xref: /freebsd/sys/powerpc/powernv/platform_powernv.c (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1 /*-
2  * Copyright (c) 2015 Nathan Whitehorn
3  * Copyright (c) 2017-2018 Semihalf
4  * All rights reserved.
5  *
6  * Redistribution and use in source and binary forms, with or without
7  * modification, are permitted provided that the following conditions
8  * are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
21  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
25  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26  */
27 
28 #include <sys/cdefs.h>
29 __FBSDID("$FreeBSD$");
30 
31 #include <sys/param.h>
32 #include <sys/systm.h>
33 #include <sys/kernel.h>
34 #include <sys/bus.h>
35 #include <sys/pcpu.h>
36 #include <sys/proc.h>
37 #include <sys/smp.h>
38 #include <vm/vm.h>
39 #include <vm/pmap.h>
40 
41 #include <machine/bus.h>
42 #include <machine/cpu.h>
43 #include <machine/hid.h>
44 #include <machine/platformvar.h>
45 #include <machine/pmap.h>
46 #include <machine/rtas.h>
47 #include <machine/smp.h>
48 #include <machine/spr.h>
49 #include <machine/trap.h>
50 
51 #include <dev/ofw/openfirm.h>
52 #include <dev/ofw/ofw_bus.h>
53 #include <dev/ofw/ofw_bus_subr.h>
54 #include <machine/ofw_machdep.h>
55 #include <powerpc/aim/mmu_oea64.h>
56 
57 #include "platform_if.h"
58 #include "opal.h"
59 
60 #ifdef SMP
61 extern void *ap_pcpu;
62 #endif
63 
64 void (*powernv_smp_ap_extra_init)(void);
65 
66 static int powernv_probe(platform_t);
67 static int powernv_attach(platform_t);
68 void powernv_mem_regions(platform_t, struct mem_region *phys, int *physsz,
69     struct mem_region *avail, int *availsz);
70 static void powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz);
71 static u_long powernv_timebase_freq(platform_t, struct cpuref *cpuref);
72 static int powernv_smp_first_cpu(platform_t, struct cpuref *cpuref);
73 static int powernv_smp_next_cpu(platform_t, struct cpuref *cpuref);
74 static int powernv_smp_get_bsp(platform_t, struct cpuref *cpuref);
75 static void powernv_smp_ap_init(platform_t);
76 #ifdef SMP
77 static int powernv_smp_start_cpu(platform_t, struct pcpu *cpu);
78 static void powernv_smp_probe_threads(platform_t);
79 static struct cpu_group *powernv_smp_topo(platform_t plat);
80 #endif
81 static void powernv_reset(platform_t);
82 static void powernv_cpu_idle(sbintime_t sbt);
83 static int powernv_cpuref_init(void);
84 static int powernv_node_numa_domain(platform_t platform, phandle_t node);
85 
86 static platform_method_t powernv_methods[] = {
87 	PLATFORMMETHOD(platform_probe, 		powernv_probe),
88 	PLATFORMMETHOD(platform_attach,		powernv_attach),
89 	PLATFORMMETHOD(platform_mem_regions,	powernv_mem_regions),
90 	PLATFORMMETHOD(platform_numa_mem_regions,	powernv_numa_mem_regions),
91 	PLATFORMMETHOD(platform_timebase_freq,	powernv_timebase_freq),
92 
93 	PLATFORMMETHOD(platform_smp_ap_init,	powernv_smp_ap_init),
94 	PLATFORMMETHOD(platform_smp_first_cpu,	powernv_smp_first_cpu),
95 	PLATFORMMETHOD(platform_smp_next_cpu,	powernv_smp_next_cpu),
96 	PLATFORMMETHOD(platform_smp_get_bsp,	powernv_smp_get_bsp),
97 #ifdef SMP
98 	PLATFORMMETHOD(platform_smp_start_cpu,	powernv_smp_start_cpu),
99 	PLATFORMMETHOD(platform_smp_probe_threads,	powernv_smp_probe_threads),
