1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause OR GPL-2.0 3 * 4 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved. 5 * Copyright (c) 2004 Infinicon Corporation. All rights reserved. 6 * Copyright (c) 2004 Intel Corporation. All rights reserved. 7 * Copyright (c) 2004 Topspin Corporation. All rights reserved. 8 * Copyright (c) 2004 Voltaire Corporation. All rights reserved. 9 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. 10 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved. 11 * 12 * This software is available to you under a choice of one of two 13 * licenses. You may choose to be licensed under the terms of the GNU 14 * General Public License (GPL) Version 2, available from the file 15 * COPYING in the main directory of this source tree, or the 16 * OpenIB.org BSD license below: 17 * 18 * Redistribution and use in source and binary forms, with or 19 * without modification, are permitted provided that the following 20 * conditions are met: 21 * 22 * - Redistributions of source code must retain the above 23 * copyright notice, this list of conditions and the following 24 * disclaimer. 25 * 26 * - Redistributions in binary form must reproduce the above 27 * copyright notice, this list of conditions and the following 28 * disclaimer in the documentation and/or other materials 29 * provided with the distribution. 30 * 31 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 32 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 33 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 34 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 35 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 36 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 37 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 38 * SOFTWARE. 39 * 40 * $FreeBSD$ 41 */ 42 43 #if !defined(IB_VERBS_H) 44 #define IB_VERBS_H 45 46 #include <linux/types.h> 47 #include <linux/device.h> 48 #include <linux/mm.h> 49 #include <linux/dma-mapping.h> 50 #include <linux/kref.h> 51 #include <linux/list.h> 52 #include <linux/rwsem.h> 53 #include <linux/scatterlist.h> 54 #include <linux/workqueue.h> 55 #include <linux/socket.h> 56 #include <linux/if_ether.h> 57 #include <net/ipv6.h> 58 #include <net/ip.h> 59 #include <linux/string.h> 60 #include <linux/slab.h> 61 #include <linux/rcupdate.h> 62 #include <linux/netdevice.h> 63 #include <linux/xarray.h> 64 #include <netinet/ip.h> 65 #include <uapi/rdma/ib_user_verbs.h> 66 #include <rdma/signature.h> 67 #include <uapi/rdma/rdma_user_ioctl.h> 68 #include <uapi/rdma/ib_user_ioctl_verbs.h> 69 70 #include <asm/atomic.h> 71 #include <asm/uaccess.h> 72 73 struct ib_uqp_object; 74 struct ib_usrq_object; 75 struct ib_uwq_object; 76 struct ifla_vf_info; 77 struct ifla_vf_stats; 78 struct ib_uverbs_file; 79 struct uverbs_attr_bundle; 80 81 enum ib_uverbs_advise_mr_advice; 82 83 extern struct workqueue_struct *ib_wq; 84 extern struct workqueue_struct *ib_comp_wq; 85 86 struct ib_ucq_object; 87 88 union ib_gid { 89 u8 raw[16]; 90 struct { 91 __be64 subnet_prefix; 92 __be64 interface_id; 93 } global; 94 }; 95 96 extern union ib_gid zgid; 97 98 enum ib_gid_type { 99 /* If link layer is Ethernet, this is RoCE V1 */ 100 IB_GID_TYPE_IB = 0, 101 IB_GID_TYPE_ROCE = 0, 102 IB_GID_TYPE_ROCE_UDP_ENCAP = 1, 103 IB_GID_TYPE_SIZE 104 }; 105 106 #define ROCE_V2_UDP_DPORT 4791 107 struct ib_gid_attr { 108 enum ib_gid_type gid_type; 109 struct ifnet *ndev; 110 }; 111 112 enum rdma_node_type { 113 /* IB values map to NodeInfo:NodeType. */ 114 RDMA_NODE_IB_CA = 1, 115 RDMA_NODE_IB_SWITCH, 116 RDMA_NODE_IB_ROUTER, 117 RDMA_NODE_RNIC, 118 RDMA_NODE_USNIC, 119 RDMA_NODE_USNIC_UDP, 120 }; 121 122 enum { 123 /* set the local administered indication */ 124 IB_SA_WELL_KNOWN_GUID = BIT_ULL(57) | 2, 125 }; 126 127 enum rdma_transport_type { 128 RDMA_TRANSPORT_IB, 129 RDMA_TRANSPORT_IWARP, 130 RDMA_TRANSPORT_USNIC, 131 RDMA_TRANSPORT_USNIC_UDP 132 }; 133 134 enum rdma_protocol_type { 135 RDMA_PROTOCOL_IB, 136 RDMA_PROTOCOL_IBOE, 137 RDMA_PROTOCOL_IWARP, 138 RDMA_PROTOCOL_USNIC_UDP 139 }; 140 141 __attribute_const__ enum rdma_transport_type 142 rdma_node_get_transport(enum rdma_node_type node_type); 143 144 enum rdma_network_type { 145 RDMA_NETWORK_IB, 146 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB, 147 RDMA_NETWORK_IPV4, 148 RDMA_NETWORK_IPV6 149 }; 150 151 static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type) 152 { 153 if (network_type == RDMA_NETWORK_IPV4 || 154 network_type == RDMA_NETWORK_IPV6) 155 return IB_GID_TYPE_ROCE_UDP_ENCAP; 156 157 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */ 158 return IB_GID_TYPE_IB; 159 } 160 161 static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type, 162 union ib_gid *gid) 163 { 164 if (gid_type == IB_GID_TYPE_IB) 165 return RDMA_NETWORK_IB; 166 167 if (ipv6_addr_v4mapped((struct in6_addr *)gid)) 168 return RDMA_NETWORK_IPV4; 169 else 170 return RDMA_NETWORK_IPV6; 171 } 172 173 enum rdma_link_layer { 174 IB_LINK_LAYER_UNSPECIFIED, 175 IB_LINK_LAYER_INFINIBAND, 176 IB_LINK_LAYER_ETHERNET, 177 }; 178 179 enum ib_device_cap_flags { 180 IB_DEVICE_RESIZE_MAX_WR = (1 << 0), 181 IB_DEVICE_BAD_PKEY_CNTR = (1 << 1), 182 IB_DEVICE_BAD_QKEY_CNTR = (1 << 2), 183 IB_DEVICE_RAW_MULTI = (1 << 3), 184 IB_DEVICE_AUTO_PATH_MIG = (1 << 4), 185 IB_DEVICE_CHANGE_PHY_PORT = (1 << 5), 186 IB_DEVICE_UD_AV_PORT_ENFORCE = (1 << 6), 187 IB_DEVICE_CURR_QP_STATE_MOD = (1 << 7), 188 IB_DEVICE_SHUTDOWN_PORT = (1 << 8), 189 IB_DEVICE_INIT_TYPE = (1 << 9), 190 IB_DEVICE_PORT_ACTIVE_EVENT = (1 << 10), 191 IB_DEVICE_SYS_IMAGE_GUID = (1 << 11), 192 IB_DEVICE_RC_RNR_NAK_GEN = (1 << 12), 193 IB_DEVICE_SRQ_RESIZE = (1 << 13), 194 IB_DEVICE_N_NOTIFY_CQ = (1 << 14), 195 196 /* 197 * This device supports a per-device lkey or stag that can be 198 * used without performing a memory registration for the local 199 * memory. Note that ULPs should never check this flag, but 200 * instead of use the local_dma_lkey flag in the ib_pd structure, 201 * which will always contain a usable lkey. 202 */ 203 IB_DEVICE_LOCAL_DMA_LKEY = (1 << 15), 204 IB_DEVICE_RESERVED /* old SEND_W_INV */ = (1 << 16), 205 IB_DEVICE_MEM_WINDOW = (1 << 17), 206 /* 207 * Devices should set IB_DEVICE_UD_IP_SUM if they support 208 * insertion of UDP and TCP checksum on outgoing UD IPoIB 209 * messages and can verify the validity of checksum for 210 * incoming messages. Setting this flag implies that the 211 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode. 212 */ 213 IB_DEVICE_UD_IP_CSUM = (1 << 18), 214 IB_DEVICE_UD_TSO = (1 << 19), 215 IB_DEVICE_XRC = (1 << 20), 216 217 /* 218 * This device supports the IB "base memory management extension", 219 * which includes support for fast registrations (IB_WR_REG_MR, 220 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should 221 * also be set by any iWarp device which must support FRs to comply 222 * to the iWarp verbs spec. iWarp devices also support the 223 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the 224 * stag. 225 */ 226 IB_DEVICE_MEM_MGT_EXTENSIONS = (1 << 21), 227 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1 << 22), 228 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1 << 23), 229 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1 << 24), 230 IB_DEVICE_RC_IP_CSUM = (1 << 25), 231 IB_DEVICE_RAW_IP_CSUM = (1 << 26), 232 /* 233 * Devices should set IB_DEVICE_CROSS_CHANNEL if they 234 * support execution of WQEs that involve synchronization 235 * of I/O operations with single completion queue managed 236 * by hardware. 237 */ 238 IB_DEVICE_CROSS_CHANNEL = (1 << 27), 239 IB_DEVICE_MANAGED_FLOW_STEERING = (1 << 29), 240 IB_DEVICE_SIGNATURE_HANDOVER = (1 << 30), 241 IB_DEVICE_ON_DEMAND_PAGING = (1ULL << 31), 242 IB_DEVICE_SG_GAPS_REG = (1ULL << 32), 243 IB_DEVICE_VIRTUAL_FUNCTION = (1ULL << 33), 244 IB_DEVICE_RAW_SCATTER_FCS = (1ULL << 34), 245 }; 246 247 enum ib_atomic_cap { 248 IB_ATOMIC_NONE, 249 IB_ATOMIC_HCA, 250 IB_ATOMIC_GLOB 251 }; 252 253 enum ib_odp_general_cap_bits { 254 IB_ODP_SUPPORT = 1 << 0, 255 }; 256 257 enum ib_odp_transport_cap_bits { 258 IB_ODP_SUPPORT_SEND = 1 << 0, 259 IB_ODP_SUPPORT_RECV = 1 << 1, 260 IB_ODP_SUPPORT_WRITE = 1 << 2, 261 IB_ODP_SUPPORT_READ = 1 << 3, 262 IB_ODP_SUPPORT_ATOMIC = 1 << 4, 263 }; 264 265 struct ib_odp_caps { 266 uint64_t general_caps; 267 struct { 268 uint32_t rc_odp_caps; 269 uint32_t uc_odp_caps; 270 uint32_t ud_odp_caps; 271 uint32_t xrc_odp_caps; 272 } per_transport_caps; 273 }; 274 275 struct ib_rss_caps { 276 /* Corresponding bit will be set if qp type from 277 * 'enum ib_qp_type' is supported, e.g. 278 * supported_qpts |= 1 << IB_QPT_UD 279 */ 280 u32 supported_qpts; 281 u32 max_rwq_indirection_tables; 282 u32 max_rwq_indirection_table_size; 283 }; 284 285 enum ib_tm_cap_flags { 286 /* Support tag matching with rendezvous offload for RC transport */ 287 IB_TM_CAP_RNDV_RC = 1 << 0, 288 }; 289 290 struct ib_tm_caps { 291 /* Max size of RNDV header */ 292 u32 max_rndv_hdr_size; 293 /* Max number of entries in tag matching list */ 294 u32 max_num_tags; 295 /* From enum ib_tm_cap_flags */ 296 u32 flags; 297 /* Max number of outstanding list operations */ 298 u32 max_ops; 299 /* Max number of SGE in tag matching entry */ 300 u32 max_sge; 301 }; 302 303 enum ib_cq_creation_flags { 304 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0, 305 IB_CQ_FLAGS_IGNORE_OVERRUN = 1 << 1, 306 }; 307 308 struct ib_cq_init_attr { 309 unsigned int cqe; 310 u32 comp_vector; 311 u32 flags; 312 }; 313 314 enum ib_cq_attr_mask { 315 IB_CQ_MODERATE = 1 << 0, 316 }; 317 318 struct ib_cq_caps { 319 u16 max_cq_moderation_count; 320 u16 max_cq_moderation_period; 321 }; 322 323 struct ib_dm_mr_attr { 324 u64 length; 325 u64 offset; 326 u32 access_flags; 327 }; 328 329 struct ib_dm_alloc_attr { 330 u64 length; 331 u32 alignment; 332 u32 flags; 333 }; 334 335 struct ib_device_attr { 336 u64 fw_ver; 337 __be64 sys_image_guid; 338 u64 max_mr_size; 339 u64 page_size_cap; 340 u32 vendor_id; 341 u32 vendor_part_id; 342 u32 hw_ver; 343 int max_qp; 344 int max_qp_wr; 345 u64 device_cap_flags; 346 int max_sge; 347 int max_sge_rd; 348 int max_cq; 349 int max_cqe; 350 int max_mr; 351 int max_pd; 352 int max_qp_rd_atom; 353 int max_ee_rd_atom; 354 int max_res_rd_atom; 355 int max_qp_init_rd_atom; 356 int max_ee_init_rd_atom; 357 enum ib_atomic_cap atomic_cap; 358 enum ib_atomic_cap masked_atomic_cap; 359 int max_ee; 360 int max_rdd; 361 int max_mw; 362 int max_raw_ipv6_qp; 363 int max_raw_ethy_qp; 364 int max_mcast_grp; 365 int max_mcast_qp_attach; 366 int max_total_mcast_qp_attach; 367 int max_ah; 368 int max_fmr; 369 int max_map_per_fmr; 370 int max_srq; 371 int max_srq_wr; 372 union { 373 int max_srq_sge; 374 int max_send_sge; 375 int max_recv_sge; 376 }; 377 unsigned int max_fast_reg_page_list_len; 378 u16 max_pkeys; 379 u8 local_ca_ack_delay; 380 int sig_prot_cap; 381 int sig_guard_cap; 382 struct ib_odp_caps odp_caps; 383 uint64_t timestamp_mask; 384 uint64_t hca_core_clock; /* in KHZ */ 385 struct ib_rss_caps rss_caps; 386 u32 max_wq_type_rq; 387 u32 raw_packet_caps; /* Use ib_raw_packet_caps enum */ 388 struct ib_tm_caps tm_caps; 389 struct ib_cq_caps cq_caps; 390 u64 max_dm_size; 391 /* Max entries for sgl for optimized performance per READ */ 392 u32 max_sgl_rd; 393 }; 394 395 enum ib_mtu { 396 IB_MTU_256 = 1, 397 IB_MTU_512 = 2, 398 IB_MTU_1024 = 3, 399 IB_MTU_2048 = 4, 400 IB_MTU_4096 = 5 401 }; 402 403 static inline int ib_mtu_enum_to_int(enum ib_mtu mtu) 404 { 405 switch (mtu) { 406 case IB_MTU_256: return 256; 407 case IB_MTU_512: return 512; 408 case IB_MTU_1024: return 1024; 409 case IB_MTU_2048: return 2048; 410 case IB_MTU_4096: return 4096; 411 default: return -1; 412 } 413 } 414 415 enum ib_port_state { 416 IB_PORT_NOP = 0, 417 IB_PORT_DOWN = 1, 418 IB_PORT_INIT = 2, 419 IB_PORT_ARMED = 3, 420 IB_PORT_ACTIVE = 4, 421 IB_PORT_ACTIVE_DEFER = 5, 422 IB_PORT_DUMMY = -1, /* force enum signed */ 423 }; 424 425 enum ib_port_cap_flags { 426 IB_PORT_SM = 1 << 1, 427 IB_PORT_NOTICE_SUP = 1 << 2, 428 IB_PORT_TRAP_SUP = 1 << 3, 429 IB_PORT_OPT_IPD_SUP = 1 << 4, 430 IB_PORT_AUTO_MIGR_SUP = 1 << 5, 431 IB_PORT_SL_MAP_SUP = 1 << 6, 432 IB_PORT_MKEY_NVRAM = 1 << 7, 433 IB_PORT_PKEY_NVRAM = 1 << 8, 434 IB_PORT_LED_INFO_SUP = 1 << 9, 435 IB_PORT_SM_DISABLED = 1 << 10, 436 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11, 437 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12, 438 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14, 439 IB_PORT_CM_SUP = 1 << 16, 440 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17, 441 IB_PORT_REINIT_SUP = 1 << 18, 442 IB_PORT_DEVICE_MGMT_SUP = 1 << 19, 443 IB_PORT_VENDOR_CLASS_SUP = 1 << 20, 444 IB_PORT_DR_NOTICE_SUP = 1 << 21, 445 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22, 446 IB_PORT_BOOT_MGMT_SUP = 1 << 23, 447 IB_PORT_LINK_LATENCY_SUP = 1 << 24, 448 IB_PORT_CLIENT_REG_SUP = 1 << 25, 449 IB_PORT_IP_BASED_GIDS = 1 << 26, 450 }; 451 452 enum ib_port_phys_state { 453 IB_PORT_PHYS_STATE_SLEEP = 1, 454 IB_PORT_PHYS_STATE_POLLING = 2, 455 IB_PORT_PHYS_STATE_DISABLED = 3, 456 IB_PORT_PHYS_STATE_PORT_CONFIGURATION_TRAINING = 4, 457 IB_PORT_PHYS_STATE_LINK_UP = 5, 458 IB_PORT_PHYS_STATE_LINK_ERROR_RECOVERY = 6, 459 IB_PORT_PHYS_STATE_PHY_TEST = 7, 460 }; 461 462 enum ib_port_width { 463 IB_WIDTH_1X = 1, 464 IB_WIDTH_2X = 16, 465 IB_WIDTH_4X = 2, 466 IB_WIDTH_8X = 4, 467 IB_WIDTH_12X = 8 468 }; 469 470 static inline int ib_width_enum_to_int(enum ib_port_width width) 471 { 472 switch (width) { 473 case IB_WIDTH_1X: return 1; 474 case IB_WIDTH_2X: return 2; 475 case IB_WIDTH_4X: return 4; 476 case IB_WIDTH_8X: return 8; 477 case IB_WIDTH_12X: return 12; 478 default: return -1; 479 } 480 } 481 482 enum ib_port_speed { 483 IB_SPEED_SDR = 1, 484 IB_SPEED_DDR = 2, 485 IB_SPEED_QDR = 4, 486 IB_SPEED_FDR10 = 8, 487 IB_SPEED_FDR = 16, 488 IB_SPEED_EDR = 32, 489 IB_SPEED_HDR = 64, 490 IB_SPEED_NDR = 128 491 }; 492 493 /** 494 * struct rdma_hw_stats 495 * @lock - Mutex to protect parallel write access to lifespan and values 496 * of counters, which are 64bits and not guaranteeed to be written 497 * atomicaly on 32bits systems. 