xref: /freebsd/sys/powerpc/aim/mmu_oea.c (revision 11f0b352e05306cf6f1f85e9087022c0a92624a3)
1 /*
2  * Copyright (c) 2001 The NetBSD Foundation, Inc.
3  * All rights reserved.
4  *
5  * This code is derived from software contributed to The NetBSD Foundation
6  * by Matt Thomas <matt@3am-software.com> of Allegro Networks, Inc.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. All advertising materials mentioning features or use of this software
17  *    must display the following acknowledgement:
18  *        This product includes software developed by the NetBSD
19  *        Foundation, Inc. and its contributors.
20  * 4. Neither the name of The NetBSD Foundation nor the names of its
21  *    contributors may be used to endorse or promote products derived
22  *    from this software without specific prior written permission.
23  *
24  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34  * POSSIBILITY OF SUCH DAMAGE.
35  */
36 /*
37  * Copyright (C) 1995, 1996 Wolfgang Solfrank.
38  * Copyright (C) 1995, 1996 TooLs GmbH.
39  * All rights reserved.
40  *
41  * Redistribution and use in source and binary forms, with or without
42  * modification, are permitted provided that the following conditions
43  * are met:
44  * 1. Redistributions of source code must retain the above copyright
45  *    notice, this list of conditions and the following disclaimer.
46  * 2. Redistributions in binary form must reproduce the above copyright
47  *    notice, this list of conditions and the following disclaimer in the
48  *    documentation and/or other materials provided with the distribution.
49  * 3. All advertising materials mentioning features or use of this software
50  *    must display the following acknowledgement:
51  *	This product includes software developed by TooLs GmbH.
52  * 4. The name of TooLs GmbH may not be used to endorse or promote products
53  *    derived from this software without specific prior written permission.
54  *
55  * THIS SOFTWARE IS PROVIDED BY TOOLS GMBH ``AS IS'' AND ANY EXPRESS OR
56  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
57  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
58  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
59  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
61  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
62  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
63  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
64  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65  *
66  * $NetBSD: pmap.c,v 1.28 2000/03/26 20:42:36 kleink Exp $
67  */
68 /*
69  * Copyright (C) 2001 Benno Rice.
70  * All rights reserved.
71  *
72  * Redistribution and use in source and binary forms, with or without
73  * modification, are permitted provided that the following conditions
74  * are met:
75  * 1. Redistributions of source code must retain the above copyright
76  *    notice, this list of conditions and the following disclaimer.
77  * 2. Redistributions in binary form must reproduce the above copyright
78  *    notice, this list of conditions and the following disclaimer in the
79  *    documentation and/or other materials provided with the distribution.
80  *
81  * THIS SOFTWARE IS PROVIDED BY Benno Rice ``AS IS'' AND ANY EXPRESS OR
82  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
83  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
84  * IN NO EVENT SHALL TOOLS GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
85  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
86  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
87  * OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
88  * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
89  * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
90  * ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
91  */
92 
93 #ifndef lint
94 static const char rcsid[] =
95   "$FreeBSD$";
96 #endif /* not lint */
97 
98 /*
99  * Manages physical address maps.
100  *
101  * In addition to hardware address maps, this module is called upon to
102  * provide software-use-only maps which may or may not be stored in the
103  * same form as hardware maps.  These pseudo-maps are used to store
104  * intermediate results from copy operations to and from address spaces.
105  *
106  * Since the information managed by this module is also stored by the
107  * logical address mapping module, this module may throw away valid virtual
108  * to physical mappings at almost any time.  However, invalidations of
109  * mappings must be done as requested.
110  *
111  * In order to cope with hardware architectures which make virtual to
112  * physical map invalidates expensive, this module may delay invalidate
113  * reduced protection operations until such time as they are actually
114  * necessary.  This module is given full information as to which processors
115  * are currently using which maps, and to when physical maps must be made
116  * correct.
117  */
118 
119 #include <sys/param.h>
120 #include <sys/kernel.h>
121 #include <sys/ktr.h>
122 #include <sys/lock.h>
123 #include <sys/msgbuf.h>
124 #include <sys/mutex.h>
125 #include <sys/proc.h>
126 #include <sys/sysctl.h>
127 #include <sys/systm.h>
128 #include <sys/vmmeter.h>
129 
130 #include <dev/ofw/openfirm.h>
131 
132 #include <vm/vm.h>
133 #include <vm/vm_param.h>
134 #include <vm/vm_kern.h>
135 #include <vm/vm_page.h>
136 #include <vm/vm_map.h>
137 #include <vm/vm_object.h>
138 #include <vm/vm_extern.h>
139 #include <vm/vm_pageout.h>
140 #include <vm/vm_pager.h>
141 #include <vm/uma.h>
142 
143 #include <machine/powerpc.h>
144 #include <machine/bat.h>
145 #include <machine/frame.h>
146 #include <machine/md_var.h>
147 #include <machine/psl.h>
148 #include <machine/pte.h>
149 #include <machine/sr.h>
150 
151 #define	PMAP_DEBUG
152 
153 #define TODO	panic("%s: not implemented", __func__);
154 
155 #define	PMAP_LOCK(pm)
156 #define	PMAP_UNLOCK(pm)
157 
158 #define	TLBIE(va)	__asm __volatile("tlbie %0" :: "r"(va))
159 #define	TLBSYNC()	__asm __volatile("tlbsync");
160 #define	SYNC()		__asm __volatile("sync");
161 #define	EIEIO()		__asm __volatile("eieio");
162 
163 #define	VSID_MAKE(sr, hash)	((sr) | (((hash) & 0xfffff) << 4))
164 #define	VSID_TO_SR(vsid)	((vsid) & 0xf)
165 #define	VSID_TO_HASH(vsid)	(((vsid) >> 4) & 0xfffff)
166 
167 #define	PVO_PTEGIDX_MASK	0x0007		/* which PTEG slot */
168 #define	PVO_PTEGIDX_VALID	0x0008		/* slot is valid */
169 #define	PVO_WIRED		0x0010		/* PVO entry is wired */
170 #define	PVO_MANAGED		0x0020		/* PVO entry is managed */
171 #define	PVO_EXECUTABLE		0x0040		/* PVO entry is executable */
172 #define	PVO_BOOTSTRAP		0x0080		/* PVO entry allocated during
173 						   bootstrap */
174 #define	PVO_VADDR(pvo)		((pvo)->pvo_vaddr & ~ADDR_POFF)
175 #define	PVO_ISEXECUTABLE(pvo)	((pvo)->pvo_vaddr & PVO_EXECUTABLE)
176 #define	PVO_PTEGIDX_GET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_MASK)
177 #define	PVO_PTEGIDX_ISSET(pvo)	((pvo)->pvo_vaddr & PVO_PTEGIDX_VALID)
178 #define	PVO_PTEGIDX_CLR(pvo)	\
179 	((void)((pvo)->pvo_vaddr &= ~(PVO_PTEGIDX_VALID|PVO_PTEGIDX_MASK)))
180 #define	PVO_PTEGIDX_SET(pvo, i)	\
181 	((void)((pvo)->pvo_vaddr |= (i)|PVO_PTEGIDX_VALID))
182 
183 #define	PMAP_PVO_CHECK(pvo)
184 
185 struct ofw_map {
186 	vm_offset_t	om_va;
187 	vm_size_t	om_len;
188 	vm_offset_t	om_pa;
189 	u_int		om_mode;
190 };
191 
192 int	pmap_bootstrapped = 0;
193 
194 /*
195  * Virtual and physical address of message buffer.
196  */
197 struct		msgbuf *msgbufp;
198 vm_offset_t	msgbuf_phys;
199 
200 /*
201  * Physical addresses of first and last available physical page.
202  */
203 vm_offset_t avail_start;
204 vm_offset_t avail_end;
205 
206 /*
207  * Map of physical memory regions.
208  */
209 vm_offset_t	phys_avail[128];
210 u_int		phys_avail_count;
211 static struct	mem_region *regions;
212 static struct	mem_region *pregions;
213 int		regions_sz, pregions_sz;
214 static struct	ofw_map translations[128];
215 static int	translations_size;
216 
217 /*
218  * First and last available kernel virtual addresses.
219  */
220 vm_offset_t virtual_avail;
221 vm_offset_t virtual_end;
222 vm_offset_t kernel_vm_end;
223 
224 /*
225  * Kernel pmap.
226  */
227 struct pmap kernel_pmap_store;
228 extern struct pmap ofw_pmap;
229 
230 /*
231  * PTEG data.
232  */
233 static struct	pteg *pmap_pteg_table;
234 u_int		pmap_pteg_count;
235 u_int		pmap_pteg_mask;
236 
237 /*
238  * PVO data.
239  */
240 struct	pvo_head *pmap_pvo_table;		/* pvo entries by pteg index */
241 struct	pvo_head pmap_pvo_kunmanaged =
242     LIST_HEAD_INITIALIZER(pmap_pvo_kunmanaged);	/* list of unmanaged pages */
243 struct	pvo_head pmap_pvo_unmanaged =
244     LIST_HEAD_INITIALIZER(pmap_pvo_unmanaged);	/* list of unmanaged pages */
245 
246 uma_zone_t	pmap_upvo_zone;	/* zone for pvo entries for unmanaged pages */
247 uma_zone_t	pmap_mpvo_zone;	/* zone for pvo entries for managed pages */
248 struct		vm_object pmap_upvo_zone_obj;
249 struct		vm_object pmap_mpvo_zone_obj;
250 static vm_object_t	pmap_pvo_obj;
251 static u_int		pmap_pvo_count;
252 
253 #define	BPVO_POOL_SIZE	32768
254 static struct	pvo_entry *pmap_bpvo_pool;
255 static int	pmap_bpvo_pool_index = 0;
256 
257 #define	VSID_NBPW	(sizeof(u_int32_t) * 8)
258 static u_int	pmap_vsid_bitmap[NPMAPS / VSID_NBPW];
259 
260 static boolean_t pmap_initialized = FALSE;
261 
262 /*
263  * Statistics.
