xref: /freebsd/sys/security/audit/audit_worker.c (revision 3d11b6c8f01e1fca5936a11d6996448467851a94)
1 /*
2  * Copyright (c) 1999-2005 Apple Computer, Inc.
3  * Copyright (c) 2006 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/condvar.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/filedesc.h>
38 #include <sys/fcntl.h>
39 #include <sys/ipc.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/protosw.h>
50 #include <sys/domain.h>
51 #include <sys/sysproto.h>
52 #include <sys/sysent.h>
53 #include <sys/systm.h>
54 #include <sys/ucred.h>
55 #include <sys/uio.h>
56 #include <sys/un.h>
57 #include <sys/unistd.h>
58 #include <sys/vnode.h>
59 
60 #include <bsm/audit.h>
61 #include <bsm/audit_internal.h>
62 #include <bsm/audit_kevents.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 
67 #include <security/audit/audit.h>
68 #include <security/audit/audit_private.h>
69 
70 #include <vm/uma.h>
71 
72 /*
73  * Worker thread that will schedule disk I/O, etc.
74  */
75 static struct proc		*audit_thread;
76 
77 /*
78  * When an audit log is rotated, the actual rotation must be performed by the
79  * audit worker thread, as it may have outstanding writes on the current
80  * audit log.  audit_replacement_vp holds the vnode replacing the current
81  * vnode.  We can't let more than one replacement occur at a time, so if more
82  * than one thread requests a replacement, only one can have the replacement
83  * "in progress" at any given moment.  If a thread tries to replace the audit
84  * vnode and discovers a replacement is already in progress (i.e.,
85  * audit_replacement_flag != 0), then it will sleep on audit_replacement_cv
86  * waiting its turn to perform a replacement.  When a replacement is
87  * completed, this cv is signalled by the worker thread so a waiting thread
88  * can start another replacement.  We also store a credential to perform
89  * audit log write operations with.
90  *
91  * The current credential and vnode are thread-local to audit_worker.
92  */
93 static struct cv		audit_replacement_cv;
94 
95 static int			audit_replacement_flag;
96 static struct vnode		*audit_replacement_vp;
97 static struct ucred		*audit_replacement_cred;
98 
99 /*
100  * Flags related to Kernel->user-space communication.
101  */
102 static int			audit_file_rotate_wait;
103 
104 /*
105  * XXXAUDIT: Should adjust comments below to make it clear that we get to
106  * this point only if we believe we have storage, so not having space here is
107  * a violation of invariants derived from administrative procedures. I.e.,
108  * someone else has written to the audit partition, leaving less space than
109  * we accounted for.
110  */
111 static int
112 audit_record_write(struct vnode *vp, struct kaudit_record *ar,
113     struct ucred *cred, struct thread *td)
114 {
115 	int ret;
116 	long temp;
117 	struct au_record *bsm;
118 	struct vattr vattr;
119 	struct statfs *mnt_stat = &vp->v_mount->mnt_stat;
120 	int vfslocked;
121 
122 	vfslocked = VFS_LOCK_GIANT(vp->v_mount);
123 
124 	/*
125 	 * First, gather statistics on the audit log file and file system so
126 	 * that we know how we're doing on space.  In both cases, if we're
127 	 * unable to perform the operation, we drop the record and return.
128 	 * However, this is arguably an assertion failure.
129 	 * XXX Need a FreeBSD equivalent.
130 	 */
131 	ret = VFS_STATFS(vp->v_mount, mnt_stat, td);
132 	if (ret)
133 		goto out;
134 
135 	vn_lock(vp, LK_EXCLUSIVE | LK_RETRY, td);
136 	ret = VOP_GETATTR(vp, &vattr, cred, td);
137 	VOP_UNLOCK(vp, 0, td);
138 	if (ret)
139 		goto out;
140 
141 	/* update the global stats struct */
142 	audit_fstat.af_currsz = vattr.va_size;
143 
144 	/*
145 	 * XXX Need to decide what to do if the trigger to the audit daemon
146 	 * fails.
