xref: /freebsd/sys/powerpc/powermac/smu.c (revision 8ddb146abcdf061be9f2c0db7e391697dafad85c)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (c) 2009 Nathan Whitehorn
5  * All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  *
16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26  * SUCH DAMAGE.
27  *
28  */
29 
30 #include <sys/cdefs.h>
31 __FBSDID("$FreeBSD$");
32 
33 #include <sys/param.h>
34 #include <sys/bus.h>
35 #include <sys/eventhandler.h>
36 #include <sys/systm.h>
37 #include <sys/module.h>
38 #include <sys/conf.h>
39 #include <sys/cpu.h>
40 #include <sys/clock.h>
41 #include <sys/ctype.h>
42 #include <sys/kernel.h>
43 #include <sys/kthread.h>
44 #include <sys/lock.h>
45 #include <sys/mutex.h>
46 #include <sys/reboot.h>
47 #include <sys/rman.h>
48 #include <sys/sysctl.h>
49 #include <sys/unistd.h>
50 
51 #include <machine/bus.h>
52 #include <machine/intr_machdep.h>
53 #include <machine/md_var.h>
54 
55 #include <dev/iicbus/iicbus.h>
56 #include <dev/iicbus/iiconf.h>
57 #include <dev/led/led.h>
58 #include <dev/ofw/openfirm.h>
59 #include <dev/ofw/ofw_bus.h>
60 #include <dev/ofw/ofw_bus_subr.h>
61 #include <powerpc/powermac/macgpiovar.h>
62 #include <powerpc/powermac/powermac_thermal.h>
63 
64 #include "clock_if.h"
65 #include "iicbus_if.h"
66 
67 struct smu_cmd {
68 	volatile uint8_t cmd;
69 	uint8_t		len;
70 	uint8_t		data[254];
71 
72 	STAILQ_ENTRY(smu_cmd) cmd_q;
73 };
74 
75 STAILQ_HEAD(smu_cmdq, smu_cmd);
76 
77 struct smu_fan {
78 	struct pmac_fan fan;
79 	device_t dev;
80 	cell_t	reg;
81 
82 	enum {
83 		SMU_FAN_RPM,
84 		SMU_FAN_PWM
85 	} type;
86 	int	setpoint;
87 	int	old_style;
88 	int     rpm;
89 };
90 
91 /* We can read the PWM and the RPM from a PWM controlled fan.
92  * Offer both values via sysctl.
93  */
94 enum {
95 	SMU_PWM_SYSCTL_PWM   = 1 << 8,
96 	SMU_PWM_SYSCTL_RPM   = 2 << 8
97 };
98 
99 struct smu_sensor {
100 	struct pmac_therm therm;
101 	device_t dev;
102 
103 	cell_t	reg;
104 	enum {
105 		SMU_CURRENT_SENSOR,
106 		SMU_VOLTAGE_SENSOR,
107 		SMU_POWER_SENSOR,
108 		SMU_TEMP_SENSOR
109 	} type;
110 };
111 
112 struct smu_softc {
113 	device_t	sc_dev;
114 	struct mtx	sc_mtx;
115 
116 	struct resource	*sc_memr;
117 	int		sc_memrid;
118 	int		sc_u3;
119 
120 	bus_dma_tag_t	sc_dmatag;
121 	bus_space_tag_t	sc_bt;
122 	bus_space_handle_t sc_mailbox;
123 
124 	struct smu_cmd	*sc_cmd, *sc_cur_cmd;
125 	bus_addr_t	sc_cmd_phys;
126 	bus_dmamap_t	sc_cmd_dmamap;
127 	struct smu_cmdq	sc_cmdq;
128 
129 	struct smu_fan	*sc_fans;
130 	int		sc_nfans;
131 	int		old_style_fans;
132 	struct smu_sensor *sc_sensors;
133 	int		sc_nsensors;
134 
135 	int		sc_doorbellirqid;
136 	struct resource	*sc_doorbellirq;
137 	void		*sc_doorbellirqcookie;
138 
139 	struct proc	*sc_fanmgt_proc;
140 	time_t		sc_lastuserchange;
141 
142 	/* Calibration data */
143 	uint16_t	sc_cpu_diode_scale;
144 	int16_t		sc_cpu_diode_offset;
145 
146 	uint16_t	sc_cpu_volt_scale;
147 	int16_t		sc_cpu_volt_offset;
148 	uint16_t	sc_cpu_curr_scale;
149 	int16_t		sc_cpu_curr_offset;
150 
151 	uint16_t	sc_slots_pow_scale;
152 	int16_t		sc_slots_pow_offset;
153 
154 	struct cdev 	*sc_leddev;
155 };
156 
157 /* regular bus attachment functions */
158 
159 static int	smu_probe(device_t);
160 static int	smu_attach(device_t);
161 static const struct ofw_bus_devinfo *
162     smu_get_devinfo(device_t bus, device_t dev);
163 
164 /* cpufreq notification hooks */
165 
166 static void	smu_cpufreq_pre_change(device_t, const struct cf_level *level);
167 static void	smu_cpufreq_post_change(device_t, const struct cf_level *level);
168 
169 /* clock interface */
170 static int	smu_gettime(device_t dev, struct timespec *ts);
171 static int	smu_settime(device_t dev, struct timespec *ts);
172 
173 /* utility functions */
174 static int	smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait);
175 static int	smu_get_datablock(device_t dev, int8_t id, uint8_t *buf,
176 		    size_t len);
177 static void	smu_attach_i2c(device_t dev, phandle_t i2croot);
178 static void	smu_attach_fans(device_t dev, phandle_t fanroot);
179 static void	smu_attach_sensors(device_t dev, phandle_t sensroot);
180 static void	smu_set_sleepled(void *xdev, int onoff);
181 static int	smu_server_mode(SYSCTL_HANDLER_ARGS);
182 static void	smu_doorbell_intr(void *xdev);
183 static void	smu_shutdown(void *xdev, int howto);
184 
185 /* where to find the doorbell GPIO */
186 
187 static device_t	smu_doorbell = NULL;
188 
189 static device_method_t  smu_methods[] = {
190 	/* Device interface */
191 	DEVMETHOD(device_probe,		smu_probe),
192 	DEVMETHOD(device_attach,	smu_attach),
193 
194 	/* Clock interface */
195 	DEVMETHOD(clock_gettime,	smu_gettime),
196 	DEVMETHOD(clock_settime,	smu_settime),
197 
198 	/* ofw_bus interface */
199 	DEVMETHOD(bus_child_pnpinfo,	ofw_bus_gen_child_pnpinfo),
200 	DEVMETHOD(ofw_bus_get_devinfo,	smu_get_devinfo),
201 	DEVMETHOD(ofw_bus_get_compat,	ofw_bus_gen_get_compat),
202 	DEVMETHOD(ofw_bus_get_model,	ofw_bus_gen_get_model),
203 	DEVMETHOD(ofw_bus_get_name,	ofw_bus_gen_get_name),
204 	DEVMETHOD(ofw_bus_get_node,	ofw_bus_gen_get_node),
205 	DEVMETHOD(ofw_bus_get_type,	ofw_bus_gen_get_type),
206 
207 	{ 0, 0 },
208 };
209 
210 static driver_t smu_driver = {
211 	"smu",
212 	smu_methods,
213 	sizeof(struct smu_softc)
214 };
215 
