xref: /freebsd/sys/powerpc/booke/pmap.c (revision eda14cbc264d6969b02f2b1994cef11148e914f1)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause-FreeBSD
3  *
4  * Copyright (C) 2007-2009 Semihalf, Rafal Jaworowski <raj@semihalf.com>
5  * Copyright (C) 2006 Semihalf, Marian Balakowicz <m8@semihalf.com>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
20  * NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
22  * TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
23  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
24  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
25  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
26  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  * Some hw specific parts of this pmap were derived or influenced
29  * by NetBSD's ibm4xx pmap module. More generic code is shared with
30  * a few other pmap modules from the FreeBSD tree.
31  */
32 
33  /*
34   * VM layout notes:
35   *
36   * Kernel and user threads run within one common virtual address space
37   * defined by AS=0.
38   *
39   * 32-bit pmap:
40   * Virtual address space layout:
41   * -----------------------------
42   * 0x0000_0000 - 0x7fff_ffff	: user process
43   * 0x8000_0000 - 0xbfff_ffff	: pmap_mapdev()-ed area (PCI/PCIE etc.)
44   * 0xc000_0000 - 0xc0ff_ffff	: kernel reserved
45   *   0xc000_0000 - data_end	: kernel code+data, env, metadata etc.
46   * 0xc100_0000 - 0xffff_ffff	: KVA
47   *   0xc100_0000 - 0xc100_3fff : reserved for page zero/copy
48   *   0xc100_4000 - 0xc200_3fff : reserved for ptbl bufs
49   *   0xc200_4000 - 0xc200_8fff : guard page + kstack0
50   *   0xc200_9000 - 0xfeef_ffff	: actual free KVA space
51   *
52   * 64-bit pmap:
53   * Virtual address space layout:
54   * -----------------------------
55   * 0x0000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff      : user process
56   *   0x0000_0000_0000_0000 - 0x8fff_ffff_ffff_ffff    : text, data, heap, maps, libraries
57   *   0x9000_0000_0000_0000 - 0xafff_ffff_ffff_ffff    : mmio region
58   *   0xb000_0000_0000_0000 - 0xbfff_ffff_ffff_ffff    : stack
59   * 0xc000_0000_0000_0000 - 0xcfff_ffff_ffff_ffff      : kernel reserved
60   *   0xc000_0000_0000_0000 - endkernel-1              : kernel code & data
61   *               endkernel - msgbufp-1                : flat device tree
62   *                 msgbufp - kernel_pdir-1            : message buffer
63   *             kernel_pdir - kernel_pp2d-1            : kernel page directory
64   *             kernel_pp2d - .                        : kernel pointers to page directory
65   *      pmap_zero_copy_min - crashdumpmap-1           : reserved for page zero/copy
66   *            crashdumpmap - ptbl_buf_pool_vabase-1   : reserved for ptbl bufs
67   *    ptbl_buf_pool_vabase - virtual_avail-1          : user page directories and page tables
68   *           virtual_avail - 0xcfff_ffff_ffff_ffff    : actual free KVA space
69   * 0xd000_0000_0000_0000 - 0xdfff_ffff_ffff_ffff      : coprocessor region
70   * 0xe000_0000_0000_0000 - 0xefff_ffff_ffff_ffff      : mmio region
71   * 0xf000_0000_0000_0000 - 0xffff_ffff_ffff_ffff      : direct map
72   *   0xf000_0000_0000_0000 - +Maxmem                  : physmem map
73   *                         - 0xffff_ffff_ffff_ffff    : device direct map
74   */
75 
76 #include <sys/cdefs.h>
77 __FBSDID("$FreeBSD$");
78 
79 #include "opt_ddb.h"
80 #include "opt_kstack_pages.h"
81 
82 #include <sys/param.h>
83 #include <sys/conf.h>
84 #include <sys/malloc.h>
85 #include <sys/ktr.h>
86 #include <sys/proc.h>
87 #include <sys/user.h>
88 #include <sys/queue.h>
89 #include <sys/systm.h>
90 #include <sys/kernel.h>
91 #include <sys/kerneldump.h>
92 #include <sys/linker.h>
93 #include <sys/msgbuf.h>
94 #include <sys/lock.h>
95 #include <sys/mutex.h>
96 #include <sys/rwlock.h>
97 #include <sys/sched.h>
98 #include <sys/smp.h>
99 #include <sys/vmmeter.h>
100 
101 #include <vm/vm.h>
102 #include <vm/vm_page.h>
103 #include <vm/vm_kern.h>
104 #include <vm/vm_pageout.h>
105 #include <vm/vm_extern.h>
106 #include <vm/vm_object.h>
107 #include <vm/vm_param.h>
108 #include <vm/vm_map.h>
109 #include <vm/vm_pager.h>
110 #include <vm/vm_phys.h>
111 #include <vm/vm_pagequeue.h>
112 #include <vm/uma.h>
113 
114 #include <machine/_inttypes.h>
115 #include <machine/cpu.h>
116 #include <machine/pcb.h>
117 #include <machine/platform.h>
118 
119 #include <machine/tlb.h>
120 #include <machine/spr.h>
121 #include <machine/md_var.h>
122 #include <machine/mmuvar.h>
123 #include <machine/pmap.h>
124 #include <machine/pte.h>
125 
126 #include <ddb/ddb.h>
127 
128 #define	SPARSE_MAPDEV
129 
130 /* Use power-of-two mappings in mmu_booke_mapdev(), to save entries. */
131 #define	POW2_MAPPINGS
132 
133 #ifdef  DEBUG
134 #define debugf(fmt, args...) printf(fmt, ##args)
135 #else
136 #define debugf(fmt, args...)
137 #endif
138 
139 #ifdef __powerpc64__
140 #define	PRI0ptrX	"016lx"
141 #else
142 #define	PRI0ptrX	"08x"
143 #endif
144 
145 #define TODO			panic("%s: not implemented", __func__);
146 
147 extern unsigned char _etext[];
148 extern unsigned char _end[];
149 
150 extern uint32_t *bootinfo;
151 
152 vm_paddr_t kernload;
153 vm_offset_t kernstart;
154 vm_size_t kernsize;
155 
156 /* Message buffer and tables. */
157 static vm_offset_t data_start;
158 static vm_size_t data_end;
159 
160 /* Phys/avail memory regions. */
161 static struct mem_region *availmem_regions;
162 static int availmem_regions_sz;
163 static struct mem_region *physmem_regions;
164 static int physmem_regions_sz;
165 
166 #ifndef __powerpc64__
167 /* Reserved KVA space and mutex for mmu_booke_zero_page. */
168 static vm_offset_t zero_page_va;
169 static struct mtx zero_page_mutex;
170 
171 /* Reserved KVA space and mutex for mmu_booke_copy_page. */
172 static vm_offset_t copy_page_src_va;
173 static vm_offset_t copy_page_dst_va;
174 static struct mtx copy_page_mutex;
175 #endif
176 
177 static struct mtx tlbivax_mutex;
178 
179 /**************************************************************************/
180 /* PMAP */
181 /**************************************************************************/
182 
183 static int mmu_booke_enter_locked(pmap_t, vm_offset_t, vm_page_t,
184     vm_prot_t, u_int flags, int8_t psind);
185 
186 unsigned int kptbl_min;		/* Index of the first kernel ptbl. */
187 static uma_zone_t ptbl_root_zone;
188 
189 /*
190  * If user pmap is processed with mmu_booke_remove and the resident count
191  * drops to 0, there are no more pages to remove, so we need not continue.
192  */
193 #define PMAP_REMOVE_DONE(pmap) \
194 	((pmap) != kernel_pmap && (pmap)->pm_stats.resident_count == 0)
195 
196 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
197 extern int elf32_nxstack;
198 #endif
199 
200 /**************************************************************************/
201 /* TLB and TID handling */
202 /**************************************************************************/
203 
204 /* Translation ID busy table */
205 static volatile pmap_t tidbusy[MAXCPU][TID_MAX + 1];
206 
207 /*
208  * TLB0 capabilities (entry, way numbers etc.). These can vary between e500
209  * core revisions and should be read from h/w registers during early config.
210  */
211 uint32_t tlb0_entries;
212 uint32_t tlb0_ways;
213 uint32_t tlb0_entries_per_way;
214 uint32_t tlb1_entries;
215 
216 #define TLB0_ENTRIES		(tlb0_entries)
217 #define TLB0_WAYS		(tlb0_ways)
218 #define TLB0_ENTRIES_PER_WAY	(tlb0_entries_per_way)
219 
220 #define TLB1_ENTRIES (tlb1_entries)
221 
222 static tlbtid_t tid_alloc(struct pmap *);
223 
224 #ifdef DDB
225 #ifdef __powerpc64__
226 static void tlb_print_entry(int, uint32_t, uint64_t, uint32_t, uint32_t);
227 #else
228 static void tlb_print_entry(int, uint32_t, uint32_t, uint32_t, uint32_t);
229 #endif
230 #endif
231 
232 static void tlb1_read_entry(tlb_entry_t *, unsigned int);
233 static void tlb1_write_entry(tlb_entry_t *, unsigned int);
234 static int tlb1_iomapped(int, vm_paddr_t, vm_size_t, vm_offset_t *);
235 static vm_size_t tlb1_mapin_region(vm_offset_t, vm_paddr_t, vm_size_t, int);
236 
237 static __inline uint32_t tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma);
238 
239 static vm_size_t tsize2size(unsigned int);
240 static unsigned int size2tsize(vm_size_t);
241 static unsigned long ilog2(unsigned long);
242 
243 static void set_mas4_defaults(void);
244 
245 static inline void tlb0_flush_entry(vm_offset_t);
246 static inline unsigned int tlb0_tableidx(vm_offset_t, unsigned int);
247 
248 /**************************************************************************/
249 /* Page table management */
250 /**************************************************************************/
251 
252 static struct rwlock_padalign pvh_global_lock;
253 
254 /* Data for the pv entry allocation mechanism */
255 static uma_zone_t pvzone;
256 static int pv_entry_count = 0, pv_entry_max = 0, pv_entry_high_water = 0;
257 
258 #define PV_ENTRY_ZONE_MIN	2048	/* min pv entries in uma zone */
259 
260 #ifndef PMAP_SHPGPERPROC
261 #define PMAP_SHPGPERPROC	200
262 #endif
263 
264 static vm_paddr_t pte_vatopa(pmap_t, vm_offset_t);
265 static int pte_enter(pmap_t, vm_page_t, vm_offset_t, uint32_t, boolean_t);
266 static int pte_remove(pmap_t, vm_offset_t, uint8_t);
267 static pte_t *pte_find(pmap_t, vm_offset_t);
268 static void kernel_pte_alloc(vm_offset_t, vm_offset_t);
269 
270 static pv_entry_t pv_alloc(void);
271 static void pv_free(pv_entry_t);
272 static void pv_insert(pmap_t, vm_offset_t, vm_page_t);
273 static void pv_remove(pmap_t, vm_offset_t, vm_page_t);
274 
275 static void booke_pmap_init_qpages(void);
276 
277 static inline void tlb_miss_lock(void);
278 static inline void tlb_miss_unlock(void);
279 
280 #ifdef SMP
281 extern tlb_entry_t __boot_tlb1[];
282 void pmap_bootstrap_ap(volatile uint32_t *);
283 #endif
284 
285 /*
286  * Kernel MMU interface
287  */
288 static void		mmu_booke_clear_modify(vm_page_t);
289 static void		mmu_booke_copy(pmap_t, pmap_t, vm_offset_t,
290     vm_size_t, vm_offset_t);
291 static void		mmu_booke_copy_page(vm_page_t, vm_page_t);
292 static void		mmu_booke_copy_pages(vm_page_t *,
293     vm_offset_t, vm_page_t *, vm_offset_t, int);
294 static int		mmu_booke_enter(pmap_t, vm_offset_t, vm_page_t,
295     vm_prot_t, u_int flags, int8_t psind);
296 static void		mmu_booke_enter_object(pmap_t, vm_offset_t, vm_offset_t,
297     vm_page_t, vm_prot_t);
298 static void		mmu_booke_enter_quick(pmap_t, vm_offset_t, vm_page_t,
299     vm_prot_t);
300 static vm_paddr_t	mmu_booke_extract(pmap_t, vm_offset_t);
301 static vm_page_t	mmu_booke_extract_and_hold(pmap_t, vm_offset_t,
302     vm_prot_t);
303 static void		mmu_booke_init(void);
304 static boolean_t	mmu_booke_is_modified(vm_page_t);
305 static boolean_t	mmu_booke_is_prefaultable(pmap_t, vm_offset_t);
306 static boolean_t	mmu_booke_is_referenced(vm_page_t);
307 static int		mmu_booke_ts_referenced(vm_page_t);
308 static vm_offset_t	mmu_booke_map(vm_offset_t *, vm_paddr_t, vm_paddr_t,
309     int);
310 static int		mmu_booke_mincore(pmap_t, vm_offset_t,
311     vm_paddr_t *);
312 static void		mmu_booke_object_init_pt(pmap_t, vm_offset_t,
313     vm_object_t, vm_pindex_t, vm_size_t);
314 static boolean_t	mmu_booke_page_exists_quick(pmap_t, vm_page_t);
315 static void		mmu_booke_page_init(vm_page_t);
316 static int		mmu_booke_page_wired_mappings(vm_page_t);
317 static int		mmu_booke_pinit(pmap_t);
318 static void		mmu_booke_pinit0(pmap_t);
319 static void		mmu_booke_protect(pmap_t, vm_offset_t, vm_offset_t,
320     vm_prot_t);
321 static void		mmu_booke_qenter(vm_offset_t, vm_page_t *, int);
322 static void		mmu_booke_qremove(vm_offset_t, int);
323 static void		mmu_booke_release(pmap_t);
324 static void		mmu_booke_remove(pmap_t, vm_offset_t, vm_offset_t);
325 static void		mmu_booke_remove_all(vm_page_t);
326 static void		mmu_booke_remove_write(vm_page_t);
327 static void		mmu_booke_unwire(pmap_t, vm_offset_t, vm_offset_t);
328 static void		mmu_booke_zero_page(vm_page_t);
329 static void		mmu_booke_zero_page_area(vm_page_t, int, int);
330 static void		mmu_booke_activate(struct thread *);
331 static void		mmu_booke_deactivate(struct thread *);
