffs_reallocblks: non-physical cluster %d", i); 595 #endif 596 /* 597 * If the cluster crosses the boundary for the first indirect 598 * block, leave space for the indirect block. Indirect blocks 599 * are initially laid out in a position after the last direct 600 * block. Block reallocation would usually destroy locality by 601 * moving the indirect block out of the way to make room for 602 * data blocks if we didn't compensate here. We should also do 603 * this for other indirect block boundaries, but it is only 604 * important for the first one. 605 */ 606 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 607 return (ENOSPC); 608 /* 609 * If the latest allocation is in a new cylinder group, assume that 610 * the filesystem has decided to move and do not force it back to 611 * the previous cylinder group. 612 */ 613 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 614 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 615 return (ENOSPC); 616 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 617 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 618 return (ENOSPC); 619 /* 620 * Get the starting offset and block map for the first block. 621 */ 622 if (start_lvl == 0) { 623 sbap = &ip->i_din1->di_db[0]; 624 soff = start_lbn; 625 } else { 626 idp = &start_ap[start_lvl - 1]; 627 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 628 brelse(sbp); 629 return (ENOSPC); 630 } 631 sbap = (ufs1_daddr_t *)sbp->b_data; 632 soff = idp->in_off; 633 } 634 /* 635 * If the block range spans two block maps, get the second map. 636 */ 637 ebap = NULL; 638 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 639 ssize = len; 640 } else { 641 #ifdef INVARIANTS 642 if (start_lvl > 0 && 643 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 644 panic("ffs_reallocblk: start == end"); 645 #endif 646 ssize = len - (idp->in_off + 1); 647 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 648 goto fail; 649 ebap = (ufs1_daddr_t *)ebp->b_data; 650 } 651 /* 652 * Find the preferred location for the cluster. If we have not 653 * previously failed at this endeavor, then follow our standard 654 * preference calculation. If we have failed at it, then pick up 655 * where we last ended our search. 656 */ 657 UFS_LOCK(ump); 658 if (ip->i_nextclustercg == -1) 659 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 660 else 661 pref = cgdata(fs, ip->i_nextclustercg); 662 /* 663 * Search the block map looking for an allocation of the desired size. 664 * To avoid wasting too much time, we limit the number of cylinder 665 * groups that we will search. 666 */ 667 cg = dtog(fs, pref); 668 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 669 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 670 break; 671 cg += 1; 672 if (cg >= fs->fs_ncg) 673 cg = 0; 674 } 675 /* 676 * If we have failed in our search, record where we gave up for 677 * next time. Otherwise, fall back to our usual search citerion. 678 */ 679 if (newblk == 0) { 680 ip->i_nextclustercg = cg; 681 UFS_UNLOCK(ump); 682 goto fail; 683 } 684 ip->i_nextclustercg = -1; 685 /* 686 * We have found a new contiguous block. 687 * 688 * First we have to replace the old block pointers with the new 689 * block pointers in the inode and indirect blocks associated 690 * with the file. 691 */ 692 #ifdef DIAGNOSTIC 693 if (prtrealloc) 694 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 695 (uintmax_t)ip->i_number, 696 (intmax_t)start_lbn, (intmax_t)end_lbn); 697 #endif 698 blkno = newblk; 699 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 700 if (i == ssize) { 701 bap = ebap; 702 soff = -i; 703 } 704 #ifdef INVARIANTS 705 if (!ffs_checkblk(ip, 706 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 707 panic("ffs_reallocblks: unallocated block 2"); 708 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 709 panic("ffs_reallocblks: alloc mismatch"); 710 #endif 711 #ifdef DIAGNOSTIC 712 if (prtrealloc) 713 printf(" %d,", *bap); 714 #endif 715 if (DOINGSOFTDEP(vp)) { 716 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 717 softdep_setup_allocdirect(ip, start_lbn + i, 718 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 719 buflist->bs_children[i]); 720 else 721 softdep_setup_allocindir_page(ip, start_lbn + i, 722 i < ssize ? sbp : ebp, soff + i, blkno, 723 *bap, buflist->bs_children[i]); 724 } 725 *bap++ = blkno; 726 } 727 /* 728 * Next we must write out the modified inode and indirect blocks. 729 * For strict correctness, the writes should be synchronous since 730 * the old block values may have been written to disk. In practise 731 * they are almost never written, but if we are concerned about 732 * strict correctness, the `doasyncfree' flag should be set to zero. 733 * 734 * The test on `doasyncfree' should be changed to test a flag 735 * that shows whether the associated buffers and inodes have 736 * been written. The flag should be set when the cluster is 737 * started and cleared whenever the buffer or inode is flushed. 738 * We can then check below to see if it is set, and do the 739 * synchronous write only when it has been cleared. 740 */ 741 if (sbap != &ip->i_din1->di_db[0]) { 742 if (doasyncfree) 743 bdwrite(sbp); 744 else 745 bwrite(sbp); 746 } else { 747 ip->i_flag |= IN_CHANGE | IN_UPDATE; 748 if (!doasyncfree) 749 ffs_update(vp, 1); 750 } 751 if (ssize < len) { 752 if (doasyncfree) 753 bdwrite(ebp); 754 else 755 bwrite(ebp); 756 } 757 /* 758 * Last, free the old blocks and assign the new blocks to the buffers. 759 */ 760 #ifdef DIAGNOSTIC 761 if (prtrealloc) 762 printf("\n\tnew:"); 763 #endif 764 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 765 bp = buflist->bs_children[i]; 766 if (!DOINGSOFTDEP(vp)) 767 /* 768 * The usual case is that a set of N-contiguous blocks 769 * that was just allocated has been replaced with a 770 * set of N+1-contiguous blocks. If they are marked as 771 * B_DELWRI, the current contents have not been written 772 * to disk. It is possible that the blocks were written 773 * earlier, but very uncommon. If the blocks have never 774 * been written, there is no need to send a BIO_DELETE 775 * for them when they are freed. The gain from avoiding 776 * the TRIMs for the common case of unwritten blocks 777 * far exceeds the cost of the write amplification for 778 * the uncommon case of failing to send a TRIM for the 779 * blocks that had been written. 780 */ 781 ffs_blkfree(ump, fs, ump->um_devvp, 782 dbtofsb(fs, bp->b_blkno), 783 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 784 (bp->b_flags & B_DELWRI) != 0 ? 785 NOTRIM_KEY : SINGLETON_KEY); 786 bp->b_blkno = fsbtodb(fs, blkno); 787 #ifdef INVARIANTS 788 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 789 panic("ffs_reallocblks: unallocated block 3"); 790 #endif 791 #ifdef DIAGNOSTIC 792 if (prtrealloc) 793 printf(" %d,", blkno); 794 #endif 795 } 796 #ifdef DIAGNOSTIC 797 if (prtrealloc) { 798 prtrealloc--; 799 printf("\n"); 800 } 801 #endif 802 return (0); 803 804 fail: 805 if (ssize < len) 806 brelse(ebp); 807 if (sbap != &ip->i_din1->di_db[0]) 808 brelse(sbp); 809 return (ENOSPC); 810 } 811 812 static int 813 ffs_reallocblks_ufs2(ap) 814 struct vop_reallocblks_args /* { 815 struct vnode *a_vp; 816 struct cluster_save *a_buflist; 817 } */ *ap; 818 { 819 struct fs *fs; 820 struct inode *ip; 821 struct vnode *vp; 822 struct buf *sbp, *ebp, *bp; 823 ufs2_daddr_t *bap, *sbap, *ebap; 824 struct cluster_save *buflist; 825 struct ufsmount *ump; 826 ufs_lbn_t start_lbn, end_lbn; 827 ufs2_daddr_t soff, newblk, blkno, pref; 828 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 829 int i, cg, len, start_lvl, end_lvl, ssize; 830 831 vp = ap->a_vp; 832 ip = VTOI(vp); 833 ump = ITOUMP(ip); 834 fs = ump->um_fs; 835 /* 836 * If we are not tracking block clusters or if we have less than 4% 837 * free blocks left, then do not attempt to cluster. Running with 838 * less than 5% free block reserve is not recommended and those that 839 * choose to do so do not expect to have good file layout. 840 */ 841 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 842 return (ENOSPC); 843 buflist = ap->a_buflist; 844 len = buflist->bs_nchildren; 845 start_lbn = buflist->bs_children[0]->b_lblkno; 846 end_lbn = start_lbn + len - 1; 847 #ifdef INVARIANTS 848 for (i = 0; i < len; i++) 849 if (!ffs_checkblk(ip, 850 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 851 panic("ffs_reallocblks: unallocated block 1"); 852 for (i = 1; i < len; i++) 853 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 854 panic("ffs_reallocblks: non-logical cluster"); 855 blkno = buflist->bs_children[0]->b_blkno; 856 ssize = fsbtodb(fs, fs->fs_frag); 857 for (i = 1; i < len - 1; i++) 858 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 859 panic("ffs_reallocblks: non-physical cluster %d", i); 860 #endif 861 /* 862 * If the cluster crosses the boundary for the first indirect 863 * block, do not move anything in it. Indirect blocks are 864 * usually initially laid out in a position between the data 865 * blocks. Block reallocation would usually destroy locality by 866 * moving the indirect block out of the way to make room for 867 * data blocks if we didn't compensate here. We should also do 868 * this for other indirect block boundaries, but it is only 869 * important for the first one. 870 */ 871 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 872 return (ENOSPC); 873 /* 874 * If the latest allocation is in a new cylinder group, assume that 875 * the filesystem has decided to move and do not force it back to 876 * the previous cylinder group. 877 */ 878 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 879 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 880 return (ENOSPC); 881 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 882 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 883 return (ENOSPC); 884 /* 885 * Get the starting offset and block map for the first block. 886 */ 887 if (start_lvl == 0) { 888 sbap = &ip->i_din2->di_db[0]; 889 soff = start_lbn; 890 } else { 891 idp = &start_ap[start_lvl - 1]; 892 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 893 brelse(sbp); 894 return (ENOSPC); 895 } 896 sbap = (ufs2_daddr_t *)sbp->b_data; 897 soff = idp->in_off; 898 } 899 /* 900 * If the block range spans two block maps, get the second map. 901 */ 902 ebap = NULL; 903 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 904 ssize = len; 905 } else { 906 #ifdef INVARIANTS 907 if (start_lvl > 0 && 908 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 909 panic("ffs_reallocblk: start == end"); 910 #endif 911 ssize = len - (idp->in_off + 1); 912 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 913 goto fail; 914 ebap = (ufs2_daddr_t *)ebp->b_data; 915 } 916 /* 917 * Find the preferred location for the cluster. If we have not 918 * previously failed at this endeavor, then follow our standard 919 * preference calculation. If we have failed at it, then pick up 920 * where we last ended our search. 921 */ 922 UFS_LOCK(ump); 923 if (ip->i_nextclustercg == -1) 924 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 925 else 926 pref = cgdata(fs, ip->i_nextclustercg); 927 /* 928 * Search the block map looking for an allocation of the desired size. 929 * To avoid wasting too much time, we limit the number of cylinder 930 * groups that we will search. 931 */ 932 cg = dtog(fs, pref); 933 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 934 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 935 break; 936 cg += 1; 937 if (cg >= fs->fs_ncg) 938 cg = 0; 939 } 940 /* 941 * If we have failed in our search, record where we gave up for 942 * next time. Otherwise, fall back to our usual search citerion. 943 */ 944 if (newblk == 0) { 945 ip->i_nextclustercg = cg; 946 UFS_UNLOCK(ump); 947 goto fail; 948 } 949 ip->i_nextclustercg = -1; 950 /* 951 * We have found a new contiguous block. 