264  */
265 u_int	pmap_pte_valid = 0;
266 u_int	pmap_pte_overflow = 0;
267 u_int	pmap_pte_replacements = 0;
268 u_int	pmap_pvo_entries = 0;
269 u_int	pmap_pvo_enter_calls = 0;
270 u_int	pmap_pvo_remove_calls = 0;
271 u_int	pmap_pte_spills = 0;
272 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_valid, CTLFLAG_RD, &pmap_pte_valid,
273     0, "");
274 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_overflow, CTLFLAG_RD,
275     &pmap_pte_overflow, 0, "");
276 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_replacements, CTLFLAG_RD,
277     &pmap_pte_replacements, 0, "");
278 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_entries, CTLFLAG_RD, &pmap_pvo_entries,
279     0, "");
280 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_enter_calls, CTLFLAG_RD,
281     &pmap_pvo_enter_calls, 0, "");
282 SYSCTL_INT(_machdep, OID_AUTO, pmap_pvo_remove_calls, CTLFLAG_RD,
283     &pmap_pvo_remove_calls, 0, "");
284 SYSCTL_INT(_machdep, OID_AUTO, pmap_pte_spills, CTLFLAG_RD,
285     &pmap_pte_spills, 0, "");
286 
287 struct	pvo_entry *pmap_pvo_zeropage;
288 
289 vm_offset_t	pmap_rkva_start = VM_MIN_KERNEL_ADDRESS;
290 u_int		pmap_rkva_count = 4;
291 
292 /*
293  * Allocate physical memory for use in pmap_bootstrap.
294  */
295 static vm_offset_t	pmap_bootstrap_alloc(vm_size_t, u_int);
296 
297 /*
298  * PTE calls.
299  */
300 static int		pmap_pte_insert(u_int, struct pte *);
301 
302 /*
303  * PVO calls.
304  */
305 static int	pmap_pvo_enter(pmap_t, uma_zone_t, struct pvo_head *,
306 		    vm_offset_t, vm_offset_t, u_int, int);
307 static void	pmap_pvo_remove(struct pvo_entry *, int);
308 static struct	pvo_entry *pmap_pvo_find_va(pmap_t, vm_offset_t, int *);
309 static struct	pte *pmap_pvo_to_pte(const struct pvo_entry *, int);
310 
311 /*
312  * Utility routines.
313  */
314 static void *		pmap_pvo_allocf(uma_zone_t, int, u_int8_t *, int);
315 static struct		pvo_entry *pmap_rkva_alloc(void);
316 static void		pmap_pa_map(struct pvo_entry *, vm_offset_t,
317 			    struct pte *, int *);
318 static void		pmap_pa_unmap(struct pvo_entry *, struct pte *, int *);
319 static void		pmap_syncicache(vm_offset_t, vm_size_t);
320 static boolean_t	pmap_query_bit(vm_page_t, int);
321 static boolean_t	pmap_clear_bit(vm_page_t, int);
322 static void		tlbia(void);
323 
324 static __inline int
325 va_to_sr(u_int *sr, vm_offset_t va)
326 {
327 	return (sr[(uintptr_t)va >> ADDR_SR_SHFT]);
328 }
329 
330 static __inline u_int
331 va_to_pteg(u_int sr, vm_offset_t addr)
332 {
333 	u_int hash;
334 
335 	hash = (sr & SR_VSID_MASK) ^ (((u_int)addr & ADDR_PIDX) >>
336 	    ADDR_PIDX_SHFT);
337 	return (hash & pmap_pteg_mask);
338 }
339 
340 static __inline struct pvo_head *
341 pa_to_pvoh(vm_offset_t pa, vm_page_t *pg_p)
342 {
343 	struct	vm_page *pg;
344 
345 	pg = PHYS_TO_VM_PAGE(pa);
346 
347 	if (pg_p != NULL)
348 		*pg_p = pg;
349 
350 	if (pg == NULL)
351 		return (&pmap_pvo_unmanaged);
352 
353 	return (&pg->md.mdpg_pvoh);
354 }
355 
356 static __inline struct pvo_head *
357 vm_page_to_pvoh(vm_page_t m)
358 {
359 
360 	return (&m->md.mdpg_pvoh);
361 }
362 
363 static __inline void
364 pmap_attr_clear(vm_page_t m, int ptebit)
365 {
366 
367 	m->md.mdpg_attrs &= ~ptebit;
368 }
369 
370 static __inline int
371 pmap_attr_fetch(vm_page_t m)
372 {
373 
374 	return (m->md.mdpg_attrs);
375 }
376 
377 static __inline void
378 pmap_attr_save(vm_page_t m, int ptebit)
379 {
380 
381 	m->md.mdpg_attrs |= ptebit;
382 }
383 
384 static __inline int
385 pmap_pte_compare(const struct pte *pt, const struct pte *pvo_pt)
386 {
387 	if (pt->pte_hi == pvo_pt->pte_hi)
388 		return (1);
389 
390 	return (0);
391 }
392 
393 static __inline int
394 pmap_pte_match(struct pte *pt, u_int sr, vm_offset_t va, int which)
395 {
396 	return (pt->pte_hi & ~PTE_VALID) ==
397 	    (((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
398 	    ((va >> ADDR_API_SHFT) & PTE_API) | which);
399 }
400 
401 static __inline void
402 pmap_pte_create(struct pte *pt, u_int sr, vm_offset_t va, u_int pte_lo)
403 {
404 	/*
405 	 * Construct a PTE.  Default to IMB initially.  Valid bit only gets
406 	 * set when the real pte is set in memory.
407 	 *
408 	 * Note: Don't set the valid bit for correct operation of tlb update.
409 	 */
410 	pt->pte_hi = ((sr & SR_VSID_MASK) << PTE_VSID_SHFT) |
411 	    (((va & ADDR_PIDX) >> ADDR_API_SHFT) & PTE_API);
412 	pt->pte_lo = pte_lo;
413 }
414 
415 static __inline void
416 pmap_pte_synch(struct pte *pt, struct pte *pvo_pt)
417 {
418 
419 	pvo_pt->pte_lo |= pt->pte_lo & (PTE_REF | PTE_CHG);
420 }
421 
422 static __inline void
423 pmap_pte_clear(struct pte *pt, vm_offset_t va, int ptebit)
424 {
425 
426 	/*
427 	 * As shown in Section 7.6.3.2.3
428 	 */
429 	pt->pte_lo &= ~ptebit;
430 	TLBIE(va);
431 	EIEIO();
432 	TLBSYNC();
433 	SYNC();
434 }
435 
436 static __inline void
437 pmap_pte_set(struct pte *pt, struct pte *pvo_pt)
438 {
439 
440 	pvo_pt->pte_hi |= PTE_VALID;
441 
442 	/*
443 	 * Update the PTE as defined in section 7.6.3.1.
444 	 * Note that the REF/CHG bits are from pvo_pt and thus should havce
445 	 * been saved so this routine can restore them (if desired).
446 	 */
447 	pt->pte_lo = pvo_pt->pte_lo;
448 	EIEIO();
449 	pt->pte_hi = pvo_pt->pte_hi;
450 	SYNC();
451 	pmap_pte_valid++;
452 }
453 
454 static __inline void
455 pmap_pte_unset(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
456 {
457 
458 	pvo_pt->pte_hi &= ~PTE_VALID;
459 
460 	/*
461 	 * Force the reg & chg bits back into the PTEs.
462 	 */
463 	SYNC();
464 
465 	/*
466 	 * Invalidate the pte.
467 	 */
468 	pt->pte_hi &= ~PTE_VALID;
469 
470 	SYNC();
471 	TLBIE(va);
472 	EIEIO();
473 	TLBSYNC();
474 	SYNC();
475 
476 	/*
477 	 * Save the reg & chg bits.
478 	 */
479 	pmap_pte_synch(pt, pvo_pt);
480 	pmap_pte_valid--;
481 }
482 
483 static __inline void
484 pmap_pte_change(struct pte *pt, struct pte *pvo_pt, vm_offset_t va)
485 {
486 
487 	/*
488 	 * Invalidate the PTE
489 	 */
490 	pmap_pte_unset(pt, pvo_pt, va);
491 	pmap_pte_set(pt, pvo_pt);
492 }
493 
494 /*
495  * Quick sort callout for comparing memory regions.
496  */
497 static int	mr_cmp(const void *a, const void *b);
498 static int	om_cmp(const void *a, const void *b);
499 
500 static int
501 mr_cmp(const void *a, const void *b)
502 {
503 	const struct	mem_region *regiona;
504 	const struct	mem_region *regionb;
505 
506 	regiona = a;
507 	regionb = b;
508 	if (regiona->mr_start < regionb->mr_start)
509 		return (-1);
510 	else if (regiona->mr_start > regionb->mr_start)
511 		return (1);
512 	else
513 		return (0);
514 }
515 
516 static int
517 om_cmp(const void *a, const void *b)
518 {
519 	const struct	ofw_map *mapa;
520 	const struct	ofw_map *mapb;
521 
522 	mapa = a;
523 	mapb = b;
524 	if (mapa->om_pa < mapb->om_pa)
525 		return (-1);
526 	else if (mapa->om_pa > mapb->om_pa)
527 		return (1);
528 	else
529 		return (0);
530 }
531 
532 void
533 pmap_bootstrap(vm_offset_t kernelstart, vm_offset_t kernelend)
534 {
535 	ihandle_t	mmui;
536 	phandle_t	chosen, mmu;
537 	int		sz;
538 	int		i, j;
539 	vm_size_t	size, physsz;
540 	vm_offset_t	pa, va, off;
541 	u_int		batl, batu;
542 
543         /*
544          * Set up BAT0 to only map the lowest 256 MB area
545          */
546         battable[0x0].batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
547         battable[0x0].batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
548 
549         /*
550          * Map PCI memory space.
551          */
552         battable[0x8].batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
553         battable[0x8].batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
554 
555         battable[0x9].batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
556         battable[0x9].batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
557 
558         battable[0xa].batl = BATL(0xa0000000, BAT_I|BAT_G, BAT_PP_RW);
559         battable[0xa].batu = BATU(0xa0000000, BAT_BL_256M, BAT_Vs);
560 
561         battable[0xb].batl = BATL(0xb0000000, BAT_I|BAT_G, BAT_PP_RW);
562         battable[0xb].batu = BATU(0xb0000000, BAT_BL_256M, BAT_Vs);
563 
564         /*
565          * Map obio devices.
566          */
567         battable[0xf].batl = BATL(0xf0000000, BAT_I|BAT_G, BAT_PP_RW);
568         battable[0xf].batu = BATU(0xf0000000, BAT_BL_256M, BAT_Vs);
569 
570 	/*
571 	 * Use an IBAT and a DBAT to map the bottom segment of memory
572 	 * where we are.
