1 /* 2 * Copyright (c) 1999-2005 Apple Computer, Inc. 3 * Copyright (c) 2006 Robert N. M. Watson 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. Neither the name of Apple Computer, Inc. ("Apple") nor the names of 15 * its contributors may be used to endorse or promote products derived 16 * from this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR 22 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, 26 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING 27 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 28 * POSSIBILITY OF SUCH DAMAGE. 29 * 30 * $FreeBSD$ 31 */ 32 33 #include <sys/param.h> 34 #include <sys/condvar.h> 35 #include <sys/conf.h> 36 #include <sys/file.h> 37 #include <sys/filedesc.h> 38 #include <sys/fcntl.h> 39 #include <sys/ipc.h> 40 #include <sys/kernel.h> 41 #include <sys/kthread.h> 42 #include <sys/malloc.h> 43 #include <sys/mount.h> 44 #include <sys/namei.h> 45 #include <sys/proc.h> 46 #include <sys/queue.h> 47 #include <sys/socket.h> 48 #include <sys/socketvar.h> 49 #include <sys/protosw.h> 50 #include <sys/domain.h> 51 #include <sys/sysproto.h> 52 #include <sys/sysent.h> 53 #include <sys/systm.h> 54 #include <sys/ucred.h> 55 #include <sys/uio.h> 56 #include <sys/un.h> 57 #include <sys/unistd.h> 58 #include <sys/vnode.h> 59 60 #include <bsm/audit.h> 61 #include <bsm/audit_internal.h> 62 #include <bsm/audit_kevents.h> 63 64 #include <netinet/in.h> 65 #include <netinet/in_pcb.h> 66 67 #include <security/audit/audit.h> 68 #include <security/audit/audit_private.h> 69 70 #include <vm/uma.h> 71 72 static uma_zone_t audit_record_zone; 73 static MALLOC_DEFINE(M_AUDITPROC, "audit_proc", "Audit process storage"); 74 MALLOC_DEFINE(M_AUDITDATA, "audit_data", "Audit data storage"); 75 MALLOC_DEFINE(M_AUDITPATH, "audit_path", "Audit path storage"); 76 MALLOC_DEFINE(M_AUDITTEXT, "audit_text", "Audit text storage"); 77 78 /* 79 * Audit control settings that are set/read by system calls and are 80 * hence non-static. 81 */ 82 /* 83 * Define the audit control flags. 84 */ 85 int audit_enabled; 86 int audit_suspended; 87 88 /* 89 * Flags controlling behavior in low storage situations. 90 * Should we panic if a write fails? Should we fail stop 91 * if we're out of disk space? 92 */ 93 int audit_panic_on_write_fail; 94 int audit_fail_stop; 95 96 /* 97 * Are we currently "failing stop" due to out of disk space? 98 */ 99 int audit_in_failure; 100 101 /* 102 * Global audit statistiscs. 103 */ 104 struct audit_fstat audit_fstat; 105 106 /* 107 * Preselection mask for non-attributable events. 108 */ 109 struct au_mask audit_nae_mask; 110 111 /* 112 * Mutex to protect global variables shared between various threads and 113 * processes. 114 */ 115 struct mtx audit_mtx; 116 117 /* 118 * Queue of audit records ready for delivery to disk. We insert new 119 * records at the tail, and remove records from the head. Also, 120 * a count of the number of records used for checking queue depth. 121 * In addition, a counter of records that we have allocated but are 122 * not yet in the queue, which is needed to estimate the total 123 * size of the combined set of records outstanding in the system. 124 */ 125 struct kaudit_queue audit_q; 126 int audit_q_len; 127 int audit_pre_q_len; 128 129 /* 130 * Audit queue control settings (minimum free, low/high water marks, etc.) 131 */ 132 struct au_qctrl audit_qctrl; 133 134 /* 135 * Condition variable to signal to the worker that it has work to do: 136 * either new records are in the queue, or a log replacement is taking 137 * place. 