952 * 953 * First we have to replace the old block pointers with the new 954 * block pointers in the inode and indirect blocks associated 955 * with the file. 956 */ 957 #ifdef DIAGNOSTIC 958 if (prtrealloc) 959 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 960 (intmax_t)start_lbn, (intmax_t)end_lbn); 961 #endif 962 blkno = newblk; 963 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 964 if (i == ssize) { 965 bap = ebap; 966 soff = -i; 967 } 968 #ifdef INVARIANTS 969 if (!ffs_checkblk(ip, 970 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 971 panic("ffs_reallocblks: unallocated block 2"); 972 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 973 panic("ffs_reallocblks: alloc mismatch"); 974 #endif 975 #ifdef DIAGNOSTIC 976 if (prtrealloc) 977 printf(" %jd,", (intmax_t)*bap); 978 #endif 979 if (DOINGSOFTDEP(vp)) { 980 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 981 softdep_setup_allocdirect(ip, start_lbn + i, 982 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 983 buflist->bs_children[i]); 984 else 985 softdep_setup_allocindir_page(ip, start_lbn + i, 986 i < ssize ? sbp : ebp, soff + i, blkno, 987 *bap, buflist->bs_children[i]); 988 } 989 *bap++ = blkno; 990 } 991 /* 992 * Next we must write out the modified inode and indirect blocks. 993 * For strict correctness, the writes should be synchronous since 994 * the old block values may have been written to disk. In practise 995 * they are almost never written, but if we are concerned about 996 * strict correctness, the `doasyncfree' flag should be set to zero. 997 * 998 * The test on `doasyncfree' should be changed to test a flag 999 * that shows whether the associated buffers and inodes have 1000 * been written. The flag should be set when the cluster is 1001 * started and cleared whenever the buffer or inode is flushed. 1002 * We can then check below to see if it is set, and do the 1003 * synchronous write only when it has been cleared. 1004 */ 1005 if (sbap != &ip->i_din2->di_db[0]) { 1006 if (doasyncfree) 1007 bdwrite(sbp); 1008 else 1009 bwrite(sbp); 1010 } else { 1011 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1012 if (!doasyncfree) 1013 ffs_update(vp, 1); 1014 } 1015 if (ssize < len) { 1016 if (doasyncfree) 1017 bdwrite(ebp); 1018 else 1019 bwrite(ebp); 1020 } 1021 /* 1022 * Last, free the old blocks and assign the new blocks to the buffers. 1023 */ 1024 #ifdef DIAGNOSTIC 1025 if (prtrealloc) 1026 printf("\n\tnew:"); 1027 #endif 1028 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1029 bp = buflist->bs_children[i]; 1030 if (!DOINGSOFTDEP(vp)) 1031 /* 1032 * The usual case is that a set of N-contiguous blocks 1033 * that was just allocated has been replaced with a 1034 * set of N+1-contiguous blocks. If they are marked as 1035 * B_DELWRI, the current contents have not been written 1036 * to disk. It is possible that the blocks were written 1037 * earlier, but very uncommon. If the blocks have never 1038 * been written, there is no need to send a BIO_DELETE 1039 * for them when they are freed. The gain from avoiding 1040 * the TRIMs for the common case of unwritten blocks 1041 * far exceeds the cost of the write amplification for 1042 * the uncommon case of failing to send a TRIM for the 1043 * blocks that had been written. 1044 */ 1045 ffs_blkfree(ump, fs, ump->um_devvp, 1046 dbtofsb(fs, bp->b_blkno), 1047 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1048 (bp->b_flags & B_DELWRI) != 0 ? 1049 NOTRIM_KEY : SINGLETON_KEY); 1050 bp->b_blkno = fsbtodb(fs, blkno); 1051 #ifdef INVARIANTS 1052 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1053 panic("ffs_reallocblks: unallocated block 3"); 1054 #endif 1055 #ifdef DIAGNOSTIC 1056 if (prtrealloc) 1057 printf(" %jd,", (intmax_t)blkno); 1058 #endif 1059 } 1060 #ifdef DIAGNOSTIC 1061 if (prtrealloc) { 1062 prtrealloc--; 1063 printf("\n"); 1064 } 1065 #endif 1066 return (0); 1067 1068 fail: 1069 if (ssize < len) 1070 brelse(ebp); 1071 if (sbap != &ip->i_din2->di_db[0]) 1072 brelse(sbp); 1073 return (ENOSPC); 1074 } 1075 1076 /* 1077 * Allocate an inode in the filesystem. 1078 * 1079 * If allocating a directory, use ffs_dirpref to select the inode. 1080 * If allocating in a directory, the following hierarchy is followed: 1081 * 1) allocate the preferred inode. 1082 * 2) allocate an inode in the same cylinder group. 1083 * 3) quadradically rehash into other cylinder groups, until an 1084 * available inode is located. 1085 * If no inode preference is given the following hierarchy is used 1086 * to allocate an inode: 1087 * 1) allocate an inode in cylinder group 0. 1088 * 2) quadradically rehash into other cylinder groups, until an 1089 * available inode is located. 1090 */ 1091 int 1092 ffs_valloc(pvp, mode, cred, vpp) 1093 struct vnode *pvp; 1094 int mode; 1095 struct ucred *cred; 1096 struct vnode **vpp; 1097 { 1098 struct inode *pip; 1099 struct fs *fs; 1100 struct inode *ip; 1101 struct timespec ts; 1102 struct ufsmount *ump; 1103 ino_t ino, ipref; 1104 u_int cg; 1105 int error, error1, reclaimed; 1106 1107 *vpp = NULL; 1108 pip = VTOI(pvp); 1109 ump = ITOUMP(pip); 1110 fs = ump->um_fs; 1111 1112 UFS_LOCK(ump); 1113 reclaimed = 0; 1114 retry: 1115 if (fs->fs_cstotal.cs_nifree == 0) 1116 goto noinodes; 1117 1118 if ((mode & IFMT) == IFDIR) 1119 ipref = ffs_dirpref(pip); 1120 else 1121 ipref = pip->i_number; 1122 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1123 ipref = 0; 1124 cg = ino_to_cg(fs, ipref); 1125 /* 1126 * Track number of dirs created one after another 1127 * in a same cg without intervening by files. 1128 */ 1129 if ((mode & IFMT) == IFDIR) { 1130 if (fs->fs_contigdirs[cg] < 255) 1131 fs->fs_contigdirs[cg]++; 1132 } else { 1133 if (fs->fs_contigdirs[cg] > 0) 1134 fs->fs_contigdirs[cg]--; 1135 } 1136 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1137 (allocfcn_t *)ffs_nodealloccg); 1138 if (ino == 0) 1139 goto noinodes; 1140 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1141 if (error) { 1142 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1143 FFSV_FORCEINSMQ); 1144 ffs_vfree(pvp, ino, mode); 1145 if (error1 == 0) { 1146 ip = VTOI(*vpp); 1147 if (ip->i_mode) 1148 goto dup_alloc; 1149 ip->i_flag |= IN_MODIFIED; 1150 vput(*vpp); 1151 } 1152 return (error); 1153 } 1154 ip = VTOI(*vpp); 1155 if (ip->i_mode) { 1156 dup_alloc: 1157 printf("mode = 0%o, inum = %ju, fs = %s\n", 1158 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1159 panic("ffs_valloc: dup alloc"); 1160 } 1161 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1162 printf("free inode %s/%lu had %ld blocks\n", 1163 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1164 DIP_SET(ip, i_blocks, 0); 1165 } 1166 ip->i_flags = 0; 1167 DIP_SET(ip, i_flags, 0); 1168 /* 1169 * Set up a new generation number for this inode. 1170 */ 1171 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1172 ip->i_gen = arc4random(); 1173 DIP_SET(ip, i_gen, ip->i_gen); 1174 if (fs->fs_magic == FS_UFS2_MAGIC) { 1175 vfs_timestamp(&ts); 1176 ip->i_din2->di_birthtime = ts.tv_sec; 1177 ip->i_din2->di_birthnsec = ts.tv_nsec; 1178 } 1179 ufs_prepare_reclaim(*vpp); 1180 ip->i_flag = 0; 1181 (*vpp)->v_vflag = 0; 1182 (*vpp)->v_type = VNON; 1183 if (fs->fs_magic == FS_UFS2_MAGIC) { 1184 (*vpp)->v_op = &ffs_vnodeops2; 1185 ip->i_flag |= IN_UFS2; 1186 } else { 1187 (*vpp)->v_op = &ffs_vnodeops1; 1188 } 1189 return (0); 1190 noinodes: 1191 if (reclaimed == 0) { 1192 reclaimed = 1; 1193 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1194 goto retry; 1195 } 1196 if (ppsratecheck(&ump->um_last_fullmsg, &ump->um_secs_fullmsg, 1)) { 1197 UFS_UNLOCK(ump); 1198 ffs_fserr(fs, pip->i_number, "out of inodes"); 1199 uprintf("\n%s: create/symlink failed, no inodes free\n", 1200 fs->fs_fsmnt); 1201 } else { 1202 UFS_UNLOCK(ump); 1203 } 1204 return (ENOSPC); 1205 } 1206 1207 /* 1208 * Find a cylinder group to place a directory. 1209 * 1210 * The policy implemented by this algorithm is to allocate a 1211 * directory inode in the same cylinder group as its parent 1212 * directory, but also to reserve space for its files inodes 1213 * and data. Restrict the number of directories which may be 1214 * allocated one after another in the same cylinder group 1215 * without intervening allocation of files. 1216 * 1217 * If we allocate a first level directory then force allocation 1218 * in another cylinder group. 1219 */ 1220 static ino_t 1221 ffs_dirpref(pip) 1222 struct inode *pip; 1223 { 1224 struct fs *fs; 1225 int cg, prefcg, dirsize, cgsize; 1226 u_int avgifree, avgbfree, avgndir, curdirsize; 1227 u_int minifree, minbfree, maxndir; 1228 u_int mincg, minndir; 1229 u_int maxcontigdirs; 1230 1231 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1232 fs = ITOFS(pip); 1233 1234 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1235 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1236 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1237 1238 /* 1239 * Force allocation in another cg if creating a first level dir. 1240 */ 1241 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1242 if (ITOV(pip)->v_vflag & VV_ROOT) { 1243 prefcg = arc4random() % fs->fs_ncg; 1244 mincg = prefcg; 1245 minndir = fs->fs_ipg; 1246 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1247 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1248 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1249 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1250 mincg = cg; 1251 minndir = fs->fs_cs(fs, cg).cs_ndir; 1252 } 1253 for (cg = 0; cg < prefcg; cg++) 1254 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1255 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1256 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1257 mincg = cg; 1258 minndir = fs->fs_cs(fs, cg).cs_ndir; 1259 } 1260 return ((ino_t)(fs->fs_ipg * mincg)); 1261 } 1262 1263 /* 1264 * Count various limits which used for 1265 * optimal allocation of a directory inode. 1266 */ 1267 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1268 minifree = avgifree - avgifree / 4; 1269 if (minifree < 1) 1270 minifree = 1; 1271 minbfree = avgbfree - avgbfree / 4; 1272 if (minbfree < 1) 1273 minbfree = 1; 1274 cgsize = fs->fs_fsize * fs->fs_fpg; 1275 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1276 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1277 if (dirsize < curdirsize) 1278 dirsize = curdirsize; 1279 if (dirsize <= 0) 1280 maxcontigdirs = 0; /* dirsize overflowed */ 1281 else 1282 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1283 if (fs->fs_avgfpdir > 0) 1284 maxcontigdirs = min(maxcontigdirs, 1285 fs->fs_ipg / fs->fs_avgfpdir); 1286 if (maxcontigdirs == 0) 1287 maxcontigdirs = 1; 1288 1289 /* 1290 * Limit number of dirs in one cg and reserve space for 1291 * regular files, but only if we have no deficit in 1292 * inodes or space. 1293 * 1294 * We are trying to find a suitable cylinder group nearby 1295 * our preferred cylinder group to place a new directory. 1296 * We scan from our preferred cylinder group forward looking 1297 * for a cylinder group that meets our criterion. If we get 1298 * to the final cylinder group and do not find anything, 1299 * we start scanning forwards from the beginning of the 1300 * filesystem. While it might seem sensible to start scanning 1301 * backwards or even to alternate looking forward and backward, 1302 * this approach fails badly when the filesystem is nearly full. 1303 * Specifically, we first search all the areas that have no space 1304 * and finally try the one preceding that. We repeat this on 1305 * every request and in the case of the final block end up 1306 * searching the entire filesystem. By jumping to the front 1307 * of the filesystem, our future forward searches always look 1308 * in new cylinder groups so finds every possible block after 1309 * one pass over the filesystem. 