xref: /freebsd/sys/security/audit/audit.c (revision 871499fef514fd9934f9a8a07194e8ef86c07bd5)
1 /*
2  * Copyright (c) 1999-2005 Apple Computer, Inc.
3  * Copyright (c) 2006 Robert N. M. Watson
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  * 1.  Redistributions of source code must retain the above copyright
10  *     notice, this list of conditions and the following disclaimer.
11  * 2.  Redistributions in binary form must reproduce the above copyright
12  *     notice, this list of conditions and the following disclaimer in the
13  *     documentation and/or other materials provided with the distribution.
14  * 3.  Neither the name of Apple Computer, Inc. ("Apple") nor the names of
15  *     its contributors may be used to endorse or promote products derived
16  *     from this software without specific prior written permission.
17  *
18  * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND
19  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21  * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR
22  * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
23  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
24  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
25  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
26  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
27  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28  * POSSIBILITY OF SUCH DAMAGE.
29  *
30  * $FreeBSD$
31  */
32 
33 #include <sys/param.h>
34 #include <sys/condvar.h>
35 #include <sys/conf.h>
36 #include <sys/file.h>
37 #include <sys/filedesc.h>
38 #include <sys/fcntl.h>
39 #include <sys/ipc.h>
40 #include <sys/kernel.h>
41 #include <sys/kthread.h>
42 #include <sys/malloc.h>
43 #include <sys/mount.h>
44 #include <sys/namei.h>
45 #include <sys/proc.h>
46 #include <sys/queue.h>
47 #include <sys/socket.h>
48 #include <sys/socketvar.h>
49 #include <sys/protosw.h>
50 #include <sys/domain.h>
51 #include <sys/sysproto.h>
52 #include <sys/sysent.h>
53 #include <sys/systm.h>
54 #include <sys/ucred.h>
55 #include <sys/uio.h>
56 #include <sys/un.h>
57 #include <sys/unistd.h>
58 #include <sys/vnode.h>
59 
60 #include <bsm/audit.h>
61 #include <bsm/audit_internal.h>
62 #include <bsm/audit_kevents.h>
63 
64 #include <netinet/in.h>
65 #include <netinet/in_pcb.h>
66 
67 #include <security/audit/audit.h>
68 #include <security/audit/audit_private.h>
69 
70 #include <vm/uma.h>
71 
72 static uma_zone_t	audit_record_zone;
73 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage");
74 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage");
75 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage");
76 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage");
77 
78 /*
79  * Audit control settings that are set/read by system calls and are
80  * hence non-static.
81  */
82 /*
83  * Define the audit control flags.
84  */
85 int			audit_enabled;
86 int			audit_suspended;
87 
88 /*
89  * Flags controlling behavior in low storage situations.
90  * Should we panic if a write fails?  Should we fail stop
91  * if we're out of disk space?
92  */
93 int			audit_panic_on_write_fail;
94 int			audit_fail_stop;
95 
96 /*
97  * Are we currently "failing stop" due to out of disk space?
98  */
99 int			audit_in_failure;
100 
101 /*
102  * Global audit statistiscs.
103  */
104 struct audit_fstat	audit_fstat;
105 
106 /*
107  * Preselection mask for non-attributable events.
108  */
109 struct au_mask		audit_nae_mask;
110 
111 /*
112  * Mutex to protect global variables shared between various threads and
113  * processes.
114  */
115 struct mtx		audit_mtx;
116 
117 /*
118  * Queue of audit records ready for delivery to disk.  We insert new
119  * records at the tail, and remove records from the head.  Also,
120  * a count of the number of records used for checking queue depth.
121  * In addition, a counter of records that we have allocated but are
122  * not yet in the queue, which is needed to estimate the total
123  * size of the combined set of records outstanding in the system.
124  */
125 struct kaudit_queue	audit_q;
126 int			audit_q_len;
127 int			audit_pre_q_len;
128 
129 /*
130  * Audit queue control settings (minimum free, low/high water marks, etc.)
131  */
132 struct au_qctrl		audit_qctrl;
133 
134 /*
135  * Condition variable to signal to the worker that it has work to do:
136  * either new records are in the queue, or a log replacement is taking
137  * place.