216 DRIVER_MODULE(smu, ofwbus, smu_driver, 0, 0);
217 static MALLOC_DEFINE(M_SMU, "smu", "SMU Sensor Information");
218 
219 #define SMU_MAILBOX		0x8000860c
220 #define SMU_FANMGT_INTERVAL	1000 /* ms */
221 
222 /* Command types */
223 #define SMU_ADC			0xd8
224 #define SMU_FAN			0x4a
225 #define SMU_RPM_STATUS		0x01
226 #define SMU_RPM_SETPOINT	0x02
227 #define SMU_PWM_STATUS		0x11
228 #define SMU_PWM_SETPOINT	0x12
229 #define SMU_I2C			0x9a
230 #define  SMU_I2C_SIMPLE		0x00
231 #define  SMU_I2C_NORMAL		0x01
232 #define  SMU_I2C_COMBINED	0x02
233 #define SMU_MISC		0xee
234 #define  SMU_MISC_GET_DATA	0x02
235 #define  SMU_MISC_LED_CTRL	0x04
236 #define SMU_POWER		0xaa
237 #define SMU_POWER_EVENTS	0x8f
238 #define  SMU_PWR_GET_POWERUP	0x00
239 #define  SMU_PWR_SET_POWERUP	0x01
240 #define  SMU_PWR_CLR_POWERUP	0x02
241 #define SMU_RTC			0x8e
242 #define  SMU_RTC_GET		0x81
243 #define  SMU_RTC_SET		0x80
244 
245 /* Power event types */
246 #define SMU_WAKEUP_KEYPRESS	0x01
247 #define SMU_WAKEUP_AC_INSERT	0x02
248 #define SMU_WAKEUP_AC_CHANGE	0x04
249 #define SMU_WAKEUP_RING		0x10
250 
251 /* Data blocks */
252 #define SMU_CPUTEMP_CAL		0x18
253 #define SMU_CPUVOLT_CAL		0x21
254 #define SMU_SLOTPW_CAL		0x78
255 
256 /* Partitions */
257 #define SMU_PARTITION		0x3e
258 #define SMU_PARTITION_LATEST	0x01
259 #define SMU_PARTITION_BASE	0x02
260 #define SMU_PARTITION_UPDATE	0x03
261 
262 static int
263 smu_probe(device_t dev)
264 {
265 	const char *name = ofw_bus_get_name(dev);
266 
267 	if (strcmp(name, "smu") != 0)
268 		return (ENXIO);
269 
270 	device_set_desc(dev, "Apple System Management Unit");
271 	return (0);
272 }
273 
274 static void
275 smu_phys_callback(void *xsc, bus_dma_segment_t *segs, int nsegs, int error)
276 {
277 	struct smu_softc *sc = xsc;
278 
279 	sc->sc_cmd_phys = segs[0].ds_addr;
280 }
281 
282 static int
283 smu_attach(device_t dev)
284 {
285 	struct smu_softc *sc;
286 	phandle_t	node, child;
287 	uint8_t		data[12];
288 
289 	sc = device_get_softc(dev);
290 
291 	mtx_init(&sc->sc_mtx, "smu", NULL, MTX_DEF);
292 	sc->sc_cur_cmd = NULL;
293 	sc->sc_doorbellirqid = -1;
294 
295 	sc->sc_u3 = 0;
296 	if (OF_finddevice("/u3") != -1)
297 		sc->sc_u3 = 1;
298 
299 	/*
300 	 * Map the mailbox area. This should be determined from firmware,
301 	 * but I have not found a simple way to do that.
302 	 */
303 	bus_dma_tag_create(NULL, 16, 0, BUS_SPACE_MAXADDR_32BIT,
304 	    BUS_SPACE_MAXADDR, NULL, NULL, PAGE_SIZE, 1, PAGE_SIZE, 0, NULL,
305 	    NULL, &(sc->sc_dmatag));
306 	sc->sc_bt = &bs_le_tag;
307 	bus_space_map(sc->sc_bt, SMU_MAILBOX, 4, 0, &sc->sc_mailbox);
308 
309 	/*
310 	 * Allocate the command buffer. This can be anywhere in the low 4 GB
311 	 * of memory.
312 	 */
313 	bus_dmamem_alloc(sc->sc_dmatag, (void **)&sc->sc_cmd, BUS_DMA_WAITOK |
314 	    BUS_DMA_ZERO, &sc->sc_cmd_dmamap);
315 	bus_dmamap_load(sc->sc_dmatag, sc->sc_cmd_dmamap,
316 	    sc->sc_cmd, PAGE_SIZE, smu_phys_callback, sc, 0);
317 	STAILQ_INIT(&sc->sc_cmdq);
318 
319 	/*
320 	 * Set up handlers to change CPU voltage when CPU frequency is changed.
321 	 */
322 	EVENTHANDLER_REGISTER(cpufreq_pre_change, smu_cpufreq_pre_change, dev,
323 	    EVENTHANDLER_PRI_ANY);
324 	EVENTHANDLER_REGISTER(cpufreq_post_change, smu_cpufreq_post_change, dev,
325 	    EVENTHANDLER_PRI_ANY);
326 
327 	node = ofw_bus_get_node(dev);
328 
329 	/* Some SMUs have RPM and PWM controlled fans which do not sit
330 	 * under the same node. So we have to attach them separately.
331 	 */
332 	smu_attach_fans(dev, node);
333 
334 	/*
335 	 * Now detect and attach the other child devices.
336 	 */
337 	for (child = OF_child(node); child != 0; child = OF_peer(child)) {
338 		char name[32];
339 		memset(name, 0, sizeof(name));
340 		OF_getprop(child, "name", name, sizeof(name));
341 
342 		if (strncmp(name, "sensors", 8) == 0)
343 			smu_attach_sensors(dev, child);
344 
345 		if (strncmp(name, "smu-i2c-control", 15) == 0)
346 			smu_attach_i2c(dev, child);
347 	}
348 
349 	/* Some SMUs have the I2C children directly under the bus. */
350 	smu_attach_i2c(dev, node);
351 
352 	/*
353 	 * Collect calibration constants.
354 	 */
355 	smu_get_datablock(dev, SMU_CPUTEMP_CAL, data, sizeof(data));
356 	sc->sc_cpu_diode_scale = (data[4] << 8) + data[5];
357 	sc->sc_cpu_diode_offset = (data[6] << 8) + data[7];
358 
359 	smu_get_datablock(dev, SMU_CPUVOLT_CAL, data, sizeof(data));
360 	sc->sc_cpu_volt_scale = (data[4] << 8) + data[5];
361 	sc->sc_cpu_volt_offset = (data[6] << 8) + data[7];
362 	sc->sc_cpu_curr_scale = (data[8] << 8) + data[9];
363 	sc->sc_cpu_curr_offset = (data[10] << 8) + data[11];
364 
365 	smu_get_datablock(dev, SMU_SLOTPW_CAL, data, sizeof(data));
366 	sc->sc_slots_pow_scale = (data[4] << 8) + data[5];
367 	sc->sc_slots_pow_offset = (data[6] << 8) + data[7];
368 
369 	/*
370 	 * Set up LED interface
371 	 */
372 	sc->sc_leddev = led_create(smu_set_sleepled, dev, "sleepled");
373 
374 	/*
375 	 * Reset on power loss behavior
376 	 */
377 
378 	SYSCTL_ADD_PROC(device_get_sysctl_ctx(dev),
379             SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO,
380 	    "server_mode", CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_NEEDGIANT, dev,
381 	    0, smu_server_mode, "I", "Enable reboot after power failure");
382 
383 	/*
384 	 * Set up doorbell interrupt.