147 	 */
148 
149 	/*
150 	 * If we fall below minimum free blocks (hard limit), tell the audit
151 	 * daemon to force a rotation off of the file system. We also stop
152 	 * writing, which means this audit record is probably lost.  If we
153 	 * fall below the minimum percent free blocks (soft limit), then
154 	 * kindly suggest to the audit daemon to do something.
155 	 */
156 	if (mnt_stat->f_bfree < AUDIT_HARD_LIMIT_FREE_BLOCKS) {
157 		(void)send_trigger(AUDIT_TRIGGER_NO_SPACE);
158 		/*
159 		 * Hopefully userspace did something about all the previous
160 		 * triggers that were sent prior to this critical condition.
161 		 * If fail-stop is set, then we're done; goodnight Gracie.
162 		 */
163 		if (audit_fail_stop)
164 			panic("Audit log space exhausted and fail-stop set.");
165 		else {
166 			audit_suspended = 1;
167 			ret = ENOSPC;
168 			goto out;
169 		}
170 	} else
171 		/*
172 		 * Send a message to the audit daemon that disk space is
173 		 * getting low.
174 		 *
175 		 * XXXAUDIT: Check math and block size calculation here.
176 		 */
177 		if (audit_qctrl.aq_minfree != 0) {
178 			temp = mnt_stat->f_blocks / (100 /
179 			    audit_qctrl.aq_minfree);
180 			if (mnt_stat->f_bfree < temp)
181 				(void)send_trigger(AUDIT_TRIGGER_LOW_SPACE);
182 		}
183 
184 	/*
185 	 * Check if the current log file is full; if so, call for a log
186 	 * rotate. This is not an exact comparison; we may write some records
187 	 * over the limit. If that's not acceptable, then add a fudge factor
188 	 * here.
189 	 */
190 	if ((audit_fstat.af_filesz != 0) &&
191 	    (audit_file_rotate_wait == 0) &&
192 	    (vattr.va_size >= audit_fstat.af_filesz)) {
193 		audit_file_rotate_wait = 1;
194 		(void)send_trigger(AUDIT_TRIGGER_OPEN_NEW);
195 	}
196 
197 	/*
198 	 * If the estimated amount of audit data in the audit event queue
199 	 * (plus records allocated but not yet queued) has reached the amount
200 	 * of free space on the disk, then we need to go into an audit fail
201 	 * stop state, in which we do not permit the allocation/committing of
202 	 * any new audit records.  We continue to process packets but don't
203 	 * allow any activities that might generate new records.  In the
204 	 * future, we might want to detect when space is available again and
205 	 * allow operation to continue, but this behavior is sufficient to
206 	 * meet fail stop requirements in CAPP.
207 	 */
208 	if (audit_fail_stop &&
209 	    (unsigned long)
210 	    ((audit_q_len + audit_pre_q_len + 1) * MAX_AUDIT_RECORD_SIZE) /
211 	    mnt_stat->f_bsize >= (unsigned long)(mnt_stat->f_bfree)) {
212 		printf("audit_record_write: free space below size of audit "
213 		    "queue, failing stop\n");
214 		audit_in_failure = 1;
215 	}
216 
217 	/*
218 	 * If there is a user audit record attached to the kernel record,
219 	 * then write the user record.
220 	 *
221 	 * XXX Need to decide a few things here: IF the user audit record is
222 	 * written, but the write of the kernel record fails, what to do?
223 	 * Should the kernel record come before or after the user record?
224 	 * For now, we write the user record first, and we ignore errors.
225 	 */
226 	if (ar->k_ar_commit & AR_COMMIT_USER) {
227 		/*
228 		 * Try submitting the record to any active audit pipes.
229 		 */
230 		audit_pipe_submit((void *)ar->k_udata, ar->k_ulen);
231 
232 		/*
233 		 * And to disk.
234 		 */
235 		ret = vn_rdwr(UIO_WRITE, vp, (void *)ar->k_udata, ar->k_ulen,
236 		    (off_t)0, UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL,
237 		    NULL, td);
238 		if (ret)
239 			goto out;
240 	}
241 
242 	/*
243 	 * Convert the internal kernel record to BSM format and write it out
244 	 * if everything's OK.
