xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision fcb560670601b2a4d87bb31d7531c8dcc37ee71b)
1 /*-
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
18  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
19  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
20  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
21  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27  * POSSIBILITY OF SUCH DAMAGE.
28  */
29 /*-
30  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
31  * Copyright (C) 1995, 1996 TooLs GmbH.
32  * All rights reserved.
33  *
34  * Redistribution and use in source and binary forms, with or without
35  * modification, are permitted provided that the following conditions
36  * are met:
37  * 1. Redistributions of source code must retain the above copyright
38  *    notice, this list of conditions and the following disclaimer.
39  * 2. Redistributions in binary form must reproduce the above copyright
40  *    notice, this list of conditions and the following disclaimer in the
41  *    documentation and/or other materials provided with the distribution.
42  * 3. All advertising materials mentioning features or use of this software
43  *    must display the following acknowledgement:
44  *	This product includes software developed by TooLs GmbH.
45  * 4. The name of TooLs GmbH may not be used to endorse or promote products
46  *    derived from this software without specific prior written permission.
47  *
48  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
49  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
50  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
51  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
52  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
53  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
54  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
55  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
56  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
57  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
58  *
59  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
60  */
61 /*-
62  * Copyright (C) 2001 Benno Rice.
63  * All rights reserved.
64  *
65  * Redistribution and use in source and binary forms, with or without
66  * modification, are permitted provided that the following conditions
67  * are met:
68  * 1. Redistributions of source code must retain the above copyright
69  *    notice, this list of conditions and the following disclaimer.
70  * 2. Redistributions in binary form must reproduce the above copyright
71  *    notice, this list of conditions and the following disclaimer in the
72  *    documentation and/or other materials provided with the distribution.
73  *
74  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
75  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
76  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
77  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
78  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
79  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
80  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
81  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
82  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
83  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
84  */
85 
86 #include <sys/cdefs.h>
87 __FBSDID("$FreeBSD$");
88 
89 /*
90  * Manages physical address maps.
91  *
92  * Since the information managed by this module is also stored by the
93  * logical address mapping module, this module may throw away valid virtual
94  * to physical mappings at almost any time.  However, invalidations of
95  * mappings must be done as requested.
96  *
97  * In order to cope with hardware architectures which make virtual to
98  * physical map invalidates expensive, this module may delay invalidate
99  * reduced protection operations until such time as they are actually
100  * necessary.  This module is given full information as to which processors
101  * are currently using which maps, and to when physical maps must be made
102  * correct.
103  */
104 
105 #include "opt_kstack_pages.h"
106 
107 #include <sys/param.h>
108 #include <sys/kernel.h>
109 #include <sys/conf.h>
110 #include <sys/queue.h>
111 #include <sys/cpuset.h>
112 #include <sys/kerneldump.h>
113 #include <sys/ktr.h>
114 #include <sys/lock.h>
115 #include <sys/msgbuf.h>
116 #include <sys/mutex.h>
117 #include <sys/proc.h>
118 #include <sys/rwlock.h>
119 #include <sys/sched.h>
120 #include <sys/sysctl.h>
121 #include <sys/systm.h>
122 #include <sys/vmmeter.h>
123 
124 #include <dev/ofw/openfirm.h>
125 
126 #include <vm/vm.h>
127 #include <vm/vm_param.h>
128 #include <vm/vm_kern.h>
129 #include <vm/vm_page.h>
130 #include <vm/vm_map.h>
131 #include <vm/vm_object.h>
132 #include <vm/vm_extern.h>
133 #include <vm/vm_pageout.h>
134 #include <vm/uma.h>
135 
136 #include <machine/cpu.h>
137 #include <machine/platform.h>
138 #include <machine/bat.h>
139 #include <machine/frame.h>
140 #include <machine/md_var.h>
141 #include <machine/psl.h>
142 #include <machine/pte.h>
143 #include <machine/smp.h>
144 #include <machine/sr.h>
145 #include <machine/mmuvar.h>
146 #include <machine/trap.h>
147 
148 #include "mmu_if.h"
149 
150 #define	MOEA_DEBUG
151 
152 #define TODO	panic("%s: not implemented", __func__);
153 
154 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
155 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
156 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
157 
158 struct ofw_map {
159 	vm_offset_t	om_va;
160 	vm_size_t	om_len;
161 	vm_offset_t	om_pa;
162 	u_int		om_mode;
163 };
164 
165 extern unsigned char _etext[];
166 extern unsigned char _end[];
167 
168 /*
169  * Map of physical memory regions.
170  */
171 static struct	mem_region *regions;
172 static struct	mem_region *pregions;
173 static u_int    phys_avail_count;
174 static int	regions_sz, pregions_sz;
175 static struct	ofw_map *translations;
176 
177 /*
178  * Lock for the pteg and pvo tables.
179  */
180 struct mtx	moea_table_mutex;
181 struct mtx	moea_vsid_mutex;
182 
183 /* tlbie instruction synchronization */
184 static struct mtx tlbie_mtx;
185 
186 /*
187  * PTEG data.
188  */
189 static struct	pteg *moea_pteg_table;
190 u_int		moea_pteg_count;
191 u_int		moea_pteg_mask;
192 
193 /*
194  * PVO data.
195  */
196 struct	pvo_head *moea_pvo_table;		/* pvo entries by pteg index */
197 struct	pvo_head moea_pvo_kunmanaged =
198     LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged);	/* list of unmanaged pages */
199 
200 static struct rwlock_padalign pvh_global_lock;
201 
202 uma_zone_t	moea_upvo_zone;	/* zone for pvo entries for unmanaged pages */
203 uma_zone_t	moea_mpvo_zone;	/* zone for pvo entries for managed pages */
204 
205 #define	BPVO_POOL_SIZE	32768
206 static struct	pvo_entry *moea_bpvo_pool;
207 static int	moea_bpvo_pool_index = 0;
208 
209 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
210 static u_int	moea_vsid_bitmap[NPMAPS / VSID_NBPW];
211 
212 static boolean_t moea_initialized = FALSE;
213 
214 /*
215  * Statistics.
216  */
217 u_int	moea_pte_valid = 0;
218 u_int	moea_pte_overflow = 0;
219 u_int	moea_pte_replacements = 0;
220 u_int	moea_pvo_entries = 0;
221 u_int	moea_pvo_enter_calls = 0;
222 u_int	moea_pvo_remove_calls = 0;
223 u_int	moea_pte_spills = 0;
224 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid,
225     0, "");
226 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD,
227     &moea_pte_overflow, 0, "");
228 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD,
229     &moea_pte_replacements, 0, "");
230 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries,
231     0, "");
232 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD,
233     &moea_pvo_enter_calls, 0, "");
234 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD,
235     &moea_pvo_remove_calls, 0, "");
236 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD,
237     &moea_pte_spills, 0, "");
238 
239 /*
240  * Allocate physical memory for use in moea_bootstrap.
241  */
242 static vm_offset_t	moea_bootstrap_alloc(vm_size_t, u_int);
243 
244 /*
245  * PTE calls.
246  */
247 static int		moea_pte_insert(u_int, struct pte *);
248 
249 /*
250  * PVO calls.
251  */
252 static int	moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
253 		    vm_offset_t, vm_offset_t, u_int, int);
254 static void	moea_pvo_remove(struct pvo_entry *, int);
255 static struct	pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *);
256 static struct	pte *moea_pvo_to_pte(const struct pvo_entry *, int);
257 
258 /*
259  * Utility routines.
260  */
261 static int		moea_enter_locked(pmap_t, vm_offset_t, vm_page_t,
262 			    vm_prot_t, u_int, int8_t);
263 static void		moea_syncicache(vm_offset_t, vm_size_t);
264 static boolean_t	moea_query_bit(vm_page_t, int);
265 static u_int		moea_clear_bit(vm_page_t, int);
266 static void		moea_kremove(mmu_t, vm_offset_t);
267 int		moea_pte_spill(vm_offset_t);
268 
269 /*
270  * Kernel MMU interface
271  */
272 void moea_clear_modify(mmu_t, vm_page_t);
273 void moea_copy_page(mmu_t, vm_page_t, vm_page_t);
274 void moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
275     vm_page_t *mb, vm_offset_t b_offset, int xfersize);
276 int moea_enter(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int,
277     int8_t);
278 void moea_enter_object(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_page_t,
279     vm_prot_t);
280 void moea_enter_quick(mmu_t, pmap_t, vm_offset_t, vm_page_t, vm_prot_t);
281 vm_paddr_t moea_extract(mmu_t, pmap_t, vm_offset_t);
282 vm_page_t moea_extract_and_hold(mmu_t, pmap_t, vm_offset_t, vm_prot_t);
283 void moea_init(mmu_t);
284 boolean_t moea_is_modified(mmu_t, vm_page_t);
285 boolean_t moea_is_prefaultable(mmu_t, pmap_t, vm_offset_t);
286 boolean_t moea_is_referenced(mmu_t, vm_page_t);
287 int moea_ts_referenced(mmu_t, vm_page_t);
288 vm_offset_t moea_map(mmu_t, vm_offset_t *, vm_paddr_t, vm_paddr_t, int);
289 boolean_t moea_page_exists_quick(mmu_t, pmap_t, vm_page_t);
290 int moea_page_wired_mappings(mmu_t, vm_page_t);
291 void moea_pinit(mmu_t, pmap_t);
292 void moea_pinit0(mmu_t, pmap_t);
293 void moea_protect(mmu_t, pmap_t, vm_offset_t, vm_offset_t, vm_prot_t);
294 void moea_qenter(mmu_t, vm_offset_t, vm_page_t *, int);
295 void moea_qremove(mmu_t, vm_offset_t, int);
296 void moea_release(mmu_t, pmap_t);
297 void moea_remove(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
298 void moea_remove_all(mmu_t, vm_page_t);
299 void moea_remove_write(mmu_t, vm_page_t);