385 	 */
386 	sc->sc_doorbellirqid = 0;
387 	sc->sc_doorbellirq = bus_alloc_resource_any(smu_doorbell, SYS_RES_IRQ,
388 	    &sc->sc_doorbellirqid, RF_ACTIVE);
389 	bus_setup_intr(smu_doorbell, sc->sc_doorbellirq,
390 	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, smu_doorbell_intr, dev,
391 	    &sc->sc_doorbellirqcookie);
392 	powerpc_config_intr(rman_get_start(sc->sc_doorbellirq),
393 	    INTR_TRIGGER_EDGE, INTR_POLARITY_LOW);
394 
395 	/*
396 	 * Connect RTC interface.
397 	 */
398 	clock_register(dev, 1000);
399 
400 	/*
401 	 * Learn about shutdown events
402 	 */
403 	EVENTHANDLER_REGISTER(shutdown_final, smu_shutdown, dev,
404 	    SHUTDOWN_PRI_LAST);
405 
406 	return (bus_generic_attach(dev));
407 }
408 
409 static const struct ofw_bus_devinfo *
410 smu_get_devinfo(device_t bus, device_t dev)
411 {
412 
413 	return (device_get_ivars(dev));
414 }
415 
416 static void
417 smu_send_cmd(device_t dev, struct smu_cmd *cmd)
418 {
419 	struct smu_softc *sc;
420 
421 	sc = device_get_softc(dev);
422 
423 	mtx_assert(&sc->sc_mtx, MA_OWNED);
424 
425 	if (sc->sc_u3)
426 		powerpc_pow_enabled = 0; /* SMU cannot work if we go to NAP */
427 
428 	sc->sc_cur_cmd = cmd;
429 
430 	/* Copy the command to the mailbox */
431 	sc->sc_cmd->cmd = cmd->cmd;
432 	sc->sc_cmd->len = cmd->len;
433 	memcpy(sc->sc_cmd->data, cmd->data, sizeof(cmd->data));
434 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_PREWRITE);
435 	bus_space_write_4(sc->sc_bt, sc->sc_mailbox, 0, sc->sc_cmd_phys);
436 
437 	/* Flush the cacheline it is in -- SMU bypasses the cache */
438 	__asm __volatile("sync; dcbf 0,%0; sync" :: "r"(sc->sc_cmd): "memory");
439 
440 	/* Ring SMU doorbell */
441 	macgpio_write(smu_doorbell, GPIO_DDR_OUTPUT);
442 }
443 
444 static void
445 smu_doorbell_intr(void *xdev)
446 {
447 	device_t smu;
448 	struct smu_softc *sc;
449 	int doorbell_ack;
450 
451 	smu = xdev;
452 	doorbell_ack = macgpio_read(smu_doorbell);
453 	sc = device_get_softc(smu);
454 
455 	if (doorbell_ack != (GPIO_DDR_OUTPUT | GPIO_LEVEL_RO | GPIO_DATA))
456 		return;
457 
458 	mtx_lock(&sc->sc_mtx);
459 
460 	if (sc->sc_cur_cmd == NULL)	/* spurious */
461 		goto done;
462 
463 	/* Check result. First invalidate the cache again... */
464 	__asm __volatile("dcbf 0,%0; sync" :: "r"(sc->sc_cmd) : "memory");
465 
466 	bus_dmamap_sync(sc->sc_dmatag, sc->sc_cmd_dmamap, BUS_DMASYNC_POSTREAD);
467 
468 	sc->sc_cur_cmd->cmd = sc->sc_cmd->cmd;
469 	sc->sc_cur_cmd->len = sc->sc_cmd->len;
470 	memcpy(sc->sc_cur_cmd->data, sc->sc_cmd->data,
471 	    sizeof(sc->sc_cmd->data));
472 	wakeup(sc->sc_cur_cmd);
473 	sc->sc_cur_cmd = NULL;
474 	if (sc->sc_u3)
475 		powerpc_pow_enabled = 1;
476 
477     done:
478 	/* Queue next command if one is pending */
479 	if (STAILQ_FIRST(&sc->sc_cmdq) != NULL) {
480 		sc->sc_cur_cmd = STAILQ_FIRST(&sc->sc_cmdq);
481 		STAILQ_REMOVE_HEAD(&sc->sc_cmdq, cmd_q);
482 		smu_send_cmd(smu, sc->sc_cur_cmd);
483 	}
484 
485 	mtx_unlock(&sc->sc_mtx);
486 }
487 
488 static int
489 smu_run_cmd(device_t dev, struct smu_cmd *cmd, int wait)
490 {
491 	struct smu_softc *sc;
492 	uint8_t cmd_code;
493 	int error;
494 
495 	sc = device_get_softc(dev);
496 	cmd_code = cmd->cmd;
497 
498 	mtx_lock(&sc->sc_mtx);
499 	if (sc->sc_cur_cmd != NULL) {
500 		STAILQ_INSERT_TAIL(&sc->sc_cmdq, cmd, cmd_q);
501 	} else
502 		smu_send_cmd(dev, cmd);
503 	mtx_unlock(&sc->sc_mtx);
504 
505 	if (!wait)
506 		return (0);
507 
508 	if (sc->sc_doorbellirqid < 0) {
509 		/* Poll if the IRQ has not been set up yet */
510 		do {
511 			DELAY(50);
512 			smu_doorbell_intr(dev);
513 		} while (sc->sc_cur_cmd != NULL);
514 	} else {
515 		/* smu_doorbell_intr will wake us when the command is ACK'ed */
516 		error = tsleep(cmd, 0, "smu", 800 * hz / 1000);
517 		if (error != 0)
518 			smu_doorbell_intr(dev);	/* One last chance */
519 
520 		if (error != 0) {
521 		    mtx_lock(&sc->sc_mtx);
522 		    if (cmd->cmd == cmd_code) {	/* Never processed */
523 			/* Abort this command if we timed out */
524 			if (sc->sc_cur_cmd == cmd)
525 				sc->sc_cur_cmd = NULL;
526 			else
527 				STAILQ_REMOVE(&sc->sc_cmdq, cmd, smu_cmd,
528 				    cmd_q);
529 			mtx_unlock(&sc->sc_mtx);
530 			return (error);
531 		    }
532 		    error = 0;
533 		    mtx_unlock(&sc->sc_mtx);
534 		}
535 	}
536 
537 	/* SMU acks the command by inverting the command bits */
538 	if (cmd->cmd == ((~cmd_code) & 0xff))
539 		error = 0;
540 	else
541 		error = EIO;
542 
543 	return (error);
544 }
545 
546 static int
547 smu_get_datablock(device_t dev, int8_t id, uint8_t *buf, size_t len)
548 {
549 	struct smu_cmd cmd;
550 	uint8_t addr[4];
551 
552 	cmd.cmd = SMU_PARTITION;
553 	cmd.len = 2;
554 	cmd.data[0] = SMU_PARTITION_LATEST;
555 	cmd.data[1] = id;
556 
557 	smu_run_cmd(dev, &cmd, 1);
558 
559 	addr[0] = addr[1] = 0;
560 	addr[2] = cmd.data[0];
561 	addr[3] = cmd.data[1];
562 
563 	cmd.cmd = SMU_MISC;
564 	cmd.len = 7;
565 	cmd.data[0] = SMU_MISC_GET_DATA;
566 	cmd.data[1] = sizeof(addr);
567 	memcpy(&cmd.data[2], addr, sizeof(addr));
568 	cmd.data[6] = len;
569 
570 	smu_run_cmd(dev, &cmd, 1);
571 	memcpy(buf, cmd.data, len);
572 	return (0);
573 }
574 
575 static void
576 smu_slew_cpu_voltage(device_t dev, int to)
577 {
578 	struct smu_cmd cmd;
579 
580 	cmd.cmd = SMU_POWER;
581 	cmd.len = 8;
582 	cmd.data[0] = 'V';
583 	cmd.data[1] = 'S';
584 	cmd.data[2] = 'L';
585 	cmd.data[3] = 'E';
586 	cmd.data[4] = 'W';
587 	cmd.data[5] = 0xff;
588 	cmd.data[6] = 1;
589 	cmd.data[7] = to;
590 
591 	smu_run_cmd(dev, &cmd, 1);
592 }
593 
594 static void
595 smu_cpufreq_pre_change(device_t dev, const struct cf_level *level)
596 {
597 	/*
598 	 * Make sure the CPU voltage is raised before we raise
599 	 * the clock.