138  */
139 struct cv		audit_cv;
140 
141 /*
142  * Condition variable to signal to the worker that it has work to do:
143  * either new records are in the queue, or a log replacement is taking
144  * place.
145  *
146  * XXXRW: This description is incorrect.
147  */
148 struct cv		audit_commit_cv;
149 
150 /*
151  * Condition variable for  auditing threads wait on when in fail-stop mode.
152  * Threads wait on this CV forever (and ever), never seeing the light of
153  * day again.
154  */
155 static struct cv	audit_fail_cv;
156 
157 /*
158  * Construct an audit record for the passed thread.
159  */
160 static int
161 audit_record_ctor(void *mem, int size, void *arg, int flags)
162 {
163 	struct kaudit_record *ar;
164 	struct thread *td;
165 
166 	KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size"));
167 
168 	td = arg;
169 	ar = mem;
170 	bzero(ar, sizeof(*ar));
171 	ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC;
172 	nanotime(&ar->k_ar.ar_starttime);
173 
174 	/*
175 	 * Export the subject credential.
176 	 *
177 	 * XXXAUDIT: td_ucred access is OK without proc lock, but some other
178 	 * fields here may require the proc lock.
179 	 */
180 	cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred);
181 	ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid;
182 	ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid;
183 	ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0];
184 	ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid;
185 	ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid;
186 	ar->k_ar.ar_subj_pid = td->td_proc->p_pid;
187 	ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask;
188 	ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid;
189 	bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN);
190 
191 	return (0);
192 }
193 
194 static void
195 audit_record_dtor(void *mem, int size, void *arg)
196 {
197 	struct kaudit_record *ar;
198 
199 	KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size"));
200 
201 	ar = mem;
202 	if (ar->k_ar.ar_arg_upath1 != NULL)
203 		free(ar->k_ar.ar_arg_upath1, M_AUDITPATH);
204 	if (ar->k_ar.ar_arg_upath2 != NULL)
205 		free(ar->k_ar.ar_arg_upath2, M_AUDITPATH);
206 	if (ar->k_ar.ar_arg_text != NULL)
207 		free(ar->k_ar.ar_arg_text, M_AUDITTEXT);
208 	if (ar->k_udata != NULL)
209 		free(ar->k_udata, M_AUDITDATA);
210 }
211 
212 /*
213  * Initialize the Audit subsystem: configuration state, work queue,
214  * synchronization primitives, worker thread, and trigger device node.  Also
215  * call into the BSM assembly code to initialize it.
216  */
217 static void
218 audit_init(void)
219 {
220 
221 	printf("Security auditing service present\n");
222 	audit_enabled = 0;
223 	audit_suspended = 0;
224 	audit_panic_on_write_fail = 0;
225 	audit_fail_stop = 0;
226 	audit_in_failure = 0;
227 
228 	audit_fstat.af_filesz = 0;	/* '0' means unset, unbounded */
229 	audit_fstat.af_currsz = 0;
230 	audit_nae_mask.am_success = AU_NULL;
231 	audit_nae_mask.am_failure = AU_NULL;
232 
233 	TAILQ_INIT(&audit_q);
234 	audit_q_len = 0;
235 	audit_pre_q_len = 0;
236 	audit_qctrl.aq_hiwater = AQ_HIWATER;
237 	audit_qctrl.aq_lowater = AQ_LOWATER;
238 	audit_qctrl.aq_bufsz = AQ_BUFSZ;
239 	audit_qctrl.aq_minfree = AU_FS_MINFREE;
240 
241 	mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF);
242 	cv_init(&audit_cv, "audit_cv");
243 	cv_init(&audit_commit_cv, "audit_commit_cv");
244 	cv_init(&audit_fail_cv, "audit_fail_cv");
245 
246 	audit_record_zone = uma_zcreate("audit_record_zone",
247 	    sizeof(struct kaudit_record), audit_record_ctor,
248 	    audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0);
249 
250 	/* Initialize the BSM audit subsystem. */
251 	kau_init();
252 
253 	audit_trigger_init();
254 
255 	/* Register shutdown handler. */
256 	EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL,
257 	    SHUTDOWN_PRI_FIRST);
258 
259 	/* Start audit worker thread. */
260 	audit_worker_init();
261 }
262 
263 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL)
264 
265 /*
266  * Drain the audit queue and close the log at shutdown.  Note that this can
267  * be called both from the system shutdown path and also from audit
268  * configuration syscalls, so 'arg' and 'howto' are ignored.
