1 /*- 2 * SPDX-License-Identifier: (BSD-2-Clause-FreeBSD AND BSD-3-Clause) 3 * 4 * Copyright (c) 2002 Networks Associates Technology, Inc. 5 * All rights reserved. 6 * 7 * This software was developed for the FreeBSD Project by Marshall 8 * Kirk McKusick and Network Associates Laboratories, the Security 9 * Research Division of Network Associates, Inc. under DARPA/SPAWAR 10 * contract N66001-01-C-8035 ("CBOSS"), as part of the DARPA CHATS 11 * research program 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 * 34 * Copyright (c) 1982, 1986, 1989, 1993 35 * The Regents of the University of California. All rights reserved. 36 * 37 * Redistribution and use in source and binary forms, with or without 38 * modification, are permitted provided that the following conditions 39 * are met: 40 * 1. Redistributions of source code must retain the above copyright 41 * notice, this list of conditions and the following disclaimer. 42 * 2. Redistributions in binary form must reproduce the above copyright 43 * notice, this list of conditions and the following disclaimer in the 44 * documentation and/or other materials provided with the distribution. 45 * 3. Neither the name of the University nor the names of its contributors 46 * may be used to endorse or promote products derived from this software 47 * without specific prior written permission. 48 * 49 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 50 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 51 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 52 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 53 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 54 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 55 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 56 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 57 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 58 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 59 * SUCH DAMAGE. 60 * 61 * @(#)ffs_alloc.c 8.18 (Berkeley) 5/26/95 62 */ 63 64 #include <sys/cdefs.h> 65 __FBSDID("$FreeBSD$"); 66 67 #include "opt_quota.h" 68 69 #include <sys/param.h> 70 #include <sys/capsicum.h> 71 #include <sys/systm.h> 72 #include <sys/bio.h> 73 #include <sys/buf.h> 74 #include <sys/conf.h> 75 #include <sys/fcntl.h> 76 #include <sys/file.h> 77 #include <sys/filedesc.h> 78 #include <sys/priv.h> 79 #include <sys/proc.h> 80 #include <sys/vnode.h> 81 #include <sys/mount.h> 82 #include <sys/kernel.h> 83 #include <sys/syscallsubr.h> 84 #include <sys/sysctl.h> 85 #include <sys/syslog.h> 86 #include <sys/taskqueue.h> 87 88 #include <security/audit/audit.h> 89 90 #include <geom/geom.h> 91 #include <geom/geom_vfs.h> 92 93 #include <ufs/ufs/dir.h> 94 #include <ufs/ufs/extattr.h> 95 #include <ufs/ufs/quota.h> 96 #include <ufs/ufs/inode.h> 97 #include <ufs/ufs/ufs_extern.h> 98 #include <ufs/ufs/ufsmount.h> 99 100 #include <ufs/ffs/fs.h> 101 #include <ufs/ffs/ffs_extern.h> 102 #include <ufs/ffs/softdep.h> 103 104 typedef ufs2_daddr_t allocfcn_t(struct inode *ip, u_int cg, ufs2_daddr_t bpref, 105 int size, int rsize); 106 107 static ufs2_daddr_t ffs_alloccg(struct inode *, u_int, ufs2_daddr_t, int, int); 108 static ufs2_daddr_t 109 ffs_alloccgblk(struct inode *, struct buf *, ufs2_daddr_t, int); 110 static void ffs_blkfree_cg(struct ufsmount *, struct fs *, 111 struct vnode *, ufs2_daddr_t, long, ino_t, 112 struct workhead *); 113 #ifdef INVARIANTS 114 static int ffs_checkblk(struct inode *, ufs2_daddr_t, long); 115 #endif 116 static ufs2_daddr_t ffs_clusteralloc(struct inode *, u_int, ufs2_daddr_t, int); 117 static ino_t ffs_dirpref(struct inode *); 118 static ufs2_daddr_t ffs_fragextend(struct inode *, u_int, ufs2_daddr_t, 119 int, int); 120 static ufs2_daddr_t ffs_hashalloc 121 (struct inode *, u_int, ufs2_daddr_t, int, int, allocfcn_t *); 122 static ufs2_daddr_t ffs_nodealloccg(struct inode *, u_int, ufs2_daddr_t, int, 123 int); 124 static ufs1_daddr_t ffs_mapsearch(struct fs *, struct cg *, ufs2_daddr_t, int); 125 static int ffs_reallocblks_ufs1(struct vop_reallocblks_args *); 126 static int ffs_reallocblks_ufs2(struct vop_reallocblks_args *); 127 static void ffs_ckhash_cg(struct buf *); 128 129 /* 130 * Allocate a block in the filesystem. 131 * 132 * The size of the requested block is given, which must be some 133 * multiple of fs_fsize and <= fs_bsize. 134 * A preference may be optionally specified. If a preference is given 135 * the following hierarchy is used to allocate a block: 136 * 1) allocate the requested block. 137 * 2) allocate a rotationally optimal block in the same cylinder. 138 * 3) allocate a block in the same cylinder group. 139 * 4) quadradically rehash into other cylinder groups, until an 140 * available block is located. 141 * If no block preference is given the following hierarchy is used 142 * to allocate a block: 143 * 1) allocate a block in the cylinder group that contains the 144 * inode for the file. 145 * 2) quadradically rehash into other cylinder groups, until an 146 * available block is located. 147 */ 148 int 149 ffs_alloc(ip, lbn, bpref, size, flags, cred, bnp) 150 struct inode *ip; 151 ufs2_daddr_t lbn, bpref; 152 int size, flags; 153 struct ucred *cred; 154 ufs2_daddr_t *bnp; 155 { 156 struct fs *fs; 157 struct ufsmount *ump; 158 ufs2_daddr_t bno; 159 u_int cg, reclaimed; 160 static struct timeval lastfail; 161 static int curfail; 162 int64_t delta; 163 #ifdef QUOTA 164 int error; 165 #endif 166 167 *bnp = 0; 168 ump = ITOUMP(ip); 169 fs = ump->um_fs; 170 mtx_assert(UFS_MTX(ump), MA_OWNED); 171 #ifdef INVARIANTS 172 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 173 printf("dev = %s, bsize = %ld, size = %d, fs = %s\n", 174 devtoname(ump->um_dev), (long)fs->fs_bsize, size, 175 fs->fs_fsmnt); 176 panic("ffs_alloc: bad size"); 177 } 178 if (cred == NOCRED) 179 panic("ffs_alloc: missing credential"); 180 #endif /* INVARIANTS */ 181 reclaimed = 0; 182 retry: 183 #ifdef QUOTA 184 UFS_UNLOCK(ump); 185 error = chkdq(ip, btodb(size), cred, 0); 186 if (error) 187 return (error); 188 UFS_LOCK(ump); 189 #endif 190 if (size == fs->fs_bsize && fs->fs_cstotal.cs_nbfree == 0) 191 goto nospace; 192 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 193 freespace(fs, fs->fs_minfree) - numfrags(fs, size) < 0) 194 goto nospace; 195 if (bpref >= fs->fs_size) 196 bpref = 0; 197 if (bpref == 0) 198 cg = ino_to_cg(fs, ip->i_number); 199 else 200 cg = dtog(fs, bpref); 201 bno = ffs_hashalloc(ip, cg, bpref, size, size, ffs_alloccg); 202 if (bno > 0) { 203 delta = btodb(size); 204 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 205 if (flags & IO_EXT) 206 ip->i_flag |= IN_CHANGE; 207 else 208 ip->i_flag |= IN_CHANGE | IN_UPDATE; 209 *bnp = bno; 210 return (0); 211 } 212 nospace: 213 #ifdef QUOTA 214 UFS_UNLOCK(ump); 215 /* 216 * Restore user's disk quota because allocation failed. 217 */ 218 (void) chkdq(ip, -btodb(size), cred, FORCE); 219 UFS_LOCK(ump); 220 #endif 221 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 222 reclaimed = 1; 223 softdep_request_cleanup(fs, ITOV(ip), cred, FLUSH_BLOCKS_WAIT); 224 goto retry; 225 } 226 UFS_UNLOCK(ump); 227 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 228 ffs_fserr(fs, ip->i_number, "filesystem full"); 229 uprintf("\n%s: write failed, filesystem is full\n", 230 fs->fs_fsmnt); 231 } 232 return (ENOSPC); 233 } 234 235 /* 236 * Reallocate a fragment to a bigger size 237 * 238 * The number and size of the old block is given, and a preference 239 * and new size is also specified. The allocator attempts to extend 240 * the original block. Failing that, the regular block allocator is 241 * invoked to get an appropriate block. 242 */ 243 int 244 ffs_realloccg(ip, lbprev, bprev, bpref, osize, nsize, flags, cred, bpp) 245 struct inode *ip; 246 ufs2_daddr_t lbprev; 247 ufs2_daddr_t bprev; 248 ufs2_daddr_t bpref; 249 int osize, nsize, flags; 250 struct ucred *cred; 251 struct buf **bpp; 252 { 253 struct vnode *vp; 254 struct fs *fs; 255 struct buf *bp; 256 struct ufsmount *ump; 257 u_int cg, request, reclaimed; 258 int error, gbflags; 259 ufs2_daddr_t bno; 260 static struct timeval lastfail; 261 static int curfail; 262 int64_t delta; 263 264 vp = ITOV(ip); 265 ump = ITOUMP(ip); 266 fs = ump->um_fs; 267 bp = NULL; 268 gbflags = (flags & BA_UNMAPPED) != 0 ? GB_UNMAPPED : 0; 269 270 mtx_assert(UFS_MTX(ump), MA_OWNED); 271 #ifdef INVARIANTS 272 if (vp->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 273 panic("ffs_realloccg: allocation on suspended filesystem"); 274 if ((u_int)osize > fs->fs_bsize || fragoff(fs, osize) != 0 || 275 (u_int)nsize > fs->fs_bsize || fragoff(fs, nsize) != 0) { 276 printf( 277 "dev = %s, bsize = %ld, osize = %d, nsize = %d, fs = %s\n", 278 devtoname(ump->um_dev), (long)fs->fs_bsize, osize, 279 nsize, fs->fs_fsmnt); 280 panic("ffs_realloccg: bad size"); 281 } 282 if (cred == NOCRED) 283 panic("ffs_realloccg: missing credential"); 284 #endif /* INVARIANTS */ 285 reclaimed = 0; 286 retry: 287 if (priv_check_cred(cred, PRIV_VFS_BLOCKRESERVE) && 288 freespace(fs, fs->fs_minfree) - numfrags(fs, nsize - osize) < 0) { 289 goto nospace; 290 } 291 if (bprev == 0) { 292 printf("dev = %s, bsize = %ld, bprev = %jd, fs = %s\n", 293 devtoname(ump->um_dev), (long)fs->fs_bsize, (intmax_t)bprev, 294 fs->fs_fsmnt); 295 panic("ffs_realloccg: bad bprev"); 296 } 297 UFS_UNLOCK(ump); 298 /* 299 * Allocate the extra space in the buffer. 300 */ 301 error = bread_gb(vp, lbprev, osize, NOCRED, gbflags, &bp); 302 if (error) { 303 brelse(bp); 304 return (error); 305 } 306 307 if (bp->b_blkno == bp->b_lblkno) { 308 if (lbprev >= UFS_NDADDR) 309 panic("ffs_realloccg: lbprev out of range"); 310 bp->b_blkno = fsbtodb(fs, bprev); 311 } 312 313 #ifdef QUOTA 314 error = chkdq(ip, btodb(nsize - osize), cred, 0); 315 if (error) { 316 brelse(bp); 317 return (error); 318 } 319 #endif 320 /* 321 * Check for extension in the existing location. 322 */ 323 *bpp = NULL; 324 cg = dtog(fs, bprev); 325 UFS_LOCK(ump); 326 bno = ffs_fragextend(ip, cg, bprev, osize, nsize); 327 if (bno) { 328 if (bp->b_blkno != fsbtodb(fs, bno)) 329 panic("ffs_realloccg: bad blockno"); 330 delta = btodb(nsize - osize); 331 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 332 if (flags & IO_EXT) 333 ip->i_flag |= IN_CHANGE; 334 else 335 ip->i_flag |= IN_CHANGE | IN_UPDATE; 336 allocbuf(bp, nsize); 337 bp->b_flags |= B_DONE; 338 vfs_bio_bzero_buf(bp, osize, nsize - osize); 339 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 340 vfs_bio_set_valid(bp, osize, nsize - osize); 341 *bpp = bp; 342 return (0); 343 } 344 /* 345 * Allocate a new disk location. 346 */ 347 if (bpref >= fs->fs_size) 348 bpref = 0; 349 switch ((int)fs->fs_optim) { 350 case FS_OPTSPACE: 351 /* 352 * Allocate an exact sized fragment. Although this makes 353 * best use of space, we will waste time relocating it if 354 * the file continues to grow. If the fragmentation is 355 * less than half of the minimum free reserve, we choose 356 * to begin optimizing for time. 357 */ 358 request = nsize; 359 if (fs->fs_minfree <= 5 || 360 fs->fs_cstotal.cs_nffree > 361 (off_t)fs->fs_dsize * fs->fs_minfree / (2 * 100)) 362 break; 363 log(LOG_NOTICE, "%s: optimization changed from SPACE to TIME\n", 364 fs->fs_fsmnt); 365 fs->fs_optim = FS_OPTTIME; 366 break; 367 case FS_OPTTIME: 368 /* 369 * At this point we have discovered a file that is trying to 370 * grow a small fragment to a larger fragment. To save time, 371 * we allocate a full sized block, then free the unused portion. 372 * If the file continues to grow, the `ffs_fragextend' call 373 * above will be able to grow it in place without further 374 * copying. If aberrant programs cause disk fragmentation to 375 * grow within 2% of the free reserve, we choose to begin 376 * optimizing for space. 377 */ 378 request = fs->fs_bsize; 379 if (fs->fs_cstotal.cs_nffree < 380 (off_t)fs->fs_dsize * (fs->fs_minfree - 2) / 100) 381 break; 382 log(LOG_NOTICE, "%s: optimization changed from TIME to SPACE\n", 383 fs->fs_fsmnt); 384 fs->fs_optim = FS_OPTSPACE; 385 break; 386 default: 387 printf("dev = %s, optim = %ld, fs = %s\n", 388 devtoname(ump->um_dev), (long)fs->fs_optim, fs->fs_fsmnt); 389 panic("ffs_realloccg: bad optim"); 390 /* NOTREACHED */ 391 } 392 bno = ffs_hashalloc(ip, cg, bpref, request, nsize, ffs_alloccg); 393 if (bno > 0) { 394 bp->b_blkno = fsbtodb(fs, bno); 395 if (!DOINGSOFTDEP(vp)) 396 /* 397 * The usual case is that a smaller fragment that 398 * was just allocated has been replaced with a bigger 399 * fragment or a full-size block. If it is marked as 400 * B_DELWRI, the current contents have not been written 401 * to disk. It is possible that the block was written 402 * earlier, but very uncommon. If the block has never 403 * been written, there is no need to send a BIO_DELETE 404 * for it when it is freed. The gain from avoiding the 405 * TRIMs for the common case of unwritten blocks far 406 * exceeds the cost of the write amplification for the 407 * uncommon case of failing to send a TRIM for a block 408 * that had been written. 409 */ 410 ffs_blkfree(ump, fs, ump->um_devvp, bprev, (long)osize, 411 ip->i_number, vp->v_type, NULL, 412 (bp->b_flags & B_DELWRI) != 0 ? 413 NOTRIM_KEY : SINGLETON_KEY); 414 delta = btodb(nsize - osize); 415 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + delta); 416 if (flags & IO_EXT) 417 ip->i_flag |= IN_CHANGE; 418 else 419 ip->i_flag |= IN_CHANGE | IN_UPDATE; 420 allocbuf(bp, nsize); 421 bp->b_flags |= B_DONE; 422 vfs_bio_bzero_buf(bp, osize, nsize - osize); 423 if ((bp->b_flags & (B_MALLOC | B_VMIO)) == B_VMIO) 424 vfs_bio_set_valid(bp, osize, nsize - osize); 425 *bpp = bp; 426 return (0); 427 } 428 #ifdef QUOTA 429 UFS_UNLOCK(ump); 430 /* 431 * Restore user's disk quota because allocation failed. 432 */ 433 (void) chkdq(ip, -btodb(nsize - osize), cred, FORCE); 434 UFS_LOCK(ump); 435 #endif 436 nospace: 437 /* 438 * no space available 439 */ 440 if (reclaimed == 0 && (flags & IO_BUFLOCKED) == 0) { 441 reclaimed = 1; 442 UFS_UNLOCK(ump); 443 if (bp) { 444 brelse(bp); 445 bp = NULL; 446 } 447 UFS_LOCK(ump); 448 softdep_request_cleanup(fs, vp, cred, FLUSH_BLOCKS_WAIT); 449 goto retry; 450 } 451 UFS_UNLOCK(ump); 452 if (bp) 453 brelse(bp); 454 if (reclaimed > 0 && ppsratecheck(&lastfail, &curfail, 1)) { 455 ffs_fserr(fs, ip->i_number, "filesystem full"); 456 uprintf("\n%s: write failed, filesystem is full\n", 457 fs->fs_fsmnt); 458 } 459 return (ENOSPC); 460 } 461 462 /* 463 * Reallocate a sequence of blocks into a contiguous sequence of blocks. 