300 void moea_unwire(mmu_t, pmap_t, vm_offset_t, vm_offset_t);
301 void moea_zero_page(mmu_t, vm_page_t);
302 void moea_zero_page_area(mmu_t, vm_page_t, int, int);
303 void moea_zero_page_idle(mmu_t, vm_page_t);
304 void moea_activate(mmu_t, struct thread *);
305 void moea_deactivate(mmu_t, struct thread *);
306 void moea_cpu_bootstrap(mmu_t, int);
307 void moea_bootstrap(mmu_t, vm_offset_t, vm_offset_t);
308 void *moea_mapdev(mmu_t, vm_paddr_t, vm_size_t);
309 void *moea_mapdev_attr(mmu_t, vm_offset_t, vm_size_t, vm_memattr_t);
310 void moea_unmapdev(mmu_t, vm_offset_t, vm_size_t);
311 vm_paddr_t moea_kextract(mmu_t, vm_offset_t);
312 void moea_kenter_attr(mmu_t, vm_offset_t, vm_offset_t, vm_memattr_t);
313 void moea_kenter(mmu_t, vm_offset_t, vm_paddr_t);
314 void moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma);
315 boolean_t moea_dev_direct_mapped(mmu_t, vm_paddr_t, vm_size_t);
316 static void moea_sync_icache(mmu_t, pmap_t, vm_offset_t, vm_size_t);
317 void moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va);
318 void moea_scan_init(mmu_t mmu);
319 
320 static mmu_method_t moea_methods[] = {
321 	MMUMETHOD(mmu_clear_modify,	moea_clear_modify),
322 	MMUMETHOD(mmu_copy_page,	moea_copy_page),
323 	MMUMETHOD(mmu_copy_pages,	moea_copy_pages),
324 	MMUMETHOD(mmu_enter,		moea_enter),
325 	MMUMETHOD(mmu_enter_object,	moea_enter_object),
326 	MMUMETHOD(mmu_enter_quick,	moea_enter_quick),
327 	MMUMETHOD(mmu_extract,		moea_extract),
328 	MMUMETHOD(mmu_extract_and_hold,	moea_extract_and_hold),
329 	MMUMETHOD(mmu_init,		moea_init),
330 	MMUMETHOD(mmu_is_modified,	moea_is_modified),
331 	MMUMETHOD(mmu_is_prefaultable,	moea_is_prefaultable),
332 	MMUMETHOD(mmu_is_referenced,	moea_is_referenced),
333 	MMUMETHOD(mmu_ts_referenced,	moea_ts_referenced),
334 	MMUMETHOD(mmu_map,     		moea_map),
335 	MMUMETHOD(mmu_page_exists_quick,moea_page_exists_quick),
336 	MMUMETHOD(mmu_page_wired_mappings,moea_page_wired_mappings),
337 	MMUMETHOD(mmu_pinit,		moea_pinit),
338 	MMUMETHOD(mmu_pinit0,		moea_pinit0),
339 	MMUMETHOD(mmu_protect,		moea_protect),
340 	MMUMETHOD(mmu_qenter,		moea_qenter),
341 	MMUMETHOD(mmu_qremove,		moea_qremove),
342 	MMUMETHOD(mmu_release,		moea_release),
343 	MMUMETHOD(mmu_remove,		moea_remove),
344 	MMUMETHOD(mmu_remove_all,      	moea_remove_all),
345 	MMUMETHOD(mmu_remove_write,	moea_remove_write),
346 	MMUMETHOD(mmu_sync_icache,	moea_sync_icache),
347 	MMUMETHOD(mmu_unwire,		moea_unwire),
348 	MMUMETHOD(mmu_zero_page,       	moea_zero_page),
349 	MMUMETHOD(mmu_zero_page_area,	moea_zero_page_area),
350 	MMUMETHOD(mmu_zero_page_idle,	moea_zero_page_idle),
351 	MMUMETHOD(mmu_activate,		moea_activate),
352 	MMUMETHOD(mmu_deactivate,      	moea_deactivate),
353 	MMUMETHOD(mmu_page_set_memattr,	moea_page_set_memattr),
354 
355 	/* Internal interfaces */
356 	MMUMETHOD(mmu_bootstrap,       	moea_bootstrap),
357 	MMUMETHOD(mmu_cpu_bootstrap,   	moea_cpu_bootstrap),
358 	MMUMETHOD(mmu_mapdev_attr,	moea_mapdev_attr),
359 	MMUMETHOD(mmu_mapdev,		moea_mapdev),
360 	MMUMETHOD(mmu_unmapdev,		moea_unmapdev),
361 	MMUMETHOD(mmu_kextract,		moea_kextract),
362 	MMUMETHOD(mmu_kenter,		moea_kenter),
363 	MMUMETHOD(mmu_kenter_attr,	moea_kenter_attr),
364 	MMUMETHOD(mmu_dev_direct_mapped,moea_dev_direct_mapped),
365 	MMUMETHOD(mmu_scan_init,	moea_scan_init),
366 	MMUMETHOD(mmu_dumpsys_map,	moea_dumpsys_map),
367 
368 	{ 0, 0 }
369 };
370 
371 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods, 0);
372 
373 static __inline uint32_t
374 moea_calc_wimg(vm_offset_t pa, vm_memattr_t ma)
375 {
376 	uint32_t pte_lo;
377 	int i;
378 
379 	if (ma != VM_MEMATTR_DEFAULT) {
380 		switch (ma) {
381 		case VM_MEMATTR_UNCACHEABLE:
382 			return (PTE_I | PTE_G);
383 		case VM_MEMATTR_WRITE_COMBINING:
384 		case VM_MEMATTR_WRITE_BACK:
385 		case VM_MEMATTR_PREFETCHABLE:
386 			return (PTE_I);
387 		case VM_MEMATTR_WRITE_THROUGH:
388 			return (PTE_W | PTE_M);
389 		}
390 	}
391 
392 	/*
393 	 * Assume the page is cache inhibited and access is guarded unless
394 	 * it's in our available memory array.
395 	 */
396 	pte_lo = PTE_I | PTE_G;
397 	for (i = 0; i < pregions_sz; i++) {
398 		if ((pa >= pregions[i].mr_start) &&
399 		    (pa < (pregions[i].mr_start + pregions[i].mr_size))) {
400 			pte_lo = PTE_M;
401 			break;
402 		}
403 	}
404 
405 	return pte_lo;
406 }
407 
408 static void
409 tlbie(vm_offset_t va)
410 {
411 
412 	mtx_lock_spin(&tlbie_mtx);
413 	__asm __volatile("ptesync");
414 	__asm __volatile("tlbie %0" :: "r"(va));
415 	__asm __volatile("eieio; tlbsync; ptesync");
416 	mtx_unlock_spin(&tlbie_mtx);
417 }
418 
419 static void
420 tlbia(void)
421 {
422 	vm_offset_t va;
423 
424 	for (va = 0; va < 0x00040000; va += 0x00001000) {
425 		__asm __volatile("tlbie %0" :: "r"(va));
426 		powerpc_sync();
427 	}
428 	__asm __volatile("tlbsync");
429 	powerpc_sync();
430 }
431 
432 static __inline int
433 va_to_sr(u_int *sr, vm_offset_t va)
434 {
435 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
436 }
437 
438 static __inline u_int
439 va_to_pteg(u_int sr, vm_offset_t addr)
440 {
441 	u_int hash;
442 
443 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
444 	    ADDR_PIDX_SHFT);
445 	return (hash & moea_pteg_mask);
446 }
447 
448 static __inline struct pvo_head *
449 vm_page_to_pvoh(vm_page_t m)
450 {
451 
452 	return (&m->md.mdpg_pvoh);
453 }
454 
455 static __inline void
456 moea_attr_clear(vm_page_t m, int ptebit)
457 {
458 
459 	rw_assert(&pvh_global_lock, RA_WLOCKED);
460 	m->md.mdpg_attrs &= ~ptebit;
461 }
462 
463 static __inline int
464 moea_attr_fetch(vm_page_t m)
465 {
466 
467 	return (m->md.mdpg_attrs);
468 }
469 
470 static __inline void
471 moea_attr_save(vm_page_t m, int ptebit)
472 {
473 
474 	rw_assert(&pvh_global_lock, RA_WLOCKED);
475 	m->md.mdpg_attrs |= ptebit;
476 }
477 
478 static __inline int
479 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
480 {
481 	if (pt->pte_hi == pvo_pt->pte_hi)
482 		return (1);
483 
484 	return (0);
485 }
486 
487 static __inline int
488 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
489 {
490 	return (pt->pte_hi & ~PTE_VALID) ==
491 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
492 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
493 }
494 
495 static __inline void
496 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
497 {
498 
499 	mtx_assert(&moea_table_mutex, MA_OWNED);
500 
501 	/*
502 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
503 	 * set when the real pte is set in memory.
504 	 *
505 	 * Note: Don't set the valid bit for correct operation of tlb update.
506 	 */
507 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
508 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
509 	pt->pte_lo = pte_lo;
510 }
511 
512 static __inline void
513 moea_pte_synch(struct pte *pt, struct pte *pvo_pt)
514 {
515 
516 	mtx_assert(&moea_table_mutex, MA_OWNED);
517 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
518 }
519 
520 static __inline void
521 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
522 {
523 
524 	mtx_assert(&moea_table_mutex, MA_OWNED);
525 
526 	/*
527 	 * As shown in Section 7.6.3.2.3
528 	 */
529 	pt->pte_lo &= ~ptebit;
530 	tlbie(va);
531 }
532 
533 static __inline void
534 moea_pte_set(struct pte *pt, struct pte *pvo_pt)
535 {
536 
537 	mtx_assert(&moea_table_mutex, MA_OWNED);
538 	pvo_pt->pte_hi |= PTE_VALID;
539 
540 	/*
541 	 * Update the PTE as defined in section 7.6.3.1.
542 	 * Note that the REF/CHG bits are from pvo_pt and thus should have
543 	 * been saved so this routine can restore them (if desired).
544 	 */
545 	pt->pte_lo = pvo_pt->pte_lo;
546 	powerpc_sync();
547 	pt->pte_hi = pvo_pt->pte_hi;
548 	powerpc_sync();
549 	moea_pte_valid++;
550 }
551 
552 static __inline void
553 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
554 {
555 
556 	mtx_assert(&moea_table_mutex, MA_OWNED);
557 	pvo_pt->pte_hi &= ~PTE_VALID;
558 
559 	/*
560 	 * Force the reg & chg bits back into the PTEs.
561 	 */
562 	powerpc_sync();
563 
564 	/*
565 	 * Invalidate the pte.
566 	 */
567 	pt->pte_hi &= ~PTE_VALID;
568 
569 	tlbie(va);
570 
571 	/*
572 	 * Save the reg & chg bits.
573 	 */
574 	moea_pte_synch(pt, pvo_pt);
575 	moea_pte_valid--;
576 }
577 
578 static __inline void
579 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
580 {
581 
582 	/*
583 	 * Invalidate the PTE
584 	 */
585 	moea_pte_unset(pt, pvo_pt, va);
586 	moea_pte_set(pt, pvo_pt);
587 }
588 
589 /*
590  * Quick sort callout for comparing memory regions.
591  */
592 static int	om_cmp(const void *a, const void *b);
593 
594 static int
595 om_cmp(const void *a, const void *b)
596 {
597 	const struct	ofw_map *mapa;
598 	const struct	ofw_map *mapb;
599 
600 	mapa = a;
601 	mapb = b;
602 	if (mapa->om_pa < mapb->om_pa)
603 		return (-1);
604 	else if (mapa->om_pa > mapb->om_pa)
605 		return (1);
606 	else
607 		return (0);
608 }
609 
610 void
611 moea_cpu_bootstrap(mmu_t mmup, int ap)
612 {
613 	u_int sdr;
614 	int i;
615 
616 	if (ap) {
617 		powerpc_sync();
618 		__asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu));
619 		__asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl));
620 		isync();
621 		__asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu));
622 		__asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl));
623 		isync();
624 	}
625 
626 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
627 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
628 	isync();
629 
630 	__asm __volatile("mtibatu 1,%0" :: "r"(0));
631 	__asm __volatile("mtdbatu 2,%0" :: "r"(0));
632 	__asm __volatile("mtibatu 2,%0" :: "r"(0));
633 	__asm __volatile("mtdbatu 3,%0" :: "r"(0));
634 	__asm __volatile("mtibatu 3,%0" :: "r"(0));
635 	isync();
636 
637 	for (i = 0; i < 16; i++)
638 		mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]);
639 	powerpc_sync();
640 
641 	sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10);
642 	__asm __volatile("mtsdr1 %0" :: "r"(sdr));
643 	isync();
644 
645 	tlbia();
646 }
647 
648 void
649 moea_bootstrap(mmu_t mmup, vm_offset_t kernelstart, vm_offset_t kernelend)
650 {
651 	ihandle_t	mmui;
652 	phandle_t	chosen, mmu;
653 	int		sz;
654 	int		i, j;
655 	vm_size_t	size, physsz, hwphyssz;
656 	vm_offset_t	pa, va, off;
657 	void		*dpcpu;
658 	register_t	msr;
659 
660         /*
661          * Set up BAT0 to map the lowest 256 MB area
662          */
663         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
664         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
665 
666 	/*
667 	 * Map PCI memory space.