573 	 */
574 	batu = BATU(0x00000000, BAT_BL_256M, BAT_Vs);
575 	batl = BATL(0x00000000, BAT_M, BAT_PP_RW);
576 	__asm ("mtibatu 0,%0; mtibatl 0,%1; mtdbatu 0,%0; mtdbatl 0,%1"
577 	    :: "r"(batu), "r"(batl));
578 
579 #if 0
580 	/* map frame buffer */
581 	batu = BATU(0x90000000, BAT_BL_256M, BAT_Vs);
582 	batl = BATL(0x90000000, BAT_I|BAT_G, BAT_PP_RW);
583 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
584 	    :: "r"(batu), "r"(batl));
585 #endif
586 
587 #if 1
588 	/* map pci space */
589 	batu = BATU(0x80000000, BAT_BL_256M, BAT_Vs);
590 	batl = BATL(0x80000000, BAT_I|BAT_G, BAT_PP_RW);
591 	__asm ("mtdbatu 1,%0; mtdbatl 1,%1"
592 	    :: "r"(batu), "r"(batl));
593 #endif
594 
595 	/*
596 	 * Set the start and end of kva.
597 	 */
598 	virtual_avail = VM_MIN_KERNEL_ADDRESS;
599 	virtual_end = VM_MAX_KERNEL_ADDRESS;
600 
601 	mem_regions(&pregions, &pregions_sz, &regions, &regions_sz);
602 	CTR0(KTR_PMAP, "pmap_bootstrap: physical memory");
603 
604 	qsort(pregions, pregions_sz, sizeof(*pregions), mr_cmp);
605 	for (i = 0; i < pregions_sz; i++) {
606 		CTR3(KTR_PMAP, "physregion: %#x - %#x (%#x)",
607 			pregions[i].mr_start,
608 			pregions[i].mr_start + pregions[i].mr_size,
609 			pregions[i].mr_size);
610 	}
611 
612 	if (sizeof(phys_avail)/sizeof(phys_avail[0]) < regions_sz)
613 		panic("pmap_bootstrap: phys_avail too small");
614 	qsort(regions, regions_sz, sizeof(*regions), mr_cmp);
615 	phys_avail_count = 0;
616 	physsz = 0;
617 	for (i = 0, j = 0; i < regions_sz; i++, j += 2) {
618 		CTR3(KTR_PMAP, "region: %#x - %#x (%#x)", regions[i].mr_start,
619 		    regions[i].mr_start + regions[i].mr_size,
620 		    regions[i].mr_size);
621 		phys_avail[j] = regions[i].mr_start;
622 		phys_avail[j + 1] = regions[i].mr_start + regions[i].mr_size;
623 		phys_avail_count++;
624 		physsz += regions[i].mr_size;
625 	}
626 	physmem = btoc(physsz);
627 
628 	/*
629 	 * Allocate PTEG table.
630 	 */
631 #ifdef PTEGCOUNT
632 	pmap_pteg_count = PTEGCOUNT;
633 #else
634 	pmap_pteg_count = 0x1000;
635 
636 	while (pmap_pteg_count < physmem)
637 		pmap_pteg_count <<= 1;
638 
639 	pmap_pteg_count >>= 1;
640 #endif /* PTEGCOUNT */
641 
642 	size = pmap_pteg_count * sizeof(struct pteg);
643 	CTR2(KTR_PMAP, "pmap_bootstrap: %d PTEGs, %d bytes", pmap_pteg_count,
644 	    size);
645 	pmap_pteg_table = (struct pteg *)pmap_bootstrap_alloc(size, size);
646 	CTR1(KTR_PMAP, "pmap_bootstrap: PTEG table at %p", pmap_pteg_table);
647 	bzero((void *)pmap_pteg_table, pmap_pteg_count * sizeof(struct pteg));
648 	pmap_pteg_mask = pmap_pteg_count - 1;
649 
650 	/*
651 	 * Allocate pv/overflow lists.
652 	 */
653 	size = sizeof(struct pvo_head) * pmap_pteg_count;
654 	pmap_pvo_table = (struct pvo_head *)pmap_bootstrap_alloc(size,
655 	    PAGE_SIZE);
656 	CTR1(KTR_PMAP, "pmap_bootstrap: PVO table at %p", pmap_pvo_table);
657 	for (i = 0; i < pmap_pteg_count; i++)
658 		LIST_INIT(&pmap_pvo_table[i]);
659 
660 	/*
661 	 * Allocate the message buffer.
662 	 */
663 	msgbuf_phys = pmap_bootstrap_alloc(MSGBUF_SIZE, 0);
664 
665 	/*
666 	 * Initialise the unmanaged pvo pool.
667 	 */
668 	pmap_bpvo_pool = (struct pvo_entry *)pmap_bootstrap_alloc(
669 		BPVO_POOL_SIZE*sizeof(struct pvo_entry), 0);
670 	pmap_bpvo_pool_index = 0;
671 
672 	/*
673 	 * Make sure kernel vsid is allocated as well as VSID 0.
674 	 */
675 	pmap_vsid_bitmap[(KERNEL_VSIDBITS & (NPMAPS - 1)) / VSID_NBPW]
676 		|= 1 << (KERNEL_VSIDBITS % VSID_NBPW);
677 	pmap_vsid_bitmap[0] |= 1;
678 
679 	/*
680 	 * Set up the OpenFirmware pmap and add it's mappings.
681 	 */
682 	pmap_pinit(&ofw_pmap);
683 	ofw_pmap.pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
684 	if ((chosen = OF_finddevice("/chosen")) == -1)
685 		panic("pmap_bootstrap: can't find /chosen");
686 	OF_getprop(chosen, "mmu", &mmui, 4);
687 	if ((mmu = OF_instance_to_package(mmui)) == -1)
688 		panic("pmap_bootstrap: can't get mmu package");
689 	if ((sz = OF_getproplen(mmu, "translations")) == -1)
690 		panic("pmap_bootstrap: can't get ofw translation count");
691 	if (sizeof(translations) < sz)
692 		panic("pmap_bootstrap: translations too small");
693 	bzero(translations, sz);
694 	if (OF_getprop(mmu, "translations", translations, sz) == -1)
695 		panic("pmap_bootstrap: can't get ofw translations");
696 	CTR0(KTR_PMAP, "pmap_bootstrap: translations");
697 	sz /= sizeof(*translations);
698 	qsort(translations, sz, sizeof (*translations), om_cmp);
699 	for (i = 0; i < sz; i++) {
700 		CTR3(KTR_PMAP, "translation: pa=%#x va=%#x len=%#x",
701 		    translations[i].om_pa, translations[i].om_va,
702 		    translations[i].om_len);
703 
704 		/* Drop stuff below something? */
705 
706 		/* Enter the pages? */
707 		for (off = 0; off < translations[i].om_len; off += PAGE_SIZE) {
708 			struct	vm_page m;
709 
710 			m.phys_addr = translations[i].om_pa + off;
711 			pmap_enter(&ofw_pmap, translations[i].om_va + off, &m,
712 			    VM_PROT_ALL, 1);
713 		}
714 	}
715 #ifdef SMP
716 	TLBSYNC();
717 #endif
718 
719 	/*
720 	 * Initialize the kernel pmap (which is statically allocated).
721 	 */
722 	for (i = 0; i < 16; i++) {
723 		kernel_pmap->pm_sr[i] = EMPTY_SEGMENT;
724 	}
725 	kernel_pmap->pm_sr[KERNEL_SR] = KERNEL_SEGMENT;
726 	kernel_pmap->pm_active = ~0;
727 
728 	/*
729 	 * Allocate a kernel stack with a guard page for thread0 and map it
730 	 * into the kernel page map.
731 	 */
732 	pa = pmap_bootstrap_alloc(KSTACK_PAGES * PAGE_SIZE, 0);
733 	kstack0_phys = pa;
734 	kstack0 = virtual_avail + (KSTACK_GUARD_PAGES * PAGE_SIZE);
735 	CTR2(KTR_PMAP, "pmap_bootstrap: kstack0 at %#x (%#x)", kstack0_phys,
736 	    kstack0);
737 	virtual_avail += (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE;
738 	for (i = 0; i < KSTACK_PAGES; i++) {
739 		pa = kstack0_phys + i * PAGE_SIZE;
740 		va = kstack0 + i * PAGE_SIZE;
741 		pmap_kenter(va, pa);
742 		TLBIE(va);
743 	}
744 
745 	/*
746 	 * Calculate the first and last available physical addresses.
747 	 */
748 	avail_start = phys_avail[0];
749 	for (i = 0; phys_avail[i + 2] != 0; i += 2)
750 		;
751 	avail_end = phys_avail[i + 1];
752 	Maxmem = powerpc_btop(avail_end);
753 
754 	/*
755 	 * Allocate virtual address space for the message buffer.
756 	 */
757 	msgbufp = (struct msgbuf *)virtual_avail;
758 	virtual_avail += round_page(MSGBUF_SIZE);
759 
760 	/*
761 	 * Initialize hardware.
762 	 */
763 	for (i = 0; i < 16; i++) {
764 		mtsrin(i << ADDR_SR_SHFT, EMPTY_SEGMENT);
765 	}
766 	__asm __volatile ("mtsr %0,%1"
767 	    :: "n"(KERNEL_SR), "r"(KERNEL_SEGMENT));
768 	__asm __volatile ("sync; mtsdr1 %0; isync"
769 	    :: "r"((u_int)pmap_pteg_table | (pmap_pteg_mask >> 10)));
770 	tlbia();
771 
772 	pmap_bootstrapped++;
773 }
774 
775 /*
776  * Activate a user pmap.  The pmap must be activated before it's address
777  * space can be accessed in any way.
778  */
779 void
780 pmap_activate(struct thread *td)
781 {
782 	pmap_t	pm, pmr;
783 
784 	/*
785 	 * Load all the data we need up front to encourasge the compiler to
786 	 * not issue any loads while we have interrupts disabled below.
