1 /* $NetBSD: fpu_explode.c,v 1.6 2005/12/11 12:18:42 christos Exp $ */ 2 3 /*- 4 * SPDX-License-Identifier: BSD-3-Clause 5 * 6 * Copyright (c) 1992, 1993 7 * The Regents of the University of California. All rights reserved. 8 * 9 * This software was developed by the Computer Systems Engineering group 10 * at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and 11 * contributed to Berkeley. 12 * 13 * All advertising materials mentioning features or use of this software 14 * must display the following acknowledgement: 15 * This product includes software developed by the University of 16 * California, Lawrence Berkeley Laboratory. 17 * 18 * Redistribution and use in source and binary forms, with or without 19 * modification, are permitted provided that the following conditions 20 * are met: 21 * 1. Redistributions of source code must retain the above copyright 22 * notice, this list of conditions and the following disclaimer. 23 * 2. Redistributions in binary form must reproduce the above copyright 24 * notice, this list of conditions and the following disclaimer in the 25 * documentation and/or other materials provided with the distribution. 26 * 3. Neither the name of the University nor the names of its contributors 27 * may be used to endorse or promote products derived from this software 28 * without specific prior written permission. 29 * 30 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 31 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 32 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 33 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 34 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 38 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 39 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 40 * SUCH DAMAGE. 41 */ 42 43 /* 44 * FPU subroutines: `explode' the machine's `packed binary' format numbers 45 * into our internal format. 46 */ 47 48 #include <sys/types.h> 49 #include <sys/systm.h> 50 51 #include <machine/fpu.h> 52 #include <machine/ieee.h> 53 #include <machine/pcb.h> 54 55 #include <powerpc/fpu/fpu_arith.h> 56 #include <powerpc/fpu/fpu_emu.h> 57 #include <powerpc/fpu/fpu_extern.h> 58 #include <powerpc/fpu/fpu_instr.h> 59 60 /* 61 * N.B.: in all of the following, we assume the FP format is 62 * 63 * --------------------------- 64 * | s | exponent | fraction | 65 * --------------------------- 66 * 67 * (which represents -1**s * 1.fraction * 2**exponent), so that the 68 * sign bit is way at the top (bit 31), the exponent is next, and 69 * then the remaining bits mark the fraction. A zero exponent means 70 * zero or denormalized (0.fraction rather than 1.fraction), and the 71 * maximum possible exponent, 2bias+1, signals inf (fraction==0) or NaN. 72 * 73 * Since the sign bit is always the topmost bit---this holds even for 74 * integers---we set that outside all the *tof functions. Each function 75 * returns the class code for the new number (but note that we use 76 * FPC_QNAN for all NaNs; fpu_explode will fix this if appropriate). 77 */ 78 79 /* 80 * int -> fpn. 81 */ 82 int 83 fpu_itof(struct fpn *fp, u_int i) 84 { 85 86 if (i == 0) 87 return (FPC_ZERO); 88 /* 89 * The value FP_1 represents 2^FP_LG, so set the exponent 90 * there and let normalization fix it up. Convert negative 91 * numbers to sign-and-magnitude. Note that this relies on 92 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 93 */ 94 fp->fp_exp = FP_LG; 95 fp->fp_mant[0] = (int)i < 0 ? -i : i; 96 fp->fp_mant[1] = 0; 97 fp->fp_mant[2] = 0; 98 fp->fp_mant[3] = 0; 99 fpu_norm(fp); 100 return (FPC_NUM); 101 } 102 103 /* 104 * 64-bit int -> fpn. 105 */ 106 int 107 fpu_xtof(struct fpn *fp, u_int64_t i) 108 { 109 110 if (i == 0) 111 return (FPC_ZERO); 112 /* 113 * The value FP_1 represents 2^FP_LG, so set the exponent 114 * there and let normalization fix it up. Convert negative 115 * numbers to sign-and-magnitude. Note that this relies on 116 * fpu_norm()'s handling of `supernormals'; see fpu_subr.c. 117 */ 118 fp->fp_exp = FP_LG2; 119 *((int64_t*)fp->fp_mant) = (int64_t)i < 0 ? -i : i; 120 fp->fp_mant[2] = 0; 121 fp->fp_mant[3] = 0; 122 fpu_norm(fp); 123 return (FPC_NUM); 124 } 125 126 #define mask(nbits) ((1L << (nbits)) - 1) 127 128 /* 129 * All external floating formats convert to internal in the same manner, 130 * as defined here. Note that only normals get an implied 1.0 inserted. 