332 static void		mmu_booke_bootstrap(vm_offset_t, vm_offset_t);
333 static void		*mmu_booke_mapdev(vm_paddr_t, vm_size_t);
334 static void		*mmu_booke_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t);
335 static void		mmu_booke_unmapdev(vm_offset_t, vm_size_t);
336 static vm_paddr_t	mmu_booke_kextract(vm_offset_t);
337 static void		mmu_booke_kenter(vm_offset_t, vm_paddr_t);
338 static void		mmu_booke_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t);
339 static void		mmu_booke_kremove(vm_offset_t);
340 static boolean_t	mmu_booke_dev_direct_mapped(vm_paddr_t, vm_size_t);
341 static void		mmu_booke_sync_icache(pmap_t, vm_offset_t,
342     vm_size_t);
343 static void		mmu_booke_dumpsys_map(vm_paddr_t pa, size_t,
344     void **);
345 static void		mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t,
346     void *);
347 static void		mmu_booke_scan_init(void);
348 static vm_offset_t	mmu_booke_quick_enter_page(vm_page_t m);
349 static void		mmu_booke_quick_remove_page(vm_offset_t addr);
350 static int		mmu_booke_change_attr(vm_offset_t addr,
351     vm_size_t sz, vm_memattr_t mode);
352 static int		mmu_booke_decode_kernel_ptr(vm_offset_t addr,
353     int *is_user, vm_offset_t *decoded_addr);
354 static void		mmu_booke_page_array_startup(long);
355 static boolean_t mmu_booke_page_is_mapped(vm_page_t m);
356 
357 
358 static struct pmap_funcs mmu_booke_methods = {
359 	/* pmap dispatcher interface */
360 	.clear_modify = mmu_booke_clear_modify,
361 	.copy = mmu_booke_copy,
362 	.copy_page = mmu_booke_copy_page,
363 	.copy_pages = mmu_booke_copy_pages,
364 	.enter = mmu_booke_enter,
365 	.enter_object = mmu_booke_enter_object,
366 	.enter_quick = mmu_booke_enter_quick,
367 	.extract = mmu_booke_extract,
368 	.extract_and_hold = mmu_booke_extract_and_hold,
369 	.init = mmu_booke_init,
370 	.is_modified = mmu_booke_is_modified,
371 	.is_prefaultable = mmu_booke_is_prefaultable,
372 	.is_referenced = mmu_booke_is_referenced,
373 	.ts_referenced = mmu_booke_ts_referenced,
374 	.map = mmu_booke_map,
375 	.mincore = mmu_booke_mincore,
376 	.object_init_pt = mmu_booke_object_init_pt,
377 	.page_exists_quick = mmu_booke_page_exists_quick,
378 	.page_init = mmu_booke_page_init,
379 	.page_wired_mappings =  mmu_booke_page_wired_mappings,
380 	.pinit = mmu_booke_pinit,
381 	.pinit0 = mmu_booke_pinit0,
382 	.protect = mmu_booke_protect,
383 	.qenter = mmu_booke_qenter,
384 	.qremove = mmu_booke_qremove,
385 	.release = mmu_booke_release,
386 	.remove = mmu_booke_remove,
387 	.remove_all = mmu_booke_remove_all,
388 	.remove_write = mmu_booke_remove_write,
389 	.sync_icache = mmu_booke_sync_icache,
390 	.unwire = mmu_booke_unwire,
391 	.zero_page = mmu_booke_zero_page,
392 	.zero_page_area = mmu_booke_zero_page_area,
393 	.activate = mmu_booke_activate,
394 	.deactivate = mmu_booke_deactivate,
395 	.quick_enter_page =  mmu_booke_quick_enter_page,
396 	.quick_remove_page =  mmu_booke_quick_remove_page,
397 	.page_array_startup = mmu_booke_page_array_startup,
398 	.page_is_mapped = mmu_booke_page_is_mapped,
399 
400 	/* Internal interfaces */
401 	.bootstrap = mmu_booke_bootstrap,
402 	.dev_direct_mapped = mmu_booke_dev_direct_mapped,
403 	.mapdev = mmu_booke_mapdev,
404 	.mapdev_attr = mmu_booke_mapdev_attr,
405 	.kenter = mmu_booke_kenter,
406 	.kenter_attr = mmu_booke_kenter_attr,
407 	.kextract = mmu_booke_kextract,
408 	.kremove = mmu_booke_kremove,
409 	.unmapdev = mmu_booke_unmapdev,
410 	.change_attr = mmu_booke_change_attr,
411 	.decode_kernel_ptr =  mmu_booke_decode_kernel_ptr,
412 
413 	/* dumpsys() support */
414 	.dumpsys_map_chunk = mmu_booke_dumpsys_map,
415 	.dumpsys_unmap_chunk = mmu_booke_dumpsys_unmap,
416 	.dumpsys_pa_init = mmu_booke_scan_init,
417 };
418 
419 MMU_DEF(booke_mmu, MMU_TYPE_BOOKE, mmu_booke_methods);
420 
421 #ifdef __powerpc64__
422 #include "pmap_64.c"
423 #else
424 #include "pmap_32.c"
425 #endif
426 
427 static vm_offset_t tlb1_map_base = VM_MAPDEV_BASE;
428 
429 static __inline uint32_t
430 tlb_calc_wimg(vm_paddr_t pa, vm_memattr_t ma)
431 {
432 	uint32_t attrib;
433 	int i;
434 
435 	if (ma != VM_MEMATTR_DEFAULT) {
436 		switch (ma) {
437 		case VM_MEMATTR_UNCACHEABLE:
438 			return (MAS2_I | MAS2_G);
439 		case VM_MEMATTR_WRITE_COMBINING:
440 		case VM_MEMATTR_WRITE_BACK:
441 		case VM_MEMATTR_PREFETCHABLE:
442 			return (MAS2_I);
443 		case VM_MEMATTR_WRITE_THROUGH:
444 			return (MAS2_W | MAS2_M);
445 		case VM_MEMATTR_CACHEABLE:
446 			return (MAS2_M);
447 		}
448 	}
449 
450 	/*
451 	 * Assume the page is cache inhibited and access is guarded unless
452 	 * it's in our available memory array.
453 	 */
454 	attrib = _TLB_ENTRY_IO;
455 	for (i = 0; i < physmem_regions_sz; i++) {
456 		if ((pa >= physmem_regions[i].mr_start) &&
457 		    (pa < (physmem_regions[i].mr_start +
458 		     physmem_regions[i].mr_size))) {
459 			attrib = _TLB_ENTRY_MEM;
460 			break;
461 		}
462 	}
463 
464 	return (attrib);
465 }
466 
467 static inline void
468 tlb_miss_lock(void)
469 {
470 #ifdef SMP
471 	struct pcpu *pc;
472 
473 	if (!smp_started)
474 		return;
475 
476 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
477 		if (pc != pcpup) {
478 
479 			CTR3(KTR_PMAP, "%s: tlb miss LOCK of CPU=%d, "
480 			    "tlb_lock=%p", __func__, pc->pc_cpuid, pc->pc_booke.tlb_lock);
481 
482 			KASSERT((pc->pc_cpuid != PCPU_GET(cpuid)),
483 			    ("tlb_miss_lock: tried to lock self"));
484 
485 			tlb_lock(pc->pc_booke.tlb_lock);
486 
487 			CTR1(KTR_PMAP, "%s: locked", __func__);
488 		}
489 	}
490 #endif
491 }
492 
493 static inline void
494 tlb_miss_unlock(void)
495 {
496 #ifdef SMP
497 	struct pcpu *pc;
498 
499 	if (!smp_started)
500 		return;
501 
502 	STAILQ_FOREACH(pc, &cpuhead, pc_allcpu) {
503 		if (pc != pcpup) {
504 			CTR2(KTR_PMAP, "%s: tlb miss UNLOCK of CPU=%d",
505 			    __func__, pc->pc_cpuid);
506 
507 			tlb_unlock(pc->pc_booke.tlb_lock);
508 
509 			CTR1(KTR_PMAP, "%s: unlocked", __func__);
510 		}
511 	}
512 #endif
513 }
514 
515 /* Return number of entries in TLB0. */
516 static __inline void
517 tlb0_get_tlbconf(void)
518 {
519 	uint32_t tlb0_cfg;
520 
521 	tlb0_cfg = mfspr(SPR_TLB0CFG);
522 	tlb0_entries = tlb0_cfg & TLBCFG_NENTRY_MASK;
523 	tlb0_ways = (tlb0_cfg & TLBCFG_ASSOC_MASK) >> TLBCFG_ASSOC_SHIFT;
524 	tlb0_entries_per_way = tlb0_entries / tlb0_ways;
525 }
526 
527 /* Return number of entries in TLB1. */
528 static __inline void
529 tlb1_get_tlbconf(void)
530 {
531 	uint32_t tlb1_cfg;
532 
533 	tlb1_cfg = mfspr(SPR_TLB1CFG);
534 	tlb1_entries = tlb1_cfg & TLBCFG_NENTRY_MASK;
535 }
536 
537 /**************************************************************************/
538 /* Page table related */
539 /**************************************************************************/
540 
541 /* Allocate pv_entry structure. */
542 pv_entry_t
543 pv_alloc(void)
544 {
545 	pv_entry_t pv;
546 
547 	pv_entry_count++;
548 	if (pv_entry_count > pv_entry_high_water)
549 		pagedaemon_wakeup(0); /* XXX powerpc NUMA */
550 	pv = uma_zalloc(pvzone, M_NOWAIT);
551 
552 	return (pv);
553 }
554 
555 /* Free pv_entry structure. */
556 static __inline void
557 pv_free(pv_entry_t pve)
558 {
559 
560 	pv_entry_count--;
561 	uma_zfree(pvzone, pve);
562 }
563 
564 
565 /* Allocate and initialize pv_entry structure. */
566 static void
567 pv_insert(pmap_t pmap, vm_offset_t va, vm_page_t m)
568 {
569 	pv_entry_t pve;
570 
571 	//int su = (pmap == kernel_pmap);
572 	//debugf("pv_insert: s (su = %d pmap = 0x%08x va = 0x%08x m = 0x%08x)\n", su,
573 	//	(u_int32_t)pmap, va, (u_int32_t)m);
574 
575 	pve = pv_alloc();
576 	if (pve == NULL)
577 		panic("pv_insert: no pv entries!");
578 
579 	pve->pv_pmap = pmap;
580 	pve->pv_va = va;
581 
582 	/* add to pv_list */
583 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
584 	rw_assert(&pvh_global_lock, RA_WLOCKED);
585 
586 	TAILQ_INSERT_TAIL(&m->md.pv_list, pve, pv_link);
587 
588 	//debugf("pv_insert: e\n");
589 }
590 
591 /* Destroy pv entry. */
592 static void
593 pv_remove(pmap_t pmap, vm_offset_t va, vm_page_t m)
594 {
595 	pv_entry_t pve;
596 
597 	//int su = (pmap == kernel_pmap);
598 	//debugf("pv_remove: s (su = %d pmap = 0x%08x va = 0x%08x)\n", su, (u_int32_t)pmap, va);
599 
600 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
601 	rw_assert(&pvh_global_lock, RA_WLOCKED);
602 
603 	/* find pv entry */
604 	TAILQ_FOREACH(pve, &m->md.pv_list, pv_link) {
605 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
606 			/* remove from pv_list */
607 			TAILQ_REMOVE(&m->md.pv_list, pve, pv_link);
608 			if (TAILQ_EMPTY(&m->md.pv_list))
609 				vm_page_aflag_clear(m, PGA_WRITEABLE);
610 
611 			/* free pv entry struct */
612 			pv_free(pve);
613 			break;
614 		}
615 	}
616 
617 	//debugf("pv_remove: e\n");
618 }
619 
620 /**************************************************************************/
621 /* PMAP related */
622 /**************************************************************************/
623 
624 /*
625  * This is called during booke_init, before the system is really initialized.
626  */
627 static void
628 mmu_booke_bootstrap(vm_offset_t start, vm_offset_t kernelend)
629 {
630 	vm_paddr_t phys_kernelend;
631 	struct mem_region *mp, *mp1;
632 	int cnt, i, j;
633 	vm_paddr_t s, e, sz;
634 	vm_paddr_t physsz, hwphyssz;
635 	u_int phys_avail_count;
636 	vm_size_t kstack0_sz;
637 	vm_paddr_t kstack0_phys;
638 	vm_offset_t kstack0;
639 	void *dpcpu;
640 
641 	debugf("mmu_booke_bootstrap: entered\n");
642 
643 	/* Set interesting system properties */
644 #ifdef __powerpc64__
645 	hw_direct_map = 1;
646 #else
647 	hw_direct_map = 0;
648 #endif
649 #if defined(COMPAT_FREEBSD32) || !defined(__powerpc64__)
650 	elf32_nxstack = 1;
651 #endif
652 
653 	/* Initialize invalidation mutex */
654 	mtx_init(&tlbivax_mutex, "tlbivax", NULL, MTX_SPIN);
655 
656 	/* Read TLB0 size and associativity. */
657 	tlb0_get_tlbconf();
658 
659 	/*
660 	 * Align kernel start and end address (kernel image).
661 	 * Note that kernel end does not necessarily relate to kernsize.
662 	 * kernsize is the size of the kernel that is actually mapped.
663 	 */
664 	data_start = round_page(kernelend);
665 	data_end = data_start;
666 
667 	/* Allocate the dynamic per-cpu area. */
668 	dpcpu = (void *)data_end;
669 	data_end += DPCPU_SIZE;
670 
671 	/* Allocate space for the message buffer. */
672 	msgbufp = (struct msgbuf *)data_end;
673 	data_end += msgbufsize;
674 	debugf(" msgbufp at 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
675 	    (uintptr_t)msgbufp, data_end);
676 
677 	data_end = round_page(data_end);
678 	data_end = round_page(mmu_booke_alloc_kernel_pgtables(data_end));
679 
680 	/* Retrieve phys/avail mem regions */
681 	mem_regions(&physmem_regions, &physmem_regions_sz,
682 	    &availmem_regions, &availmem_regions_sz);
683 
684 	if (PHYS_AVAIL_ENTRIES < availmem_regions_sz)
685 		panic("mmu_booke_bootstrap: phys_avail too small");
686 
687 	data_end = round_page(data_end);
688 	vm_page_array = (vm_page_t)data_end;
689 	/*
690 	 * Get a rough idea (upper bound) on the size of the page array.  The
691 	 * vm_page_array will not handle any more pages than we have in the
692 	 * avail_regions array, and most likely much less.
693 	 */
694 	sz = 0;
695 	for (mp = availmem_regions; mp->mr_size; mp++) {
696 		sz += mp->mr_size;
697 	}
698 	sz = (round_page(sz) / (PAGE_SIZE + sizeof(struct vm_page)));
699 	data_end += round_page(sz * sizeof(struct vm_page));
700 
701 	/* Pre-round up to 1MB.  This wastes some space, but saves TLB entries */
702 	data_end = roundup2(data_end, 1 << 20);
703 
704 	debugf(" data_end: 0x%"PRI0ptrX"\n", data_end);
705 	debugf(" kernstart: %#zx\n", kernstart);
706 	debugf(" kernsize: %#zx\n", kernsize);
707 
708 	if (data_end - kernstart > kernsize) {
709 		kernsize += tlb1_mapin_region(kernstart + kernsize,
710 		    kernload + kernsize, (data_end - kernstart) - kernsize,
711 		    _TLB_ENTRY_MEM);
712 	}
713 	data_end = kernstart + kernsize;
714 	debugf(" updated data_end: 0x%"PRI0ptrX"\n", data_end);
715 
716 	/*
717 	 * Clear the structures - note we can only do it safely after the
718 	 * possible additional TLB1 translations are in place (above) so that
719 	 * all range up to the currently calculated 'data_end' is covered.
