1 /*- 2 * Copyright (c) 2002-2006 Sam Leffler. All rights reserved. 3 * Copyright (c) 2021 The FreeBSD Foundation 4 * 5 * Portions of this software were developed by Ararat River 6 * Consulting, LLC under sponsorship of the FreeBSD Foundation. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 */ 28 29 #include <sys/cdefs.h> 30 __FBSDID("$FreeBSD$"); 31 32 /* 33 * Cryptographic Subsystem. 34 * 35 * This code is derived from the Openbsd Cryptographic Framework (OCF) 36 * that has the copyright shown below. Very little of the original 37 * code remains. 38 */ 39 40 /*- 41 * The author of this code is Angelos D. Keromytis (angelos@cis.upenn.edu) 42 * 43 * This code was written by Angelos D. Keromytis in Athens, Greece, in 44 * February 2000. Network Security Technologies Inc. (NSTI) kindly 45 * supported the development of this code. 46 * 47 * Copyright (c) 2000, 2001 Angelos D. Keromytis 48 * 49 * Permission to use, copy, and modify this software with or without fee 50 * is hereby granted, provided that this entire notice is included in 51 * all source code copies of any software which is or includes a copy or 52 * modification of this software. 53 * 54 * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR 55 * IMPLIED WARRANTY. IN PARTICULAR, NONE OF THE AUTHORS MAKES ANY 56 * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE 57 * MERCHANTABILITY OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR 58 * PURPOSE. 59 */ 60 61 #include "opt_compat.h" 62 #include "opt_ddb.h" 63 64 #include <sys/param.h> 65 #include <sys/systm.h> 66 #include <sys/counter.h> 67 #include <sys/kernel.h> 68 #include <sys/kthread.h> 69 #include <sys/linker.h> 70 #include <sys/lock.h> 71 #include <sys/module.h> 72 #include <sys/mutex.h> 73 #include <sys/malloc.h> 74 #include <sys/mbuf.h> 75 #include <sys/proc.h> 76 #include <sys/refcount.h> 77 #include <sys/sdt.h> 78 #include <sys/smp.h> 79 #include <sys/sysctl.h> 80 #include <sys/taskqueue.h> 81 #include <sys/uio.h> 82 83 #include <ddb/ddb.h> 84 85 #include <machine/vmparam.h> 86 #include <vm/uma.h> 87 88 #include <crypto/intake.h> 89 #include <opencrypto/cryptodev.h> 90 #include <opencrypto/xform_auth.h> 91 #include <opencrypto/xform_enc.h> 92 93 #include <sys/kobj.h> 94 #include <sys/bus.h> 95 #include "cryptodev_if.h" 96 97 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 98 #include <machine/pcb.h> 99 #endif 100 101 SDT_PROVIDER_DEFINE(opencrypto); 102 103 /* 104 * Crypto drivers register themselves by allocating a slot in the 105 * crypto_drivers table with crypto_get_driverid(). 106 */ 107 static struct mtx crypto_drivers_mtx; /* lock on driver table */ 108 #define CRYPTO_DRIVER_LOCK() mtx_lock(&crypto_drivers_mtx) 109 #define CRYPTO_DRIVER_UNLOCK() mtx_unlock(&crypto_drivers_mtx) 110 #define CRYPTO_DRIVER_ASSERT() mtx_assert(&crypto_drivers_mtx, MA_OWNED) 111 112 /* 113 * Crypto device/driver capabilities structure. 114 * 115 * Synchronization: 116 * (d) - protected by CRYPTO_DRIVER_LOCK() 117 * (q) - protected by CRYPTO_Q_LOCK() 118 * Not tagged fields are read-only. 119 */ 120 struct cryptocap { 121 device_t cc_dev; 122 uint32_t cc_hid; 123 uint32_t cc_sessions; /* (d) # of sessions */ 124 125 int cc_flags; /* (d) flags */ 126 #define CRYPTOCAP_F_CLEANUP 0x80000000 /* needs resource cleanup */ 127 int cc_qblocked; /* (q) symmetric q blocked */ 128 size_t cc_session_size; 129 volatile int cc_refs; 130 }; 131 132 static struct cryptocap **crypto_drivers = NULL; 133 static int crypto_drivers_size = 0; 134 135 struct crypto_session { 136 struct cryptocap *cap; 137 struct crypto_session_params csp; 138 uint64_t id; 139 /* Driver softc follows. */ 140 }; 141 142 static int crp_sleep = 0; 143 static TAILQ_HEAD(cryptop_q ,cryptop) crp_q; /* request queues */ 144 static struct mtx crypto_q_mtx; 145 #define CRYPTO_Q_LOCK() mtx_lock(&crypto_q_mtx) 146 #define CRYPTO_Q_UNLOCK() mtx_unlock(&crypto_q_mtx) 147 148 SYSCTL_NODE(_kern, OID_AUTO, crypto, CTLFLAG_RW, 0, 149 "In-kernel cryptography"); 150 151 /* 152 * Taskqueue used to dispatch the crypto requests submitted with 153 * crypto_dispatch_async . 154 */ 155 static struct taskqueue *crypto_tq; 156 157 /* 158 * Crypto seq numbers are operated on with modular arithmetic 159 */ 160 #define CRYPTO_SEQ_GT(a,b) ((int)((a)-(b)) > 0) 161 162 struct crypto_ret_worker { 163 struct mtx crypto_ret_mtx; 164 165 TAILQ_HEAD(,cryptop) crp_ordered_ret_q; /* ordered callback queue for symetric jobs */ 166 TAILQ_HEAD(,cryptop) crp_ret_q; /* callback queue for symetric jobs */ 167 168 uint32_t reorder_ops; /* total ordered sym jobs received */ 169 uint32_t reorder_cur_seq; /* current sym job dispatched */ 170 171 struct thread *td; 172 }; 173 static struct crypto_ret_worker *crypto_ret_workers = NULL; 174 175 #define CRYPTO_RETW(i) (&crypto_ret_workers[i]) 176 #define CRYPTO_RETW_ID(w) ((w) - crypto_ret_workers) 177 #define FOREACH_CRYPTO_RETW(w) \ 178 for (w = crypto_ret_workers; w < crypto_ret_workers + crypto_workers_num; ++w) 179 180 #define CRYPTO_RETW_LOCK(w) mtx_lock(&w->crypto_ret_mtx) 181 #define CRYPTO_RETW_UNLOCK(w) mtx_unlock(&w->crypto_ret_mtx) 182 183 static int crypto_workers_num = 0; 184 SYSCTL_INT(_kern_crypto, OID_AUTO, num_workers, CTLFLAG_RDTUN, 185 &crypto_workers_num, 0, 186 "Number of crypto workers used to dispatch crypto jobs"); 187 #ifdef COMPAT_FREEBSD12 188 SYSCTL_INT(_kern, OID_AUTO, crypto_workers_num, CTLFLAG_RDTUN, 189 &crypto_workers_num, 0, 190 "Number of crypto workers used to dispatch crypto jobs"); 191 #endif 192 193 static uma_zone_t cryptop_zone; 194 195 int crypto_devallowsoft = 0; 196 SYSCTL_INT(_kern_crypto, OID_AUTO, allow_soft, CTLFLAG_RWTUN, 197 &crypto_devallowsoft, 0, 198 "Enable use of software crypto by /dev/crypto"); 199 #ifdef COMPAT_FREEBSD12 200 SYSCTL_INT(_kern, OID_AUTO, cryptodevallowsoft, CTLFLAG_RWTUN, 201 &crypto_devallowsoft, 0, 202 "Enable/disable use of software crypto by /dev/crypto"); 203 #endif 204 205 #ifdef DIAGNOSTIC 206 bool crypto_destroyreq_check; 207 SYSCTL_BOOL(_kern_crypto, OID_AUTO, destroyreq_check, CTLFLAG_RWTUN, 208 &crypto_destroyreq_check, 0, 209 "Enable checks when destroying a request"); 210 #endif 211 212 MALLOC_DEFINE(M_CRYPTO_DATA, "crypto", "crypto session records"); 213 214 static void crypto_dispatch_thread(void *arg); 215 static struct thread *cryptotd; 216 static void crypto_ret_thread(void *arg); 217 static void crypto_destroy(void); 218 static int crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint); 219 static void crypto_task_invoke(void *ctx, int pending); 220 static void crypto_batch_enqueue(struct cryptop *crp); 221 222 static counter_u64_t cryptostats[sizeof(struct cryptostats) / sizeof(uint64_t)]; 223 SYSCTL_COUNTER_U64_ARRAY(_kern_crypto, OID_AUTO, stats, CTLFLAG_RW, 224 cryptostats, nitems(cryptostats), 225 "Crypto system statistics"); 226 227 #define CRYPTOSTAT_INC(stat) do { \ 228 counter_u64_add( \ 229 cryptostats[offsetof(struct cryptostats, stat) / sizeof(uint64_t)],\ 230 1); \ 231 } while (0) 232 233 static void 234 cryptostats_init(void *arg __unused) 235 { 236 COUNTER_ARRAY_ALLOC(cryptostats, nitems(cryptostats), M_WAITOK); 