787 	 */
788 	pm = &td->td_proc->p_vmspace->vm_pmap;
789 
790 	KASSERT(pm->pm_active == 0, ("pmap_activate: pmap already active?"));
791 
792 	if ((pmr = (pmap_t)pmap_kextract((vm_offset_t)pm)) == NULL)
793 		pmr = pm;
794 
795 	pm->pm_active |= PCPU_GET(cpumask);
796 	PCPU_SET(curpmap, pmr);
797 }
798 
799 void
800 pmap_deactivate(struct thread *td)
801 {
802 	pmap_t	pm;
803 
804 	pm = &td->td_proc->p_vmspace->vm_pmap;
805 	pm->pm_active &= ~(PCPU_GET(cpumask));
806 	PCPU_SET(curpmap, NULL);
807 }
808 
809 vm_offset_t
810 pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
811 {
812 
813 	return (va);
814 }
815 
816 void
817 pmap_change_wiring(pmap_t pm, vm_offset_t va, boolean_t wired)
818 {
819 	struct	pvo_entry *pvo;
820 
821 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
822 
823 	if (pvo != NULL) {
824 		if (wired) {
825 			if ((pvo->pvo_vaddr & PVO_WIRED) == 0)
826 				pm->pm_stats.wired_count++;
827 			pvo->pvo_vaddr |= PVO_WIRED;
828 		} else {
829 			if ((pvo->pvo_vaddr & PVO_WIRED) != 0)
830 				pm->pm_stats.wired_count--;
831 			pvo->pvo_vaddr &= ~PVO_WIRED;
832 		}
833 	}
834 }
835 
836 void
837 pmap_clear_modify(vm_page_t m)
838 {
839 
840 	if (m->flags * PG_FICTITIOUS)
841 		return;
842 	pmap_clear_bit(m, PTE_CHG);
843 }
844 
845 void
846 pmap_collect(void)
847 {
848 	TODO;
849 }
850 
851 void
852 pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
853 	  vm_size_t len, vm_offset_t src_addr)
854 {
855 
856 	/*
857 	 * This is not needed as it's mainly an optimisation.
858 	 * It may want to be implemented later though.
859 	 */
860 }
861 
862 void
863 pmap_copy_page(vm_page_t msrc, vm_page_t mdst)
864 {
865 	vm_offset_t	dst;
866 	vm_offset_t	src;
867 
868 	dst = VM_PAGE_TO_PHYS(mdst);
869 	src = VM_PAGE_TO_PHYS(msrc);
870 
871 	kcopy((void *)src, (void *)dst, PAGE_SIZE);
872 }
873 
874 /*
875  * Zero a page of physical memory by temporarily mapping it into the tlb.
876  */
877 void
878 pmap_zero_page(vm_page_t m)
879 {
880 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
881 	caddr_t	va;
882 	int	i;
883 
884 	if (pa < SEGMENT_LENGTH) {
885 		va = (caddr_t) pa;
886 	} else if (pmap_initialized) {
887 		if (pmap_pvo_zeropage == NULL)
888 			pmap_pvo_zeropage = pmap_rkva_alloc();
889 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
890 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
891 	} else {
892 		panic("pmap_zero_page: can't zero pa %#x", pa);
893 	}
894 
895 	bzero(va, PAGE_SIZE);
896 
897 	for (i = PAGE_SIZE / CACHELINESIZE; i > 0; i--) {
898 		__asm __volatile("dcbz 0,%0" :: "r"(va));
899 		va += CACHELINESIZE;
900 	}
901 
902 	if (pa >= SEGMENT_LENGTH)
903 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
904 }
905 
906 void
907 pmap_zero_page_area(vm_page_t m, int off, int size)
908 {
909 	vm_offset_t pa = VM_PAGE_TO_PHYS(m);
910 	caddr_t	va;
911 	int	i;
912 
913 	if (pa < SEGMENT_LENGTH) {
914 		va = (caddr_t) pa;
915 	} else if (pmap_initialized) {
916 		if (pmap_pvo_zeropage == NULL)
917 			pmap_pvo_zeropage = pmap_rkva_alloc();
918 		pmap_pa_map(pmap_pvo_zeropage, pa, NULL, NULL);
919 		va = (caddr_t)PVO_VADDR(pmap_pvo_zeropage);
920 	} else {
921 		panic("pmap_zero_page: can't zero pa %#x", pa);
922 	}
923 
924 	bzero(va, size);
925 
926 	for (i = size / CACHELINESIZE; i > 0; i--) {
927 		__asm __volatile("dcbz 0,%0" :: "r"(va));
928 		va += CACHELINESIZE;
929 	}
930 
931 	if (pa >= SEGMENT_LENGTH)
932 		pmap_pa_unmap(pmap_pvo_zeropage, NULL, NULL);
933 }
934 
935 void
936 pmap_zero_page_idle(vm_page_t m)
937 {
938 
939 	/* XXX this is called outside of Giant, is pmap_zero_page safe? */
940 	/* XXX maybe have a dedicated mapping for this to avoid the problem? */
941 	mtx_lock(&Giant);
942 	pmap_zero_page(m);
943 	mtx_unlock(&Giant);
944 }
945 
946 /*
947  * Map the given physical page at the specified virtual address in the
948  * target pmap with the protection requested.  If specified the page
949  * will be wired down.
950  */
951 void
952 pmap_enter(pmap_t pmap, vm_offset_t va, vm_page_t m, vm_prot_t prot,
953 	   boolean_t wired)
954 {
955 	struct		pvo_head *pvo_head;
956 	uma_zone_t	zone;
957 	vm_page_t	pg;
958 	u_int		pte_lo, pvo_flags, was_exec, i;
959 	int		error;
960 
961 	if (!pmap_initialized) {
962 		pvo_head = &pmap_pvo_kunmanaged;
963 		zone = pmap_upvo_zone;
964 		pvo_flags = 0;
965 		pg = NULL;
966 		was_exec = PTE_EXEC;
967 	} else {
968 		pvo_head = pa_to_pvoh(VM_PAGE_TO_PHYS(m), &pg);
969 		zone = pmap_mpvo_zone;
970 		pvo_flags = PVO_MANAGED;
971 		was_exec = 0;
972 	}
973 
974 	/*
975 	 * If this is a managed page, and it's the first reference to the page,
976 	 * clear the execness of the page.  Otherwise fetch the execness.
977 	 */
978 	if (pg != NULL) {
979 		if (LIST_EMPTY(pvo_head)) {
980 			pmap_attr_clear(pg, PTE_EXEC);
981 		} else {
982 			was_exec = pmap_attr_fetch(pg) & PTE_EXEC;
983 		}
984 	}
985 
986 
987 	/*
988 	 * Assume the page is cache inhibited and access is guarded unless
989 	 * it's in our available memory array.
990 	 */
991 	pte_lo = PTE_I | PTE_G;
992 	for (i = 0; i < pregions_sz; i++) {
993 		if ((VM_PAGE_TO_PHYS(m) >= pregions[i].mr_start) &&
994 		    (VM_PAGE_TO_PHYS(m) <
995 			(pregions[i].mr_start + pregions[i].mr_size))) {
996 			pte_lo &= ~(PTE_I | PTE_G);
997 			break;
998 		}
999 	}
1000 
1001 	if (prot & VM_PROT_WRITE)
1002 		pte_lo |= PTE_BW;
1003 	else
1004 		pte_lo |= PTE_BR;
1005 
1006 	pvo_flags |= (prot & VM_PROT_EXECUTE);
1007 
1008 	if (wired)
1009 		pvo_flags |= PVO_WIRED;
1010 
1011 	error = pmap_pvo_enter(pmap, zone, pvo_head, va, VM_PAGE_TO_PHYS(m),
1012 	    pte_lo, pvo_flags);
1013 
1014 	/*
1015 	 * Flush the real page from the instruction cache if this page is
1016 	 * mapped executable and cacheable and was not previously mapped (or
1017 	 * was not mapped executable).
1018 	 */
1019 	if (error == 0 && (pvo_flags & PVO_EXECUTABLE) &&
1020 	    (pte_lo & PTE_I) == 0 && was_exec == 0) {
1021 		/*
1022 		 * Flush the real memory from the cache.
1023 		 */
1024 		pmap_syncicache(VM_PAGE_TO_PHYS(m), PAGE_SIZE);
1025 		if (pg != NULL)
1026 			pmap_attr_save(pg, PTE_EXEC);
1027 	}
1028 }
1029 
1030 vm_offset_t
1031 pmap_extract(pmap_t pm, vm_offset_t va)
1032 {
1033 	struct	pvo_entry *pvo;
1034 
1035 	pvo = pmap_pvo_find_va(pm, va & ~ADDR_POFF, NULL);
1036 
1037 	if (pvo != NULL) {
1038 		return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1039 	}
1040 
1041 	return (0);
1042 }
1043 
1044 /*
1045  * Grow the number of kernel page table entries.  Unneeded.
1046  */
1047 void
1048 pmap_growkernel(vm_offset_t addr)
1049 {
1050 }
1051 
1052 void
1053 pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
1054 {
1055 
1056 	CTR0(KTR_PMAP, "pmap_init");
1057 
1058 	pmap_pvo_obj = vm_object_allocate(OBJT_PHYS, 16);
1059 	pmap_pvo_count = 0;
1060 	pmap_upvo_zone = uma_zcreate("UPVO entry", sizeof (struct pvo_entry),
1061 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1062 	uma_zone_set_allocf(pmap_upvo_zone, pmap_pvo_allocf);
1063 	pmap_mpvo_zone = uma_zcreate("MPVO entry", sizeof(struct pvo_entry),
1064 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_VM);
1065 	uma_zone_set_allocf(pmap_mpvo_zone, pmap_pvo_allocf);
1066 	pmap_initialized = TRUE;
1067 }
1068 
1069 void
1070 pmap_init2(void)
1071 {
1072 
1073 	CTR0(KTR_PMAP, "pmap_init2");
1074 }
1075 
1076 boolean_t
1077 pmap_is_modified(vm_page_t m)
1078 {
1079 
1080 	if (m->flags & PG_FICTITIOUS)
1081 		return (FALSE);
1082 
1083 	return (pmap_query_bit(m, PTE_CHG));
1084 }
1085 
1086 void
1087 pmap_clear_reference(vm_page_t m)
1088 {
1089 	TODO;
1090 }
1091 
1092 /*
1093  *	pmap_ts_referenced:
1094  *
1095  *	Return a count of reference bits for a page, clearing those bits.
1096  *	It is not necessary for every reference bit to be cleared, but it
1097  *	is necessary that 0 only be returned when there are truly no
1098  *	reference bits set.
1099  *
1100  *	XXX: The exact number of bits to check and clear is a matter that
1101  *	should be tested and standardized at some point in the future for
1102  *	optimal aging of shared pages.
1103  */
1104 
1105 int
1106 pmap_ts_referenced(vm_page_t m)
1107 {
1108 	TODO;
1109 	return (0);
1110 }
1111 
1112 /*
1113  * Map a wired page into kernel virtual address space.