138 */ 139 struct cv audit_cv; 140 141 /* 142 * Condition variable to signal to the worker that it has work to do: 143 * either new records are in the queue, or a log replacement is taking 144 * place. 145 * 146 * XXXRW: This description is incorrect. 147 */ 148 struct cv audit_commit_cv; 149 150 /* 151 * Condition variable for auditing threads wait on when in fail-stop mode. 152 * Threads wait on this CV forever (and ever), never seeing the light of 153 * day again. 154 */ 155 static struct cv audit_fail_cv; 156 157 /* 158 * Construct an audit record for the passed thread. 159 */ 160 static int 161 audit_record_ctor(void *mem, int size, void *arg, int flags) 162 { 163 struct kaudit_record *ar; 164 struct thread *td; 165 166 KASSERT(sizeof(*ar) == size, ("audit_record_ctor: wrong size")); 167 168 td = arg; 169 ar = mem; 170 bzero(ar, sizeof(*ar)); 171 ar->k_ar.ar_magic = AUDIT_RECORD_MAGIC; 172 nanotime(&ar->k_ar.ar_starttime); 173 174 /* 175 * Export the subject credential. 176 * 177 * XXXAUDIT: td_ucred access is OK without proc lock, but some other 178 * fields here may require the proc lock. 179 */ 180 cru2x(td->td_ucred, &ar->k_ar.ar_subj_cred); 181 ar->k_ar.ar_subj_ruid = td->td_ucred->cr_ruid; 182 ar->k_ar.ar_subj_rgid = td->td_ucred->cr_rgid; 183 ar->k_ar.ar_subj_egid = td->td_ucred->cr_groups[0]; 184 ar->k_ar.ar_subj_auid = td->td_proc->p_au->ai_auid; 185 ar->k_ar.ar_subj_asid = td->td_proc->p_au->ai_asid; 186 ar->k_ar.ar_subj_pid = td->td_proc->p_pid; 187 ar->k_ar.ar_subj_amask = td->td_proc->p_au->ai_mask; 188 ar->k_ar.ar_subj_term = td->td_proc->p_au->ai_termid; 189 bcopy(td->td_proc->p_comm, ar->k_ar.ar_subj_comm, MAXCOMLEN); 190 191 return (0); 192 } 193 194 static void 195 audit_record_dtor(void *mem, int size, void *arg) 196 { 197 struct kaudit_record *ar; 198 199 KASSERT(sizeof(*ar) == size, ("audit_record_dtor: wrong size")); 200 201 ar = mem; 202 if (ar->k_ar.ar_arg_upath1 != NULL) 203 free(ar->k_ar.ar_arg_upath1, M_AUDITPATH); 204 if (ar->k_ar.ar_arg_upath2 != NULL) 205 free(ar->k_ar.ar_arg_upath2, M_AUDITPATH); 206 if (ar->k_ar.ar_arg_text != NULL) 207 free(ar->k_ar.ar_arg_text, M_AUDITTEXT); 208 if (ar->k_udata != NULL) 209 free(ar->k_udata, M_AUDITDATA); 210 } 211 212 /* 213 * Initialize the Audit subsystem: configuration state, work queue, 214 * synchronization primitives, worker thread, and trigger device node. Also 215 * call into the BSM assembly code to initialize it. 216 */ 217 static void 218 audit_init(void) 219 { 220 221 printf("Security auditing service present\n"); 222 audit_enabled = 0; 223 audit_suspended = 0; 224 audit_panic_on_write_fail = 0; 225 audit_fail_stop = 0; 226 audit_in_failure = 0; 227 228 audit_fstat.af_filesz = 0; /* '0' means unset, unbounded */ 229 audit_fstat.af_currsz = 0; 230 audit_nae_mask.am_success = AU_NULL; 231 audit_nae_mask.am_failure = AU_NULL; 232 233 TAILQ_INIT(&audit_q); 234 audit_q_len = 0; 235 audit_pre_q_len = 0; 236 audit_qctrl.aq_hiwater = AQ_HIWATER; 237 audit_qctrl.aq_lowater = AQ_LOWATER; 238 audit_qctrl.aq_bufsz = AQ_BUFSZ; 239 audit_qctrl.aq_minfree = AU_FS_MINFREE; 240 241 mtx_init(&audit_mtx, "audit_mtx", NULL, MTX_DEF); 242 cv_init(&audit_cv, "audit_cv"); 243 cv_init(&audit_commit_cv, "audit_commit_cv"); 244 cv_init(&audit_fail_cv, "audit_fail_cv"); 245 246 audit_record_zone = uma_zcreate("audit_record_zone", 247 sizeof(struct kaudit_record), audit_record_ctor, 248 audit_record_dtor, NULL, NULL, UMA_ALIGN_PTR, 0); 249 250 /* Initialize the BSM audit subsystem. */ 251 kau_init(); 252 253 audit_trigger_init(); 254 255 /* Register shutdown handler. */ 256 EVENTHANDLER_REGISTER(shutdown_pre_sync, audit_shutdown, NULL, 257 SHUTDOWN_PRI_FIRST); 258 259 /* Start audit worker thread. */ 260 audit_worker_init(); 261 } 262 263 SYSINIT(audit_init, SI_SUB_AUDIT, SI_ORDER_FIRST, audit_init, NULL) 264 265 /* 266 * Drain the audit queue and close the log at shutdown. Note that this can 267 * be called both from the system shutdown path and also from audit 268 * configuration syscalls, so 'arg' and 'howto' are ignored. 