498 * @timestamp - Used by the core code to track when the last update was 499 * @lifespan - Used by the core code to determine how old the counters 500 * should be before being updated again. Stored in jiffies, defaults 501 * to 10 milliseconds, drivers can override the default be specifying 502 * their own value during their allocation routine. 503 * @name - Array of pointers to static names used for the counters in 504 * directory. 505 * @num_counters - How many hardware counters there are. If name is 506 * shorter than this number, a kernel oops will result. Driver authors 507 * are encouraged to leave BUILD_BUG_ON(ARRAY_SIZE(@name) < num_counters) 508 * in their code to prevent this. 509 * @value - Array of u64 counters that are accessed by the sysfs code and 510 * filled in by the drivers get_stats routine 511 */ 512 struct rdma_hw_stats { 513 struct mutex lock; /* Protect lifespan and values[] */ 514 unsigned long timestamp; 515 unsigned long lifespan; 516 const char * const *names; 517 int num_counters; 518 u64 value[]; 519 }; 520 521 #define RDMA_HW_STATS_DEFAULT_LIFESPAN 10 522 /** 523 * rdma_alloc_hw_stats_struct - Helper function to allocate dynamic struct 524 * for drivers. 525 * @names - Array of static const char * 526 * @num_counters - How many elements in array 527 * @lifespan - How many milliseconds between updates 528 */ 529 static inline struct rdma_hw_stats *rdma_alloc_hw_stats_struct( 530 const char * const *names, int num_counters, 531 unsigned long lifespan) 532 { 533 struct rdma_hw_stats *stats; 534 535 stats = kzalloc(sizeof(*stats) + num_counters * sizeof(u64), 536 GFP_KERNEL); 537 if (!stats) 538 return NULL; 539 stats->names = names; 540 stats->num_counters = num_counters; 541 stats->lifespan = msecs_to_jiffies(lifespan); 542 543 return stats; 544 } 545 546 547 /* Define bits for the various functionality this port needs to be supported by 548 * the core. 549 */ 550 /* Management 0x00000FFF */ 551 #define RDMA_CORE_CAP_IB_MAD 0x00000001 552 #define RDMA_CORE_CAP_IB_SMI 0x00000002 553 #define RDMA_CORE_CAP_IB_CM 0x00000004 554 #define RDMA_CORE_CAP_IW_CM 0x00000008 555 #define RDMA_CORE_CAP_IB_SA 0x00000010 556 #define RDMA_CORE_CAP_OPA_MAD 0x00000020 557 558 /* Address format 0x000FF000 */ 559 #define RDMA_CORE_CAP_AF_IB 0x00001000 560 #define RDMA_CORE_CAP_ETH_AH 0x00002000 561 562 /* Protocol 0xFFF00000 */ 563 #define RDMA_CORE_CAP_PROT_IB 0x00100000 564 #define RDMA_CORE_CAP_PROT_ROCE 0x00200000 565 #define RDMA_CORE_CAP_PROT_IWARP 0x00400000 566 #define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000 567 568 #define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \ 569 | RDMA_CORE_CAP_IB_MAD \ 570 | RDMA_CORE_CAP_IB_SMI \ 571 | RDMA_CORE_CAP_IB_CM \ 572 | RDMA_CORE_CAP_IB_SA \ 573 | RDMA_CORE_CAP_AF_IB) 574 #define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \ 575 | RDMA_CORE_CAP_IB_MAD \ 576 | RDMA_CORE_CAP_IB_CM \ 577 | RDMA_CORE_CAP_AF_IB \ 578 | RDMA_CORE_CAP_ETH_AH) 579 #define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \ 580 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \ 581 | RDMA_CORE_CAP_IB_MAD \ 582 | RDMA_CORE_CAP_IB_CM \ 583 | RDMA_CORE_CAP_AF_IB \ 584 | RDMA_CORE_CAP_ETH_AH) 585 #define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \ 586 | RDMA_CORE_CAP_IW_CM) 587 #define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \ 588 | RDMA_CORE_CAP_OPA_MAD) 589 590 struct ib_port_attr { 591 u64 subnet_prefix; 592 enum ib_port_state state; 593 enum ib_mtu max_mtu; 594 enum ib_mtu active_mtu; 595 int gid_tbl_len; 596 unsigned int ip_gids:1; 597 /* This is the value from PortInfo CapabilityMask, defined by IBA */ 598 u32 port_cap_flags; 599 u32 max_msg_sz; 600 u32 bad_pkey_cntr; 601 u32 qkey_viol_cntr; 602 u16 pkey_tbl_len; 603 u16 lid; 604 u16 sm_lid; 605 u8 lmc; 606 u8 max_vl_num; 607 u8 sm_sl; 608 u8 subnet_timeout; 609 u8 init_type_reply; 610 u8 active_width; 611 u8 active_speed; 612 u8 phys_state; 613 bool grh_required; 614 }; 615 616 enum ib_device_modify_flags { 617 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0, 618 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1 619 }; 620 621 #define IB_DEVICE_NODE_DESC_MAX 64 622 623 struct ib_device_modify { 624 u64 sys_image_guid; 625 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 626 }; 627 628 enum ib_port_modify_flags { 629 IB_PORT_SHUTDOWN = 1, 630 IB_PORT_INIT_TYPE = (1<<2), 631 IB_PORT_RESET_QKEY_CNTR = (1<<3) 632 }; 633 634 struct ib_port_modify { 635 u32 set_port_cap_mask; 636 u32 clr_port_cap_mask; 637 u8 init_type; 638 }; 639 640 enum ib_event_type { 641 IB_EVENT_CQ_ERR, 642 IB_EVENT_QP_FATAL, 643 IB_EVENT_QP_REQ_ERR, 644 IB_EVENT_QP_ACCESS_ERR, 645 IB_EVENT_COMM_EST, 646 IB_EVENT_SQ_DRAINED, 647 IB_EVENT_PATH_MIG, 648 IB_EVENT_PATH_MIG_ERR, 649 IB_EVENT_DEVICE_FATAL, 650 IB_EVENT_PORT_ACTIVE, 651 IB_EVENT_PORT_ERR, 652 IB_EVENT_LID_CHANGE, 653 IB_EVENT_PKEY_CHANGE, 654 IB_EVENT_SM_CHANGE, 655 IB_EVENT_SRQ_ERR, 656 IB_EVENT_SRQ_LIMIT_REACHED, 657 IB_EVENT_QP_LAST_WQE_REACHED, 658 IB_EVENT_CLIENT_REREGISTER, 659 IB_EVENT_GID_CHANGE, 660 IB_EVENT_WQ_FATAL, 661 }; 662 663 const char *__attribute_const__ ib_event_msg(enum ib_event_type event); 664 665 struct ib_event { 666 struct ib_device *device; 667 union { 668 struct ib_cq *cq; 669 struct ib_qp *qp; 670 struct ib_srq *srq; 671 struct ib_wq *wq; 672 u8 port_num; 673 } element; 674 enum ib_event_type event; 675 }; 676 677 struct ib_event_handler { 678 struct ib_device *device; 679 void (*handler)(struct ib_event_handler *, struct ib_event *); 680 struct list_head list; 681 }; 682 683 #define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \ 684 do { \ 685 (_ptr)->device = _device; \ 686 (_ptr)->handler = _handler; \ 687 INIT_LIST_HEAD(&(_ptr)->list); \ 688 } while (0) 689 690 struct ib_global_route { 691 union ib_gid dgid; 692 u32 flow_label; 693 u8 sgid_index; 694 u8 hop_limit; 695 u8 traffic_class; 696 }; 697 698 struct ib_grh { 699 __be32 version_tclass_flow; 700 __be16 paylen; 701 u8 next_hdr; 702 u8 hop_limit; 703 union ib_gid sgid; 704 union ib_gid dgid; 705 }; 706 707 union rdma_network_hdr { 708 struct ib_grh ibgrh; 709 struct { 710 /* The IB spec states that if it's IPv4, the header 711 * is located in the last 20 bytes of the header. 712 */ 713 u8 reserved[20]; 714 struct ip roce4grh; 715 }; 716 }; 717 718 enum { 719 IB_MULTICAST_QPN = 0xffffff 720 }; 721 722 #define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF) 723 #define IB_MULTICAST_LID_BASE cpu_to_be16(0xC000) 724 725 enum ib_ah_flags { 726 IB_AH_GRH = 1 727 }; 728 729 enum ib_rate { 730 IB_RATE_PORT_CURRENT = 0, 731 IB_RATE_2_5_GBPS = 2, 732 IB_RATE_5_GBPS = 5, 733 IB_RATE_10_GBPS = 3, 734 IB_RATE_20_GBPS = 6, 735 IB_RATE_30_GBPS = 4, 736 IB_RATE_40_GBPS = 7, 737 IB_RATE_60_GBPS = 8, 738 IB_RATE_80_GBPS = 9, 739 IB_RATE_120_GBPS = 10, 740 IB_RATE_14_GBPS = 11, 741 IB_RATE_56_GBPS = 12, 742 IB_RATE_112_GBPS = 13, 743 IB_RATE_168_GBPS = 14, 744 IB_RATE_25_GBPS = 15, 745 IB_RATE_100_GBPS = 16, 746 IB_RATE_200_GBPS = 17, 747 IB_RATE_300_GBPS = 18, 748 IB_RATE_28_GBPS = 19, 749 IB_RATE_50_GBPS = 20, 750 IB_RATE_400_GBPS = 21, 751 IB_RATE_600_GBPS = 22, 752 }; 753 754 /** 755 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the 756 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be 757 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec. 758 * @rate: rate to convert. 759 */ 760 __attribute_const__ int ib_rate_to_mult(enum ib_rate rate); 761 762 /** 763 * ib_rate_to_mbps - Convert the IB rate enum to Mbps. 764 * For example, IB_RATE_2_5_GBPS will be converted to 2500. 765 * @rate: rate to convert. 766 */ 767 __attribute_const__ int ib_rate_to_mbps(enum ib_rate rate); 768 769 770 /** 771 * enum ib_mr_type - memory region type 772 * @IB_MR_TYPE_MEM_REG: memory region that is used for 773 * normal registration 774 * @IB_MR_TYPE_SG_GAPS: memory region that is capable to 775 * register any arbitrary sg lists (without 776 * the normal mr constraints - see 777 * ib_map_mr_sg) 778 * @IB_MR_TYPE_DM: memory region that is used for device 779 * memory registration 780 * @IB_MR_TYPE_USER: memory region that is used for the user-space 781 * application 782 * @IB_MR_TYPE_DMA: memory region that is used for DMA operations 783 * without address translations (VA=PA) 784 * @IB_MR_TYPE_INTEGRITY: memory region that is used for 785 * data integrity operations 786 */ 787 enum ib_mr_type { 788 IB_MR_TYPE_MEM_REG, 789 IB_MR_TYPE_SG_GAPS, 790 IB_MR_TYPE_DM, 791 IB_MR_TYPE_USER, 792 IB_MR_TYPE_DMA, 793 IB_MR_TYPE_INTEGRITY, 794 }; 795 796 enum ib_mr_status_check { 797 IB_MR_CHECK_SIG_STATUS = 1, 798 }; 799 800 /** 801 * struct ib_mr_status - Memory region status container 802 * 803 * @fail_status: Bitmask of MR checks status. For each 804 * failed check a corresponding status bit is set. 805 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS 806 * failure. 807 */ 808 struct ib_mr_status { 809 u32 fail_status; 810 struct ib_sig_err sig_err; 811 }; 812 813 /** 814 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate 815 * enum. 816 * @mult: multiple to convert. 817 */ 818 __attribute_const__ enum ib_rate mult_to_ib_rate(int mult); 819 820 struct ib_ah_attr { 821 struct ib_global_route grh; 822 u16 dlid; 823 u8 sl; 824 u8 src_path_bits; 825 u8 static_rate; 826 u8 ah_flags; 827 u8 port_num; 828 u8 dmac[ETH_ALEN]; 829 }; 830 831 enum ib_wc_status { 832 IB_WC_SUCCESS, 833 IB_WC_LOC_LEN_ERR, 834 IB_WC_LOC_QP_OP_ERR, 835 IB_WC_LOC_EEC_OP_ERR, 836 IB_WC_LOC_PROT_ERR, 837 IB_WC_WR_FLUSH_ERR, 838 IB_WC_MW_BIND_ERR, 839 IB_WC_BAD_RESP_ERR, 840 IB_WC_LOC_ACCESS_ERR, 841 IB_WC_REM_INV_REQ_ERR, 842 IB_WC_REM_ACCESS_ERR, 843 IB_WC_REM_OP_ERR, 844 IB_WC_RETRY_EXC_ERR, 845 IB_WC_RNR_RETRY_EXC_ERR, 846 IB_WC_LOC_RDD_VIOL_ERR, 847 IB_WC_REM_INV_RD_REQ_ERR, 848 IB_WC_REM_ABORT_ERR, 849 IB_WC_INV_EECN_ERR, 850 IB_WC_INV_EEC_STATE_ERR, 851 IB_WC_FATAL_ERR, 852 IB_WC_RESP_TIMEOUT_ERR, 853 IB_WC_GENERAL_ERR 854 }; 855 856 const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status); 857 858 enum ib_wc_opcode { 859 IB_WC_SEND, 860 IB_WC_RDMA_WRITE, 861 IB_WC_RDMA_READ, 862 IB_WC_COMP_SWAP, 863 IB_WC_FETCH_ADD, 864 IB_WC_LSO, 865 IB_WC_LOCAL_INV, 866 IB_WC_REG_MR, 867 IB_WC_MASKED_COMP_SWAP, 868 IB_WC_MASKED_FETCH_ADD, 869 /* 870 * Set value of IB_WC_RECV so consumers can test if a completion is a 871 * receive by testing (opcode & IB_WC_RECV). 872 */ 873 IB_WC_RECV = 1 << 7, 874 IB_WC_RECV_RDMA_WITH_IMM, 875 IB_WC_DUMMY = -1, /* force enum signed */ 876 }; 877 878 enum ib_wc_flags { 879 IB_WC_GRH = 1, 880 IB_WC_WITH_IMM = (1<<1), 881 IB_WC_WITH_INVALIDATE = (1<<2), 882 IB_WC_IP_CSUM_OK = (1<<3), 883 IB_WC_WITH_SMAC = (1<<4), 884 IB_WC_WITH_VLAN = (1<<5), 885 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6), 886 }; 887 888 struct ib_wc { 889 union { 890 u64 wr_id; 891 struct ib_cqe *wr_cqe; 892 }; 893 enum ib_wc_status status; 894 enum ib_wc_opcode opcode; 895 u32 vendor_err; 896 u32 byte_len; 897 struct ib_qp *qp; 898 union { 899 __be32 imm_data; 900 u32 invalidate_rkey; 901 } ex; 902 u32 src_qp; 903 int wc_flags; 904 u16 pkey_index; 905 u16 slid; 906 u8 sl; 907 u8 dlid_path_bits; 908 u8 port_num; /* valid only for DR SMPs on switches */ 909 u8 smac[ETH_ALEN]; 910 u16 vlan_id; 911 u8 network_hdr_type; 912 }; 913 914 enum ib_cq_notify_flags { 915 IB_CQ_SOLICITED = 1 << 0, 916 IB_CQ_NEXT_COMP = 1 << 1, 917 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP, 918 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2, 919 }; 920 921 enum ib_srq_type { 922 IB_SRQT_BASIC, 923 IB_SRQT_XRC, 924 IB_SRQT_TM, 925 }; 926 927 static inline bool ib_srq_has_cq(enum ib_srq_type srq_type) 928 { 929 return srq_type == IB_SRQT_XRC || 930 srq_type == IB_SRQT_TM; 931 } 932 933 enum ib_srq_attr_mask { 934 IB_SRQ_MAX_WR = 1 << 0, 935 IB_SRQ_LIMIT = 1 << 1, 936 }; 937 938 struct ib_srq_attr { 939 u32 max_wr; 940 u32 max_sge; 941 u32 srq_limit; 942 }; 943 944 struct ib_srq_init_attr { 945 void (*event_handler)(struct ib_event *, void *); 946 void *srq_context; 947 struct ib_srq_attr attr; 948 enum ib_srq_type srq_type; 949 950 struct { 951 struct ib_cq *cq; 952 union { 953 struct { 954 struct ib_xrcd *xrcd; 955 } xrc; 956 957 struct { 958 u32 max_num_tags; 959 } tag_matching; 960 }; 961 } ext; 962 }; 963 964 struct ib_qp_cap { 965 u32 max_send_wr; 966 u32 max_recv_wr; 967 u32 max_send_sge; 968 u32 max_recv_sge; 969 u32 max_inline_data; 970 971 /* 972 * Maximum number of rdma_rw_ctx structures in flight at a time. 973 * ib_create_qp() will calculate the right amount of neededed WRs 974 * and MRs based on this. 975 */ 976 u32 max_rdma_ctxs; 977 }; 978 979 enum ib_sig_type { 980 IB_SIGNAL_ALL_WR, 981 IB_SIGNAL_REQ_WR 982 }; 983 984 enum ib_qp_type { 985 /* 986 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries 987 * here (and in that order) since the MAD layer uses them as 988 * indices into a 2-entry table. 989 */ 990 IB_QPT_SMI, 991 IB_QPT_GSI, 992 993 IB_QPT_RC, 994 IB_QPT_UC, 995 IB_QPT_UD, 996 IB_QPT_RAW_IPV6, 997 IB_QPT_RAW_ETHERTYPE, 998 IB_QPT_RAW_PACKET = 8, 999 IB_QPT_XRC_INI = 9, 1000 IB_QPT_XRC_TGT, 1001 IB_QPT_MAX, 1002 IB_QPT_DRIVER = 0xFF, 1003 /* Reserve a range for qp types internal to the low level driver. 