245 	 */
246 	if (!(ar->k_ar_commit & AR_COMMIT_KERNEL)) {
247 		ret = 0;
248 		goto out;
249 	}
250 
251 	/*
252 	 * XXXAUDIT: Should we actually allow this conversion to fail?  With
253 	 * sleeping memory allocation and invariants checks, perhaps not.
254 	 */
255 	ret = kaudit_to_bsm(ar, &bsm);
256 	if (ret == BSM_NOAUDIT) {
257 		ret = 0;
258 		goto out;
259 	}
260 
261 	/*
262 	 * XXX: We drop the record on BSM conversion failure, but really this
263 	 * is an assertion failure.
264 	 */
265 	if (ret == BSM_FAILURE) {
266 		AUDIT_PRINTF(("BSM conversion failure\n"));
267 		ret = EINVAL;
268 		goto out;
269 	}
270 
271 	/*
272 	 * Try submitting the record to any active audit pipes.
273 	 */
274 	audit_pipe_submit((void *)bsm->data, bsm->len);
275 
276 	/*
277 	 * XXX We should break the write functionality away from the BSM
278 	 * record generation and have the BSM generation done before this
279 	 * function is called. This function will then take the BSM record as
280 	 * a parameter.
281 	 */
282 	ret = (vn_rdwr(UIO_WRITE, vp, (void *)bsm->data, bsm->len, (off_t)0,
283 	    UIO_SYSSPACE, IO_APPEND|IO_UNIT, cred, NULL, NULL, td));
284 	kau_free(bsm);
285 
286 out:
287 	/*
288 	 * When we're done processing the current record, we have to check to
289 	 * see if we're in a failure mode, and if so, whether this was the
290 	 * last record left to be drained.  If we're done draining, then we
291 	 * fsync the vnode and panic.
292 	 */
293 	if (audit_in_failure && audit_q_len == 0 && audit_pre_q_len == 0) {
294 		VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK, td);
295 		(void)VOP_FSYNC(vp, MNT_WAIT, td);
296 		VOP_UNLOCK(vp, 0, td);
297 		panic("Audit store overflow; record queue drained.");
298 	}
299 
300 	VFS_UNLOCK_GIANT(vfslocked);
301 
302 	return (ret);
303 }
304 
305 /*
306  * If an appropriate signal has been received rotate the audit log based on
307  * the global replacement variables.  Signal consumers as needed that the
308  * rotation has taken place.
309  *
310  * XXXRW: The global variables and CVs used to signal the audit_worker to
311  * perform a rotation are essentially a message queue of depth 1.  It would
312  * be much nicer to actually use a message queue.
313  */
314 static void
315 audit_worker_rotate(struct ucred **audit_credp, struct vnode **audit_vpp,
316     struct thread *audit_td)
317 {
318 	int do_replacement_signal, vfslocked;
319 	struct ucred *old_cred;
320 	struct vnode *old_vp;
321 
322 	mtx_assert(&audit_mtx, MA_OWNED);
323 
324 	do_replacement_signal = 0;
325 	while (audit_replacement_flag != 0) {
326 		old_cred = *audit_credp;
327 		old_vp = *audit_vpp;
328 		*audit_credp = audit_replacement_cred;
329 		*audit_vpp = audit_replacement_vp;
330 		audit_replacement_cred = NULL;
331 		audit_replacement_vp = NULL;
332 		audit_replacement_flag = 0;
333 
334 		audit_enabled = (*audit_vpp != NULL);
335 
336 		/*
337 		 * XXX: What to do about write failures here?