600 	 */
601 
602 	if (level->rel_set[0].freq == 10000 /* max */)
603 		smu_slew_cpu_voltage(dev, 0);
604 }
605 
606 static void
607 smu_cpufreq_post_change(device_t dev, const struct cf_level *level)
608 {
609 	/* We are safe to reduce CPU voltage after a downward transition */
610 
611 	if (level->rel_set[0].freq < 10000 /* max */)
612 		smu_slew_cpu_voltage(dev, 1); /* XXX: 1/4 voltage for 970MP? */
613 }
614 
615 /* Routines for probing the SMU doorbell GPIO */
616 static int doorbell_probe(device_t dev);
617 static int doorbell_attach(device_t dev);
618 
619 static device_method_t  doorbell_methods[] = {
620 	/* Device interface */
621 	DEVMETHOD(device_probe,		doorbell_probe),
622 	DEVMETHOD(device_attach,	doorbell_attach),
623 	{ 0, 0 },
624 };
625 
626 static driver_t doorbell_driver = {
627 	"smudoorbell",
628 	doorbell_methods,
629 	0
630 };
631 
632 EARLY_DRIVER_MODULE(smudoorbell, macgpio, doorbell_driver, 0, 0,
633     BUS_PASS_SUPPORTDEV);
634 
635 static int
636 doorbell_probe(device_t dev)
637 {
638 	const char *name = ofw_bus_get_name(dev);
639 
640 	if (strcmp(name, "smu-doorbell") != 0)
641 		return (ENXIO);
642 
643 	device_set_desc(dev, "SMU Doorbell GPIO");
644 	device_quiet(dev);
645 	return (0);
646 }
647 
648 static int
649 doorbell_attach(device_t dev)
650 {
651 	smu_doorbell = dev;
652 	return (0);
653 }
654 
655 /*
656  * Sensor and fan management
657  */
658 
659 static int
660 smu_fan_check_old_style(struct smu_fan *fan)
661 {
662 	device_t smu = fan->dev;
663 	struct smu_softc *sc = device_get_softc(smu);
664 	struct smu_cmd cmd;
665 	int error;
666 
667 	if (sc->old_style_fans != -1)
668 		return (sc->old_style_fans);
669 
670 	/*
671 	 * Apple has two fan control mechanisms. We can't distinguish
672 	 * them except by seeing if the new one fails. If the new one
673 	 * fails, use the old one.
674 	 */
675 
676 	cmd.cmd = SMU_FAN;
677 	cmd.len = 2;
678 	cmd.data[0] = 0x31;
679 	cmd.data[1] = fan->reg;
680 
681 	do {
682 		error = smu_run_cmd(smu, &cmd, 1);
683 	} while (error == EWOULDBLOCK);
684 
685 	sc->old_style_fans = (error != 0);
686 
687 	return (sc->old_style_fans);
688 }
689 
690 static int
691 smu_fan_set_rpm(struct smu_fan *fan, int rpm)
692 {
693 	device_t smu = fan->dev;
694 	struct smu_cmd cmd;
695 	int error;
696 
697 	cmd.cmd = SMU_FAN;
698 	error = EIO;
699 
700 	/* Clamp to allowed range */
701 	rpm = max(fan->fan.min_rpm, rpm);
702 	rpm = min(fan->fan.max_rpm, rpm);
703 
704 	smu_fan_check_old_style(fan);
705 
706 	if (!fan->old_style) {
707 		cmd.len = 4;
708 		cmd.data[0] = 0x30;
709 		cmd.data[1] = fan->reg;
710 		cmd.data[2] = (rpm >> 8) & 0xff;
711 		cmd.data[3] = rpm & 0xff;
712 
713 		error = smu_run_cmd(smu, &cmd, 1);
714 		if (error && error != EWOULDBLOCK)
715 			fan->old_style = 1;
716 	} else {
717 		cmd.len = 14;
718 		cmd.data[0] = 0x00; /* RPM fan. */
719 		cmd.data[1] = 1 << fan->reg;
720 		cmd.data[2 + 2*fan->reg] = (rpm >> 8) & 0xff;
721 		cmd.data[3 + 2*fan->reg] = rpm & 0xff;
722 		error = smu_run_cmd(smu, &cmd, 1);
723 	}
724 
725 	if (error == 0)
726 		fan->setpoint = rpm;
727 
728 	return (error);
729 }
730 
731 static int
732 smu_fan_read_rpm(struct smu_fan *fan)
733 {
734 	device_t smu = fan->dev;
735 	struct smu_cmd cmd;
736 	int rpm, error;
737 
738 	smu_fan_check_old_style(fan);
739 
740 	if (!fan->old_style) {
741 		cmd.cmd = SMU_FAN;
742 		cmd.len = 2;
743 		cmd.data[0] = 0x31;
744 		cmd.data[1] = fan->reg;
745 
746 		error = smu_run_cmd(smu, &cmd, 1);
747 		if (error && error != EWOULDBLOCK)
748 			fan->old_style = 1;
749 
750 		rpm = (cmd.data[0] << 8) | cmd.data[1];
751 	}
752 
753 	if (fan->old_style) {
754 		cmd.cmd = SMU_FAN;
755 		cmd.len = 1;
756 		cmd.data[0] = SMU_RPM_STATUS;
757 
758 		error = smu_run_cmd(smu, &cmd, 1);
759 		if (error)
760 			return (error);
761 
762 		rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
763 	}
764 
765 	return (rpm);
766 }
767 static int
768 smu_fan_set_pwm(struct smu_fan *fan, int pwm)
769 {
770 	device_t smu = fan->dev;
771 	struct smu_cmd cmd;
772 	int error;
773 
774 	cmd.cmd = SMU_FAN;
775 	error = EIO;
776 
777 	/* Clamp to allowed range */
778 	pwm = max(fan->fan.min_rpm, pwm);
779 	pwm = min(fan->fan.max_rpm, pwm);
780 
781 	/*
782 	 * Apple has two fan control mechanisms. We can't distinguish
783 	 * them except by seeing if the new one fails. If the new one
784 	 * fails, use the old one.