100 	PLATFORMMETHOD(platform_smp_topo,	powernv_smp_topo),
101 #endif
102 	PLATFORMMETHOD(platform_node_numa_domain,	powernv_node_numa_domain),
103 
104 	PLATFORMMETHOD(platform_reset,		powernv_reset),
105 	{ 0, 0 }
106 };
107 
108 static platform_def_t powernv_platform = {
109 	"powernv",
110 	powernv_methods,
111 	0
112 };
113 
114 static struct cpuref platform_cpuref[MAXCPU];
115 static int platform_cpuref_cnt;
116 static int platform_cpuref_valid;
117 static int platform_associativity;
118 
119 PLATFORM_DEF(powernv_platform);
120 
121 static uint64_t powernv_boot_pir;
122 
123 static int
124 powernv_probe(platform_t plat)
125 {
126 	if (opal_check() == 0)
127 		return (BUS_PROBE_SPECIFIC);
128 
129 	return (ENXIO);
130 }
131 
132 static int
133 powernv_attach(platform_t plat)
134 {
135 	uint32_t nptlp, shift = 0, slb_encoding = 0;
136 	int32_t lp_size, lp_encoding;
137 	char buf[255];
138 	pcell_t refpoints[3];
139 	pcell_t prop;
140 	phandle_t cpu;
141 	phandle_t opal;
142 	int res, len, idx;
143 	register_t msr;
144 	bool has_lp;
145 
146 	/* Ping OPAL again just to make sure */
147 	opal_check();
148 
149 #if BYTE_ORDER == LITTLE_ENDIAN
150 	opal_call(OPAL_REINIT_CPUS, 2 /* Little endian */);
151 #else
152 	opal_call(OPAL_REINIT_CPUS, 1 /* Big endian */);
153 #endif
154 	opal = OF_finddevice("/ibm,opal");
155 
156 	platform_associativity = 4; /* Skiboot default. */
157 	if (OF_getencprop(opal, "ibm,associativity-reference-points", refpoints,
158 	    sizeof(refpoints)) > 0) {
159 		platform_associativity = refpoints[0];
160 	}
161 
162        if (cpu_idle_hook == NULL)
163                 cpu_idle_hook = powernv_cpu_idle;
164 
165 	powernv_boot_pir = mfspr(SPR_PIR);
166 
167 	/* LPID must not be altered when PSL_DR or PSL_IR is set */
168 	msr = mfmsr();
169 	mtmsr(msr & ~(PSL_DR | PSL_IR));
170 
171 	/* Direct interrupts to SRR instead of HSRR and reset LPCR otherwise */
172 	mtspr(SPR_LPID, 0);
173 	isync();
174 
175 	if (cpu_features2 & PPC_FEATURE2_ARCH_3_00)
176 		lpcr |= LPCR_HVICE;
177 
178 #if BYTE_ORDER == LITTLE_ENDIAN
179 	lpcr |= LPCR_ILE;
180 #endif
181 
182 	mtspr(SPR_LPCR, lpcr);
183 	isync();
184 
185 	mtmsr(msr);
186 
187 	powernv_cpuref_init();
188 
189 	/* Set SLB count from device tree */
190 	cpu = OF_peer(0);
191 	cpu = OF_child(cpu);
192 	while (cpu != 0) {
193 		res = OF_getprop(cpu, "name", buf, sizeof(buf));
194 		if (res > 0 && strcmp(buf, "cpus") == 0)
195 			break;
196 		cpu = OF_peer(cpu);
197 	}
198 	if (cpu == 0)
199 		goto out;
200 
201 	cpu = OF_child(cpu);
202 	while (cpu != 0) {
203 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
204 		if (res > 0 && strcmp(buf, "cpu") == 0)
205 			break;
206 		cpu = OF_peer(cpu);
207 	}
208 	if (cpu == 0)
209 		goto out;
210 
211 	res = OF_getencprop(cpu, "ibm,slb-size", &prop, sizeof(prop));
212 	if (res > 0)
213 		n_slbs = prop;
214 
215 	/*
216 	 * Scan the large page size property for PAPR compatible machines.
217 	 * See PAPR D.5 Changes to Section 5.1.4, 'CPU Node Properties'
218 	 * for the encoding of the property.
219 	 */
220 
221 	len = OF_getproplen(cpu, "ibm,segment-page-sizes");
222 	if (len > 0) {
223 		/*
224 		 * We have to use a variable length array on the stack
225 		 * since we have very limited stack space.