1114  */
1115 void
1116 pmap_kenter(vm_offset_t va, vm_offset_t pa)
1117 {
1118 	u_int		pte_lo;
1119 	int		error;
1120 	int		i;
1121 
1122 #if 0
1123 	if (va < VM_MIN_KERNEL_ADDRESS)
1124 		panic("pmap_kenter: attempt to enter non-kernel address %#x",
1125 		    va);
1126 #endif
1127 
1128 	pte_lo = PTE_I | PTE_G | PTE_BW;
1129 	for (i = 0; phys_avail[i + 2] != 0; i += 2) {
1130 		if (pa >= phys_avail[i] && pa < phys_avail[i + 1]) {
1131 			pte_lo &= ~(PTE_I | PTE_G);
1132 			break;
1133 		}
1134 	}
1135 
1136 	error = pmap_pvo_enter(kernel_pmap, pmap_upvo_zone,
1137 	    &pmap_pvo_kunmanaged, va, pa, pte_lo, PVO_WIRED);
1138 
1139 	if (error != 0 && error != ENOENT)
1140 		panic("pmap_kenter: failed to enter va %#x pa %#x: %d", va,
1141 		    pa, error);
1142 
1143 	/*
1144 	 * Flush the real memory from the instruction cache.
1145 	 */
1146 	if ((pte_lo & (PTE_I | PTE_G)) == 0) {
1147 		pmap_syncicache(pa, PAGE_SIZE);
1148 	}
1149 }
1150 
1151 /*
1152  * Extract the physical page address associated with the given kernel virtual
1153  * address.
1154  */
1155 vm_offset_t
1156 pmap_kextract(vm_offset_t va)
1157 {
1158 	struct		pvo_entry *pvo;
1159 
1160 	pvo = pmap_pvo_find_va(kernel_pmap, va & ~ADDR_POFF, NULL);
1161 	if (pvo == NULL) {
1162 		return (0);
1163 	}
1164 
1165 	return ((pvo->pvo_pte.pte_lo & PTE_RPGN) | (va & ADDR_POFF));
1166 }
1167 
1168 /*
1169  * Remove a wired page from kernel virtual address space.
1170  */
1171 void
1172 pmap_kremove(vm_offset_t va)
1173 {
1174 
1175 	pmap_remove(kernel_pmap, va, roundup(va, PAGE_SIZE));
1176 }
1177 
1178 /*
1179  * Map a range of physical addresses into kernel virtual address space.
1180  *
1181  * The value passed in *virt is a suggested virtual address for the mapping.
1182  * Architectures which can support a direct-mapped physical to virtual region
1183  * can return the appropriate address within that region, leaving '*virt'
1184  * unchanged.  We cannot and therefore do not; *virt is updated with the
1185  * first usable address after the mapped region.
1186  */
1187 vm_offset_t
1188 pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
1189 {
1190 	vm_offset_t	sva, va;
1191 
1192 	sva = *virt;
1193 	va = sva;
1194 	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
1195 		pmap_kenter(va, pa_start);
1196 	*virt = va;
1197 	return (sva);
1198 }
1199 
1200 int
1201 pmap_mincore(pmap_t pmap, vm_offset_t addr)
1202 {
1203 	TODO;
1204 	return (0);
1205 }
1206 
1207 void
1208 pmap_object_init_pt(pmap_t pm, vm_offset_t addr, vm_object_t object,
1209 		    vm_pindex_t pindex, vm_size_t size, int limit)
1210 {
1211 
1212 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1213 	    ("pmap_remove_pages: non current pmap"));
1214 	/* XXX */
1215 }
1216 
1217 /*
1218  * Lower the permission for all mappings to a given page.
1219  */
1220 void
1221 pmap_page_protect(vm_page_t m, vm_prot_t prot)
1222 {
1223 	struct	pvo_head *pvo_head;
1224 	struct	pvo_entry *pvo, *next_pvo;
1225 	struct	pte *pt;
1226 
1227 	/*
1228 	 * Since the routine only downgrades protection, if the
1229 	 * maximal protection is desired, there isn't any change
1230 	 * to be made.
1231 	 */
1232 	if ((prot & (VM_PROT_READ|VM_PROT_WRITE)) ==
1233 	    (VM_PROT_READ|VM_PROT_WRITE))
1234 		return;
1235 
1236 	pvo_head = vm_page_to_pvoh(m);
1237 	for (pvo = LIST_FIRST(pvo_head); pvo != NULL; pvo = next_pvo) {
1238 		next_pvo = LIST_NEXT(pvo, pvo_vlink);
1239 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1240 
1241 		/*
1242 		 * Downgrading to no mapping at all, we just remove the entry.
1243 		 */
1244 		if ((prot & VM_PROT_READ) == 0) {
1245 			pmap_pvo_remove(pvo, -1);
1246 			continue;
1247 		}
1248 
1249 		/*
1250 		 * If EXEC permission is being revoked, just clear the flag
1251 		 * in the PVO.
1252 		 */
1253 		if ((prot & VM_PROT_EXECUTE) == 0)
1254 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1255 
1256 		/*
1257 		 * If this entry is already RO, don't diddle with the page
1258 		 * table.
1259 		 */
1260 		if ((pvo->pvo_pte.pte_lo & PTE_PP) == PTE_BR) {
1261 			PMAP_PVO_CHECK(pvo);
1262 			continue;
1263 		}
1264 
1265 		/*
1266 		 * Grab the PTE before we diddle the bits so pvo_to_pte can
1267 		 * verify the pte contents are as expected.
1268 		 */
1269 		pt = pmap_pvo_to_pte(pvo, -1);
1270 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1271 		pvo->pvo_pte.pte_lo |= PTE_BR;
1272 		if (pt != NULL)
1273 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1274 		PMAP_PVO_CHECK(pvo);	/* sanity check */
1275 	}
1276 }
1277 
1278 /*
1279  * Make the specified page pageable (or not).  Unneeded.
1280  */
1281 void
1282 pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
1283 	      boolean_t pageable)
1284 {
1285 }
1286 
1287 /*
1288  * Returns true if the pmap's pv is one of the first
1289  * 16 pvs linked to from this page.  This count may
1290  * be changed upwards or downwards in the future; it
1291  * is only necessary that true be returned for a small
1292  * subset of pmaps for proper page aging.
1293  */
1294 boolean_t
1295 pmap_page_exists_quick(pmap_t pmap, vm_page_t m)
1296 {
1297 	TODO;
1298 	return (0);
1299 }
1300 
1301 static u_int	pmap_vsidcontext;
1302 
1303 void
1304 pmap_pinit(pmap_t pmap)
1305 {
1306 	int	i, mask;
1307 	u_int	entropy;
1308 
1309 	entropy = 0;
1310 	__asm __volatile("mftb %0" : "=r"(entropy));
1311 
1312 	/*
1313 	 * Allocate some segment registers for this pmap.
1314 	 */
1315 	for (i = 0; i < NPMAPS; i += VSID_NBPW) {
1316 		u_int	hash, n;
1317 
1318 		/*
1319 		 * Create a new value by mutiplying by a prime and adding in
1320 		 * entropy from the timebase register.  This is to make the
1321 		 * VSID more random so that the PT hash function collides
1322 		 * less often.  (Note that the prime casues gcc to do shifts
1323 		 * instead of a multiply.)
1324 		 */
1325 		pmap_vsidcontext = (pmap_vsidcontext * 0x1105) + entropy;
1326 		hash = pmap_vsidcontext & (NPMAPS - 1);
1327 		if (hash == 0)		/* 0 is special, avoid it */
1328 			continue;
1329 		n = hash >> 5;
1330 		mask = 1 << (hash & (VSID_NBPW - 1));
1331 		hash = (pmap_vsidcontext & 0xfffff);
1332 		if (pmap_vsid_bitmap[n] & mask) {	/* collision? */
1333 			/* anything free in this bucket? */
1334 			if (pmap_vsid_bitmap[n] == 0xffffffff) {
1335 				entropy = (pmap_vsidcontext >> 20);
1336 				continue;
1337 			}
1338 			i = ffs(~pmap_vsid_bitmap[i]) - 1;
1339 			mask = 1 << i;
1340 			hash &= 0xfffff & ~(VSID_NBPW - 1);
1341 			hash |= i;
1342 		}
1343 		pmap_vsid_bitmap[n] |= mask;
1344 		for (i = 0; i < 16; i++)
1345 			pmap->pm_sr[i] = VSID_MAKE(i, hash);
1346 		return;
1347 	}
1348 
1349 	panic("pmap_pinit: out of segments");
1350 }
1351 
1352 /*
1353  * Initialize the pmap associated with process 0.
1354  */
1355 void
1356 pmap_pinit0(pmap_t pm)
1357 {
1358 
1359 	pmap_pinit(pm);
1360 	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
1361 }
1362 
1363 void
1364 pmap_pinit2(pmap_t pmap)
1365 {
1366 	/* XXX: Remove this stub when no longer called */
1367 }
1368 
1369 void
1370 pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
1371 {
1372 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1373 	    ("pmap_prefault: non current pmap"));
1374 	/* XXX */
1375 }
1376 
1377 /*
1378  * Set the physical protection on the specified range of this map as requested.
1379  */
1380 void
1381 pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
1382 {
1383 	struct	pvo_entry *pvo;
1384 	struct	pte *pt;
1385 	int	pteidx;
1386 
1387 	CTR4(KTR_PMAP, "pmap_protect: pm=%p sva=%#x eva=%#x prot=%#x", pm, sva,
1388 	    eva, prot);
1389 
1390 
1391 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1392 	    ("pmap_protect: non current pmap"));
1393 
1394 	if ((prot & VM_PROT_READ) == VM_PROT_NONE) {
1395 		pmap_remove(pm, sva, eva);
1396 		return;
1397 	}
1398 
1399 	for (; sva < eva; sva += PAGE_SIZE) {
1400 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1401 		if (pvo == NULL)
1402 			continue;
1403 
1404 		if ((prot & VM_PROT_EXECUTE) == 0)
1405 			pvo->pvo_vaddr &= ~PVO_EXECUTABLE;
1406 
1407 		/*
1408 		 * Grab the PTE pointer before we diddle with the cached PTE
1409 		 * copy.
1410 		 */
1411 		pt = pmap_pvo_to_pte(pvo, pteidx);
1412 		/*
1413 		 * Change the protection of the page.
1414 		 */
1415 		pvo->pvo_pte.pte_lo &= ~PTE_PP;
1416 		pvo->pvo_pte.pte_lo |= PTE_BR;
1417 
1418 		/*
1419 		 * If the PVO is in the page table, update that pte as well.