1004 * These qp types will not be visible at the IB core layer, so the 1005 * IB_QPT_MAX usages should not be affected in the core layer 1006 */ 1007 IB_QPT_RESERVED1 = 0x1000, 1008 IB_QPT_RESERVED2, 1009 IB_QPT_RESERVED3, 1010 IB_QPT_RESERVED4, 1011 IB_QPT_RESERVED5, 1012 IB_QPT_RESERVED6, 1013 IB_QPT_RESERVED7, 1014 IB_QPT_RESERVED8, 1015 IB_QPT_RESERVED9, 1016 IB_QPT_RESERVED10, 1017 }; 1018 1019 enum ib_qp_create_flags { 1020 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0, 1021 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1, 1022 IB_QP_CREATE_CROSS_CHANNEL = 1 << 2, 1023 IB_QP_CREATE_MANAGED_SEND = 1 << 3, 1024 IB_QP_CREATE_MANAGED_RECV = 1 << 4, 1025 IB_QP_CREATE_NETIF_QP = 1 << 5, 1026 IB_QP_CREATE_SIGNATURE_EN = 1 << 6, 1027 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7, 1028 IB_QP_CREATE_SCATTER_FCS = 1 << 8, 1029 IB_QP_CREATE_CVLAN_STRIPPING = 1 << 9, 1030 IB_QP_CREATE_SOURCE_QPN = 1 << 10, 1031 IB_QP_CREATE_PCI_WRITE_END_PADDING = 1 << 11, 1032 /* reserve bits 26-31 for low level drivers' internal use */ 1033 IB_QP_CREATE_RESERVED_START = 1 << 26, 1034 IB_QP_CREATE_RESERVED_END = 1 << 31, 1035 }; 1036 1037 /* 1038 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler 1039 * callback to destroy the passed in QP. 1040 */ 1041 1042 struct ib_qp_init_attr { 1043 void (*event_handler)(struct ib_event *, void *); 1044 void *qp_context; 1045 struct ib_cq *send_cq; 1046 struct ib_cq *recv_cq; 1047 struct ib_srq *srq; 1048 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1049 struct ib_qp_cap cap; 1050 enum ib_sig_type sq_sig_type; 1051 enum ib_qp_type qp_type; 1052 enum ib_qp_create_flags create_flags; 1053 1054 /* 1055 * Only needed for special QP types, or when using the RW API. 1056 */ 1057 u8 port_num; 1058 struct ib_rwq_ind_table *rwq_ind_tbl; 1059 u32 source_qpn; 1060 }; 1061 1062 struct ib_qp_open_attr { 1063 void (*event_handler)(struct ib_event *, void *); 1064 void *qp_context; 1065 u32 qp_num; 1066 enum ib_qp_type qp_type; 1067 }; 1068 1069 enum ib_rnr_timeout { 1070 IB_RNR_TIMER_655_36 = 0, 1071 IB_RNR_TIMER_000_01 = 1, 1072 IB_RNR_TIMER_000_02 = 2, 1073 IB_RNR_TIMER_000_03 = 3, 1074 IB_RNR_TIMER_000_04 = 4, 1075 IB_RNR_TIMER_000_06 = 5, 1076 IB_RNR_TIMER_000_08 = 6, 1077 IB_RNR_TIMER_000_12 = 7, 1078 IB_RNR_TIMER_000_16 = 8, 1079 IB_RNR_TIMER_000_24 = 9, 1080 IB_RNR_TIMER_000_32 = 10, 1081 IB_RNR_TIMER_000_48 = 11, 1082 IB_RNR_TIMER_000_64 = 12, 1083 IB_RNR_TIMER_000_96 = 13, 1084 IB_RNR_TIMER_001_28 = 14, 1085 IB_RNR_TIMER_001_92 = 15, 1086 IB_RNR_TIMER_002_56 = 16, 1087 IB_RNR_TIMER_003_84 = 17, 1088 IB_RNR_TIMER_005_12 = 18, 1089 IB_RNR_TIMER_007_68 = 19, 1090 IB_RNR_TIMER_010_24 = 20, 1091 IB_RNR_TIMER_015_36 = 21, 1092 IB_RNR_TIMER_020_48 = 22, 1093 IB_RNR_TIMER_030_72 = 23, 1094 IB_RNR_TIMER_040_96 = 24, 1095 IB_RNR_TIMER_061_44 = 25, 1096 IB_RNR_TIMER_081_92 = 26, 1097 IB_RNR_TIMER_122_88 = 27, 1098 IB_RNR_TIMER_163_84 = 28, 1099 IB_RNR_TIMER_245_76 = 29, 1100 IB_RNR_TIMER_327_68 = 30, 1101 IB_RNR_TIMER_491_52 = 31 1102 }; 1103 1104 enum ib_qp_attr_mask { 1105 IB_QP_STATE = 1, 1106 IB_QP_CUR_STATE = (1<<1), 1107 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2), 1108 IB_QP_ACCESS_FLAGS = (1<<3), 1109 IB_QP_PKEY_INDEX = (1<<4), 1110 IB_QP_PORT = (1<<5), 1111 IB_QP_QKEY = (1<<6), 1112 IB_QP_AV = (1<<7), 1113 IB_QP_PATH_MTU = (1<<8), 1114 IB_QP_TIMEOUT = (1<<9), 1115 IB_QP_RETRY_CNT = (1<<10), 1116 IB_QP_RNR_RETRY = (1<<11), 1117 IB_QP_RQ_PSN = (1<<12), 1118 IB_QP_MAX_QP_RD_ATOMIC = (1<<13), 1119 IB_QP_ALT_PATH = (1<<14), 1120 IB_QP_MIN_RNR_TIMER = (1<<15), 1121 IB_QP_SQ_PSN = (1<<16), 1122 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17), 1123 IB_QP_PATH_MIG_STATE = (1<<18), 1124 IB_QP_CAP = (1<<19), 1125 IB_QP_DEST_QPN = (1<<20), 1126 IB_QP_RESERVED1 = (1<<21), 1127 IB_QP_RESERVED2 = (1<<22), 1128 IB_QP_RESERVED3 = (1<<23), 1129 IB_QP_RESERVED4 = (1<<24), 1130 IB_QP_RATE_LIMIT = (1<<25), 1131 }; 1132 1133 enum ib_qp_state { 1134 IB_QPS_RESET, 1135 IB_QPS_INIT, 1136 IB_QPS_RTR, 1137 IB_QPS_RTS, 1138 IB_QPS_SQD, 1139 IB_QPS_SQE, 1140 IB_QPS_ERR, 1141 IB_QPS_DUMMY = -1, /* force enum signed */ 1142 }; 1143 1144 enum ib_mig_state { 1145 IB_MIG_MIGRATED, 1146 IB_MIG_REARM, 1147 IB_MIG_ARMED 1148 }; 1149 1150 enum ib_mw_type { 1151 IB_MW_TYPE_1 = 1, 1152 IB_MW_TYPE_2 = 2 1153 }; 1154 1155 struct ib_qp_attr { 1156 enum ib_qp_state qp_state; 1157 enum ib_qp_state cur_qp_state; 1158 enum ib_mtu path_mtu; 1159 enum ib_mig_state path_mig_state; 1160 u32 qkey; 1161 u32 rq_psn; 1162 u32 sq_psn; 1163 u32 dest_qp_num; 1164 int qp_access_flags; 1165 struct ib_qp_cap cap; 1166 struct ib_ah_attr ah_attr; 1167 struct ib_ah_attr alt_ah_attr; 1168 u16 pkey_index; 1169 u16 alt_pkey_index; 1170 u8 en_sqd_async_notify; 1171 u8 sq_draining; 1172 u8 max_rd_atomic; 1173 u8 max_dest_rd_atomic; 1174 u8 min_rnr_timer; 1175 u8 port_num; 1176 u8 timeout; 1177 u8 retry_cnt; 1178 u8 rnr_retry; 1179 u8 alt_port_num; 1180 u8 alt_timeout; 1181 u32 rate_limit; 1182 }; 1183 1184 enum ib_wr_opcode { 1185 IB_WR_RDMA_WRITE, 1186 IB_WR_RDMA_WRITE_WITH_IMM, 1187 IB_WR_SEND, 1188 IB_WR_SEND_WITH_IMM, 1189 IB_WR_RDMA_READ, 1190 IB_WR_ATOMIC_CMP_AND_SWP, 1191 IB_WR_ATOMIC_FETCH_AND_ADD, 1192 IB_WR_LSO, 1193 IB_WR_SEND_WITH_INV, 1194 IB_WR_RDMA_READ_WITH_INV, 1195 IB_WR_LOCAL_INV, 1196 IB_WR_REG_MR, 1197 IB_WR_MASKED_ATOMIC_CMP_AND_SWP, 1198 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD, 1199 IB_WR_REG_SIG_MR, 1200 /* reserve values for low level drivers' internal use. 1201 * These values will not be used at all in the ib core layer. 1202 */ 1203 IB_WR_RESERVED1 = 0xf0, 1204 IB_WR_RESERVED2, 1205 IB_WR_RESERVED3, 1206 IB_WR_RESERVED4, 1207 IB_WR_RESERVED5, 1208 IB_WR_RESERVED6, 1209 IB_WR_RESERVED7, 1210 IB_WR_RESERVED8, 1211 IB_WR_RESERVED9, 1212 IB_WR_RESERVED10, 1213 IB_WR_DUMMY = -1, /* force enum signed */ 1214 }; 1215 1216 enum ib_send_flags { 1217 IB_SEND_FENCE = 1, 1218 IB_SEND_SIGNALED = (1<<1), 1219 IB_SEND_SOLICITED = (1<<2), 1220 IB_SEND_INLINE = (1<<3), 1221 IB_SEND_IP_CSUM = (1<<4), 1222 1223 /* reserve bits 26-31 for low level drivers' internal use */ 1224 IB_SEND_RESERVED_START = (1 << 26), 1225 IB_SEND_RESERVED_END = (1 << 31), 1226 }; 1227 1228 struct ib_sge { 1229 u64 addr; 1230 u32 length; 1231 u32 lkey; 1232 }; 1233 1234 struct ib_cqe { 1235 void (*done)(struct ib_cq *cq, struct ib_wc *wc); 1236 }; 1237 1238 struct ib_send_wr { 1239 struct ib_send_wr *next; 1240 union { 1241 u64 wr_id; 1242 struct ib_cqe *wr_cqe; 1243 }; 1244 struct ib_sge *sg_list; 1245 int num_sge; 1246 enum ib_wr_opcode opcode; 1247 int send_flags; 1248 union { 1249 __be32 imm_data; 1250 u32 invalidate_rkey; 1251 } ex; 1252 }; 1253 1254 struct ib_rdma_wr { 1255 struct ib_send_wr wr; 1256 u64 remote_addr; 1257 u32 rkey; 1258 }; 1259 1260 static inline const struct ib_rdma_wr *rdma_wr(const struct ib_send_wr *wr) 1261 { 1262 return container_of(wr, struct ib_rdma_wr, wr); 1263 } 1264 1265 struct ib_atomic_wr { 1266 struct ib_send_wr wr; 1267 u64 remote_addr; 1268 u64 compare_add; 1269 u64 swap; 1270 u64 compare_add_mask; 1271 u64 swap_mask; 1272 u32 rkey; 1273 }; 1274 1275 static inline const struct ib_atomic_wr *atomic_wr(const struct ib_send_wr *wr) 1276 { 1277 return container_of(wr, struct ib_atomic_wr, wr); 1278 } 1279 1280 struct ib_ud_wr { 1281 struct ib_send_wr wr; 1282 struct ib_ah *ah; 1283 void *header; 1284 int hlen; 1285 int mss; 1286 u32 remote_qpn; 1287 u32 remote_qkey; 1288 u16 pkey_index; /* valid for GSI only */ 1289 u8 port_num; /* valid for DR SMPs on switch only */ 1290 }; 1291 1292 static inline const struct ib_ud_wr *ud_wr(const struct ib_send_wr *wr) 1293 { 1294 return container_of(wr, struct ib_ud_wr, wr); 1295 } 1296 1297 struct ib_reg_wr { 1298 struct ib_send_wr wr; 1299 struct ib_mr *mr; 1300 u32 key; 1301 int access; 1302 }; 1303 1304 static inline const struct ib_reg_wr *reg_wr(const struct ib_send_wr *wr) 1305 { 1306 return container_of(wr, struct ib_reg_wr, wr); 1307 } 1308 1309 struct ib_sig_handover_wr { 1310 struct ib_send_wr wr; 1311 struct ib_sig_attrs *sig_attrs; 1312 struct ib_mr *sig_mr; 1313 int access_flags; 1314 struct ib_sge *prot; 1315 }; 1316 1317 static inline const struct ib_sig_handover_wr *sig_handover_wr(const struct ib_send_wr *wr) 1318 { 1319 return container_of(wr, struct ib_sig_handover_wr, wr); 1320 } 1321 1322 struct ib_recv_wr { 1323 struct ib_recv_wr *next; 1324 union { 1325 u64 wr_id; 1326 struct ib_cqe *wr_cqe; 1327 }; 1328 struct ib_sge *sg_list; 1329 int num_sge; 1330 }; 1331 1332 enum ib_access_flags { 1333 IB_ACCESS_LOCAL_WRITE = IB_UVERBS_ACCESS_LOCAL_WRITE, 1334 IB_ACCESS_REMOTE_WRITE = IB_UVERBS_ACCESS_REMOTE_WRITE, 1335 IB_ACCESS_REMOTE_READ = IB_UVERBS_ACCESS_REMOTE_READ, 1336 IB_ACCESS_REMOTE_ATOMIC = IB_UVERBS_ACCESS_REMOTE_ATOMIC, 1337 IB_ACCESS_MW_BIND = IB_UVERBS_ACCESS_MW_BIND, 1338 IB_ZERO_BASED = IB_UVERBS_ACCESS_ZERO_BASED, 1339 IB_ACCESS_ON_DEMAND = IB_UVERBS_ACCESS_ON_DEMAND, 1340 IB_ACCESS_HUGETLB = IB_UVERBS_ACCESS_HUGETLB, 1341 IB_ACCESS_RELAXED_ORDERING = IB_UVERBS_ACCESS_RELAXED_ORDERING, 1342 1343 IB_ACCESS_OPTIONAL = IB_UVERBS_ACCESS_OPTIONAL_RANGE, 1344 IB_ACCESS_SUPPORTED = 1345 ((IB_ACCESS_HUGETLB << 1) - 1) | IB_ACCESS_OPTIONAL, 1346 }; 1347 1348 /* 1349 * XXX: these are apparently used for ->rereg_user_mr, no idea why they 1350 * are hidden here instead of a uapi header! 1351 */ 1352 enum ib_mr_rereg_flags { 1353 IB_MR_REREG_TRANS = 1, 1354 IB_MR_REREG_PD = (1<<1), 1355 IB_MR_REREG_ACCESS = (1<<2), 1356 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1) 1357 }; 1358 1359 struct ib_fmr_attr { 1360 int max_pages; 1361 int max_maps; 1362 u8 page_shift; 1363 }; 1364 1365 struct ib_umem; 1366 1367 enum rdma_remove_reason { 1368 /* 1369 * Userspace requested uobject deletion or initial try 1370 * to remove uobject via cleanup. Call could fail 1371 */ 1372 RDMA_REMOVE_DESTROY, 1373 /* Context deletion. This call should delete the actual object itself */ 1374 RDMA_REMOVE_CLOSE, 1375 /* Driver is being hot-unplugged. This call should delete the actual object itself */ 1376 RDMA_REMOVE_DRIVER_REMOVE, 1377 /* uobj is being cleaned-up before being committed */ 1378 RDMA_REMOVE_ABORT, 1379 }; 1380 1381 struct ib_rdmacg_object { 1382 }; 1383 1384 struct ib_ucontext { 1385 struct ib_device *device; 1386 struct ib_uverbs_file *ufile; 1387 /* 1388 * 'closing' can be read by the driver only during a destroy callback, 1389 * it is set when we are closing the file descriptor and indicates 1390 * that mm_sem may be locked. 1391 */ 1392 bool closing; 1393 1394 bool cleanup_retryable; 1395 1396 struct ib_rdmacg_object cg_obj; 1397 /* 1398 * Implementation details of the RDMA core, don't use in drivers: 1399 */ 1400 struct xarray mmap_xa; 1401 }; 1402 1403 struct ib_uobject { 1404 u64 user_handle; /* handle given to us by userspace */ 1405 /* ufile & ucontext owning this object */ 1406 struct ib_uverbs_file *ufile; 1407 /* FIXME, save memory: ufile->context == context */ 1408 struct ib_ucontext *context; /* associated user context */ 1409 void *object; /* containing object */ 1410 struct list_head list; /* link to context's list */ 1411 struct ib_rdmacg_object cg_obj; /* rdmacg object */ 1412 int id; /* index into kernel idr */ 1413 struct kref ref; 1414 atomic_t usecnt; /* protects exclusive access */ 1415 struct rcu_head rcu; /* kfree_rcu() overhead */ 1416 1417 const struct uverbs_api_object *uapi_object; 1418 }; 1419 1420 struct ib_udata { 1421 const u8 __user *inbuf; 1422 u8 __user *outbuf; 1423 size_t inlen; 1424 size_t outlen; 1425 }; 1426 1427 struct ib_pd { 1428 u32 local_dma_lkey; 1429 u32 flags; 1430 struct ib_device *device; 1431 struct ib_uobject *uobject; 1432 atomic_t usecnt; /* count all resources */ 1433 1434 u32 unsafe_global_rkey; 1435 1436 /* 1437 * Implementation details of the RDMA core, don't use in drivers: 1438 */ 1439 struct ib_mr *__internal_mr; 1440 }; 1441 1442 struct ib_xrcd { 1443 struct ib_device *device; 1444 atomic_t usecnt; /* count all exposed resources */ 1445 struct inode *inode; 1446 1447 struct mutex tgt_qp_mutex; 1448 struct list_head tgt_qp_list; 1449 }; 1450 1451 struct ib_ah { 1452 struct ib_device *device; 1453 struct ib_pd *pd; 1454 struct ib_uobject *uobject; 1455 }; 1456 1457 typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context); 1458 1459 enum ib_poll_context { 1460 IB_POLL_DIRECT, /* caller context, no hw completions */ 1461 IB_POLL_SOFTIRQ, /* poll from softirq context */ 1462 IB_POLL_WORKQUEUE, /* poll from workqueue */ 1463 }; 1464 1465 struct ib_cq { 1466 struct ib_device *device; 1467 struct ib_ucq_object *uobject; 1468 ib_comp_handler comp_handler; 1469 void (*event_handler)(struct ib_event *, void *); 1470 void *cq_context; 1471 int cqe; 1472 atomic_t usecnt; /* count number of work queues */ 1473 enum ib_poll_context poll_ctx; 1474 struct work_struct work; 1475 }; 1476 1477 struct ib_srq { 1478 struct ib_device *device; 1479 struct ib_pd *pd; 1480 struct ib_usrq_object *uobject; 1481 void (*event_handler)(struct ib_event *, void *); 1482 void *srq_context; 1483 enum ib_srq_type srq_type; 1484 atomic_t usecnt; 1485 1486 struct { 1487 struct ib_cq *cq; 1488 union { 1489 struct { 1490 struct ib_xrcd *xrcd; 1491 u32 srq_num; 1492 } xrc; 1493 }; 1494 } ext; 1495 }; 1496 1497 enum ib_wq_type { 1498 IB_WQT_RQ 1499 }; 1500 1501 enum ib_wq_state { 1502 IB_WQS_RESET, 1503 IB_WQS_RDY, 1504 IB_WQS_ERR 1505 }; 1506 1507 struct ib_wq { 1508 struct ib_device *device; 1509 struct ib_uwq_object *uobject; 1510 void *wq_context; 1511 void (*event_handler)(struct ib_event *, void *); 1512 struct ib_pd *pd; 1513 struct ib_cq *cq; 1514 u32 wq_num; 1515 enum ib_wq_state state; 1516 enum ib_wq_type wq_type; 1517 atomic_t usecnt; 1518 }; 1519 1520 enum ib_wq_flags { 1521 IB_WQ_FLAGS_CVLAN_STRIPPING = 1 << 0, 1522 IB_WQ_FLAGS_SCATTER_FCS = 1 << 1, 1523 IB_WQ_FLAGS_DELAY_DROP = 1 << 2, 1524 IB_WQ_FLAGS_PCI_WRITE_END_PADDING = 1 << 3, 1525 }; 1526 1527 struct ib_wq_init_attr { 1528 void *wq_context; 1529 enum ib_wq_type wq_type; 1530 u32 max_wr; 1531 u32 max_sge; 1532 struct ib_cq *cq; 1533 void (*event_handler)(struct ib_event *, void *); 1534 u32 create_flags; /* Use enum ib_wq_flags */ 1535 }; 1536 1537 enum ib_wq_attr_mask { 1538 IB_WQ_STATE = 1 << 0, 1539 IB_WQ_CUR_STATE = 1 << 1, 1540 IB_WQ_FLAGS = 1 << 2, 1541 }; 1542 1543 struct ib_wq_attr { 1544 enum ib_wq_state wq_state; 1545 enum ib_wq_state curr_wq_state; 1546 u32 flags; /* Use enum ib_wq_flags */ 1547 u32 flags_mask; /* Use enum ib_wq_flags */ 1548 }; 1549 1550 struct ib_rwq_ind_table { 1551 struct ib_device *device; 1552 struct ib_uobject *uobject; 1553 atomic_t usecnt; 1554 u32 ind_tbl_num; 1555 u32 log_ind_tbl_size; 1556 struct ib_wq **ind_tbl; 1557 }; 1558 1559 struct ib_rwq_ind_table_init_attr { 1560 u32 log_ind_tbl_size; 1561 /* Each entry is a pointer to Receive Work Queue */ 1562 struct ib_wq **ind_tbl; 1563 }; 1564 1565 /* 1566 * @max_write_sge: Maximum SGE elements per RDMA WRITE request. 