226 		 */
227 		pcell_t arr[len/sizeof(cell_t)];
228 		res = OF_getencprop(cpu, "ibm,segment-page-sizes", arr,
229 		    sizeof(arr));
230 		len /= 4;
231 		idx = 0;
232 		has_lp = false;
233 		while (len > 0) {
234 			shift = arr[idx];
235 			slb_encoding = arr[idx + 1];
236 			nptlp = arr[idx + 2];
237 			idx += 3;
238 			len -= 3;
239 			while (len > 0 && nptlp) {
240 				lp_size = arr[idx];
241 				lp_encoding = arr[idx+1];
242 				if (slb_encoding == SLBV_L && lp_encoding == 0)
243 					has_lp = true;
244 
245 				if (slb_encoding == SLB_PGSZ_4K_4K &&
246 				    lp_encoding == LP_4K_16M)
247 					moea64_has_lp_4k_16m = true;
248 
249 				idx += 2;
250 				len -= 2;
251 				nptlp--;
252 			}
253 			if (has_lp && moea64_has_lp_4k_16m)
254 				break;
255 		}
256 
257 		if (!has_lp)
258 			panic("Standard large pages (SLB[L] = 1, PTE[LP] = 0) "
259 			    "not supported by this system.");
260 
261 		moea64_large_page_shift = shift;
262 		moea64_large_page_size = 1ULL << lp_size;
263 	}
264 
265 out:
266 	return (0);
267 }
268 
269 void
270 powernv_mem_regions(platform_t plat, struct mem_region *phys, int *physsz,
271     struct mem_region *avail, int *availsz)
272 {
273 
274 	ofw_mem_regions(phys, physsz, avail, availsz);
275 }
276 
277 static void
278 powernv_numa_mem_regions(platform_t plat, struct numa_mem_region *phys, int *physsz)
279 {
280 
281 	ofw_numa_mem_regions(phys, physsz);
282 }
283 
284 static u_long
285 powernv_timebase_freq(platform_t plat, struct cpuref *cpuref)
286 {
287 	char buf[8];
288 	phandle_t cpu, dev, root;
289 	int res;
290 	int32_t ticks = -1;
291 
292 	root = OF_peer(0);
293 	dev = OF_child(root);
294 	while (dev != 0) {
295 		res = OF_getprop(dev, "name", buf, sizeof(buf));
296 		if (res > 0 && strcmp(buf, "cpus") == 0)
297 			break;
298 		dev = OF_peer(dev);
299 	}
300 
301 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
302 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
303 		if (res > 0 && strcmp(buf, "cpu") == 0)
304 			break;
305 	}
306 	if (cpu == 0)
307 		return (512000000);
308 
309 	OF_getencprop(cpu, "timebase-frequency", &ticks, sizeof(ticks));
310 
311 	if (ticks <= 0)
312 		panic("Unable to determine timebase frequency!");
313 
314 	return (ticks);
315 
316 }
317 
318 static int
319 powernv_cpuref_init(void)
320 {
321 	phandle_t cpu, dev;
322 	char buf[32];
323 	int a, res, tmp_cpuref_cnt;
324 	static struct cpuref tmp_cpuref[MAXCPU];
325 	cell_t interrupt_servers[32];
326 	uint64_t bsp;
327 
328 	if (platform_cpuref_valid)
329 		return (0);
330 
331 	dev = OF_peer(0);
332 	dev = OF_child(dev);
333 	while (dev != 0) {
334 		res = OF_getprop(dev, "name", buf, sizeof(buf));
335 		if (res > 0 && strcmp(buf, "cpus") == 0)
336 			break;
337 		dev = OF_peer(dev);
338 	}
339 
340 	bsp = 0;
341 	tmp_cpuref_cnt = 0;
342 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
343 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
344 		if (res > 0 && strcmp(buf, "cpu") == 0) {
345 			if (!ofw_bus_node_status_okay(cpu))
346 				continue;
347 			res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
348 			if (res > 0) {
349 				OF_getencprop(cpu, "ibm,ppc-interrupt-server#s",
350 				    interrupt_servers, res);
351 
352 				for (a = 0; a < res/sizeof(cell_t); a++) {
353 					tmp_cpuref[tmp_cpuref_cnt].cr_hwref = interrupt_servers[a];
354 					tmp_cpuref[tmp_cpuref_cnt].cr_cpuid = tmp_cpuref_cnt;
355 					tmp_cpuref[tmp_cpuref_cnt].cr_domain =
356 					    powernv_node_numa_domain(NULL, cpu);
357 					if (interrupt_servers[a] == (uint32_t)powernv_boot_pir)
358 						bsp = tmp_cpuref_cnt;
359 
360 					tmp_cpuref_cnt++;
361 				}
362 			}
363 		}
364 	}
365 
366 	/* Map IDs, so BSP has CPUID 0 regardless of hwref */
367 	for (a = bsp; a < tmp_cpuref_cnt; a++) {
368 		platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
369 		platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
370 		platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