131 */ 132 #define FP_TOF(exp, expbias, allfrac, f0, f1, f2, f3) \ 133 if (exp == 0) { \ 134 if (allfrac == 0) \ 135 return (FPC_ZERO); \ 136 fp->fp_exp = 1 - expbias; \ 137 fp->fp_mant[0] = f0; \ 138 fp->fp_mant[1] = f1; \ 139 fp->fp_mant[2] = f2; \ 140 fp->fp_mant[3] = f3; \ 141 fpu_norm(fp); \ 142 return (FPC_NUM); \ 143 } \ 144 if (exp == (2 * expbias + 1)) { \ 145 if (allfrac == 0) \ 146 return (FPC_INF); \ 147 fp->fp_mant[0] = f0; \ 148 fp->fp_mant[1] = f1; \ 149 fp->fp_mant[2] = f2; \ 150 fp->fp_mant[3] = f3; \ 151 return (FPC_QNAN); \ 152 } \ 153 fp->fp_exp = exp - expbias; \ 154 fp->fp_mant[0] = FP_1 | f0; \ 155 fp->fp_mant[1] = f1; \ 156 fp->fp_mant[2] = f2; \ 157 fp->fp_mant[3] = f3; \ 158 return (FPC_NUM) 159 160 /* 161 * 32-bit single precision -> fpn. 162 * We assume a single occupies at most (64-FP_LG) bits in the internal 163 * format: i.e., needs at most fp_mant[0] and fp_mant[1]. 164 */ 165 int 166 fpu_stof(struct fpn *fp, u_int i) 167 { 168 int exp; 169 u_int frac, f0, f1; 170 #define SNG_SHIFT (SNG_FRACBITS - FP_LG) 171 172 exp = (i >> (32 - 1 - SNG_EXPBITS)) & mask(SNG_EXPBITS); 173 frac = i & mask(SNG_FRACBITS); 174 f0 = frac >> SNG_SHIFT; 175 f1 = frac << (32 - SNG_SHIFT); 176 FP_TOF(exp, SNG_EXP_BIAS, frac, f0, f1, 0, 0); 177 } 178 179 /* 180 * 64-bit double -> fpn. 181 * We assume this uses at most (96-FP_LG) bits. 182 */ 183 int 184 fpu_dtof(struct fpn *fp, u_int i, u_int j) 185 { 186 int exp; 187 u_int frac, f0, f1, f2; 188 #define DBL_SHIFT (DBL_FRACBITS - 32 - FP_LG) 189 190 exp = (i >> (32 - 1 - DBL_EXPBITS)) & mask(DBL_EXPBITS); 191 frac = i & mask(DBL_FRACBITS - 32); 192 f0 = frac >> DBL_SHIFT; 193 f1 = (frac << (32 - DBL_SHIFT)) | (j >> DBL_SHIFT); 194 f2 = j << (32 - DBL_SHIFT); 195 frac |= j; 196 FP_TOF(exp, DBL_EXP_BIAS, frac, f0, f1, f2, 0); 197 } 198 199 /* 200 * Explode the contents of a register / regpair / regquad. 201 * If the input is a signalling NaN, an NV (invalid) exception 202 * will be set. (Note that nothing but NV can occur until ALU 203 * operations are performed.) 204 */ 205 void 206 fpu_explode(struct fpemu *fe, struct fpn *fp, int type, int reg) 207 { 208 u_int s, *space; 209 u_int64_t l, *xspace; 210 211 xspace = (u_int64_t *)&fe->fe_fpstate->fpr[reg].fpr; 212 l = xspace[0]; 213 space = (u_int *)&fe->fe_fpstate->fpr[reg].fpr; 214 s = space[0]; 215 fp->fp_sign = s >> 31; 216 fp->fp_sticky = 0; 217 switch (type) { 218 case FTYPE_LNG: 219 s = fpu_xtof(fp, l); 220 break; 221 222 case FTYPE_INT: 223 s = fpu_itof(fp, space[1]); 224 break; 225 226 case FTYPE_SNG: 227 s = fpu_stof(fp, s); 228 break; 229 230 case FTYPE_DBL: 231 s = fpu_dtof(fp, s, space[1]); 232 break; 233 234 default: 235 panic("fpu_explode"); 236 panic("fpu_explode: invalid type %d", type); 237 } 238 239 if (s == FPC_QNAN && (fp->fp_mant[0] & FP_QUIETBIT) == 0) { 240 /* 241 * Input is a signalling NaN. All operations that return 242 * an input NaN operand put it through a ``NaN conversion'', 243 * which basically just means ``turn on the quiet bit''. 244 * We do this here so that all NaNs internally look quiet 245 * (we can tell signalling ones by their class). 246 */ 247 fp->fp_mant[0] |= FP_QUIETBIT; 248 fe->fe_cx = FPSCR_VXSNAN; /* assert invalid operand */ 249 s = FPC_SNAN; 250 } 251 fp->fp_class = s; 252 DPRINTF(FPE_REG, ("fpu_explode: %%%c%d => ", (type == FTYPE_LNG) ? 'x' : 253 ((type == FTYPE_INT) ? 'i' : 254 ((type == FTYPE_SNG) ? 's' : 255 ((type == FTYPE_DBL) ? 'd' : '?'))), 256 reg)); 257 DUMPFPN(FPE_REG, fp); 258 DPRINTF(FPE_REG, ("\n")); 259 } 260