785 	 */
786 
787 	if (!fan->old_style) {
788 		cmd.len = 4;
789 		cmd.data[0] = 0x30;
790 		cmd.data[1] = fan->reg;
791 		cmd.data[2] = (pwm >> 8) & 0xff;
792 		cmd.data[3] = pwm & 0xff;
793 
794 		error = smu_run_cmd(smu, &cmd, 1);
795 		if (error && error != EWOULDBLOCK)
796 			fan->old_style = 1;
797 	}
798 
799 	if (fan->old_style) {
800 		cmd.len = 14;
801 		cmd.data[0] = 0x10; /* PWM fan. */
802 		cmd.data[1] = 1 << fan->reg;
803 		cmd.data[2 + 2*fan->reg] = (pwm >> 8) & 0xff;
804 		cmd.data[3 + 2*fan->reg] = pwm & 0xff;
805 		error = smu_run_cmd(smu, &cmd, 1);
806 	}
807 
808 	if (error == 0)
809 		fan->setpoint = pwm;
810 
811 	return (error);
812 }
813 
814 static int
815 smu_fan_read_pwm(struct smu_fan *fan, int *pwm, int *rpm)
816 {
817 	device_t smu = fan->dev;
818 	struct smu_cmd cmd;
819 	int error;
820 
821 	if (!fan->old_style) {
822 		cmd.cmd = SMU_FAN;
823 		cmd.len = 2;
824 		cmd.data[0] = 0x31;
825 		cmd.data[1] = fan->reg;
826 
827 		error = smu_run_cmd(smu, &cmd, 1);
828 		if (error && error != EWOULDBLOCK)
829 			fan->old_style = 1;
830 
831 		*rpm = (cmd.data[0] << 8) | cmd.data[1];
832 	}
833 
834 	if (fan->old_style) {
835 		cmd.cmd = SMU_FAN;
836 		cmd.len = 1;
837 		cmd.data[0] = SMU_PWM_STATUS;
838 
839 		error = smu_run_cmd(smu, &cmd, 1);
840 		if (error)
841 			return (error);
842 
843 		*rpm = (cmd.data[fan->reg*2+1] << 8) | cmd.data[fan->reg*2+2];
844 	}
845 	if (fan->old_style) {
846 		cmd.cmd = SMU_FAN;
847 		cmd.len = 14;
848 		cmd.data[0] = SMU_PWM_SETPOINT;
849 		cmd.data[1] = 1 << fan->reg;
850 
851 		error = smu_run_cmd(smu, &cmd, 1);
852 		if (error)
853 			return (error);
854 
855 		*pwm = cmd.data[fan->reg*2+2];
856 	}
857 	return (0);
858 }
859 
860 static int
861 smu_fanrpm_sysctl(SYSCTL_HANDLER_ARGS)
862 {
863 	device_t smu;
864 	struct smu_softc *sc;
865 	struct smu_fan *fan;
866 	int pwm = 0, rpm, error = 0;
867 
868 	smu = arg1;
869 	sc = device_get_softc(smu);
870 	fan = &sc->sc_fans[arg2 & 0xff];
871 
872 	if (fan->type == SMU_FAN_RPM) {
873 		rpm = smu_fan_read_rpm(fan);
874 		if (rpm < 0)
875 			return (rpm);
876 
877 		error = sysctl_handle_int(oidp, &rpm, 0, req);
878 	} else {
879 		error = smu_fan_read_pwm(fan, &pwm, &rpm);
880 		if (error < 0)
881 			return (EIO);
882 
883 		switch (arg2 & 0xff00) {
884 		case SMU_PWM_SYSCTL_PWM:
885 			error = sysctl_handle_int(oidp, &pwm, 0, req);
886 			break;
887 		case SMU_PWM_SYSCTL_RPM:
888 			error = sysctl_handle_int(oidp, &rpm, 0, req);
889 			break;
890 		default:
891 			/* This should never happen */
892 			return (EINVAL);
893 		}
894 	}
895 	/* We can only read the RPM from a PWM controlled fan, so return. */
896 	if ((arg2 & 0xff00) == SMU_PWM_SYSCTL_RPM)
897 		return (0);
898 
899 	if (error || !req->newptr)
900 		return (error);
901 
902 	sc->sc_lastuserchange = time_uptime;
903 
904 	if (fan->type == SMU_FAN_RPM)
905 		return (smu_fan_set_rpm(fan, rpm));
906 	else
907 		return (smu_fan_set_pwm(fan, pwm));
908 }
909 
910 static void
911 smu_fill_fan_prop(device_t dev, phandle_t child, int id)
912 {
913 	struct smu_fan *fan;
914 	struct smu_softc *sc;
915 	char type[32];
916 
917 	sc = device_get_softc(dev);
918 	fan = &sc->sc_fans[id];
919 
920 	OF_getprop(child, "device_type", type, sizeof(type));
921 	/* We have either RPM or PWM controlled fans. */
922 	if (strcmp(type, "fan-rpm-control") == 0)
923 		fan->type = SMU_FAN_RPM;
924 	else
925 		fan->type = SMU_FAN_PWM;
926 
927 	fan->dev = dev;
928 	fan->old_style = 0;
929 	OF_getprop(child, "reg", &fan->reg,
930 		   sizeof(cell_t));
931 	OF_getprop(child, "min-value", &fan->fan.min_rpm,
932 		   sizeof(int));
933 	OF_getprop(child, "max-value", &fan->fan.max_rpm,
934 		   sizeof(int));
935 	OF_getprop(child, "zone", &fan->fan.zone,
936 		   sizeof(int));
937 
938 	if (OF_getprop(child, "unmanaged-value",
939 		       &fan->fan.default_rpm,
940 		       sizeof(int)) != sizeof(int))
941 		fan->fan.default_rpm = fan->fan.max_rpm;
942 
943 	OF_getprop(child, "location", fan->fan.name,
944 		   sizeof(fan->fan.name));
945 
946 	if (fan->type == SMU_FAN_RPM)
947 		fan->setpoint = smu_fan_read_rpm(fan);
948 	else
949 		smu_fan_read_pwm(fan, &fan->setpoint, &fan->rpm);
950 }
951 
952 /* On the first call count the number of fans. In the second call,
953  * after allocating the fan struct, fill the properties of the fans.