1420 		 */
1421 		if (pt != NULL)
1422 			pmap_pte_change(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1423 	}
1424 }
1425 
1426 vm_offset_t
1427 pmap_phys_address(int ppn)
1428 {
1429 	TODO;
1430 	return (0);
1431 }
1432 
1433 /*
1434  * Map a list of wired pages into kernel virtual address space.  This is
1435  * intended for temporary mappings which do not need page modification or
1436  * references recorded.  Existing mappings in the region are overwritten.
1437  */
1438 void
1439 pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
1440 {
1441 	int	i;
1442 
1443 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1444 		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
1445 }
1446 
1447 /*
1448  * Remove page mappings from kernel virtual address space.  Intended for
1449  * temporary mappings entered by pmap_qenter.
1450  */
1451 void
1452 pmap_qremove(vm_offset_t va, int count)
1453 {
1454 	int	i;
1455 
1456 	for (i = 0; i < count; i++, va += PAGE_SIZE)
1457 		pmap_kremove(va);
1458 }
1459 
1460 void
1461 pmap_release(pmap_t pmap)
1462 {
1463 	TODO;
1464 }
1465 
1466 /*
1467  * Remove the given range of addresses from the specified map.
1468  */
1469 void
1470 pmap_remove(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1471 {
1472 	struct	pvo_entry *pvo;
1473 	int	pteidx;
1474 
1475 	for (; sva < eva; sva += PAGE_SIZE) {
1476 		pvo = pmap_pvo_find_va(pm, sva, &pteidx);
1477 		if (pvo != NULL) {
1478 			pmap_pvo_remove(pvo, pteidx);
1479 		}
1480 	}
1481 }
1482 
1483 /*
1484  * Remove all pages from specified address space, this aids process exit
1485  * speeds.  This is much faster than pmap_remove in the case of running down
1486  * an entire address space.  Only works for the current pmap.
1487  */
1488 void
1489 pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
1490 {
1491 
1492 	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
1493 	    ("pmap_remove_pages: non current pmap"));
1494 	pmap_remove(pm, sva, eva);
1495 }
1496 
1497 /*
1498  * Create the kernel stack and pcb for a new thread.
1499  * This routine directly affects the fork perf for a process and
1500  * create performance for a thread.
1501  */
1502 void
1503 pmap_new_thread(struct thread *td)
1504 {
1505 	vm_object_t	ksobj;
1506 	vm_offset_t	ks;
1507 	vm_page_t	m;
1508 	u_int		i;
1509 
1510 	/*
1511 	 * Allocate object for the kstack.
1512 	 */
1513 	ksobj = vm_object_allocate(OBJT_DEFAULT, KSTACK_PAGES);
1514 	td->td_kstack_obj = ksobj;
1515 
1516 	/*
1517 	 * Get a kernel virtual address for the kstack for this thread.
1518 	 */
1519 	ks = kmem_alloc_nofault(kernel_map,
1520 	    (KSTACK_PAGES + KSTACK_GUARD_PAGES) * PAGE_SIZE);
1521 	if (ks == 0)
1522 		panic("pmap_new_thread: kstack allocation failed");
1523 	TLBIE(ks);
1524 	ks += KSTACK_GUARD_PAGES * PAGE_SIZE;
1525 	td->td_kstack = ks;
1526 
1527 	for (i = 0; i < KSTACK_PAGES; i++) {
1528 		/*
1529 		 * Get a kernel stack page.
1530 		 */
1531 		m = vm_page_grab(ksobj, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
1532 
1533 		/*
1534 		 * Wire the page.
1535 		 */
1536 		m->wire_count++;
1537 
1538 		/*
1539 		 * Enter the page into the kernel address space.
1540 		 */
1541 		pmap_kenter(ks + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
1542 
1543 		vm_page_wakeup(m);
1544 		vm_page_flag_clear(m, PG_ZERO);
1545 		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
1546 		m->valid = VM_PAGE_BITS_ALL;
1547 	}
1548 }
1549 
1550 void
1551 pmap_dispose_thread(struct thread *td)
1552 {
1553 	TODO;
1554 }
1555 
1556 void
1557 pmap_swapin_thread(struct thread *td)
1558 {
1559 	TODO;
1560 }
1561 
1562 void
1563 pmap_swapout_thread(struct thread *td)
1564 {
1565 	TODO;
1566 }
1567 
1568 /*
1569  * Allocate a physical page of memory directly from the phys_avail map.
1570  * Can only be called from pmap_bootstrap before avail start and end are
1571  * calculated.
1572  */
1573 static vm_offset_t
1574 pmap_bootstrap_alloc(vm_size_t size, u_int align)
1575 {
1576 	vm_offset_t	s, e;
1577 	int		i, j;
1578 
1579 	size = round_page(size);
1580 	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
1581 		if (align != 0)
1582 			s = (phys_avail[i] + align - 1) & ~(align - 1);
1583 		else
1584 			s = phys_avail[i];
1585 		e = s + size;
1586 
1587 		if (s < phys_avail[i] || e > phys_avail[i + 1])
1588 			continue;
1589 
1590 		if (s == phys_avail[i]) {
1591 			phys_avail[i] += size;
1592 		} else if (e == phys_avail[i + 1]) {
1593 			phys_avail[i + 1] -= size;
1594 		} else {
1595 			for (j = phys_avail_count * 2; j > i; j -= 2) {
1596 				phys_avail[j] = phys_avail[j - 2];
1597 				phys_avail[j + 1] = phys_avail[j - 1];
1598 			}
1599 
1600 			phys_avail[i + 3] = phys_avail[i + 1];
1601 			phys_avail[i + 1] = s;
1602 			phys_avail[i + 2] = e;
1603 			phys_avail_count++;
1604 		}
1605 
1606 		return (s);
1607 	}
1608 	panic("pmap_bootstrap_alloc: could not allocate memory");
1609 }
1610 
1611 /*
1612  * Return an unmapped pvo for a kernel virtual address.
1613  * Used by pmap functions that operate on physical pages.
1614  */
1615 static struct pvo_entry *
1616 pmap_rkva_alloc(void)
1617 {
1618 	struct		pvo_entry *pvo;
1619 	struct		pte *pt;
1620 	vm_offset_t	kva;
1621 	int		pteidx;
1622 
1623 	if (pmap_rkva_count == 0)
1624 		panic("pmap_rkva_alloc: no more reserved KVAs");
1625 
1626 	kva = pmap_rkva_start + (PAGE_SIZE * --pmap_rkva_count);
1627 	pmap_kenter(kva, 0);
1628 
1629 	pvo = pmap_pvo_find_va(kernel_pmap, kva, &pteidx);
1630 
1631 	if (pvo == NULL)
1632 		panic("pmap_kva_alloc: pmap_pvo_find_va failed");
1633 
1634 	pt = pmap_pvo_to_pte(pvo, pteidx);
1635 
1636 	if (pt == NULL)
1637 		panic("pmap_kva_alloc: pmap_pvo_to_pte failed");
1638 
1639 	pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1640 	PVO_PTEGIDX_CLR(pvo);
1641 
1642 	pmap_pte_overflow++;
1643 
1644 	return (pvo);
1645 }
1646 
1647 static void
1648 pmap_pa_map(struct pvo_entry *pvo, vm_offset_t pa, struct pte *saved_pt,
1649     int *depth_p)
1650 {
1651 	struct	pte *pt;
1652 
1653 	/*
1654 	 * If this pvo already has a valid pte, we need to save it so it can
1655 	 * be restored later.  We then just reload the new PTE over the old
1656 	 * slot.
1657 	 */
1658 	if (saved_pt != NULL) {
1659 		pt = pmap_pvo_to_pte(pvo, -1);
1660 
1661 		if (pt != NULL) {
1662 			pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1663 			PVO_PTEGIDX_CLR(pvo);
1664 			pmap_pte_overflow++;
1665 		}
1666 
1667 		*saved_pt = pvo->pvo_pte;
1668 
1669 		pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1670 	}
1671 
1672 	pvo->pvo_pte.pte_lo |= pa;
1673 
1674 	if (!pmap_pte_spill(pvo->pvo_vaddr))
1675 		panic("pmap_pa_map: could not spill pvo %p", pvo);
1676 
1677 	if (depth_p != NULL)
1678 		(*depth_p)++;
1679 }
1680 
1681 static void
1682 pmap_pa_unmap(struct pvo_entry *pvo, struct pte *saved_pt, int *depth_p)
1683 {
1684 	struct	pte *pt;
1685 
1686 	pt = pmap_pvo_to_pte(pvo, -1);
1687 
1688 	if (pt != NULL) {
1689 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1690 		PVO_PTEGIDX_CLR(pvo);
1691 		pmap_pte_overflow++;
1692 	}
1693 
1694 	pvo->pvo_pte.pte_lo &= ~PTE_RPGN;
1695 
1696 	/*
1697 	 * If there is a saved PTE and it's valid, restore it and return.
1698 	 */
1699 	if (saved_pt != NULL && (saved_pt->pte_lo & PTE_RPGN) != 0) {
1700 		if (depth_p != NULL && --(*depth_p) == 0)
1701 			panic("pmap_pa_unmap: restoring but depth == 0");
1702 
1703 		pvo->pvo_pte = *saved_pt;
1704 
1705 		if (!pmap_pte_spill(pvo->pvo_vaddr))
1706 			panic("pmap_pa_unmap: could not spill pvo %p", pvo);
1707 	}
1708 }
1709 
1710 static void
1711 pmap_syncicache(vm_offset_t pa, vm_size_t len)
1712 {
1713 	__syncicache((void *)pa, len);
1714 }
1715 
1716 static void
1717 tlbia(void)
1718 {
1719 	caddr_t	i;
1720 
1721 	SYNC();
1722 	for (i = 0; i < (caddr_t)0x00040000; i += 0x00001000) {
1723 		TLBIE(i);
1724 		EIEIO();
1725 	}
1726 	TLBSYNC();
1727 	SYNC();
1728 }
1729 
1730 static int
1731 pmap_pvo_enter(pmap_t pm, uma_zone_t zone, struct pvo_head *pvo_head,
1732     vm_offset_t va, vm_offset_t pa, u_int pte_lo, int flags)
1733 {
1734 	struct	pvo_entry *pvo;
1735 	u_int	sr;
1736 	int	first;
1737 	u_int	ptegidx;
1738 	int	i;
1739 
1740 	pmap_pvo_enter_calls++;
1741 	first = 0;
1742 
1743 	/*
1744 	 * Compute the PTE Group index.
