1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause AND BSD-4-Clause 3 * 4 * Copyright (c) 2001 The NetBSD Foundation, Inc. 5 * All rights reserved. 6 * 7 * This code is derived from software contributed to The NetBSD Foundation 8 * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS 20 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 21 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 22 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS 23 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 24 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 25 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 26 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 27 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 28 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 29 * POSSIBILITY OF SUCH DAMAGE. 30 */ 31 /*- 32 * Copyright (C) 1995, 1996 Wolfgang Solfrank. 33 * Copyright (C) 1995, 1996 TooLs GmbH. 34 * All rights reserved. 35 * 36 * Redistribution and use in source and binary forms, with or without 37 * modification, are permitted provided that the following conditions 38 * are met: 39 * 1. Redistributions of source code must retain the above copyright 40 * notice, this list of conditions and the following disclaimer. 41 * 2. Redistributions in binary form must reproduce the above copyright 42 * notice, this list of conditions and the following disclaimer in the 43 * documentation and/or other materials provided with the distribution. 44 * 3. All advertising materials mentioning features or use of this software 45 * must display the following acknowledgement: 46 * This product includes software developed by TooLs GmbH. 47 * 4. The name of TooLs GmbH may not be used to endorse or promote products 48 * derived from this software without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR 51 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 52 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 53 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 54 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 55 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 56 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 57 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 58 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 59 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 60 * 61 * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $ 62 */ 63 /*- 64 * Copyright (C) 2001 Benno Rice. 65 * All rights reserved. 66 * 67 * Redistribution and use in source and binary forms, with or without 68 * modification, are permitted provided that the following conditions 69 * are met: 70 * 1. Redistributions of source code must retain the above copyright 71 * notice, this list of conditions and the following disclaimer. 72 * 2. Redistributions in binary form must reproduce the above copyright 73 * notice, this list of conditions and the following disclaimer in the 74 * documentation and/or other materials provided with the distribution. 75 * 76 * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR 77 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 78 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 79 * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 80 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 81 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; 82 * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, 83 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR 84 * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF 85 * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 86 */ 87 88 #include <sys/cdefs.h> 89 /* 90 * Manages physical address maps. 91 * 92 * Since the information managed by this module is also stored by the 93 * logical address mapping module, this module may throw away valid virtual 94 * to physical mappings at almost any time. However, invalidations of 95 * mappings must be done as requested. 96 * 97 * In order to cope with hardware architectures which make virtual to 98 * physical map invalidates expensive, this module may delay invalidate 99 * reduced protection operations until such time as they are actually 100 * necessary. This module is given full information as to which processors 101 * are currently using which maps, and to when physical maps must be made 102 * correct. 103 */ 104 105 #include "opt_kstack_pages.h" 106 107 #include <sys/param.h> 108 #include <sys/kernel.h> 109 #include <sys/conf.h> 110 #include <sys/queue.h> 111 #include <sys/cpuset.h> 112 #include <sys/kerneldump.h> 113 #include <sys/ktr.h> 114 #include <sys/lock.h> 115 #include <sys/mman.h> 116 #include <sys/msgbuf.h> 117 #include <sys/mutex.h> 118 #include <sys/proc.h> 119 #include <sys/rwlock.h> 120 #include <sys/sched.h> 121 #include <sys/sysctl.h> 122 #include <sys/systm.h> 123 #include <sys/vmmeter.h> 124 125 #include <dev/ofw/openfirm.h> 126 127 #include <vm/vm.h> 128 #include <vm/pmap.h> 129 #include <vm/vm_param.h> 130 #include <vm/vm_kern.h> 131 #include <vm/vm_page.h> 132 #include <vm/vm_map.h> 133 #include <vm/vm_object.h> 134 #include <vm/vm_extern.h> 135 #include <vm/vm_page.h> 136 #include <vm/vm_phys.h> 137 #include <vm/vm_pageout.h> 138 #include <vm/uma.h> 139 140 #include <machine/cpu.h> 141 #include <machine/platform.h> 142 #include <machine/bat.h> 143 #include <machine/frame.h> 144 #include <machine/md_var.h> 145 #include <machine/psl.h> 146 #include <machine/pte.h> 147 #include <machine/smp.h> 148 #include <machine/sr.h> 149 #include <machine/mmuvar.h> 150 #include <machine/trap.h> 151 152 #define MOEA_DEBUG 153 154 #define TODO panic("%s: not implemented", __func__); 155 156 #define VSID_MAKE(sr, hash) ((sr) | (((hash) & 0xfffff) << 4)) 157 #define VSID_TO_SR(vsid) ((vsid) & 0xf) 158 #define VSID_TO_HASH(vsid) (((vsid) >> 4) & 0xfffff) 159 160 /* Get physical address from PVO. */ 161 #define PVO_PADDR(pvo) ((pvo)->pvo_pte.pte.pte_lo & PTE_RPGN) 162 163 struct ofw_map { 164 vm_offset_t om_va; 165 vm_size_t om_len; 166 vm_offset_t om_pa; 167 u_int om_mode; 168 }; 169 170 extern unsigned char _etext[]; 171 extern unsigned char _end[]; 172 173 /* 174 * Map of physical memory regions. 175 */ 176 static struct mem_region *regions; 177 static struct mem_region *pregions; 178 static u_int phys_avail_count; 179 static int regions_sz, pregions_sz; 180 static struct ofw_map *translations; 181 182 /* 183 * Lock for the pteg and pvo tables. 184 */ 185 struct mtx moea_table_mutex; 186 struct mtx moea_vsid_mutex; 187 188 /* tlbie instruction synchronization */ 189 static struct mtx tlbie_mtx; 190 191 /* 192 * PTEG data. 193 */ 194 static struct pteg *moea_pteg_table; 195 u_int moea_pteg_count; 196 u_int moea_pteg_mask; 197 198 /* 199 * PVO data. 200 */ 201 struct pvo_head *moea_pvo_table; /* pvo entries by pteg index */ 202 struct pvo_head moea_pvo_kunmanaged = 203 LIST_HEAD_INITIALIZER(moea_pvo_kunmanaged); /* list of unmanaged pages */ 204 205 static struct rwlock_padalign pvh_global_lock; 206 207 uma_zone_t moea_upvo_zone; /* zone for pvo entries for unmanaged pages */ 208 uma_zone_t moea_mpvo_zone; /* zone for pvo entries for managed pages */ 209 210 #define BPVO_POOL_SIZE 32768 211 static struct pvo_entry *moea_bpvo_pool; 212 static int moea_bpvo_pool_index = 0; 213 214 #define VSID_NBPW (sizeof(u_int32_t) * 8) 215 static u_int moea_vsid_bitmap[NPMAPS / VSID_NBPW]; 216 217 static bool moea_initialized = false; 218 219 /* 220 * Statistics. 221 */ 222 u_int moea_pte_valid = 0; 223 u_int moea_pte_overflow = 0; 224 u_int moea_pte_replacements = 0; 225 u_int moea_pvo_entries = 0; 226 u_int moea_pvo_enter_calls = 0; 227 u_int moea_pvo_remove_calls = 0; 228 u_int moea_pte_spills = 0; 229 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_valid, CTLFLAG_RD, &moea_pte_valid, 230 0, ""); 231 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_overflow, CTLFLAG_RD, 232 &moea_pte_overflow, 0, ""); 233 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_replacements, CTLFLAG_RD, 234 &moea_pte_replacements, 0, ""); 235 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_entries, CTLFLAG_RD, &moea_pvo_entries, 236 0, ""); 237 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_enter_calls, CTLFLAG_RD, 238 &moea_pvo_enter_calls, 0, ""); 239 SYSCTL_INT(_machdep, OID_AUTO, moea_pvo_remove_calls, CTLFLAG_RD, 240 &moea_pvo_remove_calls, 0, ""); 241 SYSCTL_INT(_machdep, OID_AUTO, moea_pte_spills, CTLFLAG_RD, 242 &moea_pte_spills, 0, ""); 243 244 /* 245 * Allocate physical memory for use in moea_bootstrap. 246 */ 247 static vm_offset_t moea_bootstrap_alloc(vm_size_t, u_int); 248 249 /* 250 * PTE calls. 251 */ 252 static int moea_pte_insert(u_int, struct pte *); 253 254 /* 255 * PVO calls. 256 */ 257 static int moea_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *, 258 vm_offset_t, vm_paddr_t, u_int, int); 259 static void moea_pvo_remove(struct pvo_entry *, int); 260 static struct pvo_entry *moea_pvo_find_va(pmap_t, vm_offset_t, int *); 261 static struct pte *moea_pvo_to_pte(const struct pvo_entry *, int); 262 263 /* 264 * Utility routines. 