954  */
955 static int
956 smu_count_fans(device_t dev)
957 {
958 	struct smu_softc *sc;
959 	phandle_t child, node, root;
960 	int nfans = 0;
961 
962 	node = ofw_bus_get_node(dev);
963 	sc = device_get_softc(dev);
964 
965 	/* First find the fanroots and count the number of fans. */
966 	for (root = OF_child(node); root != 0; root = OF_peer(root)) {
967 		char name[32];
968 		memset(name, 0, sizeof(name));
969 		OF_getprop(root, "name", name, sizeof(name));
970 		if (strncmp(name, "rpm-fans", 9) == 0 ||
971 		    strncmp(name, "pwm-fans", 9) == 0 ||
972 		    strncmp(name, "fans", 5) == 0)
973 			for (child = OF_child(root); child != 0;
974 			     child = OF_peer(child)) {
975 				nfans++;
976 				/* When allocated, fill the fan properties. */
977 				if (sc->sc_fans != NULL) {
978 					smu_fill_fan_prop(dev, child,
979 							  nfans - 1);
980 				}
981 			}
982 	}
983 	if (nfans == 0) {
984 		device_printf(dev, "WARNING: No fans detected!\n");
985 		return (0);
986 	}
987 	return (nfans);
988 }
989 
990 static void
991 smu_attach_fans(device_t dev, phandle_t fanroot)
992 {
993 	struct smu_fan *fan;
994 	struct smu_softc *sc;
995 	struct sysctl_oid *oid, *fanroot_oid;
996 	struct sysctl_ctx_list *ctx;
997 	char sysctl_name[32];
998 	int i, j;
999 
1000 	sc = device_get_softc(dev);
1001 
1002 	/* Get the number of fans. */
1003 	sc->sc_nfans = smu_count_fans(dev);
1004 	if (sc->sc_nfans == 0)
1005 		return;
1006 
1007 	/* Now we're able to allocate memory for the fans struct. */
1008 	sc->sc_fans = malloc(sc->sc_nfans * sizeof(struct smu_fan), M_SMU,
1009 	    M_WAITOK | M_ZERO);
1010 
1011 	/* Now fill in the properties. */
1012 	smu_count_fans(dev);
1013 
1014 	/* Register fans with pmac_thermal */
1015 	for (i = 0; i < sc->sc_nfans; i++)
1016 		pmac_thermal_fan_register(&sc->sc_fans[i].fan);
1017 
1018 	ctx = device_get_sysctl_ctx(dev);
1019 	fanroot_oid = SYSCTL_ADD_NODE(ctx,
1020 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "fans",
1021 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Fan Information");
1022 
1023 	/* Add sysctls */
1024 	for (i = 0; i < sc->sc_nfans; i++) {
1025 		fan = &sc->sc_fans[i];
1026 		for (j = 0; j < strlen(fan->fan.name); j++) {
1027 			sysctl_name[j] = tolower(fan->fan.name[j]);
1028 			if (isspace(sysctl_name[j]))
1029 				sysctl_name[j] = '_';
1030 		}
1031 		sysctl_name[j] = 0;
1032 		if (fan->type == SMU_FAN_RPM) {
1033 			oid = SYSCTL_ADD_NODE(ctx,
1034 			    SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1035 			    sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1036 			    "Fan Information");
1037 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1038 				       "minrpm", CTLFLAG_RD,
1039 				       &fan->fan.min_rpm, 0,
1040 				       "Minimum allowed RPM");
1041 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1042 				       "maxrpm", CTLFLAG_RD,
1043 				       &fan->fan.max_rpm, 0,
1044 				       "Maximum allowed RPM");
1045 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1046 					"rpm",CTLTYPE_INT | CTLFLAG_RW |
1047 					CTLFLAG_MPSAFE, dev, i,
1048 					smu_fanrpm_sysctl, "I", "Fan RPM");
1049 
1050 			fan->fan.read = (int (*)(struct pmac_fan *))smu_fan_read_rpm;
1051 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_rpm;
1052 
1053 		} else {
1054 			oid = SYSCTL_ADD_NODE(ctx,
1055 			    SYSCTL_CHILDREN(fanroot_oid), OID_AUTO,
1056 			        sysctl_name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0,
1057 				"Fan Information");
1058 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1059 				       "minpwm", CTLFLAG_RD,
1060 				       &fan->fan.min_rpm, 0,
1061 				       "Minimum allowed PWM in %");
1062 			SYSCTL_ADD_INT(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1063 				       "maxpwm", CTLFLAG_RD,
1064 				       &fan->fan.max_rpm, 0,
1065 				       "Maximum allowed PWM in %");
1066 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1067 					"pwm",CTLTYPE_INT | CTLFLAG_RW |
1068 					CTLFLAG_MPSAFE, dev,
1069 					SMU_PWM_SYSCTL_PWM | i,
1070 					smu_fanrpm_sysctl, "I", "Fan PWM in %");
1071 			SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(oid), OID_AUTO,
1072 					"rpm",CTLTYPE_INT | CTLFLAG_RD |
1073 					CTLFLAG_MPSAFE, dev,
1074 					SMU_PWM_SYSCTL_RPM | i,
1075 					smu_fanrpm_sysctl, "I", "Fan RPM");
1076 			fan->fan.read = NULL;
1077 			fan->fan.set = (int (*)(struct pmac_fan *, int))smu_fan_set_pwm;
1078 		}
1079 		if (bootverbose)
1080 			device_printf(dev, "Fan: %s type: %d\n",
1081 				      fan->fan.name, fan->type);
1082 	}
1083 }
1084 
1085 static int
1086 smu_sensor_read(struct smu_sensor *sens)
1087 {
1088 	device_t smu = sens->dev;
1089 	struct smu_cmd cmd;
1090 	struct smu_softc *sc;
1091 	int64_t value;
1092 	int error;
1093 
1094 	cmd.cmd = SMU_ADC;
1095 	cmd.len = 1;
1096 	cmd.data[0] = sens->reg;
1097 	error = 0;
1098 
1099 	error = smu_run_cmd(smu, &cmd, 1);
1100 	if (error != 0)
1101 		return (-1);
1102 
1103 	sc = device_get_softc(smu);
1104 	value = (cmd.data[0] << 8) | cmd.data[1];
1105 
1106 	switch (sens->type) {
1107 	case SMU_TEMP_SENSOR:
1108 		value *= sc->sc_cpu_diode_scale;
1109 		value >>= 3;
1110 		value += ((int64_t)sc->sc_cpu_diode_offset) << 9;
1111 		value <<= 1;
1112 
1113 		/* Convert from 16.16 fixed point degC into integer 0.1 K. */
1114 		value = 10*(value >> 16) + ((10*(value & 0xffff)) >> 16) + 2731;
1115 		break;
1116 	case SMU_VOLTAGE_SENSOR:
1117 		value *= sc->sc_cpu_volt_scale;
1118 		value += sc->sc_cpu_volt_offset;
1119 		value <<= 4;
1120 
1121 		/* Convert from 16.16 fixed point V into mV. */
1122 		value *= 15625;
1123 		value /= 1024;
1124 		value /= 1000;
1125 		break;
1126 	case SMU_CURRENT_SENSOR:
1127 		value *= sc->sc_cpu_curr_scale;
1128 		value += sc->sc_cpu_curr_offset;
1129 		value <<= 4;
1130 
1131 		/* Convert from 16.16 fixed point A into mA. */
1132 		value *= 15625;
1133 		value /= 1024;
1134 		value /= 1000;