1567 * @max_read_sge: Maximum SGE elements per RDMA READ request. 1568 */ 1569 struct ib_qp { 1570 struct ib_device *device; 1571 struct ib_pd *pd; 1572 struct ib_cq *send_cq; 1573 struct ib_cq *recv_cq; 1574 spinlock_t mr_lock; 1575 struct ib_srq *srq; 1576 struct ib_xrcd *xrcd; /* XRC TGT QPs only */ 1577 struct list_head xrcd_list; 1578 1579 /* count times opened, mcast attaches, flow attaches */ 1580 atomic_t usecnt; 1581 struct list_head open_list; 1582 struct ib_qp *real_qp; 1583 struct ib_uqp_object *uobject; 1584 void (*event_handler)(struct ib_event *, void *); 1585 void *qp_context; 1586 u32 qp_num; 1587 u32 max_write_sge; 1588 u32 max_read_sge; 1589 enum ib_qp_type qp_type; 1590 struct ib_rwq_ind_table *rwq_ind_tbl; 1591 u8 port; 1592 }; 1593 1594 struct ib_dm { 1595 struct ib_device *device; 1596 u32 length; 1597 u32 flags; 1598 struct ib_uobject *uobject; 1599 atomic_t usecnt; 1600 }; 1601 1602 struct ib_mr { 1603 struct ib_device *device; 1604 struct ib_pd *pd; 1605 u32 lkey; 1606 u32 rkey; 1607 u64 iova; 1608 u64 length; 1609 unsigned int page_size; 1610 enum ib_mr_type type; 1611 bool need_inval; 1612 union { 1613 struct ib_uobject *uobject; /* user */ 1614 struct list_head qp_entry; /* FR */ 1615 }; 1616 1617 struct ib_dm *dm; 1618 struct ib_sig_attrs *sig_attrs; /* only for IB_MR_TYPE_INTEGRITY MRs */ 1619 }; 1620 1621 struct ib_mw { 1622 struct ib_device *device; 1623 struct ib_pd *pd; 1624 struct ib_uobject *uobject; 1625 u32 rkey; 1626 enum ib_mw_type type; 1627 }; 1628 1629 struct ib_fmr { 1630 struct ib_device *device; 1631 struct ib_pd *pd; 1632 struct list_head list; 1633 u32 lkey; 1634 u32 rkey; 1635 }; 1636 1637 /* Supported steering options */ 1638 enum ib_flow_attr_type { 1639 /* steering according to rule specifications */ 1640 IB_FLOW_ATTR_NORMAL = 0x0, 1641 /* default unicast and multicast rule - 1642 * receive all Eth traffic which isn't steered to any QP 1643 */ 1644 IB_FLOW_ATTR_ALL_DEFAULT = 0x1, 1645 /* default multicast rule - 1646 * receive all Eth multicast traffic which isn't steered to any QP 1647 */ 1648 IB_FLOW_ATTR_MC_DEFAULT = 0x2, 1649 /* sniffer rule - receive all port traffic */ 1650 IB_FLOW_ATTR_SNIFFER = 0x3 1651 }; 1652 1653 /* Supported steering header types */ 1654 enum ib_flow_spec_type { 1655 /* L2 headers*/ 1656 IB_FLOW_SPEC_ETH = 0x20, 1657 IB_FLOW_SPEC_IB = 0x22, 1658 /* L3 header*/ 1659 IB_FLOW_SPEC_IPV4 = 0x30, 1660 IB_FLOW_SPEC_IPV6 = 0x31, 1661 IB_FLOW_SPEC_ESP = 0x34, 1662 /* L4 headers*/ 1663 IB_FLOW_SPEC_TCP = 0x40, 1664 IB_FLOW_SPEC_UDP = 0x41, 1665 IB_FLOW_SPEC_VXLAN_TUNNEL = 0x50, 1666 IB_FLOW_SPEC_GRE = 0x51, 1667 IB_FLOW_SPEC_MPLS = 0x60, 1668 IB_FLOW_SPEC_INNER = 0x100, 1669 /* Actions */ 1670 IB_FLOW_SPEC_ACTION_TAG = 0x1000, 1671 IB_FLOW_SPEC_ACTION_DROP = 0x1001, 1672 IB_FLOW_SPEC_ACTION_HANDLE = 0x1002, 1673 IB_FLOW_SPEC_ACTION_COUNT = 0x1003, 1674 }; 1675 #define IB_FLOW_SPEC_LAYER_MASK 0xF0 1676 #define IB_FLOW_SPEC_SUPPORT_LAYERS 10 1677 1678 /* Flow steering rule priority is set according to it's domain. 1679 * Lower domain value means higher priority. 1680 */ 1681 enum ib_flow_domain { 1682 IB_FLOW_DOMAIN_USER, 1683 IB_FLOW_DOMAIN_ETHTOOL, 1684 IB_FLOW_DOMAIN_RFS, 1685 IB_FLOW_DOMAIN_NIC, 1686 IB_FLOW_DOMAIN_NUM /* Must be last */ 1687 }; 1688 1689 enum ib_flow_flags { 1690 IB_FLOW_ATTR_FLAGS_DONT_TRAP = 1UL << 1, /* Continue match, no steal */ 1691 IB_FLOW_ATTR_FLAGS_RESERVED = 1UL << 2 /* Must be last */ 1692 }; 1693 1694 struct ib_flow_eth_filter { 1695 u8 dst_mac[6]; 1696 u8 src_mac[6]; 1697 __be16 ether_type; 1698 __be16 vlan_tag; 1699 /* Must be last */ 1700 u8 real_sz[0]; 1701 }; 1702 1703 struct ib_flow_spec_eth { 1704 enum ib_flow_spec_type type; 1705 u16 size; 1706 struct ib_flow_eth_filter val; 1707 struct ib_flow_eth_filter mask; 1708 }; 1709 1710 struct ib_flow_ib_filter { 1711 __be16 dlid; 1712 __u8 sl; 1713 /* Must be last */ 1714 u8 real_sz[0]; 1715 }; 1716 1717 struct ib_flow_spec_ib { 1718 enum ib_flow_spec_type type; 1719 u16 size; 1720 struct ib_flow_ib_filter val; 1721 struct ib_flow_ib_filter mask; 1722 }; 1723 1724 /* IPv4 header flags */ 1725 enum ib_ipv4_flags { 1726 IB_IPV4_DONT_FRAG = 0x2, /* Don't enable packet fragmentation */ 1727 IB_IPV4_MORE_FRAG = 0X4 /* For All fragmented packets except the 1728 last have this flag set */ 1729 }; 1730 1731 struct ib_flow_ipv4_filter { 1732 __be32 src_ip; 1733 __be32 dst_ip; 1734 u8 proto; 1735 u8 tos; 1736 u8 ttl; 1737 u8 flags; 1738 /* Must be last */ 1739 u8 real_sz[0]; 1740 }; 1741 1742 struct ib_flow_spec_ipv4 { 1743 enum ib_flow_spec_type type; 1744 u16 size; 1745 struct ib_flow_ipv4_filter val; 1746 struct ib_flow_ipv4_filter mask; 1747 }; 1748 1749 struct ib_flow_ipv6_filter { 1750 u8 src_ip[16]; 1751 u8 dst_ip[16]; 1752 __be32 flow_label; 1753 u8 next_hdr; 1754 u8 traffic_class; 1755 u8 hop_limit; 1756 /* Must be last */ 1757 u8 real_sz[0]; 1758 }; 1759 1760 struct ib_flow_spec_ipv6 { 1761 enum ib_flow_spec_type type; 1762 u16 size; 1763 struct ib_flow_ipv6_filter val; 1764 struct ib_flow_ipv6_filter mask; 1765 }; 1766 1767 struct ib_flow_tcp_udp_filter { 1768 __be16 dst_port; 1769 __be16 src_port; 1770 /* Must be last */ 1771 u8 real_sz[0]; 1772 }; 1773 1774 struct ib_flow_spec_tcp_udp { 1775 enum ib_flow_spec_type type; 1776 u16 size; 1777 struct ib_flow_tcp_udp_filter val; 1778 struct ib_flow_tcp_udp_filter mask; 1779 }; 1780 1781 struct ib_flow_tunnel_filter { 1782 __be32 tunnel_id; 1783 u8 real_sz[0]; 1784 }; 1785 1786 /* ib_flow_spec_tunnel describes the Vxlan tunnel 1787 * the tunnel_id from val has the vni value 1788 */ 1789 struct ib_flow_spec_tunnel { 1790 u32 type; 1791 u16 size; 1792 struct ib_flow_tunnel_filter val; 1793 struct ib_flow_tunnel_filter mask; 1794 }; 1795 1796 struct ib_flow_esp_filter { 1797 __be32 spi; 1798 __be32 seq; 1799 /* Must be last */ 1800 u8 real_sz[0]; 1801 }; 1802 1803 struct ib_flow_spec_esp { 1804 u32 type; 1805 u16 size; 1806 struct ib_flow_esp_filter val; 1807 struct ib_flow_esp_filter mask; 1808 }; 1809 1810 struct ib_flow_gre_filter { 1811 __be16 c_ks_res0_ver; 1812 __be16 protocol; 1813 __be32 key; 1814 /* Must be last */ 1815 u8 real_sz[0]; 1816 }; 1817 1818 struct ib_flow_spec_gre { 1819 u32 type; 1820 u16 size; 1821 struct ib_flow_gre_filter val; 1822 struct ib_flow_gre_filter mask; 1823 }; 1824 1825 struct ib_flow_mpls_filter { 1826 __be32 tag; 1827 /* Must be last */ 1828 u8 real_sz[0]; 1829 }; 1830 1831 struct ib_flow_spec_mpls { 1832 u32 type; 1833 u16 size; 1834 struct ib_flow_mpls_filter val; 1835 struct ib_flow_mpls_filter mask; 1836 }; 1837 1838 struct ib_flow_spec_action_tag { 1839 enum ib_flow_spec_type type; 1840 u16 size; 1841 u32 tag_id; 1842 }; 1843 1844 struct ib_flow_spec_action_drop { 1845 enum ib_flow_spec_type type; 1846 u16 size; 1847 }; 1848 1849 struct ib_flow_spec_action_handle { 1850 enum ib_flow_spec_type type; 1851 u16 size; 1852 struct ib_flow_action *act; 1853 }; 1854 1855 enum ib_counters_description { 1856 IB_COUNTER_PACKETS, 1857 IB_COUNTER_BYTES, 1858 }; 1859 1860 struct ib_flow_spec_action_count { 1861 enum ib_flow_spec_type type; 1862 u16 size; 1863 struct ib_counters *counters; 1864 }; 1865 1866 union ib_flow_spec { 1867 struct { 1868 u32 type; 1869 u16 size; 1870 }; 1871 struct ib_flow_spec_eth eth; 1872 struct ib_flow_spec_ib ib; 1873 struct ib_flow_spec_ipv4 ipv4; 1874 struct ib_flow_spec_tcp_udp tcp_udp; 1875 struct ib_flow_spec_ipv6 ipv6; 1876 struct ib_flow_spec_tunnel tunnel; 1877 struct ib_flow_spec_esp esp; 1878 struct ib_flow_spec_gre gre; 1879 struct ib_flow_spec_mpls mpls; 1880 struct ib_flow_spec_action_tag flow_tag; 1881 struct ib_flow_spec_action_drop drop; 1882 struct ib_flow_spec_action_handle action; 1883 struct ib_flow_spec_action_count flow_count; 1884 }; 1885 1886 struct ib_flow_attr { 1887 enum ib_flow_attr_type type; 1888 u16 size; 1889 u16 priority; 1890 u32 flags; 1891 u8 num_of_specs; 1892 u8 port; 1893 union ib_flow_spec flows[0]; 1894 }; 1895 1896 struct ib_flow { 1897 struct ib_qp *qp; 1898 struct ib_device *device; 1899 struct ib_uobject *uobject; 1900 }; 1901 1902 enum ib_flow_action_type { 1903 IB_FLOW_ACTION_UNSPECIFIED, 1904 IB_FLOW_ACTION_ESP = 1, 1905 }; 1906 1907 struct ib_flow_action_attrs_esp_keymats { 1908 enum ib_uverbs_flow_action_esp_keymat protocol; 1909 union { 1910 struct ib_uverbs_flow_action_esp_keymat_aes_gcm aes_gcm; 1911 } keymat; 1912 }; 1913 1914 struct ib_flow_action_attrs_esp_replays { 1915 enum ib_uverbs_flow_action_esp_replay protocol; 1916 union { 1917 struct ib_uverbs_flow_action_esp_replay_bmp bmp; 1918 } replay; 1919 }; 1920 1921 enum ib_flow_action_attrs_esp_flags { 1922 /* All user-space flags at the top: Use enum ib_uverbs_flow_action_esp_flags 1923 * This is done in order to share the same flags between user-space and 1924 * kernel and spare an unnecessary translation. 1925 */ 1926 1927 /* Kernel flags */ 1928 IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED = 1ULL << 32, 1929 IB_FLOW_ACTION_ESP_FLAGS_MOD_ESP_ATTRS = 1ULL << 33, 1930 }; 1931 1932 struct ib_flow_spec_list { 1933 struct ib_flow_spec_list *next; 1934 union ib_flow_spec spec; 1935 }; 1936 1937 struct ib_flow_action_attrs_esp { 1938 struct ib_flow_action_attrs_esp_keymats *keymat; 1939 struct ib_flow_action_attrs_esp_replays *replay; 1940 struct ib_flow_spec_list *encap; 1941 /* Used only if IB_FLOW_ACTION_ESP_FLAGS_ESN_TRIGGERED is enabled. 1942 * Value of 0 is a valid value. 1943 */ 1944 u32 esn; 1945 u32 spi; 1946 u32 seq; 1947 u32 tfc_pad; 1948 /* Use enum ib_flow_action_attrs_esp_flags */ 1949 u64 flags; 1950 u64 hard_limit_pkts; 1951 }; 1952 1953 struct ib_flow_action { 1954 struct ib_device *device; 1955 struct ib_uobject *uobject; 1956 enum ib_flow_action_type type; 1957 atomic_t usecnt; 1958 }; 1959 1960 1961 struct ib_mad_hdr; 1962 struct ib_grh; 1963 1964 enum ib_process_mad_flags { 1965 IB_MAD_IGNORE_MKEY = 1, 1966 IB_MAD_IGNORE_BKEY = 2, 1967 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY 1968 }; 1969 1970 enum ib_mad_result { 1971 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */ 1972 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */ 1973 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */ 1974 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */ 1975 }; 1976 1977 #define IB_DEVICE_NAME_MAX 64 1978 1979 struct ib_cache { 1980 rwlock_t lock; 1981 struct ib_event_handler event_handler; 1982 struct ib_pkey_cache **pkey_cache; 1983 struct ib_gid_table **gid_cache; 1984 u8 *lmc_cache; 1985 }; 1986 1987 struct ib_dma_mapping_ops { 1988 int (*mapping_error)(struct ib_device *dev, 1989 u64 dma_addr); 1990 u64 (*map_single)(struct ib_device *dev, 1991 void *ptr, size_t size, 1992 enum dma_data_direction direction); 1993 void (*unmap_single)(struct ib_device *dev, 1994 u64 addr, size_t size, 1995 enum dma_data_direction direction); 1996 u64 (*map_page)(struct ib_device *dev, 1997 struct page *page, unsigned long offset, 1998 size_t size, 1999 enum dma_data_direction direction); 2000 void (*unmap_page)(struct ib_device *dev, 2001 u64 addr, size_t size, 2002 enum dma_data_direction direction); 2003 int (*map_sg)(struct ib_device *dev, 2004 struct scatterlist *sg, int nents, 2005 enum dma_data_direction direction); 2006 void (*unmap_sg)(struct ib_device *dev, 2007 struct scatterlist *sg, int nents, 2008 enum dma_data_direction direction); 2009 int (*map_sg_attrs)(struct ib_device *dev, 2010 struct scatterlist *sg, int nents, 2011 enum dma_data_direction direction, 2012 struct dma_attrs *attrs); 2013 void (*unmap_sg_attrs)(struct ib_device *dev, 2014 struct scatterlist *sg, int nents, 2015 enum dma_data_direction direction, 2016 struct dma_attrs *attrs); 2017 void (*sync_single_for_cpu)(struct ib_device *dev, 2018 u64 dma_handle, 2019 size_t size, 2020 enum dma_data_direction dir); 2021 void (*sync_single_for_device)(struct ib_device *dev, 2022 u64 dma_handle, 2023 size_t size, 2024 enum dma_data_direction dir); 2025 void *(*alloc_coherent)(struct ib_device *dev, 2026 size_t size, 2027 u64 *dma_handle, 2028 gfp_t flag); 2029 void (*free_coherent)(struct ib_device *dev, 2030 size_t size, void *cpu_addr, 2031 u64 dma_handle); 2032 }; 2033 2034 struct iw_cm_verbs; 2035 2036 struct ib_port_immutable { 2037 int pkey_tbl_len; 2038 int gid_tbl_len; 2039 u32 core_cap_flags; 2040 u32 max_mad_size; 2041 }; 2042 2043 struct ib_counters { 2044 struct ib_device *device; 2045 struct ib_uobject *uobject; 2046 /* num of objects attached */ 2047 atomic_t usecnt; 2048 }; 2049 2050 struct ib_counters_read_attr { 2051 u64 *counters_buff; 2052 u32 ncounters; 2053 u32 flags; /* use enum ib_read_counters_flags */ 2054 }; 2055 2056 #define INIT_RDMA_OBJ_SIZE(ib_struct, drv_struct, member) \ 2057 .size_##ib_struct = \ 2058 (sizeof(struct drv_struct) + \ 2059 BUILD_BUG_ON_ZERO(offsetof(struct drv_struct, member)) + \ 2060 BUILD_BUG_ON_ZERO( \ 2061 !