265 */ 266 static int moea_enter_locked(pmap_t, vm_offset_t, vm_page_t, 267 vm_prot_t, u_int, int8_t); 268 static void moea_syncicache(vm_paddr_t, vm_size_t); 269 static bool moea_query_bit(vm_page_t, int); 270 static u_int moea_clear_bit(vm_page_t, int); 271 static void moea_kremove(vm_offset_t); 272 int moea_pte_spill(vm_offset_t); 273 274 /* 275 * Kernel MMU interface 276 */ 277 void moea_clear_modify(vm_page_t); 278 void moea_copy_page(vm_page_t, vm_page_t); 279 void moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 280 vm_page_t *mb, vm_offset_t b_offset, int xfersize); 281 int moea_enter(pmap_t, vm_offset_t, vm_page_t, vm_prot_t, u_int, 282 int8_t); 283 void moea_enter_object(pmap_t, vm_offset_t, vm_offset_t, vm_page_t, 284 vm_prot_t); 285 void moea_enter_quick(pmap_t, vm_offset_t, vm_page_t, vm_prot_t); 286 vm_paddr_t moea_extract(pmap_t, vm_offset_t); 287 vm_page_t moea_extract_and_hold(pmap_t, vm_offset_t, vm_prot_t); 288 void moea_init(void); 289 bool moea_is_modified(vm_page_t); 290 bool moea_is_prefaultable(pmap_t, vm_offset_t); 291 bool moea_is_referenced(vm_page_t); 292 int moea_ts_referenced(vm_page_t); 293 vm_offset_t moea_map(vm_offset_t *, vm_paddr_t, vm_paddr_t, int); 294 static int moea_mincore(pmap_t, vm_offset_t, vm_paddr_t *); 295 bool moea_page_exists_quick(pmap_t, vm_page_t); 296 void moea_page_init(vm_page_t); 297 int moea_page_wired_mappings(vm_page_t); 298 int moea_pinit(pmap_t); 299 void moea_pinit0(pmap_t); 300 void moea_protect(pmap_t, vm_offset_t, vm_offset_t, vm_prot_t); 301 void moea_qenter(vm_offset_t, vm_page_t *, int); 302 void moea_qremove(vm_offset_t, int); 303 void moea_release(pmap_t); 304 void moea_remove(pmap_t, vm_offset_t, vm_offset_t); 305 void moea_remove_all(vm_page_t); 306 void moea_remove_write(vm_page_t); 307 void moea_unwire(pmap_t, vm_offset_t, vm_offset_t); 308 void moea_zero_page(vm_page_t); 309 void moea_zero_page_area(vm_page_t, int, int); 310 void moea_activate(struct thread *); 311 void moea_deactivate(struct thread *); 312 void moea_cpu_bootstrap(int); 313 void moea_bootstrap(vm_offset_t, vm_offset_t); 314 void *moea_mapdev(vm_paddr_t, vm_size_t); 315 void *moea_mapdev_attr(vm_paddr_t, vm_size_t, vm_memattr_t); 316 void moea_unmapdev(void *, vm_size_t); 317 vm_paddr_t moea_kextract(vm_offset_t); 318 void moea_kenter_attr(vm_offset_t, vm_paddr_t, vm_memattr_t); 319 void moea_kenter(vm_offset_t, vm_paddr_t); 320 void moea_page_set_memattr(vm_page_t m, vm_memattr_t ma); 321 int moea_dev_direct_mapped(vm_paddr_t, vm_size_t); 322 static void moea_sync_icache(pmap_t, vm_offset_t, vm_size_t); 323 void moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va); 324 void moea_scan_init(void); 325 vm_offset_t moea_quick_enter_page(vm_page_t m); 326 void moea_quick_remove_page(vm_offset_t addr); 327 bool moea_page_is_mapped(vm_page_t m); 328 bool moea_ps_enabled(pmap_t pmap); 329 static int moea_map_user_ptr(pmap_t pm, 330 volatile const void *uaddr, void **kaddr, size_t ulen, size_t *klen); 331 static int moea_decode_kernel_ptr(vm_offset_t addr, 332 int *is_user, vm_offset_t *decoded_addr); 333 334 static struct pmap_funcs moea_methods = { 335 .clear_modify = moea_clear_modify, 336 .copy_page = moea_copy_page, 337 .copy_pages = moea_copy_pages, 338 .enter = moea_enter, 339 .enter_object = moea_enter_object, 340 .enter_quick = moea_enter_quick, 341 .extract = moea_extract, 342 .extract_and_hold = moea_extract_and_hold, 343 .init = moea_init, 344 .is_modified = moea_is_modified, 345 .is_prefaultable = moea_is_prefaultable, 346 .is_referenced = moea_is_referenced, 347 .ts_referenced = moea_ts_referenced, 348 .map = moea_map, 349 .page_exists_quick = moea_page_exists_quick, 350 .page_init = moea_page_init, 351 .page_wired_mappings = moea_page_wired_mappings, 352 .pinit = moea_pinit, 353 .pinit0 = moea_pinit0, 354 .protect = moea_protect, 355 .qenter = moea_qenter, 356 .qremove = moea_qremove, 357 .release = moea_release, 358 .remove = moea_remove, 359 .remove_all = moea_remove_all, 360 .mincore = moea_mincore, 361 .remove_write = moea_remove_write, 362 .sync_icache = moea_sync_icache, 363 .unwire = moea_unwire, 364 .zero_page = moea_zero_page, 365 .zero_page_area = moea_zero_page_area, 366 .activate = moea_activate, 367 .deactivate = moea_deactivate, 368 .page_set_memattr = moea_page_set_memattr, 369 .quick_enter_page = moea_quick_enter_page, 370 .quick_remove_page = moea_quick_remove_page, 371 .page_is_mapped = moea_page_is_mapped, 372 .ps_enabled = moea_ps_enabled, 373 374 /* Internal interfaces */ 375 .bootstrap = moea_bootstrap, 376 .cpu_bootstrap = moea_cpu_bootstrap, 377 .mapdev_attr = moea_mapdev_attr, 378 .mapdev = moea_mapdev, 379 .unmapdev = moea_unmapdev, 380 .kextract = moea_kextract, 381 .kenter = moea_kenter, 382 .kenter_attr = moea_kenter_attr, 383 .dev_direct_mapped = moea_dev_direct_mapped, 384 .dumpsys_pa_init = moea_scan_init, 385 .dumpsys_map_chunk = moea_dumpsys_map, 386 .map_user_ptr = moea_map_user_ptr, 387 .decode_kernel_ptr = moea_decode_kernel_ptr, 388 }; 389 390 MMU_DEF(oea_mmu, MMU_TYPE_OEA, moea_methods); 391 392 static __inline uint32_t 393 moea_calc_wimg(vm_paddr_t pa, vm_memattr_t ma) 394 { 395 uint32_t pte_lo; 396 int i; 397 398 if (ma != VM_MEMATTR_DEFAULT) { 399 switch (ma) { 400 case VM_MEMATTR_UNCACHEABLE: 401 return (PTE_I | PTE_G); 402 case VM_MEMATTR_CACHEABLE: 403 return (PTE_M); 404 case VM_MEMATTR_WRITE_COMBINING: 405 case VM_MEMATTR_WRITE_BACK: 406 case VM_MEMATTR_PREFETCHABLE: 407 return (PTE_I); 408 case VM_MEMATTR_WRITE_THROUGH: 409 return (PTE_W | PTE_M); 410 } 411 } 412 413 /* 414 * Assume the page is cache inhibited and access is guarded unless 415 * it's in our available memory array. 416 */ 417 pte_lo = PTE_I | PTE_G; 418 for (i = 0; i < pregions_sz; i++) { 419 if ((pa >= pregions[i].mr_start) && 420 (pa < (pregions[i].mr_start + pregions[i].mr_size))) { 421 pte_lo = PTE_M; 422 break; 423 } 424 } 425 426 return pte_lo; 427 } 428 429 /* 430 * Translate OFW translations into VM attributes. 431 */ 432 static __inline vm_memattr_t 433 moea_bootstrap_convert_wimg(uint32_t mode) 434 { 435 436 switch (mode) { 437 case (PTE_I | PTE_G): 438 /* PCI device memory */ 439 return VM_MEMATTR_UNCACHEABLE; 440 case (PTE_M): 441 /* Explicitly coherent */ 442 return VM_MEMATTR_CACHEABLE; 443 case 0: /* Default claim */ 444 case 2: /* Alternate PP bits set by OF for the original payload */ 445 /* "Normal" memory. */ 446 return VM_MEMATTR_DEFAULT; 447 448 default: 449 /* Err on the side of caution for unknowns */ 450 /* XXX should we panic instead? */ 451 return VM_MEMATTR_UNCACHEABLE; 452 } 453 } 454 455 static void 456 tlbie(vm_offset_t va) 457 { 458 459 mtx_lock_spin(&tlbie_mtx); 460 __asm __volatile("ptesync"); 461 __asm __volatile("tlbie %0" :: "r"(va)); 462 __asm __volatile("eieio; tlbsync; ptesync"); 463 mtx_unlock_spin(&tlbie_mtx); 464 } 465 466 static void 467 tlbia(void) 468 { 469 vm_offset_t va; 470 471 for (va = 0; va < 0x00040000; va += 0x00001000) { 472 __asm __volatile("tlbie %0" :: "r"(va)); 473 powerpc_sync(); 474 } 475 __asm __volatile("tlbsync"); 476 powerpc_sync(); 477 } 478 479 static __inline int 480 va_to_sr(u_int *sr, vm_offset_t va) 481 { 482 return (sr[(uintptr_t)va >> ADDR_SR_SHFT]); 483 } 484 485 static __inline u_int 486 va_to_pteg(u_int sr, vm_offset_t addr) 487 { 488 u_int hash; 489 490 hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >> 491 ADDR_PIDX_SHFT); 492 return (hash & moea_pteg_mask); 493 } 494 495 static __inline struct pvo_head * 496 vm_page_to_pvoh(vm_page_t m) 497 { 498 499 return (&m->md.mdpg_pvoh); 500 } 501 502 static __inline void 503 moea_attr_clear(vm_page_t m, int ptebit) 504 { 505 506 rw_assert(&pvh_global_lock, RA_WLOCKED); 507 m->md.mdpg_attrs &= ~ptebit; 508 } 509 510 static __inline int 511 moea_attr_fetch(vm_page_t m) 512 { 513 514 return (m->md.mdpg_attrs); 515 } 516 517 static __inline void 518 moea_attr_save(vm_page_t m, int ptebit) 519 { 520 521 rw_assert(&pvh_global_lock, RA_WLOCKED); 522 m->md.mdpg_attrs |= ptebit; 523 } 524 525 static __inline int 526 moea_pte_compare(const struct pte *pt, const struct pte *pvo_pt) 527 { 528 if (pt->pte_hi == pvo_pt->pte_hi) 529 return (1); 530 531 return (0); 532 } 533 534 static __inline int 535 moea_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which) 536 { 537 return (pt->pte_hi & ~PTE_VALID) == 538 (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 539 ((va >> ADDR_API_SHFT) & PTE_API) | which); 540 } 541 542 static __inline void 543 moea_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo) 544 { 545 546 mtx_assert(&moea_table_mutex, MA_OWNED); 547 548 /* 549 * Construct a PTE. Default to IMB initially. Valid bit only gets 550 * set when the real pte is set in memory. 551 * 552 * Note: Don't set the valid bit for correct operation of tlb update. 553 */ 554 pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) | 555 (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API); 556 pt->pte_lo = pte_lo; 557 } 558 559 static __inline void 560 moea_pte_synch(struct pte *pt, struct pte *pvo_pt) 561 { 562 563 mtx_assert(&moea_table_mutex, MA_OWNED); 564 pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG); 565 } 566 567 static __inline void 568 moea_pte_clear(struct pte *pt, vm_offset_t va, int ptebit) 569 { 570 571 mtx_assert(&moea_table_mutex, MA_OWNED); 572 573 /* 574 * As shown in Section 7.6.3.2.3 575 */ 576 pt->pte_lo &= ~ptebit; 577 tlbie(va); 578 } 579 580 static __inline void 581 moea_pte_set(struct pte *pt, struct pte *pvo_pt) 582 { 583 584 mtx_assert(&moea_table_mutex, MA_OWNED); 585 pvo_pt->pte_hi |= PTE_VALID; 586 587 /* 588 * Update the PTE as defined in section 7.6.3.1. 589 * Note that the REF/CHG bits are from pvo_pt and thus should have 590 * been saved so this routine can restore them (if desired). 591 */ 592 pt->pte_lo = pvo_pt->pte_lo; 593 powerpc_sync(); 594 pt->pte_hi = pvo_pt->pte_hi; 595 powerpc_sync(); 596 moea_pte_valid++; 597 } 598 599 static __inline void 600 moea_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 601 { 602 603 mtx_assert(&moea_table_mutex, MA_OWNED); 604 pvo_pt->pte_hi &= ~PTE_VALID; 605 606 /* 607 * Force the reg & chg bits back into the PTEs. 608 */ 609 powerpc_sync(); 610 611 /* 612 * Invalidate the pte. 613 */ 614 pt->pte_hi &= ~PTE_VALID; 615 616 tlbie(va); 617 618 /* 619 * Save the reg & chg bits. 620 */ 621 moea_pte_synch(pt, pvo_pt); 622 moea_pte_valid--; 623 } 624 625 static __inline void 626 moea_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va) 627 { 628 629 /* 630 * Invalidate the PTE 631 */ 632 moea_pte_unset(pt, pvo_pt, va); 633 moea_pte_set(pt, pvo_pt); 634 } 635 636 /* 637 * Quick sort callout for comparing memory regions. 