1135 		break;
1136 	case SMU_POWER_SENSOR:
1137 		value *= sc->sc_slots_pow_scale;
1138 		value += sc->sc_slots_pow_offset;
1139 		value <<= 4;
1140 
1141 		/* Convert from 16.16 fixed point W into mW. */
1142 		value *= 15625;
1143 		value /= 1024;
1144 		value /= 1000;
1145 		break;
1146 	}
1147 
1148 	return (value);
1149 }
1150 
1151 static int
1152 smu_sensor_sysctl(SYSCTL_HANDLER_ARGS)
1153 {
1154 	device_t smu;
1155 	struct smu_softc *sc;
1156 	struct smu_sensor *sens;
1157 	int value, error;
1158 
1159 	smu = arg1;
1160 	sc = device_get_softc(smu);
1161 	sens = &sc->sc_sensors[arg2];
1162 
1163 	value = smu_sensor_read(sens);
1164 	if (value < 0)
1165 		return (EBUSY);
1166 
1167 	error = sysctl_handle_int(oidp, &value, 0, req);
1168 
1169 	return (error);
1170 }
1171 
1172 static void
1173 smu_attach_sensors(device_t dev, phandle_t sensroot)
1174 {
1175 	struct smu_sensor *sens;
1176 	struct smu_softc *sc;
1177 	struct sysctl_oid *sensroot_oid;
1178 	struct sysctl_ctx_list *ctx;
1179 	phandle_t child;
1180 	char type[32];
1181 	int i;
1182 
1183 	sc = device_get_softc(dev);
1184 	sc->sc_nsensors = 0;
1185 
1186 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child))
1187 		sc->sc_nsensors++;
1188 
1189 	if (sc->sc_nsensors == 0) {
1190 		device_printf(dev, "WARNING: No sensors detected!\n");
1191 		return;
1192 	}
1193 
1194 	sc->sc_sensors = malloc(sc->sc_nsensors * sizeof(struct smu_sensor),
1195 	    M_SMU, M_WAITOK | M_ZERO);
1196 
1197 	sens = sc->sc_sensors;
1198 	sc->sc_nsensors = 0;
1199 
1200 	ctx = device_get_sysctl_ctx(dev);
1201 	sensroot_oid = SYSCTL_ADD_NODE(ctx,
1202 	    SYSCTL_CHILDREN(device_get_sysctl_tree(dev)), OID_AUTO, "sensors",
1203 	    CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "SMU Sensor Information");
1204 
1205 	for (child = OF_child(sensroot); child != 0; child = OF_peer(child)) {
1206 		char sysctl_name[40], sysctl_desc[40];
1207 		const char *units;
1208 
1209 		sens->dev = dev;
1210 		OF_getprop(child, "device_type", type, sizeof(type));
1211 
1212 		if (strcmp(type, "current-sensor") == 0) {
1213 			sens->type = SMU_CURRENT_SENSOR;
1214 			units = "mA";
1215 		} else if (strcmp(type, "temp-sensor") == 0) {
1216 			sens->type = SMU_TEMP_SENSOR;
1217 			units = "C";
1218 		} else if (strcmp(type, "voltage-sensor") == 0) {
1219 			sens->type = SMU_VOLTAGE_SENSOR;
1220 			units = "mV";
1221 		} else if (strcmp(type, "power-sensor") == 0) {
1222 			sens->type = SMU_POWER_SENSOR;
1223 			units = "mW";
1224 		} else {
1225 			continue;
1226 		}
1227 
1228 		OF_getprop(child, "reg", &sens->reg, sizeof(cell_t));
1229 		OF_getprop(child, "zone", &sens->therm.zone, sizeof(int));
1230 		OF_getprop(child, "location", sens->therm.name,
1231 		    sizeof(sens->therm.name));
1232 
1233 		for (i = 0; i < strlen(sens->therm.name); i++) {
1234 			sysctl_name[i] = tolower(sens->therm.name[i]);
1235 			if (isspace(sysctl_name[i]))
1236 				sysctl_name[i] = '_';
1237 		}
1238 		sysctl_name[i] = 0;
1239 
1240 		sprintf(sysctl_desc,"%s (%s)", sens->therm.name, units);
1241 
1242 		SYSCTL_ADD_PROC(ctx, SYSCTL_CHILDREN(sensroot_oid), OID_AUTO,
1243 		    sysctl_name, CTLTYPE_INT | CTLFLAG_RD | CTLFLAG_MPSAFE,
1244 		    dev, sc->sc_nsensors, smu_sensor_sysctl,
1245 		    (sens->type == SMU_TEMP_SENSOR) ? "IK" : "I", sysctl_desc);
1246 
1247 		if (sens->type == SMU_TEMP_SENSOR) {
1248 			/* Make up some numbers */
1249 			sens->therm.target_temp = 500 + 2731; /* 50 C */
1250 			sens->therm.max_temp = 900 + 2731; /* 90 C */
1251 
1252 			sens->therm.read =
1253 			    (int (*)(struct pmac_therm *))smu_sensor_read;
1254 			pmac_thermal_sensor_register(&sens->therm);
1255 		}
1256 
1257 		sens++;
1258 		sc->sc_nsensors++;
1259 	}
1260 }
1261 
1262 static void
1263 smu_set_sleepled(void *xdev, int onoff)
1264 {
1265 	static struct smu_cmd cmd;
1266 	device_t smu = xdev;
1267 
1268 	cmd.cmd = SMU_MISC;
1269 	cmd.len = 3;
1270 	cmd.data[0] = SMU_MISC_LED_CTRL;
1271 	cmd.data[1] = 0;
1272 	cmd.data[2] = onoff;
1273 
1274 	smu_run_cmd(smu, &cmd, 0);
1275 }
1276 
1277 static int
1278 smu_server_mode(SYSCTL_HANDLER_ARGS)
1279 {
1280 	struct smu_cmd cmd;
1281 	u_int server_mode;
1282 	device_t smu = arg1;
1283 	int error;
1284 
1285 	cmd.cmd = SMU_POWER_EVENTS;
1286 	cmd.len = 1;
1287 	cmd.data[0] = SMU_PWR_GET_POWERUP;
1288 
1289 	error = smu_run_cmd(smu, &cmd, 1);
1290 
1291 	if (error)
1292 		return (error);
1293 
1294 	server_mode = (cmd.data[1] & SMU_WAKEUP_AC_INSERT) ? 1 : 0;
1295 
1296 	error = sysctl_handle_int(oidp, &server_mode, 0, req);
1297 
1298 	if (error || !req->newptr)
1299 		return (error);
1300 
1301 	if (server_mode == 1)
1302 		cmd.data[0] = SMU_PWR_SET_POWERUP;
1303 	else if (server_mode == 0)
1304 		cmd.data[0] = SMU_PWR_CLR_POWERUP;
1305 	else
1306 		return (EINVAL);
1307 
1308 	cmd.len = 3;
1309 	cmd.data[1] = 0;
1310 	cmd.data[2] = SMU_WAKEUP_AC_INSERT;
1311 
1312 	return (smu_run_cmd(smu, &cmd, 1));
1313 }
1314 
1315 static void
1316 smu_shutdown(void *xdev, int howto)
1317 {
1318 	device_t smu = xdev;
1319 	struct smu_cmd cmd;
1320 
1321 	cmd.cmd = SMU_POWER;
1322 	if (howto & RB_HALT)
1323 		strcpy(cmd.data, "SHUTDOWN");
1324 	else
1325 		strcpy(cmd.data, "RESTART");
1326 
1327 	cmd.len = strlen(cmd.data);
1328 
1329 	smu_run_cmd(smu, &cmd, 1);
1330 
1331 	for (;;);
1332 }
1333 
1334 static int
1335 smu_gettime(device_t dev, struct timespec *ts)
1336 {
1337 	struct smu_cmd cmd;
1338 	struct clocktime ct;
1339 
1340 	cmd.cmd = SMU_RTC;
1341 	cmd.len = 1;
1342 	cmd.data[0] = SMU_RTC_GET;
1343 
1344 	if (smu_run_cmd(dev, &cmd, 1) != 0)
1345 		return (ENXIO);
1346 
1347 	ct.nsec	= 0;
1348 	ct.sec	= bcd2bin(cmd.data[0]);
1349 	ct.min	= bcd2bin(cmd.data[1]);
1350 	ct.hour	= bcd2bin(cmd.data[2]);
1351 	ct.dow	= bcd2bin(cmd.data[3]);
1352 	ct.day	= bcd2bin(cmd.data[4]);
1353 	ct.mon	= bcd2bin(cmd.data[5]);
1354 	ct.year	= bcd2bin(cmd.data[6]) + 2000;
1355 
1356 	return (clock_ct_to_ts(&ct, ts));