1310 */ 1311 prefcg = ino_to_cg(fs, pip->i_number); 1312 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1313 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1314 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1315 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1316 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1317 return ((ino_t)(fs->fs_ipg * cg)); 1318 } 1319 for (cg = 0; cg < prefcg; cg++) 1320 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1321 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1322 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1323 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1324 return ((ino_t)(fs->fs_ipg * cg)); 1325 } 1326 /* 1327 * This is a backstop when we have deficit in space. 1328 */ 1329 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1330 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1331 return ((ino_t)(fs->fs_ipg * cg)); 1332 for (cg = 0; cg < prefcg; cg++) 1333 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1334 break; 1335 return ((ino_t)(fs->fs_ipg * cg)); 1336 } 1337 1338 /* 1339 * Select the desired position for the next block in a file. The file is 1340 * logically divided into sections. The first section is composed of the 1341 * direct blocks and the next fs_maxbpg blocks. Each additional section 1342 * contains fs_maxbpg blocks. 1343 * 1344 * If no blocks have been allocated in the first section, the policy is to 1345 * request a block in the same cylinder group as the inode that describes 1346 * the file. The first indirect is allocated immediately following the last 1347 * direct block and the data blocks for the first indirect immediately 1348 * follow it. 1349 * 1350 * If no blocks have been allocated in any other section, the indirect 1351 * block(s) are allocated in the same cylinder group as its inode in an 1352 * area reserved immediately following the inode blocks. The policy for 1353 * the data blocks is to place them in a cylinder group with a greater than 1354 * average number of free blocks. An appropriate cylinder group is found 1355 * by using a rotor that sweeps the cylinder groups. When a new group of 1356 * blocks is needed, the sweep begins in the cylinder group following the 1357 * cylinder group from which the previous allocation was made. The sweep 1358 * continues until a cylinder group with greater than the average number 1359 * of free blocks is found. If the allocation is for the first block in an 1360 * indirect block or the previous block is a hole, then the information on 1361 * the previous allocation is unavailable; here a best guess is made based 1362 * on the logical block number being allocated. 1363 * 1364 * If a section is already partially allocated, the policy is to 1365 * allocate blocks contiguously within the section if possible. 1366 */ 1367 ufs2_daddr_t 1368 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1369 struct inode *ip; 1370 ufs_lbn_t lbn; 1371 int indx; 1372 ufs1_daddr_t *bap; 1373 { 1374 struct fs *fs; 1375 u_int cg, inocg; 1376 u_int avgbfree, startcg; 1377 ufs2_daddr_t pref, prevbn; 1378 1379 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1380 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1381 fs = ITOFS(ip); 1382 /* 1383 * Allocation of indirect blocks is indicated by passing negative 1384 * values in indx: -1 for single indirect, -2 for double indirect, 1385 * -3 for triple indirect. As noted below, we attempt to allocate 1386 * the first indirect inline with the file data. For all later 1387 * indirect blocks, the data is often allocated in other cylinder 1388 * groups. However to speed random file access and to speed up 1389 * fsck, the filesystem reserves the first fs_metaspace blocks 1390 * (typically half of fs_minfree) of the data area of each cylinder 1391 * group to hold these later indirect blocks. 1392 */ 1393 inocg = ino_to_cg(fs, ip->i_number); 1394 if (indx < 0) { 1395 /* 1396 * Our preference for indirect blocks is the zone at the 1397 * beginning of the inode's cylinder group data area that 1398 * we try to reserve for indirect blocks. 1399 */ 1400 pref = cgmeta(fs, inocg); 1401 /* 1402 * If we are allocating the first indirect block, try to 1403 * place it immediately following the last direct block. 1404 */ 1405 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1406 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1407 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1408 return (pref); 1409 } 1410 /* 1411 * If we are allocating the first data block in the first indirect 1412 * block and the indirect has been allocated in the data block area, 1413 * try to place it immediately following the indirect block. 1414 */ 1415 if (lbn == UFS_NDADDR) { 1416 pref = ip->i_din1->di_ib[0]; 1417 if (pref != 0 && pref >= cgdata(fs, inocg) && 1418 pref < cgbase(fs, inocg + 1)) 1419 return (pref + fs->fs_frag); 1420 } 1421 /* 1422 * If we are at the beginning of a file, or we have already allocated 1423 * the maximum number of blocks per cylinder group, or we do not 1424 * have a block allocated immediately preceding us, then we need 1425 * to decide where to start allocating new blocks. 1426 */ 1427 if (indx == 0) { 1428 prevbn = 0; 1429 } else { 1430 prevbn = bap[indx - 1]; 1431 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1432 fs->fs_bsize) != 0) 1433 prevbn = 0; 1434 } 1435 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1436 /* 1437 * If we are allocating a directory data block, we want 1438 * to place it in the metadata area. 1439 */ 1440 if ((ip->i_mode & IFMT) == IFDIR) 1441 return (cgmeta(fs, inocg)); 1442 /* 1443 * Until we fill all the direct and all the first indirect's 1444 * blocks, we try to allocate in the data area of the inode's 1445 * cylinder group. 1446 */ 1447 if (lbn < UFS_NDADDR + NINDIR(fs)) 1448 return (cgdata(fs, inocg)); 1449 /* 1450 * Find a cylinder with greater than average number of 1451 * unused data blocks. 1452 */ 1453 if (indx == 0 || prevbn == 0) 1454 startcg = inocg + lbn / fs->fs_maxbpg; 1455 else 1456 startcg = dtog(fs, prevbn) + 1; 1457 startcg %= fs->fs_ncg; 1458 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1459 for (cg = startcg; cg < fs->fs_ncg; cg++) 1460 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1461 fs->fs_cgrotor = cg; 1462 return (cgdata(fs, cg)); 1463 } 1464 for (cg = 0; cg <= startcg; cg++) 1465 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1466 fs->fs_cgrotor = cg; 1467 return (cgdata(fs, cg)); 1468 } 1469 return (0); 1470 } 1471 /* 1472 * Otherwise, we just always try to lay things out contiguously. 1473 */ 1474 return (prevbn + fs->fs_frag); 1475 } 1476 1477 /* 1478 * Same as above, but for UFS2 1479 */ 1480 ufs2_daddr_t 1481 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1482 struct inode *ip; 1483 ufs_lbn_t lbn; 1484 int indx; 1485 ufs2_daddr_t *bap; 1486 { 1487 struct fs *fs; 1488 u_int cg, inocg; 1489 u_int avgbfree, startcg; 1490 ufs2_daddr_t pref, prevbn; 1491 1492 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1493 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1494 fs = ITOFS(ip); 1495 /* 1496 * Allocation of indirect blocks is indicated by passing negative 1497 * values in indx: -1 for single indirect, -2 for double indirect, 1498 * -3 for triple indirect. As noted below, we attempt to allocate 1499 * the first indirect inline with the file data. For all later 1500 * indirect blocks, the data is often allocated in other cylinder 1501 * groups. However to speed random file access and to speed up 1502 * fsck, the filesystem reserves the first fs_metaspace blocks 1503 * (typically half of fs_minfree) of the data area of each cylinder 1504 * group to hold these later indirect blocks. 1505 */ 1506 inocg = ino_to_cg(fs, ip->i_number); 1507 if (indx < 0) { 1508 /* 1509 * Our preference for indirect blocks is the zone at the 1510 * beginning of the inode's cylinder group data area that 1511 * we try to reserve for indirect blocks. 1512 */ 1513 pref = cgmeta(fs, inocg); 1514 /* 1515 * If we are allocating the first indirect block, try to 1516 * place it immediately following the last direct block. 1517 */ 1518 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1519 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1520 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1521 return (pref); 1522 } 1523 /* 1524 * If we are allocating the first data block in the first indirect 1525 * block and the indirect has been allocated in the data block area, 1526 * try to place it immediately following the indirect block. 1527 */ 1528 if (lbn == UFS_NDADDR) { 1529 pref = ip->i_din2->di_ib[0]; 1530 if (pref != 0 && pref >= cgdata(fs, inocg) && 1531 pref < cgbase(fs, inocg + 1)) 1532 return (pref + fs->fs_frag); 1533 } 1534 /* 1535 * If we are at the beginning of a file, or we have already allocated 1536 * the maximum number of blocks per cylinder group, or we do not 1537 * have a block allocated immediately preceding us, then we need 1538 * to decide where to start allocating new blocks. 1539 */ 1540 if (indx == 0) { 1541 prevbn = 0; 1542 } else { 1543 prevbn = bap[indx - 1]; 1544 if (UFS_CHECK_BLKNO(ITOVFS(ip), ip->i_number, prevbn, 1545 fs->fs_bsize) != 0) 1546 prevbn = 0; 1547 } 1548 if (indx % fs->fs_maxbpg == 0 || prevbn == 0) { 1549 /* 1550 * If we are allocating a directory data block, we want 1551 * to place it in the metadata area. 1552 */ 1553 if ((ip->i_mode & IFMT) == IFDIR) 1554 return (cgmeta(fs, inocg)); 1555 /* 1556 * Until we fill all the direct and all the first indirect's 1557 * blocks, we try to allocate in the data area of the inode's 1558 * cylinder group. 1559 */ 1560 if (lbn < UFS_NDADDR + NINDIR(fs)) 1561 return (cgdata(fs, inocg)); 1562 /* 1563 * Find a cylinder with greater than average number of 1564 * unused data blocks. 1565 */ 1566 if (indx == 0 || prevbn == 0) 1567 startcg = inocg + lbn / fs->fs_maxbpg; 1568 else 1569 startcg = dtog(fs, prevbn) + 1; 1570 startcg %= fs->fs_ncg; 1571 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1572 for (cg = startcg; cg < fs->fs_ncg; cg++) 1573 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1574 fs->fs_cgrotor = cg; 1575 return (cgdata(fs, cg)); 1576 } 1577 for (cg = 0; cg <= startcg; cg++) 1578 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1579 fs->fs_cgrotor = cg; 1580 return (cgdata(fs, cg)); 1581 } 1582 return (0); 1583 } 1584 /* 1585 * Otherwise, we just always try to lay things out contiguously. 1586 */ 1587 return (prevbn + fs->fs_frag); 1588 } 1589 1590 /* 1591 * Implement the cylinder overflow algorithm. 1592 * 1593 * The policy implemented by this algorithm is: 1594 * 1) allocate the block in its requested cylinder group. 1595 * 2) quadradically rehash on the cylinder group number. 1596 * 3) brute force search for a free block. 1597 * 1598 * Must be called with the UFS lock held. Will release the lock on success 1599 * and return with it held on failure. 1600 */ 1601 /*VARARGS5*/ 1602 static ufs2_daddr_t 1603 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1604 struct inode *ip; 1605 u_int cg; 1606 ufs2_daddr_t pref; 1607 int size; /* Search size for data blocks, mode for inodes */ 1608 int rsize; /* Real allocated size. */ 1609 allocfcn_t *allocator; 1610 { 1611 struct fs *fs; 1612 ufs2_daddr_t result; 1613 u_int i, icg = cg; 1614 1615 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1616 #ifdef INVARIANTS 1617 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1618 panic("ffs_hashalloc: allocation on suspended filesystem"); 1619 #endif 1620 fs = ITOFS(ip); 1621 /* 1622 * 1: preferred cylinder group 1623 */ 1624 result = (*allocator)(ip, cg, pref, size, rsize); 1625 if (result) 1626 return (result); 1627 /* 1628 * 2: quadratic rehash 1629 */ 1630 for (i = 1; i < fs->fs_ncg; i *= 2) { 1631 cg += i; 1632 if (cg >= fs->fs_ncg) 1633 cg -= fs->fs_ncg; 1634 result = (*allocator)(ip, cg, 0, size, rsize); 1635 if (result) 1636 return (result); 1637 } 1638 /* 1639 * 3: brute force search 1640 * Note that we start at i == 2, since 0 was checked initially, 1641 * and 1 is always checked in the quadratic rehash. 