237 } 238 SYSINIT(cryptostats_init, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_init, NULL); 239 240 static void 241 cryptostats_fini(void *arg __unused) 242 { 243 COUNTER_ARRAY_FREE(cryptostats, nitems(cryptostats)); 244 } 245 SYSUNINIT(cryptostats_fini, SI_SUB_COUNTER, SI_ORDER_ANY, cryptostats_fini, 246 NULL); 247 248 /* Try to avoid directly exposing the key buffer as a symbol */ 249 static struct keybuf *keybuf; 250 251 static struct keybuf empty_keybuf = { 252 .kb_nents = 0 253 }; 254 255 /* Obtain the key buffer from boot metadata */ 256 static void 257 keybuf_init(void) 258 { 259 caddr_t kmdp; 260 261 kmdp = preload_search_by_type("elf kernel"); 262 263 if (kmdp == NULL) 264 kmdp = preload_search_by_type("elf64 kernel"); 265 266 keybuf = (struct keybuf *)preload_search_info(kmdp, 267 MODINFO_METADATA | MODINFOMD_KEYBUF); 268 269 if (keybuf == NULL) 270 keybuf = &empty_keybuf; 271 } 272 273 /* It'd be nice if we could store these in some kind of secure memory... */ 274 struct keybuf * 275 get_keybuf(void) 276 { 277 278 return (keybuf); 279 } 280 281 static struct cryptocap * 282 cap_ref(struct cryptocap *cap) 283 { 284 285 refcount_acquire(&cap->cc_refs); 286 return (cap); 287 } 288 289 static void 290 cap_rele(struct cryptocap *cap) 291 { 292 293 if (refcount_release(&cap->cc_refs) == 0) 294 return; 295 296 KASSERT(cap->cc_sessions == 0, 297 ("freeing crypto driver with active sessions")); 298 299 free(cap, M_CRYPTO_DATA); 300 } 301 302 static int 303 crypto_init(void) 304 { 305 struct crypto_ret_worker *ret_worker; 306 struct proc *p; 307 int error; 308 309 mtx_init(&crypto_drivers_mtx, "crypto driver table", NULL, MTX_DEF); 310 311 TAILQ_INIT(&crp_q); 312 mtx_init(&crypto_q_mtx, "crypto op queues", NULL, MTX_DEF); 313 314 cryptop_zone = uma_zcreate("cryptop", 315 sizeof(struct cryptop), NULL, NULL, NULL, NULL, 316 UMA_ALIGN_PTR, UMA_ZONE_ZINIT); 317 318 crypto_drivers_size = CRYPTO_DRIVERS_INITIAL; 319 crypto_drivers = malloc(crypto_drivers_size * 320 sizeof(struct cryptocap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 321 322 if (crypto_workers_num < 1 || crypto_workers_num > mp_ncpus) 323 crypto_workers_num = mp_ncpus; 324 325 crypto_tq = taskqueue_create("crypto", M_WAITOK | M_ZERO, 326 taskqueue_thread_enqueue, &crypto_tq); 327 328 taskqueue_start_threads(&crypto_tq, crypto_workers_num, PRI_MIN_KERN, 329 "crypto"); 330 331 p = NULL; 332 error = kproc_kthread_add(crypto_dispatch_thread, NULL, &p, &cryptotd, 333 0, 0, "crypto", "crypto"); 334 if (error) { 335 printf("crypto_init: cannot start crypto thread; error %d", 336 error); 337 goto bad; 338 } 339 340 crypto_ret_workers = mallocarray(crypto_workers_num, 341 sizeof(struct crypto_ret_worker), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 342 343 FOREACH_CRYPTO_RETW(ret_worker) { 344 TAILQ_INIT(&ret_worker->crp_ordered_ret_q); 345 TAILQ_INIT(&ret_worker->crp_ret_q); 346 347 ret_worker->reorder_ops = 0; 348 ret_worker->reorder_cur_seq = 0; 349 350 mtx_init(&ret_worker->crypto_ret_mtx, "crypto return queues", 351 NULL, MTX_DEF); 352 353 error = kthread_add(crypto_ret_thread, ret_worker, p, 354 &ret_worker->td, 0, 0, "crypto returns %td", 355 CRYPTO_RETW_ID(ret_worker)); 356 if (error) { 357 printf("crypto_init: cannot start cryptoret thread; error %d", 358 error); 359 goto bad; 360 } 361 } 362 363 keybuf_init(); 364 365 return 0; 366 bad: 367 crypto_destroy(); 368 return error; 369 } 370 371 /* 372 * Signal a crypto thread to terminate. We use the driver 373 * table lock to synchronize the sleep/wakeups so that we 374 * are sure the threads have terminated before we release 375 * the data structures they use. See crypto_finis below 376 * for the other half of this song-and-dance. 377 */ 378 static void 379 crypto_terminate(struct thread **tdp, void *q) 380 { 381 struct thread *td; 382 383 mtx_assert(&crypto_drivers_mtx, MA_OWNED); 384 td = *tdp; 385 *tdp = NULL; 386 if (td != NULL) { 387 wakeup_one(q); 388 mtx_sleep(td, &crypto_drivers_mtx, PWAIT, "crypto_destroy", 0); 389 } 390 } 391 392 static void 393 hmac_init_pad(const struct auth_hash *axf, const char *key, int klen, 394 void *auth_ctx, uint8_t padval) 395 { 396 uint8_t hmac_key[HMAC_MAX_BLOCK_LEN]; 397 u_int i; 398 399 KASSERT(axf->blocksize <= sizeof(hmac_key), 400 ("Invalid HMAC block size %d", axf->blocksize)); 401 402 /* 403 * If the key is larger than the block size, use the digest of 404 * the key as the key instead. 405 */ 406 memset(hmac_key, 0, sizeof(hmac_key)); 407 if (klen > axf->blocksize) { 408 axf->Init(auth_ctx); 409 axf->Update(auth_ctx, key, klen); 410 axf->Final(hmac_key, auth_ctx); 411 klen = axf->hashsize; 412 } else 413 memcpy(hmac_key, key, klen); 414 415 for (i = 0; i < axf->blocksize; i++) 416 hmac_key[i] ^= padval; 417 418 axf->Init(auth_ctx); 419 axf->Update(auth_ctx, hmac_key, axf->blocksize); 420 explicit_bzero(hmac_key, sizeof(hmac_key)); 421 } 422 423 void 424 hmac_init_ipad(const struct auth_hash *axf, const char *key, int klen, 425 void *auth_ctx) 426 { 427 428 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_IPAD_VAL); 429 } 430 431 void 432 hmac_init_opad(const struct auth_hash *axf, const char *key, int klen, 433 void *auth_ctx) 434 { 435 436 hmac_init_pad(axf, key, klen, auth_ctx, HMAC_OPAD_VAL); 437 } 438 439 static void 440 crypto_destroy(void) 441 { 442 struct crypto_ret_worker *ret_worker; 443 int i; 444 445 /* 446 * Terminate any crypto threads. 447 */ 448 if (crypto_tq != NULL) 449 taskqueue_drain_all(crypto_tq); 450 CRYPTO_DRIVER_LOCK(); 451 crypto_terminate(&cryptotd, &crp_q); 452 FOREACH_CRYPTO_RETW(ret_worker) 453 crypto_terminate(&ret_worker->td, &ret_worker->crp_ret_q); 454 CRYPTO_DRIVER_UNLOCK(); 455 456 /* XXX flush queues??? */ 457 458 /* 459 * Reclaim dynamically allocated resources. 460 */ 461 for (i = 0; i < crypto_drivers_size; i++) { 462 if (crypto_drivers[i] != NULL) 463 cap_rele(crypto_drivers[i]); 464 } 465 free(crypto_drivers, M_CRYPTO_DATA); 466 467 if (cryptop_zone != NULL) 468 uma_zdestroy(cryptop_zone); 469 mtx_destroy(&crypto_q_mtx); 470 FOREACH_CRYPTO_RETW(ret_worker) 471 mtx_destroy(&ret_worker->crypto_ret_mtx); 472 free(crypto_ret_workers, M_CRYPTO_DATA); 473 if (crypto_tq != NULL) 474 taskqueue_free(crypto_tq); 475 mtx_destroy(&crypto_drivers_mtx); 476 } 477 478 uint32_t 479 crypto_ses2hid(crypto_session_t crypto_session) 480 { 481 return (crypto_session->cap->cc_hid); 482 } 483 484 uint32_t 485 crypto_ses2caps(crypto_session_t crypto_session) 486 { 487 return (crypto_session->cap->cc_flags & 0xff000000); 488 } 489 490 void * 491 crypto_get_driver_session(crypto_session_t crypto_session) 492 { 493 return (crypto_session + 1); 494 } 495 496 const struct crypto_session_params * 497 crypto_get_params(crypto_session_t crypto_session) 498 { 499 return (&crypto_session->csp); 500 } 501 502 const struct auth_hash * 503 crypto_auth_hash(const struct crypto_session_params *csp) 504 { 505 506 switch (csp->csp_auth_alg) { 507 case CRYPTO_SHA1_HMAC: 508 return (&auth_hash_hmac_sha1); 509 case CRYPTO_SHA2_224_HMAC: 510 return (&auth_hash_hmac_sha2_224); 511 