xref: /freebsd/sys/riscv/include/vmparam.h (revision bc7512cc58af2e8bbe5bbf5ca0059b1daa1da897)
1 /*-
2  * Copyright (c) 1990 The Regents of the University of California.
3  * All rights reserved.
4  * Copyright (c) 1994 John S. Dyson
5  * All rights reserved.
6  *
7  * This code is derived from software contributed to Berkeley by
8  * William Jolitz.
9  *
10  * Redistribution and use in source and binary forms, with or without
11  * modification, are permitted provided that the following conditions
12  * are met:
13  * 1. Redistributions of source code must retain the above copyright
14  *    notice, this list of conditions and the following disclaimer.
15  * 2. Redistributions in binary form must reproduce the above copyright
16  *    notice, this list of conditions and the following disclaimer in the
17  *    documentation and/or other materials provided with the distribution.
18  * 3. Neither the name of the University nor the names of its contributors
19  *    may be used to endorse or promote products derived from this software
20  *    without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
23  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
24  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
25  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
26  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
27  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
28  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
29  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
30  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
31  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
32  * SUCH DAMAGE.
33  *
34  *	from: @(#)vmparam.h     5.9 (Berkeley) 5/12/91
35  *	from: FreeBSD: src/sys/i386/include/vmparam.h,v 1.33 2000/03/30
36  * $FreeBSD$
37  */
38 
39 #ifndef	_MACHINE_VMPARAM_H_
40 #define	_MACHINE_VMPARAM_H_
41 
42 /*
43  * Virtual memory related constants, all in bytes
44  */
45 #ifndef MAXTSIZ
46 #define	MAXTSIZ		(1*1024*1024*1024)	/* max text size */
47 #endif
48 #ifndef DFLDSIZ
49 #define	DFLDSIZ		(128*1024*1024)		/* initial data size limit */
50 #endif
51 #ifndef MAXDSIZ
52 #define	MAXDSIZ		(1*1024*1024*1024)	/* max data size */
53 #endif
54 #ifndef DFLSSIZ
55 #define	DFLSSIZ		(128*1024*1024)		/* initial stack size limit */
56 #endif
57 #ifndef MAXSSIZ
58 #define	MAXSSIZ		(1*1024*1024*1024)	/* max stack size */
59 #endif
60 #ifndef SGROWSIZ
61 #define	SGROWSIZ	(128*1024)		/* amount to grow stack */
62 #endif
63 
64 /*
65  * The physical address space is sparsely populated.
66  */
67 #define	VM_PHYSSEG_SPARSE
68 
69 /*
70  * The number of PHYSSEG entries.
71  */
72 #define	VM_PHYSSEG_MAX		64
73 
74 /*
75  * Create two free page pools: VM_FREEPOOL_DEFAULT is the default pool
76  * from which physical pages are allocated and VM_FREEPOOL_DIRECT is
77  * the pool from which physical pages for small UMA objects are
78  * allocated.
79  */
80 #define	VM_NFREEPOOL		2
81 #define	VM_FREEPOOL_DEFAULT	0
82 #define	VM_FREEPOOL_DIRECT	1
83 
84 /*
85  * Create one free page list: VM_FREELIST_DEFAULT is for all physical
86  * pages.
87  */
88 #define	VM_NFREELIST		1
89 #define	VM_FREELIST_DEFAULT	0
90 
91 /*
92  * An allocation size of 16MB is supported in order to optimize the
93  * use of the direct map by UMA.  Specifically, a cache line contains
94  * at most four TTEs, collectively mapping 16MB of physical memory.
95  * By reducing the number of distinct 16MB "pages" that are used by UMA,
96  * the physical memory allocator reduces the likelihood of both 4MB
97  * page TLB misses and cache misses caused by 4MB page TLB misses.
98  */
99 #define	VM_NFREEORDER		12
100 
101 /*
102  * Enable superpage reservations: 1 level.
103  */
104 #ifndef	VM_NRESERVLEVEL
105 #define	VM_NRESERVLEVEL		1
106 #endif
107 
108 /*
109  * Level 0 reservations consist of 512 pages.