1642 */ 1643 cg = (icg + 2) % fs->fs_ncg; 1644 for (i = 2; i < fs->fs_ncg; i++) { 1645 result = (*allocator)(ip, cg, 0, size, rsize); 1646 if (result) 1647 return (result); 1648 cg++; 1649 if (cg == fs->fs_ncg) 1650 cg = 0; 1651 } 1652 return (0); 1653 } 1654 1655 /* 1656 * Determine whether a fragment can be extended. 1657 * 1658 * Check to see if the necessary fragments are available, and 1659 * if they are, allocate them. 1660 */ 1661 static ufs2_daddr_t 1662 ffs_fragextend(ip, cg, bprev, osize, nsize) 1663 struct inode *ip; 1664 u_int cg; 1665 ufs2_daddr_t bprev; 1666 int osize, nsize; 1667 { 1668 struct fs *fs; 1669 struct cg *cgp; 1670 struct buf *bp; 1671 struct ufsmount *ump; 1672 int nffree; 1673 long bno; 1674 int frags, bbase; 1675 int i, error; 1676 u_int8_t *blksfree; 1677 1678 ump = ITOUMP(ip); 1679 fs = ump->um_fs; 1680 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1681 return (0); 1682 frags = numfrags(fs, nsize); 1683 bbase = fragnum(fs, bprev); 1684 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1685 /* cannot extend across a block boundary */ 1686 return (0); 1687 } 1688 UFS_UNLOCK(ump); 1689 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1690 goto fail; 1691 bno = dtogd(fs, bprev); 1692 blksfree = cg_blksfree(cgp); 1693 for (i = numfrags(fs, osize); i < frags; i++) 1694 if (isclr(blksfree, bno + i)) 1695 goto fail; 1696 /* 1697 * the current fragment can be extended 1698 * deduct the count on fragment being extended into 1699 * increase the count on the remaining fragment (if any) 1700 * allocate the extended piece 1701 */ 1702 for (i = frags; i < fs->fs_frag - bbase; i++) 1703 if (isclr(blksfree, bno + i)) 1704 break; 1705 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1706 if (i != frags) 1707 cgp->cg_frsum[i - frags]++; 1708 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1709 clrbit(blksfree, bno + i); 1710 cgp->cg_cs.cs_nffree--; 1711 nffree++; 1712 } 1713 UFS_LOCK(ump); 1714 fs->fs_cstotal.cs_nffree -= nffree; 1715 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1716 fs->fs_fmod = 1; 1717 ACTIVECLEAR(fs, cg); 1718 UFS_UNLOCK(ump); 1719 if (DOINGSOFTDEP(ITOV(ip))) 1720 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1721 frags, numfrags(fs, osize)); 1722 bdwrite(bp); 1723 return (bprev); 1724 1725 fail: 1726 brelse(bp); 1727 UFS_LOCK(ump); 1728 return (0); 1729 1730 } 1731 1732 /* 1733 * Determine whether a block can be allocated. 1734 * 1735 * Check to see if a block of the appropriate size is available, 1736 * and if it is, allocate it. 1737 */ 1738 static ufs2_daddr_t 1739 ffs_alloccg(ip, cg, bpref, size, rsize) 1740 struct inode *ip; 1741 u_int cg; 1742 ufs2_daddr_t bpref; 1743 int size; 1744 int rsize; 1745 { 1746 struct fs *fs; 1747 struct cg *cgp; 1748 struct buf *bp; 1749 struct ufsmount *ump; 1750 ufs1_daddr_t bno; 1751 ufs2_daddr_t blkno; 1752 int i, allocsiz, error, frags; 1753 u_int8_t *blksfree; 1754 1755 ump = ITOUMP(ip); 1756 fs = ump->um_fs; 1757 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1758 return (0); 1759 UFS_UNLOCK(ump); 1760 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1761 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1762 goto fail; 1763 if (size == fs->fs_bsize) { 1764 UFS_LOCK(ump); 1765 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1766 ACTIVECLEAR(fs, cg); 1767 UFS_UNLOCK(ump); 1768 bdwrite(bp); 1769 return (blkno); 1770 } 1771 /* 1772 * check to see if any fragments are already available 1773 * allocsiz is the size which will be allocated, hacking 1774 * it down to a smaller size if necessary 1775 */ 1776 blksfree = cg_blksfree(cgp); 1777 frags = numfrags(fs, size); 1778 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1779 if (cgp->cg_frsum[allocsiz] != 0) 1780 break; 1781 if (allocsiz == fs->fs_frag) { 1782 /* 1783 * no fragments were available, so a block will be 1784 * allocated, and hacked up 1785 */ 1786 if (cgp->cg_cs.cs_nbfree == 0) 1787 goto fail; 1788 UFS_LOCK(ump); 1789 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1790 ACTIVECLEAR(fs, cg); 1791 UFS_UNLOCK(ump); 1792 bdwrite(bp); 1793 return (blkno); 1794 } 1795 KASSERT(size == rsize, 1796 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1797 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1798 if (bno < 0) 1799 goto fail; 1800 for (i = 0; i < frags; i++) 1801 clrbit(blksfree, bno + i); 1802 cgp->cg_cs.cs_nffree -= frags; 1803 cgp->cg_frsum[allocsiz]--; 1804 if (frags != allocsiz) 1805 cgp->cg_frsum[allocsiz - frags]++; 1806 UFS_LOCK(ump); 1807 fs->fs_cstotal.cs_nffree -= frags; 1808 fs->fs_cs(fs, cg).cs_nffree -= frags; 1809 fs->fs_fmod = 1; 1810 blkno = cgbase(fs, cg) + bno; 1811 ACTIVECLEAR(fs, cg); 1812 UFS_UNLOCK(ump); 1813 if (DOINGSOFTDEP(ITOV(ip))) 1814 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1815 bdwrite(bp); 1816 return (blkno); 1817 1818 fail: 1819 brelse(bp); 1820 UFS_LOCK(ump); 1821 return (0); 1822 } 1823 1824 /* 1825 * Allocate a block in a cylinder group. 1826 * 1827 * This algorithm implements the following policy: 1828 * 1) allocate the requested block. 1829 * 2) allocate a rotationally optimal block in the same cylinder. 1830 * 3) allocate the next available block on the block rotor for the 1831 * specified cylinder group. 1832 * Note that this routine only allocates fs_bsize blocks; these 1833 * blocks may be fragmented by the routine that allocates them. 1834 */ 1835 static ufs2_daddr_t 1836 ffs_alloccgblk(ip, bp, bpref, size) 1837 struct inode *ip; 1838 struct buf *bp; 1839 ufs2_daddr_t bpref; 1840 int size; 1841 { 1842 struct fs *fs; 1843 struct cg *cgp; 1844 struct ufsmount *ump; 1845 ufs1_daddr_t bno; 1846 ufs2_daddr_t blkno; 1847 u_int8_t *blksfree; 1848 int i, cgbpref; 1849 1850 ump = ITOUMP(ip); 1851 fs = ump->um_fs; 1852 mtx_assert(UFS_MTX(ump), MA_OWNED); 1853 cgp = (struct cg *)bp->b_data; 1854 blksfree = cg_blksfree(cgp); 1855 if (bpref == 0) { 1856 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1857 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1858 /* map bpref to correct zone in this cg */ 1859 if (bpref < cgdata(fs, cgbpref)) 1860 bpref = cgmeta(fs, cgp->cg_cgx); 1861 else 1862 bpref = cgdata(fs, cgp->cg_cgx); 1863 } 1864 /* 1865 * if the requested block is available, use it 1866 */ 1867 bno = dtogd(fs, blknum(fs, bpref)); 1868 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1869 goto gotit; 1870 /* 1871 * Take the next available block in this cylinder group. 1872 */ 1873 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1874 if (bno < 0) 1875 return (0); 1876 /* Update cg_rotor only if allocated from the data zone */ 1877 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1878 cgp->cg_rotor = bno; 1879 gotit: 1880 blkno = fragstoblks(fs, bno); 1881 ffs_clrblock(fs, blksfree, (long)blkno); 1882 ffs_clusteracct(fs, cgp, blkno, -1); 1883 cgp->cg_cs.cs_nbfree--; 1884 fs->fs_cstotal.cs_nbfree--; 1885 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1886 fs->fs_fmod = 1; 1887 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1888 /* 1889 * If the caller didn't want the whole block free the frags here. 1890 */ 1891 size = numfrags(fs, size); 1892 if (size != fs->fs_frag) { 1893 bno = dtogd(fs, blkno); 1894 for (i = size; i < fs->fs_frag; i++) 1895 setbit(blksfree, bno + i); 1896 i = fs->fs_frag - size; 1897 cgp->cg_cs.cs_nffree += i; 1898 fs->fs_cstotal.cs_nffree += i; 1899 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1900 fs->fs_fmod = 1; 1901 cgp->cg_frsum[i]++; 1902 } 1903 /* XXX Fixme. */ 1904 UFS_UNLOCK(ump); 1905 if (DOINGSOFTDEP(ITOV(ip))) 1906 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1907 UFS_LOCK(ump); 1908 return (blkno); 1909 } 1910 1911 /* 1912 * Determine whether a cluster can be allocated. 1913 * 1914 * We do not currently check for optimal rotational layout if there 1915 * are multiple choices in the same cylinder group. Instead we just 1916 * take the first one that we find following bpref. 1917 */ 1918 static ufs2_daddr_t 1919 ffs_clusteralloc(ip, cg, bpref, len) 1920 struct inode *ip; 1921 u_int cg; 1922 ufs2_daddr_t bpref; 1923 int len; 1924 { 1925 struct fs *fs; 1926 struct cg *cgp; 1927 struct buf *bp; 1928 struct ufsmount *ump; 1929 int i, run, bit, map, got, error; 1930 ufs2_daddr_t bno; 1931 u_char *mapp; 1932 int32_t *lp; 1933 u_int8_t *blksfree; 1934 1935 ump = ITOUMP(ip); 1936 fs = ump->um_fs; 1937 if (fs->fs_maxcluster[cg] < len) 1938 return (0); 1939 UFS_UNLOCK(ump); 1940 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1941 UFS_LOCK(ump); 1942 return (0); 1943 } 1944 /* 1945 * Check to see if a cluster of the needed size (or bigger) is 1946 * available in this cylinder group. 1947 */ 1948 lp = &cg_clustersum(cgp)[len]; 1949 for (i = len; i <= fs->fs_contigsumsize; i++) 1950 if (*lp++ > 0) 1951 break; 1952 if (i > fs->fs_contigsumsize) { 1953 /* 1954 * This is the first time looking for a cluster in this 1955 * cylinder group. Update the cluster summary information 1956 * to reflect the true maximum sized cluster so that 1957 * future cluster allocation requests can avoid reading 1958 * the cylinder group map only to find no clusters. 1959 */ 1960 lp = &cg_clustersum(cgp)[len - 1]; 1961 for (i = len - 1; i > 0; i--) 1962 if (*lp-- > 0) 1963 break; 1964 UFS_LOCK(ump); 1965 fs->fs_maxcluster[cg] = i; 1966 brelse(bp); 1967 return (0); 1968 } 1969 /* 1970 * Search the cluster map to find a big enough cluster. 1971 * We take the first one that we find, even if it is larger 1972 * than we need as we prefer to get one close to the previous 1973 * block allocation. We do not search before the current 1974 * preference point as we do not want to allocate a block 1975 * that is allocated before the previous one (as we will 1976 * then have to wait for another pass of the elevator 1977 * algorithm before it will be read). We prefer to fail and 1978 * be recalled to try an allocation in the next cylinder group. 1979 */ 1980 if (dtog(fs, bpref) != cg) 1981 bpref = cgdata(fs, cg); 1982 else 1983 bpref = blknum(fs, bpref); 1984 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1985 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1986 map = *mapp++; 1987 bit = 1 << (bpref % NBBY); 1988 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1989 if ((map & bit) == 0) { 1990 run = 0; 1991 } else { 1992 run++; 1993 if (run == len) 1994 break; 1995 } 1996 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1997 bit <<= 1; 1998 } else { 1999 map = *mapp++; 2000 bit = 1; 2001 } 2002 } 2003 if (got >= cgp->cg_nclusterblks) { 2004 UFS_LOCK(ump); 2005 brelse(bp); 2006 return (0); 2007 } 2008 /* 2009 * Allocate the cluster that we have found. 2010 */ 2011 blksfree = cg_blksfree(cgp); 2012 for (i = 1; i <= len; i++) 2013 if (!ffs_isblock(fs, blksfree, got - run + i)) 2014 panic("ffs_clusteralloc: map mismatch"); 2015 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 2016 if (dtog(fs, bno) != cg) 2017 panic("ffs_clusteralloc: allocated out of group"); 2018 len = blkstofrags(fs, len); 2019 UFS_LOCK(ump); 2020 for (i = 0; i < len; i += fs->fs_frag) 2021 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2022 panic("ffs_clusteralloc: lost block"); 2023 ACTIVECLEAR(fs, cg); 2024 UFS_UNLOCK(ump); 2025 bdwrite(bp); 2026 return (bno); 2027 } 2028 2029 static inline struct buf * 2030 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2031 { 2032 struct fs *fs; 2033 2034 fs = ITOFS(ip); 2035 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2036 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2037 gbflags)); 2038 } 2039 2040 /* 2041 * Synchronous inode initialization is needed only when barrier writes do not 2042 * work as advertised, and will impose a heavy cost on file creation in a newly 2043 * created filesystem. 2044 */ 2045 static int doasyncinodeinit = 1; 2046 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2047 &doasyncinodeinit, 0, 2048 "Perform inode block initialization using asynchronous writes"); 2049 2050 /* 2051 * Determine whether an inode can be allocated. 2052 * 2053 * Check to see if an inode is available, and if it is, 2054 * allocate it using the following policy: 2055 * 1) allocate the requested inode. 