case CRYPTO_SHA2_256_HMAC: 512 return (&auth_hash_hmac_sha2_256); 513 case CRYPTO_SHA2_384_HMAC: 514 return (&auth_hash_hmac_sha2_384); 515 case CRYPTO_SHA2_512_HMAC: 516 return (&auth_hash_hmac_sha2_512); 517 case CRYPTO_NULL_HMAC: 518 return (&auth_hash_null); 519 case CRYPTO_RIPEMD160_HMAC: 520 return (&auth_hash_hmac_ripemd_160); 521 case CRYPTO_RIPEMD160: 522 return (&auth_hash_ripemd_160); 523 case CRYPTO_SHA1: 524 return (&auth_hash_sha1); 525 case CRYPTO_SHA2_224: 526 return (&auth_hash_sha2_224); 527 case CRYPTO_SHA2_256: 528 return (&auth_hash_sha2_256); 529 case CRYPTO_SHA2_384: 530 return (&auth_hash_sha2_384); 531 case CRYPTO_SHA2_512: 532 return (&auth_hash_sha2_512); 533 case CRYPTO_AES_NIST_GMAC: 534 switch (csp->csp_auth_klen) { 535 case 128 / 8: 536 return (&auth_hash_nist_gmac_aes_128); 537 case 192 / 8: 538 return (&auth_hash_nist_gmac_aes_192); 539 case 256 / 8: 540 return (&auth_hash_nist_gmac_aes_256); 541 default: 542 return (NULL); 543 } 544 case CRYPTO_BLAKE2B: 545 return (&auth_hash_blake2b); 546 case CRYPTO_BLAKE2S: 547 return (&auth_hash_blake2s); 548 case CRYPTO_POLY1305: 549 return (&auth_hash_poly1305); 550 case CRYPTO_AES_CCM_CBC_MAC: 551 switch (csp->csp_auth_klen) { 552 case 128 / 8: 553 return (&auth_hash_ccm_cbc_mac_128); 554 case 192 / 8: 555 return (&auth_hash_ccm_cbc_mac_192); 556 case 256 / 8: 557 return (&auth_hash_ccm_cbc_mac_256); 558 default: 559 return (NULL); 560 } 561 default: 562 return (NULL); 563 } 564 } 565 566 const struct enc_xform * 567 crypto_cipher(const struct crypto_session_params *csp) 568 { 569 570 switch (csp->csp_cipher_alg) { 571 case CRYPTO_AES_CBC: 572 return (&enc_xform_aes_cbc); 573 case CRYPTO_AES_XTS: 574 return (&enc_xform_aes_xts); 575 case CRYPTO_AES_ICM: 576 return (&enc_xform_aes_icm); 577 case CRYPTO_AES_NIST_GCM_16: 578 return (&enc_xform_aes_nist_gcm); 579 case CRYPTO_CAMELLIA_CBC: 580 return (&enc_xform_camellia); 581 case CRYPTO_NULL_CBC: 582 return (&enc_xform_null); 583 case CRYPTO_CHACHA20: 584 return (&enc_xform_chacha20); 585 case CRYPTO_AES_CCM_16: 586 return (&enc_xform_ccm); 587 case CRYPTO_CHACHA20_POLY1305: 588 return (&enc_xform_chacha20_poly1305); 589 case CRYPTO_XCHACHA20_POLY1305: 590 return (&enc_xform_xchacha20_poly1305); 591 default: 592 return (NULL); 593 } 594 } 595 596 static struct cryptocap * 597 crypto_checkdriver(uint32_t hid) 598 { 599 600 return (hid >= crypto_drivers_size ? NULL : crypto_drivers[hid]); 601 } 602 603 /* 604 * Select a driver for a new session that supports the specified 605 * algorithms and, optionally, is constrained according to the flags. 606 */ 607 static struct cryptocap * 608 crypto_select_driver(const struct crypto_session_params *csp, int flags) 609 { 610 struct cryptocap *cap, *best; 611 int best_match, error, hid; 612 613 CRYPTO_DRIVER_ASSERT(); 614 615 best = NULL; 616 for (hid = 0; hid < crypto_drivers_size; hid++) { 617 /* 618 * If there is no driver for this slot, or the driver 619 * is not appropriate (hardware or software based on 620 * match), then skip. 621 */ 622 cap = crypto_drivers[hid]; 623 if (cap == NULL || 624 (cap->cc_flags & flags) == 0) 625 continue; 626 627 error = CRYPTODEV_PROBESESSION(cap->cc_dev, csp); 628 if (error >= 0) 629 continue; 630 631 /* 632 * Use the driver with the highest probe value. 633 * Hardware drivers use a higher probe value than 634 * software. In case of a tie, prefer the driver with 635 * the fewest active sessions. 636 */ 637 if (best == NULL || error > best_match || 638 (error == best_match && 639 cap->cc_sessions < best->cc_sessions)) { 640 best = cap; 641 best_match = error; 642 } 643 } 644 return best; 645 } 646 647 static enum alg_type { 648 ALG_NONE = 0, 649 ALG_CIPHER, 650 ALG_DIGEST, 651 ALG_KEYED_DIGEST, 652 ALG_COMPRESSION, 653 ALG_AEAD 654 } alg_types[] = { 655 [CRYPTO_SHA1_HMAC] = ALG_KEYED_DIGEST, 656 [CRYPTO_RIPEMD160_HMAC] = ALG_KEYED_DIGEST, 657 [CRYPTO_AES_CBC] = ALG_CIPHER, 658 [CRYPTO_SHA1] = ALG_DIGEST, 659 [CRYPTO_NULL_HMAC] = ALG_DIGEST, 660 [CRYPTO_NULL_CBC] = ALG_CIPHER, 661 [CRYPTO_DEFLATE_COMP] = ALG_COMPRESSION, 662 [CRYPTO_SHA2_256_HMAC] = ALG_KEYED_DIGEST, 663 [CRYPTO_SHA2_384_HMAC] = ALG_KEYED_DIGEST, 664 [CRYPTO_SHA2_512_HMAC] = ALG_KEYED_DIGEST, 665 [CRYPTO_CAMELLIA_CBC] = ALG_CIPHER, 666 [CRYPTO_AES_XTS] = ALG_CIPHER, 667 [CRYPTO_AES_ICM] = ALG_CIPHER, 668 [CRYPTO_AES_NIST_GMAC] = ALG_KEYED_DIGEST, 669 [CRYPTO_AES_NIST_GCM_16] = ALG_AEAD, 670 [CRYPTO_BLAKE2B] = ALG_KEYED_DIGEST, 671 [CRYPTO_BLAKE2S] = ALG_KEYED_DIGEST, 672 [CRYPTO_CHACHA20] = ALG_CIPHER, 673 [CRYPTO_SHA2_224_HMAC] = ALG_KEYED_DIGEST, 674 [CRYPTO_RIPEMD160] = ALG_DIGEST, 675 [CRYPTO_SHA2_224] = ALG_DIGEST, 676 [CRYPTO_SHA2_256] = ALG_DIGEST, 677 [CRYPTO_SHA2_384] = ALG_DIGEST, 678 [CRYPTO_SHA2_512] = ALG_DIGEST, 679 [CRYPTO_POLY1305] = ALG_KEYED_DIGEST, 680 [CRYPTO_AES_CCM_CBC_MAC] = ALG_KEYED_DIGEST, 681 [CRYPTO_AES_CCM_16] = ALG_AEAD, 682 [CRYPTO_CHACHA20_POLY1305] = ALG_AEAD, 683 [CRYPTO_XCHACHA20_POLY1305] = ALG_AEAD, 684 }; 685 686 static enum alg_type 687 alg_type(int alg) 688 { 689 690 if (alg < nitems(alg_types)) 691 return (alg_types[alg]); 692 return (ALG_NONE); 693 } 694 695 static bool 696 alg_is_compression(int alg) 697 { 698 699 return (alg_type(alg) == ALG_COMPRESSION); 700 } 701 702 static bool 703 alg_is_cipher(int alg) 704 { 705 706 return (alg_type(alg) == ALG_CIPHER); 707 } 708 709 static bool 710 alg_is_digest(int alg) 711 { 712 713 return (alg_type(alg) == ALG_DIGEST || 714 alg_type(alg) == ALG_KEYED_DIGEST); 715 } 716 717 static bool 718 alg_is_keyed_digest(int alg) 719 { 720 721 return (alg_type(alg) == ALG_KEYED_DIGEST); 722 } 723 724 static bool 725 alg_is_aead(int alg) 726 { 727 728 return (alg_type(alg) == ALG_AEAD); 729 } 730 731 static bool 732 ccm_tag_length_valid(int len) 733 { 734 /* RFC 3610 */ 735 switch (len) { 736 case 4: 737 case 6: 738 case 8: 739 case 10: 740 case 12: 741 case 14: 742 case 16: 743 return (true); 744 default: 745 return (false); 746 } 747 } 748 749 #define SUPPORTED_SES (CSP_F_SEPARATE_OUTPUT | CSP_F_SEPARATE_AAD | CSP_F_ESN) 750 751 /* Various sanity checks on crypto session parameters. */ 752 static bool 753 check_csp(const struct crypto_session_params *csp) 754 { 755 const struct auth_hash *axf; 756 757 /* Mode-independent checks. */ 758 if ((csp->csp_flags & ~(SUPPORTED_SES)) != 0) 759 return (false); 760 if (csp->csp_ivlen < 0 || csp->csp_cipher_klen < 0 || 761 csp->csp_auth_klen < 0 || csp->csp_auth_mlen < 0) 762 return (false); 763 if (csp->csp_auth_key != NULL && csp->csp_auth_klen == 0) 764 return (false); 765 if (csp->csp_cipher_key != NULL && csp->csp_cipher_klen == 0) 766 return (false); 767 768 switch (csp->csp_mode) { 769 case CSP_MODE_COMPRESS: 770 if (!alg_is_compression(csp->csp_cipher_alg)) 771 return (false); 772 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) 773 return (false); 774 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 775 return (false); 776 if (csp->csp_cipher_klen != 0 || csp->csp_ivlen != 0 || 777 csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 778 csp->csp_auth_mlen != 0) 779 return (false); 780 