110  */
111 #ifndef	VM_LEVEL_0_ORDER
112 #define	VM_LEVEL_0_ORDER	9
113 #endif
114 
115 /**
116  * Address space layout.
117  *
118  * RISC-V implements multiple paging modes with different virtual address space
119  * sizes: SV32, SV39, SV48 and SV57.  Only SV39 and SV48 are supported by
120  * FreeBSD.  SV39 provides a 512GB virtual address space and uses three-level
121  * page tables, while SV48 provides a 256TB virtual address space and uses
122  * four-level page tables.  64-bit RISC-V implementations are required to provide
123  * at least SV39 mode; locore initially enables SV39 mode while bootstrapping
124  * page tables, and pmap_bootstrap() optionally switches to SV48 mode.
125  *
126  * The address space is split into two regions at each end of the 64-bit address
127  * space; the lower region is for use by user mode software, while the upper
128  * region is used for various kernel maps.  The kernel map layout in SV48 mode
129  * is currently identical to that used in SV39 mode.
130  *
131  * SV39 memory map:
132  * 0x0000000000000000 - 0x0000003fffffffff    256GB user map
133  * 0x0000004000000000 - 0xffffffbfffffffff    unmappable
134  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
135  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
136  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
137  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
138  *
139  * SV48 memory map:
140  * 0x0000000000000000 - 0x00007fffffffffff    128TB user map
141  * 0x0000800000000000 - 0xffff7fffffffffff    unmappable
142  * 0xffff800000000000 - 0xffffffc7ffffffff    127.75TB hole
143  * 0xffffffc000000000 - 0xffffffc7ffffffff    32GB kernel map
144  * 0xffffffc800000000 - 0xffffffcfffffffff    32GB unused
145  * 0xffffffd000000000 - 0xffffffefffffffff    128GB direct map
146  * 0xfffffff000000000 - 0xffffffffffffffff    64GB unused
147  *
148  * The kernel is loaded at the beginning of the kernel map.
149  *
150  * We define some interesting address constants:
151  *
152  * VM_MIN_ADDRESS and VM_MAX_ADDRESS define the start and end of the entire
153  * 64 bit address space, mostly just for convenience.
154  *
155  * VM_MIN_KERNEL_ADDRESS and VM_MAX_KERNEL_ADDRESS define the start and end of
156  * mappable kernel virtual address space.
157  *
158  * VM_MIN_USER_ADDRESS and VM_MAX_USER_ADDRESS define the start and end of the
159  * user address space.
160  */
161 #define	VM_MIN_ADDRESS		(0x0000000000000000UL)
162 #define	VM_MAX_ADDRESS		(0xffffffffffffffffUL)
163 
164 #define	VM_MIN_KERNEL_ADDRESS	(0xffffffc000000000UL)
165 #define	VM_MAX_KERNEL_ADDRESS	(0xffffffc800000000UL)
166 
167 #define	DMAP_MIN_ADDRESS	(0xffffffd000000000UL)
168 #define	DMAP_MAX_ADDRESS	(0xfffffff000000000UL)
169 
170 #define	DMAP_MIN_PHYSADDR	(dmap_phys_base)
171 #define	DMAP_MAX_PHYSADDR	(dmap_phys_max)
172 
173 /* True if pa is in the dmap range */
174 #define	PHYS_IN_DMAP(pa)	((pa) >= DMAP_MIN_PHYSADDR && \
175     (pa) < DMAP_MAX_PHYSADDR)