1357 }
1358 
1359 static int
1360 smu_settime(device_t dev, struct timespec *ts)
1361 {
1362 	static struct smu_cmd cmd;
1363 	struct clocktime ct;
1364 
1365 	cmd.cmd = SMU_RTC;
1366 	cmd.len = 8;
1367 	cmd.data[0] = SMU_RTC_SET;
1368 
1369 	clock_ts_to_ct(ts, &ct);
1370 
1371 	cmd.data[1] = bin2bcd(ct.sec);
1372 	cmd.data[2] = bin2bcd(ct.min);
1373 	cmd.data[3] = bin2bcd(ct.hour);
1374 	cmd.data[4] = bin2bcd(ct.dow);
1375 	cmd.data[5] = bin2bcd(ct.day);
1376 	cmd.data[6] = bin2bcd(ct.mon);
1377 	cmd.data[7] = bin2bcd(ct.year - 2000);
1378 
1379 	return (smu_run_cmd(dev, &cmd, 0));
1380 }
1381 
1382 /* SMU I2C Interface */
1383 
1384 static int smuiic_probe(device_t dev);
1385 static int smuiic_attach(device_t dev);
1386 static int smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs);
1387 static phandle_t smuiic_get_node(device_t bus, device_t dev);
1388 
1389 static device_method_t smuiic_methods[] = {
1390 	/* device interface */
1391 	DEVMETHOD(device_probe,         smuiic_probe),
1392 	DEVMETHOD(device_attach,        smuiic_attach),
1393 
1394 	/* iicbus interface */
1395 	DEVMETHOD(iicbus_callback,      iicbus_null_callback),
1396 	DEVMETHOD(iicbus_transfer,      smuiic_transfer),
1397 
1398 	/* ofw_bus interface */
1399 	DEVMETHOD(ofw_bus_get_node,     smuiic_get_node),
1400 	{ 0, 0 }
1401 };
1402 
1403 struct smuiic_softc {
1404 	struct mtx	sc_mtx;
1405 	volatile int	sc_iic_inuse;
1406 	int		sc_busno;
1407 };
1408 
1409 static driver_t smuiic_driver = {
1410 	"iichb",
1411 	smuiic_methods,
1412 	sizeof(struct smuiic_softc)
1413 };
1414 
1415 DRIVER_MODULE(smuiic, smu, smuiic_driver, 0, 0);
1416 
1417 static void
1418 smu_attach_i2c(device_t smu, phandle_t i2croot)
1419 {
1420 	phandle_t child;
1421 	device_t cdev;
1422 	struct ofw_bus_devinfo *dinfo;
1423 	char name[32];
1424 
1425 	for (child = OF_child(i2croot); child != 0; child = OF_peer(child)) {
1426 		if (OF_getprop(child, "name", name, sizeof(name)) <= 0)
1427 			continue;
1428 
1429 		if (strcmp(name, "i2c-bus") != 0 && strcmp(name, "i2c") != 0)
1430 			continue;
1431 
1432 		dinfo = malloc(sizeof(struct ofw_bus_devinfo), M_SMU,
1433 		    M_WAITOK | M_ZERO);
1434 		if (ofw_bus_gen_setup_devinfo(dinfo, child) != 0) {
1435 			free(dinfo, M_SMU);
1436 			continue;
1437 		}
1438 
1439 		cdev = device_add_child(smu, NULL, -1);
1440 		if (cdev == NULL) {
1441 			device_printf(smu, "<%s>: device_add_child failed\n",
1442 			    dinfo->obd_name);
1443 			ofw_bus_gen_destroy_devinfo(dinfo);
1444 			free(dinfo, M_SMU);
1445 			continue;
1446 		}
1447 		device_set_ivars(cdev, dinfo);
1448 	}
1449 }
1450 
1451 static int
1452 smuiic_probe(device_t dev)
1453 {
1454 	const char *name;
1455 
1456 	name = ofw_bus_get_name(dev);
1457 	if (name == NULL)
1458 		return (ENXIO);
1459 
1460 	if (strcmp(name, "i2c-bus") == 0 || strcmp(name, "i2c") == 0) {
1461 		device_set_desc(dev, "SMU I2C controller");
1462 		return (0);
1463 	}
1464 
1465 	return (ENXIO);
1466 }
1467 
1468 static int
1469 smuiic_attach(device_t dev)
1470 {
1471 	struct smuiic_softc *sc = device_get_softc(dev);
1472 	mtx_init(&sc->sc_mtx, "smuiic", NULL, MTX_DEF);
1473 	sc->sc_iic_inuse = 0;
1474 
1475 	/* Get our bus number */
1476 	OF_getprop(ofw_bus_get_node(dev), "reg", &sc->sc_busno,
1477 	    sizeof(sc->sc_busno));
1478 
1479 	/* Add the IIC bus layer */
1480 	device_add_child(dev, "iicbus", -1);
1481 
1482 	return (bus_generic_attach(dev));
1483 }
1484 
1485 static int
1486 smuiic_transfer(device_t dev, struct iic_msg *msgs, uint32_t nmsgs)
1487 {
1488 	struct smuiic_softc *sc = device_get_softc(dev);
1489 	struct smu_cmd cmd;
1490 	int i, j, error;
1491 
1492 	mtx_lock(&sc->sc_mtx);
1493 	while (sc->sc_iic_inuse)
1494 		mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 100);
1495 
1496 	sc->sc_iic_inuse = 1;
1497 	error = 0;
1498 
1499 	for (i = 0; i < nmsgs; i++) {
1500 		cmd.cmd = SMU_I2C;
1501 		cmd.data[0] = sc->sc_busno;
1502 		if (msgs[i].flags & IIC_M_NOSTOP)
1503 			cmd.data[1] = SMU_I2C_COMBINED;
1504 		else
1505 			cmd.data[1] = SMU_I2C_SIMPLE;
1506 
1507 		cmd.data[2] = msgs[i].slave;
1508 		if (msgs[i].flags & IIC_M_RD)
1509 			cmd.data[2] |= 1;
1510 
1511 		if (msgs[i].flags & IIC_M_NOSTOP) {
1512 			KASSERT(msgs[i].len < 4,
1513 			    ("oversize I2C combined message"));
1514 
1515 			cmd.data[3] = min(msgs[i].len, 3);
1516 			memcpy(&cmd.data[4], msgs[i].buf, min(msgs[i].len, 3));
1517 			i++; /* Advance to next part of message */
1518 		} else {
1519 			cmd.data[3] = 0;
1520 			memset(&cmd.data[4], 0, 3);
1521 		}
1522 
1523 		cmd.data[7] = msgs[i].slave;
1524 		if (msgs[i].flags & IIC_M_RD)
1525 			cmd.data[7] |= 1;
1526 
1527 		cmd.data[8] = msgs[i].len;
1528 		if (msgs[i].flags & IIC_M_RD) {
1529 			memset(&cmd.data[9], 0xff, msgs[i].len);
1530 			cmd.len = 9;
1531 		} else {
1532 			memcpy(&cmd.data[9], msgs[i].buf, msgs[i].len);
1533 			cmd.len = 9 + msgs[i].len;
1534 		}
1535 
1536 		mtx_unlock(&sc->sc_mtx);
1537 		smu_run_cmd(device_get_parent(dev), &cmd, 1);
1538 		mtx_lock(&sc->sc_mtx);
1539 
1540 		for (j = 0; j < 10; j++) {
1541 			cmd.cmd = SMU_I2C;
1542 			cmd.len = 1;
1543 			cmd.data[0] = 0;
1544 			memset(&cmd.data[1], 0xff, msgs[i].len);
1545 
1546 			mtx_unlock(&sc->sc_mtx);
1547 			smu_run_cmd(device_get_parent(dev), &cmd, 1);
1548 			mtx_lock(&sc->sc_mtx);
1549 
1550 			if (!(cmd.data[0] & 0x80))
1551 				break;
1552 
1553 			mtx_sleep(sc, &sc->sc_mtx, 0, "smuiic", 10);
1554 		}
1555 
1556 		if (cmd.data[0] & 0x80) {
1557 			error = EIO;
1558 			msgs[i].len = 0;
1559 			goto exit;
1560 		}
1561 		memcpy(msgs[i].buf, &cmd.data[1], msgs[i].len);
1562 		msgs[i].len = cmd.len - 1;
1563 	}
1564 
1565     exit:
1566 	sc->sc_iic_inuse = 0;
1567 	mtx_unlock(&sc->sc_mtx);
1568 	wakeup(sc);
1569 	return (error);
1570 }
1571 
1572 static phandle_t
1573 smuiic_get_node(device_t bus, device_t dev)
1574 {
1575 
1576 	return (ofw_bus_get_node(bus));
1577 }
1578