668 	 */
669 	battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
670 	battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
671 
672 	battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
673 	battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
674 
675 	battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
676 	battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
677 
678 	battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
679 	battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
680 
681 	/*
682 	 * Map obio devices.
683 	 */
684 	battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
685 	battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
686 
687 	/*
688 	 * Use an IBAT and a DBAT to map the bottom segment of memory
689 	 * where we are. Turn off instruction relocation temporarily
690 	 * to prevent faults while reprogramming the IBAT.
691 	 */
692 	msr = mfmsr();
693 	mtmsr(msr & ~PSL_IR);
694 	__asm (".balign 32; \n"
695 	       "mtibatu 0,%0; mtibatl 0,%1; isync; \n"
696 	       "mtdbatu 0,%0; mtdbatl 0,%1; isync"
697 	    :: "r"(battable[0].batu), "r"(battable[0].batl));
698 	mtmsr(msr);
699 
700 	/* map pci space */
701 	__asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu));
702 	__asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl));
703 	isync();
704 
705 	/* set global direct map flag */
706 	hw_direct_map = 1;
707 
708 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
709 	CTR0(KTR_PMAP, "moea_bootstrap: physical memory");
710 
711 	for (i = 0; i < pregions_sz; i++) {
712 		vm_offset_t pa;
713 		vm_offset_t end;
714 
715 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
716 			pregions[i].mr_start,
717 			pregions[i].mr_start + pregions[i].mr_size,
718 			pregions[i].mr_size);
719 		/*
720 		 * Install entries into the BAT table to allow all
721 		 * of physmem to be convered by on-demand BAT entries.
722 		 * The loop will sometimes set the same battable element
723 		 * twice, but that's fine since they won't be used for
724 		 * a while yet.
725 		 */
726 		pa = pregions[i].mr_start & 0xf0000000;
727 		end = pregions[i].mr_start + pregions[i].mr_size;
728 		do {
729                         u_int n = pa >> ADDR_SR_SHFT;
730 
731 			battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW);
732 			battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs);
733 			pa += SEGMENT_LENGTH;
734 		} while (pa < end);
735 	}
736 
737 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
738 		panic("moea_bootstrap: phys_avail too small");
739 
740 	phys_avail_count = 0;
741 	physsz = 0;
742 	hwphyssz = 0;
743 	TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz);
744 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
745 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
746 		    regions[i].mr_start + regions[i].mr_size,
747 		    regions[i].mr_size);
748 		if (hwphyssz != 0 &&
749 		    (physsz + regions[i].mr_size) >= hwphyssz) {
750 			if (physsz < hwphyssz) {
751 				phys_avail[j] = regions[i].mr_start;
752 				phys_avail[j + 1] = regions[i].mr_start +
753 				    hwphyssz - physsz;
754 				physsz = hwphyssz;
755 				phys_avail_count++;
756 			}
757 			break;
758 		}
759 		phys_avail[j] = regions[i].mr_start;
760 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
761 		phys_avail_count++;
762 		physsz += regions[i].mr_size;
763 	}
764 
765 	/* Check for overlap with the kernel and exception vectors */
766 	for (j = 0; j < 2*phys_avail_count; j+=2) {
767 		if (phys_avail[j] < EXC_LAST)
768 			phys_avail[j] += EXC_LAST;
769 
770 		if (kernelstart >= phys_avail[j] &&
771 		    kernelstart < phys_avail[j+1]) {
772 			if (kernelend < phys_avail[j+1]) {
773 				phys_avail[2*phys_avail_count] =
774 				    (kernelend & ~PAGE_MASK) + PAGE_SIZE;
775 				phys_avail[2*phys_avail_count + 1] =
776 				    phys_avail[j+1];
777 				phys_avail_count++;
778 			}
779 
780 			phys_avail[j+1] = kernelstart & ~PAGE_MASK;
781 		}
782 
783 		if (kernelend >= phys_avail[j] &&
784 		    kernelend < phys_avail[j+1]) {
785 			if (kernelstart > phys_avail[j]) {
786 				phys_avail[2*phys_avail_count] = phys_avail[j];
787 				phys_avail[2*phys_avail_count + 1] =
788 				    kernelstart & ~PAGE_MASK;
789 				phys_avail_count++;
790 			}
791 
792 			phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE;
793 		}
794 	}
795 
796 	physmem = btoc(physsz);
797 
798 	/*
799 	 * Allocate PTEG table.
800 	 */
801 #ifdef PTEGCOUNT
802 	moea_pteg_count = PTEGCOUNT;
803 #else
804 	moea_pteg_count = 0x1000;
805 
806 	while (moea_pteg_count < physmem)
807 		moea_pteg_count <<= 1;
808 
809 	moea_pteg_count >>= 1;
810 #endif /* PTEGCOUNT */
811 
812 	size = moea_pteg_count * sizeof(struct pteg);
813 	CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count,
814 	    size);
815 	moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size);
816 	CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table);
817 	bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg));
818 	moea_pteg_mask = moea_pteg_count - 1;
819 
820 	/*
821 	 * Allocate pv/overflow lists.
822 	 */
823 	size = sizeof(struct pvo_head) * moea_pteg_count;
824 	moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size,
825 	    PAGE_SIZE);
826 	CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table);
827 	for (i = 0; i < moea_pteg_count; i++)
828 		LIST_INIT(&moea_pvo_table[i]);
829 
830 	/*
831 	 * Initialize the lock that synchronizes access to the pteg and pvo
832 	 * tables.
833 	 */
834 	mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF |
835 	    MTX_RECURSE);
836 	mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF);
837 
838 	mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN);
839 
840 	/*
841 	 * Initialise the unmanaged pvo pool.
842 	 */
843 	moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc(
844 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
845 	moea_bpvo_pool_index = 0;
846 
847 	/*
848 	 * Make sure kernel vsid is allocated as well as VSID 0.
849 	 */
850 	moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
851 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
852 	moea_vsid_bitmap[0] |= 1;
853 
854 	/*
855 	 * Initialize the kernel pmap (which is statically allocated).
856 	 */
857 	PMAP_LOCK_INIT(kernel_pmap);
858 	for (i = 0; i < 16; i++)
859 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i;
860 	CPU_FILL(&kernel_pmap->pm_active);
861 	RB_INIT(&kernel_pmap->pmap_pvo);
862 
863  	/*
864 	 * Initialize the global pv list lock.
865 	 */
866 	rw_init(&pvh_global_lock, "pmap pv global");
867 
868 	/*
869 	 * Set up the Open Firmware mappings
870 	 */
871 	chosen = OF_finddevice("/chosen");
872 	if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 &&
873 	    (mmu = OF_instance_to_package(mmui)) != -1 &&
874 	    (sz = OF_getproplen(mmu, "translations")) != -1) {
875 		translations = NULL;
876 		for (i = 0; phys_avail[i] != 0; i += 2) {
877 			if (phys_avail[i + 1] >= sz) {
878 				translations = (struct ofw_map *)phys_avail[i];
879 				break;
880 			}
881 		}
882 		if (translations == NULL)
883 			panic("moea_bootstrap: no space to copy translations");
884 		bzero(translations, sz);
885 		if (OF_getprop(mmu, "translations", translations, sz) == -1)
886 			panic("moea_bootstrap: can't get ofw translations");
887 		CTR0(KTR_PMAP, "moea_bootstrap: translations");
888 		sz /= sizeof(*translations);
889 		qsort(translations, sz, sizeof (*translations), om_cmp);
890 		for (i = 0; i < sz; i++) {
891 			CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
892 			    translations[i].om_pa, translations[i].om_va,
893 			    translations[i].om_len);
894 
895 			/*
896 			 * If the mapping is 1:1, let the RAM and device
897 			 * on-demand BAT tables take care of the translation.
898 			 */
899 			if (translations[i].om_va == translations[i].om_pa)
900 				continue;
901 
902 			/* Enter the pages */
903 			for (off = 0; off < translations[i].om_len;
904 			    off += PAGE_SIZE)
905 				moea_kenter(mmup, translations[i].om_va + off,
906 					    translations[i].om_pa + off);
907 		}
908 	}
909 
910 	/*
911 	 * Calculate the last available physical address.
912 	 */
913 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
914 		;
915 	Maxmem = powerpc_btop(phys_avail[i + 1]);
916 
917 	moea_cpu_bootstrap(mmup,0);
918 
919 	pmap_bootstrapped++;
920 
921 	/*
922 	 * Set the start and end of kva.
923 	 */
924 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
925 	virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS;
926 
927 	/*
928 	 * Allocate a kernel stack with a guard page for thread0 and map it
929 	 * into the kernel page map.
930 	 */
931 	pa = moea_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, PAGE_SIZE);
932 	va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE;
933 	virtual_avail = va + KSTACK_PAGES * PAGE_SIZE;
934 	CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va);
935 	thread0.td_kstack = va;
936 	thread0.td_kstack_pages = KSTACK_PAGES;
937 	for (i = 0; i < KSTACK_PAGES; i++) {
938 		moea_kenter(mmup, va, pa);
939 		pa += PAGE_SIZE;
940 		va += PAGE_SIZE;
941 	}
942 
943 	/*
944 	 * Allocate virtual address space for the message buffer.
945 	 */
946 	pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE);
947 	msgbufp = (struct msgbuf *)virtual_avail;
948 	va = virtual_avail;
949 	virtual_avail += round_page(msgbufsize);
950 	while (va < virtual_avail) {
951 		moea_kenter(mmup, va, pa);
952 		pa += PAGE_SIZE;
953 		va += PAGE_SIZE;
954 	}
955 
956 	/*
957 	 * Allocate virtual address space for the dynamic percpu area.
958 	 */
959 	pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE);
960 	dpcpu = (void *)virtual_avail;
961 	va = virtual_avail;
962 	virtual_avail += DPCPU_SIZE;
963 	while (va < virtual_avail) {
964 		moea_kenter(mmup, va, pa);
965 		pa += PAGE_SIZE;
966 		va += PAGE_SIZE;
967 	}
968 	dpcpu_init(dpcpu, 0);
969 }
970 
971 /*
972  * Activate a user pmap.  The pmap must be activated before it's address
973  * space can be accessed in any way.
974  */
975 void
976 moea_activate(mmu_t mmu, struct thread *td)
977 {
978 	pmap_t	pm, pmr;
979 
980 	/*
981 	 * Load all the data we need up front to encourage the compiler to
982 	 * not issue any loads while we have interrupts disabled below.