464 * 465 * The vnode and an array of buffer pointers for a range of sequential 466 * logical blocks to be made contiguous is given. The allocator attempts 467 * to find a range of sequential blocks starting as close as possible 468 * from the end of the allocation for the logical block immediately 469 * preceding the current range. If successful, the physical block numbers 470 * in the buffer pointers and in the inode are changed to reflect the new 471 * allocation. If unsuccessful, the allocation is left unchanged. The 472 * success in doing the reallocation is returned. Note that the error 473 * return is not reflected back to the user. Rather the previous block 474 * allocation will be used. 475 */ 476 477 SYSCTL_NODE(_vfs, OID_AUTO, ffs, CTLFLAG_RW, 0, "FFS filesystem"); 478 479 static int doasyncfree = 1; 480 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncfree, CTLFLAG_RW, &doasyncfree, 0, 481 "do not force synchronous writes when blocks are reallocated"); 482 483 static int doreallocblks = 1; 484 SYSCTL_INT(_vfs_ffs, OID_AUTO, doreallocblks, CTLFLAG_RW, &doreallocblks, 0, 485 "enable block reallocation"); 486 487 static int dotrimcons = 1; 488 SYSCTL_INT(_vfs_ffs, OID_AUTO, dotrimcons, CTLFLAG_RWTUN, &dotrimcons, 0, 489 "enable BIO_DELETE / TRIM consolidation"); 490 491 static int maxclustersearch = 10; 492 SYSCTL_INT(_vfs_ffs, OID_AUTO, maxclustersearch, CTLFLAG_RW, &maxclustersearch, 493 0, "max number of cylinder group to search for contigous blocks"); 494 495 #ifdef DEBUG 496 static volatile int prtrealloc = 0; 497 #endif 498 499 int 500 ffs_reallocblks(ap) 501 struct vop_reallocblks_args /* { 502 struct vnode *a_vp; 503 struct cluster_save *a_buflist; 504 } */ *ap; 505 { 506 struct ufsmount *ump; 507 508 /* 509 * We used to skip reallocating the blocks of a file into a 510 * contiguous sequence if the underlying flash device requested 511 * BIO_DELETE notifications, because devices that benefit from 512 * BIO_DELETE also benefit from not moving the data. However, 513 * the destination for the data is usually moved before the data 514 * is written to the initially allocated location, so we rarely 515 * suffer the penalty of extra writes. With the addition of the 516 * consolidation of contiguous blocks into single BIO_DELETE 517 * operations, having fewer but larger contiguous blocks reduces 518 * the number of (slow and expensive) BIO_DELETE operations. So 519 * when doing BIO_DELETE consolidation, we do block reallocation. 520 * 521 * Skip if reallocblks has been disabled globally. 522 */ 523 ump = ap->a_vp->v_mount->mnt_data; 524 if ((((ump->um_flags) & UM_CANDELETE) != 0 && dotrimcons == 0) || 525 doreallocblks == 0) 526 return (ENOSPC); 527 528 /* 529 * We can't wait in softdep prealloc as it may fsync and recurse 530 * here. Instead we simply fail to reallocate blocks if this 531 * rare condition arises. 532 */ 533 if (DOINGSOFTDEP(ap->a_vp)) 534 if (softdep_prealloc(ap->a_vp, MNT_NOWAIT) != 0) 535 return (ENOSPC); 536 if (ump->um_fstype == UFS1) 537 return (ffs_reallocblks_ufs1(ap)); 538 return (ffs_reallocblks_ufs2(ap)); 539 } 540 541 static int 542 ffs_reallocblks_ufs1(ap) 543 struct vop_reallocblks_args /* { 544 struct vnode *a_vp; 545 struct cluster_save *a_buflist; 546 } */ *ap; 547 { 548 struct fs *fs; 549 struct inode *ip; 550 struct vnode *vp; 551 struct buf *sbp, *ebp, *bp; 552 ufs1_daddr_t *bap, *sbap, *ebap; 553 struct cluster_save *buflist; 554 struct ufsmount *ump; 555 ufs_lbn_t start_lbn, end_lbn; 556 ufs1_daddr_t soff, newblk, blkno; 557 ufs2_daddr_t pref; 558 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 559 int i, cg, len, start_lvl, end_lvl, ssize; 560 561 vp = ap->a_vp; 562 ip = VTOI(vp); 563 ump = ITOUMP(ip); 564 fs = ump->um_fs; 565 /* 566 * If we are not tracking block clusters or if we have less than 4% 567 * free blocks left, then do not attempt to cluster. Running with 568 * less than 5% free block reserve is not recommended and those that 569 * choose to do so do not expect to have good file layout. 570 */ 571 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 572 return (ENOSPC); 573 buflist = ap->a_buflist; 574 len = buflist->bs_nchildren; 575 start_lbn = buflist->bs_children[0]->b_lblkno; 576 end_lbn = start_lbn + len - 1; 577 #ifdef INVARIANTS 578 for (i = 0; i < len; i++) 579 if (!ffs_checkblk(ip, 580 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 581 panic("ffs_reallocblks: unallocated block 1"); 582 for (i = 1; i < len; i++) 583 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 584 panic("ffs_reallocblks: non-logical cluster"); 585 blkno = buflist->bs_children[0]->b_blkno; 586 ssize = fsbtodb(fs, fs->fs_frag); 587 for (i = 1; i < len - 1; i++) 588 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 589 panic("ffs_reallocblks: non-physical cluster %d", i); 590 #endif 591 /* 592 * If the cluster crosses the boundary for the first indirect 593 * block, leave space for the indirect block. Indirect blocks 594 * are initially laid out in a position after the last direct 595 * block. Block reallocation would usually destroy locality by 596 * moving the indirect block out of the way to make room for 597 * data blocks if we didn't compensate here. We should also do 598 * this for other indirect block boundaries, but it is only 599 * important for the first one. 600 */ 601 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 602 return (ENOSPC); 603 /* 604 * If the latest allocation is in a new cylinder group, assume that 605 * the filesystem has decided to move and do not force it back to 606 * the previous cylinder group. 607 */ 608 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 609 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 610 return (ENOSPC); 611 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 612 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 613 return (ENOSPC); 614 /* 615 * Get the starting offset and block map for the first block. 616 */ 617 if (start_lvl == 0) { 618 sbap = &ip->i_din1->di_db[0]; 619 soff = start_lbn; 620 } else { 621 idp = &start_ap[start_lvl - 1]; 622 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 623 brelse(sbp); 624 return (ENOSPC); 625 } 626 sbap = (ufs1_daddr_t *)sbp->b_data; 627 soff = idp->in_off; 628 } 629 /* 630 * If the block range spans two block maps, get the second map. 631 */ 632 ebap = NULL; 633 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 634 ssize = len; 635 } else { 636 #ifdef INVARIANTS 637 if (start_lvl > 0 && 638 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 639 panic("ffs_reallocblk: start == end"); 640 #endif 641 ssize = len - (idp->in_off + 1); 642 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 643 goto fail; 644 ebap = (ufs1_daddr_t *)ebp->b_data; 645 } 646 /* 647 * Find the preferred location for the cluster. If we have not 648 * previously failed at this endeavor, then follow our standard 649 * preference calculation. If we have failed at it, then pick up 650 * where we last ended our search. 651 */ 652 UFS_LOCK(ump); 653 if (ip->i_nextclustercg == -1) 654 pref = ffs_blkpref_ufs1(ip, start_lbn, soff, sbap); 655 else 656 pref = cgdata(fs, ip->i_nextclustercg); 657 /* 658 * Search the block map looking for an allocation of the desired size. 659 * To avoid wasting too much time, we limit the number of cylinder 660 * groups that we will search. 661 */ 662 cg = dtog(fs, pref); 663 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 664 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 665 break; 666 cg += 1; 667 if (cg >= fs->fs_ncg) 668 cg = 0; 669 } 670 /* 671 * If we have failed in our search, record where we gave up for 672 * next time. Otherwise, fall back to our usual search citerion. 673 */ 674 if (newblk == 0) { 675 ip->i_nextclustercg = cg; 676 UFS_UNLOCK(ump); 677 goto fail; 678 } 679 ip->i_nextclustercg = -1; 680 /* 681 * We have found a new contiguous block. 682 * 683 * First we have to replace the old block pointers with the new 684 * block pointers in the inode and indirect blocks associated 685 * with the file. 686 */ 687 #ifdef DEBUG 688 if (prtrealloc) 689 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", 690 (uintmax_t)ip->i_number, 691 (intmax_t)start_lbn, (intmax_t)end_lbn); 692 #endif 693 blkno = newblk; 694 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 695 if (i == ssize) { 696 bap = ebap; 697 soff = -i; 698 } 699 #ifdef INVARIANTS 700 if (!ffs_checkblk(ip, 701 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 702 panic("ffs_reallocblks: unallocated block 2"); 703 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 704 panic("ffs_reallocblks: alloc mismatch"); 705 #endif 706 #ifdef DEBUG 707 if (prtrealloc) 708 printf(" %d,", *bap); 709 #endif 710 if (DOINGSOFTDEP(vp)) { 711 if (sbap == &ip->i_din1->di_db[0] && i < ssize) 712 softdep_setup_allocdirect(ip, start_lbn + i, 713 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 714 buflist->bs_children[i]); 715 else 716 softdep_setup_allocindir_page(ip, start_lbn + i, 717 i < ssize ? sbp : ebp, soff + i, blkno, 718 *bap, buflist->bs_children[i]); 719 } 720 *bap++ = blkno; 721 } 722 /* 723 * Next we must write out the modified inode and indirect blocks. 724 * For strict correctness, the writes should be synchronous since 725 * the old block values may have been written to disk. In practise 726 * they are almost never written, but if we are concerned about 727 * strict correctness, the `doasyncfree' flag should be set to zero. 728 * 729 * The test on `doasyncfree' should be changed to test a flag 730 * that shows whether the associated buffers and inodes have 731 * been written. The flag should be set when the cluster is 732 * started and cleared whenever the buffer or inode is flushed. 733 * We can then check below to see if it is set, and do the 734 * synchronous write only when it has been cleared. 735 */ 736 if (sbap != &ip->i_din1->di_db[0]) { 737 if (doasyncfree) 738 bdwrite(sbp); 739 else 740 bwrite(sbp); 741 } else { 742 ip->i_flag |= IN_CHANGE | IN_UPDATE; 743 if (!doasyncfree) 744 ffs_update(vp, 1); 745 } 746 if (ssize < len) { 747 if (doasyncfree) 748 bdwrite(ebp); 749 else 750 bwrite(ebp); 751 } 752 /* 753 * Last, free the old blocks and assign the new blocks to the buffers. 754 */ 755 #ifdef DEBUG 756 if (prtrealloc) 757 printf("\n\tnew:"); 758 #endif 759 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 760 bp = buflist->bs_children[i]; 761 if (!DOINGSOFTDEP(vp)) 762 /* 763 * The usual case is that a set of N-contiguous blocks 764 * that was just allocated has been replaced with a 765 * set of N+1-contiguous blocks. If they are marked as 766 * B_DELWRI, the current contents have not been written 767 * to disk. It is possible that the blocks were written 768 * earlier, but very uncommon. If the blocks have never 769 * been written, there is no need to send a BIO_DELETE 770 * for them when they are freed. The gain from avoiding 771 * the TRIMs for the common case of unwritten blocks 772 * far exceeds the cost of the write amplification for 773 * the uncommon case of failing to send a TRIM for the 774 * blocks that had been written. 775 */ 776 ffs_blkfree(ump, fs, ump->um_devvp, 777 dbtofsb(fs, bp->b_blkno), 778 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 779 (bp->b_flags & B_DELWRI) != 0 ? 780 NOTRIM_KEY : SINGLETON_KEY); 781 bp->b_blkno = fsbtodb(fs, blkno); 782 #ifdef INVARIANTS 783 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 784 panic("ffs_reallocblks: unallocated block 3"); 785 #endif 786 #ifdef DEBUG 787 if (prtrealloc) 788 printf(" %d,", blkno); 789 #endif 790 } 791 #ifdef DEBUG 792 if (prtrealloc) { 793 prtrealloc--; 794 printf("\n"); 795 } 796 #endif 797 return (0); 798 799 fail: 800 if (ssize < len) 801 brelse(ebp); 802 if (sbap != &ip->i_din1->di_db[0]) 803 brelse(sbp); 804 return (ENOSPC); 805 } 806 807 static int 808 ffs_reallocblks_ufs2(ap) 809 struct vop_reallocblks_args /* { 810 struct vnode *a_vp; 811 struct cluster_save *a_buflist; 812 } */ *ap; 813 { 814 struct fs *fs; 815 struct inode *ip; 816 struct vnode *vp; 817 struct buf *sbp, *ebp, *bp; 818 ufs2_daddr_t *bap, *sbap, *ebap; 819 struct cluster_save *buflist; 820 struct ufsmount *ump; 821 ufs_lbn_t start_lbn, end_lbn; 822 ufs2_daddr_t soff, newblk, blkno, pref; 823 struct indir start_ap[UFS_NIADDR + 1], end_ap[UFS_NIADDR + 1], *idp; 824 int i, cg, len, start_lvl, end_lvl, ssize; 825 826 vp = ap->a_vp; 827 ip = VTOI(vp); 828 ump = ITOUMP(ip); 829 fs = ump->um_fs; 830 /* 831 * If we are not tracking block clusters or if we have less than 4% 832 * free blocks left, then do not attempt to cluster. Running with 833 * less than 5% free block reserve is not recommended and those that 834 * choose to do so do not expect to have good file layout. 835 */ 836 if (fs->fs_contigsumsize <= 0 || freespace(fs, 4) < 0) 837 return (ENOSPC); 838 buflist = ap->a_buflist; 839 len = buflist->bs_nchildren; 840 start_lbn = buflist->bs_children[0]->b_lblkno; 841 end_lbn = start_lbn + len - 1; 842 #ifdef INVARIANTS 843 for (i = 0; i < len; i++) 844 if (!ffs_checkblk(ip, 845 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 846 panic("ffs_reallocblks: unallocated block 1"); 847 for (i = 1; i < len; i++) 848 if (buflist->bs_children[i]->b_lblkno != start_lbn + i) 849 panic("ffs_reallocblks: non-logical cluster"); 850 blkno = buflist->bs_children[0]->b_blkno; 851 ssize = fsbtodb(fs, fs->fs_frag); 852 for (i = 1; i < len - 1; i++) 853 if (buflist->bs_children[i]->b_blkno != blkno + (i * ssize)) 854 panic("ffs_reallocblks: non-physical cluster %d", i); 855 #endif 856 /* 857 * If the cluster crosses the boundary for the first indirect 858 * block, do not move anything in it. Indirect blocks are 859 * usually initially laid out in a position between the data 860 * blocks. Block reallocation would usually destroy locality by 861 * moving the indirect block out of the way to make room for 862 * data blocks if we didn't compensate here. We should also do 863 * this for other indirect block boundaries, but it is only 864 * important for the first one. 865 */ 866 if (start_lbn < UFS_NDADDR && end_lbn >= UFS_NDADDR) 867 return (ENOSPC); 868 /* 869 * If the latest allocation is in a new cylinder group, assume that 870 * the filesystem has decided to move and do not force it back to 871 * the previous cylinder group. 