720 	 */
721 	bzero((void *)data_start, data_end - data_start);
722 	dpcpu_init(dpcpu, 0);
723 
724 	/*******************************************************/
725 	/* Set the start and end of kva. */
726 	/*******************************************************/
727 	virtual_avail = round_page(data_end);
728 	virtual_end = VM_MAX_KERNEL_ADDRESS;
729 
730 #ifndef __powerpc64__
731 	/* Allocate KVA space for page zero/copy operations. */
732 	zero_page_va = virtual_avail;
733 	virtual_avail += PAGE_SIZE;
734 	copy_page_src_va = virtual_avail;
735 	virtual_avail += PAGE_SIZE;
736 	copy_page_dst_va = virtual_avail;
737 	virtual_avail += PAGE_SIZE;
738 	debugf("zero_page_va = 0x%"PRI0ptrX"\n", zero_page_va);
739 	debugf("copy_page_src_va = 0x%"PRI0ptrX"\n", copy_page_src_va);
740 	debugf("copy_page_dst_va = 0x%"PRI0ptrX"\n", copy_page_dst_va);
741 
742 	/* Initialize page zero/copy mutexes. */
743 	mtx_init(&zero_page_mutex, "mmu_booke_zero_page", NULL, MTX_DEF);
744 	mtx_init(&copy_page_mutex, "mmu_booke_copy_page", NULL, MTX_DEF);
745 
746 	/* Allocate KVA space for ptbl bufs. */
747 	ptbl_buf_pool_vabase = virtual_avail;
748 	virtual_avail += PTBL_BUFS * PTBL_PAGES * PAGE_SIZE;
749 	debugf("ptbl_buf_pool_vabase = 0x%"PRI0ptrX" end = 0x%"PRI0ptrX"\n",
750 	    ptbl_buf_pool_vabase, virtual_avail);
751 #endif
752 
753 	/* Calculate corresponding physical addresses for the kernel region. */
754 	phys_kernelend = kernload + kernsize;
755 	debugf("kernel image and allocated data:\n");
756 	debugf(" kernload    = 0x%09jx\n", (uintmax_t)kernload);
757 	debugf(" kernstart   = 0x%"PRI0ptrX"\n", kernstart);
758 	debugf(" kernsize    = 0x%"PRI0ptrX"\n", kernsize);
759 
760 	/*
761 	 * Remove kernel physical address range from avail regions list. Page
762 	 * align all regions.  Non-page aligned memory isn't very interesting
763 	 * to us.  Also, sort the entries for ascending addresses.
764 	 */
765 
766 	sz = 0;
767 	cnt = availmem_regions_sz;
768 	debugf("processing avail regions:\n");
769 	for (mp = availmem_regions; mp->mr_size; mp++) {
770 		s = mp->mr_start;
771 		e = mp->mr_start + mp->mr_size;
772 		debugf(" %09jx-%09jx -> ", (uintmax_t)s, (uintmax_t)e);
773 		/* Check whether this region holds all of the kernel. */
774 		if (s < kernload && e > phys_kernelend) {
775 			availmem_regions[cnt].mr_start = phys_kernelend;
776 			availmem_regions[cnt++].mr_size = e - phys_kernelend;
777 			e = kernload;
778 		}
779 		/* Look whether this regions starts within the kernel. */
780 		if (s >= kernload && s < phys_kernelend) {
781 			if (e <= phys_kernelend)
782 				goto empty;
783 			s = phys_kernelend;
784 		}
785 		/* Now look whether this region ends within the kernel. */
786 		if (e > kernload && e <= phys_kernelend) {
787 			if (s >= kernload)
788 				goto empty;
789 			e = kernload;
790 		}
791 		/* Now page align the start and size of the region. */
792 		s = round_page(s);
793 		e = trunc_page(e);
794 		if (e < s)
795 			e = s;
796 		sz = e - s;
797 		debugf("%09jx-%09jx = %jx\n",
798 		    (uintmax_t)s, (uintmax_t)e, (uintmax_t)sz);
799 
800 		/* Check whether some memory is left here. */
801 		if (sz == 0) {
802 		empty:
803 			memmove(mp, mp + 1,
804 			    (cnt - (mp - availmem_regions)) * sizeof(*mp));
805 			cnt--;
806 			mp--;
807 			continue;
808 		}
809 
810 		/* Do an insertion sort. */
811 		for (mp1 = availmem_regions; mp1 < mp; mp1++)
812 			if (s < mp1->mr_start)
813 				break;
814 		if (mp1 < mp) {
815 			memmove(mp1 + 1, mp1, (char *)mp - (char *)mp1);
816 			mp1->mr_start = s;
817 			mp1->mr_size = sz;
818 		} else {
819 			mp->mr_start = s;
820 			mp->mr_size = sz;
821 		}
822 	}
823 	availmem_regions_sz = cnt;
824 
825 	/*******************************************************/
826 	/* Steal physical memory for kernel stack from the end */
827 	/* of the first avail region                           */
828 	/*******************************************************/
829 	kstack0_sz = kstack_pages * PAGE_SIZE;
830 	kstack0_phys = availmem_regions[0].mr_start +
831 	    availmem_regions[0].mr_size;
832 	kstack0_phys -= kstack0_sz;
833 	availmem_regions[0].mr_size -= kstack0_sz;
834 
835 	/*******************************************************/
836 	/* Fill in phys_avail table, based on availmem_regions */
837 	/*******************************************************/
838 	phys_avail_count = 0;
839 	physsz = 0;
840 	hwphyssz = 0;
841 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
842 
843 	debugf("fill in phys_avail:\n");
844 	for (i = 0, j = 0; i < availmem_regions_sz; i++, j += 2) {
845 
846 		debugf(" region: 0x%jx - 0x%jx (0x%jx)\n",
847 		    (uintmax_t)availmem_regions[i].mr_start,
848 		    (uintmax_t)availmem_regions[i].mr_start +
849 		        availmem_regions[i].mr_size,
850 		    (uintmax_t)availmem_regions[i].mr_size);
851 
852 		if (hwphyssz != 0 &&
853 		    (physsz + availmem_regions[i].mr_size) >= hwphyssz) {
854 			debugf(" hw.physmem adjust\n");
855 			if (physsz < hwphyssz) {
856 				phys_avail[j] = availmem_regions[i].mr_start;
857 				phys_avail[j + 1] =
858 				    availmem_regions[i].mr_start +
859 				    hwphyssz - physsz;
860 				physsz = hwphyssz;
861 				phys_avail_count++;
862 				dump_avail[j] = phys_avail[j];
863 				dump_avail[j + 1] = phys_avail[j + 1];
864 			}
865 			break;
866 		}
867 
868 		phys_avail[j] = availmem_regions[i].mr_start;
869 		phys_avail[j + 1] = availmem_regions[i].mr_start +
870 		    availmem_regions[i].mr_size;
871 		phys_avail_count++;
872 		physsz += availmem_regions[i].mr_size;
873 		dump_avail[j] = phys_avail[j];
874 		dump_avail[j + 1] = phys_avail[j + 1];
875 	}
876 	physmem = btoc(physsz);
877 
878 	/* Calculate the last available physical address. */
879 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
880 		;
881 	Maxmem = powerpc_btop(phys_avail[i + 1]);
882 
883 	debugf("Maxmem = 0x%08lx\n", Maxmem);
884 	debugf("phys_avail_count = %d\n", phys_avail_count);
885 	debugf("physsz = 0x%09jx physmem = %jd (0x%09jx)\n",
886 	    (uintmax_t)physsz, (uintmax_t)physmem, (uintmax_t)physmem);
887 
888 #ifdef __powerpc64__
889 	/*
890 	 * Map the physical memory contiguously in TLB1.
891 	 * Round so it fits into a single mapping.
892 	 */
893 	tlb1_mapin_region(DMAP_BASE_ADDRESS, 0,
894 	    phys_avail[i + 1], _TLB_ENTRY_MEM);
895 #endif
896 
897 	/*******************************************************/
898 	/* Initialize (statically allocated) kernel pmap. */
899 	/*******************************************************/
900 	PMAP_LOCK_INIT(kernel_pmap);
901 
902 	debugf("kernel_pmap = 0x%"PRI0ptrX"\n", (uintptr_t)kernel_pmap);
903 	kernel_pte_alloc(virtual_avail, kernstart);
904 	for (i = 0; i < MAXCPU; i++) {
905 		kernel_pmap->pm_tid[i] = TID_KERNEL;
906 
907 		/* Initialize each CPU's tidbusy entry 0 with kernel_pmap */
908 		tidbusy[i][TID_KERNEL] = kernel_pmap;
909 	}
910 
911 	/* Mark kernel_pmap active on all CPUs */
912 	CPU_FILL(&kernel_pmap->pm_active);
913 
914  	/*
915 	 * Initialize the global pv list lock.
916 	 */
917 	rw_init(&pvh_global_lock, "pmap pv global");
918 
919 	/*******************************************************/
920 	/* Final setup */
921 	/*******************************************************/
922 
923 	/* Enter kstack0 into kernel map, provide guard page */
924 	kstack0 = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
925 	thread0.td_kstack = kstack0;
926 	thread0.td_kstack_pages = kstack_pages;
927 
928 	debugf("kstack_sz = 0x%08jx\n", (uintmax_t)kstack0_sz);
929 	debugf("kstack0_phys at 0x%09jx - 0x%09jx\n",
930 	    (uintmax_t)kstack0_phys, (uintmax_t)kstack0_phys + kstack0_sz);
931 	debugf("kstack0 at 0x%"PRI0ptrX" - 0x%"PRI0ptrX"\n",
932 	    kstack0, kstack0 + kstack0_sz);
933 
934 	virtual_avail += KSTACK_GUARD_PAGES * PAGE_SIZE + kstack0_sz;
935 	for (i = 0; i < kstack_pages; i++) {
936 		mmu_booke_kenter(kstack0, kstack0_phys);
937 		kstack0 += PAGE_SIZE;
938 		kstack0_phys += PAGE_SIZE;
939 	}
940 
941 	pmap_bootstrapped = 1;
942 
943 	debugf("virtual_avail = %"PRI0ptrX"\n", virtual_avail);
944 	debugf("virtual_end   = %"PRI0ptrX"\n", virtual_end);
945 
946 	debugf("mmu_booke_bootstrap: exit\n");
947 }
948 
949 #ifdef SMP
950 void
951 tlb1_ap_prep(void)
952 {
953 	tlb_entry_t *e, tmp;
954 	unsigned int i;
955 
956 	/* Prepare TLB1 image for AP processors */
957 	e = __boot_tlb1;
958 	for (i = 0; i < TLB1_ENTRIES; i++) {
959 		tlb1_read_entry(&tmp, i);
960 
961 		if ((tmp.mas1 & MAS1_VALID) && (tmp.mas2 & _TLB_ENTRY_SHARED))
962 			memcpy(e++, &tmp, sizeof(tmp));
963 	}
964 }
965 
966 void
967 pmap_bootstrap_ap(volatile uint32_t *trcp __unused)
968 {
969 	int i;
970 
971 	/*
972 	 * Finish TLB1 configuration: the BSP already set up its TLB1 and we
973 	 * have the snapshot of its contents in the s/w __boot_tlb1[] table
974 	 * created by tlb1_ap_prep(), so use these values directly to
975 	 * (re)program AP's TLB1 hardware.
976 	 *
977 	 * Start at index 1 because index 0 has the kernel map.
978 	 */
979 	for (i = 1; i < TLB1_ENTRIES; i++) {
980 		if (__boot_tlb1[i].mas1 & MAS1_VALID)
981 			tlb1_write_entry(&__boot_tlb1[i], i);
982 	}
983 
984 	set_mas4_defaults();
985 }
986 #endif
987 
988 static void
989 booke_pmap_init_qpages(void)
990 {
991 	struct pcpu *pc;
992 	int i;
993 
994 	CPU_FOREACH(i) {
995 		pc = pcpu_find(i);
996 		pc->pc_qmap_addr = kva_alloc(PAGE_SIZE);
997 		if (pc->pc_qmap_addr == 0)
998 			panic("pmap_init_qpages: unable to allocate KVA");
999 	}
1000 }
1001 
1002 SYSINIT(qpages_init, SI_SUB_CPU, SI_ORDER_ANY, booke_pmap_init_qpages, NULL);
1003 
1004 /*
1005  * Get the physical page address for the given pmap/virtual address.
1006  */
1007 static vm_paddr_t
1008 mmu_booke_extract(pmap_t pmap, vm_offset_t va)
1009 {
1010 	vm_paddr_t pa;
1011 
1012 	PMAP_LOCK(pmap);
1013 	pa = pte_vatopa(pmap, va);
1014 	PMAP_UNLOCK(pmap);
1015 
1016 	return (pa);
1017 }
1018 
1019 /*
1020  * Extract the physical page address associated with the given
1021  * kernel virtual address.
1022  */
1023 static vm_paddr_t
1024 mmu_booke_kextract(vm_offset_t va)
1025 {
1026 	tlb_entry_t e;
1027 	vm_paddr_t p = 0;
1028 	int i;
1029 
1030 #ifdef __powerpc64__
1031 	if (va >= DMAP_BASE_ADDRESS && va <= DMAP_MAX_ADDRESS)
1032 		return (DMAP_TO_PHYS(va));
1033 #endif
1034 
1035 	if (va >= VM_MIN_KERNEL_ADDRESS && va <= VM_MAX_KERNEL_ADDRESS)
1036 		p = pte_vatopa(kernel_pmap, va);
1037 
1038 	if (p == 0) {
1039 		/* Check TLB1 mappings */
1040 		for (i = 0; i < TLB1_ENTRIES; i++) {
1041 			tlb1_read_entry(&e, i);
1042 			if (!(e.mas1 & MAS1_VALID))
1043 				continue;
1044 			if (va >= e.virt && va < e.virt + e.size)
1045 				return (e.phys + (va - e.virt));
1046 		}
1047 	}
1048 
1049 	return (p);
1050 }
1051 
1052 /*
1053  * Initialize the pmap module.
1054  * Called by vm_init, to initialize any structures that the pmap
1055  * system needs to map virtual memory.
1056  */
1057 static void
1058 mmu_booke_init()
1059 {
1060 	int shpgperproc = PMAP_SHPGPERPROC;
1061 
1062 	/*
1063 	 * Initialize the address space (zone) for the pv entries.  Set a
1064 	 * high water mark so that the system can recover from excessive
1065 	 * numbers of pv entries.
1066 	 */
1067 	pvzone = uma_zcreate("PV ENTRY", sizeof(struct pv_entry), NULL, NULL,
1068 	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM | UMA_ZONE_NOFREE);
1069 
1070 	TUNABLE_INT_FETCH("vm.pmap.shpgperproc", &shpgperproc);
1071 	pv_entry_max = shpgperproc * maxproc + vm_cnt.v_page_count;
1072 
1073 	TUNABLE_INT_FETCH("vm.pmap.pv_entries", &pv_entry_max);
1074 	pv_entry_high_water = 9 * (pv_entry_max / 10);
1075 
1076 	uma_zone_reserve_kva(pvzone, pv_entry_max);
1077 
1078 	/* Pre-fill pvzone with initial number of pv entries. */
1079 	uma_prealloc(pvzone, PV_ENTRY_ZONE_MIN);
1080 
1081 	/* Create a UMA zone for page table roots. */
1082 	ptbl_root_zone = uma_zcreate("pmap root", PMAP_ROOT_SIZE,
1083 	    NULL, NULL, NULL, NULL, UMA_ALIGN_CACHE, UMA_ZONE_VM);
1084 
1085 	/* Initialize ptbl allocation. */
1086 	ptbl_init();
1087 }
1088 
1089 /*
1090  * Map a list of wired pages into kernel virtual address space.  This is
1091  * intended for temporary mappings which do not need page modification or
1092  * references recorded.  Existing mappings in the region are overwritten.