269  */
270 void
271 audit_shutdown(void *arg, int howto)
272 {
273 
274 	audit_rotate_vnode(NULL, NULL);
275 }
276 
277 /*
278  * Return the current thread's audit record, if any.
279  */
280 __inline__ struct kaudit_record *
281 currecord(void)
282 {
283 
284 	return (curthread->td_ar);
285 }
286 
287 /*
288  * MPSAFE
289  *
290  * XXXAUDIT: There are a number of races present in the code below due to
291  * release and re-grab of the mutex.  The code should be revised to become
292  * slightly less racy.
293  *
294  * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available
295  * pre_q space, suspending the system call until there is room?
296  */
297 struct kaudit_record *
298 audit_new(int event, struct thread *td)
299 {
300 	struct kaudit_record *ar;
301 	int no_record;
302 
303 	mtx_lock(&audit_mtx);
304 	no_record = (audit_suspended || !audit_enabled);
305 	mtx_unlock(&audit_mtx);
306 	if (no_record)
307 		return (NULL);
308 
309 	/*
310 	 * XXX: The number of outstanding uncommitted audit records is
311 	 * limited to the number of concurrent threads servicing system
312 	 * calls in the kernel.
313 	 */
314 	ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK);
315 	ar->k_ar.ar_event = event;
316 
317 	mtx_lock(&audit_mtx);
318 	audit_pre_q_len++;
319 	mtx_unlock(&audit_mtx);
320 
321 	return (ar);
322 }
323 
324 void
325 audit_free(struct kaudit_record *ar)
326 {
327 
328 	uma_zfree(audit_record_zone, ar);
329 }
330 
331 /*
332  * MPSAFE
333  */
334 void
335 audit_commit(struct kaudit_record *ar, int error, int retval)
336 {
337 	int sorf;
338 	struct au_mask *aumask;
339 
340 	if (ar == NULL)
341 		return;
342 
343 	/*
344 	 * Decide whether to commit the audit record by checking the
345 	 * error value from the system call and using the appropriate
346 	 * audit mask.
347 	 *
348 	 * XXXAUDIT: Synchronize access to audit_nae_mask?
349 	 */
350 	if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID)
351 		aumask = &audit_nae_mask;
352 	else
353 		aumask = &ar->k_ar.ar_subj_amask;
354 
355 	if (error)
356 		sorf = AU_PRS_FAILURE;
357 	else
358 		sorf = AU_PRS_SUCCESS;
359 
360 	switch(ar->k_ar.ar_event) {
361 
362 	case AUE_OPEN_RWTC:
363 		/* The open syscall always writes a AUE_OPEN_RWTC event; change
364 		 * it to the proper type of event based on the flags and the
365 		 * error value.
366 		 */
367 		ar->k_ar.ar_event = flags_and_error_to_openevent(
368 		    ar->k_ar.ar_arg_fflags, error);
369 		break;
370 
371 	case AUE_SYSCTL:
372 		ar->k_ar.ar_event = ctlname_to_sysctlevent(
373 		    ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg);
374 		break;
375 
376 	case AUE_AUDITON:
377 		/* Convert the auditon() command to an event */
378 		ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd);
379 		break;
380 	}
381 
382 	if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0)
383 		ar->k_ar_commit |= AR_COMMIT_KERNEL;
384 
385 	/*
386 	 * XXXRW: Why is this necessary?  Should we ever accept a record that
387 	 * we're not willing to commit?
388 	 */
389 	if ((ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL)) == 0) {
390 		mtx_lock(&audit_mtx);
391 		audit_pre_q_len--;
392 		mtx_unlock(&audit_mtx);
393 		uma_zfree(audit_record_zone, ar);
394 		return;
395 	}
396 
397 	ar->k_ar.ar_errno = error;
398 	ar->k_ar.ar_retval = retval;
399 
400 	/*
401 	 * We might want to do some system-wide post-filtering
402 	 * here at some point.