872 */ 873 if (dtog(fs, dbtofsb(fs, buflist->bs_children[0]->b_blkno)) != 874 dtog(fs, dbtofsb(fs, buflist->bs_children[len - 1]->b_blkno))) 875 return (ENOSPC); 876 if (ufs_getlbns(vp, start_lbn, start_ap, &start_lvl) || 877 ufs_getlbns(vp, end_lbn, end_ap, &end_lvl)) 878 return (ENOSPC); 879 /* 880 * Get the starting offset and block map for the first block. 881 */ 882 if (start_lvl == 0) { 883 sbap = &ip->i_din2->di_db[0]; 884 soff = start_lbn; 885 } else { 886 idp = &start_ap[start_lvl - 1]; 887 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &sbp)) { 888 brelse(sbp); 889 return (ENOSPC); 890 } 891 sbap = (ufs2_daddr_t *)sbp->b_data; 892 soff = idp->in_off; 893 } 894 /* 895 * If the block range spans two block maps, get the second map. 896 */ 897 ebap = NULL; 898 if (end_lvl == 0 || (idp = &end_ap[end_lvl - 1])->in_off + 1 >= len) { 899 ssize = len; 900 } else { 901 #ifdef INVARIANTS 902 if (start_lvl > 0 && 903 start_ap[start_lvl - 1].in_lbn == idp->in_lbn) 904 panic("ffs_reallocblk: start == end"); 905 #endif 906 ssize = len - (idp->in_off + 1); 907 if (bread(vp, idp->in_lbn, (int)fs->fs_bsize, NOCRED, &ebp)) 908 goto fail; 909 ebap = (ufs2_daddr_t *)ebp->b_data; 910 } 911 /* 912 * Find the preferred location for the cluster. If we have not 913 * previously failed at this endeavor, then follow our standard 914 * preference calculation. If we have failed at it, then pick up 915 * where we last ended our search. 916 */ 917 UFS_LOCK(ump); 918 if (ip->i_nextclustercg == -1) 919 pref = ffs_blkpref_ufs2(ip, start_lbn, soff, sbap); 920 else 921 pref = cgdata(fs, ip->i_nextclustercg); 922 /* 923 * Search the block map looking for an allocation of the desired size. 924 * To avoid wasting too much time, we limit the number of cylinder 925 * groups that we will search. 926 */ 927 cg = dtog(fs, pref); 928 for (i = min(maxclustersearch, fs->fs_ncg); i > 0; i--) { 929 if ((newblk = ffs_clusteralloc(ip, cg, pref, len)) != 0) 930 break; 931 cg += 1; 932 if (cg >= fs->fs_ncg) 933 cg = 0; 934 } 935 /* 936 * If we have failed in our search, record where we gave up for 937 * next time. Otherwise, fall back to our usual search citerion. 938 */ 939 if (newblk == 0) { 940 ip->i_nextclustercg = cg; 941 UFS_UNLOCK(ump); 942 goto fail; 943 } 944 ip->i_nextclustercg = -1; 945 /* 946 * We have found a new contiguous block. 947 * 948 * First we have to replace the old block pointers with the new 949 * block pointers in the inode and indirect blocks associated 950 * with the file. 951 */ 952 #ifdef DEBUG 953 if (prtrealloc) 954 printf("realloc: ino %ju, lbns %jd-%jd\n\told:", (uintmax_t)ip->i_number, 955 (intmax_t)start_lbn, (intmax_t)end_lbn); 956 #endif 957 blkno = newblk; 958 for (bap = &sbap[soff], i = 0; i < len; i++, blkno += fs->fs_frag) { 959 if (i == ssize) { 960 bap = ebap; 961 soff = -i; 962 } 963 #ifdef INVARIANTS 964 if (!ffs_checkblk(ip, 965 dbtofsb(fs, buflist->bs_children[i]->b_blkno), fs->fs_bsize)) 966 panic("ffs_reallocblks: unallocated block 2"); 967 if (dbtofsb(fs, buflist->bs_children[i]->b_blkno) != *bap) 968 panic("ffs_reallocblks: alloc mismatch"); 969 #endif 970 #ifdef DEBUG 971 if (prtrealloc) 972 printf(" %jd,", (intmax_t)*bap); 973 #endif 974 if (DOINGSOFTDEP(vp)) { 975 if (sbap == &ip->i_din2->di_db[0] && i < ssize) 976 softdep_setup_allocdirect(ip, start_lbn + i, 977 blkno, *bap, fs->fs_bsize, fs->fs_bsize, 978 buflist->bs_children[i]); 979 else 980 softdep_setup_allocindir_page(ip, start_lbn + i, 981 i < ssize ? sbp : ebp, soff + i, blkno, 982 *bap, buflist->bs_children[i]); 983 } 984 *bap++ = blkno; 985 } 986 /* 987 * Next we must write out the modified inode and indirect blocks. 988 * For strict correctness, the writes should be synchronous since 989 * the old block values may have been written to disk. In practise 990 * they are almost never written, but if we are concerned about 991 * strict correctness, the `doasyncfree' flag should be set to zero. 992 * 993 * The test on `doasyncfree' should be changed to test a flag 994 * that shows whether the associated buffers and inodes have 995 * been written. The flag should be set when the cluster is 996 * started and cleared whenever the buffer or inode is flushed. 997 * We can then check below to see if it is set, and do the 998 * synchronous write only when it has been cleared. 999 */ 1000 if (sbap != &ip->i_din2->di_db[0]) { 1001 if (doasyncfree) 1002 bdwrite(sbp); 1003 else 1004 bwrite(sbp); 1005 } else { 1006 ip->i_flag |= IN_CHANGE | IN_UPDATE; 1007 if (!doasyncfree) 1008 ffs_update(vp, 1); 1009 } 1010 if (ssize < len) { 1011 if (doasyncfree) 1012 bdwrite(ebp); 1013 else 1014 bwrite(ebp); 1015 } 1016 /* 1017 * Last, free the old blocks and assign the new blocks to the buffers. 1018 */ 1019 #ifdef DEBUG 1020 if (prtrealloc) 1021 printf("\n\tnew:"); 1022 #endif 1023 for (blkno = newblk, i = 0; i < len; i++, blkno += fs->fs_frag) { 1024 bp = buflist->bs_children[i]; 1025 if (!DOINGSOFTDEP(vp)) 1026 /* 1027 * The usual case is that a set of N-contiguous blocks 1028 * that was just allocated has been replaced with a 1029 * set of N+1-contiguous blocks. If they are marked as 1030 * B_DELWRI, the current contents have not been written 1031 * to disk. It is possible that the blocks were written 1032 * earlier, but very uncommon. If the blocks have never 1033 * been written, there is no need to send a BIO_DELETE 1034 * for them when they are freed. The gain from avoiding 1035 * the TRIMs for the common case of unwritten blocks 1036 * far exceeds the cost of the write amplification for 1037 * the uncommon case of failing to send a TRIM for the 1038 * blocks that had been written. 1039 */ 1040 ffs_blkfree(ump, fs, ump->um_devvp, 1041 dbtofsb(fs, bp->b_blkno), 1042 fs->fs_bsize, ip->i_number, vp->v_type, NULL, 1043 (bp->b_flags & B_DELWRI) != 0 ? 1044 NOTRIM_KEY : SINGLETON_KEY); 1045 bp->b_blkno = fsbtodb(fs, blkno); 1046 #ifdef INVARIANTS 1047 if (!ffs_checkblk(ip, dbtofsb(fs, bp->b_blkno), fs->fs_bsize)) 1048 panic("ffs_reallocblks: unallocated block 3"); 1049 #endif 1050 #ifdef DEBUG 1051 if (prtrealloc) 1052 printf(" %jd,", (intmax_t)blkno); 1053 #endif 1054 } 1055 #ifdef DEBUG 1056 if (prtrealloc) { 1057 prtrealloc--; 1058 printf("\n"); 1059 } 1060 #endif 1061 return (0); 1062 1063 fail: 1064 if (ssize < len) 1065 brelse(ebp); 1066 if (sbap != &ip->i_din2->di_db[0]) 1067 brelse(sbp); 1068 return (ENOSPC); 1069 } 1070 1071 /* 1072 * Allocate an inode in the filesystem. 1073 * 1074 * If allocating a directory, use ffs_dirpref to select the inode. 1075 * If allocating in a directory, the following hierarchy is followed: 1076 * 1) allocate the preferred inode. 1077 * 2) allocate an inode in the same cylinder group. 1078 * 3) quadradically rehash into other cylinder groups, until an 1079 * available inode is located. 1080 * If no inode preference is given the following hierarchy is used 1081 * to allocate an inode: 1082 * 1) allocate an inode in cylinder group 0. 1083 * 2) quadradically rehash into other cylinder groups, until an 1084 * available inode is located. 1085 */ 1086 int 1087 ffs_valloc(pvp, mode, cred, vpp) 1088 struct vnode *pvp; 1089 int mode; 1090 struct ucred *cred; 1091 struct vnode **vpp; 1092 { 1093 struct inode *pip; 1094 struct fs *fs; 1095 struct inode *ip; 1096 struct timespec ts; 1097 struct ufsmount *ump; 1098 ino_t ino, ipref; 1099 u_int cg; 1100 int error, error1, reclaimed; 1101 static struct timeval lastfail; 1102 static int curfail; 1103 1104 *vpp = NULL; 1105 pip = VTOI(pvp); 1106 ump = ITOUMP(pip); 1107 fs = ump->um_fs; 1108 1109 UFS_LOCK(ump); 1110 reclaimed = 0; 1111 retry: 1112 if (fs->fs_cstotal.cs_nifree == 0) 1113 goto noinodes; 1114 1115 if ((mode & IFMT) == IFDIR) 1116 ipref = ffs_dirpref(pip); 1117 else 1118 ipref = pip->i_number; 1119 if (ipref >= fs->fs_ncg * fs->fs_ipg) 1120 ipref = 0; 1121 cg = ino_to_cg(fs, ipref); 1122 /* 1123 * Track number of dirs created one after another 1124 * in a same cg without intervening by files. 1125 */ 1126 if ((mode & IFMT) == IFDIR) { 1127 if (fs->fs_contigdirs[cg] < 255) 1128 fs->fs_contigdirs[cg]++; 1129 } else { 1130 if (fs->fs_contigdirs[cg] > 0) 1131 fs->fs_contigdirs[cg]--; 1132 } 1133 ino = (ino_t)ffs_hashalloc(pip, cg, ipref, mode, 0, 1134 (allocfcn_t *)ffs_nodealloccg); 1135 if (ino == 0) 1136 goto noinodes; 1137 error = ffs_vget(pvp->v_mount, ino, LK_EXCLUSIVE, vpp); 1138 if (error) { 1139 error1 = ffs_vgetf(pvp->v_mount, ino, LK_EXCLUSIVE, vpp, 1140 FFSV_FORCEINSMQ); 1141 ffs_vfree(pvp, ino, mode); 1142 if (error1 == 0) { 1143 ip = VTOI(*vpp); 1144 if (ip->i_mode) 1145 goto dup_alloc; 1146 ip->i_flag |= IN_MODIFIED; 1147 vput(*vpp); 1148 } 1149 return (error); 1150 } 1151 ip = VTOI(*vpp); 1152 if (ip->i_mode) { 1153 dup_alloc: 1154 printf("mode = 0%o, inum = %ju, fs = %s\n", 1155 ip->i_mode, (uintmax_t)ip->i_number, fs->fs_fsmnt); 1156 panic("ffs_valloc: dup alloc"); 1157 } 1158 if (DIP(ip, i_blocks) && (fs->fs_flags & FS_UNCLEAN) == 0) { /* XXX */ 1159 printf("free inode %s/%lu had %ld blocks\n", 1160 fs->fs_fsmnt, (u_long)ino, (long)DIP(ip, i_blocks)); 1161 DIP_SET(ip, i_blocks, 0); 1162 } 1163 ip->i_flags = 0; 1164 DIP_SET(ip, i_flags, 0); 1165 /* 1166 * Set up a new generation number for this inode. 1167 */ 1168 while (ip->i_gen == 0 || ++ip->i_gen == 0) 1169 ip->i_gen = arc4random(); 1170 DIP_SET(ip, i_gen, ip->i_gen); 1171 if (fs->fs_magic == FS_UFS2_MAGIC) { 1172 vfs_timestamp(&ts); 1173 ip->i_din2->di_birthtime = ts.tv_sec; 1174 ip->i_din2->di_birthnsec = ts.tv_nsec; 1175 } 1176 ufs_prepare_reclaim(*vpp); 1177 ip->i_flag = 0; 1178 (*vpp)->v_vflag = 0; 1179 (*vpp)->v_type = VNON; 1180 if (fs->fs_magic == FS_UFS2_MAGIC) { 1181 (*vpp)->v_op = &ffs_vnodeops2; 1182 ip->i_flag |= IN_UFS2; 1183 } else { 1184 (*vpp)->v_op = &ffs_vnodeops1; 1185 } 1186 return (0); 1187 noinodes: 1188 if (reclaimed == 0) { 1189 reclaimed = 1; 1190 softdep_request_cleanup(fs, pvp, cred, FLUSH_INODES_WAIT); 1191 goto retry; 1192 } 1193 UFS_UNLOCK(ump); 1194 if (ppsratecheck(&lastfail, &curfail, 1)) { 1195 ffs_fserr(fs, pip->i_number, "out of inodes"); 1196 uprintf("\n%s: create/symlink failed, no inodes free\n", 1197 fs->fs_fsmnt); 1198 } 1199 return (ENOSPC); 1200 } 1201 1202 /* 1203 * Find a cylinder group to place a directory. 1204 * 1205 * The policy implemented by this algorithm is to allocate a 1206 * directory inode in the same cylinder group as its parent 1207 * directory, but also to reserve space for its files inodes 1208 * and data. Restrict the number of directories which may be 1209 * allocated one after another in the same cylinder group 1210 * without intervening allocation of files. 1211 * 1212 * If we allocate a first level directory then force allocation 1213 * in another cylinder group. 1214 */ 1215 static ino_t 1216 ffs_dirpref(pip) 1217 struct inode *pip; 1218 { 1219 struct fs *fs; 1220 int cg, prefcg, dirsize, cgsize; 1221 u_int avgifree, avgbfree, avgndir, curdirsize; 1222 u_int minifree, minbfree, maxndir; 1223 u_int mincg, minndir; 1224 u_int maxcontigdirs; 1225 1226 mtx_assert(UFS_MTX(ITOUMP(pip)), MA_OWNED); 1227 fs = ITOFS(pip); 1228 1229 avgifree = fs->fs_cstotal.cs_nifree / fs->fs_ncg; 1230 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1231 avgndir = fs->fs_cstotal.cs_ndir / fs->fs_ncg; 1232 1233 /* 1234 * Force allocation in another cg if creating a first level dir. 1235 */ 1236 ASSERT_VOP_LOCKED(ITOV(pip), "ffs_dirpref"); 1237 if (ITOV(pip)->v_vflag & VV_ROOT) { 1238 prefcg = arc4random() % fs->fs_ncg; 1239 mincg = prefcg; 1240 minndir = fs->fs_ipg; 1241 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1242 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1243 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1244 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1245 mincg = cg; 1246 minndir = fs->fs_cs(fs, cg).cs_ndir; 1247 } 1248 for (cg = 0; cg < prefcg; cg++) 1249 if (fs->fs_cs(fs, cg).cs_ndir < minndir && 1250 fs->fs_cs(fs, cg).cs_nifree >= avgifree && 1251 fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1252 mincg = cg; 1253 minndir = fs->fs_cs(fs, cg).cs_ndir; 1254 } 1255 return ((ino_t)(fs->fs_ipg * mincg)); 1256 } 1257 1258 /* 1259 * Count various limits which used for 1260 * optimal allocation of a directory inode. 1261 */ 1262 maxndir = min(avgndir + fs->fs_ipg / 16, fs->fs_ipg); 1263 minifree = avgifree - avgifree / 4; 1264 if (minifree < 1) 1265 minifree = 1; 1266 minbfree = avgbfree - avgbfree / 4; 1267 if (minbfree < 1) 1268 minbfree = 1; 1269 cgsize = fs->fs_fsize * fs->fs_fpg; 1270 dirsize = fs->fs_avgfilesize * fs->fs_avgfpdir; 1271 curdirsize = avgndir ? (cgsize - avgbfree * fs->fs_bsize) / avgndir : 0; 1272 if (dirsize < curdirsize) 1273 dirsize = curdirsize; 1274 if (dirsize <= 0) 1275 maxcontigdirs = 0; /* dirsize overflowed */ 1276 else 1277 maxcontigdirs = min((avgbfree * fs->fs_bsize) / dirsize, 255); 1278 if (fs->fs_avgfpdir > 0) 1279 maxcontigdirs = min(maxcontigdirs, 1280 fs->fs_ipg / fs->fs_avgfpdir); 1281 if (maxcontigdirs == 0) 1282 maxcontigdirs = 1; 1283 1284 /* 1285 * Limit number of dirs in one cg and reserve space for 1286 * regular files, but only if we have no deficit in 1287 * inodes or space. 1288 * 1289 * We are trying to find a suitable cylinder group nearby 1290 * our preferred cylinder group to place a new directory. 1291 * We scan from our preferred cylinder group forward looking 1292 * for a cylinder group that meets our criterion. If we get 1293 * to the final cylinder group and do not find anything, 1294 * we start scanning forwards from the beginning of the 1295 * filesystem. While it might seem sensible to start scanning 1296 * backwards or even to alternate looking forward and backward, 1297 * this approach fails badly when the filesystem is nearly full. 1298 * Specifically, we first search all the areas that have no space 1299 * and finally try the one preceding that. We repeat this on 1300 * every request and in the case of the final block end up 1301 * searching the entire filesystem. By jumping to the front 1302 * of the filesystem, our future forward searches always look 1303 * in new cylinder groups so finds every possible block after 1304 * one pass over the filesystem. 