2056 * 2) allocate the next available inode after the requested 2057 * inode in the specified cylinder group. 2058 */ 2059 static ufs2_daddr_t 2060 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2061 struct inode *ip; 2062 u_int cg; 2063 ufs2_daddr_t ipref; 2064 int mode; 2065 int unused; 2066 { 2067 struct fs *fs; 2068 struct cg *cgp; 2069 struct buf *bp, *ibp; 2070 struct ufsmount *ump; 2071 u_int8_t *inosused, *loc; 2072 struct ufs2_dinode *dp2; 2073 int error, start, len, i; 2074 u_int32_t old_initediblk; 2075 2076 ump = ITOUMP(ip); 2077 fs = ump->um_fs; 2078 check_nifree: 2079 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2080 return (0); 2081 UFS_UNLOCK(ump); 2082 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2083 UFS_LOCK(ump); 2084 return (0); 2085 } 2086 restart: 2087 if (cgp->cg_cs.cs_nifree == 0) { 2088 brelse(bp); 2089 UFS_LOCK(ump); 2090 return (0); 2091 } 2092 inosused = cg_inosused(cgp); 2093 if (ipref) { 2094 ipref %= fs->fs_ipg; 2095 if (isclr(inosused, ipref)) 2096 goto gotit; 2097 } 2098 start = cgp->cg_irotor / NBBY; 2099 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2100 loc = memcchr(&inosused[start], 0xff, len); 2101 if (loc == NULL) { 2102 len = start + 1; 2103 start = 0; 2104 loc = memcchr(&inosused[start], 0xff, len); 2105 if (loc == NULL) { 2106 printf("cg = %d, irotor = %ld, fs = %s\n", 2107 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2108 panic("ffs_nodealloccg: map corrupted"); 2109 /* NOTREACHED */ 2110 } 2111 } 2112 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2113 gotit: 2114 /* 2115 * Check to see if we need to initialize more inodes. 2116 */ 2117 if (fs->fs_magic == FS_UFS2_MAGIC && 2118 ipref + INOPB(fs) > cgp->cg_initediblk && 2119 cgp->cg_initediblk < cgp->cg_niblk) { 2120 old_initediblk = cgp->cg_initediblk; 2121 2122 /* 2123 * Free the cylinder group lock before writing the 2124 * initialized inode block. Entering the 2125 * babarrierwrite() with the cylinder group lock 2126 * causes lock order violation between the lock and 2127 * snaplk. 2128 * 2129 * Another thread can decide to initialize the same 2130 * inode block, but whichever thread first gets the 2131 * cylinder group lock after writing the newly 2132 * allocated inode block will update it and the other 2133 * will realize that it has lost and leave the 2134 * cylinder group unchanged. 2135 */ 2136 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2137 brelse(bp); 2138 if (ibp == NULL) { 2139 /* 2140 * The inode block buffer is already owned by 2141 * another thread, which must initialize it. 2142 * Wait on the buffer to allow another thread 2143 * to finish the updates, with dropped cg 2144 * buffer lock, then retry. 2145 */ 2146 ibp = getinobuf(ip, cg, old_initediblk, 0); 2147 brelse(ibp); 2148 UFS_LOCK(ump); 2149 goto check_nifree; 2150 } 2151 bzero(ibp->b_data, (int)fs->fs_bsize); 2152 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2153 for (i = 0; i < INOPB(fs); i++) { 2154 while (dp2->di_gen == 0) 2155 dp2->di_gen = arc4random(); 2156 dp2++; 2157 } 2158 2159 /* 2160 * Rather than adding a soft updates dependency to ensure 2161 * that the new inode block is written before it is claimed 2162 * by the cylinder group map, we just do a barrier write 2163 * here. The barrier write will ensure that the inode block 2164 * gets written before the updated cylinder group map can be 2165 * written. The barrier write should only slow down bulk 2166 * loading of newly created filesystems. 2167 */ 2168 if (doasyncinodeinit) 2169 babarrierwrite(ibp); 2170 else 2171 bwrite(ibp); 2172 2173 /* 2174 * After the inode block is written, try to update the 2175 * cg initediblk pointer. If another thread beat us 2176 * to it, then leave it unchanged as the other thread 2177 * has already set it correctly. 2178 */ 2179 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2180 UFS_LOCK(ump); 2181 ACTIVECLEAR(fs, cg); 2182 UFS_UNLOCK(ump); 2183 if (error != 0) 2184 return (error); 2185 if (cgp->cg_initediblk == old_initediblk) 2186 cgp->cg_initediblk += INOPB(fs); 2187 goto restart; 2188 } 2189 cgp->cg_irotor = ipref; 2190 UFS_LOCK(ump); 2191 ACTIVECLEAR(fs, cg); 2192 setbit(inosused, ipref); 2193 cgp->cg_cs.cs_nifree--; 2194 fs->fs_cstotal.cs_nifree--; 2195 fs->fs_cs(fs, cg).cs_nifree--; 2196 fs->fs_fmod = 1; 2197 if ((mode & IFMT) == IFDIR) { 2198 cgp->cg_cs.cs_ndir++; 2199 fs->fs_cstotal.cs_ndir++; 2200 fs->fs_cs(fs, cg).cs_ndir++; 2201 } 2202 UFS_UNLOCK(ump); 2203 if (DOINGSOFTDEP(ITOV(ip))) 2204 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2205 bdwrite(bp); 2206 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2207 } 2208 2209 /* 2210 * Free a block or fragment. 2211 * 2212 * The specified block or fragment is placed back in the 2213 * free map. If a fragment is deallocated, a possible 2214 * block reassembly is checked. 2215 */ 2216 static void 2217 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2218 struct ufsmount *ump; 2219 struct fs *fs; 2220 struct vnode *devvp; 2221 ufs2_daddr_t bno; 2222 long size; 2223 ino_t inum; 2224 struct workhead *dephd; 2225 { 2226 struct mount *mp; 2227 struct cg *cgp; 2228 struct buf *bp; 2229 ufs1_daddr_t fragno, cgbno; 2230 int i, blk, frags, bbase, error; 2231 u_int cg; 2232 u_int8_t *blksfree; 2233 struct cdev *dev; 2234 2235 cg = dtog(fs, bno); 2236 if (devvp->v_type == VREG) { 2237 /* devvp is a snapshot */ 2238 MPASS(devvp->v_mount->mnt_data == ump); 2239 dev = ump->um_devvp->v_rdev; 2240 } else if (devvp->v_type == VCHR) { 2241 /* devvp is a normal disk device */ 2242 dev = devvp->v_rdev; 2243 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2244 } else 2245 return; 2246 #ifdef INVARIANTS 2247 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2248 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2249 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2250 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2251 size, fs->fs_fsmnt); 2252 panic("ffs_blkfree_cg: bad size"); 2253 } 2254 #endif 2255 if ((u_int)bno >= fs->fs_size) { 2256 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2257 (u_long)inum); 2258 ffs_fserr(fs, inum, "bad block"); 2259 return; 2260 } 2261 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2262 return; 2263 cgbno = dtogd(fs, bno); 2264 blksfree = cg_blksfree(cgp); 2265 UFS_LOCK(ump); 2266 if (size == fs->fs_bsize) { 2267 fragno = fragstoblks(fs, cgbno); 2268 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2269 if (devvp->v_type == VREG) { 2270 UFS_UNLOCK(ump); 2271 /* devvp is a snapshot */ 2272 brelse(bp); 2273 return; 2274 } 2275 printf("dev = %s, block = %jd, fs = %s\n", 2276 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2277 panic("ffs_blkfree_cg: freeing free block"); 2278 } 2279 ffs_setblock(fs, blksfree, fragno); 2280 ffs_clusteracct(fs, cgp, fragno, 1); 2281 cgp->cg_cs.cs_nbfree++; 2282 fs->fs_cstotal.cs_nbfree++; 2283 fs->fs_cs(fs, cg).cs_nbfree++; 2284 } else { 2285 bbase = cgbno - fragnum(fs, cgbno); 2286 /* 2287 * decrement the counts associated with the old frags 2288 */ 2289 blk = blkmap(fs, blksfree, bbase); 2290 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2291 /* 2292 * deallocate the fragment 2293 */ 2294 frags = numfrags(fs, size); 2295 for (i = 0; i < frags; i++) { 2296 if (isset(blksfree, cgbno + i)) { 2297 printf("dev = %s, block = %jd, fs = %s\n", 2298 devtoname(dev), (intmax_t)(bno + i), 2299 fs->fs_fsmnt); 2300 panic("ffs_blkfree_cg: freeing free frag"); 2301 } 2302 setbit(blksfree, cgbno + i); 2303 } 2304 cgp->cg_cs.cs_nffree += i; 2305 fs->fs_cstotal.cs_nffree += i; 2306 fs->fs_cs(fs, cg).cs_nffree += i; 2307 /* 2308 * add back in counts associated with the new frags 2309 */ 2310 blk = blkmap(fs, blksfree, bbase); 2311 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2312 /* 2313 * if a complete block has been reassembled, account for it 2314 */ 2315 fragno = fragstoblks(fs, bbase); 2316 if (ffs_isblock(fs, blksfree, fragno)) { 2317 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2318 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2319 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2320 ffs_clusteracct(fs, cgp, fragno, 1); 2321 cgp->cg_cs.cs_nbfree++; 2322 fs->fs_cstotal.cs_nbfree++; 2323 fs->fs_cs(fs, cg).cs_nbfree++; 2324 } 2325 } 2326 fs->fs_fmod = 1; 2327 ACTIVECLEAR(fs, cg); 2328 UFS_UNLOCK(ump); 2329 mp = UFSTOVFS(ump); 2330 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2331 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2332 numfrags(fs, size), dephd); 2333 bdwrite(bp); 2334 } 2335 2336 /* 2337 * Structures and routines associated with trim management. 2338 * 2339 * The following requests are passed to trim_lookup to indicate 2340 * the actions that should be taken. 2341 */ 2342 #define NEW 1 /* if found, error else allocate and hash it */ 2343 #define OLD 2 /* if not found, error, else return it */ 2344 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2345 #define DONE 4 /* if not found, error else unhash and return it */ 2346 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2347 2348 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2349 2350 #define TRIMLIST_HASH(ump, key) \ 2351 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2352 2353 /* 2354 * These structures describe each of the block free requests aggregated 2355 * together to make up a trim request. 2356 */ 2357 struct trim_blkreq { 2358 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2359 ufs2_daddr_t bno; 2360 long size; 2361 struct workhead *pdephd; 2362 struct workhead dephd; 2363 }; 2364 2365 /* 2366 * Description of a trim request. 2367 */ 2368 struct ffs_blkfree_trim_params { 2369 TAILQ_HEAD(, trim_blkreq) blklist; 2370 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2371 struct task task; 2372 struct ufsmount *ump; 2373 struct vnode *devvp; 2374 ino_t inum; 2375 ufs2_daddr_t bno; 2376 long size; 2377 long key; 2378 }; 2379 2380 static void ffs_blkfree_trim_completed(struct buf *); 2381 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2382 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2383 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2384 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2385 2386 /* 2387 * Called on trim completion to start a task to free the associated block(s). 2388 */ 2389 static void 2390 ffs_blkfree_trim_completed(bp) 2391 struct buf *bp; 2392 { 2393 struct ffs_blkfree_trim_params *tp; 2394 2395 tp = bp->b_fsprivate1; 2396 free(bp, M_TRIM); 2397 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2398 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2399 } 2400 2401 /* 2402 * Trim completion task that free associated block(s). 2403 */ 2404 static void 2405 ffs_blkfree_trim_task(ctx, pending) 2406 void *ctx; 2407 int pending; 2408 { 2409 struct ffs_blkfree_trim_params *tp; 2410 struct trim_blkreq *blkelm; 2411 struct ufsmount *ump; 2412 2413 tp = ctx; 2414 ump = tp->ump; 2415 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2416 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2417 blkelm->size, tp->inum, blkelm->pdephd); 2418 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2419 free(blkelm, M_TRIM); 2420 } 2421 vn_finished_secondary_write(UFSTOVFS(ump)); 2422 UFS_LOCK(ump); 2423 ump->um_trim_inflight -= 1; 2424 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2425 UFS_UNLOCK(ump); 2426 free(tp, M_TRIM); 2427 } 2428 2429 /* 2430 * Lookup a trim request by inode number. 2431 * Allocate if requested (NEW, REPLACE, SINGLE). 