983 	 */
984 	pm = &td->td_proc->p_vmspace->vm_pmap;
985 	pmr = pm->pmap_phys;
986 
987 	CPU_SET(PCPU_GET(cpuid), &pm->pm_active);
988 	PCPU_SET(curpmap, pmr);
989 }
990 
991 void
992 moea_deactivate(mmu_t mmu, struct thread *td)
993 {
994 	pmap_t	pm;
995 
996 	pm = &td->td_proc->p_vmspace->vm_pmap;
997 	CPU_CLR(PCPU_GET(cpuid), &pm->pm_active);
998 	PCPU_SET(curpmap, NULL);
999 }
1000 
1001 void
1002 moea_unwire(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1003 {
1004 	struct	pvo_entry key, *pvo;
1005 
1006 	PMAP_LOCK(pm);
1007 	key.pvo_vaddr = sva;
1008 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1009 	    pvo != NULL && PVO_VADDR(pvo) < eva;
1010 	    pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) {
1011 		if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
1012 			panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo);
1013 		pvo->pvo_vaddr &= ~PVO_WIRED;
1014 		pm->pm_stats.wired_count--;
1015 	}
1016 	PMAP_UNLOCK(pm);
1017 }
1018 
1019 void
1020 moea_copy_page(mmu_t mmu, vm_page_t msrc, vm_page_t mdst)
1021 {
1022 	vm_offset_t	dst;
1023 	vm_offset_t	src;
1024 
1025 	dst = VM_PAGE_TO_PHYS(mdst);
1026 	src = VM_PAGE_TO_PHYS(msrc);
1027 
1028 	bcopy((void *)src, (void *)dst, PAGE_SIZE);
1029 }
1030 
1031 void
1032 moea_copy_pages(mmu_t mmu, vm_page_t *ma, vm_offset_t a_offset,
1033     vm_page_t *mb, vm_offset_t b_offset, int xfersize)
1034 {
1035 	void *a_cp, *b_cp;
1036 	vm_offset_t a_pg_offset, b_pg_offset;
1037 	int cnt;
1038 
1039 	while (xfersize > 0) {
1040 		a_pg_offset = a_offset & PAGE_MASK;
1041 		cnt = min(xfersize, PAGE_SIZE - a_pg_offset);
1042 		a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) +
1043 		    a_pg_offset;
1044 		b_pg_offset = b_offset & PAGE_MASK;
1045 		cnt = min(cnt, PAGE_SIZE - b_pg_offset);
1046 		b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) +
1047 		    b_pg_offset;
1048 		bcopy(a_cp, b_cp, cnt);
1049 		a_offset += cnt;
1050 		b_offset += cnt;
1051 		xfersize -= cnt;
1052 	}
1053 }
1054 
1055 /*
1056  * Zero a page of physical memory by temporarily mapping it into the tlb.
1057  */
1058 void
1059 moea_zero_page(mmu_t mmu, vm_page_t m)
1060 {
1061 	vm_offset_t off, pa = VM_PAGE_TO_PHYS(m);
1062 
1063 	for (off = 0; off < PAGE_SIZE; off += cacheline_size)
1064 		__asm __volatile("dcbz 0,%0" :: "r"(pa + off));
1065 }
1066 
1067 void
1068 moea_zero_page_area(mmu_t mmu, vm_page_t m, int off, int size)
1069 {
1070 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
1071 	void *va = (void *)(pa + off);
1072 
1073 	bzero(va, size);
1074 }
1075 
1076 void
1077 moea_zero_page_idle(mmu_t mmu, vm_page_t m)
1078 {
1079 
1080 	moea_zero_page(mmu, m);
1081 }
1082 
1083 /*
1084  * Map the given physical page at the specified virtual address in the
1085  * target pmap with the protection requested.  If specified the page
1086  * will be wired down.
1087  */
1088 int
1089 moea_enter(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1090     u_int flags, int8_t psind)
1091 {
1092 	int error;
1093 
1094 	for (;;) {
1095 		rw_wlock(&pvh_global_lock);
1096 		PMAP_LOCK(pmap);
1097 		error = moea_enter_locked(pmap, va, m, prot, flags, psind);
1098 		rw_wunlock(&pvh_global_lock);
1099 		PMAP_UNLOCK(pmap);
1100 		if (error != ENOMEM)
1101 			return (KERN_SUCCESS);
1102 		if ((flags & PMAP_ENTER_NOSLEEP) != 0)
1103 			return (KERN_RESOURCE_SHORTAGE);
1104 		VM_OBJECT_ASSERT_UNLOCKED(m->object);
1105 		VM_WAIT;
1106 	}
1107 }
1108 
1109 /*
1110  * Map the given physical page at the specified virtual address in the
1111  * target pmap with the protection requested.  If specified the page
1112  * will be wired down.
1113  *
1114  * The global pvh and pmap must be locked.
1115  */
1116 static int
1117 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
1118     u_int flags, int8_t psind __unused)
1119 {
1120 	struct		pvo_head *pvo_head;
1121 	uma_zone_t	zone;
1122 	u_int		pte_lo, pvo_flags;
1123 	int		error;
1124 
1125 	if (pmap_bootstrapped)
1126 		rw_assert(&pvh_global_lock, RA_WLOCKED);
1127 	PMAP_LOCK_ASSERT(pmap, MA_OWNED);
1128 	if ((m->oflags & VPO_UNMANAGED) == 0 && !vm_page_xbusied(m))
1129 		VM_OBJECT_ASSERT_LOCKED(m->object);
1130 
1131 	if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) {
1132 		pvo_head = &moea_pvo_kunmanaged;
1133 		zone = moea_upvo_zone;
1134 		pvo_flags = 0;
1135 	} else {
1136 		pvo_head = vm_page_to_pvoh(m);
1137 		zone = moea_mpvo_zone;
1138 		pvo_flags = PVO_MANAGED;
1139 	}
1140 
1141 	pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m));
1142 
1143 	if (prot & VM_PROT_WRITE) {
1144 		pte_lo |= PTE_BW;
1145 		if (pmap_bootstrapped &&
1146 		    (m->oflags & VPO_UNMANAGED) == 0)
1147 			vm_page_aflag_set(m, PGA_WRITEABLE);
1148 	} else
1149 		pte_lo |= PTE_BR;
1150 
1151 	if ((flags & PMAP_ENTER_WIRED) != 0)
1152 		pvo_flags |= PVO_WIRED;
1153 
1154 	error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1155 	    pte_lo, pvo_flags);
1156 
1157 	/*
1158 	 * Flush the real page from the instruction cache. This has be done
1159 	 * for all user mappings to prevent information leakage via the
1160 	 * instruction cache. moea_pvo_enter() returns ENOENT for the first
1161 	 * mapping for a page.
1162 	 */
1163 	if (pmap != kernel_pmap && error == ENOENT &&
1164 	    (pte_lo & (PTE_I | PTE_G)) == 0)
1165 		moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1166 
1167 	return (error);
1168 }
1169 
1170 /*
1171  * Maps a sequence of resident pages belonging to the same object.
1172  * The sequence begins with the given page m_start.  This page is
1173  * mapped at the given virtual address start.  Each subsequent page is
1174  * mapped at a virtual address that is offset from start by the same
1175  * amount as the page is offset from m_start within the object.  The
1176  * last page in the sequence is the page with the largest offset from
1177  * m_start that can be mapped at a virtual address less than the given
1178  * virtual address end.  Not every virtual page between start and end
1179  * is mapped; only those for which a resident page exists with the
1180  * corresponding offset from m_start are mapped.
1181  */
1182 void
1183 moea_enter_object(mmu_t mmu, pmap_t pm, vm_offset_t start, vm_offset_t end,
1184     vm_page_t m_start, vm_prot_t prot)
1185 {
1186 	vm_page_t m;
1187 	vm_pindex_t diff, psize;
1188 
1189 	VM_OBJECT_ASSERT_LOCKED(m_start->object);
1190 
1191 	psize = atop(end - start);
1192 	m = m_start;
1193 	rw_wlock(&pvh_global_lock);
1194 	PMAP_LOCK(pm);
1195 	while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) {
1196 		moea_enter_locked(pm, start + ptoa(diff), m, prot &
1197 		    (VM_PROT_READ | VM_PROT_EXECUTE), 0, 0);
1198 		m = TAILQ_NEXT(m, listq);
1199 	}
1200 	rw_wunlock(&pvh_global_lock);
1201 	PMAP_UNLOCK(pm);
1202 }
1203 
1204 void
1205 moea_enter_quick(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_page_t m,
1206     vm_prot_t prot)
1207 {
1208 
1209 	rw_wlock(&pvh_global_lock);
1210 	PMAP_LOCK(pm);
1211 	moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE),
1212 	    0, 0);
1213 	rw_wunlock(&pvh_global_lock);
1214 	PMAP_UNLOCK(pm);
1215 }
1216 
1217 vm_paddr_t
1218 moea_extract(mmu_t mmu, pmap_t pm, vm_offset_t va)
1219 {
1220 	struct	pvo_entry *pvo;
1221 	vm_paddr_t pa;
1222 
1223 	PMAP_LOCK(pm);
1224 	pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1225 	if (pvo == NULL)
1226 		pa = 0;
1227 	else
1228 		pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1229 	PMAP_UNLOCK(pm);
1230 	return (pa);
1231 }
1232 
1233 /*
1234  * Atomically extract and hold the physical page with the given
1235  * pmap and virtual address pair if that mapping permits the given
1236  * protection.
1237  */
1238 vm_page_t
1239 moea_extract_and_hold(mmu_t mmu, pmap_t pmap, vm_offset_t va, vm_prot_t prot)
1240 {
1241 	struct	pvo_entry *pvo;
1242 	vm_page_t m;
1243         vm_paddr_t pa;
1244 
1245 	m = NULL;
1246 	pa = 0;
1247 	PMAP_LOCK(pmap);
1248 retry:
1249 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1250 	if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) &&
1251 	    ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW ||
1252 	     (prot & VM_PROT_WRITE) == 0)) {
1253 		if (vm_page_pa_tryrelock(pmap, pvo->pvo_pte.pte.pte_lo & PTE_RPGN, &pa))
1254 			goto retry;
1255 		m = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
1256 		vm_page_hold(m);
1257 	}
1258 	PA_UNLOCK_COND(pa);
1259 	PMAP_UNLOCK(pmap);
1260 	return (m);
1261 }
1262 
1263 void
1264 moea_init(mmu_t mmu)
1265 {
1266 
1267 	moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1268 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1269 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1270 	moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1271 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR,
1272 	    UMA_ZONE_VM | UMA_ZONE_NOFREE);
1273 	moea_initialized = TRUE;
1274 }
1275 
1276 boolean_t
1277 moea_is_referenced(mmu_t mmu, vm_page_t m)
1278 {
1279 	boolean_t rv;
1280 
1281 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1282 	    ("moea_is_referenced: page %p is not managed", m));
1283 	rw_wlock(&pvh_global_lock);
1284 	rv = moea_query_bit(m, PTE_REF);
1285 	rw_wunlock(&pvh_global_lock);
1286 	return (rv);
1287 }
1288 
1289 boolean_t
1290 moea_is_modified(mmu_t mmu, vm_page_t m)
1291 {
1292 	boolean_t rv;
1293 
1294 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1295 	    ("moea_is_modified: page %p is not managed", m));
1296 
1297 	/*
1298 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1299 	 * concurrently set while the object is locked.  Thus, if PGA_WRITEABLE
1300 	 * is clear, no PTEs can have PTE_CHG set.
1301 	 */
1302 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1303 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1304 		return (FALSE);
1305 	rw_wlock(&pvh_global_lock);
1306 	rv = moea_query_bit(m, PTE_CHG);
1307 	rw_wunlock(&pvh_global_lock);
1308 	return (rv);
1309 }
1310 
1311 boolean_t
1312 moea_is_prefaultable(mmu_t mmu, pmap_t pmap, vm_offset_t va)
1313 {
1314 	struct pvo_entry *pvo;
1315 	boolean_t rv;
1316 
1317 	PMAP_LOCK(pmap);
1318 	pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL);
1319 	rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0;
1320 	PMAP_UNLOCK(pmap);
1321 	return (rv);
1322 }
1323 
1324 void
1325 moea_clear_modify(mmu_t mmu, vm_page_t m)
1326 {
1327 
1328 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1329 	    ("moea_clear_modify: page %p is not managed", m));
1330 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1331 	KASSERT(!vm_page_xbusied(m),
1332 	    ("moea_clear_modify: page %p is exclusive busy", m));
1333 
1334 	/*
1335 	 * If the page is not PGA_WRITEABLE, then no PTEs can have PTE_CHG
1336 	 * set.  If the object containing the page is locked and the page is
1337 	 * not exclusive busied, then PGA_WRITEABLE cannot be concurrently set.