1305 */ 1306 prefcg = ino_to_cg(fs, pip->i_number); 1307 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1308 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1309 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1310 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1311 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1312 return ((ino_t)(fs->fs_ipg * cg)); 1313 } 1314 for (cg = 0; cg < prefcg; cg++) 1315 if (fs->fs_cs(fs, cg).cs_ndir < maxndir && 1316 fs->fs_cs(fs, cg).cs_nifree >= minifree && 1317 fs->fs_cs(fs, cg).cs_nbfree >= minbfree) { 1318 if (fs->fs_contigdirs[cg] < maxcontigdirs) 1319 return ((ino_t)(fs->fs_ipg * cg)); 1320 } 1321 /* 1322 * This is a backstop when we have deficit in space. 1323 */ 1324 for (cg = prefcg; cg < fs->fs_ncg; cg++) 1325 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1326 return ((ino_t)(fs->fs_ipg * cg)); 1327 for (cg = 0; cg < prefcg; cg++) 1328 if (fs->fs_cs(fs, cg).cs_nifree >= avgifree) 1329 break; 1330 return ((ino_t)(fs->fs_ipg * cg)); 1331 } 1332 1333 /* 1334 * Select the desired position for the next block in a file. The file is 1335 * logically divided into sections. The first section is composed of the 1336 * direct blocks and the next fs_maxbpg blocks. Each additional section 1337 * contains fs_maxbpg blocks. 1338 * 1339 * If no blocks have been allocated in the first section, the policy is to 1340 * request a block in the same cylinder group as the inode that describes 1341 * the file. The first indirect is allocated immediately following the last 1342 * direct block and the data blocks for the first indirect immediately 1343 * follow it. 1344 * 1345 * If no blocks have been allocated in any other section, the indirect 1346 * block(s) are allocated in the same cylinder group as its inode in an 1347 * area reserved immediately following the inode blocks. The policy for 1348 * the data blocks is to place them in a cylinder group with a greater than 1349 * average number of free blocks. An appropriate cylinder group is found 1350 * by using a rotor that sweeps the cylinder groups. When a new group of 1351 * blocks is needed, the sweep begins in the cylinder group following the 1352 * cylinder group from which the previous allocation was made. The sweep 1353 * continues until a cylinder group with greater than the average number 1354 * of free blocks is found. If the allocation is for the first block in an 1355 * indirect block or the previous block is a hole, then the information on 1356 * the previous allocation is unavailable; here a best guess is made based 1357 * on the logical block number being allocated. 1358 * 1359 * If a section is already partially allocated, the policy is to 1360 * allocate blocks contiguously within the section if possible. 1361 */ 1362 ufs2_daddr_t 1363 ffs_blkpref_ufs1(ip, lbn, indx, bap) 1364 struct inode *ip; 1365 ufs_lbn_t lbn; 1366 int indx; 1367 ufs1_daddr_t *bap; 1368 { 1369 struct fs *fs; 1370 u_int cg, inocg; 1371 u_int avgbfree, startcg; 1372 ufs2_daddr_t pref; 1373 1374 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1375 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1376 fs = ITOFS(ip); 1377 /* 1378 * Allocation of indirect blocks is indicated by passing negative 1379 * values in indx: -1 for single indirect, -2 for double indirect, 1380 * -3 for triple indirect. As noted below, we attempt to allocate 1381 * the first indirect inline with the file data. For all later 1382 * indirect blocks, the data is often allocated in other cylinder 1383 * groups. However to speed random file access and to speed up 1384 * fsck, the filesystem reserves the first fs_metaspace blocks 1385 * (typically half of fs_minfree) of the data area of each cylinder 1386 * group to hold these later indirect blocks. 1387 */ 1388 inocg = ino_to_cg(fs, ip->i_number); 1389 if (indx < 0) { 1390 /* 1391 * Our preference for indirect blocks is the zone at the 1392 * beginning of the inode's cylinder group data area that 1393 * we try to reserve for indirect blocks. 1394 */ 1395 pref = cgmeta(fs, inocg); 1396 /* 1397 * If we are allocating the first indirect block, try to 1398 * place it immediately following the last direct block. 1399 */ 1400 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1401 ip->i_din1->di_db[UFS_NDADDR - 1] != 0) 1402 pref = ip->i_din1->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1403 return (pref); 1404 } 1405 /* 1406 * If we are allocating the first data block in the first indirect 1407 * block and the indirect has been allocated in the data block area, 1408 * try to place it immediately following the indirect block. 1409 */ 1410 if (lbn == UFS_NDADDR) { 1411 pref = ip->i_din1->di_ib[0]; 1412 if (pref != 0 && pref >= cgdata(fs, inocg) && 1413 pref < cgbase(fs, inocg + 1)) 1414 return (pref + fs->fs_frag); 1415 } 1416 /* 1417 * If we are at the beginning of a file, or we have already allocated 1418 * the maximum number of blocks per cylinder group, or we do not 1419 * have a block allocated immediately preceding us, then we need 1420 * to decide where to start allocating new blocks. 1421 */ 1422 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1423 /* 1424 * If we are allocating a directory data block, we want 1425 * to place it in the metadata area. 1426 */ 1427 if ((ip->i_mode & IFMT) == IFDIR) 1428 return (cgmeta(fs, inocg)); 1429 /* 1430 * Until we fill all the direct and all the first indirect's 1431 * blocks, we try to allocate in the data area of the inode's 1432 * cylinder group. 1433 */ 1434 if (lbn < UFS_NDADDR + NINDIR(fs)) 1435 return (cgdata(fs, inocg)); 1436 /* 1437 * Find a cylinder with greater than average number of 1438 * unused data blocks. 1439 */ 1440 if (indx == 0 || bap[indx - 1] == 0) 1441 startcg = inocg + lbn / fs->fs_maxbpg; 1442 else 1443 startcg = dtog(fs, bap[indx - 1]) + 1; 1444 startcg %= fs->fs_ncg; 1445 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1446 for (cg = startcg; cg < fs->fs_ncg; cg++) 1447 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1448 fs->fs_cgrotor = cg; 1449 return (cgdata(fs, cg)); 1450 } 1451 for (cg = 0; cg <= startcg; cg++) 1452 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1453 fs->fs_cgrotor = cg; 1454 return (cgdata(fs, cg)); 1455 } 1456 return (0); 1457 } 1458 /* 1459 * Otherwise, we just always try to lay things out contiguously. 1460 */ 1461 return (bap[indx - 1] + fs->fs_frag); 1462 } 1463 1464 /* 1465 * Same as above, but for UFS2 1466 */ 1467 ufs2_daddr_t 1468 ffs_blkpref_ufs2(ip, lbn, indx, bap) 1469 struct inode *ip; 1470 ufs_lbn_t lbn; 1471 int indx; 1472 ufs2_daddr_t *bap; 1473 { 1474 struct fs *fs; 1475 u_int cg, inocg; 1476 u_int avgbfree, startcg; 1477 ufs2_daddr_t pref; 1478 1479 KASSERT(indx <= 0 || bap != NULL, ("need non-NULL bap")); 1480 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1481 fs = ITOFS(ip); 1482 /* 1483 * Allocation of indirect blocks is indicated by passing negative 1484 * values in indx: -1 for single indirect, -2 for double indirect, 1485 * -3 for triple indirect. As noted below, we attempt to allocate 1486 * the first indirect inline with the file data. For all later 1487 * indirect blocks, the data is often allocated in other cylinder 1488 * groups. However to speed random file access and to speed up 1489 * fsck, the filesystem reserves the first fs_metaspace blocks 1490 * (typically half of fs_minfree) of the data area of each cylinder 1491 * group to hold these later indirect blocks. 1492 */ 1493 inocg = ino_to_cg(fs, ip->i_number); 1494 if (indx < 0) { 1495 /* 1496 * Our preference for indirect blocks is the zone at the 1497 * beginning of the inode's cylinder group data area that 1498 * we try to reserve for indirect blocks. 1499 */ 1500 pref = cgmeta(fs, inocg); 1501 /* 1502 * If we are allocating the first indirect block, try to 1503 * place it immediately following the last direct block. 1504 */ 1505 if (indx == -1 && lbn < UFS_NDADDR + NINDIR(fs) && 1506 ip->i_din2->di_db[UFS_NDADDR - 1] != 0) 1507 pref = ip->i_din2->di_db[UFS_NDADDR - 1] + fs->fs_frag; 1508 return (pref); 1509 } 1510 /* 1511 * If we are allocating the first data block in the first indirect 1512 * block and the indirect has been allocated in the data block area, 1513 * try to place it immediately following the indirect block. 1514 */ 1515 if (lbn == UFS_NDADDR) { 1516 pref = ip->i_din2->di_ib[0]; 1517 if (pref != 0 && pref >= cgdata(fs, inocg) && 1518 pref < cgbase(fs, inocg + 1)) 1519 return (pref + fs->fs_frag); 1520 } 1521 /* 1522 * If we are at the beginning of a file, or we have already allocated 1523 * the maximum number of blocks per cylinder group, or we do not 1524 * have a block allocated immediately preceding us, then we need 1525 * to decide where to start allocating new blocks. 1526 */ 1527 if (indx % fs->fs_maxbpg == 0 || bap[indx - 1] == 0) { 1528 /* 1529 * If we are allocating a directory data block, we want 1530 * to place it in the metadata area. 1531 */ 1532 if ((ip->i_mode & IFMT) == IFDIR) 1533 return (cgmeta(fs, inocg)); 1534 /* 1535 * Until we fill all the direct and all the first indirect's 1536 * blocks, we try to allocate in the data area of the inode's 1537 * cylinder group. 1538 */ 1539 if (lbn < UFS_NDADDR + NINDIR(fs)) 1540 return (cgdata(fs, inocg)); 1541 /* 1542 * Find a cylinder with greater than average number of 1543 * unused data blocks. 1544 */ 1545 if (indx == 0 || bap[indx - 1] == 0) 1546 startcg = inocg + lbn / fs->fs_maxbpg; 1547 else 1548 startcg = dtog(fs, bap[indx - 1]) + 1; 1549 startcg %= fs->fs_ncg; 1550 avgbfree = fs->fs_cstotal.cs_nbfree / fs->fs_ncg; 1551 for (cg = startcg; cg < fs->fs_ncg; cg++) 1552 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1553 fs->fs_cgrotor = cg; 1554 return (cgdata(fs, cg)); 1555 } 1556 for (cg = 0; cg <= startcg; cg++) 1557 if (fs->fs_cs(fs, cg).cs_nbfree >= avgbfree) { 1558 fs->fs_cgrotor = cg; 1559 return (cgdata(fs, cg)); 1560 } 1561 return (0); 1562 } 1563 /* 1564 * Otherwise, we just always try to lay things out contiguously. 1565 */ 1566 return (bap[indx - 1] + fs->fs_frag); 1567 } 1568 1569 /* 1570 * Implement the cylinder overflow algorithm. 1571 * 1572 * The policy implemented by this algorithm is: 1573 * 1) allocate the block in its requested cylinder group. 1574 * 2) quadradically rehash on the cylinder group number. 1575 * 3) brute force search for a free block. 1576 * 1577 * Must be called with the UFS lock held. Will release the lock on success 1578 * and return with it held on failure. 1579 */ 1580 /*VARARGS5*/ 1581 static ufs2_daddr_t 1582 ffs_hashalloc(ip, cg, pref, size, rsize, allocator) 1583 struct inode *ip; 1584 u_int cg; 1585 ufs2_daddr_t pref; 1586 int size; /* Search size for data blocks, mode for inodes */ 1587 int rsize; /* Real allocated size. */ 1588 allocfcn_t *allocator; 1589 { 1590 struct fs *fs; 1591 ufs2_daddr_t result; 1592 u_int i, icg = cg; 1593 1594 mtx_assert(UFS_MTX(ITOUMP(ip)), MA_OWNED); 1595 #ifdef INVARIANTS 1596 if (ITOV(ip)->v_mount->mnt_kern_flag & MNTK_SUSPENDED) 1597 panic("ffs_hashalloc: allocation on suspended filesystem"); 1598 #endif 1599 fs = ITOFS(ip); 1600 /* 1601 * 1: preferred cylinder group 1602 */ 1603 result = (*allocator)(ip, cg, pref, size, rsize); 1604 if (result) 1605 return (result); 1606 /* 1607 * 2: quadratic rehash 1608 */ 1609 for (i = 1; i < fs->fs_ncg; i *= 2) { 1610 cg += i; 1611 if (cg >= fs->fs_ncg) 1612 cg -= fs->fs_ncg; 1613 result = (*allocator)(ip, cg, 0, size, rsize); 1614 if (result) 1615 return (result); 1616 } 1617 /* 1618 * 3: brute force search 1619 * Note that we start at i == 2, since 0 was checked initially, 1620 * and 1 is always checked in the quadratic rehash. 1621 */ 1622 cg = (icg + 2) % fs->fs_ncg; 1623 for (i = 2; i < fs->fs_ncg; i++) { 1624 result = (*allocator)(ip, cg, 0, size, rsize); 1625 if (result) 1626 return (result); 1627 cg++; 1628 if (cg == fs->fs_ncg) 1629 cg = 0; 1630 } 1631 return (0); 1632 } 1633 1634 /* 1635 * Determine whether a fragment can be extended. 1636 * 1637 * Check to see if the necessary fragments are available, and 1638 * if they are, allocate them. 1639 */ 1640 static ufs2_daddr_t 1641 ffs_fragextend(ip, cg, bprev, osize, nsize) 1642 struct inode *ip; 1643 u_int cg; 1644 ufs2_daddr_t bprev; 1645 int osize, nsize; 1646 { 1647 struct fs *fs; 1648 struct cg *cgp; 1649 struct buf *bp; 1650 struct ufsmount *ump; 1651 int nffree; 1652 long bno; 1653 int frags, bbase; 1654 int i, error; 1655 u_int8_t *blksfree; 1656 1657 ump = ITOUMP(ip); 1658 fs = ump->um_fs; 1659 if (fs->fs_cs(fs, cg).cs_nffree < numfrags(fs, nsize - osize)) 1660 return (0); 1661 frags = numfrags(fs, nsize); 1662 bbase = fragnum(fs, bprev); 1663 if (bbase > fragnum(fs, (bprev + frags - 1))) { 1664 /* cannot extend across a block boundary */ 1665 return (0); 1666 } 1667 UFS_UNLOCK(ump); 1668 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) 1669 goto fail; 1670 bno = dtogd(fs, bprev); 1671 blksfree = cg_blksfree(cgp); 1672 for (i = numfrags(fs, osize); i < frags; i++) 1673 if (isclr(blksfree, bno + i)) 1674 goto fail; 1675 /* 1676 * the current fragment can be extended 1677 * deduct the count on fragment being extended into 1678 * increase the count on the remaining fragment (if any) 1679 * allocate the extended piece 1680 */ 1681 for (i = frags; i < fs->fs_frag - bbase; i++) 1682 if (isclr(blksfree, bno + i)) 1683 break; 1684 cgp->cg_frsum[i - numfrags(fs, osize)]--; 1685 if (i != frags) 1686 cgp->cg_frsum[i - frags]++; 1687 for (i = numfrags(fs, osize), nffree = 0; i < frags; i++) { 1688 clrbit(blksfree, bno + i); 1689 cgp->cg_cs.cs_nffree--; 1690 nffree++; 1691 } 1692 UFS_LOCK(ump); 1693 fs->fs_cstotal.cs_nffree -= nffree; 1694 fs->fs_cs(fs, cg).cs_nffree -= nffree; 1695 fs->fs_fmod = 1; 1696 ACTIVECLEAR(fs, cg); 1697 UFS_UNLOCK(ump); 1698 if (DOINGSOFTDEP(ITOV(ip))) 1699 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), bprev, 1700 frags, numfrags(fs, osize)); 1701 bdwrite(bp); 1702 return (bprev); 1703 1704 fail: 1705 brelse(bp); 1706 UFS_LOCK(ump); 1707 return (0); 1708 1709 } 1710 1711 /* 1712 * Determine whether a block can be allocated. 