2432 */ 2433 static struct ffs_blkfree_trim_params * 2434 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2435 struct ufsmount *ump; 2436 struct vnode *devvp; 2437 ufs2_daddr_t bno; 2438 long size; 2439 ino_t inum; 2440 u_long key; 2441 int alloctype; 2442 { 2443 struct trimlist_hashhead *tphashhead; 2444 struct ffs_blkfree_trim_params *tp, *ntp; 2445 2446 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2447 if (alloctype != SINGLE) { 2448 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2449 UFS_LOCK(ump); 2450 tphashhead = TRIMLIST_HASH(ump, key); 2451 LIST_FOREACH(tp, tphashhead, hashlist) 2452 if (key == tp->key) 2453 break; 2454 } 2455 switch (alloctype) { 2456 case NEW: 2457 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2458 break; 2459 case OLD: 2460 KASSERT(tp != NULL, 2461 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2462 UFS_UNLOCK(ump); 2463 free(ntp, M_TRIM); 2464 return (tp); 2465 case REPLACE: 2466 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2467 LIST_REMOVE(tp, hashlist); 2468 /* tp will be freed by caller */ 2469 break; 2470 case DONE: 2471 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2472 LIST_REMOVE(tp, hashlist); 2473 UFS_UNLOCK(ump); 2474 free(ntp, M_TRIM); 2475 return (tp); 2476 } 2477 TAILQ_INIT(&ntp->blklist); 2478 ntp->ump = ump; 2479 ntp->devvp = devvp; 2480 ntp->bno = bno; 2481 ntp->size = size; 2482 ntp->inum = inum; 2483 ntp->key = key; 2484 if (alloctype != SINGLE) { 2485 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2486 UFS_UNLOCK(ump); 2487 } 2488 return (ntp); 2489 } 2490 2491 /* 2492 * Dispatch a trim request. 2493 */ 2494 static void 2495 ffs_blkfree_sendtrim(tp) 2496 struct ffs_blkfree_trim_params *tp; 2497 { 2498 struct ufsmount *ump; 2499 struct mount *mp; 2500 struct buf *bp; 2501 2502 /* 2503 * Postpone the set of the free bit in the cg bitmap until the 2504 * BIO_DELETE is completed. Otherwise, due to disk queue 2505 * reordering, TRIM might be issued after we reuse the block 2506 * and write some new data into it. 2507 */ 2508 ump = tp->ump; 2509 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2510 bp->b_iocmd = BIO_DELETE; 2511 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2512 bp->b_iodone = ffs_blkfree_trim_completed; 2513 bp->b_bcount = tp->size; 2514 bp->b_fsprivate1 = tp; 2515 UFS_LOCK(ump); 2516 ump->um_trim_total += 1; 2517 ump->um_trim_inflight += 1; 2518 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2519 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2520 UFS_UNLOCK(ump); 2521 2522 mp = UFSTOVFS(ump); 2523 vn_start_secondary_write(NULL, &mp, 0); 2524 g_vfs_strategy(ump->um_bo, bp); 2525 } 2526 2527 /* 2528 * Allocate a new key to use to identify a range of blocks. 2529 */ 2530 u_long 2531 ffs_blkrelease_start(ump, devvp, inum) 2532 struct ufsmount *ump; 2533 struct vnode *devvp; 2534 ino_t inum; 2535 { 2536 static u_long masterkey; 2537 u_long key; 2538 2539 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2540 return (SINGLETON_KEY); 2541 do { 2542 key = atomic_fetchadd_long(&masterkey, 1); 2543 } while (key < FIRST_VALID_KEY); 2544 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2545 return (key); 2546 } 2547 2548 /* 2549 * Deallocate a key that has been used to identify a range of blocks. 2550 */ 2551 void 2552 ffs_blkrelease_finish(ump, key) 2553 struct ufsmount *ump; 2554 u_long key; 2555 { 2556 struct ffs_blkfree_trim_params *tp; 2557 2558 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2559 return; 2560 /* 2561 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2562 * a file deletion is active, specifically after a call 2563 * to ffs_blkrelease_start() but before the call to 2564 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2565 * have handed out SINGLETON_KEY rather than starting a 2566 * collection sequence. Thus if we get a SINGLETON_KEY 2567 * passed to ffs_blkrelease_finish(), we just return rather 2568 * than trying to finish the nonexistent sequence. 2569 */ 2570 if (key == SINGLETON_KEY) { 2571 #ifdef INVARIANTS 2572 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2573 ump->um_mountp->mnt_stat.f_mntonname); 2574 #endif 2575 return; 2576 } 2577 /* 2578 * We are done with sending blocks using this key. Look up the key 2579 * using the DONE alloctype (in tp) to request that it be unhashed 2580 * as we will not be adding to it. If the key has never been used, 2581 * tp->size will be zero, so we can just free tp. Otherwise the call 2582 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2583 * tp to be issued (and then tp to be freed). 2584 */ 2585 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2586 if (tp->size == 0) 2587 free(tp, M_TRIM); 2588 else 2589 ffs_blkfree_sendtrim(tp); 2590 } 2591 2592 /* 2593 * Setup to free a block or fragment. 2594 * 2595 * Check for snapshots that might want to claim the block. 2596 * If trims are requested, prepare a trim request. Attempt to 2597 * aggregate consecutive blocks into a single trim request. 2598 */ 2599 void 2600 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2601 struct ufsmount *ump; 2602 struct fs *fs; 2603 struct vnode *devvp; 2604 ufs2_daddr_t bno; 2605 long size; 2606 ino_t inum; 2607 enum vtype vtype; 2608 struct workhead *dephd; 2609 u_long key; 2610 { 2611 struct ffs_blkfree_trim_params *tp, *ntp; 2612 struct trim_blkreq *blkelm; 2613 2614 /* 2615 * Check to see if a snapshot wants to claim the block. 2616 * Check that devvp is a normal disk device, not a snapshot, 2617 * it has a snapshot(s) associated with it, and one of the 2618 * snapshots wants to claim the block. 2619 */ 2620 if (devvp->v_type == VCHR && 2621 (devvp->v_vflag & VV_COPYONWRITE) && 2622 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2623 return; 2624 } 2625 /* 2626 * Nothing to delay if TRIM is not required for this block or TRIM 2627 * is disabled or the operation is performed on a snapshot. 2628 */ 2629 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2630 devvp->v_type == VREG) { 2631 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2632 return; 2633 } 2634 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2635 blkelm->bno = bno; 2636 blkelm->size = size; 2637 if (dephd == NULL) { 2638 blkelm->pdephd = NULL; 2639 } else { 2640 LIST_INIT(&blkelm->dephd); 2641 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2642 blkelm->pdephd = &blkelm->dephd; 2643 } 2644 if (key == SINGLETON_KEY) { 2645 /* 2646 * Just a single non-contiguous piece. Use the SINGLE 2647 * alloctype to return a trim request that will not be 2648 * hashed for future lookup. 2649 */ 2650 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2651 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2652 ffs_blkfree_sendtrim(tp); 2653 return; 2654 } 2655 /* 2656 * The callers of this function are not tracking whether or not 2657 * the blocks are contiguous. They are just saying that they 2658 * are freeing a set of blocks. It is this code that determines 2659 * the pieces of that range that are actually contiguous. 2660 * 2661 * Calling ffs_blkrelease_start() will have created an entry 2662 * that we will use. 2663 */ 2664 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2665 if (tp->size == 0) { 2666 /* 2667 * First block of a potential range, set block and size 2668 * for the trim block. 2669 */ 2670 tp->bno = bno; 2671 tp->size = size; 2672 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2673 return; 2674 } 2675 /* 2676 * If this block is a continuation of the range (either 2677 * follows at the end or preceeds in the front) then we 2678 * add it to the front or back of the list and return. 2679 * 2680 * If it is not a continuation of the trim that we were 2681 * building, using the REPLACE alloctype, we request that 2682 * the old trim request (still in tp) be unhashed and a 2683 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2684 * call causes the block range described by tp to be issued 2685 * (and then tp to be freed). 2686 */ 2687 if (bno + numfrags(fs, size) == tp->bno) { 2688 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2689 tp->bno = bno; 2690 tp->size += size; 2691 return; 2692 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2693 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2694 tp->size += size; 2695 return; 2696 } 2697 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2698 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2699 ffs_blkfree_sendtrim(tp); 2700 } 2701 2702 #ifdef INVARIANTS 2703 /* 2704 * Verify allocation of a block or fragment. Returns true if block or 2705 * fragment is allocated, false if it is free. 2706 */ 2707 static int 2708 ffs_checkblk(ip, bno, size) 2709 struct inode *ip; 2710 ufs2_daddr_t bno; 2711 long size; 2712 { 2713 struct fs *fs; 2714 struct cg *cgp; 2715 struct buf *bp; 2716 ufs1_daddr_t cgbno; 2717 int i, error, frags, free; 2718 u_int8_t *blksfree; 2719 2720 fs = ITOFS(ip); 2721 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2722 printf("bsize = %ld, size = %ld, fs = %s\n", 2723 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2724 panic("ffs_checkblk: bad size"); 2725 } 2726 if ((u_int)bno >= fs->fs_size) 2727 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2728 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2729 if (error) 2730 panic("ffs_checkblk: cylinder group read failed"); 2731 blksfree = cg_blksfree(cgp); 2732 cgbno = dtogd(fs, bno); 2733 if (size == fs->fs_bsize) { 2734 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2735 } else { 2736 frags = numfrags(fs, size); 2737 for (free = 0, i = 0; i < frags; i++) 2738 if (isset(blksfree, cgbno + i)) 2739 free++; 2740 if (free != 0 && free != frags) 2741 panic("ffs_checkblk: partially free fragment"); 2742 } 2743 brelse(bp); 2744 return (!free); 2745 } 2746 #endif /* INVARIANTS */ 2747 2748 /* 2749 * Free an inode. 2750 */ 2751 int 2752 ffs_vfree(pvp, ino, mode) 2753 struct vnode *pvp; 2754 ino_t ino; 2755 int mode; 2756 { 2757 struct ufsmount *ump; 2758 2759 if (DOINGSOFTDEP(pvp)) { 2760 softdep_freefile(pvp, ino, mode); 2761 return (0); 2762 } 2763 ump = VFSTOUFS(pvp->v_mount); 2764 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2765 } 2766 2767 /* 2768 * Do the actual free operation. 2769 * The specified inode is placed back in the free map. 2770 */ 2771 int 2772 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2773 struct ufsmount *ump; 2774 struct fs *fs; 2775 struct vnode *devvp; 2776 ino_t ino; 2777 int mode; 2778 struct workhead *wkhd; 2779 { 2780 struct cg *cgp; 2781 struct buf *bp; 2782 int error; 2783 u_int cg; 2784 u_int8_t *inosused; 2785 struct cdev *dev; 2786 2787 cg = ino_to_cg(fs, ino); 2788 if (devvp->v_type == VREG) { 2789 /* devvp is a snapshot */ 2790 MPASS(devvp->v_mount->mnt_data == ump); 2791 dev = ump->um_devvp->v_rdev; 2792 } else if (devvp->v_type == VCHR) { 2793 /* devvp is a normal disk device */ 2794 dev = devvp->v_rdev; 2795 } else { 2796 bp = NULL; 2797 return (0); 2798 } 2799 if (ino >= fs->fs_ipg * fs->fs_ncg) 2800 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2801 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2802 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2803 return (error); 2804 inosused = cg_inosused(cgp); 2805 ino %= fs->fs_ipg; 2806 if (isclr(inosused, ino)) { 2807 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2808 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2809 if (fs->fs_ronly == 0) 2810 panic("ffs_freefile: freeing free inode"); 2811 } 2812 clrbit(inosused, ino); 2813 if (ino < cgp->cg_irotor) 2814 cgp->cg_irotor = ino; 2815 cgp->cg_cs.cs_nifree++; 2816 UFS_LOCK(ump); 2817 fs->fs_cstotal.cs_nifree++; 2818 fs->fs_cs(fs, cg).cs_nifree++; 2819 if ((mode & IFMT) == IFDIR) { 2820 cgp->cg_cs.cs_ndir--; 2821 fs->fs_cstotal.cs_ndir--; 2822 fs->fs_cs(fs, cg).cs_ndir--; 2823 } 2824 fs->fs_fmod = 1; 2825 ACTIVECLEAR(fs, cg); 2826 UFS_UNLOCK(ump); 2827 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2828 softdep_setup_inofree(UFSTOVFS(ump), bp, 2829 ino + cg * fs->fs_ipg, wkhd); 2830 bdwrite(bp); 2831 return (0); 2832 } 2833 2834 /* 2835 * Check to see if a file is free. 2836 * Used to check for allocated files in snapshots. 