176 /* True if va is in the dmap range */
177 #define	VIRT_IN_DMAP(va)	((va) >= DMAP_MIN_ADDRESS && \
178     (va) < (dmap_max_addr))
179 
180 #define	PMAP_HAS_DMAP	1
181 #define	PHYS_TO_DMAP(pa)						\
182 ({									\
183 	KASSERT(PHYS_IN_DMAP(pa),					\
184 	    ("%s: PA out of range, PA: 0x%lx", __func__,		\
185 	    (vm_paddr_t)(pa)));						\
186 	((pa) - dmap_phys_base) + DMAP_MIN_ADDRESS;			\
187 })
188 
189 #define	DMAP_TO_PHYS(va)						\
190 ({									\
191 	KASSERT(VIRT_IN_DMAP(va),					\
192 	    ("%s: VA out of range, VA: 0x%lx", __func__,		\
193 	    (vm_offset_t)(va)));					\
194 	((va) - DMAP_MIN_ADDRESS) + dmap_phys_base;			\
195 })
196 
197 #define	VM_MIN_USER_ADDRESS		(0x0000000000000000UL)
198 #define	VM_MAX_USER_ADDRESS_SV39	(0x0000004000000000UL)
199 #define	VM_MAX_USER_ADDRESS_SV48	(0x0000800000000000UL)
200 #define	VM_MAX_USER_ADDRESS		VM_MAX_USER_ADDRESS_SV48
201 
202 #define	VM_MINUSER_ADDRESS	(VM_MIN_USER_ADDRESS)
203 #define	VM_MAXUSER_ADDRESS	(VM_MAX_USER_ADDRESS)
204 
205 /* Check if an address resides in a mappable region. */
206 #define	VIRT_IS_VALID(va)						\
207     (((va) < VM_MAX_USER_ADDRESS) || ((va) >= VM_MIN_KERNEL_ADDRESS))
208 
209 #define	KERNBASE		(VM_MIN_KERNEL_ADDRESS)
210 #define	SHAREDPAGE_SV39		(VM_MAX_USER_ADDRESS_SV39 - PAGE_SIZE)
211 #define	SHAREDPAGE_SV48		(VM_MAX_USER_ADDRESS_SV48 - PAGE_SIZE)
212 #define	SHAREDPAGE		SHAREDPAGE_SV48
213 #define	USRSTACK_SV39		SHAREDPAGE_SV39
214 #define	USRSTACK_SV48		SHAREDPAGE_SV48
215 #define	USRSTACK		USRSTACK_SV48
216 #define	PS_STRINGS_SV39		(USRSTACK_SV39 - sizeof(struct ps_strings))
217 #define	PS_STRINGS_SV48		(USRSTACK_SV48 - sizeof(struct ps_strings))
218 
219 #define	VM_EARLY_DTB_ADDRESS	(VM_MAX_KERNEL_ADDRESS - (2 * L2_SIZE))
220 
221 /*
222  * How many physical pages per kmem arena virtual page.
223  */
224 #ifndef VM_KMEM_SIZE_SCALE
225 #define	VM_KMEM_SIZE_SCALE	(1)
226 #endif
227 
228 /*
229  * Optional ceiling (in bytes) on the size of the kmem arena: 60% of the
230  * kernel map.
231  */
232 #ifndef VM_KMEM_SIZE_MAX
233 #define	VM_KMEM_SIZE_MAX	((VM_MAX_KERNEL_ADDRESS - \
234     VM_MIN_KERNEL_ADDRESS + 1) * 3 / 5)
235 #endif
236 
237 /*
238  * Initial pagein size of beginning of executable file.
239  */
240 #ifndef	VM_INITIAL_PAGEIN
241 #define	VM_INITIAL_PAGEIN	16
242 #endif
243 
244 #define	UMA_MD_SMALL_ALLOC
245 
246 #ifndef LOCORE
247 extern vm_paddr_t dmap_phys_base;
248 extern vm_paddr_t dmap_phys_max;
249 extern vm_offset_t dmap_max_addr;
250 extern vm_offset_t vm_max_kernel_address;
251 extern vm_offset_t init_pt_va;
252 #endif
253 
254 #define	ZERO_REGION_SIZE	(64 * 1024)	/* 64KB */
255 
256 #define	DEVMAP_MAX_VADDR	VM_MAX_KERNEL_ADDRESS
257 #define	PMAP_MAPDEV_EARLY_SIZE	(L2_SIZE * 2)
258 
259 /*
260  * No non-transparent large page support in the pmap.
261  */
262 #define	PMAP_HAS_LARGEPAGES	0
263 
264 /*
265  * Need a page dump array for minidump.
266  */
267 #define MINIDUMP_PAGE_TRACKING	1
268 
269 #endif /* !_MACHINE_VMPARAM_H_ */
270