1713 * 1714 * Check to see if a block of the appropriate size is available, 1715 * and if it is, allocate it. 1716 */ 1717 static ufs2_daddr_t 1718 ffs_alloccg(ip, cg, bpref, size, rsize) 1719 struct inode *ip; 1720 u_int cg; 1721 ufs2_daddr_t bpref; 1722 int size; 1723 int rsize; 1724 { 1725 struct fs *fs; 1726 struct cg *cgp; 1727 struct buf *bp; 1728 struct ufsmount *ump; 1729 ufs1_daddr_t bno; 1730 ufs2_daddr_t blkno; 1731 int i, allocsiz, error, frags; 1732 u_int8_t *blksfree; 1733 1734 ump = ITOUMP(ip); 1735 fs = ump->um_fs; 1736 if (fs->fs_cs(fs, cg).cs_nbfree == 0 && size == fs->fs_bsize) 1737 return (0); 1738 UFS_UNLOCK(ump); 1739 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0 || 1740 (cgp->cg_cs.cs_nbfree == 0 && size == fs->fs_bsize)) 1741 goto fail; 1742 if (size == fs->fs_bsize) { 1743 UFS_LOCK(ump); 1744 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1745 ACTIVECLEAR(fs, cg); 1746 UFS_UNLOCK(ump); 1747 bdwrite(bp); 1748 return (blkno); 1749 } 1750 /* 1751 * check to see if any fragments are already available 1752 * allocsiz is the size which will be allocated, hacking 1753 * it down to a smaller size if necessary 1754 */ 1755 blksfree = cg_blksfree(cgp); 1756 frags = numfrags(fs, size); 1757 for (allocsiz = frags; allocsiz < fs->fs_frag; allocsiz++) 1758 if (cgp->cg_frsum[allocsiz] != 0) 1759 break; 1760 if (allocsiz == fs->fs_frag) { 1761 /* 1762 * no fragments were available, so a block will be 1763 * allocated, and hacked up 1764 */ 1765 if (cgp->cg_cs.cs_nbfree == 0) 1766 goto fail; 1767 UFS_LOCK(ump); 1768 blkno = ffs_alloccgblk(ip, bp, bpref, rsize); 1769 ACTIVECLEAR(fs, cg); 1770 UFS_UNLOCK(ump); 1771 bdwrite(bp); 1772 return (blkno); 1773 } 1774 KASSERT(size == rsize, 1775 ("ffs_alloccg: size(%d) != rsize(%d)", size, rsize)); 1776 bno = ffs_mapsearch(fs, cgp, bpref, allocsiz); 1777 if (bno < 0) 1778 goto fail; 1779 for (i = 0; i < frags; i++) 1780 clrbit(blksfree, bno + i); 1781 cgp->cg_cs.cs_nffree -= frags; 1782 cgp->cg_frsum[allocsiz]--; 1783 if (frags != allocsiz) 1784 cgp->cg_frsum[allocsiz - frags]++; 1785 UFS_LOCK(ump); 1786 fs->fs_cstotal.cs_nffree -= frags; 1787 fs->fs_cs(fs, cg).cs_nffree -= frags; 1788 fs->fs_fmod = 1; 1789 blkno = cgbase(fs, cg) + bno; 1790 ACTIVECLEAR(fs, cg); 1791 UFS_UNLOCK(ump); 1792 if (DOINGSOFTDEP(ITOV(ip))) 1793 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, frags, 0); 1794 bdwrite(bp); 1795 return (blkno); 1796 1797 fail: 1798 brelse(bp); 1799 UFS_LOCK(ump); 1800 return (0); 1801 } 1802 1803 /* 1804 * Allocate a block in a cylinder group. 1805 * 1806 * This algorithm implements the following policy: 1807 * 1) allocate the requested block. 1808 * 2) allocate a rotationally optimal block in the same cylinder. 1809 * 3) allocate the next available block on the block rotor for the 1810 * specified cylinder group. 1811 * Note that this routine only allocates fs_bsize blocks; these 1812 * blocks may be fragmented by the routine that allocates them. 1813 */ 1814 static ufs2_daddr_t 1815 ffs_alloccgblk(ip, bp, bpref, size) 1816 struct inode *ip; 1817 struct buf *bp; 1818 ufs2_daddr_t bpref; 1819 int size; 1820 { 1821 struct fs *fs; 1822 struct cg *cgp; 1823 struct ufsmount *ump; 1824 ufs1_daddr_t bno; 1825 ufs2_daddr_t blkno; 1826 u_int8_t *blksfree; 1827 int i, cgbpref; 1828 1829 ump = ITOUMP(ip); 1830 fs = ump->um_fs; 1831 mtx_assert(UFS_MTX(ump), MA_OWNED); 1832 cgp = (struct cg *)bp->b_data; 1833 blksfree = cg_blksfree(cgp); 1834 if (bpref == 0) { 1835 bpref = cgbase(fs, cgp->cg_cgx) + cgp->cg_rotor + fs->fs_frag; 1836 } else if ((cgbpref = dtog(fs, bpref)) != cgp->cg_cgx) { 1837 /* map bpref to correct zone in this cg */ 1838 if (bpref < cgdata(fs, cgbpref)) 1839 bpref = cgmeta(fs, cgp->cg_cgx); 1840 else 1841 bpref = cgdata(fs, cgp->cg_cgx); 1842 } 1843 /* 1844 * if the requested block is available, use it 1845 */ 1846 bno = dtogd(fs, blknum(fs, bpref)); 1847 if (ffs_isblock(fs, blksfree, fragstoblks(fs, bno))) 1848 goto gotit; 1849 /* 1850 * Take the next available block in this cylinder group. 1851 */ 1852 bno = ffs_mapsearch(fs, cgp, bpref, (int)fs->fs_frag); 1853 if (bno < 0) 1854 return (0); 1855 /* Update cg_rotor only if allocated from the data zone */ 1856 if (bno >= dtogd(fs, cgdata(fs, cgp->cg_cgx))) 1857 cgp->cg_rotor = bno; 1858 gotit: 1859 blkno = fragstoblks(fs, bno); 1860 ffs_clrblock(fs, blksfree, (long)blkno); 1861 ffs_clusteracct(fs, cgp, blkno, -1); 1862 cgp->cg_cs.cs_nbfree--; 1863 fs->fs_cstotal.cs_nbfree--; 1864 fs->fs_cs(fs, cgp->cg_cgx).cs_nbfree--; 1865 fs->fs_fmod = 1; 1866 blkno = cgbase(fs, cgp->cg_cgx) + bno; 1867 /* 1868 * If the caller didn't want the whole block free the frags here. 1869 */ 1870 size = numfrags(fs, size); 1871 if (size != fs->fs_frag) { 1872 bno = dtogd(fs, blkno); 1873 for (i = size; i < fs->fs_frag; i++) 1874 setbit(blksfree, bno + i); 1875 i = fs->fs_frag - size; 1876 cgp->cg_cs.cs_nffree += i; 1877 fs->fs_cstotal.cs_nffree += i; 1878 fs->fs_cs(fs, cgp->cg_cgx).cs_nffree += i; 1879 fs->fs_fmod = 1; 1880 cgp->cg_frsum[i]++; 1881 } 1882 /* XXX Fixme. */ 1883 UFS_UNLOCK(ump); 1884 if (DOINGSOFTDEP(ITOV(ip))) 1885 softdep_setup_blkmapdep(bp, UFSTOVFS(ump), blkno, size, 0); 1886 UFS_LOCK(ump); 1887 return (blkno); 1888 } 1889 1890 /* 1891 * Determine whether a cluster can be allocated. 1892 * 1893 * We do not currently check for optimal rotational layout if there 1894 * are multiple choices in the same cylinder group. Instead we just 1895 * take the first one that we find following bpref. 1896 */ 1897 static ufs2_daddr_t 1898 ffs_clusteralloc(ip, cg, bpref, len) 1899 struct inode *ip; 1900 u_int cg; 1901 ufs2_daddr_t bpref; 1902 int len; 1903 { 1904 struct fs *fs; 1905 struct cg *cgp; 1906 struct buf *bp; 1907 struct ufsmount *ump; 1908 int i, run, bit, map, got, error; 1909 ufs2_daddr_t bno; 1910 u_char *mapp; 1911 int32_t *lp; 1912 u_int8_t *blksfree; 1913 1914 ump = ITOUMP(ip); 1915 fs = ump->um_fs; 1916 if (fs->fs_maxcluster[cg] < len) 1917 return (0); 1918 UFS_UNLOCK(ump); 1919 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 1920 UFS_LOCK(ump); 1921 return (0); 1922 } 1923 /* 1924 * Check to see if a cluster of the needed size (or bigger) is 1925 * available in this cylinder group. 1926 */ 1927 lp = &cg_clustersum(cgp)[len]; 1928 for (i = len; i <= fs->fs_contigsumsize; i++) 1929 if (*lp++ > 0) 1930 break; 1931 if (i > fs->fs_contigsumsize) { 1932 /* 1933 * This is the first time looking for a cluster in this 1934 * cylinder group. Update the cluster summary information 1935 * to reflect the true maximum sized cluster so that 1936 * future cluster allocation requests can avoid reading 1937 * the cylinder group map only to find no clusters. 1938 */ 1939 lp = &cg_clustersum(cgp)[len - 1]; 1940 for (i = len - 1; i > 0; i--) 1941 if (*lp-- > 0) 1942 break; 1943 UFS_LOCK(ump); 1944 fs->fs_maxcluster[cg] = i; 1945 brelse(bp); 1946 return (0); 1947 } 1948 /* 1949 * Search the cluster map to find a big enough cluster. 1950 * We take the first one that we find, even if it is larger 1951 * than we need as we prefer to get one close to the previous 1952 * block allocation. We do not search before the current 1953 * preference point as we do not want to allocate a block 1954 * that is allocated before the previous one (as we will 1955 * then have to wait for another pass of the elevator 1956 * algorithm before it will be read). We prefer to fail and 1957 * be recalled to try an allocation in the next cylinder group. 1958 */ 1959 if (dtog(fs, bpref) != cg) 1960 bpref = cgdata(fs, cg); 1961 else 1962 bpref = blknum(fs, bpref); 1963 bpref = fragstoblks(fs, dtogd(fs, bpref)); 1964 mapp = &cg_clustersfree(cgp)[bpref / NBBY]; 1965 map = *mapp++; 1966 bit = 1 << (bpref % NBBY); 1967 for (run = 0, got = bpref; got < cgp->cg_nclusterblks; got++) { 1968 if ((map & bit) == 0) { 1969 run = 0; 1970 } else { 1971 run++; 1972 if (run == len) 1973 break; 1974 } 1975 if ((got & (NBBY - 1)) != (NBBY - 1)) { 1976 bit <<= 1; 1977 } else { 1978 map = *mapp++; 1979 bit = 1; 1980 } 1981 } 1982 if (got >= cgp->cg_nclusterblks) { 1983 UFS_LOCK(ump); 1984 brelse(bp); 1985 return (0); 1986 } 1987 /* 1988 * Allocate the cluster that we have found. 1989 */ 1990 blksfree = cg_blksfree(cgp); 1991 for (i = 1; i <= len; i++) 1992 if (!ffs_isblock(fs, blksfree, got - run + i)) 1993 panic("ffs_clusteralloc: map mismatch"); 1994 bno = cgbase(fs, cg) + blkstofrags(fs, got - run + 1); 1995 if (dtog(fs, bno) != cg) 1996 panic("ffs_clusteralloc: allocated out of group"); 1997 len = blkstofrags(fs, len); 1998 UFS_LOCK(ump); 1999 for (i = 0; i < len; i += fs->fs_frag) 2000 if (ffs_alloccgblk(ip, bp, bno + i, fs->fs_bsize) != bno + i) 2001 panic("ffs_clusteralloc: lost block"); 2002 ACTIVECLEAR(fs, cg); 2003 UFS_UNLOCK(ump); 2004 bdwrite(bp); 2005 return (bno); 2006 } 2007 2008 static inline struct buf * 2009 getinobuf(struct inode *ip, u_int cg, u_int32_t cginoblk, int gbflags) 2010 { 2011 struct fs *fs; 2012 2013 fs = ITOFS(ip); 2014 return (getblk(ITODEVVP(ip), fsbtodb(fs, ino_to_fsba(fs, 2015 cg * fs->fs_ipg + cginoblk)), (int)fs->fs_bsize, 0, 0, 2016 gbflags)); 2017 } 2018 2019 /* 2020 * Synchronous inode initialization is needed only when barrier writes do not 2021 * work as advertised, and will impose a heavy cost on file creation in a newly 2022 * created filesystem. 2023 */ 2024 static int doasyncinodeinit = 1; 2025 SYSCTL_INT(_vfs_ffs, OID_AUTO, doasyncinodeinit, CTLFLAG_RWTUN, 2026 &doasyncinodeinit, 0, 2027 "Perform inode block initialization using asynchronous writes"); 2028 2029 /* 2030 * Determine whether an inode can be allocated. 2031 * 2032 * Check to see if an inode is available, and if it is, 2033 * allocate it using the following policy: 2034 * 1) allocate the requested inode. 2035 * 2) allocate the next available inode after the requested 2036 * inode in the specified cylinder group. 2037 */ 2038 static ufs2_daddr_t 2039 ffs_nodealloccg(ip, cg, ipref, mode, unused) 2040 struct inode *ip; 2041 u_int cg; 2042 ufs2_daddr_t ipref; 2043 int mode; 2044 int unused; 2045 { 2046 struct fs *fs; 2047 struct cg *cgp; 2048 struct buf *bp, *ibp; 2049 struct ufsmount *ump; 2050 u_int8_t *inosused, *loc; 2051 struct ufs2_dinode *dp2; 2052 int error, start, len, i; 2053 u_int32_t old_initediblk; 2054 2055 ump = ITOUMP(ip); 2056 fs = ump->um_fs; 2057 check_nifree: 2058 if (fs->fs_cs(fs, cg).cs_nifree == 0) 2059 return (0); 2060 UFS_UNLOCK(ump); 2061 if ((error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp)) != 0) { 2062 UFS_LOCK(ump); 2063 return (0); 2064 } 2065 restart: 2066 if (cgp->cg_cs.cs_nifree == 0) { 2067 brelse(bp); 2068 UFS_LOCK(ump); 2069 return (0); 2070 } 2071 inosused = cg_inosused(cgp); 2072 if (ipref) { 2073 ipref %= fs->fs_ipg; 2074 if (isclr(inosused, ipref)) 2075 goto gotit; 2076 } 2077 start = cgp->cg_irotor / NBBY; 2078 len = howmany(fs->fs_ipg - cgp->cg_irotor, NBBY); 2079 loc = memcchr(&inosused[start], 0xff, len); 2080 if (loc == NULL) { 2081 len = start + 1; 2082 start = 0; 2083 loc = memcchr(&inosused[start], 0xff, len); 2084 if (loc == NULL) { 2085 printf("cg = %d, irotor = %ld, fs = %s\n", 2086 cg, (long)cgp->cg_irotor, fs->fs_fsmnt); 2087 panic("ffs_nodealloccg: map corrupted"); 2088 /* NOTREACHED */ 2089 } 2090 } 2091 ipref = (loc - inosused) * NBBY + ffs(~*loc) - 1; 2092 gotit: 2093 /* 2094 * Check to see if we need to initialize more inodes. 2095 */ 2096 if (fs->fs_magic == FS_UFS2_MAGIC && 2097 ipref + INOPB(fs) > cgp->cg_initediblk && 2098 cgp->cg_initediblk < cgp->cg_niblk) { 2099 old_initediblk = cgp->cg_initediblk; 2100 2101 /* 2102 * Free the cylinder group lock before writing the 2103 * initialized inode block. Entering the 2104 * babarrierwrite() with the cylinder group lock 2105 * causes lock order violation between the lock and 2106 * snaplk. 2107 * 2108 * Another thread can decide to initialize the same 2109 * inode block, but whichever thread first gets the 2110 * cylinder group lock after writing the newly 2111 * allocated inode block will update it and the other 2112 * will realize that it has lost and leave the 2113 * cylinder group unchanged. 2114 */ 2115 ibp = getinobuf(ip, cg, old_initediblk, GB_LOCK_NOWAIT); 2116 brelse(bp); 2117 if (ibp == NULL) { 2118 /* 2119 * The inode block buffer is already owned by 2120 * another thread, which must initialize it. 2121 * Wait on the buffer to allow another thread 2122 * to finish the updates, with dropped cg 2123 * buffer lock, then retry. 2124 */ 2125 ibp = getinobuf(ip, cg, old_initediblk, 0); 2126 brelse(ibp); 2127 UFS_LOCK(ump); 2128 goto check_nifree; 2129 } 2130 bzero(ibp->b_data, (int)fs->fs_bsize); 2131 dp2 = (struct ufs2_dinode *)(ibp->b_data); 2132 for (i = 0; i < INOPB(fs); i++) { 2133 while (dp2->di_gen == 0) 2134 dp2->di_gen = arc4random(); 2135 dp2++; 2136 } 2137 2138 /* 2139 * Rather than adding a soft updates dependency to ensure 2140 * that the new inode block is written before it is claimed 2141 * by the cylinder group map, we just do a barrier write 2142 * here. The barrier write will ensure that the inode block 2143 * gets written before the updated cylinder group map can be 2144 * written. The barrier write should only slow down bulk 2145 * loading of newly created filesystems. 2146 */ 2147 if (doasyncinodeinit) 2148 babarrierwrite(ibp); 2149 else 2150 bwrite(ibp); 2151 2152 /* 2153 * After the inode block is written, try to update the 2154 * cg initediblk pointer. If another thread beat us 2155 * to it, then leave it unchanged as the other thread 2156 * has already set it correctly. 2157 */ 2158 error = ffs_getcg(fs, ump->um_devvp, cg, &bp, &cgp); 2159 UFS_LOCK(ump); 2160 ACTIVECLEAR(fs, cg); 2161 UFS_UNLOCK(ump); 2162 if (error != 0) 2163 return (error); 2164 if (cgp->cg_initediblk == old_initediblk) 2165 cgp->cg_initediblk += INOPB(fs); 2166 goto restart; 2167 } 2168 cgp->cg_irotor = ipref; 2169 UFS_LOCK(ump); 2170 ACTIVECLEAR(fs, cg); 2171 setbit(inosused, ipref); 2172 cgp->cg_cs.cs_nifree--; 2173 fs->fs_cstotal.cs_nifree--; 2174 fs->fs_cs(fs, cg).cs_nifree--; 2175 fs->fs_fmod = 1; 2176 if ((mode & IFMT) == IFDIR) { 2177 cgp->cg_cs.cs_ndir++; 2178 fs->fs_cstotal.cs_ndir++; 2179 fs->fs_cs(fs, cg).cs_ndir++; 2180 } 2181 UFS_UNLOCK(ump); 2182 if (DOINGSOFTDEP(ITOV(ip))) 2183 softdep_setup_inomapdep(bp, ip, cg * fs->fs_ipg + ipref, mode); 2184 bdwrite(bp); 2185 return ((ino_t)(cg * fs->fs_ipg + ipref)); 2186 } 2187 2188 /* 2189 * Free a block or fragment. 