638 */ 639 static int om_cmp(const void *a, const void *b); 640 641 static int 642 om_cmp(const void *a, const void *b) 643 { 644 const struct ofw_map *mapa; 645 const struct ofw_map *mapb; 646 647 mapa = a; 648 mapb = b; 649 if (mapa->om_pa < mapb->om_pa) 650 return (-1); 651 else if (mapa->om_pa > mapb->om_pa) 652 return (1); 653 else 654 return (0); 655 } 656 657 void 658 moea_cpu_bootstrap(int ap) 659 { 660 u_int sdr; 661 int i; 662 663 if (ap) { 664 powerpc_sync(); 665 __asm __volatile("mtdbatu 0,%0" :: "r"(battable[0].batu)); 666 __asm __volatile("mtdbatl 0,%0" :: "r"(battable[0].batl)); 667 isync(); 668 __asm __volatile("mtibatu 0,%0" :: "r"(battable[0].batu)); 669 __asm __volatile("mtibatl 0,%0" :: "r"(battable[0].batl)); 670 isync(); 671 } 672 673 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 674 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 675 isync(); 676 677 __asm __volatile("mtibatu 1,%0" :: "r"(0)); 678 __asm __volatile("mtdbatu 2,%0" :: "r"(0)); 679 __asm __volatile("mtibatu 2,%0" :: "r"(0)); 680 __asm __volatile("mtdbatu 3,%0" :: "r"(0)); 681 __asm __volatile("mtibatu 3,%0" :: "r"(0)); 682 isync(); 683 684 for (i = 0; i < 16; i++) 685 mtsrin(i << ADDR_SR_SHFT, kernel_pmap->pm_sr[i]); 686 powerpc_sync(); 687 688 sdr = (u_int)moea_pteg_table | (moea_pteg_mask >> 10); 689 __asm __volatile("mtsdr1 %0" :: "r"(sdr)); 690 isync(); 691 692 tlbia(); 693 } 694 695 void 696 moea_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend) 697 { 698 ihandle_t mmui; 699 phandle_t chosen, mmu; 700 int sz; 701 int i, j; 702 vm_size_t size, physsz, hwphyssz; 703 vm_offset_t pa, va, off; 704 void *dpcpu; 705 706 /* 707 * Map PCI memory space. 708 */ 709 battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW); 710 battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs); 711 712 battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW); 713 battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs); 714 715 battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW); 716 battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs); 717 718 battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW); 719 battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs); 720 721 powerpc_sync(); 722 723 /* map pci space */ 724 __asm __volatile("mtdbatu 1,%0" :: "r"(battable[8].batu)); 725 __asm __volatile("mtdbatl 1,%0" :: "r"(battable[8].batl)); 726 isync(); 727 728 /* set global direct map flag */ 729 hw_direct_map = 1; 730 731 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 732 CTR0(KTR_PMAP, "moea_bootstrap: physical memory"); 733 734 for (i = 0; i < pregions_sz; i++) { 735 vm_offset_t pa; 736 vm_offset_t end; 737 738 CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)", 739 pregions[i].mr_start, 740 pregions[i].mr_start + pregions[i].mr_size, 741 pregions[i].mr_size); 742 /* 743 * Install entries into the BAT table to allow all 744 * of physmem to be convered by on-demand BAT entries. 745 * The loop will sometimes set the same battable element 746 * twice, but that's fine since they won't be used for 747 * a while yet. 748 */ 749 pa = pregions[i].mr_start & 0xf0000000; 750 end = pregions[i].mr_start + pregions[i].mr_size; 751 do { 752 u_int n = pa >> ADDR_SR_SHFT; 753 754 battable[n].batl = BATL(pa, BAT_M, BAT_PP_RW); 755 battable[n].batu = BATU(pa, BAT_BL_256M, BAT_Vs); 756 pa += SEGMENT_LENGTH; 757 } while (pa < end); 758 } 759 760 if (PHYS_AVAIL_ENTRIES < regions_sz) 761 panic("moea_bootstrap: phys_avail too small"); 762 763 phys_avail_count = 0; 764 physsz = 0; 765 hwphyssz = 0; 766 TUNABLE_ULONG_FETCH("hw.physmem", (u_long *) &hwphyssz); 767 for (i = 0, j = 0; i < regions_sz; i++, j += 2) { 768 CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start, 769 regions[i].mr_start + regions[i].mr_size, 770 regions[i].mr_size); 771 if (hwphyssz != 0 && 772 (physsz + regions[i].mr_size) >= hwphyssz) { 773 if (physsz < hwphyssz) { 774 phys_avail[j] = regions[i].mr_start; 775 phys_avail[j + 1] = regions[i].mr_start + 776 hwphyssz - physsz; 777 physsz = hwphyssz; 778 phys_avail_count++; 779 } 780 break; 781 } 782 phys_avail[j] = regions[i].mr_start; 783 phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size; 784 phys_avail_count++; 785 physsz += regions[i].mr_size; 786 } 787 788 /* Check for overlap with the kernel and exception vectors */ 789 for (j = 0; j < 2*phys_avail_count; j+=2) { 790 if (phys_avail[j] < EXC_LAST) 791 phys_avail[j] += EXC_LAST; 792 793 if (kernelstart >= phys_avail[j] && 794 kernelstart < phys_avail[j+1]) { 795 if (kernelend < phys_avail[j+1]) { 796 phys_avail[2*phys_avail_count] = 797 (kernelend & ~PAGE_MASK) + PAGE_SIZE; 798 phys_avail[2*phys_avail_count + 1] = 799 phys_avail[j+1]; 800 phys_avail_count++; 801 } 802 803 phys_avail[j+1] = kernelstart & ~PAGE_MASK; 804 } 805 806 if (kernelend >= phys_avail[j] && 807 kernelend < phys_avail[j+1]) { 808 if (kernelstart > phys_avail[j]) { 809 phys_avail[2*phys_avail_count] = phys_avail[j]; 810 phys_avail[2*phys_avail_count + 1] = 811 kernelstart & ~PAGE_MASK; 812 phys_avail_count++; 813 } 814 815 phys_avail[j] = (kernelend & ~PAGE_MASK) + PAGE_SIZE; 816 } 817 } 818 819 physmem = btoc(physsz); 820 821 /* 822 * Allocate PTEG table. 823 */ 824 #ifdef PTEGCOUNT 825 moea_pteg_count = PTEGCOUNT; 826 #else 827 moea_pteg_count = 0x1000; 828 829 while (moea_pteg_count < physmem) 830 moea_pteg_count <<= 1; 831 832 moea_pteg_count >>= 1; 833 #endif /* PTEGCOUNT */ 834 835 size = moea_pteg_count * sizeof(struct pteg); 836 CTR2(KTR_PMAP, "moea_bootstrap: %d PTEGs, %d bytes", moea_pteg_count, 837 size); 838 moea_pteg_table = (struct pteg *)moea_bootstrap_alloc(size, size); 839 CTR1(KTR_PMAP, "moea_bootstrap: PTEG table at %p", moea_pteg_table); 840 bzero((void *)moea_pteg_table, moea_pteg_count * sizeof(struct pteg)); 841 moea_pteg_mask = moea_pteg_count - 1; 842 843 /* 844 * Allocate pv/overflow lists. 845 */ 846 size = sizeof(struct pvo_head) * moea_pteg_count; 847 moea_pvo_table = (struct pvo_head *)moea_bootstrap_alloc(size, 848 PAGE_SIZE); 849 CTR1(KTR_PMAP, "moea_bootstrap: PVO table at %p", moea_pvo_table); 850 for (i = 0; i < moea_pteg_count; i++) 851 LIST_INIT(&moea_pvo_table[i]); 852 853 /* 854 * Initialize the lock that synchronizes access to the pteg and pvo 855 * tables. 856 */ 857 mtx_init(&moea_table_mutex, "pmap table", NULL, MTX_DEF | 858 MTX_RECURSE); 859 mtx_init(&moea_vsid_mutex, "VSID table", NULL, MTX_DEF); 860 861 mtx_init(&tlbie_mtx, "tlbie", NULL, MTX_SPIN); 862 863 /* 864 * Initialise the unmanaged pvo pool. 865 */ 866 moea_bpvo_pool = (struct pvo_entry *)moea_bootstrap_alloc( 867 BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0); 868 moea_bpvo_pool_index = 0; 869 870 /* 871 * Make sure kernel vsid is allocated as well as VSID 0. 872 */ 873 moea_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW] 874 |= 1 << (KERNEL_VSIDBITS % VSID_NBPW); 875 moea_vsid_bitmap[0] |= 1; 876 877 /* 878 * Initialize the kernel pmap (which is statically allocated). 879 */ 880 PMAP_LOCK_INIT(kernel_pmap); 881 for (i = 0; i < 16; i++) 882 kernel_pmap->pm_sr[i] = EMPTY_SEGMENT + i; 883 CPU_FILL(&kernel_pmap->pm_active); 884 RB_INIT(&kernel_pmap->pmap_pvo); 885 886 /* 887 * Initialize the global pv list lock. 888 */ 889 rw_init(&pvh_global_lock, "pmap pv global"); 890 891 /* 892 * Set up the Open Firmware mappings 893 */ 894 chosen = OF_finddevice("/chosen"); 895 if (chosen != -1 && OF_getprop(chosen, "mmu", &mmui, 4) != -1 && 896 (mmu = OF_instance_to_package(mmui)) != -1 && 897 (sz = OF_getproplen(mmu, "translations")) != -1) { 898 translations = NULL; 899 for (i = 0; phys_avail[i] != 0; i += 2) { 900 if (phys_avail[i + 1] >= sz) { 901 translations = (struct ofw_map *)phys_avail[i]; 902 break; 903 } 904 } 905 if (translations == NULL) 906 panic("moea_bootstrap: no space to copy translations"); 907 bzero(translations, sz); 908 if (OF_getprop(mmu, "translations", translations, sz) == -1) 909 panic("moea_bootstrap: can't get ofw translations"); 910 CTR0(KTR_PMAP, "moea_bootstrap: translations"); 911 sz /= sizeof(*translations); 912 qsort(translations, sz, sizeof (*translations), om_cmp); 913 for (i = 0; i < sz; i++) { 914 CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x", 915 translations[i].om_pa, translations[i].om_va, 916 translations[i].om_len); 917 918 /* 919 * If the mapping is 1:1, let the RAM and device 920 * on-demand BAT tables take care of the translation. 921 * 922 * However, always enter mappings for segment 16, 923 * which is mixed-protection and therefore not 924 * compatible with a BAT entry. 925 */ 926 if ((translations[i].om_va >> ADDR_SR_SHFT) != 0xf && 927 translations[i].om_va == translations[i].om_pa) 928 continue; 929 930 /* Enter the pages */ 931 for (off = 0; off < translations[i].om_len; 932 off += PAGE_SIZE) 933 moea_kenter_attr(translations[i].om_va + off, 934 translations[i].om_pa + off, 935 moea_bootstrap_convert_wimg(translations[i].om_mode)); 936 } 937 } 938 939 /* 940 * Calculate the last available physical address. 941 */ 942 for (i = 0; phys_avail[i + 2] != 0; i += 2) 943 ; 944 Maxmem = powerpc_btop(phys_avail[i + 1]); 945 946 moea_cpu_bootstrap(0); 947 mtmsr(mfmsr() | PSL_DR | PSL_IR); 948 pmap_bootstrapped++; 949 950 /* 951 * Set the start and end of kva. 952 */ 953 virtual_avail = VM_MIN_KERNEL_ADDRESS; 954 virtual_end = VM_MAX_SAFE_KERNEL_ADDRESS; 955 956 /* 957 * Allocate a kernel stack with a guard page for thread0 and map it 958 * into the kernel page map. 959 */ 960 pa = moea_bootstrap_alloc(kstack_pages * PAGE_SIZE, PAGE_SIZE); 961 va = virtual_avail + KSTACK_GUARD_PAGES * PAGE_SIZE; 962 virtual_avail = va + kstack_pages * PAGE_SIZE; 963 CTR2(KTR_PMAP, "moea_bootstrap: kstack0 at %#x (%#x)", pa, va); 964 thread0.td_kstack = va; 965 thread0.td_kstack_pages = kstack_pages; 966 for (i = 0; i < kstack_pages; i++) { 967 moea_kenter(va, pa); 968 pa += PAGE_SIZE; 969 va += PAGE_SIZE; 970 } 971 972 /* 973 * Allocate virtual address space for the message buffer. 