1338 	 */
1339 	if ((m->aflags & PGA_WRITEABLE) == 0)
1340 		return;
1341 	rw_wlock(&pvh_global_lock);
1342 	moea_clear_bit(m, PTE_CHG);
1343 	rw_wunlock(&pvh_global_lock);
1344 }
1345 
1346 /*
1347  * Clear the write and modified bits in each of the given page's mappings.
1348  */
1349 void
1350 moea_remove_write(mmu_t mmu, vm_page_t m)
1351 {
1352 	struct	pvo_entry *pvo;
1353 	struct	pte *pt;
1354 	pmap_t	pmap;
1355 	u_int	lo;
1356 
1357 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1358 	    ("moea_remove_write: page %p is not managed", m));
1359 
1360 	/*
1361 	 * If the page is not exclusive busied, then PGA_WRITEABLE cannot be
1362 	 * set by another thread while the object is locked.  Thus,
1363 	 * if PGA_WRITEABLE is clear, no page table entries need updating.
1364 	 */
1365 	VM_OBJECT_ASSERT_WLOCKED(m->object);
1366 	if (!vm_page_xbusied(m) && (m->aflags & PGA_WRITEABLE) == 0)
1367 		return;
1368 	rw_wlock(&pvh_global_lock);
1369 	lo = moea_attr_fetch(m);
1370 	powerpc_sync();
1371 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1372 		pmap = pvo->pvo_pmap;
1373 		PMAP_LOCK(pmap);
1374 		if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) {
1375 			pt = moea_pvo_to_pte(pvo, -1);
1376 			pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1377 			pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1378 			if (pt != NULL) {
1379 				moea_pte_synch(pt, &pvo->pvo_pte.pte);
1380 				lo |= pvo->pvo_pte.pte.pte_lo;
1381 				pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG;
1382 				moea_pte_change(pt, &pvo->pvo_pte.pte,
1383 				    pvo->pvo_vaddr);
1384 				mtx_unlock(&moea_table_mutex);
1385 			}
1386 		}
1387 		PMAP_UNLOCK(pmap);
1388 	}
1389 	if ((lo & PTE_CHG) != 0) {
1390 		moea_attr_clear(m, PTE_CHG);
1391 		vm_page_dirty(m);
1392 	}
1393 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1394 	rw_wunlock(&pvh_global_lock);
1395 }
1396 
1397 /*
1398  *	moea_ts_referenced:
1399  *
1400  *	Return a count of reference bits for a page, clearing those bits.
1401  *	It is not necessary for every reference bit to be cleared, but it
1402  *	is necessary that 0 only be returned when there are truly no
1403  *	reference bits set.
1404  *
1405  *	XXX: The exact number of bits to check and clear is a matter that
1406  *	should be tested and standardized at some point in the future for
1407  *	optimal aging of shared pages.
1408  */
1409 int
1410 moea_ts_referenced(mmu_t mmu, vm_page_t m)
1411 {
1412 	int count;
1413 
1414 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1415 	    ("moea_ts_referenced: page %p is not managed", m));
1416 	rw_wlock(&pvh_global_lock);
1417 	count = moea_clear_bit(m, PTE_REF);
1418 	rw_wunlock(&pvh_global_lock);
1419 	return (count);
1420 }
1421 
1422 /*
1423  * Modify the WIMG settings of all mappings for a page.
1424  */
1425 void
1426 moea_page_set_memattr(mmu_t mmu, vm_page_t m, vm_memattr_t ma)
1427 {
1428 	struct	pvo_entry *pvo;
1429 	struct	pvo_head *pvo_head;
1430 	struct	pte *pt;
1431 	pmap_t	pmap;
1432 	u_int	lo;
1433 
1434 	if ((m->oflags & VPO_UNMANAGED) != 0) {
1435 		m->md.mdpg_cache_attrs = ma;
1436 		return;
1437 	}
1438 
1439 	rw_wlock(&pvh_global_lock);
1440 	pvo_head = vm_page_to_pvoh(m);
1441 	lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma);
1442 
1443 	LIST_FOREACH(pvo, pvo_head, pvo_vlink) {
1444 		pmap = pvo->pvo_pmap;
1445 		PMAP_LOCK(pmap);
1446 		pt = moea_pvo_to_pte(pvo, -1);
1447 		pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG;
1448 		pvo->pvo_pte.pte.pte_lo |= lo;
1449 		if (pt != NULL) {
1450 			moea_pte_change(pt, &pvo->pvo_pte.pte,
1451 			    pvo->pvo_vaddr);
1452 			if (pvo->pvo_pmap == kernel_pmap)
1453 				isync();
1454 		}
1455 		mtx_unlock(&moea_table_mutex);
1456 		PMAP_UNLOCK(pmap);
1457 	}
1458 	m->md.mdpg_cache_attrs = ma;
1459 	rw_wunlock(&pvh_global_lock);
1460 }
1461 
1462 /*
1463  * Map a wired page into kernel virtual address space.
1464  */
1465 void
1466 moea_kenter(mmu_t mmu, vm_offset_t va, vm_paddr_t pa)
1467 {
1468 
1469 	moea_kenter_attr(mmu, va, pa, VM_MEMATTR_DEFAULT);
1470 }
1471 
1472 void
1473 moea_kenter_attr(mmu_t mmu, vm_offset_t va, vm_offset_t pa, vm_memattr_t ma)
1474 {
1475 	u_int		pte_lo;
1476 	int		error;
1477 
1478 #if 0
1479 	if (va < VM_MIN_KERNEL_ADDRESS)
1480 		panic("moea_kenter: attempt to enter non-kernel address %#x",
1481 		    va);
1482 #endif
1483 
1484 	pte_lo = moea_calc_wimg(pa, ma);
1485 
1486 	PMAP_LOCK(kernel_pmap);
1487 	error = moea_pvo_enter(kernel_pmap, moea_upvo_zone,
1488 	    &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1489 
1490 	if (error != 0 && error != ENOENT)
1491 		panic("moea_kenter: failed to enter va %#x pa %#x: %d", va,
1492 		    pa, error);
1493 
1494 	PMAP_UNLOCK(kernel_pmap);
1495 }
1496 
1497 /*
1498  * Extract the physical page address associated with the given kernel virtual
1499  * address.
1500  */
1501 vm_paddr_t
1502 moea_kextract(mmu_t mmu, vm_offset_t va)
1503 {
1504 	struct		pvo_entry *pvo;
1505 	vm_paddr_t pa;
1506 
1507 	/*
1508 	 * Allow direct mappings on 32-bit OEA
1509 	 */
1510 	if (va < VM_MIN_KERNEL_ADDRESS) {
1511 		return (va);
1512 	}
1513 
1514 	PMAP_LOCK(kernel_pmap);
1515 	pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1516 	KASSERT(pvo != NULL, ("moea_kextract: no addr found"));
1517 	pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF);
1518 	PMAP_UNLOCK(kernel_pmap);
1519 	return (pa);
1520 }
1521 
1522 /*
1523  * Remove a wired page from kernel virtual address space.
1524  */
1525 void
1526 moea_kremove(mmu_t mmu, vm_offset_t va)
1527 {
1528 
1529 	moea_remove(mmu, kernel_pmap, va, va + PAGE_SIZE);
1530 }
1531 
1532 /*
1533  * Map a range of physical addresses into kernel virtual address space.
1534  *
1535  * The value passed in *virt is a suggested virtual address for the mapping.
1536  * Architectures which can support a direct-mapped physical to virtual region
1537  * can return the appropriate address within that region, leaving '*virt'
1538  * unchanged.  We cannot and therefore do not; *virt is updated with the
1539  * first usable address after the mapped region.
1540  */
1541 vm_offset_t
1542 moea_map(mmu_t mmu, vm_offset_t *virt, vm_paddr_t pa_start,
1543     vm_paddr_t pa_end, int prot)
1544 {
1545 	vm_offset_t	sva, va;
1546 
1547 	sva = *virt;
1548 	va = sva;
1549 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1550 		moea_kenter(mmu, va, pa_start);
1551 	*virt = va;
1552 	return (sva);
1553 }
1554 
1555 /*
1556  * Returns true if the pmap's pv is one of the first
1557  * 16 pvs linked to from this page.  This count may
1558  * be changed upwards or downwards in the future; it
1559  * is only necessary that true be returned for a small
1560  * subset of pmaps for proper page aging.
1561  */
1562 boolean_t
1563 moea_page_exists_quick(mmu_t mmu, pmap_t pmap, vm_page_t m)
1564 {
1565         int loops;
1566 	struct pvo_entry *pvo;
1567 	boolean_t rv;
1568 
1569 	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
1570 	    ("moea_page_exists_quick: page %p is not managed", m));
1571 	loops = 0;
1572 	rv = FALSE;
1573 	rw_wlock(&pvh_global_lock);
1574 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
1575 		if (pvo->pvo_pmap == pmap) {
1576 			rv = TRUE;
1577 			break;
1578 		}
1579 		if (++loops >= 16)
1580 			break;
1581 	}
1582 	rw_wunlock(&pvh_global_lock);
1583 	return (rv);
1584 }
1585 
1586 /*
1587  * Return the number of managed mappings to the given physical page
1588  * that are wired.
1589  */
1590 int
1591 moea_page_wired_mappings(mmu_t mmu, vm_page_t m)
1592 {
1593 	struct pvo_entry *pvo;
1594 	int count;
1595 
1596 	count = 0;
1597 	if ((m->oflags & VPO_UNMANAGED) != 0)
1598 		return (count);
1599 	rw_wlock(&pvh_global_lock);
1600 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink)
1601 		if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
1602 			count++;
1603 	rw_wunlock(&pvh_global_lock);
1604 	return (count);
1605 }
1606 
1607 static u_int	moea_vsidcontext;
1608 
1609 void
1610 moea_pinit(mmu_t mmu, pmap_t pmap)
1611 {
1612 	int	i, mask;
1613 	u_int	entropy;
1614 
1615 	KASSERT((int)pmap < VM_MIN_KERNEL_ADDRESS, ("moea_pinit: virt pmap"));
1616 	RB_INIT(&pmap->pmap_pvo);
1617 
1618 	entropy = 0;
1619 	__asm __volatile("mftb %0" : "=r"(entropy));
1620 
1621 	if ((pmap->pmap_phys = (pmap_t)moea_kextract(mmu, (vm_offset_t)pmap))
1622 	    == NULL) {
1623 		pmap->pmap_phys = pmap;
1624 	}
1625 
1626 
1627 	mtx_lock(&moea_vsid_mutex);
1628 	/*
1629 	 * Allocate some segment registers for this pmap.
1630 	 */
1631 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1632 		u_int	hash, n;
1633 
1634 		/*
1635 		 * Create a new value by mutiplying by a prime and adding in
1636 		 * entropy from the timebase register.  This is to make the
1637 		 * VSID more random so that the PT hash function collides
1638 		 * less often.  (Note that the prime casues gcc to do shifts
1639 		 * instead of a multiply.)