403 	 */
404 
405 	/*
406 	 * Timestamp system call end.
407 	 */
408 	nanotime(&ar->k_ar.ar_endtime);
409 
410 	mtx_lock(&audit_mtx);
411 
412 	/*
413 	 * Note: it could be that some records initiated while audit was
414 	 * enabled should still be committed?
415 	 */
416 	if (audit_suspended || !audit_enabled) {
417 		audit_pre_q_len--;
418 		mtx_unlock(&audit_mtx);
419 		uma_zfree(audit_record_zone, ar);
420 		return;
421 	}
422 
423 	/*
424 	 * Constrain the number of committed audit records based on
425 	 * the configurable parameter.
426 	 */
427 	while (audit_q_len >= audit_qctrl.aq_hiwater) {
428 		AUDIT_PRINTF(("audit_commit: sleeping to wait for "
429 		   "audit queue to drain below high water mark\n"));
430 		cv_wait(&audit_commit_cv, &audit_mtx);
431 		AUDIT_PRINTF(("audit_commit: woke up waiting for "
432 		   "audit queue draining\n"));
433 	}
434 
435 	TAILQ_INSERT_TAIL(&audit_q, ar, k_q);
436 	audit_q_len++;
437 	audit_pre_q_len--;
438 	cv_signal(&audit_cv);
439 	mtx_unlock(&audit_mtx);
440 }
441 
442 /*
443  * audit_syscall_enter() is called on entry to each system call.  It is
444  * responsible for deciding whether or not to audit the call (preselection),
445  * and if so, allocating a per-thread audit record.  audit_new() will fill in
446  * basic thread/credential properties.
447  */
448 void
449 audit_syscall_enter(unsigned short code, struct thread *td)
450 {
451 	int audit_event;
452 	struct au_mask *aumask;
453 
454 	KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL"));
455 
456 	/*
457 	 * In FreeBSD, each ABI has its own system call table, and hence
458 	 * mapping of system call codes to audit events.  Convert the code to
459 	 * an audit event identifier using the process system call table
460 	 * reference.  In Darwin, there's only one, so we use the global
461 	 * symbol for the system call table.
462 	 *
463 	 * XXXAUDIT: Should we audit that a bad system call was made, and if
464 	 * so, how?
465 	 */
466 	if (code >= td->td_proc->p_sysent->sv_size)
467 		return;
468 
469 	audit_event = td->td_proc->p_sysent->sv_table[code].sy_auevent;
470 	if (audit_event == AUE_NULL)
471 		return;
472 
473 	/*
474 	 * Check which audit mask to use; either the kernel non-attributable
475 	 * event mask or the process audit mask.
476 	 */
477 	if (td->td_proc->p_au->ai_auid == AU_DEFAUDITID)
478 		aumask = &audit_nae_mask;
479 	else
480 		aumask = &td->td_proc->p_au->ai_mask;
481 
482 	/*
483 	 * Allocate an audit record, if preselection allows it, and store
484 	 * in the thread for later use.
485 	 */
486 	if (au_preselect(audit_event, aumask,
487 			AU_PRS_FAILURE | AU_PRS_SUCCESS)) {
488 		/*
489 		 * If we're out of space and need to suspend unprivileged
490 		 * processes, do that here rather than trying to allocate
491 		 * another audit record.
492 		 *
493 		 * XXXRW: We might wish to be able to continue here in the
494 		 * future, if the system recovers.  That should be possible
495 		 * by means of checking the condition in a loop around
496 		 * cv_wait().  It might be desirable to reevaluate whether an
497 		 * audit record is still required for this event by
498 		 * re-calling au_preselect().
499 		 */
500 		if (audit_in_failure && suser(td) != 0) {
501 			cv_wait(&audit_fail_cv, &audit_mtx);
502 			panic("audit_failing_stop: thread continued");
503 		}
504 		td->td_ar = audit_new(audit_event, td);
505 	} else
506 		td->td_ar = NULL;
507 }
508 
509 /*
510  * audit_syscall_exit() is called from the return of every system call, or in
511  * the event of exit1(), during the execution of exit1().  It is responsible
512  * for committing the audit record, if any, along with return condition.