break; 781 case CSP_MODE_CIPHER: 782 if (!alg_is_cipher(csp->csp_cipher_alg)) 783 return (false); 784 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 785 return (false); 786 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 787 if (csp->csp_cipher_klen == 0) 788 return (false); 789 if (csp->csp_ivlen == 0) 790 return (false); 791 } 792 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 793 return (false); 794 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0 || 795 csp->csp_auth_mlen != 0) 796 return (false); 797 break; 798 case CSP_MODE_DIGEST: 799 if (csp->csp_cipher_alg != 0 || csp->csp_cipher_klen != 0) 800 return (false); 801 802 if (csp->csp_flags & CSP_F_SEPARATE_AAD) 803 return (false); 804 805 /* IV is optional for digests (e.g. GMAC). */ 806 switch (csp->csp_auth_alg) { 807 case CRYPTO_AES_CCM_CBC_MAC: 808 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 809 return (false); 810 break; 811 case CRYPTO_AES_NIST_GMAC: 812 if (csp->csp_ivlen != AES_GCM_IV_LEN) 813 return (false); 814 break; 815 default: 816 if (csp->csp_ivlen != 0) 817 return (false); 818 break; 819 } 820 821 if (!alg_is_digest(csp->csp_auth_alg)) 822 return (false); 823 824 /* Key is optional for BLAKE2 digests. */ 825 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 826 csp->csp_auth_alg == CRYPTO_BLAKE2S) 827 ; 828 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 829 if (csp->csp_auth_klen == 0) 830 return (false); 831 } else { 832 if (csp->csp_auth_klen != 0) 833 return (false); 834 } 835 if (csp->csp_auth_mlen != 0) { 836 axf = crypto_auth_hash(csp); 837 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 838 return (false); 839 840 if (csp->csp_auth_alg == CRYPTO_AES_CCM_CBC_MAC && 841 !ccm_tag_length_valid(csp->csp_auth_mlen)) 842 return (false); 843 } 844 break; 845 case CSP_MODE_AEAD: 846 if (!alg_is_aead(csp->csp_cipher_alg)) 847 return (false); 848 if (csp->csp_cipher_klen == 0) 849 return (false); 850 if (csp->csp_ivlen == 0 || 851 csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 852 return (false); 853 if (csp->csp_auth_alg != 0 || csp->csp_auth_klen != 0) 854 return (false); 855 856 switch (csp->csp_cipher_alg) { 857 case CRYPTO_AES_CCM_16: 858 if (csp->csp_auth_mlen != 0 && 859 !ccm_tag_length_valid(csp->csp_auth_mlen)) 860 return (false); 861 862 if (csp->csp_ivlen < 7 || csp->csp_ivlen > 13) 863 return (false); 864 break; 865 case CRYPTO_AES_NIST_GCM_16: 866 if (csp->csp_auth_mlen > AES_GMAC_HASH_LEN) 867 return (false); 868 869 if (csp->csp_ivlen != AES_GCM_IV_LEN) 870 return (false); 871 break; 872 case CRYPTO_CHACHA20_POLY1305: 873 if (csp->csp_ivlen != 8 && csp->csp_ivlen != 12) 874 return (false); 875 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 876 return (false); 877 break; 878 case CRYPTO_XCHACHA20_POLY1305: 879 if (csp->csp_ivlen != XCHACHA20_POLY1305_IV_LEN) 880 return (false); 881 if (csp->csp_auth_mlen > POLY1305_HASH_LEN) 882 return (false); 883 break; 884 } 885 break; 886 case CSP_MODE_ETA: 887 if (!alg_is_cipher(csp->csp_cipher_alg)) 888 return (false); 889 if (csp->csp_cipher_alg != CRYPTO_NULL_CBC) { 890 if (csp->csp_cipher_klen == 0) 891 return (false); 892 if (csp->csp_ivlen == 0) 893 return (false); 894 } 895 if (csp->csp_ivlen >= EALG_MAX_BLOCK_LEN) 896 return (false); 897 if (!alg_is_digest(csp->csp_auth_alg)) 898 return (false); 899 900 /* Key is optional for BLAKE2 digests. */ 901 if (csp->csp_auth_alg == CRYPTO_BLAKE2B || 902 csp->csp_auth_alg == CRYPTO_BLAKE2S) 903 ; 904 else if (alg_is_keyed_digest(csp->csp_auth_alg)) { 905 if (csp->csp_auth_klen == 0) 906 return (false); 907 } else { 908 if (csp->csp_auth_klen != 0) 909 return (false); 910 } 911 if (csp->csp_auth_mlen != 0) { 912 axf = crypto_auth_hash(csp); 913 if (axf == NULL || csp->csp_auth_mlen > axf->hashsize) 914 return (false); 915 } 916 break; 917 default: 918 return (false); 919 } 920 921 return (true); 922 } 923 924 /* 925 * Delete a session after it has been detached from its driver. 926 */ 927 static void 928 crypto_deletesession(crypto_session_t cses) 929 { 930 struct cryptocap *cap; 931 932 cap = cses->cap; 933 934 zfree(cses, M_CRYPTO_DATA); 935 936 CRYPTO_DRIVER_LOCK(); 937 cap->cc_sessions--; 938 if (cap->cc_sessions == 0 && cap->cc_flags & CRYPTOCAP_F_CLEANUP) 939 wakeup(cap); 940 CRYPTO_DRIVER_UNLOCK(); 941 cap_rele(cap); 942 } 943 944 /* 945 * Create a new session. The crid argument specifies a crypto 946 * driver to use or constraints on a driver to select (hardware 947 * only, software only, either). Whatever driver is selected 948 * must be capable of the requested crypto algorithms. 949 */ 950 int 951 crypto_newsession(crypto_session_t *cses, 952 const struct crypto_session_params *csp, int crid) 953 { 954 static uint64_t sessid = 0; 955 crypto_session_t res; 956 struct cryptocap *cap; 957 int err; 958 959 if (!check_csp(csp)) 960 return (EINVAL); 961 962 res = NULL; 963 964 CRYPTO_DRIVER_LOCK(); 965 if ((crid & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 966 /* 967 * Use specified driver; verify it is capable. 968 */ 969 cap = crypto_checkdriver(crid); 970 if (cap != NULL && CRYPTODEV_PROBESESSION(cap->cc_dev, csp) > 0) 971 cap = NULL; 972 } else { 973 /* 974 * No requested driver; select based on crid flags. 975 */ 976 cap = crypto_select_driver(csp, crid); 977 } 978 if (cap == NULL) { 979 CRYPTO_DRIVER_UNLOCK(); 980 CRYPTDEB("no driver"); 981 return (EOPNOTSUPP); 982 } 983 cap_ref(cap); 984 cap->cc_sessions++; 985 CRYPTO_DRIVER_UNLOCK(); 986 987 /* Allocate a single block for the generic session and driver softc. */ 988 res = malloc(sizeof(*res) + cap->cc_session_size, M_CRYPTO_DATA, 989 M_WAITOK | M_ZERO); 990 res->cap = cap; 991 res->csp = *csp; 992 res->id = atomic_fetchadd_64(&sessid, 1); 993 994 /* Call the driver initialization routine. */ 995 err = CRYPTODEV_NEWSESSION(cap->cc_dev, res, csp); 996 if (err != 0) { 997 CRYPTDEB("dev newsession failed: %d", err); 998 crypto_deletesession(res); 999 return (err); 1000 } 1001 1002 *cses = res; 1003 return (0); 1004 } 1005 1006 /* 1007 * Delete an existing session (or a reserved session on an unregistered 1008 * driver). 1009 */ 1010 void 1011 crypto_freesession(crypto_session_t cses) 1012 { 1013 struct cryptocap *cap; 1014 1015 if (cses == NULL) 1016 return; 1017 1018 cap = cses->cap; 1019 1020 /* Call the driver cleanup routine, if available. */ 1021 CRYPTODEV_FREESESSION(cap->cc_dev, cses); 1022 1023 crypto_deletesession(cses); 1024 } 1025 1026 /* 1027 * Return a new driver id. Registers a driver with the system so that 1028 * it can be probed by subsequent sessions. 1029 */ 1030 int32_t 1031 crypto_get_driverid(device_t dev, size_t sessionsize, int flags) 1032 { 1033 struct cryptocap *cap, **newdrv; 1034 int i; 1035 1036 if ((flags & (CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE)) == 0) { 1037 device_printf(dev, 1038 "no flags specified when registering driver\n"); 1039 return -1; 1040 } 1041 1042 cap = malloc(sizeof(*cap), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1043 cap->cc_dev = dev; 1044 cap->cc_session_size = sessionsize; 1045 cap->cc_flags = flags; 1046 refcount_init(&cap->cc_refs, 1); 1047 1048 CRYPTO_DRIVER_LOCK(); 1049 for (;;) { 1050 for (i = 0; i < crypto_drivers_size; i++) { 1051 if (crypto_drivers[i] == NULL) 1052 break; 1053 } 1054 1055 if (i < crypto_drivers_size) 1056 break; 1057 1058 /* Out of entries, allocate some more. */ 1059 1060 if (2 * crypto_drivers_size <= crypto_drivers_size) { 1061 CRYPTO_DRIVER_UNLOCK(); 1062 printf("crypto: driver count wraparound!