1093  */
1094 static void
1095 mmu_booke_qenter(vm_offset_t sva, vm_page_t *m, int count)
1096 {
1097 	vm_offset_t va;
1098 
1099 	va = sva;
1100 	while (count-- > 0) {
1101 		mmu_booke_kenter(va, VM_PAGE_TO_PHYS(*m));
1102 		va += PAGE_SIZE;
1103 		m++;
1104 	}
1105 }
1106 
1107 /*
1108  * Remove page mappings from kernel virtual address space.  Intended for
1109  * temporary mappings entered by mmu_booke_qenter.
1110  */
1111 static void
1112 mmu_booke_qremove(vm_offset_t sva, int count)
1113 {
1114 	vm_offset_t va;
1115 
1116 	va = sva;
1117 	while (count-- > 0) {
1118 		mmu_booke_kremove(va);
1119 		va += PAGE_SIZE;
1120 	}
1121 }
1122 
1123 /*
1124  * Map a wired page into kernel virtual address space.
1125  */
1126 static void
1127 mmu_booke_kenter(vm_offset_t va, vm_paddr_t pa)
1128 {
1129 
1130 	mmu_booke_kenter_attr(va, pa, VM_MEMATTR_DEFAULT);
1131 }
1132 
1133 static void
1134 mmu_booke_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma)
1135 {
1136 	uint32_t flags;
1137 	pte_t *pte;
1138 
1139 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1140 	    (va <= VM_MAX_KERNEL_ADDRESS)), ("mmu_booke_kenter: invalid va"));
1141 
1142 	flags = PTE_SR | PTE_SW | PTE_SX | PTE_WIRED | PTE_VALID;
1143 	flags |= tlb_calc_wimg(pa, ma) << PTE_MAS2_SHIFT;
1144 	flags |= PTE_PS_4KB;
1145 
1146 	pte = pte_find(kernel_pmap, va);
1147 	KASSERT((pte != NULL), ("mmu_booke_kenter: invalid va.  NULL PTE"));
1148 
1149 	mtx_lock_spin(&tlbivax_mutex);
1150 	tlb_miss_lock();
1151 
1152 	if (PTE_ISVALID(pte)) {
1153 
1154 		CTR1(KTR_PMAP, "%s: replacing entry!", __func__);
1155 
1156 		/* Flush entry from TLB0 */
1157 		tlb0_flush_entry(va);
1158 	}
1159 
1160 	*pte = PTE_RPN_FROM_PA(pa) | flags;
1161 
1162 	//debugf("mmu_booke_kenter: pdir_idx = %d ptbl_idx = %d va=0x%08x "
1163 	//		"pa=0x%08x rpn=0x%08x flags=0x%08x\n",
1164 	//		pdir_idx, ptbl_idx, va, pa, pte->rpn, pte->flags);
1165 
1166 	/* Flush the real memory from the instruction cache. */
1167 	if ((flags & (PTE_I | PTE_G)) == 0)
1168 		__syncicache((void *)va, PAGE_SIZE);
1169 
1170 	tlb_miss_unlock();
1171 	mtx_unlock_spin(&tlbivax_mutex);
1172 }
1173 
1174 /*
1175  * Remove a page from kernel page table.
1176  */
1177 static void
1178 mmu_booke_kremove(vm_offset_t va)
1179 {
1180 	pte_t *pte;
1181 
1182 	CTR2(KTR_PMAP,"%s: s (va = 0x%"PRI0ptrX")\n", __func__, va);
1183 
1184 	KASSERT(((va >= VM_MIN_KERNEL_ADDRESS) &&
1185 	    (va <= VM_MAX_KERNEL_ADDRESS)),
1186 	    ("mmu_booke_kremove: invalid va"));
1187 
1188 	pte = pte_find(kernel_pmap, va);
1189 
1190 	if (!PTE_ISVALID(pte)) {
1191 
1192 		CTR1(KTR_PMAP, "%s: invalid pte", __func__);
1193 
1194 		return;
1195 	}
1196 
1197 	mtx_lock_spin(&tlbivax_mutex);
1198 	tlb_miss_lock();
1199 
1200 	/* Invalidate entry in TLB0, update PTE. */
1201 	tlb0_flush_entry(va);
1202 	*pte = 0;
1203 
1204 	tlb_miss_unlock();
1205 	mtx_unlock_spin(&tlbivax_mutex);
1206 }
1207 
1208 /*
1209  * Figure out where a given kernel pointer (usually in a fault) points
1210  * to from the VM's perspective, potentially remapping into userland's
1211  * address space.
1212  */
1213 static int
1214 mmu_booke_decode_kernel_ptr(vm_offset_t addr, int *is_user,
1215     vm_offset_t *decoded_addr)
1216 {
1217 
1218 	if (trunc_page(addr) <= VM_MAXUSER_ADDRESS)
1219 		*is_user = 1;
1220 	else
1221 		*is_user = 0;
1222 
1223 	*decoded_addr = addr;
1224 	return (0);
1225 }
1226 
1227 static boolean_t
1228 mmu_booke_page_is_mapped(vm_page_t m)
1229 {
1230 
1231 	return (!TAILQ_EMPTY(&(m)->md.pv_list));
1232 }
1233 
1234 /*
1235  * Initialize pmap associated with process 0.
1236  */
1237 static void
1238 mmu_booke_pinit0(pmap_t pmap)
1239 {
1240 
1241 	PMAP_LOCK_INIT(pmap);
1242 	mmu_booke_pinit(pmap);
1243 	PCPU_SET(curpmap, pmap);
1244 }
1245 
1246 /*
1247  * Insert the given physical page at the specified virtual address in the
1248  * target physical map with the protection requested. If specified the page
1249  * will be wired down.
1250  */
1251 static int
1252 mmu_booke_enter(pmap_t pmap, vm_offset_t va, vm_page_t m,
1253     vm_prot_t prot, u_int flags, int8_t psind)
1254 {
1255 	int error;
1256 
1257 	rw_wlock(&pvh_global_lock);
1258 	PMAP_LOCK(pmap);
1259 	error = mmu_booke_enter_locked(pmap, va, m, prot, flags, psind);
1260 	PMAP_UNLOCK(pmap);
1261 	rw_wunlock(&pvh_global_lock);
1262 	return (error);
1263 }
1264 
1265 static int
1266 mmu_booke_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m,
1267     vm_prot_t prot, u_int pmap_flags, int8_t psind __unused)
1268 {
1269 	pte_t *pte;
1270 	vm_paddr_t pa;
1271 	pte_t flags;
1272 	int error, su, sync;
1273 
1274 	pa = VM_PAGE_TO_PHYS(m);
1275 	su = (pmap == kernel_pmap);
1276 	sync = 0;
1277 
1278 	//debugf("mmu_booke_enter_locked: s (pmap=0x%08x su=%d tid=%d m=0x%08x va=0x%08x "
1279 	//		"pa=0x%08x prot=0x%08x flags=%#x)\n",
1280 	//		(u_int32_t)pmap, su, pmap->pm_tid,
1281 	//		(u_int32_t)m, va, pa, prot, flags);
1282 
1283 	if (su) {
1284 		KASSERT(((va >= virtual_avail) &&
1285 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1286 		    ("mmu_booke_enter_locked: kernel pmap, non kernel va"));
1287 	} else {
1288 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1289 		    ("mmu_booke_enter_locked: user pmap, non user va"));
1290 	}
1291 	if ((m->oflags & VPO_UNMANAGED) == 0) {
1292 		if ((pmap_flags & PMAP_ENTER_QUICK_LOCKED) == 0)
1293 			VM_PAGE_OBJECT_BUSY_ASSERT(m);
1294 		else
1295 			VM_OBJECT_ASSERT_LOCKED(m->object);
1296 	}
1297 
1298 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1299 
1300 	/*
1301 	 * If there is an existing mapping, and the physical address has not
1302 	 * changed, must be protection or wiring change.
1303 	 */
1304 	if (((pte = pte_find(pmap, va)) != NULL) &&
1305 	    (PTE_ISVALID(pte)) && (PTE_PA(pte) == pa)) {
1306 
1307 		/*
1308 		 * Before actually updating pte->flags we calculate and
1309 		 * prepare its new value in a helper var.
1310 		 */
1311 		flags = *pte;
1312 		flags &= ~(PTE_UW | PTE_UX | PTE_SW | PTE_SX | PTE_MODIFIED);
1313 
1314 		/* Wiring change, just update stats. */
1315 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0) {
1316 			if (!PTE_ISWIRED(pte)) {
1317 				flags |= PTE_WIRED;
1318 				pmap->pm_stats.wired_count++;
1319 			}
1320 		} else {
1321 			if (PTE_ISWIRED(pte)) {
1322 				flags &= ~PTE_WIRED;
1323 				pmap->pm_stats.wired_count--;
1324 			}
1325 		}
1326 
1327 		if (prot & VM_PROT_WRITE) {
1328 			/* Add write permissions. */
1329 			flags |= PTE_SW;
1330 			if (!su)
1331 				flags |= PTE_UW;
1332 
1333 			if ((flags & PTE_MANAGED) != 0)
1334 				vm_page_aflag_set(m, PGA_WRITEABLE);
1335 		} else {
1336 			/* Handle modified pages, sense modify status. */
1337 
1338 			/*
1339 			 * The PTE_MODIFIED flag could be set by underlying
1340 			 * TLB misses since we last read it (above), possibly
1341 			 * other CPUs could update it so we check in the PTE
1342 			 * directly rather than rely on that saved local flags
1343 			 * copy.
1344 			 */
1345 			if (PTE_ISMODIFIED(pte))
1346 				vm_page_dirty(m);
1347 		}
1348 
1349 		if (prot & VM_PROT_EXECUTE) {
1350 			flags |= PTE_SX;
1351 			if (!su)
1352 				flags |= PTE_UX;
1353 
1354 			/*
1355 			 * Check existing flags for execute permissions: if we
1356 			 * are turning execute permissions on, icache should
1357 			 * be flushed.
1358 			 */
1359 			if ((*pte & (PTE_UX | PTE_SX)) == 0)
1360 				sync++;
1361 		}
1362 
1363 		flags &= ~PTE_REFERENCED;
1364 
1365 		/*
1366 		 * The new flags value is all calculated -- only now actually
1367 		 * update the PTE.
1368 		 */
1369 		mtx_lock_spin(&tlbivax_mutex);
1370 		tlb_miss_lock();
1371 
1372 		tlb0_flush_entry(va);
1373 		*pte &= ~PTE_FLAGS_MASK;
1374 		*pte |= flags;
1375 
1376 		tlb_miss_unlock();
1377 		mtx_unlock_spin(&tlbivax_mutex);
1378 
1379 	} else {
1380 		/*
1381 		 * If there is an existing mapping, but it's for a different
1382 		 * physical address, pte_enter() will delete the old mapping.
1383 		 */
1384 		//if ((pte != NULL) && PTE_ISVALID(pte))
1385 		//	debugf("mmu_booke_enter_locked: replace\n");
1386 		//else
1387 		//	debugf("mmu_booke_enter_locked: new\n");
1388 
1389 		/* Now set up the flags and install the new mapping. */
1390 		flags = (PTE_SR | PTE_VALID);
1391 		flags |= PTE_M;
1392 
1393 		if (!su)
1394 			flags |= PTE_UR;
1395 
1396 		if (prot & VM_PROT_WRITE) {
1397 			flags |= PTE_SW;
1398 			if (!su)
1399 				flags |= PTE_UW;
1400 
1401 			if ((m->oflags & VPO_UNMANAGED) == 0)
1402 				vm_page_aflag_set(m, PGA_WRITEABLE);
1403 		}
1404 
1405 		if (prot & VM_PROT_EXECUTE) {
1406 			flags |= PTE_SX;
1407 			if (!su)
1408 				flags |= PTE_UX;
1409 		}
1410 
1411 		/* If its wired update stats. */
1412 		if ((pmap_flags & PMAP_ENTER_WIRED) != 0)
1413 			flags |= PTE_WIRED;
1414 
1415 		error = pte_enter(pmap, m, va, flags,
1416 		    (pmap_flags & PMAP_ENTER_NOSLEEP) != 0);
1417 		if (error != 0)
1418 			return (KERN_RESOURCE_SHORTAGE);
1419 
1420 		if ((flags & PMAP_ENTER_WIRED) != 0)
1421 			pmap->pm_stats.wired_count++;
1422 
1423 		/* Flush the real memory from the instruction cache. */
1424 		if (prot & VM_PROT_EXECUTE)
1425 			sync++;
1426 	}
1427 
1428 	if (sync && (su || pmap == PCPU_GET(curpmap))) {
1429 		__syncicache((void *)va, PAGE_SIZE);
1430 		sync = 0;
1431 	}
1432 
1433 	return (KERN_SUCCESS);
1434 }
1435 
1436 /*
1437  * Maps a sequence of resident pages belonging to the same object.
1438  * The sequence begins with the given page m_start.  This page is
1439  * mapped at the given virtual address start.  Each subsequent page is
1440  * mapped at a virtual address that is offset from start by the same
1441  * amount as the page is offset from m_start within the object.  The
1442  * last page in the sequence is the page with the largest offset from
1443  * m_start that can be mapped at a virtual address less than the given
1444  * virtual address end.  Not every virtual page between start and end
1445  * is mapped; only those for which a resident page exists with the
1446  * corresponding offset from m_start are mapped.
1447  */
1448 static void
1449 mmu_booke_enter_object(pmap_t pmap, vm_offset_t start,
1450     vm_offset_t end, vm_page_t m_start, vm_prot_t prot)
1451 {
1452 	vm_page_t m;
1453 	vm_pindex_t diff, psize;
1454 
1455 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1456 
1457 	psize = atop(end - start);
1458 	m = m_start;
1459 	rw_wlock(&pvh_global_lock);
1460 	PMAP_LOCK(pmap);
1461 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1462 		mmu_booke_enter_locked(pmap, start + ptoa(diff), m,
1463 		    prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1464 		    PMAP_ENTER_NOSLEEP | PMAP_ENTER_QUICK_LOCKED, 0);
1465 		m = TAILQ_NEXT(m, listq);
1466 	}
1467 	PMAP_UNLOCK(pmap);
1468 	rw_wunlock(&pvh_global_lock);
1469 }
1470 
1471 static void
1472 mmu_booke_enter_quick(pmap_t pmap, vm_offset_t va, vm_page_t m,
1473     vm_prot_t prot)
1474 {
1475 
1476 	rw_wlock(&pvh_global_lock);
1477 	PMAP_LOCK(pmap);
1478 	mmu_booke_enter_locked(pmap, va, m,
1479 	    prot & (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_NOSLEEP |
1480 	    PMAP_ENTER_QUICK_LOCKED, 0);
1481 	PMAP_UNLOCK(pmap);
1482 	rw_wunlock(&pvh_global_lock);
1483 }
1484 
1485 /*
1486  * Remove the given range of addresses from the specified map.
1487  *
1488  * It is assumed that the start and end are properly rounded to the page size.