2837 */ 2838 int 2839 ffs_checkfreefile(fs, devvp, ino) 2840 struct fs *fs; 2841 struct vnode *devvp; 2842 ino_t ino; 2843 { 2844 struct cg *cgp; 2845 struct buf *bp; 2846 int ret, error; 2847 u_int cg; 2848 u_int8_t *inosused; 2849 2850 cg = ino_to_cg(fs, ino); 2851 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2852 return (1); 2853 if (ino >= fs->fs_ipg * fs->fs_ncg) 2854 return (1); 2855 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2856 return (1); 2857 inosused = cg_inosused(cgp); 2858 ino %= fs->fs_ipg; 2859 ret = isclr(inosused, ino); 2860 brelse(bp); 2861 return (ret); 2862 } 2863 2864 /* 2865 * Find a block of the specified size in the specified cylinder group. 2866 * 2867 * It is a panic if a request is made to find a block if none are 2868 * available. 2869 */ 2870 static ufs1_daddr_t 2871 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2872 struct fs *fs; 2873 struct cg *cgp; 2874 ufs2_daddr_t bpref; 2875 int allocsiz; 2876 { 2877 ufs1_daddr_t bno; 2878 int start, len, loc, i; 2879 int blk, field, subfield, pos; 2880 u_int8_t *blksfree; 2881 2882 /* 2883 * find the fragment by searching through the free block 2884 * map for an appropriate bit pattern 2885 */ 2886 if (bpref) 2887 start = dtogd(fs, bpref) / NBBY; 2888 else 2889 start = cgp->cg_frotor / NBBY; 2890 blksfree = cg_blksfree(cgp); 2891 len = howmany(fs->fs_fpg, NBBY) - start; 2892 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2893 fragtbl[fs->fs_frag], 2894 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2895 if (loc == 0) { 2896 len = start + 1; 2897 start = 0; 2898 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2899 fragtbl[fs->fs_frag], 2900 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2901 if (loc == 0) { 2902 printf("start = %d, len = %d, fs = %s\n", 2903 start, len, fs->fs_fsmnt); 2904 panic("ffs_alloccg: map corrupted"); 2905 /* NOTREACHED */ 2906 } 2907 } 2908 bno = (start + len - loc) * NBBY; 2909 cgp->cg_frotor = bno; 2910 /* 2911 * found the byte in the map 2912 * sift through the bits to find the selected frag 2913 */ 2914 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2915 blk = blkmap(fs, blksfree, bno); 2916 blk <<= 1; 2917 field = around[allocsiz]; 2918 subfield = inside[allocsiz]; 2919 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2920 if ((blk & field) == subfield) 2921 return (bno + pos); 2922 field <<= 1; 2923 subfield <<= 1; 2924 } 2925 } 2926 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2927 panic("ffs_alloccg: block not in map"); 2928 return (-1); 2929 } 2930 2931 static const struct statfs * 2932 ffs_getmntstat(struct vnode *devvp) 2933 { 2934 2935 if (devvp->v_type == VCHR) 2936 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2937 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2938 } 2939 2940 /* 2941 * Fetch and verify a cylinder group. 2942 */ 2943 int 2944 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2945 struct fs *fs; 2946 struct vnode *devvp; 2947 u_int cg; 2948 struct buf **bpp; 2949 struct cg **cgpp; 2950 { 2951 struct buf *bp; 2952 struct cg *cgp; 2953 const struct statfs *sfs; 2954 int flags, error; 2955 2956 *bpp = NULL; 2957 *cgpp = NULL; 2958 flags = 0; 2959 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2960 flags |= GB_CKHASH; 2961 error = breadn_flags(devvp, devvp->v_type == VREG ? 2962 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2963 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2964 ffs_ckhash_cg, &bp); 2965 if (error != 0) 2966 return (error); 2967 cgp = (struct cg *)bp->b_data; 2968 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2969 (bp->b_flags & B_CKHASH) != 0 && 2970 cgp->cg_ckhash != bp->b_ckhash) { 2971 sfs = ffs_getmntstat(devvp); 2972 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2973 "0x%x != bp: 0x%jx\n", 2974 devvp->v_type == VCHR ? "" : "snapshot of ", 2975 sfs->f_mntfromname, sfs->f_mntonname, 2976 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2977 bp->b_flags &= ~B_CKHASH; 2978 bp->b_flags |= B_INVAL | B_NOCACHE; 2979 brelse(bp); 2980 return (EIO); 2981 } 2982 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2983 sfs = ffs_getmntstat(devvp); 2984 printf("UFS %s%s (%s)", 2985 devvp->v_type == VCHR ? "" : "snapshot of ", 2986 sfs->f_mntfromname, sfs->f_mntonname); 2987 if (!cg_chkmagic(cgp)) 2988 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2989 cg, cgp->cg_magic, CG_MAGIC); 2990 else 2991 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2992 cgp->cg_cgx); 2993 bp->b_flags &= ~B_CKHASH; 2994 bp->b_flags |= B_INVAL | B_NOCACHE; 2995 brelse(bp); 2996 return (EIO); 2997 } 2998 bp->b_flags &= ~B_CKHASH; 2999 bp->b_xflags |= BX_BKGRDWRITE; 3000 /* 3001 * If we are using check hashes on the cylinder group then we want 3002 * to limit changing the cylinder group time to when we are actually 3003 * going to write it to disk so that its check hash remains correct 3004 * in memory. If the CK_CYLGRP flag is set the time is updated in 3005 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 3006 * update the time here as we have done historically. 3007 */ 3008 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 3009 bp->b_xflags |= BX_CYLGRP; 3010 else 3011 cgp->cg_old_time = cgp->cg_time = time_second; 3012 *bpp = bp; 3013 *cgpp = cgp; 3014 return (0); 3015 } 3016 3017 static void 3018 ffs_ckhash_cg(bp) 3019 struct buf *bp; 3020 { 3021 uint32_t ckhash; 3022 struct cg *cgp; 3023 3024 cgp = (struct cg *)bp->b_data; 3025 ckhash = cgp->cg_ckhash; 3026 cgp->cg_ckhash = 0; 3027 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3028 cgp->cg_ckhash = ckhash; 3029 } 3030 3031 /* 3032 * Fserr prints the name of a filesystem with an error diagnostic. 3033 * 3034 * The form of the error message is: 3035 * fs: error message 3036 */ 3037 void 3038 ffs_fserr(fs, inum, cp) 3039 struct fs *fs; 3040 ino_t inum; 3041 char *cp; 3042 { 3043 struct thread *td = curthread; /* XXX */ 3044 struct proc *p = td->td_proc; 3045 3046 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3047 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3048 fs->fs_fsmnt, cp); 3049 } 3050 3051 /* 3052 * This function provides the capability for the fsck program to 3053 * update an active filesystem. Fourteen operations are provided: 3054 * 3055 * adjrefcnt(inode, amt) - adjusts the reference count on the 3056 * specified inode by the specified amount. Under normal 3057 * operation the count should always go down. Decrementing 3058 * the count to zero will cause the inode to be freed. 3059 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3060 * inode by the specified amount. 3061 * adjsize(inode, size) - set the size of the inode to the 3062 * specified size. 3063 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3064 * adjust the superblock summary. 3065 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3066 * are marked as free. Inodes should never have to be marked 3067 * as in use. 3068 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3069 * are marked as free. Inodes should never have to be marked 3070 * as in use. 3071 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3072 * are marked as free. Blocks should never have to be marked 3073 * as in use. 3074 * setflags(flags, set/clear) - the fs_flags field has the specified 3075 * flags set (second parameter +1) or cleared (second parameter -1). 3076 * setcwd(dirinode) - set the current directory to dirinode in the 3077 * filesystem associated with the snapshot. 3078 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3079 * in the current directory is oldvalue then change it to newvalue. 3080 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3081 * with nameptr in the current directory is oldvalue then unlink it. 3082 * 3083 * The following functions may only be used on a quiescent filesystem 3084 * by the soft updates journal. They are not safe to be run on an active 3085 * filesystem. 3086 * 3087 * setinode(inode, dip) - the specified disk inode is replaced with the 3088 * contents pointed to by dip. 3089 * setbufoutput(fd, flags) - output associated with the specified file 3090 * descriptor (which must reference the character device supporting 3091 * the filesystem) switches from using physio to running through the 3092 * buffer cache when flags is set to 1. The descriptor reverts to 3093 * physio for output when flags is set to zero. 3094 */ 3095 3096 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3097 3098 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 3099 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 3100 3101 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 3102 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 3103 3104 static SYSCTL_NODE(_vfs_ffs, FFS_SET_SIZE, setsize, CTLFLAG_WR, 3105 sysctl_ffs_fsck, "Set the inode size"); 3106 3107 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 3108 sysctl_ffs_fsck, "Adjust number of directories"); 3109 3110 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 3111 sysctl_ffs_fsck, "Adjust number of free blocks"); 3112 3113 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 3114 sysctl_ffs_fsck, "Adjust number of free inodes"); 3115 3116 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 3117 sysctl_ffs_fsck, "Adjust number of free frags"); 3118 3119 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 3120 sysctl_ffs_fsck, "Adjust number of free clusters"); 3121 3122 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 3123 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 3124 3125 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 3126 sysctl_ffs_fsck, "Free Range of File Inodes"); 3127 3128 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 3129 sysctl_ffs_fsck, "Free Range of Blocks"); 3130 3131 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 3132 sysctl_ffs_fsck, "Change Filesystem Flags"); 3133 3134 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 3135 sysctl_ffs_fsck, "Set Current Working Directory"); 3136 3137 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 3138 sysctl_ffs_fsck, "Change Value of .. Entry"); 3139 3140 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 3141 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 3142 3143 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 3144 sysctl_ffs_fsck, "Update an On-Disk Inode"); 3145 3146 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 3147 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 3148 3149 #ifdef DIAGNOSTIC 3150 static int fsckcmds = 0; 3151 SYSCTL_INT(_debug, OID_AUTO, ffs_fsckcmds, CTLFLAG_RW, &fsckcmds, 0, 3152 "print out fsck_ffs-based filesystem update commands"); 3153 #endif /* DIAGNOSTIC */ 3154 3155 static int buffered_write(struct file *, struct uio *, struct ucred *, 3156 int, struct thread *); 3157 3158 static int 3159 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3160 { 3161 struct thread *td = curthread; 3162 struct fsck_cmd cmd; 3163 struct ufsmount *ump; 3164 struct vnode *vp, *dvp, *fdvp; 3165 struct inode *ip, *dp; 3166 struct mount *mp; 3167 struct fs *fs; 3168 ufs2_daddr_t blkno; 3169 long blkcnt, blksize; 3170 u_long key; 3171 struct file *fp, *vfp; 3172 cap_rights_t rights; 3173 int filetype, error; 3174 static struct fileops *origops, bufferedops; 3175 3176 if (req->newlen > sizeof cmd) 3177 return (EBADRPC); 3178 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 3179 return (error); 3180 if (cmd.version != FFS_CMD_VERSION) 3181 return (ERPCMISMATCH); 3182 if ((error = getvnode(td, cmd.handle, 3183 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 3184 return (error); 3185 vp = fp->f_data; 3186 if (vp->v_type != VREG && vp->v_type != VDIR) { 3187 fdrop(fp, td); 3188 return (EINVAL); 3189 } 3190 vn_start_write(vp, &mp, V_WAIT); 3191 if (mp == NULL || 3192 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3193 vn_finished_write(mp); 3194 fdrop(fp, td); 3195 return (EINVAL); 3196 } 3197 ump = VFSTOUFS(mp); 3198 if ((mp->mnt_flag & MNT_RDONLY) && 3199 ump->um_fsckpid != td->td_proc->p_pid) { 3200 vn_finished_write(mp); 3201 fdrop(fp, td); 3202 return (EROFS); 3203 } 3204 fs = ump->um_fs; 3205 filetype = IFREG; 3206 3207 switch (oidp->oid_number) { 3208 3209 case FFS_SET_FLAGS: 3210 #ifdef DIAGNOSTIC 3211 if (fsckcmds) 3212 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3213 cmd.size > 0 ? "set" : "clear"); 3214 #endif /* DIAGNOSTIC */ 3215 if (cmd.size > 0) 3216 fs->fs_flags |= (long)cmd.value; 3217 else 3218 fs->fs_flags &= ~(long)cmd.value; 3219 break; 3220 3221 case FFS_ADJ_REFCNT: 3222 #ifdef DIAGNOSTIC 3223 if (fsckcmds) { 3224 printf("%s: adjust inode %jd link count by %jd\n", 3225 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3226 (intmax_t)cmd.size); 3227 } 3228 #endif /* DIAGNOSTIC */ 3229 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3230 break; 3231 ip = VTOI(vp); 3232 ip->i_nlink += cmd.size; 3233 DIP_SET(ip, i_nlink, ip->i_nlink); 3234 ip->i_effnlink += cmd.size; 3235 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3236 error = ffs_update(vp, 1); 3237 if (DOINGSOFTDEP(vp)) 3238 softdep_change_linkcnt(ip); 3239 vput(vp); 3240 break; 3241 3242 case FFS_ADJ_BLKCNT: 3243 #ifdef DIAGNOSTIC 3244 if (fsckcmds) { 3245 printf("%s: adjust inode %jd block count by %jd\n", 3246 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3247 (intmax_t)cmd.size); 3248 } 3249 #endif /* DIAGNOSTIC */ 3250 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3251 break; 3252 ip = VTOI(vp); 3253 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3254 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3255 error = ffs_update(vp, 1); 3256 vput(vp); 3257 break; 3258 3259 case FFS_SET_SIZE: 3260 #ifdef DIAGNOSTIC 3261 if (fsckcmds) { 3262 printf("%s: set inode %jd size to %jd\n", 3263 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3264 (intmax_t)cmd.size); 3265 } 3266 #endif /* DIAGNOSTIC */ 3267 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3268 break; 3269 ip = VTOI(vp); 3270 DIP_SET(ip, i_size, cmd.size); 3271 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3272 error = ffs_update(vp, 1); 3273 vput(vp); 3274 break; 3275 3276 case FFS_DIR_FREE: 3277 filetype = IFDIR; 3278 /* fall through */ 3279 3280 case FFS_FILE_FREE: 3281 #ifdef DIAGNOSTIC 3282 if (fsckcmds) { 3283 if (cmd.size == 1) 3284 printf("%s: free %s inode %ju\n", 3285 mp->mnt_stat.f_mntonname, 3286 filetype == IFDIR ? "directory" : "file", 3287 (uintmax_t)cmd.value); 3288 else 3289 printf("%s: free %s inodes %ju-%ju\n", 3290 mp->mnt_stat.f_mntonname, 3291 filetype == IFDIR ? "directory" : "file", 3292 (uintmax_t)cmd.value, 3293 (uintmax_t)(cmd.value + cmd.size - 1)); 3294 } 3295 #endif /* DIAGNOSTIC */ 3296 while (cmd.size > 0) { 3297 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3298 cmd.value, filetype, NULL))) 3299 break; 3300 cmd.size -= 1; 3301 cmd.value += 1; 3302 } 3303 break; 3304 3305 case FFS_BLK_FREE: 3306 #ifdef DIAGNOSTIC 3307 if (fsckcmds) { 3308 if (cmd.size == 1) 3309 printf("%s: free block %jd\n", 3310 mp->mnt_stat.f_mntonname, 3311 (intmax_t)cmd.value); 3312 else 3313 printf("%s: free blocks %jd-%jd\n", 3314 mp->mnt_stat.f_mntonname, 3315 (intmax_t)cmd.value, 3316 (intmax_t)cmd.value + cmd.size - 1); 3317 } 3318 #endif /* DIAGNOSTIC */ 3319 blkno = cmd.value; 3320 blkcnt = cmd.size; 3321 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3322 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3323 while (blkcnt > 0) { 3324 if (blkcnt < blksize) 3325 blksize = blkcnt; 3326 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3327 blksize * fs->fs_fsize, UFS_ROOTINO, 3328 VDIR, NULL, key); 3329 blkno += blksize; 3330 blkcnt -= blksize; 3331 blksize = fs->fs_frag; 3332 } 3333 ffs_blkrelease_finish(ump, key); 3334 break; 3335 3336 /* 3337 * Adjust superblock summaries. fsck(8) is expected to 3338 * submit deltas when necessary. 3339 */ 3340 case FFS_ADJ_NDIR: 3341 #ifdef DIAGNOSTIC 3342 if (fsckcmds) { 3343 printf("%s: adjust number of directories by %jd\n", 3344 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3345 } 3346 #endif /* DIAGNOSTIC */ 3347 fs->fs_cstotal.cs_ndir += cmd.value; 3348 break; 3349 3350 case FFS_ADJ_NBFREE: 3351 #ifdef DIAGNOSTIC 3352 if (fsckcmds) { 3353 printf("%s: adjust number of free blocks by %+jd\n", 3354 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3355 } 3356 #endif /* DIAGNOSTIC */ 3357 fs->fs_cstotal.cs_nbfree += cmd.value; 3358 break; 3359 3360 case FFS_ADJ_NIFREE: 3361 #ifdef DIAGNOSTIC 3362 if (fsckcmds) { 3363 printf("%s: adjust number of free inodes by %+jd\n", 3364 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3365 } 3366 #endif /* DIAGNOSTIC */ 3367 fs->fs_cstotal.cs_nifree += cmd.value; 3368 break; 3369 3370 case FFS_ADJ_NFFREE: 3371 #ifdef DIAGNOSTIC 3372 if (fsckcmds) { 3373 printf("%s: adjust number of free frags by %+jd\n", 3374 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3375 } 3376 #endif /* DIAGNOSTIC */ 3377 fs->fs_cstotal.cs_nffree += cmd.value; 3378 break; 3379 3380 case FFS_ADJ_NUMCLUSTERS: 3381 #ifdef DIAGNOSTIC 3382 if (fsckcmds) { 3383 printf("%s: adjust number of free clusters by %+jd\n", 3384 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3385 } 3386 #endif /* DIAGNOSTIC */ 3387 fs->fs_cstotal.cs_numclusters += cmd.value; 3388 break; 3389 3390 case FFS_SET_CWD: 3391 #ifdef DIAGNOSTIC 3392 if (fsckcmds) { 3393 printf("%s: set current directory to inode %jd\n", 3394 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3395 } 3396 #endif /* DIAGNOSTIC */ 3397 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3398 break; 3399 AUDIT_ARG_VNODE1(vp); 3400 if ((error = change_dir(vp, td)) != 0) { 3401 vput(vp); 3402 break; 3403 } 3404 VOP_UNLOCK(vp, 0); 3405 pwd_chdir(td, vp); 3406 break; 3407 3408 case FFS_SET_DOTDOT: 3409 #ifdef DIAGNOSTIC 3410 if (fsckcmds) { 3411 printf("%s: change .. in cwd from %jd to %jd\n", 3412 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3413 (intmax_t)cmd.size); 3414 } 3415 #endif /* DIAGNOSTIC */ 3416 /* 3417 * First we have to get and lock the parent directory 3418 * to which ".." points. 3419 */ 3420 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3421 if (error) 3422 break; 3423 /* 3424 * Now we get and lock the child directory containing "..". 3425 */ 3426 FILEDESC_SLOCK(td->td_proc->p_fd); 3427 dvp = td->td_proc->p_fd->fd_cdir; 3428 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3429 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3430 vput(fdvp); 3431 break; 3432 } 3433 dp = VTOI(dvp); 3434 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3435 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3436 DT_DIR, 0); 3437 cache_purge(fdvp); 3438 cache_purge(dvp); 3439 vput(dvp); 3440 vput(fdvp); 3441 break; 3442 3443 case FFS_UNLINK: 3444 #ifdef DIAGNOSTIC 3445 if (fsckcmds) { 3446 char buf[32]; 3447 3448 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3449 strncpy(buf, "Name_too_long", 32); 3450 printf("%s: unlink %s (inode %jd)\n", 3451 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3452 } 3453 #endif /* DIAGNOSTIC */ 3454 /* 3455 * kern_funlinkat will do its own start/finish writes and 3456 * they do not nest, so drop ours here. Setting mp == NULL 3457 * indicates that vn_finished_write is not needed down below. 3458 */ 3459 vn_finished_write(mp); 3460 mp = NULL; 3461 error = kern_funlinkat(td, AT_FDCWD, 3462 (char *)(intptr_t)cmd.value, FD_NONE, UIO_USERSPACE, 3463 0, (ino_t)cmd.size); 3464 break; 3465 3466 case FFS_SET_INODE: 3467 if (ump->um_fsckpid != td->td_proc->p_pid) { 3468 error = EPERM; 3469 break; 3470 } 3471 #ifdef DIAGNOSTIC 3472 if (fsckcmds) { 3473 printf("%s: update inode %jd\n", 3474 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3475 } 3476 #endif /* DIAGNOSTIC */ 3477 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3478 break; 3479 AUDIT_ARG_VNODE1(vp); 3480 ip = VTOI(vp); 3481 if (I_IS_UFS1(ip)) 3482 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3483 sizeof(struct ufs1_dinode)); 3484 else 3485 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3486 sizeof(struct ufs2_dinode)); 3487 if (error) { 3488 vput(vp); 3489 break; 3490 } 3491 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3492 error = ffs_update(vp, 1); 3493 vput(vp); 3494 break; 3495 3496 case FFS_SET_BUFOUTPUT: 3497 if (ump->um_fsckpid != td->td_proc->p_pid) { 3498 error = EPERM; 3499 break; 3500 } 3501 if (ITOUMP(VTOI(vp)) != ump) { 3502 error = EINVAL; 3503 break; 3504 } 3505 #ifdef DIAGNOSTIC 3506 if (fsckcmds) { 3507 printf("%s: %s buffered output for descriptor %jd\n", 3508 mp->mnt_stat.f_mntonname, 3509 cmd.size == 1 ? "enable" : "disable", 3510 (intmax_t)cmd.value); 3511 } 3512 #endif /* DIAGNOSTIC */ 3513 if ((error = getvnode(td, cmd.value, 3514 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3515 break; 3516 if (vfp->f_vnode->v_type != VCHR) { 3517 fdrop(vfp, td); 3518 error = EINVAL; 3519 break; 3520 } 3521 if (origops == NULL) { 3522 origops = vfp->f_ops; 3523 bcopy((void *)origops, (void *)&bufferedops, 3524 sizeof(bufferedops)); 3525 bufferedops.fo_write = buffered_write; 3526 } 3527 if (cmd.size == 1) 3528 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3529 (uintptr_t)&bufferedops); 3530 else 3531 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3532 (uintptr_t)origops); 3533 fdrop(vfp, td); 3534 break; 3535 3536 default: 3537 #ifdef DIAGNOSTIC 3538 if (fsckcmds) { 3539 printf("Invalid request %d from fsck\n", 3540 oidp->oid_number); 3541 } 3542 #endif /* DIAGNOSTIC */ 3543 error = EINVAL; 3544 break; 3545 3546 } 3547 fdrop(fp, td); 3548 vn_finished_write(mp); 3549 return (error); 3550 } 3551 3552 /* 3553 * Function to switch a descriptor to use the buffer cache to stage 3554 * its I/O. This is needed so that writes to the filesystem device 3555 * will give snapshots a chance to copy modified blocks for which it 3556 * needs to retain copies. 3557 */ 3558 static int 3559 buffered_write(fp, uio, active_cred, flags, td) 3560 struct file *fp; 3561 struct uio *uio; 3562 struct ucred *active_cred; 3563 int flags; 3564 struct thread *td; 3565 { 3566 struct vnode *devvp, *vp; 3567 struct inode *ip; 3568 struct buf *bp; 3569 struct fs *fs; 3570 struct filedesc *fdp; 3571 int error; 3572 daddr_t lbn; 3573 3574 /* 3575 * The devvp is associated with the /dev filesystem. To discover 3576 * the filesystem with which the device is associated, we depend 3577 * on the application setting the current directory to a location 3578 * within the filesystem being written. Yes, this is an ugly hack. 3579 */ 3580 devvp = fp->f_vnode; 3581 if (!vn_isdisk(devvp, NULL)) 3582 return (EINVAL); 3583 fdp = td->td_proc->p_fd; 3584 FILEDESC_SLOCK(fdp); 3585 vp = fdp->fd_cdir; 3586 vref(vp); 3587 FILEDESC_SUNLOCK(fdp); 3588 vn_lock(vp, LK_SHARED | LK_RETRY); 3589 /* 3590 * Check that the current directory vnode indeed belongs to 3591 * UFS before trying to dereference UFS-specific v_data fields. 3592 */ 3593 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3594 vput(vp); 3595 return (EINVAL); 3596 } 3597 ip = VTOI(vp); 3598 if (ITODEVVP(ip) != devvp) { 3599 vput(vp); 3600 return (EINVAL); 3601 } 3602 fs = ITOFS(ip); 3603 vput(vp); 3604 foffset_lock_uio(fp, uio, flags); 3605 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3606 #ifdef DIAGNOSTIC 3607 if (fsckcmds) { 3608 printf("%s: buffered write for block %jd\n", 3609 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3610 } 3611 #endif /* DIAGNOSTIC */ 3612 /* 3613 * All I/O must be contained within a filesystem block, start on 3614 * a fragment boundary, and be a multiple of fragments in length. 3615 */ 3616 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3617 fragoff(fs, uio->uio_offset) != 0 || 3618 fragoff(fs, uio->uio_resid) != 0) { 3619 error = EINVAL; 3620 goto out; 3621 } 3622 lbn = numfrags(fs, uio->uio_offset); 3623 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3624 bp->b_flags |= B_RELBUF; 3625 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3626 brelse(bp); 3627 goto out; 3628 } 3629 error = bwrite(bp); 3630 out: 3631 VOP_UNLOCK(devvp, 0); 3632 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3633 return (error); 3634 } 3635