269 */ 270 void 271 audit_shutdown(void *arg, int howto) 272 { 273 274 audit_rotate_vnode(NULL, NULL); 275 } 276 277 /* 278 * Return the current thread's audit record, if any. 279 */ 280 __inline__ struct kaudit_record * 281 currecord(void) 282 { 283 284 return (curthread->td_ar); 285 } 286 287 /* 288 * MPSAFE 289 * 290 * XXXAUDIT: There are a number of races present in the code below due to 291 * release and re-grab of the mutex. The code should be revised to become 292 * slightly less racy. 293 * 294 * XXXAUDIT: Shouldn't there be logic here to sleep waiting on available 295 * pre_q space, suspending the system call until there is room? 296 */ 297 struct kaudit_record * 298 audit_new(int event, struct thread *td) 299 { 300 struct kaudit_record *ar; 301 int no_record; 302 303 mtx_lock(&audit_mtx); 304 no_record = (audit_suspended || !audit_enabled); 305 mtx_unlock(&audit_mtx); 306 if (no_record) 307 return (NULL); 308 309 /* 310 * XXX: The number of outstanding uncommitted audit records is 311 * limited to the number of concurrent threads servicing system 312 * calls in the kernel. 313 */ 314 ar = uma_zalloc_arg(audit_record_zone, td, M_WAITOK); 315 ar->k_ar.ar_event = event; 316 317 mtx_lock(&audit_mtx); 318 audit_pre_q_len++; 319 mtx_unlock(&audit_mtx); 320 321 return (ar); 322 } 323 324 void 325 audit_free(struct kaudit_record *ar) 326 { 327 328 uma_zfree(audit_record_zone, ar); 329 } 330 331 /* 332 * MPSAFE 333 */ 334 void 335 audit_commit(struct kaudit_record *ar, int error, int retval) 336 { 337 int sorf; 338 struct au_mask *aumask; 339 340 if (ar == NULL) 341 return; 342 343 /* 344 * Decide whether to commit the audit record by checking the 345 * error value from the system call and using the appropriate 346 * audit mask. 347 * 348 * XXXAUDIT: Synchronize access to audit_nae_mask? 349 */ 350 if (ar->k_ar.ar_subj_auid == AU_DEFAUDITID) 351 aumask = &audit_nae_mask; 352 else 353 aumask = &ar->k_ar.ar_subj_amask; 354 355 if (error) 356 sorf = AU_PRS_FAILURE; 357 else 358 sorf = AU_PRS_SUCCESS; 359 360 switch(ar->k_ar.ar_event) { 361 362 case AUE_OPEN_RWTC: 363 /* The open syscall always writes a AUE_OPEN_RWTC event; change 364 * it to the proper type of event based on the flags and the 365 * error value. 366 */ 367 ar->k_ar.ar_event = flags_and_error_to_openevent( 368 ar->k_ar.ar_arg_fflags, error); 369 break; 370 371 case AUE_SYSCTL: 372 ar->k_ar.ar_event = ctlname_to_sysctlevent( 373 ar->k_ar.ar_arg_ctlname, ar->k_ar.ar_valid_arg); 374 break; 375 376 case AUE_AUDITON: 377 /* Convert the auditon() command to an event */ 378 ar->k_ar.ar_event = auditon_command_event(ar->k_ar.ar_arg_cmd); 379 break; 380 } 381 382 if (au_preselect(ar->k_ar.ar_event, aumask, sorf) != 0) 383 ar->k_ar_commit |= AR_COMMIT_KERNEL; 384 385 /* 386 * XXXRW: Why is this necessary? Should we ever accept a record that 387 * we're not willing to commit? 388 */ 389 if ((ar->k_ar_commit & (AR_COMMIT_USER | AR_COMMIT_KERNEL)) == 0) { 390 mtx_lock(&audit_mtx); 391 audit_pre_q_len--; 392 mtx_unlock(&audit_mtx); 393 uma_zfree(audit_record_zone, ar); 394 return; 395 } 396 397 ar->k_ar.ar_errno = error; 398 ar->k_ar.ar_retval = retval; 399 400 /* 401 * We might want to do some system-wide post-filtering 402 * here at some point. 