371 		platform_cpuref_cnt++;
372 	}
373 	for (a = 0; a < bsp; a++) {
374 		platform_cpuref[platform_cpuref_cnt].cr_hwref = tmp_cpuref[a].cr_hwref;
375 		platform_cpuref[platform_cpuref_cnt].cr_cpuid = platform_cpuref_cnt;
376 		platform_cpuref[platform_cpuref_cnt].cr_domain = tmp_cpuref[a].cr_domain;
377 		platform_cpuref_cnt++;
378 	}
379 
380 	platform_cpuref_valid = 1;
381 
382 	return (0);
383 }
384 
385 static int
386 powernv_smp_first_cpu(platform_t plat, struct cpuref *cpuref)
387 {
388 	if (platform_cpuref_valid == 0)
389 		return (EINVAL);
390 
391 	cpuref->cr_cpuid = 0;
392 	cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
393 	cpuref->cr_domain = platform_cpuref[0].cr_domain;
394 
395 	return (0);
396 }
397 
398 static int
399 powernv_smp_next_cpu(platform_t plat, struct cpuref *cpuref)
400 {
401 	int id;
402 
403 	if (platform_cpuref_valid == 0)
404 		return (EINVAL);
405 
406 	id = cpuref->cr_cpuid + 1;
407 	if (id >= platform_cpuref_cnt)
408 		return (ENOENT);
409 
410 	cpuref->cr_cpuid = platform_cpuref[id].cr_cpuid;
411 	cpuref->cr_hwref = platform_cpuref[id].cr_hwref;
412 	cpuref->cr_domain = platform_cpuref[id].cr_domain;
413 
414 	return (0);
415 }
416 
417 static int
418 powernv_smp_get_bsp(platform_t plat, struct cpuref *cpuref)
419 {
420 
421 	cpuref->cr_cpuid = platform_cpuref[0].cr_cpuid;
422 	cpuref->cr_hwref = platform_cpuref[0].cr_hwref;
423 	cpuref->cr_domain = platform_cpuref[0].cr_domain;
424 	return (0);
425 }
426 
427 #ifdef SMP
428 static int
429 powernv_smp_start_cpu(platform_t plat, struct pcpu *pc)
430 {
431 	int result;
432 
433 	ap_pcpu = pc;
434 	powerpc_sync();
435 
436 	result = opal_call(OPAL_START_CPU, pc->pc_hwref, EXC_RST);
437 	if (result != OPAL_SUCCESS) {
438 		printf("OPAL error (%d): unable to start AP %d\n",
439 		    result, (int)pc->pc_hwref);
440 		return (ENXIO);
441 	}
442 
443 	return (0);
444 }
445 
446 static void
447 powernv_smp_probe_threads(platform_t plat)
448 {
449 	char buf[8];
450 	phandle_t cpu, dev, root;
451 	int res, nthreads;
452 
453 	root = OF_peer(0);
454 
455 	dev = OF_child(root);
456 	while (dev != 0) {
457 		res = OF_getprop(dev, "name", buf, sizeof(buf));
458 		if (res > 0 && strcmp(buf, "cpus") == 0)
459 			break;
460 		dev = OF_peer(dev);
461 	}
462 
463 	nthreads = 1;
464 	for (cpu = OF_child(dev); cpu != 0; cpu = OF_peer(cpu)) {
465 		res = OF_getprop(cpu, "device_type", buf, sizeof(buf));
466 		if (res <= 0 || strcmp(buf, "cpu") != 0)
467 			continue;
468 
469 		res = OF_getproplen(cpu, "ibm,ppc-interrupt-server#s");
470 
471 		if (res >= 0)
472 			nthreads = res / sizeof(cell_t);
473 		else
474 			nthreads = 1;
475 		break;
476 	}
477 
478 	smp_threads_per_core = nthreads;
479 	if (mp_ncpus % nthreads == 0)
480 		mp_ncores = mp_ncpus / nthreads;
481 }
482 
483 static struct cpu_group *
484 cpu_group_init(struct cpu_group *group, struct cpu_group *parent,
485     const cpuset_t *cpus, int children, int level, int flags)
486 {
487 	struct cpu_group *child;
488 
489 	child = children != 0 ? smp_topo_alloc(children) : NULL;
490 
491 	group->cg_parent = parent;
492 	group->cg_child = child;
493 	CPU_COPY(cpus, &group->cg_mask);
494 	group->cg_count = CPU_COUNT(cpus);
495 	group->cg_children = children;
496 	group->cg_level = level;
497 	group->cg_flags = flags;
498 
499 	return (child);
500 }
501 
502 static struct cpu_group *
503 powernv_smp_topo(platform_t plat)
504 {
505 	struct cpu_group *core, *dom, *root;
506 	cpuset_t corecpus, domcpus;
507 	int cpuid, i, j, k, ncores;
508 
509 	if (mp_ncpus % smp_threads_per_core != 0) {
510 		printf("%s: irregular SMP topology (%d threads, %d per core)\n",
511 		    __func__, mp_ncpus, smp_threads_per_core);
512 		return (smp_topo_none());
513 	}
514 
515 	root = smp_topo_alloc(1);
516 	dom = cpu_group_init(root, NULL, &all_cpus, vm_ndomains, CG_SHARE_NONE,
517 	    0);
518 
519 	/*
520 	 * Redundant layers will be collapsed by the caller so we don't need a
521 	 * special case for a single domain.