974 */ 975 pa = msgbuf_phys = moea_bootstrap_alloc(msgbufsize, PAGE_SIZE); 976 msgbufp = (struct msgbuf *)virtual_avail; 977 va = virtual_avail; 978 virtual_avail += round_page(msgbufsize); 979 while (va < virtual_avail) { 980 moea_kenter(va, pa); 981 pa += PAGE_SIZE; 982 va += PAGE_SIZE; 983 } 984 985 /* 986 * Allocate virtual address space for the dynamic percpu area. 987 */ 988 pa = moea_bootstrap_alloc(DPCPU_SIZE, PAGE_SIZE); 989 dpcpu = (void *)virtual_avail; 990 va = virtual_avail; 991 virtual_avail += DPCPU_SIZE; 992 while (va < virtual_avail) { 993 moea_kenter(va, pa); 994 pa += PAGE_SIZE; 995 va += PAGE_SIZE; 996 } 997 dpcpu_init(dpcpu, 0); 998 } 999 1000 /* 1001 * Activate a user pmap. The pmap must be activated before it's address 1002 * space can be accessed in any way. 1003 */ 1004 void 1005 moea_activate(struct thread *td) 1006 { 1007 pmap_t pm, pmr; 1008 1009 /* 1010 * Load all the data we need up front to encourage the compiler to 1011 * not issue any loads while we have interrupts disabled below. 1012 */ 1013 pm = &td->td_proc->p_vmspace->vm_pmap; 1014 pmr = pm->pmap_phys; 1015 1016 CPU_SET(PCPU_GET(cpuid), &pm->pm_active); 1017 PCPU_SET(curpmap, pmr); 1018 1019 mtsrin(USER_SR << ADDR_SR_SHFT, td->td_pcb->pcb_cpu.aim.usr_vsid); 1020 } 1021 1022 void 1023 moea_deactivate(struct thread *td) 1024 { 1025 pmap_t pm; 1026 1027 pm = &td->td_proc->p_vmspace->vm_pmap; 1028 CPU_CLR(PCPU_GET(cpuid), &pm->pm_active); 1029 PCPU_SET(curpmap, NULL); 1030 } 1031 1032 void 1033 moea_unwire(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1034 { 1035 struct pvo_entry key, *pvo; 1036 1037 PMAP_LOCK(pm); 1038 key.pvo_vaddr = sva; 1039 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1040 pvo != NULL && PVO_VADDR(pvo) < eva; 1041 pvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo)) { 1042 if ((pvo->pvo_vaddr & PVO_WIRED) == 0) 1043 panic("moea_unwire: pvo %p is missing PVO_WIRED", pvo); 1044 pvo->pvo_vaddr &= ~PVO_WIRED; 1045 pm->pm_stats.wired_count--; 1046 } 1047 PMAP_UNLOCK(pm); 1048 } 1049 1050 void 1051 moea_copy_page(vm_page_t msrc, vm_page_t mdst) 1052 { 1053 vm_offset_t dst; 1054 vm_offset_t src; 1055 1056 dst = VM_PAGE_TO_PHYS(mdst); 1057 src = VM_PAGE_TO_PHYS(msrc); 1058 1059 bcopy((void *)src, (void *)dst, PAGE_SIZE); 1060 } 1061 1062 void 1063 moea_copy_pages(vm_page_t *ma, vm_offset_t a_offset, 1064 vm_page_t *mb, vm_offset_t b_offset, int xfersize) 1065 { 1066 void *a_cp, *b_cp; 1067 vm_offset_t a_pg_offset, b_pg_offset; 1068 int cnt; 1069 1070 while (xfersize > 0) { 1071 a_pg_offset = a_offset & PAGE_MASK; 1072 cnt = min(xfersize, PAGE_SIZE - a_pg_offset); 1073 a_cp = (char *)VM_PAGE_TO_PHYS(ma[a_offset >> PAGE_SHIFT]) + 1074 a_pg_offset; 1075 b_pg_offset = b_offset & PAGE_MASK; 1076 cnt = min(cnt, PAGE_SIZE - b_pg_offset); 1077 b_cp = (char *)VM_PAGE_TO_PHYS(mb[b_offset >> PAGE_SHIFT]) + 1078 b_pg_offset; 1079 bcopy(a_cp, b_cp, cnt); 1080 a_offset += cnt; 1081 b_offset += cnt; 1082 xfersize -= cnt; 1083 } 1084 } 1085 1086 /* 1087 * Zero a page of physical memory by temporarily mapping it into the tlb. 1088 */ 1089 void 1090 moea_zero_page(vm_page_t m) 1091 { 1092 vm_offset_t off, pa = VM_PAGE_TO_PHYS(m); 1093 1094 for (off = 0; off < PAGE_SIZE; off += cacheline_size) 1095 __asm __volatile("dcbz 0,%0" :: "r"(pa + off)); 1096 } 1097 1098 void 1099 moea_zero_page_area(vm_page_t m, int off, int size) 1100 { 1101 vm_offset_t pa = VM_PAGE_TO_PHYS(m); 1102 void *va = (void *)(pa + off); 1103 1104 bzero(va, size); 1105 } 1106 1107 vm_offset_t 1108 moea_quick_enter_page(vm_page_t m) 1109 { 1110 1111 return (VM_PAGE_TO_PHYS(m)); 1112 } 1113 1114 void 1115 moea_quick_remove_page(vm_offset_t addr) 1116 { 1117 } 1118 1119 bool 1120 moea_page_is_mapped(vm_page_t m) 1121 { 1122 return (!LIST_EMPTY(&(m)->md.mdpg_pvoh)); 1123 } 1124 1125 bool 1126 moea_ps_enabled(pmap_t pmap __unused) 1127 { 1128 return (false); 1129 } 1130 1131 /* 1132 * Map the given physical page at the specified virtual address in the 1133 * target pmap with the protection requested. If specified the page 1134 * will be wired down. 1135 */ 1136 int 1137 moea_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1138 u_int flags, int8_t psind) 1139 { 1140 int error; 1141 1142 for (;;) { 1143 rw_wlock(&pvh_global_lock); 1144 PMAP_LOCK(pmap); 1145 error = moea_enter_locked(pmap, va, m, prot, flags, psind); 1146 rw_wunlock(&pvh_global_lock); 1147 PMAP_UNLOCK(pmap); 1148 if (error != ENOMEM) 1149 return (KERN_SUCCESS); 1150 if ((flags & PMAP_ENTER_NOSLEEP) != 0) 1151 return (KERN_RESOURCE_SHORTAGE); 1152 VM_OBJECT_ASSERT_UNLOCKED(m->object); 1153 vm_wait(NULL); 1154 } 1155 } 1156 1157 /* 1158 * Map the given physical page at the specified virtual address in the 1159 * target pmap with the protection requested. If specified the page 1160 * will be wired down. 1161 * 1162 * The global pvh and pmap must be locked. 1163 */ 1164 static int 1165 moea_enter_locked(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot, 1166 u_int flags, int8_t psind __unused) 1167 { 1168 struct pvo_head *pvo_head; 1169 uma_zone_t zone; 1170 u_int pte_lo, pvo_flags; 1171 int error; 1172 1173 if (pmap_bootstrapped) 1174 rw_assert(&pvh_global_lock, RA_WLOCKED); 1175 PMAP_LOCK_ASSERT(pmap, MA_OWNED); 1176 if ((m->oflags & VPO_UNMANAGED) == 0) { 1177 if ((flags & PMAP_ENTER_QUICK_LOCKED) == 0) 1178 VM_PAGE_OBJECT_BUSY_ASSERT(m); 1179 else 1180 VM_OBJECT_ASSERT_LOCKED(m->object); 1181 } 1182 1183 if ((m->oflags & VPO_UNMANAGED) != 0 || !moea_initialized) { 1184 pvo_head = &moea_pvo_kunmanaged; 1185 zone = moea_upvo_zone; 1186 pvo_flags = 0; 1187 } else { 1188 pvo_head = vm_page_to_pvoh(m); 1189 zone = moea_mpvo_zone; 1190 pvo_flags = PVO_MANAGED; 1191 } 1192 1193 pte_lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), pmap_page_get_memattr(m)); 1194 1195 if (prot & VM_PROT_WRITE) { 1196 pte_lo |= PTE_BW; 1197 if (pmap_bootstrapped && 1198 (m->oflags & VPO_UNMANAGED) == 0) 1199 vm_page_aflag_set(m, PGA_WRITEABLE); 1200 } else 1201 pte_lo |= PTE_BR; 1202 1203 if ((flags & PMAP_ENTER_WIRED) != 0) 1204 pvo_flags |= PVO_WIRED; 1205 1206 error = moea_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m), 1207 pte_lo, pvo_flags); 1208 1209 /* 1210 * Flush the real page from the instruction cache. This has be done 1211 * for all user mappings to prevent information leakage via the 1212 * instruction cache. moea_pvo_enter() returns ENOENT for the first 1213 * mapping for a page. 1214 */ 1215 if (pmap != kernel_pmap && error == ENOENT && 1216 (pte_lo & (PTE_I | PTE_G)) == 0) 1217 moea_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE); 1218 1219 return (error); 1220 } 1221 1222 /* 1223 * Maps a sequence of resident pages belonging to the same object. 1224 * The sequence begins with the given page m_start. This page is 1225 * mapped at the given virtual address start. Each subsequent page is 1226 * mapped at a virtual address that is offset from start by the same 1227 * amount as the page is offset from m_start within the object. The 1228 * last page in the sequence is the page with the largest offset from 1229 * m_start that can be mapped at a virtual address less than the given 1230 * virtual address end. Not every virtual page between start and end 1231 * is mapped; only those for which a resident page exists with the 1232 * corresponding offset from m_start are mapped. 1233 */ 1234 void 1235 moea_enter_object(pmap_t pm, vm_offset_t start, vm_offset_t end, 1236 vm_page_t m_start, vm_prot_t prot) 1237 { 1238 vm_page_t m; 1239 vm_pindex_t diff, psize; 1240 1241 VM_OBJECT_ASSERT_LOCKED(m_start->object); 1242 1243 psize = atop(end - start); 1244 m = m_start; 1245 rw_wlock(&pvh_global_lock); 1246 PMAP_LOCK(pm); 1247 while (m != NULL && (diff = m->pindex - m_start->pindex) < psize) { 1248 moea_enter_locked(pm, start + ptoa(diff), m, prot & 1249 (VM_PROT_READ | VM_PROT_EXECUTE), PMAP_ENTER_QUICK_LOCKED, 1250 0); 1251 m = TAILQ_NEXT(m, listq); 1252 } 1253 rw_wunlock(&pvh_global_lock); 1254 PMAP_UNLOCK(pm); 1255 } 1256 1257 void 1258 moea_enter_quick(pmap_t pm, vm_offset_t va, vm_page_t m, 1259 vm_prot_t prot) 1260 { 1261 1262 rw_wlock(&pvh_global_lock); 1263 PMAP_LOCK(pm); 1264 moea_enter_locked(pm, va, m, prot & (VM_PROT_READ | VM_PROT_EXECUTE), 1265 PMAP_ENTER_QUICK_LOCKED, 0); 1266 rw_wunlock(&pvh_global_lock); 1267 PMAP_UNLOCK(pm); 1268 } 1269 1270 vm_paddr_t 1271 moea_extract(pmap_t pm, vm_offset_t va) 1272 { 1273 struct pvo_entry *pvo; 1274 vm_paddr_t pa; 1275 1276 PMAP_LOCK(pm); 1277 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1278 if (pvo == NULL) 1279 pa = 0; 1280 else 1281 pa = PVO_PADDR(pvo) | (va & ADDR_POFF); 1282 PMAP_UNLOCK(pm); 1283 return (pa); 1284 } 1285 1286 /* 1287 * Atomically extract and hold the physical page with the given 1288 * pmap and virtual address pair if that mapping permits the given 1289 * protection. 1290 */ 1291 vm_page_t 1292 moea_extract_and_hold(pmap_t pmap, vm_offset_t va, vm_prot_t prot) 1293 { 1294 struct pvo_entry *pvo; 1295 vm_page_t m; 1296 1297 m = NULL; 1298 PMAP_LOCK(pmap); 1299 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1300 if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID) && 1301 ((pvo->pvo_pte.pte.pte_lo & PTE_PP) == PTE_RW || 1302 (prot & VM_PROT_WRITE) == 0)) { 1303 m = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 1304 if (!vm_page_wire_mapped(m)) 1305 m = NULL; 1306 } 1307 PMAP_UNLOCK(pmap); 1308 return (m); 1309 } 1310 1311 void 1312 moea_init(void) 1313 { 1314 1315 moea_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry), 1316 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1317 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1318 moea_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry), 1319 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1320 UMA_ZONE_VM | UMA_ZONE_NOFREE); 1321 moea_initialized = true; 1322 } 1323 1324 bool 1325 moea_is_referenced(vm_page_t m) 1326 { 1327 bool rv; 1328 1329 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1330 ("moea_is_referenced: page %p is not managed", m)); 1331 rw_wlock(&pvh_global_lock); 1332 rv = moea_query_bit(m, PTE_REF); 1333 rw_wunlock(&pvh_global_lock); 1334 return (rv); 1335 } 1336 1337 bool 1338 moea_is_modified(vm_page_t m) 1339 { 1340 bool rv; 1341 1342 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1343 ("moea_is_modified: page %p is not managed", m)); 1344 1345 /* 1346 * If the page is not busied then this check is racy. 1347 */ 1348 if (!pmap_page_is_write_mapped(m)) 1349 return (false); 1350 1351 rw_wlock(&pvh_global_lock); 1352 rv = moea_query_bit(m, PTE_CHG); 1353 rw_wunlock(&pvh_global_lock); 1354 return (rv); 1355 } 1356 1357 bool 1358 moea_is_prefaultable(pmap_t pmap, vm_offset_t va) 1359 { 1360 struct pvo_entry *pvo; 1361 bool rv; 1362 1363 PMAP_LOCK(pmap); 1364 pvo = moea_pvo_find_va(pmap, va & ~ADDR_POFF, NULL); 1365 rv = pvo == NULL || (pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0; 1366 PMAP_UNLOCK(pmap); 1367 return (rv); 1368 } 1369 1370 void 1371 moea_clear_modify(vm_page_t m) 1372 { 1373 1374 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1375 ("moea_clear_modify: page %p is not managed", m)); 1376 vm_page_assert_busied(m); 1377 1378 if (!pmap_page_is_write_mapped(m)) 1379 return; 1380 rw_wlock(&pvh_global_lock); 1381 moea_clear_bit(m, PTE_CHG); 1382 rw_wunlock(&pvh_global_lock); 1383 } 1384 1385 /* 1386 * Clear the write and modified bits in each of the given page's mappings. 