1489  */
1490 static void
1491 mmu_booke_remove(pmap_t pmap, vm_offset_t va, vm_offset_t endva)
1492 {
1493 	pte_t *pte;
1494 	uint8_t hold_flag;
1495 
1496 	int su = (pmap == kernel_pmap);
1497 
1498 	//debugf("mmu_booke_remove: s (su = %d pmap=0x%08x tid=%d va=0x%08x endva=0x%08x)\n",
1499 	//		su, (u_int32_t)pmap, pmap->pm_tid, va, endva);
1500 
1501 	if (su) {
1502 		KASSERT(((va >= virtual_avail) &&
1503 		    (va <= VM_MAX_KERNEL_ADDRESS)),
1504 		    ("mmu_booke_remove: kernel pmap, non kernel va"));
1505 	} else {
1506 		KASSERT((va <= VM_MAXUSER_ADDRESS),
1507 		    ("mmu_booke_remove: user pmap, non user va"));
1508 	}
1509 
1510 	if (PMAP_REMOVE_DONE(pmap)) {
1511 		//debugf("mmu_booke_remove: e (empty)\n");
1512 		return;
1513 	}
1514 
1515 	hold_flag = PTBL_HOLD_FLAG(pmap);
1516 	//debugf("mmu_booke_remove: hold_flag = %d\n", hold_flag);
1517 
1518 	rw_wlock(&pvh_global_lock);
1519 	PMAP_LOCK(pmap);
1520 	for (; va < endva; va += PAGE_SIZE) {
1521 		pte = pte_find_next(pmap, &va);
1522 		if ((pte == NULL) || !PTE_ISVALID(pte))
1523 			break;
1524 		if (va >= endva)
1525 			break;
1526 		pte_remove(pmap, va, hold_flag);
1527 	}
1528 	PMAP_UNLOCK(pmap);
1529 	rw_wunlock(&pvh_global_lock);
1530 
1531 	//debugf("mmu_booke_remove: e\n");
1532 }
1533 
1534 /*
1535  * Remove physical page from all pmaps in which it resides.
1536  */
1537 static void
1538 mmu_booke_remove_all(vm_page_t m)
1539 {
1540 	pv_entry_t pv, pvn;
1541 	uint8_t hold_flag;
1542 
1543 	rw_wlock(&pvh_global_lock);
1544 	TAILQ_FOREACH_SAFE(pv, &m->md.pv_list, pv_link, pvn) {
1545 		PMAP_LOCK(pv->pv_pmap);
1546 		hold_flag = PTBL_HOLD_FLAG(pv->pv_pmap);
1547 		pte_remove(pv->pv_pmap, pv->pv_va, hold_flag);
1548 		PMAP_UNLOCK(pv->pv_pmap);
1549 	}
1550 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1551 	rw_wunlock(&pvh_global_lock);
1552 }
1553 
1554 /*
1555  * Map a range of physical addresses into kernel virtual address space.
1556  */
1557 static vm_offset_t
1558 mmu_booke_map(vm_offset_t *virt, vm_paddr_t pa_start,
1559     vm_paddr_t pa_end, int prot)
1560 {
1561 	vm_offset_t sva = *virt;
1562 	vm_offset_t va = sva;
1563 
1564 #ifdef __powerpc64__
1565 	/* XXX: Handle memory not starting at 0x0. */
1566 	if (pa_end < ctob(Maxmem))
1567 		return (PHYS_TO_DMAP(pa_start));
1568 #endif
1569 
1570 	while (pa_start < pa_end) {
1571 		mmu_booke_kenter(va, pa_start);
1572 		va += PAGE_SIZE;
1573 		pa_start += PAGE_SIZE;
1574 	}
1575 	*virt = va;
1576 
1577 	return (sva);
1578 }
1579 
1580 /*
1581  * The pmap must be activated before it's address space can be accessed in any
1582  * way.
1583  */
1584 static void
1585 mmu_booke_activate(struct thread *td)
1586 {
1587 	pmap_t pmap;
1588 	u_int cpuid;
1589 
1590 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1591 
1592 	CTR5(KTR_PMAP, "%s: s (td = %p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX")",
1593 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1594 
1595 	KASSERT((pmap != kernel_pmap), ("mmu_booke_activate: kernel_pmap!"));
1596 
1597 	sched_pin();
1598 
1599 	cpuid = PCPU_GET(cpuid);
1600 	CPU_SET_ATOMIC(cpuid, &pmap->pm_active);
1601 	PCPU_SET(curpmap, pmap);
1602 
1603 	if (pmap->pm_tid[cpuid] == TID_NONE)
1604 		tid_alloc(pmap);
1605 
1606 	/* Load PID0 register with pmap tid value. */
1607 	mtspr(SPR_PID0, pmap->pm_tid[cpuid]);
1608 	__asm __volatile("isync");
1609 
1610 	mtspr(SPR_DBCR0, td->td_pcb->pcb_cpu.booke.dbcr0);
1611 
1612 	sched_unpin();
1613 
1614 	CTR3(KTR_PMAP, "%s: e (tid = %d for '%s')", __func__,
1615 	    pmap->pm_tid[PCPU_GET(cpuid)], td->td_proc->p_comm);
1616 }
1617 
1618 /*
1619  * Deactivate the specified process's address space.
1620  */
1621 static void
1622 mmu_booke_deactivate(struct thread *td)
1623 {
1624 	pmap_t pmap;
1625 
1626 	pmap = &td->td_proc->p_vmspace->vm_pmap;
1627 
1628 	CTR5(KTR_PMAP, "%s: td=%p, proc = '%s', id = %d, pmap = 0x%"PRI0ptrX,
1629 	    __func__, td, td->td_proc->p_comm, td->td_proc->p_pid, pmap);
1630 
1631 	td->td_pcb->pcb_cpu.booke.dbcr0 = mfspr(SPR_DBCR0);
1632 
1633 	CPU_CLR_ATOMIC(PCPU_GET(cpuid), &pmap->pm_active);
1634 	PCPU_SET(curpmap, NULL);
1635 }
1636 
1637 /*
1638  * Copy the range specified by src_addr/len
1639  * from the source map to the range dst_addr/len
1640  * in the destination map.
1641  *
1642  * This routine is only advisory and need not do anything.
1643  */
1644 static void
1645 mmu_booke_copy(pmap_t dst_pmap, pmap_t src_pmap,
1646     vm_offset_t dst_addr, vm_size_t len, vm_offset_t src_addr)
1647 {
1648 
1649 }
1650 
1651 /*
1652  * Set the physical protection on the specified range of this map as requested.
1653  */
1654 static void
1655 mmu_booke_protect(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1656     vm_prot_t prot)
1657 {
1658 	vm_offset_t va;
1659 	vm_page_t m;
1660 	pte_t *pte;
1661 
1662 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1663 		mmu_booke_remove(pmap, sva, eva);
1664 		return;
1665 	}
1666 
1667 	if (prot & VM_PROT_WRITE)
1668 		return;
1669 
1670 	PMAP_LOCK(pmap);
1671 	for (va = sva; va < eva; va += PAGE_SIZE) {
1672 		if ((pte = pte_find(pmap, va)) != NULL) {
1673 			if (PTE_ISVALID(pte)) {
1674 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1675 
1676 				mtx_lock_spin(&tlbivax_mutex);
1677 				tlb_miss_lock();
1678 
1679 				/* Handle modified pages. */
1680 				if (PTE_ISMODIFIED(pte) && PTE_ISMANAGED(pte))
1681 					vm_page_dirty(m);
1682 
1683 				tlb0_flush_entry(va);
1684 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1685 
1686 				tlb_miss_unlock();
1687 				mtx_unlock_spin(&tlbivax_mutex);
1688 			}
1689 		}
1690 	}
1691 	PMAP_UNLOCK(pmap);
1692 }
1693 
1694 /*
1695  * Clear the write and modified bits in each of the given page's mappings.
1696  */
1697 static void
1698 mmu_booke_remove_write(vm_page_t m)
1699 {
1700 	pv_entry_t pv;
1701 	pte_t *pte;
1702 
1703 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1704 	    ("mmu_booke_remove_write: page %p is not managed", m));
1705 	vm_page_assert_busied(m);
1706 
1707 	if (!pmap_page_is_write_mapped(m))
1708 	        return;
1709 	rw_wlock(&pvh_global_lock);
1710 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1711 		PMAP_LOCK(pv->pv_pmap);
1712 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL) {
1713 			if (PTE_ISVALID(pte)) {
1714 				m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1715 
1716 				mtx_lock_spin(&tlbivax_mutex);
1717 				tlb_miss_lock();
1718 
1719 				/* Handle modified pages. */
1720 				if (PTE_ISMODIFIED(pte))
1721 					vm_page_dirty(m);
1722 
1723 				/* Flush mapping from TLB0. */
1724 				*pte &= ~(PTE_UW | PTE_SW | PTE_MODIFIED);
1725 
1726 				tlb_miss_unlock();
1727 				mtx_unlock_spin(&tlbivax_mutex);
1728 			}
1729 		}
1730 		PMAP_UNLOCK(pv->pv_pmap);
1731 	}
1732 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1733 	rw_wunlock(&pvh_global_lock);
1734 }
1735 
1736 /*
1737  * Atomically extract and hold the physical page with the given
1738  * pmap and virtual address pair if that mapping permits the given
1739  * protection.
1740  */
1741 static vm_page_t
1742 mmu_booke_extract_and_hold(pmap_t pmap, vm_offset_t va,
1743     vm_prot_t prot)
1744 {
1745 	pte_t *pte;
1746 	vm_page_t m;
1747 	uint32_t pte_wbit;
1748 
1749 	m = NULL;
1750 	PMAP_LOCK(pmap);
1751 	pte = pte_find(pmap, va);
1752 	if ((pte != NULL) && PTE_ISVALID(pte)) {
1753 		if (pmap == kernel_pmap)
1754 			pte_wbit = PTE_SW;
1755 		else
1756 			pte_wbit = PTE_UW;
1757 
1758 		if ((*pte & pte_wbit) != 0 || (prot & VM_PROT_WRITE) == 0) {
1759 			m = PHYS_TO_VM_PAGE(PTE_PA(pte));
1760 			if (!vm_page_wire_mapped(m))
1761 				m = NULL;
1762 		}
1763 	}
1764 	PMAP_UNLOCK(pmap);
1765 	return (m);
1766 }
1767 
1768 /*
1769  * Initialize a vm_page's machine-dependent fields.
1770  */
1771 static void
1772 mmu_booke_page_init(vm_page_t m)
1773 {
1774 
1775 	m->md.pv_tracked = 0;
1776 	TAILQ_INIT(&m->md.pv_list);
1777 }
1778 
1779 /*
1780  * Return whether or not the specified physical page was modified
1781  * in any of physical maps.
1782  */
1783 static boolean_t
1784 mmu_booke_is_modified(vm_page_t m)
1785 {
1786 	pte_t *pte;
1787 	pv_entry_t pv;
1788 	boolean_t rv;
1789 
1790 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1791 	    ("mmu_booke_is_modified: page %p is not managed", m));
1792 	rv = FALSE;
1793 
1794 	/*
1795 	 * If the page is not busied then this check is racy.
1796 	 */
1797 	if (!pmap_page_is_write_mapped(m))
1798 		return (FALSE);
1799 
1800 	rw_wlock(&pvh_global_lock);
1801 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1802 		PMAP_LOCK(pv->pv_pmap);
1803 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1804 		    PTE_ISVALID(pte)) {
1805 			if (PTE_ISMODIFIED(pte))
1806 				rv = TRUE;
1807 		}
1808 		PMAP_UNLOCK(pv->pv_pmap);
1809 		if (rv)
1810 			break;
1811 	}
1812 	rw_wunlock(&pvh_global_lock);
1813 	return (rv);
1814 }
1815 
1816 /*
1817  * Return whether or not the specified virtual address is eligible
1818  * for prefault.
1819  */
1820 static boolean_t
1821 mmu_booke_is_prefaultable(pmap_t pmap, vm_offset_t addr)
1822 {
1823 
1824 	return (FALSE);
1825 }
1826 
1827 /*
1828  * Return whether or not the specified physical page was referenced
1829  * in any physical maps.
1830  */
1831 static boolean_t
1832 mmu_booke_is_referenced(vm_page_t m)
1833 {
1834 	pte_t *pte;
1835 	pv_entry_t pv;
1836 	boolean_t rv;
1837 
1838 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1839 	    ("mmu_booke_is_referenced: page %p is not managed", m));
1840 	rv = FALSE;
1841 	rw_wlock(&pvh_global_lock);
1842 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1843 		PMAP_LOCK(pv->pv_pmap);
1844 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1845 		    PTE_ISVALID(pte)) {
1846 			if (PTE_ISREFERENCED(pte))
1847 				rv = TRUE;
1848 		}
1849 		PMAP_UNLOCK(pv->pv_pmap);
1850 		if (rv)
1851 			break;
1852 	}
1853 	rw_wunlock(&pvh_global_lock);
1854 	return (rv);
1855 }
1856 
1857 /*
1858  * Clear the modify bits on the specified physical page.
1859  */
1860 static void
1861 mmu_booke_clear_modify(vm_page_t m)
1862 {
1863 	pte_t *pte;
1864 	pv_entry_t pv;
1865 
1866 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1867 	    ("mmu_booke_clear_modify: page %p is not managed", m));
1868 	vm_page_assert_busied(m);
1869 
1870 	if (!pmap_page_is_write_mapped(m))
1871 	        return;
1872 
1873 	rw_wlock(&pvh_global_lock);
1874 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1875 		PMAP_LOCK(pv->pv_pmap);
1876 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1877 		    PTE_ISVALID(pte)) {
1878 			mtx_lock_spin(&tlbivax_mutex);
1879 			tlb_miss_lock();
1880 
1881 			if (*pte & (PTE_SW | PTE_UW | PTE_MODIFIED)) {
1882 				tlb0_flush_entry(pv->pv_va);
1883 				*pte &= ~(PTE_SW | PTE_UW | PTE_MODIFIED |
1884 				    PTE_REFERENCED);
1885 			}
1886 
1887 			tlb_miss_unlock();
1888 			mtx_unlock_spin(&tlbivax_mutex);
1889 		}
1890 		PMAP_UNLOCK(pv->pv_pmap);
1891 	}
1892 	rw_wunlock(&pvh_global_lock);
1893 }
1894 
1895 /*
1896  * Return a count of reference bits for a page, clearing those bits.
1897  * It is not necessary for every reference bit to be cleared, but it
1898  * is necessary that 0 only be returned when there are truly no
1899  * reference bits set.
1900  *
1901  * As an optimization, update the page's dirty field if a modified bit is
1902  * found while counting reference bits.  This opportunistic update can be
1903  * performed at low cost and can eliminate the need for some future calls
1904  * to pmap_is_modified().  However, since this function stops after
1905  * finding PMAP_TS_REFERENCED_MAX reference bits, it may not detect some
1906  * dirty pages.  Those dirty pages will only be detected by a future call
1907  * to pmap_is_modified().