2190 * 2191 * The specified block or fragment is placed back in the 2192 * free map. If a fragment is deallocated, a possible 2193 * block reassembly is checked. 2194 */ 2195 static void 2196 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd) 2197 struct ufsmount *ump; 2198 struct fs *fs; 2199 struct vnode *devvp; 2200 ufs2_daddr_t bno; 2201 long size; 2202 ino_t inum; 2203 struct workhead *dephd; 2204 { 2205 struct mount *mp; 2206 struct cg *cgp; 2207 struct buf *bp; 2208 ufs1_daddr_t fragno, cgbno; 2209 int i, blk, frags, bbase, error; 2210 u_int cg; 2211 u_int8_t *blksfree; 2212 struct cdev *dev; 2213 2214 cg = dtog(fs, bno); 2215 if (devvp->v_type == VREG) { 2216 /* devvp is a snapshot */ 2217 MPASS(devvp->v_mount->mnt_data == ump); 2218 dev = ump->um_devvp->v_rdev; 2219 } else if (devvp->v_type == VCHR) { 2220 /* devvp is a normal disk device */ 2221 dev = devvp->v_rdev; 2222 ASSERT_VOP_LOCKED(devvp, "ffs_blkfree_cg"); 2223 } else 2224 return; 2225 #ifdef INVARIANTS 2226 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0 || 2227 fragnum(fs, bno) + numfrags(fs, size) > fs->fs_frag) { 2228 printf("dev=%s, bno = %jd, bsize = %ld, size = %ld, fs = %s\n", 2229 devtoname(dev), (intmax_t)bno, (long)fs->fs_bsize, 2230 size, fs->fs_fsmnt); 2231 panic("ffs_blkfree_cg: bad size"); 2232 } 2233 #endif 2234 if ((u_int)bno >= fs->fs_size) { 2235 printf("bad block %jd, ino %lu\n", (intmax_t)bno, 2236 (u_long)inum); 2237 ffs_fserr(fs, inum, "bad block"); 2238 return; 2239 } 2240 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2241 return; 2242 cgbno = dtogd(fs, bno); 2243 blksfree = cg_blksfree(cgp); 2244 UFS_LOCK(ump); 2245 if (size == fs->fs_bsize) { 2246 fragno = fragstoblks(fs, cgbno); 2247 if (!ffs_isfreeblock(fs, blksfree, fragno)) { 2248 if (devvp->v_type == VREG) { 2249 UFS_UNLOCK(ump); 2250 /* devvp is a snapshot */ 2251 brelse(bp); 2252 return; 2253 } 2254 printf("dev = %s, block = %jd, fs = %s\n", 2255 devtoname(dev), (intmax_t)bno, fs->fs_fsmnt); 2256 panic("ffs_blkfree_cg: freeing free block"); 2257 } 2258 ffs_setblock(fs, blksfree, fragno); 2259 ffs_clusteracct(fs, cgp, fragno, 1); 2260 cgp->cg_cs.cs_nbfree++; 2261 fs->fs_cstotal.cs_nbfree++; 2262 fs->fs_cs(fs, cg).cs_nbfree++; 2263 } else { 2264 bbase = cgbno - fragnum(fs, cgbno); 2265 /* 2266 * decrement the counts associated with the old frags 2267 */ 2268 blk = blkmap(fs, blksfree, bbase); 2269 ffs_fragacct(fs, blk, cgp->cg_frsum, -1); 2270 /* 2271 * deallocate the fragment 2272 */ 2273 frags = numfrags(fs, size); 2274 for (i = 0; i < frags; i++) { 2275 if (isset(blksfree, cgbno + i)) { 2276 printf("dev = %s, block = %jd, fs = %s\n", 2277 devtoname(dev), (intmax_t)(bno + i), 2278 fs->fs_fsmnt); 2279 panic("ffs_blkfree_cg: freeing free frag"); 2280 } 2281 setbit(blksfree, cgbno + i); 2282 } 2283 cgp->cg_cs.cs_nffree += i; 2284 fs->fs_cstotal.cs_nffree += i; 2285 fs->fs_cs(fs, cg).cs_nffree += i; 2286 /* 2287 * add back in counts associated with the new frags 2288 */ 2289 blk = blkmap(fs, blksfree, bbase); 2290 ffs_fragacct(fs, blk, cgp->cg_frsum, 1); 2291 /* 2292 * if a complete block has been reassembled, account for it 2293 */ 2294 fragno = fragstoblks(fs, bbase); 2295 if (ffs_isblock(fs, blksfree, fragno)) { 2296 cgp->cg_cs.cs_nffree -= fs->fs_frag; 2297 fs->fs_cstotal.cs_nffree -= fs->fs_frag; 2298 fs->fs_cs(fs, cg).cs_nffree -= fs->fs_frag; 2299 ffs_clusteracct(fs, cgp, fragno, 1); 2300 cgp->cg_cs.cs_nbfree++; 2301 fs->fs_cstotal.cs_nbfree++; 2302 fs->fs_cs(fs, cg).cs_nbfree++; 2303 } 2304 } 2305 fs->fs_fmod = 1; 2306 ACTIVECLEAR(fs, cg); 2307 UFS_UNLOCK(ump); 2308 mp = UFSTOVFS(ump); 2309 if (MOUNTEDSOFTDEP(mp) && devvp->v_type == VCHR) 2310 softdep_setup_blkfree(UFSTOVFS(ump), bp, bno, 2311 numfrags(fs, size), dephd); 2312 bdwrite(bp); 2313 } 2314 2315 /* 2316 * Structures and routines associated with trim management. 2317 * 2318 * The following requests are passed to trim_lookup to indicate 2319 * the actions that should be taken. 2320 */ 2321 #define NEW 1 /* if found, error else allocate and hash it */ 2322 #define OLD 2 /* if not found, error, else return it */ 2323 #define REPLACE 3 /* if not found, error else unhash and reallocate it */ 2324 #define DONE 4 /* if not found, error else unhash and return it */ 2325 #define SINGLE 5 /* don't look up, just allocate it and don't hash it */ 2326 2327 MALLOC_DEFINE(M_TRIM, "ufs_trim", "UFS trim structures"); 2328 2329 #define TRIMLIST_HASH(ump, key) \ 2330 (&(ump)->um_trimhash[(key) & (ump)->um_trimlisthashsize]) 2331 2332 /* 2333 * These structures describe each of the block free requests aggregated 2334 * together to make up a trim request. 2335 */ 2336 struct trim_blkreq { 2337 TAILQ_ENTRY(trim_blkreq) blkreqlist; 2338 ufs2_daddr_t bno; 2339 long size; 2340 struct workhead *pdephd; 2341 struct workhead dephd; 2342 }; 2343 2344 /* 2345 * Description of a trim request. 2346 */ 2347 struct ffs_blkfree_trim_params { 2348 TAILQ_HEAD(, trim_blkreq) blklist; 2349 LIST_ENTRY(ffs_blkfree_trim_params) hashlist; 2350 struct task task; 2351 struct ufsmount *ump; 2352 struct vnode *devvp; 2353 ino_t inum; 2354 ufs2_daddr_t bno; 2355 long size; 2356 long key; 2357 }; 2358 2359 static void ffs_blkfree_trim_completed(struct buf *); 2360 static void ffs_blkfree_trim_task(void *ctx, int pending __unused); 2361 static struct ffs_blkfree_trim_params *trim_lookup(struct ufsmount *, 2362 struct vnode *, ufs2_daddr_t, long, ino_t, u_long, int); 2363 static void ffs_blkfree_sendtrim(struct ffs_blkfree_trim_params *); 2364 2365 /* 2366 * Called on trim completion to start a task to free the associated block(s). 2367 */ 2368 static void 2369 ffs_blkfree_trim_completed(bp) 2370 struct buf *bp; 2371 { 2372 struct ffs_blkfree_trim_params *tp; 2373 2374 tp = bp->b_fsprivate1; 2375 free(bp, M_TRIM); 2376 TASK_INIT(&tp->task, 0, ffs_blkfree_trim_task, tp); 2377 taskqueue_enqueue(tp->ump->um_trim_tq, &tp->task); 2378 } 2379 2380 /* 2381 * Trim completion task that free associated block(s). 2382 */ 2383 static void 2384 ffs_blkfree_trim_task(ctx, pending) 2385 void *ctx; 2386 int pending; 2387 { 2388 struct ffs_blkfree_trim_params *tp; 2389 struct trim_blkreq *blkelm; 2390 struct ufsmount *ump; 2391 2392 tp = ctx; 2393 ump = tp->ump; 2394 while ((blkelm = TAILQ_FIRST(&tp->blklist)) != NULL) { 2395 ffs_blkfree_cg(ump, ump->um_fs, tp->devvp, blkelm->bno, 2396 blkelm->size, tp->inum, blkelm->pdephd); 2397 TAILQ_REMOVE(&tp->blklist, blkelm, blkreqlist); 2398 free(blkelm, M_TRIM); 2399 } 2400 vn_finished_secondary_write(UFSTOVFS(ump)); 2401 UFS_LOCK(ump); 2402 ump->um_trim_inflight -= 1; 2403 ump->um_trim_inflight_blks -= numfrags(ump->um_fs, tp->size); 2404 UFS_UNLOCK(ump); 2405 free(tp, M_TRIM); 2406 } 2407 2408 /* 2409 * Lookup a trim request by inode number. 2410 * Allocate if requested (NEW, REPLACE, SINGLE). 2411 */ 2412 static struct ffs_blkfree_trim_params * 2413 trim_lookup(ump, devvp, bno, size, inum, key, alloctype) 2414 struct ufsmount *ump; 2415 struct vnode *devvp; 2416 ufs2_daddr_t bno; 2417 long size; 2418 ino_t inum; 2419 u_long key; 2420 int alloctype; 2421 { 2422 struct trimlist_hashhead *tphashhead; 2423 struct ffs_blkfree_trim_params *tp, *ntp; 2424 2425 ntp = malloc(sizeof(struct ffs_blkfree_trim_params), M_TRIM, M_WAITOK); 2426 if (alloctype != SINGLE) { 2427 KASSERT(key >= FIRST_VALID_KEY, ("trim_lookup: invalid key")); 2428 UFS_LOCK(ump); 2429 tphashhead = TRIMLIST_HASH(ump, key); 2430 LIST_FOREACH(tp, tphashhead, hashlist) 2431 if (key == tp->key) 2432 break; 2433 } 2434 switch (alloctype) { 2435 case NEW: 2436 KASSERT(tp == NULL, ("trim_lookup: found trim")); 2437 break; 2438 case OLD: 2439 KASSERT(tp != NULL, 2440 ("trim_lookup: missing call to ffs_blkrelease_start()")); 2441 UFS_UNLOCK(ump); 2442 free(ntp, M_TRIM); 2443 return (tp); 2444 case REPLACE: 2445 KASSERT(tp != NULL, ("trim_lookup: missing REPLACE trim")); 2446 LIST_REMOVE(tp, hashlist); 2447 /* tp will be freed by caller */ 2448 break; 2449 case DONE: 2450 KASSERT(tp != NULL, ("trim_lookup: missing DONE trim")); 2451 LIST_REMOVE(tp, hashlist); 2452 UFS_UNLOCK(ump); 2453 free(ntp, M_TRIM); 2454 return (tp); 2455 } 2456 TAILQ_INIT(&ntp->blklist); 2457 ntp->ump = ump; 2458 ntp->devvp = devvp; 2459 ntp->bno = bno; 2460 ntp->size = size; 2461 ntp->inum = inum; 2462 ntp->key = key; 2463 if (alloctype != SINGLE) { 2464 LIST_INSERT_HEAD(tphashhead, ntp, hashlist); 2465 UFS_UNLOCK(ump); 2466 } 2467 return (ntp); 2468 } 2469 2470 /* 2471 * Dispatch a trim request. 2472 */ 2473 static void 2474 ffs_blkfree_sendtrim(tp) 2475 struct ffs_blkfree_trim_params *tp; 2476 { 2477 struct ufsmount *ump; 2478 struct mount *mp; 2479 struct buf *bp; 2480 2481 /* 2482 * Postpone the set of the free bit in the cg bitmap until the 2483 * BIO_DELETE is completed. Otherwise, due to disk queue 2484 * reordering, TRIM might be issued after we reuse the block 2485 * and write some new data into it. 2486 */ 2487 ump = tp->ump; 2488 bp = malloc(sizeof(*bp), M_TRIM, M_WAITOK | M_ZERO); 2489 bp->b_iocmd = BIO_DELETE; 2490 bp->b_iooffset = dbtob(fsbtodb(ump->um_fs, tp->bno)); 2491 bp->b_iodone = ffs_blkfree_trim_completed; 2492 bp->b_bcount = tp->size; 2493 bp->b_fsprivate1 = tp; 2494 UFS_LOCK(ump); 2495 ump->um_trim_total += 1; 2496 ump->um_trim_inflight += 1; 2497 ump->um_trim_inflight_blks += numfrags(ump->um_fs, tp->size); 2498 ump->um_trim_total_blks += numfrags(ump->um_fs, tp->size); 2499 UFS_UNLOCK(ump); 2500 2501 mp = UFSTOVFS(ump); 2502 vn_start_secondary_write(NULL, &mp, 0); 2503 g_vfs_strategy(ump->um_bo, bp); 2504 } 2505 2506 /* 2507 * Allocate a new key to use to identify a range of blocks. 2508 */ 2509 u_long 2510 ffs_blkrelease_start(ump, devvp, inum) 2511 struct ufsmount *ump; 2512 struct vnode *devvp; 2513 ino_t inum; 2514 { 2515 static u_long masterkey; 2516 u_long key; 2517 2518 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2519 return (SINGLETON_KEY); 2520 do { 2521 key = atomic_fetchadd_long(&masterkey, 1); 2522 } while (key < FIRST_VALID_KEY); 2523 (void) trim_lookup(ump, devvp, 0, 0, inum, key, NEW); 2524 return (key); 2525 } 2526 2527 /* 2528 * Deallocate a key that has been used to identify a range of blocks. 2529 */ 2530 void 2531 ffs_blkrelease_finish(ump, key) 2532 struct ufsmount *ump; 2533 u_long key; 2534 { 2535 struct ffs_blkfree_trim_params *tp; 2536 2537 if (((ump->um_flags & UM_CANDELETE) == 0) || dotrimcons == 0) 2538 return; 2539 /* 2540 * If the vfs.ffs.dotrimcons sysctl option is enabled while 2541 * a file deletion is active, specifically after a call 2542 * to ffs_blkrelease_start() but before the call to 2543 * ffs_blkrelease_finish(), ffs_blkrelease_start() will 2544 * have handed out SINGLETON_KEY rather than starting a 2545 * collection sequence. Thus if we get a SINGLETON_KEY 2546 * passed to ffs_blkrelease_finish(), we just return rather 2547 * than trying to finish the nonexistent sequence. 2548 */ 2549 if (key == SINGLETON_KEY) { 2550 #ifdef INVARIANTS 2551 printf("%s: vfs.ffs.dotrimcons enabled on active filesystem\n", 2552 ump->um_mountp->mnt_stat.f_mntonname); 2553 #endif 2554 return; 2555 } 2556 /* 2557 * We are done with sending blocks using this key. Look up the key 2558 * using the DONE alloctype (in tp) to request that it be unhashed 2559 * as we will not be adding to it. If the key has never been used, 2560 * tp->size will be zero, so we can just free tp. Otherwise the call 2561 * to ffs_blkfree_sendtrim(tp) causes the block range described by 2562 * tp to be issued (and then tp to be freed). 2563 */ 2564 tp = trim_lookup(ump, NULL, 0, 0, 0, key, DONE); 2565 if (tp->size == 0) 2566 free(tp, M_TRIM); 2567 else 2568 ffs_blkfree_sendtrim(tp); 2569 } 2570 2571 /* 2572 * Setup to free a block or fragment. 2573 * 2574 * Check for snapshots that might want to claim the block. 2575 * If trims are requested, prepare a trim request. Attempt to 2576 * aggregate consecutive blocks into a single trim request. 2577 */ 2578 void 2579 ffs_blkfree(ump, fs, devvp, bno, size, inum, vtype, dephd, key) 2580 struct ufsmount *ump; 2581 struct fs *fs; 2582 struct vnode *devvp; 2583 ufs2_daddr_t bno; 2584 long size; 2585 ino_t inum; 2586 enum vtype vtype; 2587 struct workhead *dephd; 2588 u_long key; 2589 { 2590 struct ffs_blkfree_trim_params *tp, *ntp; 2591 struct trim_blkreq *blkelm; 2592 2593 /* 2594 * Check to see if a snapshot wants to claim the block. 2595 * Check that devvp is a normal disk device, not a snapshot, 2596 * it has a snapshot(s) associated with it, and one of the 2597 * snapshots wants to claim the block. 2598 */ 2599 if (devvp->v_type == VCHR && 2600 (devvp->v_vflag & VV_COPYONWRITE) && 2601 ffs_snapblkfree(fs, devvp, bno, size, inum, vtype, dephd)) { 2602 return; 2603 } 2604 /* 2605 * Nothing to delay if TRIM is not required for this block or TRIM 2606 * is disabled or the operation is performed on a snapshot. 2607 */ 2608 if (key == NOTRIM_KEY || ((ump->um_flags & UM_CANDELETE) == 0) || 2609 devvp->v_type == VREG) { 2610 ffs_blkfree_cg(ump, fs, devvp, bno, size, inum, dephd); 2611 return; 2612 } 2613 blkelm = malloc(sizeof(struct trim_blkreq), M_TRIM, M_WAITOK); 2614 blkelm->bno = bno; 2615 blkelm->size = size; 2616 if (dephd == NULL) { 2617 blkelm->pdephd = NULL; 2618 } else { 2619 LIST_INIT(&blkelm->dephd); 2620 LIST_SWAP(dephd, &blkelm->dephd, worklist, wk_list); 2621 blkelm->pdephd = &blkelm->dephd; 2622 } 2623 if (key == SINGLETON_KEY) { 2624 /* 2625 * Just a single non-contiguous piece. Use the SINGLE 2626 * alloctype to return a trim request that will not be 2627 * hashed for future lookup. 2628 */ 2629 tp = trim_lookup(ump, devvp, bno, size, inum, key, SINGLE); 2630 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2631 ffs_blkfree_sendtrim(tp); 2632 return; 2633 } 2634 /* 2635 * The callers of this function are not tracking whether or not 2636 * the blocks are contiguous. They are just saying that they 2637 * are freeing a set of blocks. It is this code that determines 2638 * the pieces of that range that are actually contiguous. 2639 * 2640 * Calling ffs_blkrelease_start() will have created an entry 2641 * that we will use. 2642 */ 2643 tp = trim_lookup(ump, devvp, bno, size, inum, key, OLD); 2644 if (tp->size == 0) { 2645 /* 2646 * First block of a potential range, set block and size 2647 * for the trim block. 