1387 */ 1388 void 1389 moea_remove_write(vm_page_t m) 1390 { 1391 struct pvo_entry *pvo; 1392 struct pte *pt; 1393 pmap_t pmap; 1394 u_int lo; 1395 1396 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1397 ("moea_remove_write: page %p is not managed", m)); 1398 vm_page_assert_busied(m); 1399 1400 if (!pmap_page_is_write_mapped(m)) 1401 return; 1402 rw_wlock(&pvh_global_lock); 1403 lo = moea_attr_fetch(m); 1404 powerpc_sync(); 1405 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1406 pmap = pvo->pvo_pmap; 1407 PMAP_LOCK(pmap); 1408 if ((pvo->pvo_pte.pte.pte_lo & PTE_PP) != PTE_BR) { 1409 pt = moea_pvo_to_pte(pvo, -1); 1410 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1411 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1412 if (pt != NULL) { 1413 moea_pte_synch(pt, &pvo->pvo_pte.pte); 1414 lo |= pvo->pvo_pte.pte.pte_lo; 1415 pvo->pvo_pte.pte.pte_lo &= ~PTE_CHG; 1416 moea_pte_change(pt, &pvo->pvo_pte.pte, 1417 pvo->pvo_vaddr); 1418 mtx_unlock(&moea_table_mutex); 1419 } 1420 } 1421 PMAP_UNLOCK(pmap); 1422 } 1423 if ((lo & PTE_CHG) != 0) { 1424 moea_attr_clear(m, PTE_CHG); 1425 vm_page_dirty(m); 1426 } 1427 vm_page_aflag_clear(m, PGA_WRITEABLE); 1428 rw_wunlock(&pvh_global_lock); 1429 } 1430 1431 /* 1432 * moea_ts_referenced: 1433 * 1434 * Return a count of reference bits for a page, clearing those bits. 1435 * It is not necessary for every reference bit to be cleared, but it 1436 * is necessary that 0 only be returned when there are truly no 1437 * reference bits set. 1438 * 1439 * XXX: The exact number of bits to check and clear is a matter that 1440 * should be tested and standardized at some point in the future for 1441 * optimal aging of shared pages. 1442 */ 1443 int 1444 moea_ts_referenced(vm_page_t m) 1445 { 1446 int count; 1447 1448 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1449 ("moea_ts_referenced: page %p is not managed", m)); 1450 rw_wlock(&pvh_global_lock); 1451 count = moea_clear_bit(m, PTE_REF); 1452 rw_wunlock(&pvh_global_lock); 1453 return (count); 1454 } 1455 1456 /* 1457 * Modify the WIMG settings of all mappings for a page. 1458 */ 1459 void 1460 moea_page_set_memattr(vm_page_t m, vm_memattr_t ma) 1461 { 1462 struct pvo_entry *pvo; 1463 struct pvo_head *pvo_head; 1464 struct pte *pt; 1465 pmap_t pmap; 1466 u_int lo; 1467 1468 if ((m->oflags & VPO_UNMANAGED) != 0) { 1469 m->md.mdpg_cache_attrs = ma; 1470 return; 1471 } 1472 1473 rw_wlock(&pvh_global_lock); 1474 pvo_head = vm_page_to_pvoh(m); 1475 lo = moea_calc_wimg(VM_PAGE_TO_PHYS(m), ma); 1476 1477 LIST_FOREACH(pvo, pvo_head, pvo_vlink) { 1478 pmap = pvo->pvo_pmap; 1479 PMAP_LOCK(pmap); 1480 pt = moea_pvo_to_pte(pvo, -1); 1481 pvo->pvo_pte.pte.pte_lo &= ~PTE_WIMG; 1482 pvo->pvo_pte.pte.pte_lo |= lo; 1483 if (pt != NULL) { 1484 moea_pte_change(pt, &pvo->pvo_pte.pte, 1485 pvo->pvo_vaddr); 1486 if (pvo->pvo_pmap == kernel_pmap) 1487 isync(); 1488 } 1489 mtx_unlock(&moea_table_mutex); 1490 PMAP_UNLOCK(pmap); 1491 } 1492 m->md.mdpg_cache_attrs = ma; 1493 rw_wunlock(&pvh_global_lock); 1494 } 1495 1496 /* 1497 * Map a wired page into kernel virtual address space. 1498 */ 1499 void 1500 moea_kenter(vm_offset_t va, vm_paddr_t pa) 1501 { 1502 1503 moea_kenter_attr(va, pa, VM_MEMATTR_DEFAULT); 1504 } 1505 1506 void 1507 moea_kenter_attr(vm_offset_t va, vm_paddr_t pa, vm_memattr_t ma) 1508 { 1509 u_int pte_lo; 1510 int error; 1511 1512 #if 0 1513 if (va < VM_MIN_KERNEL_ADDRESS) 1514 panic("moea_kenter: attempt to enter non-kernel address %#x", 1515 va); 1516 #endif 1517 1518 pte_lo = moea_calc_wimg(pa, ma); 1519 1520 PMAP_LOCK(kernel_pmap); 1521 error = moea_pvo_enter(kernel_pmap, moea_upvo_zone, 1522 &moea_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED); 1523 1524 if (error != 0 && error != ENOENT) 1525 panic("moea_kenter: failed to enter va %#x pa %#x: %d", va, 1526 pa, error); 1527 1528 PMAP_UNLOCK(kernel_pmap); 1529 } 1530 1531 /* 1532 * Extract the physical page address associated with the given kernel virtual 1533 * address. 1534 */ 1535 vm_paddr_t 1536 moea_kextract(vm_offset_t va) 1537 { 1538 struct pvo_entry *pvo; 1539 vm_paddr_t pa; 1540 1541 /* 1542 * Allow direct mappings on 32-bit OEA 1543 */ 1544 if (va < VM_MIN_KERNEL_ADDRESS) { 1545 return (va); 1546 } 1547 1548 PMAP_LOCK(kernel_pmap); 1549 pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); 1550 KASSERT(pvo != NULL, ("moea_kextract: no addr found")); 1551 pa = PVO_PADDR(pvo) | (va & ADDR_POFF); 1552 PMAP_UNLOCK(kernel_pmap); 1553 return (pa); 1554 } 1555 1556 /* 1557 * Remove a wired page from kernel virtual address space. 1558 */ 1559 void 1560 moea_kremove(vm_offset_t va) 1561 { 1562 1563 moea_remove(kernel_pmap, va, va + PAGE_SIZE); 1564 } 1565 1566 /* 1567 * Provide a kernel pointer corresponding to a given userland pointer. 1568 * The returned pointer is valid until the next time this function is 1569 * called in this thread. This is used internally in copyin/copyout. 1570 */ 1571 int 1572 moea_map_user_ptr(pmap_t pm, volatile const void *uaddr, 1573 void **kaddr, size_t ulen, size_t *klen) 1574 { 1575 size_t l; 1576 register_t vsid; 1577 1578 *kaddr = (char *)USER_ADDR + ((uintptr_t)uaddr & ~SEGMENT_MASK); 1579 l = ((char *)USER_ADDR + SEGMENT_LENGTH) - (char *)(*kaddr); 1580 if (l > ulen) 1581 l = ulen; 1582 if (klen) 1583 *klen = l; 1584 else if (l != ulen) 1585 return (EFAULT); 1586 1587 vsid = va_to_vsid(pm, (vm_offset_t)uaddr); 1588 1589 /* Mark segment no-execute */ 1590 vsid |= SR_N; 1591 1592 /* If we have already set this VSID, we can just return */ 1593 if (curthread->td_pcb->pcb_cpu.aim.usr_vsid == vsid) 1594 return (0); 1595 1596 __asm __volatile("isync"); 1597 curthread->td_pcb->pcb_cpu.aim.usr_segm = 1598 (uintptr_t)uaddr >> ADDR_SR_SHFT; 1599 curthread->td_pcb->pcb_cpu.aim.usr_vsid = vsid; 1600 __asm __volatile("mtsr %0,%1; isync" :: "n"(USER_SR), "r"(vsid)); 1601 1602 return (0); 1603 } 1604 1605 /* 1606 * Figure out where a given kernel pointer (usually in a fault) points 1607 * to from the VM's perspective, potentially remapping into userland's 1608 * address space. 1609 */ 1610 static int 1611 moea_decode_kernel_ptr(vm_offset_t addr, int *is_user, 1612 vm_offset_t *decoded_addr) 1613 { 1614 vm_offset_t user_sr; 1615 1616 if ((addr >> ADDR_SR_SHFT) == (USER_ADDR >> ADDR_SR_SHFT)) { 1617 user_sr = curthread->td_pcb->pcb_cpu.aim.usr_segm; 1618 addr &= ADDR_PIDX | ADDR_POFF; 1619 addr |= user_sr << ADDR_SR_SHFT; 1620 *decoded_addr = addr; 1621 *is_user = 1; 1622 } else { 1623 *decoded_addr = addr; 1624 *is_user = 0; 1625 } 1626 1627 return (0); 1628 } 1629 1630 /* 1631 * Map a range of physical addresses into kernel virtual address space. 1632 * 1633 * The value passed in *virt is a suggested virtual address for the mapping. 1634 * Architectures which can support a direct-mapped physical to virtual region 1635 * can return the appropriate address within that region, leaving '*virt' 1636 * unchanged. We cannot and therefore do not; *virt is updated with the 1637 * first usable address after the mapped region. 1638 */ 1639 vm_offset_t 1640 moea_map(vm_offset_t *virt, vm_paddr_t pa_start, 1641 vm_paddr_t pa_end, int prot) 1642 { 1643 vm_offset_t sva, va; 1644 1645 sva = *virt; 1646 va = sva; 1647 for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE) 1648 moea_kenter(va, pa_start); 1649 *virt = va; 1650 return (sva); 1651 } 1652 1653 /* 1654 * Returns true if the pmap's pv is one of the first 1655 * 16 pvs linked to from this page. This count may 1656 * be changed upwards or downwards in the future; it 1657 * is only necessary that true be returned for a small 1658 * subset of pmaps for proper page aging. 1659 */ 1660 bool 1661 moea_page_exists_quick(pmap_t pmap, vm_page_t m) 1662 { 1663 int loops; 1664 struct pvo_entry *pvo; 1665 bool rv; 1666 1667 KASSERT((m->oflags & VPO_UNMANAGED) == 0, 1668 ("moea_page_exists_quick: page %p is not managed", m)); 1669 loops = 0; 1670 rv = false; 1671 rw_wlock(&pvh_global_lock); 1672 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 1673 if (pvo->pvo_pmap == pmap) { 1674 rv = true; 1675 break; 1676 } 1677 if (++loops >= 16) 1678 break; 1679 } 1680 rw_wunlock(&pvh_global_lock); 1681 return (rv); 1682 } 1683 1684 void 1685 moea_page_init(vm_page_t m) 1686 { 1687 1688 m->md.mdpg_attrs = 0; 1689 m->md.mdpg_cache_attrs = VM_MEMATTR_DEFAULT; 1690 LIST_INIT(&m->md.mdpg_pvoh); 1691 } 1692 1693 /* 1694 * Return the number of managed mappings to the given physical page 1695 * that are wired. 