__same_type(((struct drv_struct *)NULL)->member, \ 2062 struct ib_struct))) 2063 2064 #define rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, gfp) \ 2065 ((struct ib_type *)kzalloc(ib_dev->ops.size_##ib_type, gfp)) 2066 2067 #define rdma_zalloc_drv_obj(ib_dev, ib_type) \ 2068 rdma_zalloc_drv_obj_gfp(ib_dev, ib_type, GFP_KERNEL) 2069 2070 #define DECLARE_RDMA_OBJ_SIZE(ib_struct) size_t size_##ib_struct 2071 2072 struct rdma_user_mmap_entry { 2073 struct kref ref; 2074 struct ib_ucontext *ucontext; 2075 unsigned long start_pgoff; 2076 size_t npages; 2077 bool driver_removed; 2078 }; 2079 2080 /* Return the offset (in bytes) the user should pass to libc's mmap() */ 2081 static inline u64 2082 rdma_user_mmap_get_offset(const struct rdma_user_mmap_entry *entry) 2083 { 2084 return (u64)entry->start_pgoff << PAGE_SHIFT; 2085 } 2086 2087 struct ib_device_ops { 2088 enum rdma_driver_id driver_id; 2089 DECLARE_RDMA_OBJ_SIZE(ib_ah); 2090 DECLARE_RDMA_OBJ_SIZE(ib_cq); 2091 DECLARE_RDMA_OBJ_SIZE(ib_pd); 2092 DECLARE_RDMA_OBJ_SIZE(ib_srq); 2093 DECLARE_RDMA_OBJ_SIZE(ib_ucontext); 2094 }; 2095 2096 #define INIT_IB_DEVICE_OPS(pop, driver, DRIVER) do { \ 2097 (pop)[0] .driver_id = RDMA_DRIVER_##DRIVER; \ 2098 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ah, driver##_ib_ah, ibah); \ 2099 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_cq, driver##_ib_cq, ibcq); \ 2100 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_pd, driver##_ib_pd, ibpd); \ 2101 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_srq, driver##_ib_srq, ibsrq); \ 2102 (pop)[0] INIT_RDMA_OBJ_SIZE(ib_ucontext, driver##_ib_ucontext, ibucontext); \ 2103 } while (0) 2104 2105 struct ib_device { 2106 struct device *dma_device; 2107 struct ib_device_ops ops; 2108 2109 char name[IB_DEVICE_NAME_MAX]; 2110 2111 struct list_head event_handler_list; 2112 spinlock_t event_handler_lock; 2113 2114 spinlock_t client_data_lock; 2115 struct list_head core_list; 2116 /* Access to the client_data_list is protected by the client_data_lock 2117 * spinlock and the lists_rwsem read-write semaphore */ 2118 struct list_head client_data_list; 2119 2120 struct ib_cache cache; 2121 /** 2122 * port_immutable is indexed by port number 2123 */ 2124 struct ib_port_immutable *port_immutable; 2125 2126 int num_comp_vectors; 2127 2128 struct iw_cm_verbs *iwcm; 2129 2130 /** 2131 * alloc_hw_stats - Allocate a struct rdma_hw_stats and fill in the 2132 * driver initialized data. The struct is kfree()'ed by the sysfs 2133 * core when the device is removed. A lifespan of -1 in the return 2134 * struct tells the core to set a default lifespan. 2135 */ 2136 struct rdma_hw_stats *(*alloc_hw_stats)(struct ib_device *device, 2137 u8 port_num); 2138 /** 2139 * get_hw_stats - Fill in the counter value(s) in the stats struct. 2140 * @index - The index in the value array we wish to have updated, or 2141 * num_counters if we want all stats updated 2142 * Return codes - 2143 * < 0 - Error, no counters updated 2144 * index - Updated the single counter pointed to by index 2145 * num_counters - Updated all counters (will reset the timestamp 2146 * and prevent further calls for lifespan milliseconds) 2147 * Drivers are allowed to update all counters in leiu of just the 2148 * one given in index at their option 2149 */ 2150 int (*get_hw_stats)(struct ib_device *device, 2151 struct rdma_hw_stats *stats, 2152 u8 port, int index); 2153 int (*query_device)(struct ib_device *device, 2154 struct ib_device_attr *device_attr, 2155 struct ib_udata *udata); 2156 int (*query_port)(struct ib_device *device, 2157 u8 port_num, 2158 struct ib_port_attr *port_attr); 2159 enum rdma_link_layer (*get_link_layer)(struct ib_device *device, 2160 u8 port_num); 2161 /* When calling get_netdev, the HW vendor's driver should return the 2162 * net device of device @device at port @port_num or NULL if such 2163 * a net device doesn't exist. The vendor driver should call dev_hold 2164 * on this net device. The HW vendor's device driver must guarantee 2165 * that this function returns NULL before the net device reaches 2166 * NETDEV_UNREGISTER_FINAL state. 2167 */ 2168 struct ifnet *(*get_netdev)(struct ib_device *device, 2169 u8 port_num); 2170 int (*query_gid)(struct ib_device *device, 2171 u8 port_num, int index, 2172 union ib_gid *gid); 2173 /* When calling add_gid, the HW vendor's driver should 2174 * add the gid of device @device at gid index @index of 2175 * port @port_num to be @gid. Meta-info of that gid (for example, 2176 * the network device related to this gid is available 2177 * at @attr. @context allows the HW vendor driver to store extra 2178 * information together with a GID entry. The HW vendor may allocate 2179 * memory to contain this information and store it in @context when a 2180 * new GID entry is written to. Params are consistent until the next 2181 * call of add_gid or delete_gid. The function should return 0 on 2182 * success or error otherwise. The function could be called 2183 * concurrently for different ports. This function is only called 2184 * when roce_gid_table is used. 2185 */ 2186 int (*add_gid)(struct ib_device *device, 2187 u8 port_num, 2188 unsigned int index, 2189 const union ib_gid *gid, 2190 const struct ib_gid_attr *attr, 2191 void **context); 2192 /* When calling del_gid, the HW vendor's driver should delete the 2193 * gid of device @device at gid index @index of port @port_num. 2194 * Upon the deletion of a GID entry, the HW vendor must free any 2195 * allocated memory. The caller will clear @context afterwards. 2196 * This function is only called when roce_gid_table is used. 2197 */ 2198 int (*del_gid)(struct ib_device *device, 2199 u8 port_num, 2200 unsigned int index, 2201 void **context); 2202 int (*query_pkey)(struct ib_device *device, 2203 u8 port_num, u16 index, u16 *pkey); 2204 int (*modify_device)(struct ib_device *device, 2205 int device_modify_mask, 2206 struct ib_device_modify *device_modify); 2207 int (*modify_port)(struct ib_device *device, 2208 u8 port_num, int port_modify_mask, 2209 struct ib_port_modify *port_modify); 2210 int (*alloc_ucontext)(struct ib_ucontext *uctx, 2211 struct ib_udata *udata); 2212 void (*dealloc_ucontext)(struct ib_ucontext *context); 2213 int (*mmap)(struct ib_ucontext *context, 2214 struct vm_area_struct *vma); 2215 int (*alloc_pd)(struct ib_pd *pd, 2216 struct ib_udata *udata); 2217 void (*dealloc_pd)(struct ib_pd *pd, struct ib_udata *udata); 2218 int (*create_ah)(struct ib_ah *ah, struct ib_ah_attr *ah_attr, 2219 u32 flags, struct ib_udata *udata); 2220 int (*modify_ah)(struct ib_ah *ah, 2221 struct ib_ah_attr *ah_attr); 2222 int (*query_ah)(struct ib_ah *ah, 2223 struct ib_ah_attr *ah_attr); 2224 void (*destroy_ah)(struct ib_ah *ah, u32 flags); 2225 int (*create_srq)(struct ib_srq *srq, 2226 struct ib_srq_init_attr *srq_init_attr, 2227 struct ib_udata *udata); 2228 int (*modify_srq)(struct ib_srq *srq, 2229 struct ib_srq_attr *srq_attr, 2230 enum ib_srq_attr_mask srq_attr_mask, 2231 struct ib_udata *udata); 2232 int (*query_srq)(struct ib_srq *srq, 2233 struct ib_srq_attr *srq_attr); 2234 void (*destroy_srq)(struct ib_srq *srq, struct ib_udata *udata); 2235 int (*post_srq_recv)(struct ib_srq *srq, 2236 const struct ib_recv_wr *recv_wr, 2237 const struct ib_recv_wr **bad_recv_wr); 2238 struct ib_qp * (*create_qp)(struct ib_pd *pd, 2239 struct ib_qp_init_attr *qp_init_attr, 2240 struct ib_udata *udata); 2241 int (*modify_qp)(struct ib_qp *qp, 2242 struct ib_qp_attr *qp_attr, 2243 int qp_attr_mask, 2244 struct ib_udata *udata); 2245 int (*query_qp)(struct ib_qp *qp, 2246 struct ib_qp_attr *qp_attr, 2247 int qp_attr_mask, 2248 struct ib_qp_init_attr *qp_init_attr); 2249 int (*destroy_qp)(struct ib_qp *qp, struct ib_udata *udata); 2250 int (*post_send)(struct ib_qp *qp, 2251 const struct ib_send_wr *send_wr, 2252 const struct ib_send_wr **bad_send_wr); 2253 int (*post_recv)(struct ib_qp *qp, 2254 const struct ib_recv_wr *recv_wr, 2255 const struct ib_recv_wr **bad_recv_wr); 2256 int (*create_cq)(struct ib_cq *, 2257 const struct ib_cq_init_attr *attr, 2258 struct ib_udata *udata); 2259 int (*modify_cq)(struct ib_cq *cq, u16 cq_count, 2260 u16 cq_period); 2261 void (*destroy_cq)(struct ib_cq *cq, struct ib_udata *udata); 2262 int (*resize_cq)(struct ib_cq *cq, int cqe, 2263 struct ib_udata *udata); 2264 int (*poll_cq)(struct ib_cq *cq, int num_entries, 2265 struct ib_wc *wc); 2266 int (*peek_cq)(struct ib_cq *cq, int wc_cnt); 2267 int (*req_notify_cq)(struct ib_cq *cq, 2268 enum ib_cq_notify_flags flags); 2269 int (*req_ncomp_notif)(struct ib_cq *cq, 2270 int wc_cnt); 2271 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd, 2272 int mr_access_flags); 2273 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd, 2274 u64 start, u64 length, 2275 u64 virt_addr, 2276 int mr_access_flags, 2277 struct ib_udata *udata); 2278 int (*rereg_user_mr)(struct ib_mr *mr, 2279 int flags, 2280 u64 start, u64 length, 2281 u64 virt_addr, 2282 int mr_access_flags, 2283 struct ib_pd *pd, 2284 struct ib_udata *udata); 2285 int (*dereg_mr)(struct ib_mr *mr, struct ib_udata *udata); 2286 struct ib_mr * (*alloc_mr)(struct ib_pd *pd, enum ib_mr_type mr_type, 2287 u32 max_num_sg, struct ib_udata *udata); 2288 int (*advise_mr)(struct ib_pd *pd, 2289 enum ib_uverbs_advise_mr_advice advice, u32 flags, 2290 const struct ib_sge *sg_list, u32 num_sge, 2291 struct uverbs_attr_bundle *attrs); 2292 int (*map_mr_sg)(struct ib_mr *mr, 2293 struct scatterlist *sg, 2294 int sg_nents, 2295 unsigned int *sg_offset); 2296 struct ib_mw * (*alloc_mw)(struct ib_pd *pd, 2297 enum ib_mw_type type, 2298 struct ib_udata *udata); 2299 int (*dealloc_mw)(struct ib_mw *mw); 2300 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd, 2301 int mr_access_flags, 2302 struct ib_fmr_attr *fmr_attr); 2303 int (*map_phys_fmr)(struct ib_fmr *fmr, 2304 u64 *page_list, int list_len, 2305 u64 iova); 2306 int (*unmap_fmr)(struct list_head *fmr_list); 2307 int (*dealloc_fmr)(struct ib_fmr *fmr); 2308 int (*attach_mcast)(struct ib_qp *qp, 2309 union ib_gid *gid, 2310 u16 lid); 2311 int (*detach_mcast)(struct ib_qp *qp, 2312 union ib_gid *gid, 2313 u16 lid); 2314 int (*process_mad)(struct ib_device *device, 2315 int process_mad_flags, 2316 u8 port_num, 2317 const struct ib_wc *in_wc, 2318 const struct ib_grh *in_grh, 2319 const struct ib_mad_hdr *in_mad, 2320 size_t in_mad_size, 2321 struct ib_mad_hdr *out_mad, 2322 size_t *out_mad_size, 2323 u16 *out_mad_pkey_index); 2324 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device, 2325 struct ib_udata *udata); 2326 int (*dealloc_xrcd)(struct ib_xrcd *xrcd, struct ib_udata *udata); 2327 struct ib_flow * (*create_flow)(struct ib_qp *qp, 2328 struct ib_flow_attr 2329 *flow_attr, 2330 int domain, struct ib_udata *udata); 2331 int (*destroy_flow)(struct ib_flow *flow_id); 2332 struct ib_flow_action *(*create_flow_action_esp)( 2333 struct ib_device *device, 2334 const struct ib_flow_action_attrs_esp *attr, 2335 struct uverbs_attr_bundle *attrs); 2336 int (*destroy_flow_action)(struct ib_flow_action *action); 2337 int (*modify_flow_action_esp)( 2338 struct ib_flow_action *action, 2339 const struct ib_flow_action_attrs_esp *attr, 2340 struct uverbs_attr_bundle *attrs); 2341 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask, 2342 struct ib_mr_status *mr_status); 2343 /** 2344 * This will be called once refcount of an entry in mmap_xa reaches 2345 * zero. The type of the memory that was mapped may differ between 2346 * entries and is opaque to the rdma_user_mmap interface. 2347 * Therefore needs to be implemented by the driver in mmap_free. 2348 */ 2349 void (*mmap_free)(struct rdma_user_mmap_entry *entry); 2350 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext); 2351 void (*drain_rq)(struct ib_qp *qp); 2352 void (*drain_sq)(struct ib_qp *qp); 2353 int (*set_vf_link_state)(struct ib_device *device, int vf, u8 port, 2354 int state); 2355 int (*get_vf_config)(struct ib_device *device, int vf, u8 port, 2356 struct ifla_vf_info *ivf); 2357 int (*get_vf_stats)(struct ib_device *device, int vf, u8 port, 2358 struct ifla_vf_stats *stats); 2359 int (*set_vf_guid)(struct ib_device *device, int vf, u8 port, u64 guid, 2360 int type); 2361 struct ib_wq * (*create_wq)(struct ib_pd *pd, 2362 struct ib_wq_init_attr *init_attr, 2363 struct ib_udata *udata); 2364 void (*destroy_wq)(struct ib_wq *wq, struct ib_udata *udata); 2365 int (*modify_wq)(struct ib_wq *wq, 2366 struct ib_wq_attr *attr, 2367 u32 wq_attr_mask, 2368 struct ib_udata *udata); 2369 struct ib_rwq_ind_table * (*create_rwq_ind_table)(struct ib_device *device, 2370 struct ib_rwq_ind_table_init_attr *init_attr, 2371 struct ib_udata *udata); 2372 int (*destroy_rwq_ind_table)(struct ib_rwq_ind_table *wq_ind_table); 2373 struct ib_dm *(*alloc_dm)(struct ib_device *device, 2374 struct ib_ucontext *context, 2375 struct ib_dm_alloc_attr *attr, 2376 struct uverbs_attr_bundle *attrs); 2377 int (*dealloc_dm)(struct ib_dm *dm, struct uverbs_attr_bundle *attrs); 2378 struct ib_mr *(*reg_dm_mr)(struct ib_pd *pd, struct ib_dm *dm, 2379 struct ib_dm_mr_attr *attr, 2380 struct uverbs_attr_bundle *attrs); 2381 struct ib_counters *(*create_counters)( 2382 struct ib_device *device, struct uverbs_attr_bundle *attrs); 2383 int (*destroy_counters)(struct ib_counters *counters); 2384 int (*read_counters)(struct ib_counters *counters, 2385 struct ib_counters_read_attr *counters_read_attr, 2386 struct uverbs_attr_bundle *attrs); 2387 struct ib_dma_mapping_ops *dma_ops; 2388 2389 struct module *owner; 2390 struct device dev; 2391 struct kobject *ports_parent; 2392 struct list_head port_list; 2393 2394 enum { 2395 IB_DEV_UNINITIALIZED, 2396 IB_DEV_REGISTERED, 2397 IB_DEV_UNREGISTERED 2398 } reg_state; 2399 2400 int uverbs_abi_ver; 2401 u64 uverbs_cmd_mask; 2402 u64 uverbs_ex_cmd_mask; 2403 2404 char node_desc[IB_DEVICE_NODE_DESC_MAX]; 2405 __be64 node_guid; 2406 u32 local_dma_lkey; 2407 u16 is_switch:1; 2408 u8 node_type; 2409 u8 phys_port_cnt; 2410 struct ib_device_attr attrs; 2411 struct attribute_group *hw_stats_ag; 2412 struct rdma_hw_stats *hw_stats; 2413 2414 const struct uapi_definition *driver_def; 2415 2416 /** 2417 * The following mandatory functions are used only at device 2418 * registration. Keep functions such as these at the end of this 2419 * structure to avoid cache line misses when accessing struct ib_device 2420 * in fast paths. 2421 */ 2422 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *); 2423 void (*get_dev_fw_str)(struct ib_device *, char *str, size_t str_len); 2424 }; 2425 2426 struct ib_client { 2427 char *name; 2428 void (*add) (struct ib_device *); 2429 void (*remove)(struct ib_device *, void *client_data); 2430 2431 /* Returns the net_dev belonging to this ib_client and matching the 2432 * given parameters. 2433 * @dev: An RDMA device that the net_dev use for communication. 2434 * @port: A physical port number on the RDMA device. 2435 * @pkey: P_Key that the net_dev uses if applicable. 2436 * @gid: A GID that the net_dev uses to communicate. 2437 * @addr: An IP address the net_dev is configured with. 2438 * @client_data: The device's client data set by ib_set_client_data(). 