1745 	 */
1746 	va &= ~ADDR_POFF;
1747 	sr = va_to_sr(pm->pm_sr, va);
1748 	ptegidx = va_to_pteg(sr, va);
1749 
1750 	/*
1751 	 * Remove any existing mapping for this page.  Reuse the pvo entry if
1752 	 * there is a mapping.
1753 	 */
1754 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1755 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1756 			if ((pvo->pvo_pte.pte_lo & PTE_RPGN) == pa &&
1757 			    (pvo->pvo_pte.pte_lo & PTE_PP) ==
1758 			    (pte_lo & PTE_PP)) {
1759 				return (0);
1760 			}
1761 			pmap_pvo_remove(pvo, -1);
1762 			break;
1763 		}
1764 	}
1765 
1766 	/*
1767 	 * If we aren't overwriting a mapping, try to allocate.
1768 	 */
1769 	if (pmap_initialized) {
1770 		pvo = uma_zalloc(zone, M_NOWAIT);
1771 	} else {
1772 		if (pmap_bpvo_pool_index >= BPVO_POOL_SIZE) {
1773 			panic("pmap_enter: bpvo pool exhausted, %d, %d, %d",
1774 			      pmap_bpvo_pool_index, BPVO_POOL_SIZE,
1775 			      BPVO_POOL_SIZE * sizeof(struct pvo_entry));
1776 		}
1777 		pvo = &pmap_bpvo_pool[pmap_bpvo_pool_index];
1778 		pmap_bpvo_pool_index++;
1779 		pvo->pvo_vaddr |= PVO_BOOTSTRAP;
1780 	}
1781 
1782 	if (pvo == NULL) {
1783 		return (ENOMEM);
1784 	}
1785 
1786 	pmap_pvo_entries++;
1787 	pvo->pvo_vaddr = va;
1788 	pvo->pvo_pmap = pm;
1789 	LIST_INSERT_HEAD(&pmap_pvo_table[ptegidx], pvo, pvo_olink);
1790 	pvo->pvo_vaddr &= ~ADDR_POFF;
1791 	if (flags & VM_PROT_EXECUTE)
1792 		pvo->pvo_vaddr |= PVO_EXECUTABLE;
1793 	if (flags & PVO_WIRED)
1794 		pvo->pvo_vaddr |= PVO_WIRED;
1795 	if (pvo_head != &pmap_pvo_kunmanaged)
1796 		pvo->pvo_vaddr |= PVO_MANAGED;
1797 	pmap_pte_create(&pvo->pvo_pte, sr, va, pa | pte_lo);
1798 
1799 	/*
1800 	 * Remember if the list was empty and therefore will be the first
1801 	 * item.
1802 	 */
1803 	if (LIST_FIRST(pvo_head) == NULL)
1804 		first = 1;
1805 
1806 	LIST_INSERT_HEAD(pvo_head, pvo, pvo_vlink);
1807 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1808 		pvo->pvo_pmap->pm_stats.wired_count++;
1809 	pvo->pvo_pmap->pm_stats.resident_count++;
1810 
1811 	/*
1812 	 * We hope this succeeds but it isn't required.
1813 	 */
1814 	i = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
1815 	if (i >= 0) {
1816 		PVO_PTEGIDX_SET(pvo, i);
1817 	} else {
1818 		panic("pmap_pvo_enter: overflow");
1819 		pmap_pte_overflow++;
1820 	}
1821 
1822 	return (first ? ENOENT : 0);
1823 }
1824 
1825 static void
1826 pmap_pvo_remove(struct pvo_entry *pvo, int pteidx)
1827 {
1828 	struct	pte *pt;
1829 
1830 	/*
1831 	 * If there is an active pte entry, we need to deactivate it (and
1832 	 * save the ref & cfg bits).
1833 	 */
1834 	pt = pmap_pvo_to_pte(pvo, pteidx);
1835 	if (pt != NULL) {
1836 		pmap_pte_unset(pt, &pvo->pvo_pte, pvo->pvo_vaddr);
1837 		PVO_PTEGIDX_CLR(pvo);
1838 	} else {
1839 		pmap_pte_overflow--;
1840 	}
1841 
1842 	/*
1843 	 * Update our statistics.
1844 	 */
1845 	pvo->pvo_pmap->pm_stats.resident_count--;
1846 	if (pvo->pvo_pte.pte_lo & PVO_WIRED)
1847 		pvo->pvo_pmap->pm_stats.wired_count--;
1848 
1849 	/*
1850 	 * Save the REF/CHG bits into their cache if the page is managed.
1851 	 */
1852 	if (pvo->pvo_vaddr & PVO_MANAGED) {
1853 		struct	vm_page *pg;
1854 
1855 		pg = PHYS_TO_VM_PAGE(pvo->pvo_pte.pte_lo & PTE_RPGN);
1856 		if (pg != NULL) {
1857 			pmap_attr_save(pg, pvo->pvo_pte.pte_lo &
1858 			    (PTE_REF | PTE_CHG));
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * Remove this PVO from the PV list.
1864 	 */
1865 	LIST_REMOVE(pvo, pvo_vlink);
1866 
1867 	/*
1868 	 * Remove this from the overflow list and return it to the pool
1869 	 * if we aren't going to reuse it.
1870 	 */
1871 	LIST_REMOVE(pvo, pvo_olink);
1872 	if (!(pvo->pvo_vaddr & PVO_BOOTSTRAP))
1873 		uma_zfree(pvo->pvo_vaddr & PVO_MANAGED ? pmap_mpvo_zone :
1874 		    pmap_upvo_zone, pvo);
1875 	pmap_pvo_entries--;
1876 	pmap_pvo_remove_calls++;
1877 }
1878 
1879 static __inline int
1880 pmap_pvo_pte_index(const struct pvo_entry *pvo, int ptegidx)
1881 {
1882 	int	pteidx;
1883 
1884 	/*
1885 	 * We can find the actual pte entry without searching by grabbing
1886 	 * the PTEG index from 3 unused bits in pte_lo[11:9] and by
1887 	 * noticing the HID bit.
1888 	 */
1889 	pteidx = ptegidx * 8 + PVO_PTEGIDX_GET(pvo);
1890 	if (pvo->pvo_pte.pte_hi & PTE_HID)
1891 		pteidx ^= pmap_pteg_mask * 8;
1892 
1893 	return (pteidx);
1894 }
1895 
1896 static struct pvo_entry *
1897 pmap_pvo_find_va(pmap_t pm, vm_offset_t va, int *pteidx_p)
1898 {
1899 	struct	pvo_entry *pvo;
1900 	int	ptegidx;
1901 	u_int	sr;
1902 
1903 	va &= ~ADDR_POFF;
1904 	sr = va_to_sr(pm->pm_sr, va);
1905 	ptegidx = va_to_pteg(sr, va);
1906 
1907 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
1908 		if (pvo->pvo_pmap == pm && PVO_VADDR(pvo) == va) {
1909 			if (pteidx_p)
1910 				*pteidx_p = pmap_pvo_pte_index(pvo, ptegidx);
1911 			return (pvo);
1912 		}
1913 	}
1914 
1915 	return (NULL);
1916 }
1917 
1918 static struct pte *
1919 pmap_pvo_to_pte(const struct pvo_entry *pvo, int pteidx)
1920 {
1921 	struct	pte *pt;
1922 
1923 	/*
1924 	 * If we haven't been supplied the ptegidx, calculate it.
1925 	 */
1926 	if (pteidx == -1) {
1927 		int	ptegidx;
1928 		u_int	sr;
1929 
1930 		sr = va_to_sr(pvo->pvo_pmap->pm_sr, pvo->pvo_vaddr);
1931 		ptegidx = va_to_pteg(sr, pvo->pvo_vaddr);
1932 		pteidx = pmap_pvo_pte_index(pvo, ptegidx);
1933 	}
1934 
1935 	pt = &pmap_pteg_table[pteidx >> 3].pt[pteidx & 7];
1936 
1937 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) && !PVO_PTEGIDX_ISSET(pvo)) {
1938 		panic("pmap_pvo_to_pte: pvo %p has valid pte in pvo but no "
1939 		    "valid pte index", pvo);
1940 	}
1941 
1942 	if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0 && PVO_PTEGIDX_ISSET(pvo)) {
1943 		panic("pmap_pvo_to_pte: pvo %p has valid pte index in pvo "
1944 		    "pvo but no valid pte", pvo);
1945 	}
1946 
1947 	if ((pt->pte_hi ^ (pvo->pvo_pte.pte_hi & ~PTE_VALID)) == PTE_VALID) {
1948 		if ((pvo->pvo_pte.pte_hi & PTE_VALID) == 0) {
1949 			panic("pmap_pvo_to_pte: pvo %p has valid pte in "
1950 			    "pmap_pteg_table %p but invalid in pvo", pvo, pt);
1951 		}
1952 
1953 		if (((pt->pte_lo ^ pvo->pvo_pte.pte_lo) & ~(PTE_CHG|PTE_REF))
1954 		    != 0) {
1955 			panic("pmap_pvo_to_pte: pvo %p pte does not match "
1956 			    "pte %p in pmap_pteg_table", pvo, pt);
1957 		}
1958 
1959 		return (pt);
1960 	}
1961 
1962 	if (pvo->pvo_pte.pte_hi & PTE_VALID) {
1963 		panic("pmap_pvo_to_pte: pvo %p has invalid pte %p in "
1964 		    "pmap_pteg_table but valid in pvo", pvo, pt);
1965 	}
1966 
1967 	return (NULL);
1968 }
1969 
1970 static void *
1971 pmap_pvo_allocf(uma_zone_t zone, int bytes, u_int8_t *flags, int wait)
1972 {
1973 	vm_page_t	m;
1974 
1975 	if (bytes != PAGE_SIZE)
1976 		panic("pmap_pvo_allocf: benno was shortsighted.  hit him.");
1977 
1978 	*flags = UMA_SLAB_PRIV;
1979 	m = vm_page_alloc(pmap_pvo_obj, pmap_pvo_count, VM_ALLOC_SYSTEM);
1980 	if (m == NULL)
1981 		return (NULL);
1982 	pmap_pvo_count++;
1983 	return ((void *)VM_PAGE_TO_PHYS(m));
1984 }
1985 
1986 /*
1987  * XXX: THIS STUFF SHOULD BE IN pte.c?