513  */
514 void
515 audit_syscall_exit(int error, struct thread *td)
516 {
517 	int retval;
518 
519 	/*
520 	 * Commit the audit record as desired; once we pass the record
521 	 * into audit_commit(), the memory is owned by the audit
522 	 * subsystem.
523 	 * The return value from the system call is stored on the user
524 	 * thread. If there was an error, the return value is set to -1,
525 	 * imitating the behavior of the cerror routine.
526 	 */
527 	if (error)
528 		retval = -1;
529 	else
530 		retval = td->td_retval[0];
531 
532 	audit_commit(td->td_ar, error, retval);
533 	if (td->td_ar != NULL)
534 		AUDIT_PRINTF(("audit record committed by pid %d\n",
535 			td->td_proc->p_pid));
536 	td->td_ar = NULL;
537 
538 }
539 
540 /*
541  * Allocate storage for a new process (init, or otherwise).
542  */
543 void
544 audit_proc_alloc(struct proc *p)
545 {
546 
547 	KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)",
548 	    p->p_pid));
549 	p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK);
550 	/* XXXAUDIT: Zero?  Slab allocate? */
551 	//printf("audit_proc_alloc: pid %d p_au %p\n", p->p_pid, p->p_au);
552 }
553 
554 /*
555  * Allocate storage for a new thread.
556  */
557 void
558 audit_thread_alloc(struct thread *td)
559 {
560 
561 	td->td_ar = NULL;
562 }
563 
564 /*
565  * Thread destruction.
566  */
567 void
568 audit_thread_free(struct thread *td)
569 {
570 
571 	KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL"));
572 }
573 
574 /*
575  * Initialize the audit information for the a process, presumably the first
576  * process in the system.
577  * XXX It is not clear what the initial values should be for audit ID,
578  * session ID, etc.
579  */
580 void
581 audit_proc_kproc0(struct proc *p)
582 {
583 
584 	KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)",
585 	    p->p_pid));
586 	//printf("audit_proc_kproc0: pid %d p_au %p\n", p->p_pid, p->p_au);
587 	bzero(p->p_au, sizeof(*(p)->p_au));
588 }
589 
590 void
591 audit_proc_init(struct proc *p)
592 {
593 
594 	KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)",
595 	    p->p_pid));
596 	//printf("audit_proc_init: pid %d p_au %p\n", p->p_pid, p->p_au);
597 	bzero(p->p_au, sizeof(*(p)->p_au));
598 	p->p_au->ai_auid = AU_DEFAUDITID;
599 }
600 
601 /*
602  * Copy the audit info from the parent process to the child process when
603  * a fork takes place.
604  */
605 void
606 audit_proc_fork(struct proc *parent, struct proc *child)
607 {
608 
609 	PROC_LOCK_ASSERT(parent, MA_OWNED);
610 	PROC_LOCK_ASSERT(child, MA_OWNED);
611 	KASSERT(parent->p_au != NULL,
612 	    ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid));
613 	KASSERT(child->p_au != NULL,
614 	    ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid));
615 	//printf("audit_proc_fork: parent pid %d p_au %p\n", parent->p_pid,
616 	//    parent->p_au);
617 	//printf("audit_proc_fork: child pid %d p_au %p\n", child->p_pid,
618 	//    child->p_au);
619 	bcopy(parent->p_au, child->p_au, sizeof(*child->p_au));
620 	/*
621 	 * XXXAUDIT: Zero pointers to external memory, or assert they are
622 	 * zero?
623 	 */
624 }
625 
626 /*
627  * Free the auditing structure for the process.
628  */
629 void
630 audit_proc_free(struct proc *p)
631 {
632 
633 	KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid));
634 	//printf("audit_proc_free: pid %d p_au %p\n", p->p_pid, p->p_au);
635 	/*
636 	 * XXXAUDIT: Assert that external memory pointers are NULL?
637 	 */
638 	free(p->p_au, M_AUDITPROC);
639 	p->p_au = NULL;
640 }
641