338 		 */
339 		if (old_vp != NULL) {
340 			AUDIT_PRINTF(("Closing old audit file\n"));
341 			mtx_unlock(&audit_mtx);
342 			vfslocked = VFS_LOCK_GIANT(old_vp->v_mount);
343 			vn_close(old_vp, AUDIT_CLOSE_FLAGS, old_cred,
344 			    audit_td);
345 			VFS_UNLOCK_GIANT(vfslocked);
346 			crfree(old_cred);
347 			mtx_lock(&audit_mtx);
348 			old_cred = NULL;
349 			old_vp = NULL;
350 			AUDIT_PRINTF(("Audit file closed\n"));
351 		}
352 		if (*audit_vpp != NULL) {
353 			AUDIT_PRINTF(("Opening new audit file\n"));
354 		}
355 		do_replacement_signal = 1;
356 	}
357 
358 	/*
359 	 * Signal that replacement have occurred to wake up and
360 	 * start any other replacements started in parallel.  We can
361 	 * continue about our business in the mean time.  We
362 	 * broadcast so that both new replacements can be inserted,
363 	 * but also so that the source(s) of replacement can return
364 	 * successfully.
365 	 */
366 	if (do_replacement_signal)
367 		cv_broadcast(&audit_replacement_cv);
368 }
369 
370 /*
371  * Drain the audit commit queue and free the records.  Used if there are
372  * records present, but no audit log target.
373  */
374 static void
375 audit_worker_drain(void)
376 {
377 	struct kaudit_record *ar;
378 
379 	while ((ar = TAILQ_FIRST(&audit_q))) {
380 		TAILQ_REMOVE(&audit_q, ar, k_q);
381 		audit_free(ar);
382 		audit_q_len--;
383 	}
384 }
385 
386 /*
387  * The audit_worker thread is responsible for watching the event queue,
388  * dequeueing records, converting them to BSM format, and committing them to
389  * disk.  In order to minimize lock thrashing, records are dequeued in sets
390  * to a thread-local work queue.  In addition, the audit_work performs the
391  * actual exchange of audit log vnode pointer, as audit_vp is a thread-local
392  * variable.
393  */
394 static void
395 audit_worker(void *arg)
396 {
397 	TAILQ_HEAD(, kaudit_record) ar_worklist;
398 	struct kaudit_record *ar;
399 	struct ucred *audit_cred;
400 	struct thread *audit_td;
401 	struct vnode *audit_vp;
402 	int error, lowater_signal;
403 
404 	AUDIT_PRINTF(("audit_worker starting\n"));
405 
406 	/*
407 	 * These are thread-local variables requiring no synchronization.
408 	 */
409 	TAILQ_INIT(&ar_worklist);
410 	audit_cred = NULL;
411 	audit_td = curthread;
412 	audit_vp = NULL;
413 
414 	mtx_lock(&audit_mtx);
415 	while (1) {
416 		mtx_assert(&audit_mtx, MA_OWNED);
417 
418 		/*
419 		 * Wait for record or rotation events.
420 		 */
421 		while (!audit_replacement_flag && TAILQ_EMPTY(&audit_q)) {
422 			AUDIT_PRINTF(("audit_worker waiting\n"));
423 			cv_wait(&audit_cv, &audit_mtx);
424 			AUDIT_PRINTF(("audit_worker woken up\n"));
425 			AUDIT_PRINTF(("audit_worker: new vp = %p; value of "
426 			    "flag %d\n", audit_replacement_vp,
427 			    audit_replacement_flag));
428 		}
429 
430 		/*
431 		 * First priority: replace the audit log target if requested.
432 		 */
433 		audit_worker_rotate(&audit_cred, &audit_vp, audit_td);
434 
435 		/*
436 		 * If we have records, but there's no active vnode to write
437 		 * to, drain the record queue.  Generally, we prevent the
438 		 * unnecessary allocation of records elsewhere, but we need
439 		 * to allow for races between conditional allocation and
440 		 * queueing.  Go back to waiting when we're done.
441 		 */
442 		if (audit_vp == NULL) {
443 			audit_worker_drain();
444 			continue;
445 		}
446 
447 		/*
448 		 * We have both records to write and an active vnode to write
449 		 * to.  Dequeue a record, and start the write.  Eventually,
450 		 * it might make sense to dequeue several records and perform
451 		 * our own clustering, if the lower layers aren't doing it
452 		 * automatically enough.