1696 */ 1697 int 1698 moea_page_wired_mappings(vm_page_t m) 1699 { 1700 struct pvo_entry *pvo; 1701 int count; 1702 1703 count = 0; 1704 if ((m->oflags & VPO_UNMANAGED) != 0) 1705 return (count); 1706 rw_wlock(&pvh_global_lock); 1707 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) 1708 if ((pvo->pvo_vaddr & PVO_WIRED) != 0) 1709 count++; 1710 rw_wunlock(&pvh_global_lock); 1711 return (count); 1712 } 1713 1714 static u_int moea_vsidcontext; 1715 1716 int 1717 moea_pinit(pmap_t pmap) 1718 { 1719 int i, mask; 1720 u_int entropy; 1721 1722 RB_INIT(&pmap->pmap_pvo); 1723 1724 entropy = 0; 1725 __asm __volatile("mftb %0" : "=r"(entropy)); 1726 1727 if ((pmap->pmap_phys = (pmap_t)moea_kextract((vm_offset_t)pmap)) 1728 == NULL) { 1729 pmap->pmap_phys = pmap; 1730 } 1731 1732 mtx_lock(&moea_vsid_mutex); 1733 /* 1734 * Allocate some segment registers for this pmap. 1735 */ 1736 for (i = 0; i < NPMAPS; i += VSID_NBPW) { 1737 u_int hash, n; 1738 1739 /* 1740 * Create a new value by multiplying by a prime and adding in 1741 * entropy from the timebase register. This is to make the 1742 * VSID more random so that the PT hash function collides 1743 * less often. (Note that the prime casues gcc to do shifts 1744 * instead of a multiply.) 1745 */ 1746 moea_vsidcontext = (moea_vsidcontext * 0x1105) + entropy; 1747 hash = moea_vsidcontext & (NPMAPS - 1); 1748 if (hash == 0) /* 0 is special, avoid it */ 1749 continue; 1750 n = hash >> 5; 1751 mask = 1 << (hash & (VSID_NBPW - 1)); 1752 hash = (moea_vsidcontext & 0xfffff); 1753 if (moea_vsid_bitmap[n] & mask) { /* collision? */ 1754 /* anything free in this bucket? */ 1755 if (moea_vsid_bitmap[n] == 0xffffffff) { 1756 entropy = (moea_vsidcontext >> 20); 1757 continue; 1758 } 1759 i = ffs(~moea_vsid_bitmap[n]) - 1; 1760 mask = 1 << i; 1761 hash &= rounddown2(0xfffff, VSID_NBPW); 1762 hash |= i; 1763 } 1764 KASSERT(!(moea_vsid_bitmap[n] & mask), 1765 ("Allocating in-use VSID group %#x\n", hash)); 1766 moea_vsid_bitmap[n] |= mask; 1767 for (i = 0; i < 16; i++) 1768 pmap->pm_sr[i] = VSID_MAKE(i, hash); 1769 mtx_unlock(&moea_vsid_mutex); 1770 return (1); 1771 } 1772 1773 mtx_unlock(&moea_vsid_mutex); 1774 panic("moea_pinit: out of segments"); 1775 } 1776 1777 /* 1778 * Initialize the pmap associated with process 0. 1779 */ 1780 void 1781 moea_pinit0(pmap_t pm) 1782 { 1783 1784 PMAP_LOCK_INIT(pm); 1785 moea_pinit(pm); 1786 bzero(&pm->pm_stats, sizeof(pm->pm_stats)); 1787 } 1788 1789 /* 1790 * Set the physical protection on the specified range of this map as requested. 1791 */ 1792 void 1793 moea_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, 1794 vm_prot_t prot) 1795 { 1796 struct pvo_entry *pvo, *tpvo, key; 1797 struct pte *pt; 1798 1799 KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap, 1800 ("moea_protect: non current pmap")); 1801 1802 if ((prot & VM_PROT_READ) == VM_PROT_NONE) { 1803 moea_remove(pm, sva, eva); 1804 return; 1805 } 1806 1807 rw_wlock(&pvh_global_lock); 1808 PMAP_LOCK(pm); 1809 key.pvo_vaddr = sva; 1810 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1811 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1812 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1813 1814 /* 1815 * Grab the PTE pointer before we diddle with the cached PTE 1816 * copy. 1817 */ 1818 pt = moea_pvo_to_pte(pvo, -1); 1819 /* 1820 * Change the protection of the page. 1821 */ 1822 pvo->pvo_pte.pte.pte_lo &= ~PTE_PP; 1823 pvo->pvo_pte.pte.pte_lo |= PTE_BR; 1824 1825 /* 1826 * If the PVO is in the page table, update that pte as well. 1827 */ 1828 if (pt != NULL) { 1829 moea_pte_change(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 1830 mtx_unlock(&moea_table_mutex); 1831 } 1832 } 1833 rw_wunlock(&pvh_global_lock); 1834 PMAP_UNLOCK(pm); 1835 } 1836 1837 /* 1838 * Map a list of wired pages into kernel virtual address space. This is 1839 * intended for temporary mappings which do not need page modification or 1840 * references recorded. Existing mappings in the region are overwritten. 1841 */ 1842 void 1843 moea_qenter(vm_offset_t sva, vm_page_t *m, int count) 1844 { 1845 vm_offset_t va; 1846 1847 va = sva; 1848 while (count-- > 0) { 1849 moea_kenter(va, VM_PAGE_TO_PHYS(*m)); 1850 va += PAGE_SIZE; 1851 m++; 1852 } 1853 } 1854 1855 /* 1856 * Remove page mappings from kernel virtual address space. Intended for 1857 * temporary mappings entered by moea_qenter. 1858 */ 1859 void 1860 moea_qremove(vm_offset_t sva, int count) 1861 { 1862 vm_offset_t va; 1863 1864 va = sva; 1865 while (count-- > 0) { 1866 moea_kremove(va); 1867 va += PAGE_SIZE; 1868 } 1869 } 1870 1871 void 1872 moea_release(pmap_t pmap) 1873 { 1874 int idx, mask; 1875 1876 /* 1877 * Free segment register's VSID 1878 */ 1879 if (pmap->pm_sr[0] == 0) 1880 panic("moea_release"); 1881 1882 mtx_lock(&moea_vsid_mutex); 1883 idx = VSID_TO_HASH(pmap->pm_sr[0]) & (NPMAPS-1); 1884 mask = 1 << (idx % VSID_NBPW); 1885 idx /= VSID_NBPW; 1886 moea_vsid_bitmap[idx] &= ~mask; 1887 mtx_unlock(&moea_vsid_mutex); 1888 } 1889 1890 /* 1891 * Remove the given range of addresses from the specified map. 1892 */ 1893 void 1894 moea_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva) 1895 { 1896 struct pvo_entry *pvo, *tpvo, key; 1897 1898 rw_wlock(&pvh_global_lock); 1899 PMAP_LOCK(pm); 1900 key.pvo_vaddr = sva; 1901 for (pvo = RB_NFIND(pvo_tree, &pm->pmap_pvo, &key); 1902 pvo != NULL && PVO_VADDR(pvo) < eva; pvo = tpvo) { 1903 tpvo = RB_NEXT(pvo_tree, &pm->pmap_pvo, pvo); 1904 moea_pvo_remove(pvo, -1); 1905 } 1906 PMAP_UNLOCK(pm); 1907 rw_wunlock(&pvh_global_lock); 1908 } 1909 1910 /* 1911 * Remove physical page from all pmaps in which it resides. moea_pvo_remove() 1912 * will reflect changes in pte's back to the vm_page. 1913 */ 1914 void 1915 moea_remove_all(vm_page_t m) 1916 { 1917 struct pvo_head *pvo_head; 1918 struct pvo_entry *pvo, *next_pvo; 1919 pmap_t pmap; 1920 1921 rw_wlock(&pvh_global_lock); 1922 pvo_head = vm_page_to_pvoh(m); 1923 for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) { 1924 next_pvo = LIST_NEXT(pvo, pvo_vlink); 1925 1926 pmap = pvo->pvo_pmap; 1927 PMAP_LOCK(pmap); 1928 moea_pvo_remove(pvo, -1); 1929 PMAP_UNLOCK(pmap); 1930 } 1931 if ((m->a.flags & PGA_WRITEABLE) && moea_query_bit(m, PTE_CHG)) { 1932 moea_attr_clear(m, PTE_CHG); 1933 vm_page_dirty(m); 1934 } 1935 vm_page_aflag_clear(m, PGA_WRITEABLE); 1936 rw_wunlock(&pvh_global_lock); 1937 } 1938 1939 static int 1940 moea_mincore(pmap_t pm, vm_offset_t va, vm_paddr_t *pap) 1941 { 1942 struct pvo_entry *pvo; 1943 vm_paddr_t pa; 1944 vm_page_t m; 1945 int val; 1946 bool managed; 1947 1948 PMAP_LOCK(pm); 1949 1950 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 1951 if (pvo != NULL) { 1952 pa = PVO_PADDR(pvo); 1953 m = PHYS_TO_VM_PAGE(pa); 1954 managed = (pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED; 1955 val = MINCORE_INCORE; 1956 } else { 1957 PMAP_UNLOCK(pm); 1958 return (0); 1959 } 1960 1961 PMAP_UNLOCK(pm); 1962 1963 if (m == NULL) 1964 return (0); 1965 1966 if (managed) { 1967 if (moea_is_modified(m)) 1968 val |= MINCORE_MODIFIED | MINCORE_MODIFIED_OTHER; 1969 1970 if (moea_is_referenced(m)) 1971 val |= MINCORE_REFERENCED | MINCORE_REFERENCED_OTHER; 1972 } 1973 1974 if ((val & (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER)) != 1975 (MINCORE_MODIFIED_OTHER | MINCORE_REFERENCED_OTHER) && 1976 managed) { 1977 *pap = pa; 1978 } 1979 1980 return (val); 1981 } 1982 1983 /* 1984 * Allocate a physical page of memory directly from the phys_avail map. 1985 * Can only be called from moea_bootstrap before avail start and end are 1986 * calculated. 1987 */ 1988 static vm_offset_t 1989 moea_bootstrap_alloc(vm_size_t size, u_int align) 1990 { 1991 vm_offset_t s, e; 1992 int i, j; 1993 1994 size = round_page(size); 1995 for (i = 0; phys_avail[i + 1] != 0; i += 2) { 1996 if (align != 0) 1997 s = roundup2(phys_avail[i], align); 1998 else 1999 s = phys_avail[i]; 2000 e = s + size; 2001 2002 if (s < phys_avail[i] || e > phys_avail[i + 1]) 2003 continue; 2004 2005 if (s == phys_avail[i]) { 2006 phys_avail[i] += size; 2007 } else if (e == phys_avail[i + 1]) { 2008 phys_avail[i + 1] -= size; 2009 } else { 2010 for (j = phys_avail_count * 2; j > i; j -= 2) { 2011 phys_avail[j] = phys_avail[j - 2]; 2012 phys_avail[j + 1] = phys_avail[j - 1]; 2013 } 2014 2015 phys_avail[i + 3] = phys_avail[i + 1]; 2016 phys_avail[i + 1] = s; 2017 phys_avail[i + 2] = e; 2018 phys_avail_count++; 2019 } 2020 2021 return (s); 2022 } 2023 panic("moea_bootstrap_alloc: could not allocate memory"); 2024 } 2025 2026 static void 2027 moea_syncicache(vm_paddr_t pa, vm_size_t len) 2028 { 2029 __syncicache((void *)pa, len); 2030 } 2031 2032 static int 2033 moea_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head, 2034 vm_offset_t va, vm_paddr_t pa, u_int pte_lo, int flags) 2035 { 2036 struct pvo_entry *pvo; 2037 u_int sr; 2038 int first; 2039 u_int ptegidx; 2040 int i; 2041 int bootstrap; 2042 2043 moea_pvo_enter_calls++; 2044 first = 0; 2045 bootstrap = 0; 2046 2047 /* 2048 * Compute the PTE Group index. 2049 */ 2050 va &= ~ADDR_POFF; 2051 sr = va_to_sr(pm->pm_sr, va); 2052 ptegidx = va_to_pteg(sr, va); 2053 2054 /* 2055 * Remove any existing mapping for this page. Reuse the pvo entry if 2056 * there is a mapping. 2057 */ 2058 mtx_lock(&moea_table_mutex); 2059 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2060 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2061 if (PVO_PADDR(pvo) == pa && 2062 (pvo->pvo_pte.pte.pte_lo & PTE_PP) == 2063 (pte_lo & PTE_PP)) { 2064 /* 2065 * The PTE is not changing. Instead, this may 2066 * be a request to change the mapping's wired 2067 * attribute. 2068 */ 2069 mtx_unlock(&moea_table_mutex); 2070 if ((flags & PVO_WIRED) != 0 && 2071 (pvo->pvo_vaddr & PVO_WIRED) == 0) { 2072 pvo->pvo_vaddr |= PVO_WIRED; 2073 pm->pm_stats.wired_count++; 2074 } else if ((flags & PVO_WIRED) == 0 && 2075 (pvo->pvo_vaddr & PVO_WIRED) != 0) { 2076 pvo->pvo_vaddr &= ~PVO_WIRED; 2077 pm->pm_stats.wired_count--; 2078 } 2079 return (0); 2080 } 2081 moea_pvo_remove(pvo, -1); 2082 break; 2083 } 2084 } 2085 2086 /* 2087 * If we aren't overwriting a mapping, try to allocate. 