\n"); 1063 cap_rele(cap); 1064 return (-1); 1065 } 1066 CRYPTO_DRIVER_UNLOCK(); 1067 1068 newdrv = malloc(2 * crypto_drivers_size * 1069 sizeof(*crypto_drivers), M_CRYPTO_DATA, M_WAITOK | M_ZERO); 1070 1071 CRYPTO_DRIVER_LOCK(); 1072 memcpy(newdrv, crypto_drivers, 1073 crypto_drivers_size * sizeof(*crypto_drivers)); 1074 1075 crypto_drivers_size *= 2; 1076 1077 free(crypto_drivers, M_CRYPTO_DATA); 1078 crypto_drivers = newdrv; 1079 } 1080 1081 cap->cc_hid = i; 1082 crypto_drivers[i] = cap; 1083 CRYPTO_DRIVER_UNLOCK(); 1084 1085 if (bootverbose) 1086 printf("crypto: assign %s driver id %u, flags 0x%x\n", 1087 device_get_nameunit(dev), i, flags); 1088 1089 return i; 1090 } 1091 1092 /* 1093 * Lookup a driver by name. We match against the full device 1094 * name and unit, and against just the name. The latter gives 1095 * us a simple widlcarding by device name. On success return the 1096 * driver/hardware identifier; otherwise return -1. 1097 */ 1098 int 1099 crypto_find_driver(const char *match) 1100 { 1101 struct cryptocap *cap; 1102 int i, len = strlen(match); 1103 1104 CRYPTO_DRIVER_LOCK(); 1105 for (i = 0; i < crypto_drivers_size; i++) { 1106 if (crypto_drivers[i] == NULL) 1107 continue; 1108 cap = crypto_drivers[i]; 1109 if (strncmp(match, device_get_nameunit(cap->cc_dev), len) == 0 || 1110 strncmp(match, device_get_name(cap->cc_dev), len) == 0) { 1111 CRYPTO_DRIVER_UNLOCK(); 1112 return (i); 1113 } 1114 } 1115 CRYPTO_DRIVER_UNLOCK(); 1116 return (-1); 1117 } 1118 1119 /* 1120 * Return the device_t for the specified driver or NULL 1121 * if the driver identifier is invalid. 1122 */ 1123 device_t 1124 crypto_find_device_byhid(int hid) 1125 { 1126 struct cryptocap *cap; 1127 device_t dev; 1128 1129 dev = NULL; 1130 CRYPTO_DRIVER_LOCK(); 1131 cap = crypto_checkdriver(hid); 1132 if (cap != NULL) 1133 dev = cap->cc_dev; 1134 CRYPTO_DRIVER_UNLOCK(); 1135 return (dev); 1136 } 1137 1138 /* 1139 * Return the device/driver capabilities. 1140 */ 1141 int 1142 crypto_getcaps(int hid) 1143 { 1144 struct cryptocap *cap; 1145 int flags; 1146 1147 flags = 0; 1148 CRYPTO_DRIVER_LOCK(); 1149 cap = crypto_checkdriver(hid); 1150 if (cap != NULL) 1151 flags = cap->cc_flags; 1152 CRYPTO_DRIVER_UNLOCK(); 1153 return (flags); 1154 } 1155 1156 /* 1157 * Unregister all algorithms associated with a crypto driver. 1158 * If there are pending sessions using it, leave enough information 1159 * around so that subsequent calls using those sessions will 1160 * correctly detect the driver has been unregistered and reroute 1161 * requests. 1162 */ 1163 int 1164 crypto_unregister_all(uint32_t driverid) 1165 { 1166 struct cryptocap *cap; 1167 1168 CRYPTO_DRIVER_LOCK(); 1169 cap = crypto_checkdriver(driverid); 1170 if (cap == NULL) { 1171 CRYPTO_DRIVER_UNLOCK(); 1172 return (EINVAL); 1173 } 1174 1175 cap->cc_flags |= CRYPTOCAP_F_CLEANUP; 1176 crypto_drivers[driverid] = NULL; 1177 1178 /* 1179 * XXX: This doesn't do anything to kick sessions that 1180 * have no pending operations. 1181 */ 1182 while (cap->cc_sessions != 0) 1183 mtx_sleep(cap, &crypto_drivers_mtx, 0, "cryunreg", 0); 1184 CRYPTO_DRIVER_UNLOCK(); 1185 cap_rele(cap); 1186 1187 return (0); 1188 } 1189 1190 /* 1191 * Clear blockage on a driver. The what parameter indicates whether 1192 * the driver is now ready for cryptop's and/or cryptokop's. 1193 */ 1194 int 1195 crypto_unblock(uint32_t driverid, int what) 1196 { 1197 struct cryptocap *cap; 1198 int err; 1199 1200 CRYPTO_Q_LOCK(); 1201 cap = crypto_checkdriver(driverid); 1202 if (cap != NULL) { 1203 if (what & CRYPTO_SYMQ) 1204 cap->cc_qblocked = 0; 1205 if (crp_sleep) 1206 wakeup_one(&crp_q); 1207 err = 0; 1208 } else 1209 err = EINVAL; 1210 CRYPTO_Q_UNLOCK(); 1211 1212 return err; 1213 } 1214 1215 size_t 1216 crypto_buffer_len(struct crypto_buffer *cb) 1217 { 1218 switch (cb->cb_type) { 1219 case CRYPTO_BUF_CONTIG: 1220 return (cb->cb_buf_len); 1221 case CRYPTO_BUF_MBUF: 1222 if (cb->cb_mbuf->m_flags & M_PKTHDR) 1223 return (cb->cb_mbuf->m_pkthdr.len); 1224 return (m_length(cb->cb_mbuf, NULL)); 1225 case CRYPTO_BUF_SINGLE_MBUF: 1226 return (cb->cb_mbuf->m_len); 1227 case CRYPTO_BUF_VMPAGE: 1228 return (cb->cb_vm_page_len); 1229 case CRYPTO_BUF_UIO: 1230 return (cb->cb_uio->uio_resid); 1231 default: 1232 return (0); 1233 } 1234 } 1235 1236 #ifdef INVARIANTS 1237 /* Various sanity checks on crypto requests. */ 1238 static void 1239 cb_sanity(struct crypto_buffer *cb, const char *name) 1240 { 1241 KASSERT(cb->cb_type > CRYPTO_BUF_NONE && cb->cb_type <= CRYPTO_BUF_LAST, 1242 ("incoming crp with invalid %s buffer type", name)); 1243 switch (cb->cb_type) { 1244 case CRYPTO_BUF_CONTIG: 1245 KASSERT(cb->cb_buf_len >= 0, 1246 ("incoming crp with -ve %s buffer length", name)); 1247 break; 1248 case CRYPTO_BUF_VMPAGE: 1249 KASSERT(CRYPTO_HAS_VMPAGE, 1250 ("incoming crp uses dmap on supported arch")); 1251 KASSERT(cb->cb_vm_page_len >= 0, 1252 ("incoming crp with -ve %s buffer length", name)); 1253 KASSERT(cb->cb_vm_page_offset >= 0, 1254 ("incoming crp with -ve %s buffer offset", name)); 1255 KASSERT(cb->cb_vm_page_offset < PAGE_SIZE, 1256 ("incoming crp with %s buffer offset greater than page size" 1257 , name)); 1258 break; 1259 default: 1260 break; 1261 } 1262 } 1263 1264 static void 1265 crp_sanity(struct cryptop *crp) 1266 { 1267 struct crypto_session_params *csp; 1268 struct crypto_buffer *out; 1269 size_t ilen, len, olen; 1270 1271 KASSERT(crp->crp_session != NULL, ("incoming crp without a session")); 1272 KASSERT(crp->crp_obuf.cb_type >= CRYPTO_BUF_NONE && 1273 crp->crp_obuf.cb_type <= CRYPTO_BUF_LAST, 1274 ("incoming crp with invalid output buffer type")); 1275 KASSERT(crp->crp_etype == 0, ("incoming crp with error")); 1276 KASSERT(!