2439 * 2440 * An ib_client that implements a net_dev on top of RDMA devices 2441 * (such as IP over IB) should implement this callback, allowing the 2442 * rdma_cm module to find the right net_dev for a given request. 2443 * 2444 * The caller is responsible for calling dev_put on the returned 2445 * netdev. */ 2446 struct ifnet *(*get_net_dev_by_params)( 2447 struct ib_device *dev, 2448 u8 port, 2449 u16 pkey, 2450 const union ib_gid *gid, 2451 const struct sockaddr *addr, 2452 void *client_data); 2453 struct list_head list; 2454 }; 2455 2456 struct ib_device *ib_alloc_device(size_t size); 2457 void ib_dealloc_device(struct ib_device *device); 2458 2459 void ib_get_device_fw_str(struct ib_device *device, char *str, size_t str_len); 2460 2461 int ib_register_device(struct ib_device *device, 2462 int (*port_callback)(struct ib_device *, 2463 u8, struct kobject *)); 2464 void ib_unregister_device(struct ib_device *device); 2465 2466 int ib_register_client (struct ib_client *client); 2467 void ib_unregister_client(struct ib_client *client); 2468 2469 void *ib_get_client_data(struct ib_device *device, struct ib_client *client); 2470 void ib_set_client_data(struct ib_device *device, struct ib_client *client, 2471 void *data); 2472 2473 int rdma_user_mmap_io(struct ib_ucontext *ucontext, struct vm_area_struct *vma, 2474 unsigned long pfn, unsigned long size, pgprot_t prot, 2475 struct rdma_user_mmap_entry *entry); 2476 int rdma_user_mmap_entry_insert(struct ib_ucontext *ucontext, 2477 struct rdma_user_mmap_entry *entry, 2478 size_t length); 2479 int rdma_user_mmap_entry_insert_range(struct ib_ucontext *ucontext, 2480 struct rdma_user_mmap_entry *entry, 2481 size_t length, u32 min_pgoff, 2482 u32 max_pgoff); 2483 2484 struct rdma_user_mmap_entry * 2485 rdma_user_mmap_entry_get_pgoff(struct ib_ucontext *ucontext, 2486 unsigned long pgoff); 2487 struct rdma_user_mmap_entry * 2488 rdma_user_mmap_entry_get(struct ib_ucontext *ucontext, 2489 struct vm_area_struct *vma); 2490 void rdma_user_mmap_entry_put(struct rdma_user_mmap_entry *entry); 2491 2492 void rdma_user_mmap_entry_remove(struct rdma_user_mmap_entry *entry); 2493 static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len) 2494 { 2495 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0; 2496 } 2497 2498 static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len) 2499 { 2500 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0; 2501 } 2502 2503 static inline bool ib_is_buffer_cleared(const void __user *p, 2504 size_t len) 2505 { 2506 bool ret; 2507 u8 *buf; 2508 2509 if (len > USHRT_MAX) 2510 return false; 2511 2512 buf = memdup_user(p, len); 2513 if (IS_ERR(buf)) 2514 return false; 2515 2516 ret = !memchr_inv(buf, 0, len); 2517 kfree(buf); 2518 return ret; 2519 } 2520 2521 static inline bool ib_is_udata_cleared(struct ib_udata *udata, 2522 size_t offset, 2523 size_t len) 2524 { 2525 return ib_is_buffer_cleared(udata->inbuf + offset, len); 2526 } 2527 2528 /** 2529 * ib_is_destroy_retryable - Check whether the uobject destruction 2530 * is retryable. 2531 * @ret: The initial destruction return code 2532 * @why: remove reason 2533 * @uobj: The uobject that is destroyed 2534 * 2535 * This function is a helper function that IB layer and low-level drivers 2536 * can use to consider whether the destruction of the given uobject is 2537 * retry-able. 2538 * It checks the original return code, if it wasn't success the destruction 2539 * is retryable according to the ucontext state (i.e. cleanup_retryable) and 2540 * the remove reason. (i.e. why). 2541 * Must be called with the object locked for destroy. 2542 */ 2543 static inline bool ib_is_destroy_retryable(int ret, enum rdma_remove_reason why, 2544 struct ib_uobject *uobj) 2545 { 2546 return ret && (why == RDMA_REMOVE_DESTROY || 2547 uobj->context->cleanup_retryable); 2548 } 2549 2550 /** 2551 * ib_destroy_usecnt - Called during destruction to check the usecnt 2552 * @usecnt: The usecnt atomic 2553 * @why: remove reason 2554 * @uobj: The uobject that is destroyed 2555 * 2556 * Non-zero usecnts will block destruction unless destruction was triggered by 2557 * a ucontext cleanup. 2558 */ 2559 static inline int ib_destroy_usecnt(atomic_t *usecnt, 2560 enum rdma_remove_reason why, 2561 struct ib_uobject *uobj) 2562 { 2563 if (atomic_read(usecnt) && ib_is_destroy_retryable(-EBUSY, why, uobj)) 2564 return -EBUSY; 2565 return 0; 2566 } 2567 2568 /** 2569 * ib_modify_qp_is_ok - Check that the supplied attribute mask 2570 * contains all required attributes and no attributes not allowed for 2571 * the given QP state transition. 2572 * @cur_state: Current QP state 2573 * @next_state: Next QP state 2574 * @type: QP type 2575 * @mask: Mask of supplied QP attributes 2576 * 2577 * This function is a helper function that a low-level driver's 2578 * modify_qp method can use to validate the consumer's input. It 2579 * checks that cur_state and next_state are valid QP states, that a 2580 * transition from cur_state to next_state is allowed by the IB spec, 2581 * and that the attribute mask supplied is allowed for the transition. 2582 */ 2583 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state, 2584 enum ib_qp_type type, enum ib_qp_attr_mask mask); 2585 2586 int ib_register_event_handler (struct ib_event_handler *event_handler); 2587 int ib_unregister_event_handler(struct ib_event_handler *event_handler); 2588 void ib_dispatch_event(struct ib_event *event); 2589 2590 int ib_query_port(struct ib_device *device, 2591 u8 port_num, struct ib_port_attr *port_attr); 2592 2593 enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device, 2594 u8 port_num); 2595 2596 /** 2597 * rdma_cap_ib_switch - Check if the device is IB switch 2598 * @device: Device to check 2599 * 2600 * Device driver is responsible for setting is_switch bit on 2601 * in ib_device structure at init time. 2602 * 2603 * Return: true if the device is IB switch. 2604 */ 2605 static inline bool rdma_cap_ib_switch(const struct ib_device *device) 2606 { 2607 return device->is_switch; 2608 } 2609 2610 /** 2611 * rdma_start_port - Return the first valid port number for the device 2612 * specified 2613 * 2614 * @device: Device to be checked 2615 * 2616 * Return start port number 2617 */ 2618 static inline u8 rdma_start_port(const struct ib_device *device) 2619 { 2620 return rdma_cap_ib_switch(device) ? 0 : 1; 2621 } 2622 2623 /** 2624 * rdma_end_port - Return the last valid port number for the device 2625 * specified 2626 * 2627 * @device: Device to be checked 2628 * 2629 * Return last port number 2630 */ 2631 static inline u8 rdma_end_port(const struct ib_device *device) 2632 { 2633 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt; 2634 } 2635 2636 static inline int rdma_is_port_valid(const struct ib_device *device, 2637 unsigned int port) 2638 { 2639 return (port >= rdma_start_port(device) && 2640 port <= rdma_end_port(device)); 2641 } 2642 2643 static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num) 2644 { 2645 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB; 2646 } 2647 2648 static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num) 2649 { 2650 return device->port_immutable[port_num].core_cap_flags & 2651 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP); 2652 } 2653 2654 static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num) 2655 { 2656 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP; 2657 } 2658 2659 static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num) 2660 { 2661 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE; 2662 } 2663 2664 static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num) 2665 { 2666 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP; 2667 } 2668 2669 static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num) 2670 { 2671 return rdma_protocol_ib(device, port_num) || 2672 rdma_protocol_roce(device, port_num); 2673 } 2674 2675 /** 2676 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband 2677 * Management Datagrams. 2678 * @device: Device to check 2679 * @port_num: Port number to check 2680 * 2681 * Management Datagrams (MAD) are a required part of the InfiniBand 2682 * specification and are supported on all InfiniBand devices. A slightly 2683 * extended version are also supported on OPA interfaces. 2684 * 2685 * Return: true if the port supports sending/receiving of MAD packets. 2686 */ 2687 static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num) 2688 { 2689 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD; 2690 } 2691 2692 /** 2693 * rdma_cap_opa_mad - Check if the port of device provides support for OPA 2694 * Management Datagrams. 2695 * @device: Device to check 2696 * @port_num: Port number to check 2697 * 2698 * Intel OmniPath devices extend and/or replace the InfiniBand Management 2699 * datagrams with their own versions. These OPA MADs share many but not all of 2700 * the characteristics of InfiniBand MADs. 2701 * 2702 * OPA MADs differ in the following ways: 2703 * 2704 * 1) MADs are variable size up to 2K 2705 * IBTA defined MADs remain fixed at 256 bytes 2706 * 2) OPA SMPs must carry valid PKeys 2707 * 3) OPA SMP packets are a different format 2708 * 2709 * Return: true if the port supports OPA MAD packet formats. 2710 */ 2711 static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num) 2712 { 2713 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD) 2714 == RDMA_CORE_CAP_OPA_MAD; 2715 } 2716 2717 /** 2718 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband 2719 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI). 2720 * @device: Device to check 2721 * @port_num: Port number to check 2722 * 2723 * Each InfiniBand node is required to provide a Subnet Management Agent 2724 * that the subnet manager can access. Prior to the fabric being fully 2725 * configured by the subnet manager, the SMA is accessed via a well known 2726 * interface called the Subnet Management Interface (SMI). This interface 2727 * uses directed route packets to communicate with the SM to get around the 2728 * chicken and egg problem of the SM needing to know what's on the fabric 2729 * in order to configure the fabric, and needing to configure the fabric in 2730 * order to send packets to the devices on the fabric. These directed 2731 * route packets do not need the fabric fully configured in order to reach 2732 * their destination. The SMI is the only method allowed to send 2733 * directed route packets on an InfiniBand fabric. 2734 * 2735 * Return: true if the port provides an SMI. 2736 */ 2737 static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num) 2738 { 2739 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI; 2740 } 2741 2742 /** 2743 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband 2744 * Communication Manager. 2745 * @device: Device to check 2746 * @port_num: Port number to check 2747 * 2748 * The InfiniBand Communication Manager is one of many pre-defined General 2749 * Service Agents (GSA) that are accessed via the General Service 2750 * Interface (GSI). It's role is to facilitate establishment of connections 2751 * between nodes as well as other management related tasks for established 2752 * connections. 2753 * 2754 * Return: true if the port supports an IB CM (this does not guarantee that 2755 * a CM is actually running however). 2756 */ 2757 static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num) 2758 { 2759 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM; 2760 } 2761 2762 /** 2763 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP 2764 * Communication Manager. 2765 * @device: Device to check 2766 * @port_num: Port number to check 2767 * 2768 * Similar to above, but specific to iWARP connections which have a different 2769 * managment protocol than InfiniBand. 2770 * 2771 * Return: true if the port supports an iWARP CM (this does not guarantee that 2772 * a CM is actually running however). 2773 */ 2774 static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num) 2775 { 2776 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM; 2777 } 2778 2779 /** 2780 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband 2781 * Subnet Administration. 2782 * @device: Device to check 2783 * @port_num: Port number to check 2784 * 2785 * An InfiniBand Subnet Administration (SA) service is a pre-defined General 2786 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand 2787 * fabrics, devices should resolve routes to other hosts by contacting the 2788 * SA to query the proper route. 2789 * 2790 * Return: true if the port should act as a client to the fabric Subnet 2791 * Administration interface. This does not imply that the SA service is 2792 * running locally. 2793 */ 2794 static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num) 2795 { 2796 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA; 2797 } 2798 2799 /** 2800 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband 2801 * Multicast. 2802 * @device: Device to check 2803 * @port_num: Port number to check 2804 * 2805 * InfiniBand multicast registration is more complex than normal IPv4 or 2806 * IPv6 multicast registration. Each Host Channel Adapter must register 2807 * with the Subnet Manager when it wishes to join a multicast group. It 2808 * should do so only once regardless of how many queue pairs it subscribes 2809 * to this group. And it should leave the group only after all queue pairs 2810 * attached to the group have been detached. 2811 * 2812 * Return: true if the port must undertake the additional adminstrative 2813 * overhead of registering/unregistering with the SM and tracking of the 2814 * total number of queue pairs attached to the multicast group. 2815 */ 2816 static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num) 2817 { 2818 return rdma_cap_ib_sa(device, port_num); 2819 } 2820 2821 /** 2822 * rdma_cap_af_ib - Check if the port of device has the capability 2823 * Native Infiniband Address. 