2088 */ 2089 if (moea_initialized) { 2090 pvo = uma_zalloc(zone, M_NOWAIT); 2091 } else { 2092 if (moea_bpvo_pool_index >= BPVO_POOL_SIZE) { 2093 panic("moea_enter: bpvo pool exhausted, %d, %d, %d", 2094 moea_bpvo_pool_index, BPVO_POOL_SIZE, 2095 BPVO_POOL_SIZE * sizeof(struct pvo_entry)); 2096 } 2097 pvo = &moea_bpvo_pool[moea_bpvo_pool_index]; 2098 moea_bpvo_pool_index++; 2099 bootstrap = 1; 2100 } 2101 2102 if (pvo == NULL) { 2103 mtx_unlock(&moea_table_mutex); 2104 return (ENOMEM); 2105 } 2106 2107 moea_pvo_entries++; 2108 pvo->pvo_vaddr = va; 2109 pvo->pvo_pmap = pm; 2110 LIST_INSERT_HEAD(&moea_pvo_table[ptegidx], pvo, pvo_olink); 2111 pvo->pvo_vaddr &= ~ADDR_POFF; 2112 if (flags & PVO_WIRED) 2113 pvo->pvo_vaddr |= PVO_WIRED; 2114 if (pvo_head != &moea_pvo_kunmanaged) 2115 pvo->pvo_vaddr |= PVO_MANAGED; 2116 if (bootstrap) 2117 pvo->pvo_vaddr |= PVO_BOOTSTRAP; 2118 2119 moea_pte_create(&pvo->pvo_pte.pte, sr, va, pa | pte_lo); 2120 2121 /* 2122 * Add to pmap list 2123 */ 2124 RB_INSERT(pvo_tree, &pm->pmap_pvo, pvo); 2125 2126 /* 2127 * Remember if the list was empty and therefore will be the first 2128 * item. 2129 */ 2130 if (LIST_FIRST(pvo_head) == NULL) 2131 first = 1; 2132 LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink); 2133 2134 if (pvo->pvo_vaddr & PVO_WIRED) 2135 pm->pm_stats.wired_count++; 2136 pm->pm_stats.resident_count++; 2137 2138 i = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2139 KASSERT(i < 8, ("Invalid PTE index")); 2140 if (i >= 0) { 2141 PVO_PTEGIDX_SET(pvo, i); 2142 } else { 2143 panic("moea_pvo_enter: overflow"); 2144 moea_pte_overflow++; 2145 } 2146 mtx_unlock(&moea_table_mutex); 2147 2148 return (first ? ENOENT : 0); 2149 } 2150 2151 static void 2152 moea_pvo_remove(struct pvo_entry *pvo, int pteidx) 2153 { 2154 struct pte *pt; 2155 2156 /* 2157 * If there is an active pte entry, we need to deactivate it (and 2158 * save the ref & cfg bits). 2159 */ 2160 pt = moea_pvo_to_pte(pvo, pteidx); 2161 if (pt != NULL) { 2162 moea_pte_unset(pt, &pvo->pvo_pte.pte, pvo->pvo_vaddr); 2163 mtx_unlock(&moea_table_mutex); 2164 PVO_PTEGIDX_CLR(pvo); 2165 } else { 2166 moea_pte_overflow--; 2167 } 2168 2169 /* 2170 * Update our statistics. 2171 */ 2172 pvo->pvo_pmap->pm_stats.resident_count--; 2173 if (pvo->pvo_vaddr & PVO_WIRED) 2174 pvo->pvo_pmap->pm_stats.wired_count--; 2175 2176 /* 2177 * Remove this PVO from the PV and pmap lists. 2178 */ 2179 LIST_REMOVE(pvo, pvo_vlink); 2180 RB_REMOVE(pvo_tree, &pvo->pvo_pmap->pmap_pvo, pvo); 2181 2182 /* 2183 * Save the REF/CHG bits into their cache if the page is managed. 2184 * Clear PGA_WRITEABLE if all mappings of the page have been removed. 2185 */ 2186 if ((pvo->pvo_vaddr & PVO_MANAGED) == PVO_MANAGED) { 2187 struct vm_page *pg; 2188 2189 pg = PHYS_TO_VM_PAGE(PVO_PADDR(pvo)); 2190 if (pg != NULL) { 2191 moea_attr_save(pg, pvo->pvo_pte.pte.pte_lo & 2192 (PTE_REF | PTE_CHG)); 2193 if (LIST_EMPTY(&pg->md.mdpg_pvoh)) 2194 vm_page_aflag_clear(pg, PGA_WRITEABLE); 2195 } 2196 } 2197 2198 /* 2199 * Remove this from the overflow list and return it to the pool 2200 * if we aren't going to reuse it. 2201 */ 2202 LIST_REMOVE(pvo, pvo_olink); 2203 if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP)) 2204 uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? moea_mpvo_zone : 2205 moea_upvo_zone, pvo); 2206 moea_pvo_entries--; 2207 moea_pvo_remove_calls++; 2208 } 2209 2210 static __inline int 2211 moea_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx) 2212 { 2213 int pteidx; 2214 2215 /* 2216 * We can find the actual pte entry without searching by grabbing 2217 * the PTEG index from 3 unused bits in pte_lo[11:9] and by 2218 * noticing the HID bit. 2219 */ 2220 pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo); 2221 if (pvo->pvo_pte.pte.pte_hi & PTE_HID) 2222 pteidx ^= moea_pteg_mask * 8; 2223 2224 return (pteidx); 2225 } 2226 2227 static struct pvo_entry * 2228 moea_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p) 2229 { 2230 struct pvo_entry *pvo; 2231 int ptegidx; 2232 u_int sr; 2233 2234 va &= ~ADDR_POFF; 2235 sr = va_to_sr(pm->pm_sr, va); 2236 ptegidx = va_to_pteg(sr, va); 2237 2238 mtx_lock(&moea_table_mutex); 2239 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2240 if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) { 2241 if (pteidx_p) 2242 *pteidx_p = moea_pvo_pte_index(pvo, ptegidx); 2243 break; 2244 } 2245 } 2246 mtx_unlock(&moea_table_mutex); 2247 2248 return (pvo); 2249 } 2250 2251 static struct pte * 2252 moea_pvo_to_pte(const struct pvo_entry *pvo, int pteidx) 2253 { 2254 struct pte *pt; 2255 2256 /* 2257 * If we haven't been supplied the ptegidx, calculate it. 2258 */ 2259 if (pteidx == -1) { 2260 int ptegidx; 2261 u_int sr; 2262 2263 sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr); 2264 ptegidx = va_to_pteg(sr, pvo->pvo_vaddr); 2265 pteidx = moea_pvo_pte_index(pvo, ptegidx); 2266 } 2267 2268 pt = &moea_pteg_table[pteidx >> 3].pt[pteidx & 7]; 2269 mtx_lock(&moea_table_mutex); 2270 2271 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) { 2272 panic("moea_pvo_to_pte: pvo %p has valid pte in pvo but no " 2273 "valid pte index", pvo); 2274 } 2275 2276 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) { 2277 panic("moea_pvo_to_pte: pvo %p has valid pte index in pvo " 2278 "pvo but no valid pte", pvo); 2279 } 2280 2281 if ((pt->pte_hi ^ (pvo->pvo_pte.pte.pte_hi & ~PTE_VALID)) == PTE_VALID) { 2282 if ((pvo->pvo_pte.pte.pte_hi & PTE_VALID) == 0) { 2283 panic("moea_pvo_to_pte: pvo %p has valid pte in " 2284 "moea_pteg_table %p but invalid in pvo", pvo, pt); 2285 } 2286 2287 if (((pt->pte_lo ^ pvo->pvo_pte.pte.pte_lo) & ~(PTE_CHG|PTE_REF)) 2288 != 0) { 2289 panic("moea_pvo_to_pte: pvo %p pte does not match " 2290 "pte %p in moea_pteg_table", pvo, pt); 2291 } 2292 2293 mtx_assert(&moea_table_mutex, MA_OWNED); 2294 return (pt); 2295 } 2296 2297 if (pvo->pvo_pte.pte.pte_hi & PTE_VALID) { 2298 panic("moea_pvo_to_pte: pvo %p has invalid pte %p in " 2299 "moea_pteg_table but valid in pvo: %8x, %8x", pvo, pt, pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2300 } 2301 2302 mtx_unlock(&moea_table_mutex); 2303 return (NULL); 2304 } 2305 2306 /* 2307 * XXX: THIS STUFF SHOULD BE IN pte.c? 2308 */ 2309 int 2310 moea_pte_spill(vm_offset_t addr) 2311 { 2312 struct pvo_entry *source_pvo, *victim_pvo; 2313 struct pvo_entry *pvo; 2314 int ptegidx, i, j; 2315 u_int sr; 2316 struct pteg *pteg; 2317 struct pte *pt; 2318 2319 moea_pte_spills++; 2320 2321 sr = mfsrin(addr); 2322 ptegidx = va_to_pteg(sr, addr); 2323 2324 /* 2325 * Have to substitute some entry. Use the primary hash for this. 2326 * Use low bits of timebase as random generator. 2327 */ 2328 pteg = &moea_pteg_table[ptegidx]; 2329 mtx_lock(&moea_table_mutex); 2330 __asm __volatile("mftb %0" : "=r"(i)); 2331 i &= 7; 2332 pt = &pteg->pt[i]; 2333 2334 source_pvo = NULL; 2335 victim_pvo = NULL; 2336 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx], pvo_olink) { 2337 /* 2338 * We need to find a pvo entry for this address. 2339 */ 2340 if (source_pvo == NULL && 2341 moea_pte_match(&pvo->pvo_pte.pte, sr, addr, 2342 pvo->pvo_pte.pte.pte_hi & PTE_HID)) { 2343 /* 2344 * Now found an entry to be spilled into the pteg. 2345 * The PTE is now valid, so we know it's active. 2346 */ 2347 j = moea_pte_insert(ptegidx, &pvo->pvo_pte.pte); 2348 2349 if (j >= 0) { 2350 PVO_PTEGIDX_SET(pvo, j); 2351 moea_pte_overflow--; 2352 mtx_unlock(&moea_table_mutex); 2353 return (1); 2354 } 2355 2356 source_pvo = pvo; 2357 2358 if (victim_pvo != NULL) 2359 break; 2360 } 2361 2362 /* 2363 * We also need the pvo entry of the victim we are replacing 2364 * so save the R & C bits of the PTE. 2365 */ 2366 if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL && 2367 moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2368 victim_pvo = pvo; 2369 if (source_pvo != NULL) 2370 break; 2371 } 2372 } 2373 2374 if (source_pvo == NULL) { 2375 mtx_unlock(&moea_table_mutex); 2376 return (0); 2377 } 2378 2379 if (victim_pvo == NULL) { 2380 if ((pt->pte_hi & PTE_HID) == 0) 2381 panic("moea_pte_spill: victim p-pte (%p) has no pvo" 2382 "entry", pt); 2383 2384 /* 2385 * If this is a secondary PTE, we need to search it's primary 2386 * pvo bucket for the matching PVO. 2387 */ 2388 LIST_FOREACH(pvo, &moea_pvo_table[ptegidx ^ moea_pteg_mask], 2389 pvo_olink) { 2390 /* 2391 * We also need the pvo entry of the victim we are 2392 * replacing so save the R & C bits of the PTE. 2393 */ 2394 if (moea_pte_compare(pt, &pvo->pvo_pte.pte)) { 2395 victim_pvo = pvo; 2396 break; 2397 } 2398 } 2399 2400 if (victim_pvo == NULL) 2401 panic("moea_pte_spill: victim s-pte (%p) has no pvo" 2402 "entry", pt); 2403 } 2404 2405 /* 2406 * We are invalidating the TLB entry for the EA we are replacing even 2407 * though it's valid. If we don't, we lose any ref/chg bit changes 2408 * contained in the TLB entry. 2409 */ 2410 source_pvo->pvo_pte.pte.pte_hi &= ~PTE_HID; 2411 2412 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2413 moea_pte_set(pt, &source_pvo->pvo_pte.pte); 2414 2415 PVO_PTEGIDX_CLR(victim_pvo); 2416 PVO_PTEGIDX_SET(source_pvo, i); 2417 moea_pte_replacements++; 2418 2419 mtx_unlock(&moea_table_mutex); 2420 return (1); 2421 } 2422 2423 static __inline struct pvo_entry * 2424 moea_pte_spillable_ident(u_int ptegidx) 2425 { 2426 struct pte *pt; 2427 struct pvo_entry *pvo_walk, *pvo = NULL; 2428 2429 LIST_FOREACH(pvo_walk, &moea_pvo_table[ptegidx], pvo_olink) { 2430 if (pvo_walk->pvo_vaddr & PVO_WIRED) 2431 continue; 2432 2433 if (!(pvo_walk->pvo_pte.pte.pte_hi & PTE_VALID)) 2434 continue; 2435 2436 pt = moea_pvo_to_pte(pvo_walk, -1); 2437 2438 if (pt == NULL) 2439 continue; 2440 2441 pvo = pvo_walk; 2442 2443 mtx_unlock(&moea_table_mutex); 2444 if (!