1988  */
1989 int
1990 pmap_pte_spill(vm_offset_t addr)
1991 {
1992 	struct	pvo_entry *source_pvo, *victim_pvo;
1993 	struct	pvo_entry *pvo;
1994 	int	ptegidx, i, j;
1995 	u_int	sr;
1996 	struct	pteg *pteg;
1997 	struct	pte *pt;
1998 
1999 	pmap_pte_spills++;
2000 
2001 	sr = mfsrin(addr);
2002 	ptegidx = va_to_pteg(sr, addr);
2003 
2004 	/*
2005 	 * Have to substitute some entry.  Use the primary hash for this.
2006 	 * Use low bits of timebase as random generator.
2007 	 */
2008 	pteg = &pmap_pteg_table[ptegidx];
2009 	__asm __volatile("mftb %0" : "=r"(i));
2010 	i &= 7;
2011 	pt = &pteg->pt[i];
2012 
2013 	source_pvo = NULL;
2014 	victim_pvo = NULL;
2015 	LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx], pvo_olink) {
2016 		/*
2017 		 * We need to find a pvo entry for this address.
2018 		 */
2019 		PMAP_PVO_CHECK(pvo);
2020 		if (source_pvo == NULL &&
2021 		    pmap_pte_match(&pvo->pvo_pte, sr, addr,
2022 		    pvo->pvo_pte.pte_hi & PTE_HID)) {
2023 			/*
2024 			 * Now found an entry to be spilled into the pteg.
2025 			 * The PTE is now valid, so we know it's active.
2026 			 */
2027 			j = pmap_pte_insert(ptegidx, &pvo->pvo_pte);
2028 
2029 			if (j >= 0) {
2030 				PVO_PTEGIDX_SET(pvo, j);
2031 				pmap_pte_overflow--;
2032 				PMAP_PVO_CHECK(pvo);
2033 				return (1);
2034 			}
2035 
2036 			source_pvo = pvo;
2037 
2038 			if (victim_pvo != NULL)
2039 				break;
2040 		}
2041 
2042 		/*
2043 		 * We also need the pvo entry of the victim we are replacing
2044 		 * so save the R & C bits of the PTE.
2045 		 */
2046 		if ((pt->pte_hi & PTE_HID) == 0 && victim_pvo == NULL &&
2047 		    pmap_pte_compare(pt, &pvo->pvo_pte)) {
2048 			victim_pvo = pvo;
2049 			if (source_pvo != NULL)
2050 				break;
2051 		}
2052 	}
2053 
2054 	if (source_pvo == NULL)
2055 		return (0);
2056 
2057 	if (victim_pvo == NULL) {
2058 		if ((pt->pte_hi & PTE_HID) == 0)
2059 			panic("pmap_pte_spill: victim p-pte (%p) has no pvo"
2060 			    "entry", pt);
2061 
2062 		/*
2063 		 * If this is a secondary PTE, we need to search it's primary
2064 		 * pvo bucket for the matching PVO.
2065 		 */
2066 		LIST_FOREACH(pvo, &pmap_pvo_table[ptegidx ^ pmap_pteg_mask],
2067 		    pvo_olink) {
2068 			PMAP_PVO_CHECK(pvo);
2069 			/*
2070 			 * We also need the pvo entry of the victim we are
2071 			 * replacing so save the R & C bits of the PTE.
2072 			 */
2073 			if (pmap_pte_compare(pt, &pvo->pvo_pte)) {
2074 				victim_pvo = pvo;
2075 				break;
2076 			}
2077 		}
2078 
2079 		if (victim_pvo == NULL)
2080 			panic("pmap_pte_spill: victim s-pte (%p) has no pvo"
2081 			    "entry", pt);
2082 	}
2083 
2084 	/*
2085 	 * We are invalidating the TLB entry for the EA we are replacing even
2086 	 * though it's valid.  If we don't, we lose any ref/chg bit changes
2087 	 * contained in the TLB entry.
2088 	 */
2089 	source_pvo->pvo_pte.pte_hi &= ~PTE_HID;
2090 
2091 	pmap_pte_unset(pt, &victim_pvo->pvo_pte, victim_pvo->pvo_vaddr);
2092 	pmap_pte_set(pt, &source_pvo->pvo_pte);
2093 
2094 	PVO_PTEGIDX_CLR(victim_pvo);
2095 	PVO_PTEGIDX_SET(source_pvo, i);
2096 	pmap_pte_replacements++;
2097 
2098 	PMAP_PVO_CHECK(victim_pvo);
2099 	PMAP_PVO_CHECK(source_pvo);
2100 
2101 	return (1);
2102 }
2103 
2104 static int
2105 pmap_pte_insert(u_int ptegidx, struct pte *pvo_pt)
2106 {
2107 	struct	pte *pt;
2108 	int	i;
2109 
2110 	/*
2111 	 * First try primary hash.
2112 	 */
2113 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2114 		if ((pt->pte_hi & PTE_VALID) == 0) {
2115 			pvo_pt->pte_hi &= ~PTE_HID;
2116 			pmap_pte_set(pt, pvo_pt);
2117 			return (i);
2118 		}
2119 	}
2120 
2121 	/*
2122 	 * Now try secondary hash.
2123 	 */
2124 	ptegidx ^= pmap_pteg_mask;
2125 	ptegidx++;
2126 	for (pt = pmap_pteg_table[ptegidx].pt, i = 0; i < 8; i++, pt++) {
2127 		if ((pt->pte_hi & PTE_VALID) == 0) {
2128 			pvo_pt->pte_hi |= PTE_HID;
2129 			pmap_pte_set(pt, pvo_pt);
2130 			return (i);
2131 		}
2132 	}
2133 
2134 	panic("pmap_pte_insert: overflow");
2135 	return (-1);
2136 }
2137 
2138 static boolean_t
2139 pmap_query_bit(vm_page_t m, int ptebit)
2140 {
2141 	struct	pvo_entry *pvo;
2142 	struct	pte *pt;
2143 
2144 	if (pmap_attr_fetch(m) & ptebit)
2145 		return (TRUE);
2146 
2147 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2148 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2149 
2150 		/*
2151 		 * See if we saved the bit off.  If so, cache it and return
2152 		 * success.
2153 		 */
2154 		if (pvo->pvo_pte.pte_lo & ptebit) {
2155 			pmap_attr_save(m, ptebit);
2156 			PMAP_PVO_CHECK(pvo);	/* sanity check */
2157 			return (TRUE);
2158 		}
2159 	}
2160 
2161 	/*
2162 	 * No luck, now go through the hard part of looking at the PTEs
2163 	 * themselves.  Sync so that any pending REF/CHG bits are flushed to
2164 	 * the PTEs.
2165 	 */
2166 	SYNC();
2167 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2168 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2169 
2170 		/*
2171 		 * See if this pvo has a valid PTE.  if so, fetch the
2172 		 * REF/CHG bits from the valid PTE.  If the appropriate
2173 		 * ptebit is set, cache it and return success.
2174 		 */
2175 		pt = pmap_pvo_to_pte(pvo, -1);
2176 		if (pt != NULL) {
2177 			pmap_pte_synch(pt, &pvo->pvo_pte);
2178 			if (pvo->pvo_pte.pte_lo & ptebit) {
2179 				pmap_attr_save(m, ptebit);
2180 				PMAP_PVO_CHECK(pvo);	/* sanity check */
2181 				return (TRUE);
2182 			}
2183 		}
2184 	}
2185 
2186 	return (TRUE);
2187 }
2188 
2189 static boolean_t
2190 pmap_clear_bit(vm_page_t m, int ptebit)
2191 {
2192 	struct	pvo_entry *pvo;
2193 	struct	pte *pt;
2194 	int	rv;
2195 
2196 	/*
2197 	 * Clear the cached value.
2198 	 */
2199 	rv = pmap_attr_fetch(m);
2200 	pmap_attr_clear(m, ptebit);
2201 
2202 	/*
2203 	 * Sync so that any pending REF/CHG bits are flushed to the PTEs (so
2204 	 * we can reset the right ones).  note that since the pvo entries and
2205 	 * list heads are accessed via BAT0 and are never placed in the page
2206 	 * table, we don't have to worry about further accesses setting the
2207 	 * REF/CHG bits.
2208 	 */
2209 	SYNC();
2210 
2211 	/*
2212 	 * For each pvo entry, clear the pvo's ptebit.  If this pvo has a
2213 	 * valid pte clear the ptebit from the valid pte.
2214 	 */
2215 	LIST_FOREACH(pvo, vm_page_to_pvoh(m), pvo_vlink) {
2216 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2217 		pt = pmap_pvo_to_pte(pvo, -1);
2218 		if (pt != NULL) {
2219 			pmap_pte_synch(pt, &pvo->pvo_pte);
2220 			if (pvo->pvo_pte.pte_lo & ptebit)
2221 				pmap_pte_clear(pt, PVO_VADDR(pvo), ptebit);
2222 		}
2223 		rv |= pvo->pvo_pte.pte_lo;
2224 		pvo->pvo_pte.pte_lo &= ~ptebit;
2225 		PMAP_PVO_CHECK(pvo);	/* sanity check */
2226 	}
2227 
2228 	return ((rv & ptebit) != 0);
2229 }
2230 
2231 /*
2232  * Map a set of physical memory pages into the kernel virtual
2233  * address space. Return a pointer to where it is mapped. This
2234  * routine is intended to be used for mapping device memory,
2235  * NOT real memory.
2236  */
2237 void *
2238 pmap_mapdev(vm_offset_t pa, vm_size_t size)
2239 {
2240 	vm_offset_t va, tmpva, offset;
2241 
2242 	pa = trunc_page(pa);
2243 	offset = pa & PAGE_MASK;
2244 	size = roundup(offset + size, PAGE_SIZE);
2245 
2246 	GIANT_REQUIRED;
2247 
2248 	va = kmem_alloc_pageable(kernel_map, size);
2249 	if (!va)
2250 		panic("pmap_mapdev: Couldn't alloc kernel virtual memory");
2251 
2252 	for (tmpva = va; size > 0;) {
2253 		pmap_kenter(tmpva, pa);
2254 		TLBIE(tmpva); /* XXX or should it be invalidate-all ? */
2255 		size -= PAGE_SIZE;
2256 		tmpva += PAGE_SIZE;
2257 		pa += PAGE_SIZE;
2258 	}
2259 
2260 	return ((void *)(va + offset));
2261 }
2262 
2263 void
2264 pmap_unmapdev(vm_offset_t va, vm_size_t size)
2265 {
2266 	vm_offset_t base, offset;
2267 
2268 	base = trunc_page(va);
2269 	offset = va & PAGE_MASK;
2270 	size = roundup(offset + size, PAGE_SIZE);
2271 	kmem_free(kernel_map, base, size);
2272 }
2273