2824 * @device: Device to check 2825 * @port_num: Port number to check 2826 * 2827 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default 2828 * GID. RoCE uses a different mechanism, but still generates a GID via 2829 * a prescribed mechanism and port specific data. 2830 * 2831 * Return: true if the port uses a GID address to identify devices on the 2832 * network. 2833 */ 2834 static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num) 2835 { 2836 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB; 2837 } 2838 2839 /** 2840 * rdma_cap_eth_ah - Check if the port of device has the capability 2841 * Ethernet Address Handle. 2842 * @device: Device to check 2843 * @port_num: Port number to check 2844 * 2845 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique 2846 * to fabricate GIDs over Ethernet/IP specific addresses native to the 2847 * port. Normally, packet headers are generated by the sending host 2848 * adapter, but when sending connectionless datagrams, we must manually 2849 * inject the proper headers for the fabric we are communicating over. 2850 * 2851 * Return: true if we are running as a RoCE port and must force the 2852 * addition of a Global Route Header built from our Ethernet Address 2853 * Handle into our header list for connectionless packets. 2854 */ 2855 static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num) 2856 { 2857 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH; 2858 } 2859 2860 /** 2861 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port. 2862 * 2863 * @device: Device 2864 * @port_num: Port number 2865 * 2866 * This MAD size includes the MAD headers and MAD payload. No other headers 2867 * are included. 2868 * 2869 * Return the max MAD size required by the Port. Will return 0 if the port 2870 * does not support MADs 2871 */ 2872 static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num) 2873 { 2874 return device->port_immutable[port_num].max_mad_size; 2875 } 2876 2877 /** 2878 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table 2879 * @device: Device to check 2880 * @port_num: Port number to check 2881 * 2882 * RoCE GID table mechanism manages the various GIDs for a device. 2883 * 2884 * NOTE: if allocating the port's GID table has failed, this call will still 2885 * return true, but any RoCE GID table API will fail. 2886 * 2887 * Return: true if the port uses RoCE GID table mechanism in order to manage 2888 * its GIDs. 2889 */ 2890 static inline bool rdma_cap_roce_gid_table(const struct ib_device *device, 2891 u8 port_num) 2892 { 2893 return rdma_protocol_roce(device, port_num) && 2894 device->add_gid && device->del_gid; 2895 } 2896 2897 /* 2898 * Check if the device supports READ W/ INVALIDATE. 2899 */ 2900 static inline bool rdma_cap_read_inv(struct ib_device *dev, u32 port_num) 2901 { 2902 /* 2903 * iWarp drivers must support READ W/ INVALIDATE. No other protocol 2904 * has support for it yet. 2905 */ 2906 return rdma_protocol_iwarp(dev, port_num); 2907 } 2908 2909 int ib_query_gid(struct ib_device *device, 2910 u8 port_num, int index, union ib_gid *gid, 2911 struct ib_gid_attr *attr); 2912 2913 int ib_set_vf_link_state(struct ib_device *device, int vf, u8 port, 2914 int state); 2915 int ib_get_vf_config(struct ib_device *device, int vf, u8 port, 2916 struct ifla_vf_info *info); 2917 int ib_get_vf_stats(struct ib_device *device, int vf, u8 port, 2918 struct ifla_vf_stats *stats); 2919 int ib_set_vf_guid(struct ib_device *device, int vf, u8 port, u64 guid, 2920 int type); 2921 2922 int ib_query_pkey(struct ib_device *device, 2923 u8 port_num, u16 index, u16 *pkey); 2924 2925 int ib_modify_device(struct ib_device *device, 2926 int device_modify_mask, 2927 struct ib_device_modify *device_modify); 2928 2929 int ib_modify_port(struct ib_device *device, 2930 u8 port_num, int port_modify_mask, 2931 struct ib_port_modify *port_modify); 2932 2933 int ib_find_gid(struct ib_device *device, union ib_gid *gid, 2934 enum ib_gid_type gid_type, struct ifnet *ndev, 2935 u8 *port_num, u16 *index); 2936 2937 int ib_find_pkey(struct ib_device *device, 2938 u8 port_num, u16 pkey, u16 *index); 2939 2940 enum ib_pd_flags { 2941 /* 2942 * Create a memory registration for all memory in the system and place 2943 * the rkey for it into pd->unsafe_global_rkey. This can be used by 2944 * ULPs to avoid the overhead of dynamic MRs. 2945 * 2946 * This flag is generally considered unsafe and must only be used in 2947 * extremly trusted environments. Every use of it will log a warning 2948 * in the kernel log. 2949 */ 2950 IB_PD_UNSAFE_GLOBAL_RKEY = 0x01, 2951 }; 2952 2953 struct ib_pd *__ib_alloc_pd(struct ib_device *device, unsigned int flags, 2954 const char *caller); 2955 #define ib_alloc_pd(device, flags) \ 2956 __ib_alloc_pd((device), (flags), __func__) 2957 2958 /** 2959 * ib_dealloc_pd_user - Deallocate kernel/user PD 2960 * @pd: The protection domain 2961 * @udata: Valid user data or NULL for kernel objects 2962 */ 2963 void ib_dealloc_pd_user(struct ib_pd *pd, struct ib_udata *udata); 2964 2965 /** 2966 * ib_dealloc_pd - Deallocate kernel PD 2967 * @pd: The protection domain 2968 * 2969 * NOTE: for user PD use ib_dealloc_pd_user with valid udata! 2970 */ 2971 static inline void ib_dealloc_pd(struct ib_pd *pd) 2972 { 2973 ib_dealloc_pd_user(pd, NULL); 2974 } 2975 2976 enum rdma_create_ah_flags { 2977 /* In a sleepable context */ 2978 RDMA_CREATE_AH_SLEEPABLE = BIT(0), 2979 }; 2980 2981 /** 2982 * ib_create_ah - Creates an address handle for the given address vector. 2983 * @pd: The protection domain associated with the address handle. 2984 * @ah_attr: The attributes of the address vector. 2985 * @flags: Create address handle flags (see enum rdma_create_ah_flags). 2986 * 2987 * The address handle is used to reference a local or global destination 2988 * in all UD QP post sends. 2989 */ 2990 struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr, 2991 u32 flags); 2992 2993 /** 2994 * ib_create_user_ah - Creates an address handle for the given address vector. 2995 * It resolves destination mac address for ah attribute of RoCE type. 2996 * @pd: The protection domain associated with the address handle. 2997 * @ah_attr: The attributes of the address vector. 2998 * @udata: pointer to user's input output buffer information need by 2999 * provider driver. 3000 * 3001 * It returns 0 on success and returns appropriate error code on error. 3002 * The address handle is used to reference a local or global destination 3003 * in all UD QP post sends. 3004 */ 3005 struct ib_ah *ib_create_user_ah(struct ib_pd *pd, 3006 struct ib_ah_attr *ah_attr, 3007 struct ib_udata *udata); 3008 3009 /** 3010 * ib_init_ah_from_wc - Initializes address handle attributes from a 3011 * work completion. 3012 * @device: Device on which the received message arrived. 3013 * @port_num: Port on which the received message arrived. 3014 * @wc: Work completion associated with the received message. 3015 * @grh: References the received global route header. This parameter is 3016 * ignored unless the work completion indicates that the GRH is valid. 3017 * @ah_attr: Returned attributes that can be used when creating an address 3018 * handle for replying to the message. 3019 */ 3020 int ib_init_ah_from_wc(struct ib_device *device, u8 port_num, 3021 const struct ib_wc *wc, const struct ib_grh *grh, 3022 struct ib_ah_attr *ah_attr); 3023 3024 /** 3025 * ib_create_ah_from_wc - Creates an address handle associated with the 3026 * sender of the specified work completion. 3027 * @pd: The protection domain associated with the address handle. 3028 * @wc: Work completion information associated with a received message. 3029 * @grh: References the received global route header. This parameter is 3030 * ignored unless the work completion indicates that the GRH is valid. 3031 * @port_num: The outbound port number to associate with the address. 3032 * 3033 * The address handle is used to reference a local or global destination 3034 * in all UD QP post sends. 3035 */ 3036 struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc, 3037 const struct ib_grh *grh, u8 port_num); 3038 3039 /** 3040 * ib_modify_ah - Modifies the address vector associated with an address 3041 * handle. 3042 * @ah: The address handle to modify. 3043 * @ah_attr: The new address vector attributes to associate with the 3044 * address handle. 3045 */ 3046 int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3047 3048 /** 3049 * ib_query_ah - Queries the address vector associated with an address 3050 * handle. 3051 * @ah: The address handle to query. 3052 * @ah_attr: The address vector attributes associated with the address 3053 * handle. 3054 */ 3055 int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr); 3056 3057 enum rdma_destroy_ah_flags { 3058 /* In a sleepable context */ 3059 RDMA_DESTROY_AH_SLEEPABLE = BIT(0), 3060 }; 3061 3062 /** 3063 * ib_destroy_ah_user - Destroys an address handle. 3064 * @ah: The address handle to destroy. 3065 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3066 * @udata: Valid user data or NULL for kernel objects 3067 */ 3068 int ib_destroy_ah_user(struct ib_ah *ah, u32 flags, struct ib_udata *udata); 3069 3070 /** 3071 * rdma_destroy_ah - Destroys an kernel address handle. 3072 * @ah: The address handle to destroy. 3073 * @flags: Destroy address handle flags (see enum rdma_destroy_ah_flags). 3074 * 3075 * NOTE: for user ah use ib_destroy_ah_user with valid udata! 3076 */ 3077 static inline int ib_destroy_ah(struct ib_ah *ah, u32 flags) 3078 { 3079 return ib_destroy_ah_user(ah, flags, NULL); 3080 } 3081 3082 /** 3083 * ib_create_srq - Creates a SRQ associated with the specified protection 3084 * domain. 3085 * @pd: The protection domain associated with the SRQ. 3086 * @srq_init_attr: A list of initial attributes required to create the 3087 * SRQ. If SRQ creation succeeds, then the attributes are updated to 3088 * the actual capabilities of the created SRQ. 3089 * 3090 * srq_attr->max_wr and srq_attr->max_sge are read the determine the 3091 * requested size of the SRQ, and set to the actual values allocated 3092 * on return. If ib_create_srq() succeeds, then max_wr and max_sge 3093 * will always be at least as large as the requested values. 3094 */ 3095 struct ib_srq *ib_create_srq(struct ib_pd *pd, 3096 struct ib_srq_init_attr *srq_init_attr); 3097 3098 /** 3099 * ib_modify_srq - Modifies the attributes for the specified SRQ. 3100 * @srq: The SRQ to modify. 3101 * @srq_attr: On input, specifies the SRQ attributes to modify. On output, 3102 * the current values of selected SRQ attributes are returned. 3103 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ 3104 * are being modified. 3105 * 3106 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or 3107 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when 3108 * the number of receives queued drops below the limit. 3109 */ 3110 int ib_modify_srq(struct ib_srq *srq, 3111 struct ib_srq_attr *srq_attr, 3112 enum ib_srq_attr_mask srq_attr_mask); 3113 3114 /** 3115 * ib_query_srq - Returns the attribute list and current values for the 3116 * specified SRQ. 3117 * @srq: The SRQ to query. 3118 * @srq_attr: The attributes of the specified SRQ. 3119 */ 3120 int ib_query_srq(struct ib_srq *srq, 3121 struct ib_srq_attr *srq_attr); 3122 3123 /** 3124 * ib_destroy_srq_user - Destroys the specified SRQ. 3125 * @srq: The SRQ to destroy. 3126 * @udata: Valid user data or NULL for kernel objects 3127 */ 3128 int ib_destroy_srq_user(struct ib_srq *srq, struct ib_udata *udata); 3129 3130 /** 3131 * ib_destroy_srq - Destroys the specified kernel SRQ. 3132 * @srq: The SRQ to destroy. 3133 * 3134 * NOTE: for user srq use ib_destroy_srq_user with valid udata! 3135 */ 3136 static inline int ib_destroy_srq(struct ib_srq *srq) 3137 { 3138 return ib_destroy_srq_user(srq, NULL); 3139 } 3140 3141 /** 3142 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ. 3143 * @srq: The SRQ to post the work request on. 3144 * @recv_wr: A list of work requests to post on the receive queue. 3145 * @bad_recv_wr: On an immediate failure, this parameter will reference 3146 * the work request that failed to be posted on the QP. 3147 */ 3148 static inline int ib_post_srq_recv(struct ib_srq *srq, 3149 const struct ib_recv_wr *recv_wr, 3150 const struct ib_recv_wr **bad_recv_wr) 3151 { 3152 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr); 3153 } 3154 3155 /** 3156 * ib_create_qp - Creates a QP associated with the specified protection 3157 * domain. 3158 * @pd: The protection domain associated with the QP. 3159 * @qp_init_attr: A list of initial attributes required to create the 3160 * QP. If QP creation succeeds, then the attributes are updated to 3161 * the actual capabilities of the created QP. 3162 */ 3163 struct ib_qp *ib_create_qp(struct ib_pd *pd, 3164 struct ib_qp_init_attr *qp_init_attr); 3165 3166 /** 3167 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP. 3168 * @qp: The QP to modify. 3169 * @attr: On input, specifies the QP attributes to modify. On output, 3170 * the current values of selected QP attributes are returned. 3171 * @attr_mask: A bit-mask used to specify which attributes of the QP 3172 * are being modified. 3173 * @udata: pointer to user's input output buffer information 3174 * are being modified. 3175 * It returns 0 on success and returns appropriate error code on error. 3176 */ 3177 int ib_modify_qp_with_udata(struct ib_qp *qp, 3178 struct ib_qp_attr *attr, 3179 int attr_mask, 3180 struct ib_udata *udata); 3181 3182 /** 3183 * ib_modify_qp - Modifies the attributes for the specified QP and then 3184 * transitions the QP to the given state. 3185 * @qp: The QP to modify. 3186 * @qp_attr: On input, specifies the QP attributes to modify. On output, 3187 * the current values of selected QP attributes are returned. 3188 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP 3189 * are being modified. 3190 */ 3191 int ib_modify_qp(struct ib_qp *qp, 3192 struct ib_qp_attr *qp_attr, 3193 int qp_attr_mask); 3194 3195 /** 3196 * ib_query_qp - Returns the attribute list and current values for the 3197 * specified QP. 3198 * @qp: The QP to query. 3199 * @qp_attr: The attributes of the specified QP. 3200 * @qp_attr_mask: A bit-mask used to select specific attributes to query. 