(crp->crp_flags & CRYPTO_F_DONE), 1277 ("incoming crp already done")); 1278 1279 csp = &crp->crp_session->csp; 1280 cb_sanity(&crp->crp_buf, "input"); 1281 ilen = crypto_buffer_len(&crp->crp_buf); 1282 olen = ilen; 1283 out = NULL; 1284 if (csp->csp_flags & CSP_F_SEPARATE_OUTPUT) { 1285 if (crp->crp_obuf.cb_type != CRYPTO_BUF_NONE) { 1286 cb_sanity(&crp->crp_obuf, "output"); 1287 out = &crp->crp_obuf; 1288 olen = crypto_buffer_len(out); 1289 } 1290 } else 1291 KASSERT(crp->crp_obuf.cb_type == CRYPTO_BUF_NONE, 1292 ("incoming crp with separate output buffer " 1293 "but no session support")); 1294 1295 switch (csp->csp_mode) { 1296 case CSP_MODE_COMPRESS: 1297 KASSERT(crp->crp_op == CRYPTO_OP_COMPRESS || 1298 crp->crp_op == CRYPTO_OP_DECOMPRESS, 1299 ("invalid compression op %x", crp->crp_op)); 1300 break; 1301 case CSP_MODE_CIPHER: 1302 KASSERT(crp->crp_op == CRYPTO_OP_ENCRYPT || 1303 crp->crp_op == CRYPTO_OP_DECRYPT, 1304 ("invalid cipher op %x", crp->crp_op)); 1305 break; 1306 case CSP_MODE_DIGEST: 1307 KASSERT(crp->crp_op == CRYPTO_OP_COMPUTE_DIGEST || 1308 crp->crp_op == CRYPTO_OP_VERIFY_DIGEST, 1309 ("invalid digest op %x", crp->crp_op)); 1310 break; 1311 case CSP_MODE_AEAD: 1312 KASSERT(crp->crp_op == 1313 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1314 crp->crp_op == 1315 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1316 ("invalid AEAD op %x", crp->crp_op)); 1317 KASSERT(crp->crp_flags & CRYPTO_F_IV_SEPARATE, 1318 ("AEAD without a separate IV")); 1319 break; 1320 case CSP_MODE_ETA: 1321 KASSERT(crp->crp_op == 1322 (CRYPTO_OP_ENCRYPT | CRYPTO_OP_COMPUTE_DIGEST) || 1323 crp->crp_op == 1324 (CRYPTO_OP_DECRYPT | CRYPTO_OP_VERIFY_DIGEST), 1325 ("invalid ETA op %x", crp->crp_op)); 1326 break; 1327 } 1328 if (csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1329 if (crp->crp_aad == NULL) { 1330 KASSERT(crp->crp_aad_start == 0 || 1331 crp->crp_aad_start < ilen, 1332 ("invalid AAD start")); 1333 KASSERT(crp->crp_aad_length != 0 || 1334 crp->crp_aad_start == 0, 1335 ("AAD with zero length and non-zero start")); 1336 KASSERT(crp->crp_aad_length == 0 || 1337 crp->crp_aad_start + crp->crp_aad_length <= ilen, 1338 ("AAD outside input length")); 1339 } else { 1340 KASSERT(csp->csp_flags & CSP_F_SEPARATE_AAD, 1341 ("session doesn't support separate AAD buffer")); 1342 KASSERT(crp->crp_aad_start == 0, 1343 ("separate AAD buffer with non-zero AAD start")); 1344 KASSERT(crp->crp_aad_length != 0, 1345 ("separate AAD buffer with zero length")); 1346 } 1347 } else { 1348 KASSERT(crp->crp_aad == NULL && crp->crp_aad_start == 0 && 1349 crp->crp_aad_length == 0, 1350 ("AAD region in request not supporting AAD")); 1351 } 1352 if (csp->csp_ivlen == 0) { 1353 KASSERT((crp->crp_flags & CRYPTO_F_IV_SEPARATE) == 0, 1354 ("IV_SEPARATE set when IV isn't used")); 1355 KASSERT(crp->crp_iv_start == 0, 1356 ("crp_iv_start set when IV isn't used")); 1357 } else if (crp->crp_flags & CRYPTO_F_IV_SEPARATE) { 1358 KASSERT(crp->crp_iv_start == 0, 1359 ("IV_SEPARATE used with non-zero IV start")); 1360 } else { 1361 KASSERT(crp->crp_iv_start < ilen, 1362 ("invalid IV start")); 1363 KASSERT(crp->crp_iv_start + csp->csp_ivlen <= ilen, 1364 ("IV outside buffer length")); 1365 } 1366 /* XXX: payload_start of 0 should always be < ilen? */ 1367 KASSERT(crp->crp_payload_start == 0 || 1368 crp->crp_payload_start < ilen, 1369 ("invalid payload start")); 1370 KASSERT(crp->crp_payload_start + crp->crp_payload_length <= 1371 ilen, ("payload outside input buffer")); 1372 if (out == NULL) { 1373 KASSERT(crp->crp_payload_output_start == 0, 1374 ("payload output start non-zero without output buffer")); 1375 } else if (csp->csp_mode == CSP_MODE_DIGEST) { 1376 KASSERT(!(crp->crp_op & CRYPTO_OP_VERIFY_DIGEST), 1377 ("digest verify with separate output buffer")); 1378 KASSERT(crp->crp_payload_output_start == 0, 1379 ("digest operation with non-zero payload output start")); 1380 } else { 1381 KASSERT(crp->crp_payload_output_start == 0 || 1382 crp->crp_payload_output_start < olen, 1383 ("invalid payload output start")); 1384 KASSERT(crp->crp_payload_output_start + 1385 crp->crp_payload_length <= olen, 1386 ("payload outside output buffer")); 1387 } 1388 if (csp->csp_mode == CSP_MODE_DIGEST || 1389 csp->csp_mode == CSP_MODE_AEAD || csp->csp_mode == CSP_MODE_ETA) { 1390 if (crp->crp_op & CRYPTO_OP_VERIFY_DIGEST) 1391 len = ilen; 1392 else 1393 len = olen; 1394 KASSERT(crp->crp_digest_start == 0 || 1395 crp->crp_digest_start < len, 1396 ("invalid digest start")); 1397 /* XXX: For the mlen == 0 case this check isn't perfect. */ 1398 KASSERT(crp->crp_digest_start + csp->csp_auth_mlen <= len, 1399 ("digest outside buffer")); 1400 } else { 1401 KASSERT(crp->crp_digest_start == 0, 1402 ("non-zero digest start for request without a digest")); 1403 } 1404 if (csp->csp_cipher_klen != 0) 1405 KASSERT(csp->csp_cipher_key != NULL || 1406 crp->crp_cipher_key != NULL, 1407 ("cipher request without a key")); 1408 if (csp->csp_auth_klen != 0) 1409 KASSERT(csp->csp_auth_key != NULL || crp->crp_auth_key != NULL, 1410 ("auth request without a key")); 1411 KASSERT(crp->crp_callback != NULL, ("incoming crp without callback")); 1412 } 1413 #endif 1414 1415 static int 1416 crypto_dispatch_one(struct cryptop *crp, int hint) 1417 { 1418 struct cryptocap *cap; 1419 int result; 1420 1421 #ifdef INVARIANTS 1422 crp_sanity(crp); 1423 #endif 1424 CRYPTOSTAT_INC(cs_ops); 1425 1426 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1427 1428 /* 1429 * Caller marked the request to be processed immediately; dispatch it 1430 * directly to the driver unless the driver is currently blocked, in 1431 * which case it is queued for deferred dispatch. 1432 */ 1433 cap = crp->crp_session->cap; 1434 if (!atomic_load_int(&cap->cc_qblocked)) { 1435 result = crypto_invoke(cap, crp, hint); 1436 if (result != ERESTART) 1437 return (result); 1438 1439 /* 1440 * The driver ran out of resources, put the request on the 1441 * queue. 1442 */ 1443 } 1444 crypto_batch_enqueue(crp); 1445 return (0); 1446 } 1447 1448 int 1449 crypto_dispatch(struct cryptop *crp) 1450 { 1451 return (crypto_dispatch_one(crp, 0)); 1452 } 1453 1454 int 1455 crypto_dispatch_async(struct cryptop *crp, int flags) 1456 { 1457 struct crypto_ret_worker *ret_worker; 1458 1459 if (!CRYPTO_SESS_SYNC(crp->crp_session)) { 1460 /* 1461 * The driver issues completions asynchonously, don't bother 1462 * deferring dispatch to a worker thread. 1463 */ 1464 return (crypto_dispatch(crp)); 1465 } 1466 1467 #ifdef INVARIANTS 1468 crp_sanity(crp); 1469 #endif 1470 CRYPTOSTAT_INC(cs_ops); 1471 1472 crp->crp_retw_id = crp->crp_session->id % crypto_workers_num; 1473 if ((flags & CRYPTO_ASYNC_ORDERED) != 0) { 1474 crp->crp_flags |= CRYPTO_F_ASYNC_ORDERED; 1475 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1476 CRYPTO_RETW_LOCK(ret_worker); 1477 crp->crp_seq = ret_worker->reorder_ops++; 1478 CRYPTO_RETW_UNLOCK(ret_worker); 1479 } 1480 TASK_INIT(&crp->crp_task, 0, crypto_task_invoke, crp); 1481 taskqueue_enqueue(crypto_tq, &crp->crp_task); 1482 return (0); 1483 } 1484 1485 void 1486 crypto_dispatch_batch(struct cryptopq *crpq, int flags) 1487 { 1488 struct cryptop *crp; 1489 int hint; 1490 1491 while ((crp = TAILQ_FIRST(crpq)) != NULL) { 1492 hint = TAILQ_NEXT(crp, crp_next) != NULL ? CRYPTO_HINT_MORE : 0; 1493 TAILQ_REMOVE(crpq, crp, crp_next); 1494 if (crypto_dispatch_one(crp, hint) != 0) 1495 crypto_batch_enqueue(crp); 1496 } 1497 } 1498 1499 static void 1500 crypto_batch_enqueue(struct cryptop *crp) 1501 { 1502 1503 CRYPTO_Q_LOCK(); 1504 TAILQ_INSERT_TAIL(&crp_q, crp, crp_next); 1505 if (crp_sleep) 1506 wakeup_one(&crp_q); 1507 CRYPTO_Q_UNLOCK(); 1508 } 1509 1510 static void 1511 crypto_task_invoke(void *ctx, int pending) 1512 { 1513 struct cryptocap *cap; 1514 struct cryptop *crp; 1515 int result; 1516 1517 crp = (struct cryptop *)ctx; 1518 cap = crp->crp_session->cap; 1519 result = crypto_invoke(cap, crp, 0); 1520 if (result == ERESTART) 1521 crypto_batch_enqueue(crp); 1522 } 1523 1524 /* 1525 * Dispatch a crypto request to the appropriate crypto devices. 