1908  */
1909 static int
1910 mmu_booke_ts_referenced(vm_page_t m)
1911 {
1912 	pte_t *pte;
1913 	pv_entry_t pv;
1914 	int count;
1915 
1916 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1917 	    ("mmu_booke_ts_referenced: page %p is not managed", m));
1918 	count = 0;
1919 	rw_wlock(&pvh_global_lock);
1920 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1921 		PMAP_LOCK(pv->pv_pmap);
1922 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL &&
1923 		    PTE_ISVALID(pte)) {
1924 			if (PTE_ISMODIFIED(pte))
1925 				vm_page_dirty(m);
1926 			if (PTE_ISREFERENCED(pte)) {
1927 				mtx_lock_spin(&tlbivax_mutex);
1928 				tlb_miss_lock();
1929 
1930 				tlb0_flush_entry(pv->pv_va);
1931 				*pte &= ~PTE_REFERENCED;
1932 
1933 				tlb_miss_unlock();
1934 				mtx_unlock_spin(&tlbivax_mutex);
1935 
1936 				if (++count >= PMAP_TS_REFERENCED_MAX) {
1937 					PMAP_UNLOCK(pv->pv_pmap);
1938 					break;
1939 				}
1940 			}
1941 		}
1942 		PMAP_UNLOCK(pv->pv_pmap);
1943 	}
1944 	rw_wunlock(&pvh_global_lock);
1945 	return (count);
1946 }
1947 
1948 /*
1949  * Clear the wired attribute from the mappings for the specified range of
1950  * addresses in the given pmap.  Every valid mapping within that range must
1951  * have the wired attribute set.  In contrast, invalid mappings cannot have
1952  * the wired attribute set, so they are ignored.
1953  *
1954  * The wired attribute of the page table entry is not a hardware feature, so
1955  * there is no need to invalidate any TLB entries.
1956  */
1957 static void
1958 mmu_booke_unwire(pmap_t pmap, vm_offset_t sva, vm_offset_t eva)
1959 {
1960 	vm_offset_t va;
1961 	pte_t *pte;
1962 
1963 	PMAP_LOCK(pmap);
1964 	for (va = sva; va < eva; va += PAGE_SIZE) {
1965 		if ((pte = pte_find(pmap, va)) != NULL &&
1966 		    PTE_ISVALID(pte)) {
1967 			if (!PTE_ISWIRED(pte))
1968 				panic("mmu_booke_unwire: pte %p isn't wired",
1969 				    pte);
1970 			*pte &= ~PTE_WIRED;
1971 			pmap->pm_stats.wired_count--;
1972 		}
1973 	}
1974 	PMAP_UNLOCK(pmap);
1975 
1976 }
1977 
1978 /*
1979  * Return true if the pmap's pv is one of the first 16 pvs linked to from this
1980  * page.  This count may be changed upwards or downwards in the future; it is
1981  * only necessary that true be returned for a small subset of pmaps for proper
1982  * page aging.
1983  */
1984 static boolean_t
1985 mmu_booke_page_exists_quick(pmap_t pmap, vm_page_t m)
1986 {
1987 	pv_entry_t pv;
1988 	int loops;
1989 	boolean_t rv;
1990 
1991 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1992 	    ("mmu_booke_page_exists_quick: page %p is not managed", m));
1993 	loops = 0;
1994 	rv = FALSE;
1995 	rw_wlock(&pvh_global_lock);
1996 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
1997 		if (pv->pv_pmap == pmap) {
1998 			rv = TRUE;
1999 			break;
2000 		}
2001 		if (++loops >= 16)
2002 			break;
2003 	}
2004 	rw_wunlock(&pvh_global_lock);
2005 	return (rv);
2006 }
2007 
2008 /*
2009  * Return the number of managed mappings to the given physical page that are
2010  * wired.
2011  */
2012 static int
2013 mmu_booke_page_wired_mappings(vm_page_t m)
2014 {
2015 	pv_entry_t pv;
2016 	pte_t *pte;
2017 	int count = 0;
2018 
2019 	if ((m->oflags & VPO_UNMANAGED) != 0)
2020 		return (count);
2021 	rw_wlock(&pvh_global_lock);
2022 	TAILQ_FOREACH(pv, &m->md.pv_list, pv_link) {
2023 		PMAP_LOCK(pv->pv_pmap);
2024 		if ((pte = pte_find(pv->pv_pmap, pv->pv_va)) != NULL)
2025 			if (PTE_ISVALID(pte) && PTE_ISWIRED(pte))
2026 				count++;
2027 		PMAP_UNLOCK(pv->pv_pmap);
2028 	}
2029 	rw_wunlock(&pvh_global_lock);
2030 	return (count);
2031 }
2032 
2033 static int
2034 mmu_booke_dev_direct_mapped(vm_paddr_t pa, vm_size_t size)
2035 {
2036 	int i;
2037 	vm_offset_t va;
2038 
2039 	/*
2040 	 * This currently does not work for entries that
2041 	 * overlap TLB1 entries.
2042 	 */
2043 	for (i = 0; i < TLB1_ENTRIES; i ++) {
2044 		if (tlb1_iomapped(i, pa, size, &va) == 0)
2045 			return (0);
2046 	}
2047 
2048 	return (EFAULT);
2049 }
2050 
2051 void
2052 mmu_booke_dumpsys_map(vm_paddr_t pa, size_t sz, void **va)
2053 {
2054 	vm_paddr_t ppa;
2055 	vm_offset_t ofs;
2056 	vm_size_t gran;
2057 
2058 	/* Minidumps are based on virtual memory addresses. */
2059 	if (do_minidump) {
2060 		*va = (void *)(vm_offset_t)pa;
2061 		return;
2062 	}
2063 
2064 	/* Raw physical memory dumps don't have a virtual address. */
2065 	/* We always map a 256MB page at 256M. */
2066 	gran = 256 * 1024 * 1024;
2067 	ppa = rounddown2(pa, gran);
2068 	ofs = pa - ppa;
2069 	*va = (void *)gran;
2070 	tlb1_set_entry((vm_offset_t)va, ppa, gran, _TLB_ENTRY_IO);
2071 
2072 	if (sz > (gran - ofs))
2073 		tlb1_set_entry((vm_offset_t)(va + gran), ppa + gran, gran,
2074 		    _TLB_ENTRY_IO);
2075 }
2076 
2077 void
2078 mmu_booke_dumpsys_unmap(vm_paddr_t pa, size_t sz, void *va)
2079 {
2080 	vm_paddr_t ppa;
2081 	vm_offset_t ofs;
2082 	vm_size_t gran;
2083 	tlb_entry_t e;
2084 	int i;
2085 
2086 	/* Minidumps are based on virtual memory addresses. */
2087 	/* Nothing to do... */
2088 	if (do_minidump)
2089 		return;
2090 
2091 	for (i = 0; i < TLB1_ENTRIES; i++) {
2092 		tlb1_read_entry(&e, i);
2093 		if (!(e.mas1 & MAS1_VALID))
2094 			break;
2095 	}
2096 
2097 	/* Raw physical memory dumps don't have a virtual address. */
2098 	i--;
2099 	e.mas1 = 0;
2100 	e.mas2 = 0;
2101 	e.mas3 = 0;
2102 	tlb1_write_entry(&e, i);
2103 
2104 	gran = 256 * 1024 * 1024;
2105 	ppa = rounddown2(pa, gran);
2106 	ofs = pa - ppa;
2107 	if (sz > (gran - ofs)) {
2108 		i--;
2109 		e.mas1 = 0;
2110 		e.mas2 = 0;
2111 		e.mas3 = 0;
2112 		tlb1_write_entry(&e, i);
2113 	}
2114 }
2115 
2116 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2117 
2118 void
2119 mmu_booke_scan_init()
2120 {
2121 	vm_offset_t va;
2122 	pte_t *pte;
2123 	int i;
2124 
2125 	if (!do_minidump) {
2126 		/* Initialize phys. segments for dumpsys(). */
2127 		memset(&dump_map, 0, sizeof(dump_map));
2128 		mem_regions(&physmem_regions, &physmem_regions_sz, &availmem_regions,
2129 		    &availmem_regions_sz);
2130 		for (i = 0; i < physmem_regions_sz; i++) {
2131 			dump_map[i].pa_start = physmem_regions[i].mr_start;
2132 			dump_map[i].pa_size = physmem_regions[i].mr_size;
2133 		}
2134 		return;
2135 	}
2136 
2137 	/* Virtual segments for minidumps: */
2138 	memset(&dump_map, 0, sizeof(dump_map));
2139 
2140 	/* 1st: kernel .data and .bss. */
2141 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2142 	dump_map[0].pa_size =
2143 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2144 
2145 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2146 	dump_map[1].pa_start = data_start;
2147 	dump_map[1].pa_size = data_end - data_start;
2148 
2149 	/* 3rd: kernel VM. */
2150 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2151 	/* Find start of next chunk (from va). */
2152 	while (va < virtual_end) {
2153 		/* Don't dump the buffer cache. */
2154 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2155 			va = kmi.buffer_eva;
2156 			continue;
2157 		}
2158 		pte = pte_find(kernel_pmap, va);
2159 		if (pte != NULL && PTE_ISVALID(pte))
2160 			break;
2161 		va += PAGE_SIZE;
2162 	}
2163 	if (va < virtual_end) {
2164 		dump_map[2].pa_start = va;
2165 		va += PAGE_SIZE;
2166 		/* Find last page in chunk. */
2167 		while (va < virtual_end) {
2168 			/* Don't run into the buffer cache. */
2169 			if (va == kmi.buffer_sva)
2170 				break;
2171 			pte = pte_find(kernel_pmap, va);
2172 			if (pte == NULL || !PTE_ISVALID(pte))
2173 				break;
2174 			va += PAGE_SIZE;
2175 		}
2176 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2177 	}
2178 }
2179 
2180 /*
2181  * Map a set of physical memory pages into the kernel virtual address space.
2182  * Return a pointer to where it is mapped. This routine is intended to be used
2183  * for mapping device memory, NOT real memory.
2184  */
2185 static void *
2186 mmu_booke_mapdev(vm_paddr_t pa, vm_size_t size)
2187 {
2188 
2189 	return (mmu_booke_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT));
2190 }
2191 
2192 static int
2193 tlb1_find_pa(vm_paddr_t pa, tlb_entry_t *e)
2194 {
2195 	int i;
2196 
2197 	for (i = 0; i < TLB1_ENTRIES; i++) {
2198 		tlb1_read_entry(e, i);
2199 		if ((e->mas1 & MAS1_VALID) == 0)
2200 			continue;
2201 		if (e->phys == pa)
2202 			return (i);
2203 	}
2204 	return (-1);
2205 }
2206 
2207 static void *
2208 mmu_booke_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma)
2209 {
2210 	tlb_entry_t e;
2211 	vm_paddr_t tmppa;
2212 #ifndef __powerpc64__
2213 	uintptr_t tmpva;
2214 #endif
2215 	uintptr_t va, retva;
2216 	vm_size_t sz;
2217 	int i;
2218 	int wimge;
2219 
2220 	/*
2221 	 * Check if this is premapped in TLB1.
2222 	 */
2223 	sz = size;
2224 	tmppa = pa;
2225 	va = ~0;
2226 	wimge = tlb_calc_wimg(pa, ma);
2227 	for (i = 0; i < TLB1_ENTRIES; i++) {
2228 		tlb1_read_entry(&e, i);
2229 		if (!(e.mas1 & MAS1_VALID))
2230 			continue;
2231 		if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2232 			continue;
2233 		if (tmppa >= e.phys && tmppa < e.phys + e.size) {
2234 			va = e.virt + (pa - e.phys);
2235 			tmppa = e.phys + e.size;
2236 			sz -= MIN(sz, e.size - (pa - e.phys));
2237 			while (sz > 0 && (i = tlb1_find_pa(tmppa, &e)) != -1) {
2238 				if (wimge != (e.mas2 & (MAS2_WIMGE_MASK & ~_TLB_ENTRY_SHARED)))
2239 					break;
2240 				sz -= MIN(sz, e.size);
2241 				tmppa = e.phys + e.size;
2242 			}
2243 			if (sz != 0)
2244 				break;
2245 			return ((void *)va);
2246 		}
2247 	}
2248 
2249 	size = roundup(size, PAGE_SIZE);
2250 
2251 #ifdef __powerpc64__
2252 	KASSERT(pa < VM_MAPDEV_PA_MAX,
2253 	    ("Unsupported physical address! %lx", pa));
2254 	va = VM_MAPDEV_BASE + pa;
2255 	retva = va;
2256 #ifdef POW2_MAPPINGS
2257 	/*
2258 	 * Align the mapping to a power of 2 size, taking into account that we
2259 	 * may need to increase the size multiple times to satisfy the size and
2260 	 * alignment requirements.
2261 	 *
2262 	 * This works in the general case because it's very rare (near never?)
2263 	 * to have different access properties (WIMG) within a single
2264 	 * power-of-two region.  If a design does call for that, POW2_MAPPINGS
2265 	 * can be undefined, and exact mappings will be used instead.
2266 	 */
2267 	sz = size;
2268 	size = roundup2(size, 1 << ilog2(size));
2269 	while (rounddown2(va, size) + size < va + sz)
2270 		size <<= 1;
2271 	va = rounddown2(va, size);
2272 	pa = rounddown2(pa, size);
2273 #endif
2274 #else
2275 	/*
2276 	 * The device mapping area is between VM_MAXUSER_ADDRESS and
2277 	 * VM_MIN_KERNEL_ADDRESS.  This gives 1GB of device addressing.
2278 	 */
2279 #ifdef SPARSE_MAPDEV
2280 	/*
2281 	 * With a sparse mapdev, align to the largest starting region.  This
2282 	 * could feasibly be optimized for a 'best-fit' alignment, but that
2283 	 * calculation could be very costly.
2284 	 * Align to the smaller of:
2285 	 * - first set bit in overlap of (pa & size mask)
2286 	 * - largest size envelope
2287 	 *
2288 	 * It's possible the device mapping may start at a PA that's not larger
2289 	 * than the size mask, so we need to offset in to maximize the TLB entry
2290 	 * range and minimize the number of used TLB entries.
2291 	 */
2292 	do {
2293 	    tmpva = tlb1_map_base;
2294 	    sz = ffsl((~((1 << flsl(size-1)) - 1)) & pa);
2295 	    sz = sz ? min(roundup(sz + 3, 4), flsl(size) - 1) : flsl(size) - 1;
2296 	    va = roundup(tlb1_map_base, 1 << sz) | (((1 << sz) - 1) & pa);
2297 	} while (!atomic_cmpset_int(&tlb1_map_base, tmpva, va + size));
2298 #endif
2299 	va = atomic_fetchadd_int(&tlb1_map_base, size);
2300 	retva = va;
2301 #endif
2302 
2303 	if (tlb1_mapin_region(va, pa, size, tlb_calc_wimg(pa, ma)) != size)
2304 		return (NULL);
2305 
2306 	return ((void *)retva);
2307 }
2308 
2309 /*
2310  * 'Unmap' a range mapped by mmu_booke_mapdev().
2311  */
2312 static void
2313 mmu_booke_unmapdev(vm_offset_t va, vm_size_t size)
2314 {
2315 #ifdef SUPPORTS_SHRINKING_TLB1
2316 	vm_offset_t base, offset;
2317 
2318 	/*
2319 	 * Unmap only if this is inside kernel virtual space.