1640 		 */
1641 		moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy;
1642 		hash = moea_vsidcontext & (NPMAPS - 1);
1643 		if (hash == 0)		/* 0 is special, avoid it */
1644 			continue;
1645 		n = hash >> 5;
1646 		mask = 1 << (hash & (VSID_NBPW - 1));
1647 		hash = (moea_vsidcontext & 0xfffff);
1648 		if (moea_vsid_bitmap[n] & mask) {	/* collision? */
1649 			/* anything free in this bucket? */
1650 			if (moea_vsid_bitmap[n] == 0xffffffff) {
1651 				entropy = (moea_vsidcontext >> 20);
1652 				continue;
1653 			}
1654 			i = ffs(~moea_vsid_bitmap[n]) - 1;
1655 			mask = 1 << i;
1656 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1657 			hash |= i;
1658 		}
1659 		KASSERT(!(moea_vsid_bitmap[n] & mask),
1660 		    ("Allocating in-use VSID group %#x\n", hash));
1661 		moea_vsid_bitmap[n] |= mask;
1662 		for (i = 0; i < 16; i++)
1663 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1664 		mtx_unlock(&moea_vsid_mutex);
1665 		return;
1666 	}
1667 
1668 	mtx_unlock(&moea_vsid_mutex);
1669 	panic("moea_pinit: out of segments");
1670 }
1671 
1672 /*
1673  * Initialize the pmap associated with process 0.
1674  */
1675 void
1676 moea_pinit0(mmu_t mmu, pmap_t pm)
1677 {
1678 
1679 	PMAP_LOCK_INIT(pm);
1680 	moea_pinit(mmu, pm);
1681 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1682 }
1683 
1684 /*
1685  * Set the physical protection on the specified range of this map as requested.
1686  */
1687 void
1688 moea_protect(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva,
1689     vm_prot_t prot)
1690 {
1691 	struct	pvo_entry *pvo, *tpvo, key;
1692 	struct	pte *pt;
1693 
1694 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1695 	    ("moea_protect: non current pmap"));
1696 
1697 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1698 		moea_remove(mmu, pm, sva, eva);
1699 		return;
1700 	}
1701 
1702 	rw_wlock(&pvh_global_lock);
1703 	PMAP_LOCK(pm);
1704 	key.pvo_vaddr = sva;
1705 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1706 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1707 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1708 
1709 		/*
1710 		 * Grab the PTE pointer before we diddle with the cached PTE
1711 		 * copy.
1712 		 */
1713 		pt = moea_pvo_to_pte(pvo, -1);
1714 		/*
1715 		 * Change the protection of the page.
1716 		 */
1717 		pvo->pvo_pte.pte.pte_lo &= ~PTE_PP;
1718 		pvo->pvo_pte.pte.pte_lo |= PTE_BR;
1719 
1720 		/*
1721 		 * If the PVO is in the page table, update that pte as well.
1722 		 */
1723 		if (pt != NULL) {
1724 			moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
1725 			mtx_unlock(&moea_table_mutex);
1726 		}
1727 	}
1728 	rw_wunlock(&pvh_global_lock);
1729 	PMAP_UNLOCK(pm);
1730 }
1731 
1732 /*
1733  * Map a list of wired pages into kernel virtual address space.  This is
1734  * intended for temporary mappings which do not need page modification or
1735  * references recorded.  Existing mappings in the region are overwritten.
1736  */
1737 void
1738 moea_qenter(mmu_t mmu, vm_offset_t sva, vm_page_t *m, int count)
1739 {
1740 	vm_offset_t va;
1741 
1742 	va = sva;
1743 	while (count-- > 0) {
1744 		moea_kenter(mmu, va, VM_PAGE_TO_PHYS(*m));
1745 		va += PAGE_SIZE;
1746 		m++;
1747 	}
1748 }
1749 
1750 /*
1751  * Remove page mappings from kernel virtual address space.  Intended for
1752  * temporary mappings entered by moea_qenter.
1753  */
1754 void
1755 moea_qremove(mmu_t mmu, vm_offset_t sva, int count)
1756 {
1757 	vm_offset_t va;
1758 
1759 	va = sva;
1760 	while (count-- > 0) {
1761 		moea_kremove(mmu, va);
1762 		va += PAGE_SIZE;
1763 	}
1764 }
1765 
1766 void
1767 moea_release(mmu_t mmu, pmap_t pmap)
1768 {
1769         int idx, mask;
1770 
1771 	/*
1772 	 * Free segment register's VSID
1773 	 */
1774         if (pmap->pm_sr[0] == 0)
1775                 panic("moea_release");
1776 
1777 	mtx_lock(&moea_vsid_mutex);
1778         idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1);
1779         mask = 1 << (idx % VSID_NBPW);
1780         idx /= VSID_NBPW;
1781         moea_vsid_bitmap[idx] &= ~mask;
1782 	mtx_unlock(&moea_vsid_mutex);
1783 }
1784 
1785 /*
1786  * Remove the given range of addresses from the specified map.
1787  */
1788 void
1789 moea_remove(mmu_t mmu, pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1790 {
1791 	struct	pvo_entry *pvo, *tpvo, key;
1792 
1793 	rw_wlock(&pvh_global_lock);
1794 	PMAP_LOCK(pm);
1795 	key.pvo_vaddr = sva;
1796 	for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key);
1797 	    pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) {
1798 		tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo);
1799 		moea_pvo_remove(pvo, -1);
1800 	}
1801 	PMAP_UNLOCK(pm);
1802 	rw_wunlock(&pvh_global_lock);
1803 }
1804 
1805 /*
1806  * Remove physical page from all pmaps in which it resides. moea_pvo_remove()
1807  * will reflect changes in pte's back to the vm_page.
1808  */
1809 void
1810 moea_remove_all(mmu_t mmu, vm_page_t m)
1811 {
1812 	struct  pvo_head *pvo_head;
1813 	struct	pvo_entry *pvo, *next_pvo;
1814 	pmap_t	pmap;
1815 
1816 	rw_wlock(&pvh_global_lock);
1817 	pvo_head = vm_page_to_pvoh(m);
1818 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1819 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1820 
1821 		pmap = pvo->pvo_pmap;
1822 		PMAP_LOCK(pmap);
1823 		moea_pvo_remove(pvo, -1);
1824 		PMAP_UNLOCK(pmap);
1825 	}
1826 	if ((m->aflags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) {
1827 		moea_attr_clear(m, PTE_CHG);
1828 		vm_page_dirty(m);
1829 	}
1830 	vm_page_aflag_clear(m, PGA_WRITEABLE);
1831 	rw_wunlock(&pvh_global_lock);
1832 }
1833 
1834 /*
1835  * Allocate a physical page of memory directly from the phys_avail map.
1836  * Can only be called from moea_bootstrap before avail start and end are
1837  * calculated.
1838  */
1839 static vm_offset_t
1840 moea_bootstrap_alloc(vm_size_t size, u_int align)
1841 {
1842 	vm_offset_t	s, e;
1843 	int		i, j;
1844 
1845 	size = round_page(size);
1846 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1847 		if (align != 0)
1848 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1849 		else
1850 			s = phys_avail[i];
1851 		e = s + size;
1852 
1853 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1854 			continue;
1855 
1856 		if (s == phys_avail[i]) {
1857 			phys_avail[i] += size;
1858 		} else if (e == phys_avail[i + 1]) {
1859 			phys_avail[i + 1] -= size;
1860 		} else {
1861 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1862 				phys_avail[j] = phys_avail[j - 2];
1863 				phys_avail[j + 1] = phys_avail[j - 1];
1864 			}
1865 
1866 			phys_avail[i + 3] = phys_avail[i + 1];
1867 			phys_avail[i + 1] = s;
1868 			phys_avail[i + 2] = e;
1869 			phys_avail_count++;
1870 		}
1871 
1872 		return (s);
1873 	}
1874 	panic("moea_bootstrap_alloc: could not allocate memory");
1875 }
1876 
1877 static void
1878 moea_syncicache(vm_offset_t pa, vm_size_t len)
1879 {
1880 	__syncicache((void *)pa, len);
1881 }
1882 
1883 static int
1884 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1885     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1886 {
1887 	struct	pvo_entry *pvo;
1888 	u_int	sr;
1889 	int	first;
1890 	u_int	ptegidx;
1891 	int	i;
1892 	int     bootstrap;
1893 
1894 	moea_pvo_enter_calls++;
1895 	first = 0;
1896 	bootstrap = 0;
1897 
1898 	/*
1899 	 * Compute the PTE Group index.
1900 	 */
1901 	va &= ~ADDR_POFF;
1902 	sr = va_to_sr(pm->pm_sr, va);
1903 	ptegidx = va_to_pteg(sr, va);
1904 
1905 	/*
1906 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1907 	 * there is a mapping.
1908 	 */
1909 	mtx_lock(&moea_table_mutex);
1910 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
1911 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1912 			if ((pvo->pvo_pte.pte.pte_lo & PTE_RPGN) == pa &&
1913 			    (pvo->pvo_pte.pte.pte_lo & PTE_PP) ==
1914 			    (pte_lo & PTE_PP)) {
1915 				/*
1916 				 * The PTE is not changing.  Instead, this may
1917 				 * be a request to change the mapping's wired
1918 				 * attribute.
1919 				 */
1920 				mtx_unlock(&moea_table_mutex);
1921 				if ((flags & PVO_WIRED) != 0 &&
1922 				    (pvo->pvo_vaddr & PVO_WIRED) == 0) {
1923 					pvo->pvo_vaddr |= PVO_WIRED;
1924 					pm->pm_stats.wired_count++;
1925 				} else if ((flags & PVO_WIRED) == 0 &&
1926 				    (pvo->pvo_vaddr & PVO_WIRED) != 0) {
1927 					pvo->pvo_vaddr &= ~PVO_WIRED;
1928 					pm->pm_stats.wired_count--;
1929 				}
1930 				return (0);
1931 			}
1932 			moea_pvo_remove(pvo, -1);
1933 			break;
1934 		}
1935 	}
1936 
1937 	/*
1938 	 * If we aren't overwriting a mapping, try to allocate.
1939 	 */
1940 	if (moea_initialized) {
1941 		pvo = uma_zalloc(zone, M_NOWAIT);
1942 	} else {
1943 		if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) {
1944 			panic("moea_enter: bpvo pool exhausted, %d, %d, %d",
1945 			      moea_bpvo_pool_index, BPVO_POOL_SIZE,
1946 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1947 		}
1948 		pvo = &moea_bpvo_pool[moea_bpvo_pool_index];
1949 		moea_bpvo_pool_index++;
1950 		bootstrap = 1;
1951 	}
1952 
1953 	if (pvo == NULL) {
1954 		mtx_unlock(&moea_table_mutex);
1955 		return (ENOMEM);
1956 	}
1957 
1958 	moea_pvo_entries++;
1959 	pvo->pvo_vaddr = va;
1960 	pvo->pvo_pmap = pm;
1961 	LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink);
1962 	pvo->pvo_vaddr &= ~ADDR_POFF;
1963 	if (flags & PVO_WIRED)
1964 		pvo->pvo_vaddr |= PVO_WIRED;
1965 	if (pvo_head != &moea_pvo_kunmanaged)
1966 		pvo->pvo_vaddr |= PVO_MANAGED;
1967 	if (bootstrap)
1968 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1969 
1970 	moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo);
1971 
1972 	/*
1973 	 * Add to pmap list
1974 	 */
1975 	RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo);
1976 
1977 	/*
1978 	 * Remember if the list was empty and therefore will be the first
1979 	 * item.