(pt->pte_lo & PTE_REF)) 2445 return (pvo_walk); 2446 } 2447 2448 return (pvo); 2449 } 2450 2451 static int 2452 moea_pte_insert(u_int ptegidx, struct pte *pvo_pt) 2453 { 2454 struct pte *pt; 2455 struct pvo_entry *victim_pvo; 2456 int i; 2457 int victim_idx; 2458 u_int pteg_bkpidx = ptegidx; 2459 2460 mtx_assert(&moea_table_mutex, MA_OWNED); 2461 2462 /* 2463 * First try primary hash. 2464 */ 2465 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2466 if ((pt->pte_hi & PTE_VALID) == 0) { 2467 pvo_pt->pte_hi &= ~PTE_HID; 2468 moea_pte_set(pt, pvo_pt); 2469 return (i); 2470 } 2471 } 2472 2473 /* 2474 * Now try secondary hash. 2475 */ 2476 ptegidx ^= moea_pteg_mask; 2477 2478 for (pt = moea_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) { 2479 if ((pt->pte_hi & PTE_VALID) == 0) { 2480 pvo_pt->pte_hi |= PTE_HID; 2481 moea_pte_set(pt, pvo_pt); 2482 return (i); 2483 } 2484 } 2485 2486 /* Try again, but this time try to force a PTE out. */ 2487 ptegidx = pteg_bkpidx; 2488 2489 victim_pvo = moea_pte_spillable_ident(ptegidx); 2490 if (victim_pvo == NULL) { 2491 ptegidx ^= moea_pteg_mask; 2492 victim_pvo = moea_pte_spillable_ident(ptegidx); 2493 } 2494 2495 if (victim_pvo == NULL) { 2496 panic("moea_pte_insert: overflow"); 2497 return (-1); 2498 } 2499 2500 victim_idx = moea_pvo_pte_index(victim_pvo, ptegidx); 2501 2502 if (pteg_bkpidx == ptegidx) 2503 pvo_pt->pte_hi &= ~PTE_HID; 2504 else 2505 pvo_pt->pte_hi |= PTE_HID; 2506 2507 /* 2508 * Synchronize the sacrifice PTE with its PVO, then mark both 2509 * invalid. The PVO will be reused when/if the VM system comes 2510 * here after a fault. 2511 */ 2512 pt = &moea_pteg_table[victim_idx >> 3].pt[victim_idx & 7]; 2513 2514 if (pt->pte_hi != victim_pvo->pvo_pte.pte.pte_hi) 2515 panic("Victim PVO doesn't match PTE! PVO: %8x, PTE: %8x", victim_pvo->pvo_pte.pte.pte_hi, pt->pte_hi); 2516 2517 /* 2518 * Set the new PTE. 2519 */ 2520 moea_pte_unset(pt, &victim_pvo->pvo_pte.pte, victim_pvo->pvo_vaddr); 2521 PVO_PTEGIDX_CLR(victim_pvo); 2522 moea_pte_overflow++; 2523 moea_pte_set(pt, pvo_pt); 2524 2525 return (victim_idx & 7); 2526 } 2527 2528 static bool 2529 moea_query_bit(vm_page_t m, int ptebit) 2530 { 2531 struct pvo_entry *pvo; 2532 struct pte *pt; 2533 2534 rw_assert(&pvh_global_lock, RA_WLOCKED); 2535 if (moea_attr_fetch(m) & ptebit) 2536 return (true); 2537 2538 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2539 /* 2540 * See if we saved the bit off. If so, cache it and return 2541 * success. 2542 */ 2543 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2544 moea_attr_save(m, ptebit); 2545 return (true); 2546 } 2547 } 2548 2549 /* 2550 * No luck, now go through the hard part of looking at the PTEs 2551 * themselves. Sync so that any pending REF/CHG bits are flushed to 2552 * the PTEs. 2553 */ 2554 powerpc_sync(); 2555 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2556 /* 2557 * See if this pvo has a valid PTE. if so, fetch the 2558 * REF/CHG bits from the valid PTE. If the appropriate 2559 * ptebit is set, cache it and return success. 2560 */ 2561 pt = moea_pvo_to_pte(pvo, -1); 2562 if (pt != NULL) { 2563 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2564 mtx_unlock(&moea_table_mutex); 2565 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2566 moea_attr_save(m, ptebit); 2567 return (true); 2568 } 2569 } 2570 } 2571 2572 return (false); 2573 } 2574 2575 static u_int 2576 moea_clear_bit(vm_page_t m, int ptebit) 2577 { 2578 u_int count; 2579 struct pvo_entry *pvo; 2580 struct pte *pt; 2581 2582 rw_assert(&pvh_global_lock, RA_WLOCKED); 2583 2584 /* 2585 * Clear the cached value. 2586 */ 2587 moea_attr_clear(m, ptebit); 2588 2589 /* 2590 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so 2591 * we can reset the right ones). note that since the pvo entries and 2592 * list heads are accessed via BAT0 and are never placed in the page 2593 * table, we don't have to worry about further accesses setting the 2594 * REF/CHG bits. 2595 */ 2596 powerpc_sync(); 2597 2598 /* 2599 * For each pvo entry, clear the pvo's ptebit. If this pvo has a 2600 * valid pte clear the ptebit from the valid pte. 2601 */ 2602 count = 0; 2603 LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) { 2604 pt = moea_pvo_to_pte(pvo, -1); 2605 if (pt != NULL) { 2606 moea_pte_synch(pt, &pvo->pvo_pte.pte); 2607 if (pvo->pvo_pte.pte.pte_lo & ptebit) { 2608 count++; 2609 moea_pte_clear(pt, PVO_VADDR(pvo), ptebit); 2610 } 2611 mtx_unlock(&moea_table_mutex); 2612 } 2613 pvo->pvo_pte.pte.pte_lo &= ~ptebit; 2614 } 2615 2616 return (count); 2617 } 2618 2619 /* 2620 * Return true if the physical range is encompassed by the battable[idx] 2621 */ 2622 static int 2623 moea_bat_mapped(int idx, vm_paddr_t pa, vm_size_t size) 2624 { 2625 u_int prot; 2626 u_int32_t start; 2627 u_int32_t end; 2628 u_int32_t bat_ble; 2629 2630 /* 2631 * Return immediately if not a valid mapping 2632 */ 2633 if (!(battable[idx].batu & BAT_Vs)) 2634 return (EINVAL); 2635 2636 /* 2637 * The BAT entry must be cache-inhibited, guarded, and r/w 2638 * so it can function as an i/o page 2639 */ 2640 prot = battable[idx].batl & (BAT_I|BAT_G|BAT_PP_RW); 2641 if (prot != (BAT_I|BAT_G|BAT_PP_RW)) 2642 return (EPERM); 2643 2644 /* 2645 * The address should be within the BAT range. Assume that the 2646 * start address in the BAT has the correct alignment (thus 2647 * not requiring masking) 2648 */ 2649 start = battable[idx].batl & BAT_PBS; 2650 bat_ble = (battable[idx].batu & ~(BAT_EBS)) | 0x03; 2651 end = start | (bat_ble << 15) | 0x7fff; 2652 2653 if ((pa < start) || ((pa + size) > end)) 2654 return (ERANGE); 2655 2656 return (0); 2657 } 2658 2659 int 2660 moea_dev_direct_mapped(vm_paddr_t pa, vm_size_t size) 2661 { 2662 int i; 2663 2664 /* 2665 * This currently does not work for entries that 2666 * overlap 256M BAT segments. 2667 */ 2668 2669 for(i = 0; i < 16; i++) 2670 if (moea_bat_mapped(i, pa, size) == 0) 2671 return (0); 2672 2673 return (EFAULT); 2674 } 2675 2676 /* 2677 * Map a set of physical memory pages into the kernel virtual 2678 * address space. Return a pointer to where it is mapped. This 2679 * routine is intended to be used for mapping device memory, 2680 * NOT real memory. 2681 */ 2682 void * 2683 moea_mapdev(vm_paddr_t pa, vm_size_t size) 2684 { 2685 2686 return (moea_mapdev_attr(pa, size, VM_MEMATTR_DEFAULT)); 2687 } 2688 2689 void * 2690 moea_mapdev_attr(vm_paddr_t pa, vm_size_t size, vm_memattr_t ma) 2691 { 2692 vm_offset_t va, tmpva, ppa, offset; 2693 int i; 2694 2695 ppa = trunc_page(pa); 2696 offset = pa & PAGE_MASK; 2697 size = roundup(offset + size, PAGE_SIZE); 2698 2699 /* 2700 * If the physical address lies within a valid BAT table entry, 2701 * return the 1:1 mapping. This currently doesn't work 2702 * for regions that overlap 256M BAT segments. 2703 */ 2704 for (i = 0; i < 16; i++) { 2705 if (moea_bat_mapped(i, pa, size) == 0) 2706 return ((void *) pa); 2707 } 2708 2709 va = kva_alloc(size); 2710 if (!va) 2711 panic("moea_mapdev: Couldn't alloc kernel virtual memory"); 2712 2713 for (tmpva = va; size > 0;) { 2714 moea_kenter_attr(tmpva, ppa, ma); 2715 tlbie(tmpva); 2716 size -= PAGE_SIZE; 2717 tmpva += PAGE_SIZE; 2718 ppa += PAGE_SIZE; 2719 } 2720 2721 return ((void *)(va + offset)); 2722 } 2723 2724 void 2725 moea_unmapdev(void *p, vm_size_t size) 2726 { 2727 vm_offset_t base, offset, va; 2728 2729 /* 2730 * If this is outside kernel virtual space, then it's a 2731 * battable entry and doesn't require unmapping 2732 */ 2733 va = (vm_offset_t)p; 2734 if ((va >= VM_MIN_KERNEL_ADDRESS) && (va <= virtual_end)) { 2735 base = trunc_page(va); 2736 offset = va & PAGE_MASK; 2737 size = roundup(offset + size, PAGE_SIZE); 2738 moea_qremove(base, atop(size)); 2739 kva_free(base, size); 2740 } 2741 } 2742 2743 static void 2744 moea_sync_icache(pmap_t pm, vm_offset_t va, vm_size_t sz) 2745 { 2746 struct pvo_entry *pvo; 2747 vm_offset_t lim; 2748 vm_paddr_t pa; 2749 vm_size_t len; 2750 2751 PMAP_LOCK(pm); 2752 while (sz > 0) { 2753 lim = round_page(va + 1); 2754 len = MIN(lim - va, sz); 2755 pvo = moea_pvo_find_va(pm, va & ~ADDR_POFF, NULL); 2756 if (pvo != NULL) { 2757 pa = PVO_PADDR(pvo) | (va & ADDR_POFF); 2758 moea_syncicache(pa, len); 2759 } 2760 va += len; 2761 sz -= len; 2762 } 2763 PMAP_UNLOCK(pm); 2764 } 2765 2766 void 2767 moea_dumpsys_map(vm_paddr_t pa, size_t sz, void **va) 2768 { 2769 2770 *va = (void *)pa; 2771 } 2772 2773 extern struct dump_pa dump_map[PHYS_AVAIL_SZ + 1]; 2774 2775 void 2776 moea_scan_init(void) 2777 { 2778 struct pvo_entry *pvo; 2779 vm_offset_t va; 2780 int i; 2781 2782 if (!do_minidump) { 2783 /* Initialize phys. segments for dumpsys(). */ 2784 memset(&dump_map, 0, sizeof(dump_map)); 2785 mem_regions(&pregions, &pregions_sz, ®ions, ®ions_sz); 2786 for (i = 0; i < pregions_sz; i++) { 2787 dump_map[i].pa_start = pregions[i].mr_start; 2788 dump_map[i].pa_size = pregions[i].mr_size; 2789 } 2790 return; 2791 } 2792 2793 /* Virtual segments for minidumps: */ 2794 memset(&dump_map, 0, sizeof(dump_map)); 2795 2796 /* 1st: kernel .data and .bss. */ 2797 dump_map[0].pa_start = trunc_page((uintptr_t)_etext); 2798 dump_map[0].pa_size = 2799 round_page((uintptr_t)_end) - dump_map[0].pa_start; 2800 2801 /* 2nd: msgbuf and tables (see pmap_bootstrap()). */ 2802 dump_map[1].pa_start = (vm_paddr_t)msgbufp->msg_ptr; 2803 dump_map[1].pa_size = round_page(msgbufp->msg_size); 2804 2805 /* 3rd: kernel VM. */ 2806 va = dump_map[1].pa_start + dump_map[1].pa_size; 2807 /* Find start of next chunk (from va). */ 2808 while (va < virtual_end) { 2809 /* Don't dump the buffer cache. */ 2810 if (va >= kmi.buffer_sva && va < kmi.buffer_eva) { 2811 va = kmi.buffer_eva; 2812 continue; 2813 } 2814 pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL); 2815 if (pvo != NULL && (pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2816 break; 2817 va += PAGE_SIZE; 2818 } 2819 if (va < virtual_end) { 2820 dump_map[2].pa_start = va; 2821 va += PAGE_SIZE; 2822 /* Find last page in chunk. */ 2823 while (va < virtual_end) { 2824 /* Don't run into the buffer cache. */ 2825 if (va == kmi.buffer_sva) 2826 break; 2827 pvo = moea_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, 2828 NULL); 2829 if (pvo == NULL || 2830 !(pvo->pvo_pte.pte.pte_hi & PTE_VALID)) 2831 break; 2832 va += PAGE_SIZE; 2833 } 2834 dump_map[2].pa_size = va - dump_map[2].pa_start; 2835 } 2836 } 2837