1526 */ 1527 static int 1528 crypto_invoke(struct cryptocap *cap, struct cryptop *crp, int hint) 1529 { 1530 int error; 1531 1532 KASSERT(crp != NULL, ("%s: crp == NULL", __func__)); 1533 KASSERT(crp->crp_callback != NULL, 1534 ("%s: crp->crp_callback == NULL", __func__)); 1535 KASSERT(crp->crp_session != NULL, 1536 ("%s: crp->crp_session == NULL", __func__)); 1537 1538 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1539 struct crypto_session_params csp; 1540 crypto_session_t nses; 1541 1542 /* 1543 * Driver has unregistered; migrate the session and return 1544 * an error to the caller so they'll resubmit the op. 1545 * 1546 * XXX: What if there are more already queued requests for this 1547 * session? 1548 * 1549 * XXX: Real solution is to make sessions refcounted 1550 * and force callers to hold a reference when 1551 * assigning to crp_session. Could maybe change 1552 * crypto_getreq to accept a session pointer to make 1553 * that work. Alternatively, we could abandon the 1554 * notion of rewriting crp_session in requests forcing 1555 * the caller to deal with allocating a new session. 1556 * Perhaps provide a method to allow a crp's session to 1557 * be swapped that callers could use. 1558 */ 1559 csp = crp->crp_session->csp; 1560 crypto_freesession(crp->crp_session); 1561 1562 /* 1563 * XXX: Key pointers may no longer be valid. If we 1564 * really want to support this we need to define the 1565 * KPI such that 'csp' is required to be valid for the 1566 * duration of a session by the caller perhaps. 1567 * 1568 * XXX: If the keys have been changed this will reuse 1569 * the old keys. This probably suggests making 1570 * rekeying more explicit and updating the key 1571 * pointers in 'csp' when the keys change. 1572 */ 1573 if (crypto_newsession(&nses, &csp, 1574 CRYPTOCAP_F_HARDWARE | CRYPTOCAP_F_SOFTWARE) == 0) 1575 crp->crp_session = nses; 1576 1577 crp->crp_etype = EAGAIN; 1578 crypto_done(crp); 1579 error = 0; 1580 } else { 1581 /* 1582 * Invoke the driver to process the request. Errors are 1583 * signaled by setting crp_etype before invoking the completion 1584 * callback. 1585 */ 1586 error = CRYPTODEV_PROCESS(cap->cc_dev, crp, hint); 1587 KASSERT(error == 0 || error == ERESTART, 1588 ("%s: invalid error %d from CRYPTODEV_PROCESS", 1589 __func__, error)); 1590 } 1591 return (error); 1592 } 1593 1594 void 1595 crypto_destroyreq(struct cryptop *crp) 1596 { 1597 #ifdef DIAGNOSTIC 1598 { 1599 struct cryptop *crp2; 1600 struct crypto_ret_worker *ret_worker; 1601 1602 if (!crypto_destroyreq_check) 1603 return; 1604 1605 CRYPTO_Q_LOCK(); 1606 TAILQ_FOREACH(crp2, &crp_q, crp_next) { 1607 KASSERT(crp2 != crp, 1608 ("Freeing cryptop from the crypto queue (%p).", 1609 crp)); 1610 } 1611 CRYPTO_Q_UNLOCK(); 1612 1613 FOREACH_CRYPTO_RETW(ret_worker) { 1614 CRYPTO_RETW_LOCK(ret_worker); 1615 TAILQ_FOREACH(crp2, &ret_worker->crp_ret_q, crp_next) { 1616 KASSERT(crp2 != crp, 1617 ("Freeing cryptop from the return queue (%p).", 1618 crp)); 1619 } 1620 CRYPTO_RETW_UNLOCK(ret_worker); 1621 } 1622 } 1623 #endif 1624 } 1625 1626 void 1627 crypto_freereq(struct cryptop *crp) 1628 { 1629 if (crp == NULL) 1630 return; 1631 1632 crypto_destroyreq(crp); 1633 uma_zfree(cryptop_zone, crp); 1634 } 1635 1636 void 1637 crypto_initreq(struct cryptop *crp, crypto_session_t cses) 1638 { 1639 memset(crp, 0, sizeof(*crp)); 1640 crp->crp_session = cses; 1641 } 1642 1643 struct cryptop * 1644 crypto_getreq(crypto_session_t cses, int how) 1645 { 1646 struct cryptop *crp; 1647 1648 MPASS(how == M_WAITOK || how == M_NOWAIT); 1649 crp = uma_zalloc(cryptop_zone, how); 1650 if (crp != NULL) 1651 crypto_initreq(crp, cses); 1652 return (crp); 1653 } 1654 1655 /* 1656 * Clone a crypto request, but associate it with the specified session 1657 * rather than inheriting the session from the original request. The 1658 * fields describing the request buffers are copied, but not the 1659 * opaque field or callback function. 1660 */ 1661 struct cryptop * 1662 crypto_clonereq(struct cryptop *crp, crypto_session_t cses, int how) 1663 { 1664 struct cryptop *new; 1665 1666 MPASS((crp->crp_flags & CRYPTO_F_DONE) == 0); 1667 new = crypto_getreq(cses, how); 1668 if (new == NULL) 1669 return (NULL); 1670 1671 memcpy(&new->crp_startcopy, &crp->crp_startcopy, 1672 __rangeof(struct cryptop, crp_startcopy, crp_endcopy)); 1673 return (new); 1674 } 1675 1676 /* 1677 * Invoke the callback on behalf of the driver. 1678 */ 1679 void 1680 crypto_done(struct cryptop *crp) 1681 { 1682 KASSERT((crp->crp_flags & CRYPTO_F_DONE) == 0, 1683 ("crypto_done: op already done, flags 0x%x", crp->crp_flags)); 1684 crp->crp_flags |= CRYPTO_F_DONE; 1685 if (crp->crp_etype != 0) 1686 CRYPTOSTAT_INC(cs_errs); 1687 1688 /* 1689 * CBIMM means unconditionally do the callback immediately; 1690 * CBIFSYNC means do the callback immediately only if the 1691 * operation was done synchronously. Both are used to avoid 1692 * doing extraneous context switches; the latter is mostly 1693 * used with the software crypto driver. 1694 */ 1695 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) == 0 && 1696 ((crp->crp_flags & CRYPTO_F_CBIMM) != 0 || 1697 ((crp->crp_flags & CRYPTO_F_CBIFSYNC) != 0 && 1698 CRYPTO_SESS_SYNC(crp->crp_session)))) { 1699 /* 1700 * Do the callback directly. This is ok when the 1701 * callback routine does very little (e.g. the 1702 * /dev/crypto callback method just does a wakeup). 1703 */ 1704 crp->crp_callback(crp); 1705 } else { 1706 struct crypto_ret_worker *ret_worker; 1707 bool wake; 1708 1709 ret_worker = CRYPTO_RETW(crp->crp_retw_id); 1710 1711 /* 1712 * Normal case; queue the callback for the thread. 1713 */ 1714 CRYPTO_RETW_LOCK(ret_worker); 1715 if ((crp->crp_flags & CRYPTO_F_ASYNC_ORDERED) != 0) { 1716 struct cryptop *tmp; 1717 1718 TAILQ_FOREACH_REVERSE(tmp, 1719 &ret_worker->crp_ordered_ret_q, cryptop_q, 1720 crp_next) { 1721 if (CRYPTO_SEQ_GT(crp->crp_seq, tmp->crp_seq)) { 1722 TAILQ_INSERT_AFTER( 1723 &ret_worker->crp_ordered_ret_q, tmp, 1724 crp, crp_next); 1725 break; 1726 } 1727 } 1728 if (tmp == NULL) { 1729 TAILQ_INSERT_HEAD( 1730 &ret_worker->crp_ordered_ret_q, crp, 1731 crp_next); 1732 } 1733 1734 wake = crp->crp_seq == ret_worker->reorder_cur_seq; 1735 } else { 1736 wake = TAILQ_EMPTY(&ret_worker->crp_ret_q); 1737 TAILQ_INSERT_TAIL(&ret_worker->crp_ret_q, crp, 1738 crp_next); 1739 } 1740 1741 if (wake) 1742 wakeup_one(&ret_worker->crp_ret_q); /* shared wait channel */ 1743 CRYPTO_RETW_UNLOCK(ret_worker); 1744 } 1745 } 1746 1747 /* 1748 * Terminate a thread at module unload. The process that 1749 * initiated this is waiting for us to signal that we're gone; 1750 * wake it up and exit. We use the driver table lock to insure 1751 * we don't do the wakeup before they're waiting. There is no 1752 * race here because the waiter sleeps on the proc lock for the 1753 * thread so it gets notified at the right time because of an 1754 * extra wakeup that's done in exit1(). 1755 */ 1756 static void 1757 crypto_finis(void *chan) 1758 { 1759 CRYPTO_DRIVER_LOCK(); 1760 wakeup_one(chan); 1761 CRYPTO_DRIVER_UNLOCK(); 1762 kthread_exit(); 1763 } 1764 1765 /* 1766 * Crypto thread, dispatches crypto requests. 