1980 	 */
1981 	if (LIST_FIRST(pvo_head) == NULL)
1982 		first = 1;
1983 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1984 
1985 	if (pvo->pvo_vaddr & PVO_WIRED)
1986 		pm->pm_stats.wired_count++;
1987 	pm->pm_stats.resident_count++;
1988 
1989 	i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
1990 	KASSERT(i < 8, ("Invalid PTE index"));
1991 	if (i >= 0) {
1992 		PVO_PTEGIDX_SET(pvo, i);
1993 	} else {
1994 		panic("moea_pvo_enter: overflow");
1995 		moea_pte_overflow++;
1996 	}
1997 	mtx_unlock(&moea_table_mutex);
1998 
1999 	return (first ? ENOENT : 0);
2000 }
2001 
2002 static void
2003 moea_pvo_remove(struct pvo_entry *pvo, int pteidx)
2004 {
2005 	struct	pte *pt;
2006 
2007 	/*
2008 	 * If there is an active pte entry, we need to deactivate it (and
2009 	 * save the ref & cfg bits).
2010 	 */
2011 	pt = moea_pvo_to_pte(pvo, pteidx);
2012 	if (pt != NULL) {
2013 		moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr);
2014 		mtx_unlock(&moea_table_mutex);
2015 		PVO_PTEGIDX_CLR(pvo);
2016 	} else {
2017 		moea_pte_overflow--;
2018 	}
2019 
2020 	/*
2021 	 * Update our statistics.
2022 	 */
2023 	pvo->pvo_pmap->pm_stats.resident_count--;
2024 	if (pvo->pvo_vaddr & PVO_WIRED)
2025 		pvo->pvo_pmap->pm_stats.wired_count--;
2026 
2027 	/*
2028 	 * Save the REF/CHG bits into their cache if the page is managed.
2029 	 */
2030 	if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) {
2031 		struct	vm_page *pg;
2032 
2033 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte.pte_lo & PTE_RPGN);
2034 		if (pg != NULL) {
2035 			moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo &
2036 			    (PTE_REF | PTE_CHG));
2037 		}
2038 	}
2039 
2040 	/*
2041 	 * Remove this PVO from the PV and pmap lists.
2042 	 */
2043 	LIST_REMOVE(pvo, pvo_vlink);
2044 	RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo);
2045 
2046 	/*
2047 	 * Remove this from the overflow list and return it to the pool
2048 	 * if we aren't going to reuse it.
2049 	 */
2050 	LIST_REMOVE(pvo, pvo_olink);
2051 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
2052 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone :
2053 		    moea_upvo_zone, pvo);
2054 	moea_pvo_entries--;
2055 	moea_pvo_remove_calls++;
2056 }
2057 
2058 static __inline int
2059 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
2060 {
2061 	int	pteidx;
2062 
2063 	/*
2064 	 * We can find the actual pte entry without searching by grabbing
2065 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
2066 	 * noticing the HID bit.
2067 	 */
2068 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
2069 	if (pvo->pvo_pte.pte.pte_hi & PTE_HID)
2070 		pteidx ^= moea_pteg_mask * 8;
2071 
2072 	return (pteidx);
2073 }
2074 
2075 static struct pvo_entry *
2076 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
2077 {
2078 	struct	pvo_entry *pvo;
2079 	int	ptegidx;
2080 	u_int	sr;
2081 
2082 	va &= ~ADDR_POFF;
2083 	sr = va_to_sr(pm->pm_sr, va);
2084 	ptegidx = va_to_pteg(sr, va);
2085 
2086 	mtx_lock(&moea_table_mutex);
2087 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2088 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
2089 			if (pteidx_p)
2090 				*pteidx_p = moea_pvo_pte_index(pvo, ptegidx);
2091 			break;
2092 		}
2093 	}
2094 	mtx_unlock(&moea_table_mutex);
2095 
2096 	return (pvo);
2097 }
2098 
2099 static struct pte *
2100 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
2101 {
2102 	struct	pte *pt;
2103 
2104 	/*
2105 	 * If we haven't been supplied the ptegidx, calculate it.
2106 	 */
2107 	if (pteidx == -1) {
2108 		int	ptegidx;
2109 		u_int	sr;
2110 
2111 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
2112 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
2113 		pteidx = moea_pvo_pte_index(pvo, ptegidx);
2114 	}
2115 
2116 	pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7];
2117 	mtx_lock(&moea_table_mutex);
2118 
2119 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
2120 		panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no "
2121 		    "valid pte index", pvo);
2122 	}
2123 
2124 	if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
2125 		panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo "
2126 		    "pvo but no valid pte", pvo);
2127 	}
2128 
2129 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
2130 		if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) {
2131 			panic("moea_pvo_to_pte: pvo %p has valid pte in "
2132 			    "moea_pteg_table %p but invalid in pvo", pvo, pt);
2133 		}
2134 
2135 		if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF))
2136 		    != 0) {
2137 			panic("moea_pvo_to_pte: pvo %p pte does not match "
2138 			    "pte %p in moea_pteg_table", pvo, pt);
2139 		}
2140 
2141 		mtx_assert(&moea_table_mutex, MA_OWNED);
2142 		return (pt);
2143 	}
2144 
2145 	if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) {
2146 		panic("moea_pvo_to_pte: pvo %p has invalid pte %p in "
2147 		    "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2148 	}
2149 
2150 	mtx_unlock(&moea_table_mutex);
2151 	return (NULL);
2152 }
2153 
2154 /*
2155  * XXX: THIS STUFF SHOULD BE IN pte.c?
2156  */
2157 int
2158 moea_pte_spill(vm_offset_t addr)
2159 {
2160 	struct	pvo_entry *source_pvo, *victim_pvo;
2161 	struct	pvo_entry *pvo;
2162 	int	ptegidx, i, j;
2163 	u_int	sr;
2164 	struct	pteg *pteg;
2165 	struct	pte *pt;
2166 
2167 	moea_pte_spills++;
2168 
2169 	sr = mfsrin(addr);
2170 	ptegidx = va_to_pteg(sr, addr);
2171 
2172 	/*
2173 	 * Have to substitute some entry.  Use the primary hash for this.
2174 	 * Use low bits of timebase as random generator.
2175 	 */
2176 	pteg = &moea_pteg_table[ptegidx];
2177 	mtx_lock(&moea_table_mutex);
2178 	__asm __volatile("mftb %0" : "=r"(i));
2179 	i &= 7;
2180 	pt = &pteg->pt[i];
2181 
2182 	source_pvo = NULL;
2183 	victim_pvo = NULL;
2184 	LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) {
2185 		/*
2186 		 * We need to find a pvo entry for this address.
2187 		 */
2188 		if (source_pvo == NULL &&
2189 		    moea_pte_match(&pvo->pvo_pte.pte, sr, addr,
2190 		    pvo->pvo_pte.pte.pte_hi & PTE_HID)) {
2191 			/*
2192 			 * Now found an entry to be spilled into the pteg.
2193 			 * The PTE is now valid, so we know it's active.
2194 			 */
2195 			j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte);
2196 
2197 			if (j >= 0) {
2198 				PVO_PTEGIDX_SET(pvo, j);
2199 				moea_pte_overflow--;
2200 				mtx_unlock(&moea_table_mutex);
2201 				return (1);
2202 			}
2203 
2204 			source_pvo = pvo;
2205 
2206 			if (victim_pvo != NULL)
2207 				break;
2208 		}
2209 
2210 		/*
2211 		 * We also need the pvo entry of the victim we are replacing
2212 		 * so save the R & C bits of the PTE.
2213 		 */
2214 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2215 		    moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2216 			victim_pvo = pvo;
2217 			if (source_pvo != NULL)
2218 				break;
2219 		}
2220 	}
2221 
2222 	if (source_pvo == NULL) {
2223 		mtx_unlock(&moea_table_mutex);
2224 		return (0);
2225 	}
2226 
2227 	if (victim_pvo == NULL) {
2228 		if ((pt->pte_hi & PTE_HID) == 0)
2229 			panic("moea_pte_spill: victim p-pte (%p) has no pvo"
2230 			    "entry", pt);
2231 
2232 		/*
2233 		 * If this is a secondary PTE, we need to search it's primary
2234 		 * pvo bucket for the matching PVO.
2235 		 */
2236 		LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask],
2237 		    pvo_olink) {
2238 			/*
2239 			 * We also need the pvo entry of the victim we are
2240 			 * replacing so save the R & C bits of the PTE.
2241 			 */
2242 			if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) {
2243 				victim_pvo = pvo;
2244 				break;
2245 			}
2246 		}
2247 
2248 		if (victim_pvo == NULL)
2249 			panic("moea_pte_spill: victim s-pte (%p) has no pvo"
2250 			    "entry", pt);
2251 	}
2252 
2253 	/*
2254 	 * We are invalidating the TLB entry for the EA we are replacing even
2255 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2256 	 * contained in the TLB entry.
2257 	 */
2258 	source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID;
2259 
2260 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2261 	moea_pte_set(pt, &source_pvo->pvo_pte.pte);
2262 
2263 	PVO_PTEGIDX_CLR(victim_pvo);
2264 	PVO_PTEGIDX_SET(source_pvo, i);
2265 	moea_pte_replacements++;
2266 
2267 	mtx_unlock(&moea_table_mutex);
2268 	return (1);
2269 }
2270 
2271 static __inline struct pvo_entry *
2272 moea_pte_spillable_ident(u_int ptegidx)
2273 {
2274 	struct	pte *pt;
2275 	struct	pvo_entry *pvo_walk, *pvo = NULL;
2276 
2277 	LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) {
2278 		if (pvo_walk->pvo_vaddr & PVO_WIRED)
2279 			continue;
2280 
2281 		if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID))
2282 			continue;
2283 
2284 		pt = moea_pvo_to_pte(pvo_walk, -1);
2285 
2286 		if (pt == NULL)
2287 			continue;
2288 
2289 		pvo = pvo_walk;
2290 
2291 		mtx_unlock(&moea_table_mutex);
2292 		if (!(pt->pte_lo & PTE_REF))
2293 			return (pvo_walk);
2294 	}
2295 
2296 	return (pvo);
2297 }
2298 
2299 static int
2300 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2301 {
2302 	struct	pte *pt;
2303 	struct	pvo_entry *victim_pvo;
2304 	int	i;
2305 	int	victim_idx;
2306 	u_int	pteg_bkpidx = ptegidx;
2307 
2308 	mtx_assert(&moea_table_mutex, MA_OWNED);
2309 
2310 	/*
2311 	 * First try primary hash.
2312 	 */
2313 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2314 		if ((pt->pte_hi & PTE_VALID) == 0) {
2315 			pvo_pt->pte_hi &= ~PTE_HID;
2316 			moea_pte_set(pt, pvo_pt);
2317 			return (i);
2318 		}
2319 	}
2320 
2321 	/*
2322 	 * Now try secondary hash.
2323 	 */
2324 	ptegidx ^= moea_pteg_mask;
2325 
2326 	for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2327 		if ((pt->pte_hi & PTE_VALID) == 0) {
2328 			pvo_pt->pte_hi |= PTE_HID;
2329 			moea_pte_set(pt, pvo_pt);
2330 			return (i);
2331 		}
2332 	}
2333 
2334 	/* Try again, but this time try to force a PTE out. */
2335 	ptegidx = pteg_bkpidx;
2336 
2337 	victim_pvo = moea_pte_spillable_ident(ptegidx);
2338 	if (victim_pvo == NULL) {
2339 		ptegidx ^= moea_pteg_mask;
2340 		victim_pvo = moea_pte_spillable_ident(ptegidx);
2341 	}
2342 
2343 	if (victim_pvo == NULL) {
2344 		panic("moea_pte_insert: overflow");
2345 		return (-1);
2346 	}
2347 
2348 	victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx);
2349 
2350 	if (pteg_bkpidx == ptegidx)
2351 		pvo_pt->pte_hi &= ~PTE_HID;
2352 	else
2353 		pvo_pt->pte_hi |= PTE_HID;
2354 
2355 	/*
2356 	 * Synchronize the sacrifice PTE with its PVO, then mark both
2357 	 * invalid. The PVO will be reused when/if the VM system comes
2358 	 * here after a fault.