453 		 */
454 		lowater_signal = 0;
455 		while ((ar = TAILQ_FIRST(&audit_q))) {
456 			TAILQ_REMOVE(&audit_q, ar, k_q);
457 			audit_q_len--;
458 			if (audit_q_len == audit_qctrl.aq_lowater)
459 				lowater_signal++;
460 			TAILQ_INSERT_TAIL(&ar_worklist, ar, k_q);
461 		}
462 		if (lowater_signal)
463 			cv_broadcast(&audit_commit_cv);
464 
465 		mtx_unlock(&audit_mtx);
466 		while ((ar = TAILQ_FIRST(&ar_worklist))) {
467 			TAILQ_REMOVE(&ar_worklist, ar, k_q);
468 			if (audit_vp != NULL) {
469 				error = audit_record_write(audit_vp, ar,
470 				    audit_cred, audit_td);
471 				if (error && audit_panic_on_write_fail)
472 					panic("audit_worker: write error %d\n",
473 					    error);
474 				else if (error)
475 					printf("audit_worker: write error %d\n",
476 					    error);
477 			}
478 			audit_free(ar);
479 		}
480 		mtx_lock(&audit_mtx);
481 	}
482 }
483 
484 /*
485  * audit_rotate_vnode() is called by a user or kernel thread to configure or
486  * de-configure auditing on a vnode.  The arguments are the replacement
487  * credential and vnode to substitute for the current credential and vnode,
488  * if any.  If either is set to NULL, both should be NULL, and this is used
489  * to indicate that audit is being disabled.  The real work is done in the
490  * audit_worker thread, but audit_rotate_vnode() waits synchronously for that
491  * to complete.
492  *
493  * The vnode should be referenced and opened by the caller.  The credential
494  * should be referenced.  audit_rotate_vnode() will own both references as of
495  * this call, so the caller should not release either.
496  *
497  * XXXAUDIT: Review synchronize communication logic.  Really, this is a
498  * message queue of depth 1.
499  *
500  * XXXAUDIT: Enhance the comments below to indicate that we are basically
501  * acquiring ownership of the communications queue, inserting our message,
502  * and waiting for an acknowledgement.
503  */
504 void
505 audit_rotate_vnode(struct ucred *cred, struct vnode *vp)
506 {
507 
508 	/*
509 	 * If other parallel log replacements have been requested, we wait
510 	 * until they've finished before continuing.
511 	 */
512 	mtx_lock(&audit_mtx);
513 	while (audit_replacement_flag != 0) {
514 		AUDIT_PRINTF(("audit_rotate_vnode: sleeping to wait for "
515 		    "flag\n"));
516 		cv_wait(&audit_replacement_cv, &audit_mtx);
517 		AUDIT_PRINTF(("audit_rotate_vnode: woken up (flag %d)\n",
518 		    audit_replacement_flag));
519 	}
520 	audit_replacement_cred = cred;
521 	audit_replacement_flag = 1;
522 	audit_replacement_vp = vp;
523 
524 	/*
525 	 * Wake up the audit worker to perform the exchange once we
526 	 * release the mutex.
527 	 */
528 	cv_signal(&audit_cv);
529 
530 	/*
531 	 * Wait for the audit_worker to broadcast that a replacement has
532 	 * taken place; we know that once this has happened, our vnode
533 	 * has been replaced in, so we can return successfully.
534 	 */
535 	AUDIT_PRINTF(("audit_rotate_vnode: waiting for news of "
536 	    "replacement\n"));
537 	cv_wait(&audit_replacement_cv, &audit_mtx);
538 	AUDIT_PRINTF(("audit_rotate_vnode: change acknowledged by "
539 	    "audit_worker (flag " "now %d)\n", audit_replacement_flag));
540 	mtx_unlock(&audit_mtx);
541 
542 	audit_file_rotate_wait = 0; /* We can now request another rotation */
543 }
544 
545 void
546 audit_worker_init(void)
547 {
548 	int error;
549 
550 	cv_init(&audit_replacement_cv, "audit_replacement_cv");
551 	error = kthread_create(audit_worker, NULL, &audit_thread, RFHIGHPID,
552 	    0, "audit_worker");
553 	if (error)
554 		panic("audit_worker_init: kthread_create returned %d", error);
555 }
556