2320 	 */
2321 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= VM_MAX_KERNEL_ADDRESS)) {
2322 		base = trunc_page(va);
2323 		offset = va & PAGE_MASK;
2324 		size = roundup(offset + size, PAGE_SIZE);
2325 		mmu_booke_qremove(base, atop(size));
2326 		kva_free(base, size);
2327 	}
2328 #endif
2329 }
2330 
2331 /*
2332  * mmu_booke_object_init_pt preloads the ptes for a given object into the
2333  * specified pmap. This eliminates the blast of soft faults on process startup
2334  * and immediately after an mmap.
2335  */
2336 static void
2337 mmu_booke_object_init_pt(pmap_t pmap, vm_offset_t addr,
2338     vm_object_t object, vm_pindex_t pindex, vm_size_t size)
2339 {
2340 
2341 	VM_OBJECT_ASSERT_WLOCKED(object);
2342 	KASSERT(object->type == OBJT_DEVICE || object->type == OBJT_SG,
2343 	    ("mmu_booke_object_init_pt: non-device object"));
2344 }
2345 
2346 /*
2347  * Perform the pmap work for mincore.
2348  */
2349 static int
2350 mmu_booke_mincore(pmap_t pmap, vm_offset_t addr, vm_paddr_t *pap)
2351 {
2352 
2353 	/* XXX: this should be implemented at some point */
2354 	return (0);
2355 }
2356 
2357 static int
2358 mmu_booke_change_attr(vm_offset_t addr, vm_size_t sz, vm_memattr_t mode)
2359 {
2360 	vm_offset_t va;
2361 	pte_t *pte;
2362 	int i, j;
2363 	tlb_entry_t e;
2364 
2365 	addr = trunc_page(addr);
2366 
2367 	/* Only allow changes to mapped kernel addresses.  This includes:
2368 	 * - KVA
2369 	 * - DMAP (powerpc64)
2370 	 * - Device mappings
2371 	 */
2372 	if (addr <= VM_MAXUSER_ADDRESS ||
2373 #ifdef __powerpc64__
2374 	    (addr >= tlb1_map_base && addr < DMAP_BASE_ADDRESS) ||
2375 	    (addr > DMAP_MAX_ADDRESS && addr < VM_MIN_KERNEL_ADDRESS) ||
2376 #else
2377 	    (addr >= tlb1_map_base && addr < VM_MIN_KERNEL_ADDRESS) ||
2378 #endif
2379 	    (addr > VM_MAX_KERNEL_ADDRESS))
2380 		return (EINVAL);
2381 
2382 	/* Check TLB1 mappings */
2383 	for (i = 0; i < TLB1_ENTRIES; i++) {
2384 		tlb1_read_entry(&e, i);
2385 		if (!(e.mas1 & MAS1_VALID))
2386 			continue;
2387 		if (addr >= e.virt && addr < e.virt + e.size)
2388 			break;
2389 	}
2390 	if (i < TLB1_ENTRIES) {
2391 		/* Only allow full mappings to be modified for now. */
2392 		/* Validate the range. */
2393 		for (j = i, va = addr; va < addr + sz; va += e.size, j++) {
2394 			tlb1_read_entry(&e, j);
2395 			if (va != e.virt || (sz - (va - addr) < e.size))
2396 				return (EINVAL);
2397 		}
2398 		for (va = addr; va < addr + sz; va += e.size, i++) {
2399 			tlb1_read_entry(&e, i);
2400 			e.mas2 &= ~MAS2_WIMGE_MASK;
2401 			e.mas2 |= tlb_calc_wimg(e.phys, mode);
2402 
2403 			/*
2404 			 * Write it out to the TLB.  Should really re-sync with other
2405 			 * cores.
2406 			 */
2407 			tlb1_write_entry(&e, i);
2408 		}
2409 		return (0);
2410 	}
2411 
2412 	/* Not in TLB1, try through pmap */
2413 	/* First validate the range. */
2414 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2415 		pte = pte_find(kernel_pmap, va);
2416 		if (pte == NULL || !PTE_ISVALID(pte))
2417 			return (EINVAL);
2418 	}
2419 
2420 	mtx_lock_spin(&tlbivax_mutex);
2421 	tlb_miss_lock();
2422 	for (va = addr; va < addr + sz; va += PAGE_SIZE) {
2423 		pte = pte_find(kernel_pmap, va);
2424 		*pte &= ~(PTE_MAS2_MASK << PTE_MAS2_SHIFT);
2425 		*pte |= tlb_calc_wimg(PTE_PA(pte), mode) << PTE_MAS2_SHIFT;
2426 		tlb0_flush_entry(va);
2427 	}
2428 	tlb_miss_unlock();
2429 	mtx_unlock_spin(&tlbivax_mutex);
2430 
2431 	return (0);
2432 }
2433 
2434 static void
2435 mmu_booke_page_array_startup(long pages)
2436 {
2437 	vm_page_array_size = pages;
2438 }
2439 
2440 /**************************************************************************/
2441 /* TID handling */
2442 /**************************************************************************/
2443 
2444 /*
2445  * Allocate a TID. If necessary, steal one from someone else.
2446  * The new TID is flushed from the TLB before returning.
2447  */
2448 static tlbtid_t
2449 tid_alloc(pmap_t pmap)
2450 {
2451 	tlbtid_t tid;
2452 	int thiscpu;
2453 
2454 	KASSERT((pmap != kernel_pmap), ("tid_alloc: kernel pmap"));
2455 
2456 	CTR2(KTR_PMAP, "%s: s (pmap = %p)", __func__, pmap);
2457 
2458 	thiscpu = PCPU_GET(cpuid);
2459 
2460 	tid = PCPU_GET(booke.tid_next);
2461 	if (tid > TID_MAX)
2462 		tid = TID_MIN;
2463 	PCPU_SET(booke.tid_next, tid + 1);
2464 
2465 	/* If we are stealing TID then clear the relevant pmap's field */
2466 	if (tidbusy[thiscpu][tid] != NULL) {
2467 
2468 		CTR2(KTR_PMAP, "%s: warning: stealing tid %d", __func__, tid);
2469 
2470 		tidbusy[thiscpu][tid]->pm_tid[thiscpu] = TID_NONE;
2471 
2472 		/* Flush all entries from TLB0 matching this TID. */
2473 		tid_flush(tid);
2474 	}
2475 
2476 	tidbusy[thiscpu][tid] = pmap;
2477 	pmap->pm_tid[thiscpu] = tid;
2478 	__asm __volatile("msync; isync");
2479 
2480 	CTR3(KTR_PMAP, "%s: e (%02d next = %02d)", __func__, tid,
2481 	    PCPU_GET(booke.tid_next));
2482 
2483 	return (tid);
2484 }
2485 
2486 /**************************************************************************/
2487 /* TLB0 handling */
2488 /**************************************************************************/
2489 
2490 /* Convert TLB0 va and way number to tlb0[] table index. */
2491 static inline unsigned int
2492 tlb0_tableidx(vm_offset_t va, unsigned int way)
2493 {
2494 	unsigned int idx;
2495 
2496 	idx = (way * TLB0_ENTRIES_PER_WAY);
2497 	idx += (va & MAS2_TLB0_ENTRY_IDX_MASK) >> MAS2_TLB0_ENTRY_IDX_SHIFT;
2498 	return (idx);
2499 }
2500 
2501 /*
2502  * Invalidate TLB0 entry.
2503  */
2504 static inline void
2505 tlb0_flush_entry(vm_offset_t va)
2506 {
2507 
2508 	CTR2(KTR_PMAP, "%s: s va=0x%08x", __func__, va);
2509 
2510 	mtx_assert(&tlbivax_mutex, MA_OWNED);
2511 
2512 	__asm __volatile("tlbivax 0, %0" :: "r"(va & MAS2_EPN_MASK));
2513 	__asm __volatile("isync; msync");
2514 	__asm __volatile("tlbsync; msync");
2515 
2516 	CTR1(KTR_PMAP, "%s: e", __func__);
2517 }
2518 
2519 
2520 /**************************************************************************/
2521 /* TLB1 handling */
2522 /**************************************************************************/
2523 
2524 /*
2525  * TLB1 mapping notes:
2526  *
2527  * TLB1[0]	Kernel text and data.
2528  * TLB1[1-15]	Additional kernel text and data mappings (if required), PCI
2529  *		windows, other devices mappings.
2530  */
2531 
2532  /*
2533  * Read an entry from given TLB1 slot.
2534  */
2535 void
2536 tlb1_read_entry(tlb_entry_t *entry, unsigned int slot)
2537 {
2538 	register_t msr;
2539 	uint32_t mas0;
2540 
2541 	KASSERT((entry != NULL), ("%s(): Entry is NULL!", __func__));
2542 
2543 	msr = mfmsr();
2544 	__asm __volatile("wrteei 0");
2545 
2546 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(slot);
2547 	mtspr(SPR_MAS0, mas0);
2548 	__asm __volatile("isync; tlbre");
2549 
2550 	entry->mas1 = mfspr(SPR_MAS1);
2551 	entry->mas2 = mfspr(SPR_MAS2);
2552 	entry->mas3 = mfspr(SPR_MAS3);
2553 
2554 	switch ((mfpvr() >> 16) & 0xFFFF) {
2555 	case FSL_E500v2:
2556 	case FSL_E500mc:
2557 	case FSL_E5500:
2558 	case FSL_E6500:
2559 		entry->mas7 = mfspr(SPR_MAS7);
2560 		break;
2561 	default:
2562 		entry->mas7 = 0;
2563 		break;
2564 	}
2565 	__asm __volatile("wrtee %0" :: "r"(msr));
2566 
2567 	entry->virt = entry->mas2 & MAS2_EPN_MASK;
2568 	entry->phys = ((vm_paddr_t)(entry->mas7 & MAS7_RPN) << 32) |
2569 	    (entry->mas3 & MAS3_RPN);
2570 	entry->size =
2571 	    tsize2size((entry->mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT);
2572 }
2573 
2574 struct tlbwrite_args {
2575 	tlb_entry_t *e;
2576 	unsigned int idx;
2577 };
2578 
2579 static uint32_t
2580 tlb1_find_free(void)
2581 {
2582 	tlb_entry_t e;
2583 	int i;
2584 
2585 	for (i = 0; i < TLB1_ENTRIES; i++) {
2586 		tlb1_read_entry(&e, i);
2587 		if ((e.mas1 & MAS1_VALID) == 0)
2588 			return (i);
2589 	}
2590 	return (-1);
2591 }
2592 
2593 static void
2594 tlb1_purge_va_range(vm_offset_t va, vm_size_t size)
2595 {
2596 	tlb_entry_t e;
2597 	int i;
2598 
2599 	for (i = 0; i < TLB1_ENTRIES; i++) {
2600 		tlb1_read_entry(&e, i);
2601 		if ((e.mas1 & MAS1_VALID) == 0)
2602 			continue;
2603 		if ((e.mas2 & MAS2_EPN_MASK) >= va &&
2604 		    (e.mas2 & MAS2_EPN_MASK) < va + size) {
2605 			mtspr(SPR_MAS1, e.mas1 & ~MAS1_VALID);
2606 			__asm __volatile("isync; tlbwe; isync; msync");
2607 		}
2608 	}
2609 }
2610 
2611 static void
2612 tlb1_write_entry_int(void *arg)
2613 {
2614 	struct tlbwrite_args *args = arg;
2615 	uint32_t idx, mas0;
2616 
2617 	idx = args->idx;
2618 	if (idx == -1) {
2619 		tlb1_purge_va_range(args->e->virt, args->e->size);
2620 		idx = tlb1_find_free();
2621 		if (idx == -1)
2622 			panic("No free TLB1 entries!\n");
2623 	}
2624 	/* Select entry */
2625 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(idx);
2626 
2627 	mtspr(SPR_MAS0, mas0);
2628 	mtspr(SPR_MAS1, args->e->mas1);
2629 	mtspr(SPR_MAS2, args->e->mas2);
2630 	mtspr(SPR_MAS3, args->e->mas3);
2631 	switch ((mfpvr() >> 16) & 0xFFFF) {
2632 	case FSL_E500mc:
2633 	case FSL_E5500:
2634 	case FSL_E6500:
2635 		mtspr(SPR_MAS8, 0);
2636 		/* FALLTHROUGH */
2637 	case FSL_E500v2:
2638 		mtspr(SPR_MAS7, args->e->mas7);
2639 		break;
2640 	default:
2641 		break;
2642 	}
2643 
2644 	__asm __volatile("isync; tlbwe; isync; msync");
2645 
2646 }
2647 
2648 static void
2649 tlb1_write_entry_sync(void *arg)
2650 {
2651 	/* Empty synchronization point for smp_rendezvous(). */
2652 }
2653 
2654 /*
2655  * Write given entry to TLB1 hardware.
2656  */
2657 static void
2658 tlb1_write_entry(tlb_entry_t *e, unsigned int idx)
2659 {
2660 	struct tlbwrite_args args;
2661 
2662 	args.e = e;
2663 	args.idx = idx;
2664 
2665 #ifdef SMP
2666 	if ((e->mas2 & _TLB_ENTRY_SHARED) && smp_started) {
2667 		mb();
2668 		smp_rendezvous(tlb1_write_entry_sync,
2669 		    tlb1_write_entry_int,
2670 		    tlb1_write_entry_sync, &args);
2671 	} else
2672 #endif
2673 	{
2674 		register_t msr;
2675 
2676 		msr = mfmsr();
2677 		__asm __volatile("wrteei 0");
2678 		tlb1_write_entry_int(&args);
2679 		__asm __volatile("wrtee %0" :: "r"(msr));
2680 	}
2681 }
2682 
2683 /*
2684  * Convert TLB TSIZE value to mapped region size.
2685  */
2686 static vm_size_t
2687 tsize2size(unsigned int tsize)
2688 {
2689 
2690 	/*
2691 	 * size = 4^tsize KB
2692 	 * size = 4^tsize * 2^10 = 2^(2 * tsize - 10)
2693 	 */
2694 
2695 	return ((1 << (2 * tsize)) * 1024);
2696 }
2697 
2698 /*
2699  * Convert region size (must be power of 4) to TLB TSIZE value.
2700  */
2701 static unsigned int
2702 size2tsize(vm_size_t size)
2703 {
2704 
2705 	return (ilog2(size) / 2 - 5);
2706 }
2707 
2708 /*
2709  * Register permanent kernel mapping in TLB1.
2710  *
2711  * Entries are created starting from index 0 (current free entry is
2712  * kept in tlb1_idx) and are not supposed to be invalidated.