403 */ 404 405 /* 406 * Timestamp system call end. 407 */ 408 nanotime(&ar->k_ar.ar_endtime); 409 410 mtx_lock(&audit_mtx); 411 412 /* 413 * Note: it could be that some records initiated while audit was 414 * enabled should still be committed? 415 */ 416 if (audit_suspended || !audit_enabled) { 417 audit_pre_q_len--; 418 mtx_unlock(&audit_mtx); 419 uma_zfree(audit_record_zone, ar); 420 return; 421 } 422 423 /* 424 * Constrain the number of committed audit records based on 425 * the configurable parameter. 426 */ 427 while (audit_q_len >= audit_qctrl.aq_hiwater) { 428 AUDIT_PRINTF(("audit_commit: sleeping to wait for " 429 "audit queue to drain below high water mark\n")); 430 cv_wait(&audit_commit_cv, &audit_mtx); 431 AUDIT_PRINTF(("audit_commit: woke up waiting for " 432 "audit queue draining\n")); 433 } 434 435 TAILQ_INSERT_TAIL(&audit_q, ar, k_q); 436 audit_q_len++; 437 audit_pre_q_len--; 438 cv_signal(&audit_cv); 439 mtx_unlock(&audit_mtx); 440 } 441 442 /* 443 * audit_syscall_enter() is called on entry to each system call. It is 444 * responsible for deciding whether or not to audit the call (preselection), 445 * and if so, allocating a per-thread audit record. audit_new() will fill in 446 * basic thread/credential properties. 447 */ 448 void 449 audit_syscall_enter(unsigned short code, struct thread *td) 450 { 451 int audit_event; 452 struct au_mask *aumask; 453 454 KASSERT(td->td_ar == NULL, ("audit_syscall_enter: td->td_ar != NULL")); 455 456 /* 457 * In FreeBSD, each ABI has its own system call table, and hence 458 * mapping of system call codes to audit events. Convert the code to 459 * an audit event identifier using the process system call table 460 * reference. In Darwin, there's only one, so we use the global 461 * symbol for the system call table. 462 * 463 * XXXAUDIT: Should we audit that a bad system call was made, and if 464 * so, how? 465 */ 466 if (code >= td->td_proc->p_sysent->sv_size) 467 return; 468 469 audit_event = td->td_proc->p_sysent->sv_table[code].sy_auevent; 470 if (audit_event == AUE_NULL) 471 return; 472 473 /* 474 * Check which audit mask to use; either the kernel non-attributable 475 * event mask or the process audit mask. 476 */ 477 if (td->td_proc->p_au->ai_auid == AU_DEFAUDITID) 478 aumask = &audit_nae_mask; 479 else 480 aumask = &td->td_proc->p_au->ai_mask; 481 482 /* 483 * Allocate an audit record, if preselection allows it, and store 484 * in the thread for later use. 485 */ 486 if (au_preselect(audit_event, aumask, 487 AU_PRS_FAILURE | AU_PRS_SUCCESS)) { 488 /* 489 * If we're out of space and need to suspend unprivileged 490 * processes, do that here rather than trying to allocate 491 * another audit record. 492 * 493 * XXXRW: We might wish to be able to continue here in the 494 * future, if the system recovers. That should be possible 495 * by means of checking the condition in a loop around 496 * cv_wait(). It might be desirable to reevaluate whether an 497 * audit record is still required for this event by 498 * re-calling au_preselect(). 499 */ 500 if (audit_in_failure && suser(td) != 0) { 501 cv_wait(&audit_fail_cv, &audit_mtx); 502 panic("audit_failing_stop: thread continued"); 503 } 504 td->td_ar = audit_new(audit_event, td); 505 } else 506 td->td_ar = NULL; 507 } 508 509 /* 510 * audit_syscall_exit() is called from the return of every system call, or in 511 * the event of exit1(), during the execution of exit1(). It is responsible 512 * for committing the audit record, if any, along with return condition. 