2648 */ 2649 tp->bno = bno; 2650 tp->size = size; 2651 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2652 return; 2653 } 2654 /* 2655 * If this block is a continuation of the range (either 2656 * follows at the end or preceeds in the front) then we 2657 * add it to the front or back of the list and return. 2658 * 2659 * If it is not a continuation of the trim that we were 2660 * building, using the REPLACE alloctype, we request that 2661 * the old trim request (still in tp) be unhashed and a 2662 * new range started (in ntp). The ffs_blkfree_sendtrim(tp) 2663 * call causes the block range described by tp to be issued 2664 * (and then tp to be freed). 2665 */ 2666 if (bno + numfrags(fs, size) == tp->bno) { 2667 TAILQ_INSERT_HEAD(&tp->blklist, blkelm, blkreqlist); 2668 tp->bno = bno; 2669 tp->size += size; 2670 return; 2671 } else if (bno == tp->bno + numfrags(fs, tp->size)) { 2672 TAILQ_INSERT_TAIL(&tp->blklist, blkelm, blkreqlist); 2673 tp->size += size; 2674 return; 2675 } 2676 ntp = trim_lookup(ump, devvp, bno, size, inum, key, REPLACE); 2677 TAILQ_INSERT_HEAD(&ntp->blklist, blkelm, blkreqlist); 2678 ffs_blkfree_sendtrim(tp); 2679 } 2680 2681 #ifdef INVARIANTS 2682 /* 2683 * Verify allocation of a block or fragment. Returns true if block or 2684 * fragment is allocated, false if it is free. 2685 */ 2686 static int 2687 ffs_checkblk(ip, bno, size) 2688 struct inode *ip; 2689 ufs2_daddr_t bno; 2690 long size; 2691 { 2692 struct fs *fs; 2693 struct cg *cgp; 2694 struct buf *bp; 2695 ufs1_daddr_t cgbno; 2696 int i, error, frags, free; 2697 u_int8_t *blksfree; 2698 2699 fs = ITOFS(ip); 2700 if ((u_int)size > fs->fs_bsize || fragoff(fs, size) != 0) { 2701 printf("bsize = %ld, size = %ld, fs = %s\n", 2702 (long)fs->fs_bsize, size, fs->fs_fsmnt); 2703 panic("ffs_checkblk: bad size"); 2704 } 2705 if ((u_int)bno >= fs->fs_size) 2706 panic("ffs_checkblk: bad block %jd", (intmax_t)bno); 2707 error = ffs_getcg(fs, ITODEVVP(ip), dtog(fs, bno), &bp, &cgp); 2708 if (error) 2709 panic("ffs_checkblk: cylinder group read failed"); 2710 blksfree = cg_blksfree(cgp); 2711 cgbno = dtogd(fs, bno); 2712 if (size == fs->fs_bsize) { 2713 free = ffs_isblock(fs, blksfree, fragstoblks(fs, cgbno)); 2714 } else { 2715 frags = numfrags(fs, size); 2716 for (free = 0, i = 0; i < frags; i++) 2717 if (isset(blksfree, cgbno + i)) 2718 free++; 2719 if (free != 0 && free != frags) 2720 panic("ffs_checkblk: partially free fragment"); 2721 } 2722 brelse(bp); 2723 return (!free); 2724 } 2725 #endif /* INVARIANTS */ 2726 2727 /* 2728 * Free an inode. 2729 */ 2730 int 2731 ffs_vfree(pvp, ino, mode) 2732 struct vnode *pvp; 2733 ino_t ino; 2734 int mode; 2735 { 2736 struct ufsmount *ump; 2737 2738 if (DOINGSOFTDEP(pvp)) { 2739 softdep_freefile(pvp, ino, mode); 2740 return (0); 2741 } 2742 ump = VFSTOUFS(pvp->v_mount); 2743 return (ffs_freefile(ump, ump->um_fs, ump->um_devvp, ino, mode, NULL)); 2744 } 2745 2746 /* 2747 * Do the actual free operation. 2748 * The specified inode is placed back in the free map. 2749 */ 2750 int 2751 ffs_freefile(ump, fs, devvp, ino, mode, wkhd) 2752 struct ufsmount *ump; 2753 struct fs *fs; 2754 struct vnode *devvp; 2755 ino_t ino; 2756 int mode; 2757 struct workhead *wkhd; 2758 { 2759 struct cg *cgp; 2760 struct buf *bp; 2761 int error; 2762 u_int cg; 2763 u_int8_t *inosused; 2764 struct cdev *dev; 2765 2766 cg = ino_to_cg(fs, ino); 2767 if (devvp->v_type == VREG) { 2768 /* devvp is a snapshot */ 2769 MPASS(devvp->v_mount->mnt_data == ump); 2770 dev = ump->um_devvp->v_rdev; 2771 } else if (devvp->v_type == VCHR) { 2772 /* devvp is a normal disk device */ 2773 dev = devvp->v_rdev; 2774 } else { 2775 bp = NULL; 2776 return (0); 2777 } 2778 if (ino >= fs->fs_ipg * fs->fs_ncg) 2779 panic("ffs_freefile: range: dev = %s, ino = %ju, fs = %s", 2780 devtoname(dev), (uintmax_t)ino, fs->fs_fsmnt); 2781 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2782 return (error); 2783 inosused = cg_inosused(cgp); 2784 ino %= fs->fs_ipg; 2785 if (isclr(inosused, ino)) { 2786 printf("dev = %s, ino = %ju, fs = %s\n", devtoname(dev), 2787 (uintmax_t)(ino + cg * fs->fs_ipg), fs->fs_fsmnt); 2788 if (fs->fs_ronly == 0) 2789 panic("ffs_freefile: freeing free inode"); 2790 } 2791 clrbit(inosused, ino); 2792 if (ino < cgp->cg_irotor) 2793 cgp->cg_irotor = ino; 2794 cgp->cg_cs.cs_nifree++; 2795 UFS_LOCK(ump); 2796 fs->fs_cstotal.cs_nifree++; 2797 fs->fs_cs(fs, cg).cs_nifree++; 2798 if ((mode & IFMT) == IFDIR) { 2799 cgp->cg_cs.cs_ndir--; 2800 fs->fs_cstotal.cs_ndir--; 2801 fs->fs_cs(fs, cg).cs_ndir--; 2802 } 2803 fs->fs_fmod = 1; 2804 ACTIVECLEAR(fs, cg); 2805 UFS_UNLOCK(ump); 2806 if (MOUNTEDSOFTDEP(UFSTOVFS(ump)) && devvp->v_type == VCHR) 2807 softdep_setup_inofree(UFSTOVFS(ump), bp, 2808 ino + cg * fs->fs_ipg, wkhd); 2809 bdwrite(bp); 2810 return (0); 2811 } 2812 2813 /* 2814 * Check to see if a file is free. 2815 * Used to check for allocated files in snapshots. 2816 */ 2817 int 2818 ffs_checkfreefile(fs, devvp, ino) 2819 struct fs *fs; 2820 struct vnode *devvp; 2821 ino_t ino; 2822 { 2823 struct cg *cgp; 2824 struct buf *bp; 2825 int ret, error; 2826 u_int cg; 2827 u_int8_t *inosused; 2828 2829 cg = ino_to_cg(fs, ino); 2830 if ((devvp->v_type != VREG) && (devvp->v_type != VCHR)) 2831 return (1); 2832 if (ino >= fs->fs_ipg * fs->fs_ncg) 2833 return (1); 2834 if ((error = ffs_getcg(fs, devvp, cg, &bp, &cgp)) != 0) 2835 return (1); 2836 inosused = cg_inosused(cgp); 2837 ino %= fs->fs_ipg; 2838 ret = isclr(inosused, ino); 2839 brelse(bp); 2840 return (ret); 2841 } 2842 2843 /* 2844 * Find a block of the specified size in the specified cylinder group. 2845 * 2846 * It is a panic if a request is made to find a block if none are 2847 * available. 2848 */ 2849 static ufs1_daddr_t 2850 ffs_mapsearch(fs, cgp, bpref, allocsiz) 2851 struct fs *fs; 2852 struct cg *cgp; 2853 ufs2_daddr_t bpref; 2854 int allocsiz; 2855 { 2856 ufs1_daddr_t bno; 2857 int start, len, loc, i; 2858 int blk, field, subfield, pos; 2859 u_int8_t *blksfree; 2860 2861 /* 2862 * find the fragment by searching through the free block 2863 * map for an appropriate bit pattern 2864 */ 2865 if (bpref) 2866 start = dtogd(fs, bpref) / NBBY; 2867 else 2868 start = cgp->cg_frotor / NBBY; 2869 blksfree = cg_blksfree(cgp); 2870 len = howmany(fs->fs_fpg, NBBY) - start; 2871 loc = scanc((u_int)len, (u_char *)&blksfree[start], 2872 fragtbl[fs->fs_frag], 2873 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2874 if (loc == 0) { 2875 len = start + 1; 2876 start = 0; 2877 loc = scanc((u_int)len, (u_char *)&blksfree[0], 2878 fragtbl[fs->fs_frag], 2879 (u_char)(1 << (allocsiz - 1 + (fs->fs_frag % NBBY)))); 2880 if (loc == 0) { 2881 printf("start = %d, len = %d, fs = %s\n", 2882 start, len, fs->fs_fsmnt); 2883 panic("ffs_alloccg: map corrupted"); 2884 /* NOTREACHED */ 2885 } 2886 } 2887 bno = (start + len - loc) * NBBY; 2888 cgp->cg_frotor = bno; 2889 /* 2890 * found the byte in the map 2891 * sift through the bits to find the selected frag 2892 */ 2893 for (i = bno + NBBY; bno < i; bno += fs->fs_frag) { 2894 blk = blkmap(fs, blksfree, bno); 2895 blk <<= 1; 2896 field = around[allocsiz]; 2897 subfield = inside[allocsiz]; 2898 for (pos = 0; pos <= fs->fs_frag - allocsiz; pos++) { 2899 if ((blk & field) == subfield) 2900 return (bno + pos); 2901 field <<= 1; 2902 subfield <<= 1; 2903 } 2904 } 2905 printf("bno = %lu, fs = %s\n", (u_long)bno, fs->fs_fsmnt); 2906 panic("ffs_alloccg: block not in map"); 2907 return (-1); 2908 } 2909 2910 static const struct statfs * 2911 ffs_getmntstat(struct vnode *devvp) 2912 { 2913 2914 if (devvp->v_type == VCHR) 2915 return (&devvp->v_rdev->si_mountpt->mnt_stat); 2916 return (ffs_getmntstat(VFSTOUFS(devvp->v_mount)->um_devvp)); 2917 } 2918 2919 /* 2920 * Fetch and verify a cylinder group. 2921 */ 2922 int 2923 ffs_getcg(fs, devvp, cg, bpp, cgpp) 2924 struct fs *fs; 2925 struct vnode *devvp; 2926 u_int cg; 2927 struct buf **bpp; 2928 struct cg **cgpp; 2929 { 2930 struct buf *bp; 2931 struct cg *cgp; 2932 const struct statfs *sfs; 2933 int flags, error; 2934 2935 *bpp = NULL; 2936 *cgpp = NULL; 2937 flags = 0; 2938 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2939 flags |= GB_CKHASH; 2940 error = breadn_flags(devvp, devvp->v_type == VREG ? 2941 fragstoblks(fs, cgtod(fs, cg)) : fsbtodb(fs, cgtod(fs, cg)), 2942 (int)fs->fs_cgsize, NULL, NULL, 0, NOCRED, flags, 2943 ffs_ckhash_cg, &bp); 2944 if (error != 0) 2945 return (error); 2946 cgp = (struct cg *)bp->b_data; 2947 if ((fs->fs_metackhash & CK_CYLGRP) != 0 && 2948 (bp->b_flags & B_CKHASH) != 0 && 2949 cgp->cg_ckhash != bp->b_ckhash) { 2950 sfs = ffs_getmntstat(devvp); 2951 printf("UFS %s%s (%s) cylinder checksum failed: cg %u, cgp: " 2952 "0x%x != bp: 0x%jx\n", 2953 devvp->v_type == VCHR ? "" : "snapshot of ", 2954 sfs->f_mntfromname, sfs->f_mntonname, 2955 cg, cgp->cg_ckhash, (uintmax_t)bp->b_ckhash); 2956 bp->b_flags &= ~B_CKHASH; 2957 bp->b_flags |= B_INVAL | B_NOCACHE; 2958 brelse(bp); 2959 return (EIO); 2960 } 2961 if (!cg_chkmagic(cgp) || cgp->cg_cgx != cg) { 2962 sfs = ffs_getmntstat(devvp); 2963 printf("UFS %s%s (%s)", 2964 devvp->v_type == VCHR ? "" : "snapshot of ", 2965 sfs->f_mntfromname, sfs->f_mntonname); 2966 if (!cg_chkmagic(cgp)) 2967 printf(" cg %u: bad magic number 0x%x should be 0x%x\n", 2968 cg, cgp->cg_magic, CG_MAGIC); 2969 else 2970 printf(": wrong cylinder group cg %u != cgx %u\n", cg, 2971 cgp->cg_cgx); 2972 bp->b_flags &= ~B_CKHASH; 2973 bp->b_flags |= B_INVAL | B_NOCACHE; 2974 brelse(bp); 2975 return (EIO); 2976 } 2977 bp->b_flags &= ~B_CKHASH; 2978 bp->b_xflags |= BX_BKGRDWRITE; 2979 /* 2980 * If we are using check hashes on the cylinder group then we want 2981 * to limit changing the cylinder group time to when we are actually 2982 * going to write it to disk so that its check hash remains correct 2983 * in memory. If the CK_CYLGRP flag is set the time is updated in 2984 * ffs_bufwrite() as the buffer is queued for writing. Otherwise we 2985 * update the time here as we have done historically. 2986 */ 2987 if ((fs->fs_metackhash & CK_CYLGRP) != 0) 2988 bp->b_xflags |= BX_CYLGRP; 2989 else 2990 cgp->cg_old_time = cgp->cg_time = time_second; 2991 *bpp = bp; 2992 *cgpp = cgp; 2993 return (0); 2994 } 2995 2996 static void 2997 ffs_ckhash_cg(bp) 2998 struct buf *bp; 2999 { 3000 uint32_t ckhash; 3001 struct cg *cgp; 3002 3003 cgp = (struct cg *)bp->b_data; 3004 ckhash = cgp->cg_ckhash; 3005 cgp->cg_ckhash = 0; 3006 bp->b_ckhash = calculate_crc32c(~0L, bp->b_data, bp->b_bcount); 3007 cgp->cg_ckhash = ckhash; 3008 } 3009 3010 /* 3011 * Fserr prints the name of a filesystem with an error diagnostic. 3012 * 3013 * The form of the error message is: 3014 * fs: error message 3015 */ 3016 void 3017 ffs_fserr(fs, inum, cp) 3018 struct fs *fs; 3019 ino_t inum; 3020 char *cp; 3021 { 3022 struct thread *td = curthread; /* XXX */ 3023 struct proc *p = td->td_proc; 3024 3025 log(LOG_ERR, "pid %d (%s), uid %d inumber %ju on %s: %s\n", 3026 p->p_pid, p->p_comm, td->td_ucred->cr_uid, (uintmax_t)inum, 3027 fs->fs_fsmnt, cp); 3028 } 3029 3030 /* 3031 * This function provides the capability for the fsck program to 3032 * update an active filesystem. Fourteen operations are provided: 3033 * 3034 * adjrefcnt(inode, amt) - adjusts the reference count on the 3035 * specified inode by the specified amount. Under normal 3036 * operation the count should always go down. Decrementing 3037 * the count to zero will cause the inode to be freed. 3038 * adjblkcnt(inode, amt) - adjust the number of blocks used by the 3039 * inode by the specified amount. 3040 * adjndir, adjbfree, adjifree, adjffree, adjnumclusters(amt) - 3041 * adjust the superblock summary. 3042 * freedirs(inode, count) - directory inodes [inode..inode + count - 1] 3043 * are marked as free. Inodes should never have to be marked 3044 * as in use. 3045 * freefiles(inode, count) - file inodes [inode..inode + count - 1] 3046 * are marked as free. Inodes should never have to be marked 3047 * as in use. 3048 * freeblks(blockno, size) - blocks [blockno..blockno + size - 1] 3049 * are marked as free. Blocks should never have to be marked 3050 * as in use. 3051 * setflags(flags, set/clear) - the fs_flags field has the specified 3052 * flags set (second parameter +1) or cleared (second parameter -1). 3053 * setcwd(dirinode) - set the current directory to dirinode in the 3054 * filesystem associated with the snapshot. 3055 * setdotdot(oldvalue, newvalue) - Verify that the inode number for ".." 3056 * in the current directory is oldvalue then change it to newvalue. 3057 * unlink(nameptr, oldvalue) - Verify that the inode number associated 3058 * with nameptr in the current directory is oldvalue then unlink it. 3059 * 3060 * The following functions may only be used on a quiescent filesystem 3061 * by the soft updates journal. They are not safe to be run on an active 3062 * filesystem. 