2713  */
2714 int
2715 tlb1_set_entry(vm_offset_t va, vm_paddr_t pa, vm_size_t size,
2716     uint32_t flags)
2717 {
2718 	tlb_entry_t e;
2719 	uint32_t ts, tid;
2720 	int tsize, index;
2721 
2722 	/* First try to update an existing entry. */
2723 	for (index = 0; index < TLB1_ENTRIES; index++) {
2724 		tlb1_read_entry(&e, index);
2725 		/* Check if we're just updating the flags, and update them. */
2726 		if (e.phys == pa && e.virt == va && e.size == size) {
2727 			e.mas2 = (va & MAS2_EPN_MASK) | flags;
2728 			tlb1_write_entry(&e, index);
2729 			return (0);
2730 		}
2731 	}
2732 
2733 	/* Convert size to TSIZE */
2734 	tsize = size2tsize(size);
2735 
2736 	tid = (TID_KERNEL << MAS1_TID_SHIFT) & MAS1_TID_MASK;
2737 	/* XXX TS is hard coded to 0 for now as we only use single address space */
2738 	ts = (0 << MAS1_TS_SHIFT) & MAS1_TS_MASK;
2739 
2740 	e.phys = pa;
2741 	e.virt = va;
2742 	e.size = size;
2743 	e.mas1 = MAS1_VALID | MAS1_IPROT | ts | tid;
2744 	e.mas1 |= ((tsize << MAS1_TSIZE_SHIFT) & MAS1_TSIZE_MASK);
2745 	e.mas2 = (va & MAS2_EPN_MASK) | flags;
2746 
2747 	/* Set supervisor RWX permission bits */
2748 	e.mas3 = (pa & MAS3_RPN) | MAS3_SR | MAS3_SW | MAS3_SX;
2749 	e.mas7 = (pa >> 32) & MAS7_RPN;
2750 
2751 	tlb1_write_entry(&e, -1);
2752 
2753 	return (0);
2754 }
2755 
2756 /*
2757  * Map in contiguous RAM region into the TLB1.
2758  */
2759 static vm_size_t
2760 tlb1_mapin_region(vm_offset_t va, vm_paddr_t pa, vm_size_t size, int wimge)
2761 {
2762 	vm_offset_t base;
2763 	vm_size_t mapped, sz, ssize;
2764 
2765 	mapped = 0;
2766 	base = va;
2767 	ssize = size;
2768 
2769 	while (size > 0) {
2770 		sz = 1UL << (ilog2(size) & ~1);
2771 		/* Align size to PA */
2772 		if (pa % sz != 0) {
2773 			do {
2774 				sz >>= 2;
2775 			} while (pa % sz != 0);
2776 		}
2777 		/* Now align from there to VA */
2778 		if (va % sz != 0) {
2779 			do {
2780 				sz >>= 2;
2781 			} while (va % sz != 0);
2782 		}
2783 #ifdef __powerpc64__
2784 		/*
2785 		 * Clamp TLB1 entries to 4G.
2786 		 *
2787 		 * While the e6500 supports up to 1TB mappings, the e5500
2788 		 * only supports up to 4G mappings. (0b1011)
2789 		 *
2790 		 * If any e6500 machines capable of supporting a very
2791 		 * large amount of memory appear in the future, we can
2792 		 * revisit this.
2793 		 *
2794 		 * For now, though, since we have plenty of space in TLB1,
2795 		 * always avoid creating entries larger than 4GB.
2796 		 */
2797 		sz = MIN(sz, 1UL << 32);
2798 #endif
2799 		if (bootverbose)
2800 			printf("Wiring VA=%p to PA=%jx (size=%lx)\n",
2801 			    (void *)va, (uintmax_t)pa, (long)sz);
2802 		if (tlb1_set_entry(va, pa, sz,
2803 		    _TLB_ENTRY_SHARED | wimge) < 0)
2804 			return (mapped);
2805 		size -= sz;
2806 		pa += sz;
2807 		va += sz;
2808 	}
2809 
2810 	mapped = (va - base);
2811 	if (bootverbose)
2812 		printf("mapped size 0x%"PRIxPTR" (wasted space 0x%"PRIxPTR")\n",
2813 		    mapped, mapped - ssize);
2814 
2815 	return (mapped);
2816 }
2817 
2818 /*
2819  * TLB1 initialization routine, to be called after the very first
2820  * assembler level setup done in locore.S.
2821  */
2822 void
2823 tlb1_init()
2824 {
2825 	vm_offset_t mas2;
2826 	uint32_t mas0, mas1, mas3, mas7;
2827 	uint32_t tsz;
2828 
2829 	tlb1_get_tlbconf();
2830 
2831 	mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(0);
2832 	mtspr(SPR_MAS0, mas0);
2833 	__asm __volatile("isync; tlbre");
2834 
2835 	mas1 = mfspr(SPR_MAS1);
2836 	mas2 = mfspr(SPR_MAS2);
2837 	mas3 = mfspr(SPR_MAS3);
2838 	mas7 = mfspr(SPR_MAS7);
2839 
2840 	kernload =  ((vm_paddr_t)(mas7 & MAS7_RPN) << 32) |
2841 	    (mas3 & MAS3_RPN);
2842 
2843 	tsz = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
2844 	kernsize += (tsz > 0) ? tsize2size(tsz) : 0;
2845 	kernstart = trunc_page(mas2);
2846 
2847 	/* Setup TLB miss defaults */
2848 	set_mas4_defaults();
2849 }
2850 
2851 /*
2852  * pmap_early_io_unmap() should be used in short conjunction with
2853  * pmap_early_io_map(), as in the following snippet:
2854  *
2855  * x = pmap_early_io_map(...);
2856  * <do something with x>
2857  * pmap_early_io_unmap(x, size);
2858  *
2859  * And avoiding more allocations between.
2860  */
2861 void
2862 pmap_early_io_unmap(vm_offset_t va, vm_size_t size)
2863 {
2864 	int i;
2865 	tlb_entry_t e;
2866 	vm_size_t isize;
2867 
2868 	size = roundup(size, PAGE_SIZE);
2869 	isize = size;
2870 	for (i = 0; i < TLB1_ENTRIES && size > 0; i++) {
2871 		tlb1_read_entry(&e, i);
2872 		if (!(e.mas1 & MAS1_VALID))
2873 			continue;
2874 		if (va <= e.virt && (va + isize) >= (e.virt + e.size)) {
2875 			size -= e.size;
2876 			e.mas1 &= ~MAS1_VALID;
2877 			tlb1_write_entry(&e, i);
2878 		}
2879 	}
2880 	if (tlb1_map_base == va + isize)
2881 		tlb1_map_base -= isize;
2882 }
2883 
2884 vm_offset_t
2885 pmap_early_io_map(vm_paddr_t pa, vm_size_t size)
2886 {
2887 	vm_paddr_t pa_base;
2888 	vm_offset_t va, sz;
2889 	int i;
2890 	tlb_entry_t e;
2891 
2892 	KASSERT(!pmap_bootstrapped, ("Do not use after PMAP is up!"));
2893 
2894 	for (i = 0; i < TLB1_ENTRIES; i++) {
2895 		tlb1_read_entry(&e, i);
2896 		if (!(e.mas1 & MAS1_VALID))
2897 			continue;
2898 		if (pa >= e.phys && (pa + size) <=
2899 		    (e.phys + e.size))
2900 			return (e.virt + (pa - e.phys));
2901 	}
2902 
2903 	pa_base = rounddown(pa, PAGE_SIZE);
2904 	size = roundup(size + (pa - pa_base), PAGE_SIZE);
2905 	tlb1_map_base = roundup2(tlb1_map_base, 1 << (ilog2(size) & ~1));
2906 	va = tlb1_map_base + (pa - pa_base);
2907 
2908 	do {
2909 		sz = 1 << (ilog2(size) & ~1);
2910 		tlb1_set_entry(tlb1_map_base, pa_base, sz,
2911 		    _TLB_ENTRY_SHARED | _TLB_ENTRY_IO);
2912 		size -= sz;
2913 		pa_base += sz;
2914 		tlb1_map_base += sz;
2915 	} while (size > 0);
2916 
2917 	return (va);
2918 }
2919 
2920 void
2921 pmap_track_page(pmap_t pmap, vm_offset_t va)
2922 {
2923 	vm_paddr_t pa;
2924 	vm_page_t page;
2925 	struct pv_entry *pve;
2926 
2927 	va = trunc_page(va);
2928 	pa = pmap_kextract(va);
2929 	page = PHYS_TO_VM_PAGE(pa);
2930 
2931 	rw_wlock(&pvh_global_lock);
2932 	PMAP_LOCK(pmap);
2933 
2934 	TAILQ_FOREACH(pve, &page->md.pv_list, pv_link) {
2935 		if ((pmap == pve->pv_pmap) && (va == pve->pv_va)) {
2936 			goto out;
2937 		}
2938 	}
2939 	page->md.pv_tracked = true;
2940 	pv_insert(pmap, va, page);
2941 out:
2942 	PMAP_UNLOCK(pmap);
2943 	rw_wunlock(&pvh_global_lock);
2944 }
2945 
2946 
2947 /*
2948  * Setup MAS4 defaults.
2949  * These values are loaded to MAS0-2 on a TLB miss.
2950  */
2951 static void
2952 set_mas4_defaults(void)
2953 {
2954 	uint32_t mas4;
2955 
2956 	/* Defaults: TLB0, PID0, TSIZED=4K */
2957 	mas4 = MAS4_TLBSELD0;
2958 	mas4 |= (TLB_SIZE_4K << MAS4_TSIZED_SHIFT) & MAS4_TSIZED_MASK;
2959 #ifdef SMP
2960 	mas4 |= MAS4_MD;
2961 #endif
2962 	mtspr(SPR_MAS4, mas4);
2963 	__asm __volatile("isync");
2964 }
2965 
2966 
2967 /*
2968  * Return 0 if the physical IO range is encompassed by one of the
2969  * the TLB1 entries, otherwise return related error code.
2970  */
2971 static int
2972 tlb1_iomapped(int i, vm_paddr_t pa, vm_size_t size, vm_offset_t *va)
2973 {
2974 	uint32_t prot;
2975 	vm_paddr_t pa_start;
2976 	vm_paddr_t pa_end;
2977 	unsigned int entry_tsize;
2978 	vm_size_t entry_size;
2979 	tlb_entry_t e;
2980 
2981 	*va = (vm_offset_t)NULL;
2982 
2983 	tlb1_read_entry(&e, i);
2984 	/* Skip invalid entries */
2985 	if (!(e.mas1 & MAS1_VALID))
2986 		return (EINVAL);
2987 
2988 	/*
2989 	 * The entry must be cache-inhibited, guarded, and r/w
2990 	 * so it can function as an i/o page
2991 	 */
2992 	prot = e.mas2 & (MAS2_I | MAS2_G);
2993 	if (prot != (MAS2_I | MAS2_G))
2994 		return (EPERM);
2995 
2996 	prot = e.mas3 & (MAS3_SR | MAS3_SW);
2997 	if (prot != (MAS3_SR | MAS3_SW))
2998 		return (EPERM);
2999 
3000 	/* The address should be within the entry range. */
3001 	entry_tsize = (e.mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3002 	KASSERT((entry_tsize), ("tlb1_iomapped: invalid entry tsize"));
3003 
3004 	entry_size = tsize2size(entry_tsize);
3005 	pa_start = (((vm_paddr_t)e.mas7 & MAS7_RPN) << 32) |
3006 	    (e.mas3 & MAS3_RPN);
3007 	pa_end = pa_start + entry_size;
3008 
3009 	if ((pa < pa_start) || ((pa + size) > pa_end))
3010 		return (ERANGE);
3011 
3012 	/* Return virtual address of this mapping. */
3013 	*va = (e.mas2 & MAS2_EPN_MASK) + (pa - pa_start);
3014 	return (0);
3015 }
3016 
3017 #ifdef DDB
3018 /* Print out contents of the MAS registers for each TLB0 entry */
3019 static void
3020 #ifdef __powerpc64__
3021 tlb_print_entry(int i, uint32_t mas1, uint64_t mas2, uint32_t mas3,
3022 #else
3023 tlb_print_entry(int i, uint32_t mas1, uint32_t mas2, uint32_t mas3,
3024 #endif
3025     uint32_t mas7)
3026 {
3027 	int as;
3028 	char desc[3];
3029 	tlbtid_t tid;
3030 	vm_size_t size;
3031 	unsigned int tsize;
3032 
3033 	desc[2] = '\0';
3034 	if (mas1 & MAS1_VALID)
3035 		desc[0] = 'V';
3036 	else
3037 		desc[0] = ' ';
3038 
3039 	if (mas1 & MAS1_IPROT)
3040 		desc[1] = 'P';
3041 	else
3042 		desc[1] = ' ';
3043 
3044 	as = (mas1 & MAS1_TS_MASK) ? 1 : 0;
3045 	tid = MAS1_GETTID(mas1);
3046 
3047 	tsize = (mas1 & MAS1_TSIZE_MASK) >> MAS1_TSIZE_SHIFT;
3048 	size = 0;
3049 	if (tsize)
3050 		size = tsize2size(tsize);
3051 
3052 	printf("%3d: (%s) [AS=%d] "
3053 	    "sz = 0x%jx tsz = %d tid = %d mas1 = 0x%08x "
3054 	    "mas2(va) = 0x%"PRI0ptrX" mas3(pa) = 0x%08x mas7 = 0x%08x\n",
3055 	    i, desc, as, (uintmax_t)size, tsize, tid, mas1, mas2, mas3, mas7);
3056 }
3057 
3058 DB_SHOW_COMMAND(tlb0, tlb0_print_tlbentries)
3059 {
3060 	uint32_t mas0, mas1, mas3, mas7;
3061 #ifdef __powerpc64__
3062 	uint64_t mas2;
3063 #else
3064 	uint32_t mas2;
3065 #endif
3066 	int entryidx, way, idx;
3067 
3068 	printf("TLB0 entries:\n");
3069 	for (way = 0; way < TLB0_WAYS; way ++)
3070 		for (entryidx = 0; entryidx < TLB0_ENTRIES_PER_WAY; entryidx++) {
3071 
3072 			mas0 = MAS0_TLBSEL(0) | MAS0_ESEL(way);
3073 			mtspr(SPR_MAS0, mas0);
3074 
3075 			mas2 = entryidx << MAS2_TLB0_ENTRY_IDX_SHIFT;
3076 			mtspr(SPR_MAS2, mas2);
3077 
3078 			__asm __volatile("isync; tlbre");
3079 
3080 			mas1 = mfspr(SPR_MAS1);
3081 			mas2 = mfspr(SPR_MAS2);
3082 			mas3 = mfspr(SPR_MAS3);
3083 			mas7 = mfspr(SPR_MAS7);
3084 
3085 			idx = tlb0_tableidx(mas2, way);
3086 			tlb_print_entry(idx, mas1, mas2, mas3, mas7);
3087 		}
3088 }
3089 
3090 /*
3091  * Print out contents of the MAS registers for each TLB1 entry
3092  */
3093 DB_SHOW_COMMAND(tlb1, tlb1_print_tlbentries)
3094 {
3095 	uint32_t mas0, mas1, mas3, mas7;
3096 #ifdef __powerpc64__
3097 	uint64_t mas2;
3098 #else
3099 	uint32_t mas2;
3100 #endif
3101 	int i;
3102 
3103 	printf("TLB1 entries:\n");
3104 	for (i = 0; i < TLB1_ENTRIES; i++) {
3105 
3106 		mas0 = MAS0_TLBSEL(1) | MAS0_ESEL(i);
3107 		mtspr(SPR_MAS0, mas0);
3108 
3109 		__asm __volatile("isync; tlbre");
3110 
3111 		mas1 = mfspr(SPR_MAS1);
3112 		mas2 = mfspr(SPR_MAS2);
3113 		mas3 = mfspr(SPR_MAS3);
3114 		mas7 = mfspr(SPR_MAS7);
3115 
3116 		tlb_print_entry(i, mas1, mas2, mas3, mas7);
3117 	}
3118 }
3119 #endif
3120