513 */ 514 void 515 audit_syscall_exit(int error, struct thread *td) 516 { 517 int retval; 518 519 /* 520 * Commit the audit record as desired; once we pass the record 521 * into audit_commit(), the memory is owned by the audit 522 * subsystem. 523 * The return value from the system call is stored on the user 524 * thread. If there was an error, the return value is set to -1, 525 * imitating the behavior of the cerror routine. 526 */ 527 if (error) 528 retval = -1; 529 else 530 retval = td->td_retval[0]; 531 532 audit_commit(td->td_ar, error, retval); 533 if (td->td_ar != NULL) 534 AUDIT_PRINTF(("audit record committed by pid %d\n", 535 td->td_proc->p_pid)); 536 td->td_ar = NULL; 537 538 } 539 540 /* 541 * Allocate storage for a new process (init, or otherwise). 542 */ 543 void 544 audit_proc_alloc(struct proc *p) 545 { 546 547 KASSERT(p->p_au == NULL, ("audit_proc_alloc: p->p_au != NULL (%d)", 548 p->p_pid)); 549 p->p_au = malloc(sizeof(*(p->p_au)), M_AUDITPROC, M_WAITOK); 550 /* XXXAUDIT: Zero? Slab allocate? */ 551 //printf("audit_proc_alloc: pid %d p_au %p\n", p->p_pid, p->p_au); 552 } 553 554 /* 555 * Allocate storage for a new thread. 556 */ 557 void 558 audit_thread_alloc(struct thread *td) 559 { 560 561 td->td_ar = NULL; 562 } 563 564 /* 565 * Thread destruction. 566 */ 567 void 568 audit_thread_free(struct thread *td) 569 { 570 571 KASSERT(td->td_ar == NULL, ("audit_thread_free: td_ar != NULL")); 572 } 573 574 /* 575 * Initialize the audit information for the a process, presumably the first 576 * process in the system. 577 * XXX It is not clear what the initial values should be for audit ID, 578 * session ID, etc. 579 */ 580 void 581 audit_proc_kproc0(struct proc *p) 582 { 583 584 KASSERT(p->p_au != NULL, ("audit_proc_kproc0: p->p_au == NULL (%d)", 585 p->p_pid)); 586 //printf("audit_proc_kproc0: pid %d p_au %p\n", p->p_pid, p->p_au); 587 bzero(p->p_au, sizeof(*(p)->p_au)); 588 } 589 590 void 591 audit_proc_init(struct proc *p) 592 { 593 594 KASSERT(p->p_au != NULL, ("audit_proc_init: p->p_au == NULL (%d)", 595 p->p_pid)); 596 //printf("audit_proc_init: pid %d p_au %p\n", p->p_pid, p->p_au); 597 bzero(p->p_au, sizeof(*(p)->p_au)); 598 p->p_au->ai_auid = AU_DEFAUDITID; 599 } 600 601 /* 602 * Copy the audit info from the parent process to the child process when 603 * a fork takes place. 604 */ 605 void 606 audit_proc_fork(struct proc *parent, struct proc *child) 607 { 608 609 PROC_LOCK_ASSERT(parent, MA_OWNED); 610 PROC_LOCK_ASSERT(child, MA_OWNED); 611 KASSERT(parent->p_au != NULL, 612 ("audit_proc_fork: parent->p_au == NULL (%d)", parent->p_pid)); 613 KASSERT(child->p_au != NULL, 614 ("audit_proc_fork: child->p_au == NULL (%d)", child->p_pid)); 615 //printf("audit_proc_fork: parent pid %d p_au %p\n", parent->p_pid, 616 // parent->p_au); 617 //printf("audit_proc_fork: child pid %d p_au %p\n", child->p_pid, 618 // child->p_au); 619 bcopy(parent->p_au, child->p_au, sizeof(*child->p_au)); 620 /* 621 * XXXAUDIT: Zero pointers to external memory, or assert they are 622 * zero? 623 */ 624 } 625 626 /* 627 * Free the auditing structure for the process. 628 */ 629 void 630 audit_proc_free(struct proc *p) 631 { 632 633 KASSERT(p->p_au != NULL, ("p->p_au == NULL (%d)", p->p_pid)); 634 //printf("audit_proc_free: pid %d p_au %p\n", p->p_pid, p->p_au); 635 /* 636 * XXXAUDIT: Assert that external memory pointers are NULL? 637 */ 638 free(p->p_au, M_AUDITPROC); 639 p->p_au = NULL; 640 } 641