3063 * 3064 * setinode(inode, dip) - the specified disk inode is replaced with the 3065 * contents pointed to by dip. 3066 * setbufoutput(fd, flags) - output associated with the specified file 3067 * descriptor (which must reference the character device supporting 3068 * the filesystem) switches from using physio to running through the 3069 * buffer cache when flags is set to 1. The descriptor reverts to 3070 * physio for output when flags is set to zero. 3071 */ 3072 3073 static int sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS); 3074 3075 SYSCTL_PROC(_vfs_ffs, FFS_ADJ_REFCNT, adjrefcnt, CTLFLAG_WR|CTLTYPE_STRUCT, 3076 0, 0, sysctl_ffs_fsck, "S,fsck", "Adjust Inode Reference Count"); 3077 3078 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_BLKCNT, adjblkcnt, CTLFLAG_WR, 3079 sysctl_ffs_fsck, "Adjust Inode Used Blocks Count"); 3080 3081 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NDIR, adjndir, CTLFLAG_WR, 3082 sysctl_ffs_fsck, "Adjust number of directories"); 3083 3084 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NBFREE, adjnbfree, CTLFLAG_WR, 3085 sysctl_ffs_fsck, "Adjust number of free blocks"); 3086 3087 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NIFREE, adjnifree, CTLFLAG_WR, 3088 sysctl_ffs_fsck, "Adjust number of free inodes"); 3089 3090 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NFFREE, adjnffree, CTLFLAG_WR, 3091 sysctl_ffs_fsck, "Adjust number of free frags"); 3092 3093 static SYSCTL_NODE(_vfs_ffs, FFS_ADJ_NUMCLUSTERS, adjnumclusters, CTLFLAG_WR, 3094 sysctl_ffs_fsck, "Adjust number of free clusters"); 3095 3096 static SYSCTL_NODE(_vfs_ffs, FFS_DIR_FREE, freedirs, CTLFLAG_WR, 3097 sysctl_ffs_fsck, "Free Range of Directory Inodes"); 3098 3099 static SYSCTL_NODE(_vfs_ffs, FFS_FILE_FREE, freefiles, CTLFLAG_WR, 3100 sysctl_ffs_fsck, "Free Range of File Inodes"); 3101 3102 static SYSCTL_NODE(_vfs_ffs, FFS_BLK_FREE, freeblks, CTLFLAG_WR, 3103 sysctl_ffs_fsck, "Free Range of Blocks"); 3104 3105 static SYSCTL_NODE(_vfs_ffs, FFS_SET_FLAGS, setflags, CTLFLAG_WR, 3106 sysctl_ffs_fsck, "Change Filesystem Flags"); 3107 3108 static SYSCTL_NODE(_vfs_ffs, FFS_SET_CWD, setcwd, CTLFLAG_WR, 3109 sysctl_ffs_fsck, "Set Current Working Directory"); 3110 3111 static SYSCTL_NODE(_vfs_ffs, FFS_SET_DOTDOT, setdotdot, CTLFLAG_WR, 3112 sysctl_ffs_fsck, "Change Value of .. Entry"); 3113 3114 static SYSCTL_NODE(_vfs_ffs, FFS_UNLINK, unlink, CTLFLAG_WR, 3115 sysctl_ffs_fsck, "Unlink a Duplicate Name"); 3116 3117 static SYSCTL_NODE(_vfs_ffs, FFS_SET_INODE, setinode, CTLFLAG_WR, 3118 sysctl_ffs_fsck, "Update an On-Disk Inode"); 3119 3120 static SYSCTL_NODE(_vfs_ffs, FFS_SET_BUFOUTPUT, setbufoutput, CTLFLAG_WR, 3121 sysctl_ffs_fsck, "Set Buffered Writing for Descriptor"); 3122 3123 #define DEBUG 1 3124 #ifdef DEBUG 3125 static int fsckcmds = 0; 3126 SYSCTL_INT(_debug, OID_AUTO, fsckcmds, CTLFLAG_RW, &fsckcmds, 0, ""); 3127 #endif /* DEBUG */ 3128 3129 static int buffered_write(struct file *, struct uio *, struct ucred *, 3130 int, struct thread *); 3131 3132 static int 3133 sysctl_ffs_fsck(SYSCTL_HANDLER_ARGS) 3134 { 3135 struct thread *td = curthread; 3136 struct fsck_cmd cmd; 3137 struct ufsmount *ump; 3138 struct vnode *vp, *dvp, *fdvp; 3139 struct inode *ip, *dp; 3140 struct mount *mp; 3141 struct fs *fs; 3142 ufs2_daddr_t blkno; 3143 long blkcnt, blksize; 3144 u_long key; 3145 struct file *fp, *vfp; 3146 cap_rights_t rights; 3147 int filetype, error; 3148 static struct fileops *origops, bufferedops; 3149 3150 if (req->newlen > sizeof cmd) 3151 return (EBADRPC); 3152 if ((error = SYSCTL_IN(req, &cmd, sizeof cmd)) != 0) 3153 return (error); 3154 if (cmd.version != FFS_CMD_VERSION) 3155 return (ERPCMISMATCH); 3156 if ((error = getvnode(td, cmd.handle, 3157 cap_rights_init(&rights, CAP_FSCK), &fp)) != 0) 3158 return (error); 3159 vp = fp->f_data; 3160 if (vp->v_type != VREG && vp->v_type != VDIR) { 3161 fdrop(fp, td); 3162 return (EINVAL); 3163 } 3164 vn_start_write(vp, &mp, V_WAIT); 3165 if (mp == NULL || 3166 strncmp(mp->mnt_stat.f_fstypename, "ufs", MFSNAMELEN)) { 3167 vn_finished_write(mp); 3168 fdrop(fp, td); 3169 return (EINVAL); 3170 } 3171 ump = VFSTOUFS(mp); 3172 if ((mp->mnt_flag & MNT_RDONLY) && 3173 ump->um_fsckpid != td->td_proc->p_pid) { 3174 vn_finished_write(mp); 3175 fdrop(fp, td); 3176 return (EROFS); 3177 } 3178 fs = ump->um_fs; 3179 filetype = IFREG; 3180 3181 switch (oidp->oid_number) { 3182 3183 case FFS_SET_FLAGS: 3184 #ifdef DEBUG 3185 if (fsckcmds) 3186 printf("%s: %s flags\n", mp->mnt_stat.f_mntonname, 3187 cmd.size > 0 ? "set" : "clear"); 3188 #endif /* DEBUG */ 3189 if (cmd.size > 0) 3190 fs->fs_flags |= (long)cmd.value; 3191 else 3192 fs->fs_flags &= ~(long)cmd.value; 3193 break; 3194 3195 case FFS_ADJ_REFCNT: 3196 #ifdef DEBUG 3197 if (fsckcmds) { 3198 printf("%s: adjust inode %jd link count by %jd\n", 3199 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3200 (intmax_t)cmd.size); 3201 } 3202 #endif /* DEBUG */ 3203 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3204 break; 3205 ip = VTOI(vp); 3206 ip->i_nlink += cmd.size; 3207 DIP_SET(ip, i_nlink, ip->i_nlink); 3208 ip->i_effnlink += cmd.size; 3209 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3210 error = ffs_update(vp, 1); 3211 if (DOINGSOFTDEP(vp)) 3212 softdep_change_linkcnt(ip); 3213 vput(vp); 3214 break; 3215 3216 case FFS_ADJ_BLKCNT: 3217 #ifdef DEBUG 3218 if (fsckcmds) { 3219 printf("%s: adjust inode %jd block count by %jd\n", 3220 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3221 (intmax_t)cmd.size); 3222 } 3223 #endif /* DEBUG */ 3224 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3225 break; 3226 ip = VTOI(vp); 3227 DIP_SET(ip, i_blocks, DIP(ip, i_blocks) + cmd.size); 3228 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3229 error = ffs_update(vp, 1); 3230 vput(vp); 3231 break; 3232 3233 case FFS_DIR_FREE: 3234 filetype = IFDIR; 3235 /* fall through */ 3236 3237 case FFS_FILE_FREE: 3238 #ifdef DEBUG 3239 if (fsckcmds) { 3240 if (cmd.size == 1) 3241 printf("%s: free %s inode %ju\n", 3242 mp->mnt_stat.f_mntonname, 3243 filetype == IFDIR ? "directory" : "file", 3244 (uintmax_t)cmd.value); 3245 else 3246 printf("%s: free %s inodes %ju-%ju\n", 3247 mp->mnt_stat.f_mntonname, 3248 filetype == IFDIR ? "directory" : "file", 3249 (uintmax_t)cmd.value, 3250 (uintmax_t)(cmd.value + cmd.size - 1)); 3251 } 3252 #endif /* DEBUG */ 3253 while (cmd.size > 0) { 3254 if ((error = ffs_freefile(ump, fs, ump->um_devvp, 3255 cmd.value, filetype, NULL))) 3256 break; 3257 cmd.size -= 1; 3258 cmd.value += 1; 3259 } 3260 break; 3261 3262 case FFS_BLK_FREE: 3263 #ifdef DEBUG 3264 if (fsckcmds) { 3265 if (cmd.size == 1) 3266 printf("%s: free block %jd\n", 3267 mp->mnt_stat.f_mntonname, 3268 (intmax_t)cmd.value); 3269 else 3270 printf("%s: free blocks %jd-%jd\n", 3271 mp->mnt_stat.f_mntonname, 3272 (intmax_t)cmd.value, 3273 (intmax_t)cmd.value + cmd.size - 1); 3274 } 3275 #endif /* DEBUG */ 3276 blkno = cmd.value; 3277 blkcnt = cmd.size; 3278 blksize = fs->fs_frag - (blkno % fs->fs_frag); 3279 key = ffs_blkrelease_start(ump, ump->um_devvp, UFS_ROOTINO); 3280 while (blkcnt > 0) { 3281 if (blkcnt < blksize) 3282 blksize = blkcnt; 3283 ffs_blkfree(ump, fs, ump->um_devvp, blkno, 3284 blksize * fs->fs_fsize, UFS_ROOTINO, 3285 VDIR, NULL, key); 3286 blkno += blksize; 3287 blkcnt -= blksize; 3288 blksize = fs->fs_frag; 3289 } 3290 ffs_blkrelease_finish(ump, key); 3291 break; 3292 3293 /* 3294 * Adjust superblock summaries. fsck(8) is expected to 3295 * submit deltas when necessary. 3296 */ 3297 case FFS_ADJ_NDIR: 3298 #ifdef DEBUG 3299 if (fsckcmds) { 3300 printf("%s: adjust number of directories by %jd\n", 3301 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3302 } 3303 #endif /* DEBUG */ 3304 fs->fs_cstotal.cs_ndir += cmd.value; 3305 break; 3306 3307 case FFS_ADJ_NBFREE: 3308 #ifdef DEBUG 3309 if (fsckcmds) { 3310 printf("%s: adjust number of free blocks by %+jd\n", 3311 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3312 } 3313 #endif /* DEBUG */ 3314 fs->fs_cstotal.cs_nbfree += cmd.value; 3315 break; 3316 3317 case FFS_ADJ_NIFREE: 3318 #ifdef DEBUG 3319 if (fsckcmds) { 3320 printf("%s: adjust number of free inodes by %+jd\n", 3321 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3322 } 3323 #endif /* DEBUG */ 3324 fs->fs_cstotal.cs_nifree += cmd.value; 3325 break; 3326 3327 case FFS_ADJ_NFFREE: 3328 #ifdef DEBUG 3329 if (fsckcmds) { 3330 printf("%s: adjust number of free frags by %+jd\n", 3331 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3332 } 3333 #endif /* DEBUG */ 3334 fs->fs_cstotal.cs_nffree += cmd.value; 3335 break; 3336 3337 case FFS_ADJ_NUMCLUSTERS: 3338 #ifdef DEBUG 3339 if (fsckcmds) { 3340 printf("%s: adjust number of free clusters by %+jd\n", 3341 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3342 } 3343 #endif /* DEBUG */ 3344 fs->fs_cstotal.cs_numclusters += cmd.value; 3345 break; 3346 3347 case FFS_SET_CWD: 3348 #ifdef DEBUG 3349 if (fsckcmds) { 3350 printf("%s: set current directory to inode %jd\n", 3351 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3352 } 3353 #endif /* DEBUG */ 3354 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_SHARED, &vp))) 3355 break; 3356 AUDIT_ARG_VNODE1(vp); 3357 if ((error = change_dir(vp, td)) != 0) { 3358 vput(vp); 3359 break; 3360 } 3361 VOP_UNLOCK(vp, 0); 3362 pwd_chdir(td, vp); 3363 break; 3364 3365 case FFS_SET_DOTDOT: 3366 #ifdef DEBUG 3367 if (fsckcmds) { 3368 printf("%s: change .. in cwd from %jd to %jd\n", 3369 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value, 3370 (intmax_t)cmd.size); 3371 } 3372 #endif /* DEBUG */ 3373 /* 3374 * First we have to get and lock the parent directory 3375 * to which ".." points. 3376 */ 3377 error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &fdvp); 3378 if (error) 3379 break; 3380 /* 3381 * Now we get and lock the child directory containing "..". 3382 */ 3383 FILEDESC_SLOCK(td->td_proc->p_fd); 3384 dvp = td->td_proc->p_fd->fd_cdir; 3385 FILEDESC_SUNLOCK(td->td_proc->p_fd); 3386 if ((error = vget(dvp, LK_EXCLUSIVE, td)) != 0) { 3387 vput(fdvp); 3388 break; 3389 } 3390 dp = VTOI(dvp); 3391 dp->i_offset = 12; /* XXX mastertemplate.dot_reclen */ 3392 error = ufs_dirrewrite(dp, VTOI(fdvp), (ino_t)cmd.size, 3393 DT_DIR, 0); 3394 cache_purge(fdvp); 3395 cache_purge(dvp); 3396 vput(dvp); 3397 vput(fdvp); 3398 break; 3399 3400 case FFS_UNLINK: 3401 #ifdef DEBUG 3402 if (fsckcmds) { 3403 char buf[32]; 3404 3405 if (copyinstr((char *)(intptr_t)cmd.value, buf,32,NULL)) 3406 strncpy(buf, "Name_too_long", 32); 3407 printf("%s: unlink %s (inode %jd)\n", 3408 mp->mnt_stat.f_mntonname, buf, (intmax_t)cmd.size); 3409 } 3410 #endif /* DEBUG */ 3411 /* 3412 * kern_unlinkat will do its own start/finish writes and 3413 * they do not nest, so drop ours here. Setting mp == NULL 3414 * indicates that vn_finished_write is not needed down below. 3415 */ 3416 vn_finished_write(mp); 3417 mp = NULL; 3418 error = kern_unlinkat(td, AT_FDCWD, (char *)(intptr_t)cmd.value, 3419 UIO_USERSPACE, 0, (ino_t)cmd.size); 3420 break; 3421 3422 case FFS_SET_INODE: 3423 if (ump->um_fsckpid != td->td_proc->p_pid) { 3424 error = EPERM; 3425 break; 3426 } 3427 #ifdef DEBUG 3428 if (fsckcmds) { 3429 printf("%s: update inode %jd\n", 3430 mp->mnt_stat.f_mntonname, (intmax_t)cmd.value); 3431 } 3432 #endif /* DEBUG */ 3433 if ((error = ffs_vget(mp, (ino_t)cmd.value, LK_EXCLUSIVE, &vp))) 3434 break; 3435 AUDIT_ARG_VNODE1(vp); 3436 ip = VTOI(vp); 3437 if (I_IS_UFS1(ip)) 3438 error = copyin((void *)(intptr_t)cmd.size, ip->i_din1, 3439 sizeof(struct ufs1_dinode)); 3440 else 3441 error = copyin((void *)(intptr_t)cmd.size, ip->i_din2, 3442 sizeof(struct ufs2_dinode)); 3443 if (error) { 3444 vput(vp); 3445 break; 3446 } 3447 ip->i_flag |= IN_CHANGE | IN_MODIFIED; 3448 error = ffs_update(vp, 1); 3449 vput(vp); 3450 break; 3451 3452 case FFS_SET_BUFOUTPUT: 3453 if (ump->um_fsckpid != td->td_proc->p_pid) { 3454 error = EPERM; 3455 break; 3456 } 3457 if (ITOUMP(VTOI(vp)) != ump) { 3458 error = EINVAL; 3459 break; 3460 } 3461 #ifdef DEBUG 3462 if (fsckcmds) { 3463 printf("%s: %s buffered output for descriptor %jd\n", 3464 mp->mnt_stat.f_mntonname, 3465 cmd.size == 1 ? "enable" : "disable", 3466 (intmax_t)cmd.value); 3467 } 3468 #endif /* DEBUG */ 3469 if ((error = getvnode(td, cmd.value, 3470 cap_rights_init(&rights, CAP_FSCK), &vfp)) != 0) 3471 break; 3472 if (vfp->f_vnode->v_type != VCHR) { 3473 fdrop(vfp, td); 3474 error = EINVAL; 3475 break; 3476 } 3477 if (origops == NULL) { 3478 origops = vfp->f_ops; 3479 bcopy((void *)origops, (void *)&bufferedops, 3480 sizeof(bufferedops)); 3481 bufferedops.fo_write = buffered_write; 3482 } 3483 if (cmd.size == 1) 3484 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3485 (uintptr_t)&bufferedops); 3486 else 3487 atomic_store_rel_ptr((volatile uintptr_t *)&vfp->f_ops, 3488 (uintptr_t)origops); 3489 fdrop(vfp, td); 3490 break; 3491 3492 default: 3493 #ifdef DEBUG 3494 if (fsckcmds) { 3495 printf("Invalid request %d from fsck\n", 3496 oidp->oid_number); 3497 } 3498 #endif /* DEBUG */ 3499 error = EINVAL; 3500 break; 3501 3502 } 3503 fdrop(fp, td); 3504 vn_finished_write(mp); 3505 return (error); 3506 } 3507 3508 /* 3509 * Function to switch a descriptor to use the buffer cache to stage 3510 * its I/O. This is needed so that writes to the filesystem device 3511 * will give snapshots a chance to copy modified blocks for which it 3512 * needs to retain copies. 3513 */ 3514 static int 3515 buffered_write(fp, uio, active_cred, flags, td) 3516 struct file *fp; 3517 struct uio *uio; 3518 struct ucred *active_cred; 3519 int flags; 3520 struct thread *td; 3521 { 3522 struct vnode *devvp, *vp; 3523 struct inode *ip; 3524 struct buf *bp; 3525 struct fs *fs; 3526 struct filedesc *fdp; 3527 int error; 3528 daddr_t lbn; 3529 3530 /* 3531 * The devvp is associated with the /dev filesystem. To discover 3532 * the filesystem with which the device is associated, we depend 3533 * on the application setting the current directory to a location 3534 * within the filesystem being written. Yes, this is an ugly hack. 3535 */ 3536 devvp = fp->f_vnode; 3537 if (!vn_isdisk(devvp, NULL)) 3538 return (EINVAL); 3539 fdp = td->td_proc->p_fd; 3540 FILEDESC_SLOCK(fdp); 3541 vp = fdp->fd_cdir; 3542 vref(vp); 3543 FILEDESC_SUNLOCK(fdp); 3544 vn_lock(vp, LK_SHARED | LK_RETRY); 3545 /* 3546 * Check that the current directory vnode indeed belongs to 3547 * UFS before trying to dereference UFS-specific v_data fields. 3548 */ 3549 if (vp->v_op != &ffs_vnodeops1 && vp->v_op != &ffs_vnodeops2) { 3550 vput(vp); 3551 return (EINVAL); 3552 } 3553 ip = VTOI(vp); 3554 if (ITODEVVP(ip) != devvp) { 3555 vput(vp); 3556 return (EINVAL); 3557 } 3558 fs = ITOFS(ip); 3559 vput(vp); 3560 foffset_lock_uio(fp, uio, flags); 3561 vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY); 3562 #ifdef DEBUG 3563 if (fsckcmds) { 3564 printf("%s: buffered write for block %jd\n", 3565 fs->fs_fsmnt, (intmax_t)btodb(uio->uio_offset)); 3566 } 3567 #endif /* DEBUG */ 3568 /* 3569 * All I/O must be contained within a filesystem block, start on 3570 * a fragment boundary, and be a multiple of fragments in length. 3571 */ 3572 if (uio->uio_resid > fs->fs_bsize - (uio->uio_offset % fs->fs_bsize) || 3573 fragoff(fs, uio->uio_offset) != 0 || 3574 fragoff(fs, uio->uio_resid) != 0) { 3575 error = EINVAL; 3576 goto out; 3577 } 3578 lbn = numfrags(fs, uio->uio_offset); 3579 bp = getblk(devvp, lbn, uio->uio_resid, 0, 0, 0); 3580 bp->b_flags |= B_RELBUF; 3581 if ((error = uiomove((char *)bp->b_data, uio->uio_resid, uio)) != 0) { 3582 brelse(bp); 3583 goto out; 3584 } 3585 error = bwrite(bp); 3586 out: 3587 VOP_UNLOCK(devvp, 0); 3588 foffset_unlock_uio(fp, uio, flags | FOF_NEXTOFF); 3589 return (error); 3590 } 3591