2359 	 */
2360 	pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7];
2361 
2362 	if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi)
2363 	    panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi);
2364 
2365 	/*
2366 	 * Set the new PTE.
2367 	 */
2368 	moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr);
2369 	PVO_PTEGIDX_CLR(victim_pvo);
2370 	moea_pte_overflow++;
2371 	moea_pte_set(pt, pvo_pt);
2372 
2373 	return (victim_idx & 7);
2374 }
2375 
2376 static boolean_t
2377 moea_query_bit(vm_page_t m, int ptebit)
2378 {
2379 	struct	pvo_entry *pvo;
2380 	struct	pte *pt;
2381 
2382 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2383 	if (moea_attr_fetch(m) & ptebit)
2384 		return (TRUE);
2385 
2386 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2387 
2388 		/*
2389 		 * See if we saved the bit off.  If so, cache it and return
2390 		 * success.
2391 		 */
2392 		if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2393 			moea_attr_save(m, ptebit);
2394 			return (TRUE);
2395 		}
2396 	}
2397 
2398 	/*
2399 	 * No luck, now go through the hard part of looking at the PTEs
2400 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2401 	 * the PTEs.
2402 	 */
2403 	powerpc_sync();
2404 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2405 
2406 		/*
2407 		 * See if this pvo has a valid PTE.  if so, fetch the
2408 		 * REF/CHG bits from the valid PTE.  If the appropriate
2409 		 * ptebit is set, cache it and return success.
2410 		 */
2411 		pt = moea_pvo_to_pte(pvo, -1);
2412 		if (pt != NULL) {
2413 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2414 			mtx_unlock(&moea_table_mutex);
2415 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2416 				moea_attr_save(m, ptebit);
2417 				return (TRUE);
2418 			}
2419 		}
2420 	}
2421 
2422 	return (FALSE);
2423 }
2424 
2425 static u_int
2426 moea_clear_bit(vm_page_t m, int ptebit)
2427 {
2428 	u_int	count;
2429 	struct	pvo_entry *pvo;
2430 	struct	pte *pt;
2431 
2432 	rw_assert(&pvh_global_lock, RA_WLOCKED);
2433 
2434 	/*
2435 	 * Clear the cached value.
2436 	 */
2437 	moea_attr_clear(m, ptebit);
2438 
2439 	/*
2440 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2441 	 * we can reset the right ones).  note that since the pvo entries and
2442 	 * list heads are accessed via BAT0 and are never placed in the page
2443 	 * table, we don't have to worry about further accesses setting the
2444 	 * REF/CHG bits.
2445 	 */
2446 	powerpc_sync();
2447 
2448 	/*
2449 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2450 	 * valid pte clear the ptebit from the valid pte.
2451 	 */
2452 	count = 0;
2453 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2454 		pt = moea_pvo_to_pte(pvo, -1);
2455 		if (pt != NULL) {
2456 			moea_pte_synch(pt, &pvo->pvo_pte.pte);
2457 			if (pvo->pvo_pte.pte.pte_lo & ptebit) {
2458 				count++;
2459 				moea_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2460 			}
2461 			mtx_unlock(&moea_table_mutex);
2462 		}
2463 		pvo->pvo_pte.pte.pte_lo &= ~ptebit;
2464 	}
2465 
2466 	return (count);
2467 }
2468 
2469 /*
2470  * Return true if the physical range is encompassed by the battable[idx]
2471  */
2472 static int
2473 moea_bat_mapped(int idx, vm_offset_t pa, vm_size_t size)
2474 {
2475 	u_int prot;
2476 	u_int32_t start;
2477 	u_int32_t end;
2478 	u_int32_t bat_ble;
2479 
2480 	/*
2481 	 * Return immediately if not a valid mapping
2482 	 */
2483 	if (!(battable[idx].batu & BAT_Vs))
2484 		return (EINVAL);
2485 
2486 	/*
2487 	 * The BAT entry must be cache-inhibited, guarded, and r/w
2488 	 * so it can function as an i/o page
2489 	 */
2490 	prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW);
2491 	if (prot != (BAT_I|BAT_G|BAT_PP_RW))
2492 		return (EPERM);
2493 
2494 	/*
2495 	 * The address should be within the BAT range. Assume that the
2496 	 * start address in the BAT has the correct alignment (thus
2497 	 * not requiring masking)
2498 	 */
2499 	start = battable[idx].batl & BAT_PBS;
2500 	bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03;
2501 	end = start | (bat_ble << 15) | 0x7fff;
2502 
2503 	if ((pa < start) || ((pa + size) > end))
2504 		return (ERANGE);
2505 
2506 	return (0);
2507 }
2508 
2509 boolean_t
2510 moea_dev_direct_mapped(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2511 {
2512 	int i;
2513 
2514 	/*
2515 	 * This currently does not work for entries that
2516 	 * overlap 256M BAT segments.
2517 	 */
2518 
2519 	for(i = 0; i < 16; i++)
2520 		if (moea_bat_mapped(i, pa, size) == 0)
2521 			return (0);
2522 
2523 	return (EFAULT);
2524 }
2525 
2526 /*
2527  * Map a set of physical memory pages into the kernel virtual
2528  * address space. Return a pointer to where it is mapped. This
2529  * routine is intended to be used for mapping device memory,
2530  * NOT real memory.
2531  */
2532 void *
2533 moea_mapdev(mmu_t mmu, vm_paddr_t pa, vm_size_t size)
2534 {
2535 
2536 	return (moea_mapdev_attr(mmu, pa, size, VM_MEMATTR_DEFAULT));
2537 }
2538 
2539 void *
2540 moea_mapdev_attr(mmu_t mmu, vm_offset_t pa, vm_size_t size, vm_memattr_t ma)
2541 {
2542 	vm_offset_t va, tmpva, ppa, offset;
2543 	int i;
2544 
2545 	ppa = trunc_page(pa);
2546 	offset = pa & PAGE_MASK;
2547 	size = roundup(offset + size, PAGE_SIZE);
2548 
2549 	/*
2550 	 * If the physical address lies within a valid BAT table entry,
2551 	 * return the 1:1 mapping. This currently doesn't work
2552 	 * for regions that overlap 256M BAT segments.
2553 	 */
2554 	for (i = 0; i < 16; i++) {
2555 		if (moea_bat_mapped(i, pa, size) == 0)
2556 			return ((void *) pa);
2557 	}
2558 
2559 	va = kva_alloc(size);
2560 	if (!va)
2561 		panic("moea_mapdev: Couldn't alloc kernel virtual memory");
2562 
2563 	for (tmpva = va; size > 0;) {
2564 		moea_kenter_attr(mmu, tmpva, ppa, ma);
2565 		tlbie(tmpva);
2566 		size -= PAGE_SIZE;
2567 		tmpva += PAGE_SIZE;
2568 		ppa += PAGE_SIZE;
2569 	}
2570 
2571 	return ((void *)(va + offset));
2572 }
2573 
2574 void
2575 moea_unmapdev(mmu_t mmu, vm_offset_t va, vm_size_t size)
2576 {
2577 	vm_offset_t base, offset;
2578 
2579 	/*
2580 	 * If this is outside kernel virtual space, then it's a
2581 	 * battable entry and doesn't require unmapping
2582 	 */
2583 	if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) {
2584 		base = trunc_page(va);
2585 		offset = va & PAGE_MASK;
2586 		size = roundup(offset + size, PAGE_SIZE);
2587 		kva_free(base, size);
2588 	}
2589 }
2590 
2591 static void
2592 moea_sync_icache(mmu_t mmu, pmap_t pm, vm_offset_t va, vm_size_t sz)
2593 {
2594 	struct pvo_entry *pvo;
2595 	vm_offset_t lim;
2596 	vm_paddr_t pa;
2597 	vm_size_t len;
2598 
2599 	PMAP_LOCK(pm);
2600 	while (sz > 0) {
2601 		lim = round_page(va);
2602 		len = MIN(lim - va, sz);
2603 		pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
2604 		if (pvo != NULL) {
2605 			pa = (pvo->pvo_pte.pte.pte_lo & PTE_RPGN) |
2606 			    (va & ADDR_POFF);
2607 			moea_syncicache(pa, len);
2608 		}
2609 		va += len;
2610 		sz -= len;
2611 	}
2612 	PMAP_UNLOCK(pm);
2613 }
2614 
2615 void
2616 moea_dumpsys_map(mmu_t mmu, vm_paddr_t pa, size_t sz, void **va)
2617 {
2618 
2619 	*va = (void *)pa;
2620 }
2621 
2622 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1];
2623 
2624 void
2625 moea_scan_init(mmu_t mmu)
2626 {
2627 	struct pvo_entry *pvo;
2628 	vm_offset_t va;
2629 	int i;
2630 
2631 	if (!do_minidump) {
2632 		/* Initialize phys. segments for dumpsys(). */
2633 		memset(&dump_map, 0, sizeof(dump_map));
2634 		mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
2635 		for (i = 0; i < pregions_sz; i++) {
2636 			dump_map[i].pa_start = pregions[i].mr_start;
2637 			dump_map[i].pa_size = pregions[i].mr_size;
2638 		}
2639 		return;
2640 	}
2641 
2642 	/* Virtual segments for minidumps: */
2643 	memset(&dump_map, 0, sizeof(dump_map));
2644 
2645 	/* 1st: kernel .data and .bss. */
2646 	dump_map[0].pa_start = trunc_page((uintptr_t)_etext);
2647 	dump_map[0].pa_size =
2648 	    round_page((uintptr_t)_end) - dump_map[0].pa_start;
2649 
2650 	/* 2nd: msgbuf and tables (see pmap_bootstrap()). */
2651 	dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr;
2652 	dump_map[1].pa_size = round_page(msgbufp->msg_size);
2653 
2654 	/* 3rd: kernel VM. */
2655 	va = dump_map[1].pa_start + dump_map[1].pa_size;
2656 	/* Find start of next chunk (from va). */
2657 	while (va < virtual_end) {
2658 		/* Don't dump the buffer cache. */
2659 		if (va >= kmi.buffer_sva && va < kmi.buffer_eva) {
2660 			va = kmi.buffer_eva;
2661 			continue;
2662 		}
2663 		pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
2664 		if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2665 			break;
2666 		va += PAGE_SIZE;
2667 	}
2668 	if (va < virtual_end) {
2669 		dump_map[2].pa_start = va;
2670 		va += PAGE_SIZE;
2671 		/* Find last page in chunk. */
2672 		while (va < virtual_end) {
2673 			/* Don't run into the buffer cache. */
2674 			if (va == kmi.buffer_sva)
2675 				break;
2676 			pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF,
2677 			    NULL);
2678 			if (pvo == NULL ||
2679 			    !(pvo->pvo_pte.pte.pte_hi & PTE_VALID))
2680 				break;
2681 			va += PAGE_SIZE;
2682 		}
2683 		dump_map[2].pa_size = va - dump_map[2].pa_start;
2684 	}
2685 }
2686