522 	 */
523 	for (i = 0; i < vm_ndomains; i++, dom++) {
524 		CPU_COPY(&cpuset_domain[i], &domcpus);
525 		ncores = CPU_COUNT(&domcpus) / smp_threads_per_core;
526 		KASSERT(CPU_COUNT(&domcpus) % smp_threads_per_core == 0,
527 		    ("%s: domain %d core count not divisible by thread count",
528 		    __func__, i));
529 
530 		core = cpu_group_init(dom, root, &domcpus, ncores, CG_SHARE_L3,
531 		    0);
532 		for (j = 0; j < ncores; j++, core++) {
533 			/*
534 			 * Assume that consecutive CPU IDs correspond to sibling
535 			 * threads.
536 			 */
537 			CPU_ZERO(&corecpus);
538 			for (k = 0; k < smp_threads_per_core; k++) {
539 				cpuid = CPU_FFS(&domcpus) - 1;
540 				CPU_CLR(cpuid, &domcpus);
541 				CPU_SET(cpuid, &corecpus);
542 			}
543 			(void)cpu_group_init(core, dom, &corecpus, 0,
544 			    CG_SHARE_L1, CG_FLAG_SMT);
545 		}
546 	}
547 
548 	return (root);
549 }
550 
551 #endif
552 
553 static void
554 powernv_reset(platform_t platform)
555 {
556 
557 	opal_call(OPAL_CEC_REBOOT);
558 }
559 
560 static void
561 powernv_smp_ap_init(platform_t platform)
562 {
563 
564 	if (powernv_smp_ap_extra_init != NULL)
565 		powernv_smp_ap_extra_init();
566 }
567 
568 static void
569 powernv_cpu_idle(sbintime_t sbt)
570 {
571 }
572 
573 static int
574 powernv_node_numa_domain(platform_t platform, phandle_t node)
575 {
576 	/* XXX: Is locking necessary in here? */
577 	static int numa_domains[MAXMEMDOM];
578 	static int numa_max_domain;
579 	cell_t associativity[5];
580 	int i, res;
581 
582 #ifndef NUMA
583 	return (0);
584 #endif
585 	i = 0;
586 	TUNABLE_INT_FETCH("vm.numa.disabled", &i);
587 	if (i)
588 		return (0);
589 
590 	res = OF_getencprop(node, "ibm,associativity",
591 		associativity, sizeof(associativity));
592 
593 	/*
594 	 * If this node doesn't have associativity, or if there are not
595 	 * enough elements in it, check its parent.
596 	 */
597 	if (res < (int)(sizeof(cell_t) * (platform_associativity + 1))) {
598 		node = OF_parent(node);
599 		/* If already at the root, use default domain. */
600 		if (node == 0)
601 			return (0);
602 		return (powernv_node_numa_domain(platform, node));
603 	}
604 
605 	for (i = 0; i < numa_max_domain; i++) {
606 		if (numa_domains[i] == associativity[platform_associativity])
607 			return (i);
608 	}
609 	if (i < MAXMEMDOM)
610 		numa_domains[numa_max_domain++] =
611 		    associativity[platform_associativity];
612 	else
613 		i = 0;
614 
615 	return (i);
616 }
617 
618 /* Set up the Nest MMU on POWER9 relatively early, but after pmap is setup. */
619 static void
620 powernv_setup_nmmu(void *unused)
621 {
622 	if (opal_check() != 0)
623 		return;
624 	opal_call(OPAL_NMMU_SET_PTCR, -1, mfspr(SPR_PTCR));
625 }
626 
627 SYSINIT(powernv_setup_nmmu, SI_SUB_CPU, SI_ORDER_ANY, powernv_setup_nmmu, NULL);
628