1767 */ 1768 static void 1769 crypto_dispatch_thread(void *arg __unused) 1770 { 1771 struct cryptop *crp, *submit; 1772 struct cryptocap *cap; 1773 int result, hint; 1774 1775 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__) 1776 fpu_kern_thread(FPU_KERN_NORMAL); 1777 #endif 1778 1779 CRYPTO_Q_LOCK(); 1780 for (;;) { 1781 /* 1782 * Find the first element in the queue that can be 1783 * processed and look-ahead to see if multiple ops 1784 * are ready for the same driver. 1785 */ 1786 submit = NULL; 1787 hint = 0; 1788 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1789 cap = crp->crp_session->cap; 1790 /* 1791 * Driver cannot disappeared when there is an active 1792 * session. 1793 */ 1794 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1795 __func__, __LINE__)); 1796 if (cap->cc_flags & CRYPTOCAP_F_CLEANUP) { 1797 /* Op needs to be migrated, process it. */ 1798 if (submit == NULL) 1799 submit = crp; 1800 break; 1801 } 1802 if (!cap->cc_qblocked) { 1803 if (submit != NULL) { 1804 /* 1805 * We stop on finding another op, 1806 * regardless whether its for the same 1807 * driver or not. We could keep 1808 * searching the queue but it might be 1809 * better to just use a per-driver 1810 * queue instead. 1811 */ 1812 if (submit->crp_session->cap == cap) 1813 hint = CRYPTO_HINT_MORE; 1814 } else { 1815 submit = crp; 1816 } 1817 break; 1818 } 1819 } 1820 if (submit != NULL) { 1821 TAILQ_REMOVE(&crp_q, submit, crp_next); 1822 cap = submit->crp_session->cap; 1823 KASSERT(cap != NULL, ("%s:%u Driver disappeared.", 1824 __func__, __LINE__)); 1825 CRYPTO_Q_UNLOCK(); 1826 result = crypto_invoke(cap, submit, hint); 1827 CRYPTO_Q_LOCK(); 1828 if (result == ERESTART) { 1829 /* 1830 * The driver ran out of resources, mark the 1831 * driver ``blocked'' for cryptop's and put 1832 * the request back in the queue. It would 1833 * best to put the request back where we got 1834 * it but that's hard so for now we put it 1835 * at the front. This should be ok; putting 1836 * it at the end does not work. 1837 */ 1838 cap->cc_qblocked = 1; 1839 TAILQ_INSERT_HEAD(&crp_q, submit, crp_next); 1840 CRYPTOSTAT_INC(cs_blocks); 1841 } 1842 } else { 1843 /* 1844 * Nothing more to be processed. Sleep until we're 1845 * woken because there are more ops to process. 1846 * This happens either by submission or by a driver 1847 * becoming unblocked and notifying us through 1848 * crypto_unblock. Note that when we wakeup we 1849 * start processing each queue again from the 1850 * front. It's not clear that it's important to 1851 * preserve this ordering since ops may finish 1852 * out of order if dispatched to different devices 1853 * and some become blocked while others do not. 1854 */ 1855 crp_sleep = 1; 1856 msleep(&crp_q, &crypto_q_mtx, PWAIT, "crypto_wait", 0); 1857 crp_sleep = 0; 1858 if (cryptotd == NULL) 1859 break; 1860 CRYPTOSTAT_INC(cs_intrs); 1861 } 1862 } 1863 CRYPTO_Q_UNLOCK(); 1864 1865 crypto_finis(&crp_q); 1866 } 1867 1868 /* 1869 * Crypto returns thread, does callbacks for processed crypto requests. 1870 * Callbacks are done here, rather than in the crypto drivers, because 1871 * callbacks typically are expensive and would slow interrupt handling. 1872 */ 1873 static void 1874 crypto_ret_thread(void *arg) 1875 { 1876 struct crypto_ret_worker *ret_worker = arg; 1877 struct cryptop *crpt; 1878 1879 CRYPTO_RETW_LOCK(ret_worker); 1880 for (;;) { 1881 /* Harvest return q's for completed ops */ 1882 crpt = TAILQ_FIRST(&ret_worker->crp_ordered_ret_q); 1883 if (crpt != NULL) { 1884 if (crpt->crp_seq == ret_worker->reorder_cur_seq) { 1885 TAILQ_REMOVE(&ret_worker->crp_ordered_ret_q, crpt, crp_next); 1886 ret_worker->reorder_cur_seq++; 1887 } else { 1888 crpt = NULL; 1889 } 1890 } 1891 1892 if (crpt == NULL) { 1893 crpt = TAILQ_FIRST(&ret_worker->crp_ret_q); 1894 if (crpt != NULL) 1895 TAILQ_REMOVE(&ret_worker->crp_ret_q, crpt, crp_next); 1896 } 1897 1898 if (crpt != NULL) { 1899 CRYPTO_RETW_UNLOCK(ret_worker); 1900 /* 1901 * Run callbacks unlocked. 1902 */ 1903 if (crpt != NULL) 1904 crpt->crp_callback(crpt); 1905 CRYPTO_RETW_LOCK(ret_worker); 1906 } else { 1907 /* 1908 * Nothing more to be processed. Sleep until we're 1909 * woken because there are more returns to process. 1910 */ 1911 msleep(&ret_worker->crp_ret_q, &ret_worker->crypto_ret_mtx, PWAIT, 1912 "crypto_ret_wait", 0); 1913 if (ret_worker->td == NULL) 1914 break; 1915 CRYPTOSTAT_INC(cs_rets); 1916 } 1917 } 1918 CRYPTO_RETW_UNLOCK(ret_worker); 1919 1920 crypto_finis(&ret_worker->crp_ret_q); 1921 } 1922 1923 #ifdef DDB 1924 static void 1925 db_show_drivers(void) 1926 { 1927 int hid; 1928 1929 db_printf("%12s %4s %8s %2s\n" 1930 , "Device" 1931 , "Ses" 1932 , "Flags" 1933 , "QB" 1934 ); 1935 for (hid = 0; hid < crypto_drivers_size; hid++) { 1936 const struct cryptocap *cap = crypto_drivers[hid]; 1937 if (cap == NULL) 1938 continue; 1939 db_printf("%-12s %4u %08x %2u\n" 1940 , device_get_nameunit(cap->cc_dev) 1941 , cap->cc_sessions 1942 , cap->cc_flags 1943 , cap->cc_qblocked 1944 ); 1945 } 1946 } 1947 1948 DB_SHOW_COMMAND_FLAGS(crypto, db_show_crypto, DB_CMD_MEMSAFE) 1949 { 1950 struct cryptop *crp; 1951 struct crypto_ret_worker *ret_worker; 1952 1953 db_show_drivers(); 1954 db_printf("\n"); 1955 1956 db_printf("%4s %8s %4s %4s %4s %4s %8s %8s\n", 1957 "HID", "Caps", "Ilen", "Olen", "Etype", "Flags", 1958 "Device", "Callback"); 1959 TAILQ_FOREACH(crp, &crp_q, crp_next) { 1960 db_printf("%4u %08x %4u %4u %04x %8p %8p\n" 1961 , crp->crp_session->cap->cc_hid 1962 , (int) crypto_ses2caps(crp->crp_session) 1963 , crp->crp_olen 1964 , crp->crp_etype 1965 , crp->crp_flags 1966 , device_get_nameunit(crp->crp_session->cap->cc_dev) 1967 , crp->crp_callback 1968 ); 1969 } 1970 FOREACH_CRYPTO_RETW(ret_worker) { 1971 db_printf("\n%8s %4s %4s %4s %8s\n", 1972 "ret_worker", "HID", "Etype", "Flags", "Callback"); 1973 if (!TAILQ_EMPTY(&ret_worker->crp_ret_q)) { 1974 TAILQ_FOREACH(crp, &ret_worker->crp_ret_q, crp_next) { 1975 db_printf("%8td %4u %4u %04x %8p\n" 1976 , CRYPTO_RETW_ID(ret_worker) 1977 , crp->crp_session->cap->cc_hid 1978 , crp->crp_etype 1979 , crp->crp_flags 1980 , crp->crp_callback 1981 ); 1982 } 1983 } 1984 } 1985 } 1986 #endif 1987 1988 int crypto_modevent(module_t mod, int type, void *unused); 1989 1990 /* 1991 * Initialization code, both for static and dynamic loading. 1992 * Note this is not invoked with the usual MODULE_DECLARE 1993 * mechanism but instead is listed as a dependency by the 1994 * cryptosoft driver. This guarantees proper ordering of 1995 * calls on module load/unload. 1996 */ 1997 int 1998 crypto_modevent(module_t mod, int type, void *unused) 1999 { 2000 int error = EINVAL; 2001 2002 switch (type) { 2003 case MOD_LOAD: 2004 error = crypto_init(); 2005 if (error == 0 && bootverbose) 2006 printf("crypto: <crypto core>\n"); 2007 break; 2008 case MOD_UNLOAD: 2009 /*XXX disallow if active sessions */ 2010 error = 0; 2011 crypto_destroy(); 2012 return 0; 2013 } 2014 return error; 2015 } 2016 MODULE_VERSION(crypto, 1); 2017 MODULE_DEPEND(crypto, zlib, 1, 1, 1); 2018