3201 * @qp_init_attr: Additional attributes of the selected QP. 3202 * 3203 * The qp_attr_mask may be used to limit the query to gathering only the 3204 * selected attributes. 3205 */ 3206 int ib_query_qp(struct ib_qp *qp, 3207 struct ib_qp_attr *qp_attr, 3208 int qp_attr_mask, 3209 struct ib_qp_init_attr *qp_init_attr); 3210 3211 /** 3212 * ib_destroy_qp - Destroys the specified QP. 3213 * @qp: The QP to destroy. 3214 * @udata: Valid udata or NULL for kernel objects 3215 */ 3216 int ib_destroy_qp_user(struct ib_qp *qp, struct ib_udata *udata); 3217 3218 /** 3219 * ib_destroy_qp - Destroys the specified kernel QP. 3220 * @qp: The QP to destroy. 3221 * 3222 * NOTE: for user qp use ib_destroy_qp_user with valid udata! 3223 */ 3224 static inline int ib_destroy_qp(struct ib_qp *qp) 3225 { 3226 return ib_destroy_qp_user(qp, NULL); 3227 } 3228 3229 /** 3230 * ib_open_qp - Obtain a reference to an existing sharable QP. 3231 * @xrcd - XRC domain 3232 * @qp_open_attr: Attributes identifying the QP to open. 3233 * 3234 * Returns a reference to a sharable QP. 3235 */ 3236 struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd, 3237 struct ib_qp_open_attr *qp_open_attr); 3238 3239 /** 3240 * ib_close_qp - Release an external reference to a QP. 3241 * @qp: The QP handle to release 3242 * 3243 * The opened QP handle is released by the caller. The underlying 3244 * shared QP is not destroyed until all internal references are released. 3245 */ 3246 int ib_close_qp(struct ib_qp *qp); 3247 3248 /** 3249 * ib_post_send - Posts a list of work requests to the send queue of 3250 * the specified QP. 3251 * @qp: The QP to post the work request on. 3252 * @send_wr: A list of work requests to post on the send queue. 3253 * @bad_send_wr: On an immediate failure, this parameter will reference 3254 * the work request that failed to be posted on the QP. 3255 * 3256 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate 3257 * error is returned, the QP state shall not be affected, 3258 * ib_post_send() will return an immediate error after queueing any 3259 * earlier work requests in the list. 3260 */ 3261 static inline int ib_post_send(struct ib_qp *qp, 3262 const struct ib_send_wr *send_wr, 3263 const struct ib_send_wr **bad_send_wr) 3264 { 3265 return qp->device->post_send(qp, send_wr, bad_send_wr); 3266 } 3267 3268 /** 3269 * ib_post_recv - Posts a list of work requests to the receive queue of 3270 * the specified QP. 3271 * @qp: The QP to post the work request on. 3272 * @recv_wr: A list of work requests to post on the receive queue. 3273 * @bad_recv_wr: On an immediate failure, this parameter will reference 3274 * the work request that failed to be posted on the QP. 3275 */ 3276 static inline int ib_post_recv(struct ib_qp *qp, 3277 const struct ib_recv_wr *recv_wr, 3278 const struct ib_recv_wr **bad_recv_wr) 3279 { 3280 return qp->device->post_recv(qp, recv_wr, bad_recv_wr); 3281 } 3282 3283 struct ib_cq *__ib_alloc_cq_user(struct ib_device *dev, void *private, 3284 int nr_cqe, int comp_vector, 3285 enum ib_poll_context poll_ctx, 3286 const char *caller, struct ib_udata *udata); 3287 3288 /** 3289 * ib_alloc_cq_user: Allocate kernel/user CQ 3290 * @dev: The IB device 3291 * @private: Private data attached to the CQE 3292 * @nr_cqe: Number of CQEs in the CQ 3293 * @comp_vector: Completion vector used for the IRQs 3294 * @poll_ctx: Context used for polling the CQ 3295 * @udata: Valid user data or NULL for kernel objects 3296 */ 3297 static inline struct ib_cq *ib_alloc_cq_user(struct ib_device *dev, 3298 void *private, int nr_cqe, 3299 int comp_vector, 3300 enum ib_poll_context poll_ctx, 3301 struct ib_udata *udata) 3302 { 3303 return __ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3304 "ibcore", udata); 3305 } 3306 3307 /** 3308 * ib_alloc_cq: Allocate kernel CQ 3309 * @dev: The IB device 3310 * @private: Private data attached to the CQE 3311 * @nr_cqe: Number of CQEs in the CQ 3312 * @comp_vector: Completion vector used for the IRQs 3313 * @poll_ctx: Context used for polling the CQ 3314 * 3315 * NOTE: for user cq use ib_alloc_cq_user with valid udata! 3316 */ 3317 static inline struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private, 3318 int nr_cqe, int comp_vector, 3319 enum ib_poll_context poll_ctx) 3320 { 3321 return ib_alloc_cq_user(dev, private, nr_cqe, comp_vector, poll_ctx, 3322 NULL); 3323 } 3324 3325 /** 3326 * ib_free_cq_user - Free kernel/user CQ 3327 * @cq: The CQ to free 3328 * @udata: Valid user data or NULL for kernel objects 3329 */ 3330 void ib_free_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3331 3332 /** 3333 * ib_free_cq - Free kernel CQ 3334 * @cq: The CQ to free 3335 * 3336 * NOTE: for user cq use ib_free_cq_user with valid udata! 3337 */ 3338 static inline void ib_free_cq(struct ib_cq *cq) 3339 { 3340 ib_free_cq_user(cq, NULL); 3341 } 3342 3343 /** 3344 * ib_create_cq - Creates a CQ on the specified device. 3345 * @device: The device on which to create the CQ. 3346 * @comp_handler: A user-specified callback that is invoked when a 3347 * completion event occurs on the CQ. 3348 * @event_handler: A user-specified callback that is invoked when an 3349 * asynchronous event not associated with a completion occurs on the CQ. 3350 * @cq_context: Context associated with the CQ returned to the user via 3351 * the associated completion and event handlers. 3352 * @cq_attr: The attributes the CQ should be created upon. 3353 * 3354 * Users can examine the cq structure to determine the actual CQ size. 3355 */ 3356 struct ib_cq *__ib_create_cq(struct ib_device *device, 3357 ib_comp_handler comp_handler, 3358 void (*event_handler)(struct ib_event *, void *), 3359 void *cq_context, 3360 const struct ib_cq_init_attr *cq_attr, 3361 const char *caller); 3362 #define ib_create_cq(device, cmp_hndlr, evt_hndlr, cq_ctxt, cq_attr) \ 3363 __ib_create_cq((device), (cmp_hndlr), (evt_hndlr), (cq_ctxt), (cq_attr), "ibcore") 3364 3365 /** 3366 * ib_resize_cq - Modifies the capacity of the CQ. 3367 * @cq: The CQ to resize. 3368 * @cqe: The minimum size of the CQ. 3369 * 3370 * Users can examine the cq structure to determine the actual CQ size. 3371 */ 3372 int ib_resize_cq(struct ib_cq *cq, int cqe); 3373 3374 /** 3375 * ib_modify_cq - Modifies moderation params of the CQ 3376 * @cq: The CQ to modify. 3377 * @cq_count: number of CQEs that will trigger an event 3378 * @cq_period: max period of time in usec before triggering an event 3379 * 3380 */ 3381 int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period); 3382 3383 /** 3384 * ib_destroy_cq_user - Destroys the specified CQ. 3385 * @cq: The CQ to destroy. 3386 * @udata: Valid user data or NULL for kernel objects 3387 */ 3388 int ib_destroy_cq_user(struct ib_cq *cq, struct ib_udata *udata); 3389 3390 /** 3391 * ib_destroy_cq - Destroys the specified kernel CQ. 3392 * @cq: The CQ to destroy. 3393 * 3394 * NOTE: for user cq use ib_destroy_cq_user with valid udata! 3395 */ 3396 static inline void ib_destroy_cq(struct ib_cq *cq) 3397 { 3398 ib_destroy_cq_user(cq, NULL); 3399 } 3400 3401 /** 3402 * ib_poll_cq - poll a CQ for completion(s) 3403 * @cq:the CQ being polled 3404 * @num_entries:maximum number of completions to return 3405 * @wc:array of at least @num_entries &struct ib_wc where completions 3406 * will be returned 3407 * 3408 * Poll a CQ for (possibly multiple) completions. If the return value 3409 * is < 0, an error occurred. If the return value is >= 0, it is the 3410 * number of completions returned. If the return value is 3411 * non-negative and < num_entries, then the CQ was emptied. 3412 */ 3413 static inline int ib_poll_cq(struct ib_cq *cq, int num_entries, 3414 struct ib_wc *wc) 3415 { 3416 return cq->device->poll_cq(cq, num_entries, wc); 3417 } 3418 3419 /** 3420 * ib_peek_cq - Returns the number of unreaped completions currently 3421 * on the specified CQ. 3422 * @cq: The CQ to peek. 3423 * @wc_cnt: A minimum number of unreaped completions to check for. 3424 * 3425 * If the number of unreaped completions is greater than or equal to wc_cnt, 3426 * this function returns wc_cnt, otherwise, it returns the actual number of 3427 * unreaped completions. 3428 */ 3429 int ib_peek_cq(struct ib_cq *cq, int wc_cnt); 3430 3431 /** 3432 * ib_req_notify_cq - Request completion notification on a CQ. 3433 * @cq: The CQ to generate an event for. 3434 * @flags: 3435 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP 3436 * to request an event on the next solicited event or next work 3437 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS 3438 * may also be |ed in to request a hint about missed events, as 3439 * described below. 3440 * 3441 * Return Value: 3442 * < 0 means an error occurred while requesting notification 3443 * == 0 means notification was requested successfully, and if 3444 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events 3445 * were missed and it is safe to wait for another event. In 3446 * this case is it guaranteed that any work completions added 3447 * to the CQ since the last CQ poll will trigger a completion 3448 * notification event. 3449 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed 3450 * in. It means that the consumer must poll the CQ again to 3451 * make sure it is empty to avoid missing an event because of a 3452 * race between requesting notification and an entry being 3453 * added to the CQ. This return value means it is possible 3454 * (but not guaranteed) that a work completion has been added 3455 * to the CQ since the last poll without triggering a 3456 * completion notification event. 3457 */ 3458 static inline int ib_req_notify_cq(struct ib_cq *cq, 3459 enum ib_cq_notify_flags flags) 3460 { 3461 return cq->device->req_notify_cq(cq, flags); 3462 } 3463 3464 /** 3465 * ib_req_ncomp_notif - Request completion notification when there are 3466 * at least the specified number of unreaped completions on the CQ. 3467 * @cq: The CQ to generate an event for. 3468 * @wc_cnt: The number of unreaped completions that should be on the 3469 * CQ before an event is generated. 3470 */ 3471 static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt) 3472 { 3473 return cq->device->req_ncomp_notif ? 3474 cq->device->req_ncomp_notif(cq, wc_cnt) : 3475 -ENOSYS; 3476 } 3477 3478 /** 3479 * ib_dma_mapping_error - check a DMA addr for error 3480 * @dev: The device for which the dma_addr was created 3481 * @dma_addr: The DMA address to check 3482 */ 3483 static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr) 3484 { 3485 if (dev->dma_ops) 3486 return dev->dma_ops->mapping_error(dev, dma_addr); 3487 return dma_mapping_error(dev->dma_device, dma_addr); 3488 } 3489 3490 /** 3491 * ib_dma_map_single - Map a kernel virtual address to DMA address 3492 * @dev: The device for which the dma_addr is to be created 3493 * @cpu_addr: The kernel virtual address 3494 * @size: The size of the region in bytes 3495 * @direction: The direction of the DMA 3496 */ 3497 static inline u64 ib_dma_map_single(struct ib_device *dev, 3498 void *cpu_addr, size_t size, 3499 enum dma_data_direction direction) 3500 { 3501 if (dev->dma_ops) 3502 return dev->dma_ops->map_single(dev, cpu_addr, size, direction); 3503 return dma_map_single(dev->dma_device, cpu_addr, size, direction); 3504 } 3505 3506 /** 3507 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single() 3508 * @dev: The device for which the DMA address was created 3509 * @addr: The DMA address 3510 * @size: The size of the region in bytes 3511 * @direction: The direction of the DMA 3512 */ 3513 static inline void ib_dma_unmap_single(struct ib_device *dev, 3514 u64 addr, size_t size, 3515 enum dma_data_direction direction) 3516 { 3517 if (dev->dma_ops) 3518 dev->dma_ops->unmap_single(dev, addr, size, direction); 3519 else 3520 dma_unmap_single(dev->dma_device, addr, size, direction); 3521 } 3522 3523 static inline u64 ib_dma_map_single_attrs(struct ib_device *dev, 3524 void *cpu_addr, size_t size, 3525 enum dma_data_direction direction, 3526 struct dma_attrs *dma_attrs) 3527 { 3528 return dma_map_single_attrs(dev->dma_device, cpu_addr, size, 3529 direction, dma_attrs); 3530 } 3531 3532 static inline void ib_dma_unmap_single_attrs(struct ib_device *dev, 3533 u64 addr, size_t size, 3534 enum dma_data_direction direction, 3535 struct dma_attrs *dma_attrs) 3536 { 3537 return dma_unmap_single_attrs(dev->dma_device, addr, size, 3538 direction, dma_attrs); 3539 } 3540 3541 /** 3542 * ib_dma_map_page - Map a physical page to DMA address 3543 * @dev: The device for which the dma_addr is to be created 3544 * @page: The page to be mapped 3545 * @offset: The offset within the page 3546 * @size: The size of the region in bytes 3547 * @direction: The direction of the DMA 3548 */ 3549 static inline u64 ib_dma_map_page(struct ib_device *dev, 3550 struct page *page, 3551 unsigned long offset, 3552 size_t size, 3553 enum dma_data_direction direction) 3554 { 3555 if (dev->dma_ops) 3556 return dev->dma_ops->map_page(dev, page, offset, size, direction); 3557 return dma_map_page(dev->dma_device, page, offset, size, direction); 3558 } 3559 3560 /** 3561 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page() 3562 * @dev: The device for which the DMA address was created 3563 * @addr: The DMA address 3564 * @size: The size of the region in bytes 3565 * @direction: The direction of the DMA 3566 */ 3567 static inline void ib_dma_unmap_page(struct ib_device *dev, 3568 u64 addr, size_t size, 3569 enum dma_data_direction direction) 3570 { 3571 if (dev->dma_ops) 3572 dev->dma_ops->unmap_page(dev, addr, size, direction); 3573 else 3574 dma_unmap_page(dev->dma_device, addr, size, direction); 3575 } 3576 3577 /** 3578 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses 3579 * @dev: The device for which the DMA addresses are to be created 3580 * @sg: The array of scatter/gather entries 3581 * @nents: The number of scatter/gather entries 3582 * @direction: The direction of the DMA 3583 */ 3584 static inline int ib_dma_map_sg(struct ib_device *dev, 3585 struct scatterlist *sg, int nents, 3586 enum dma_data_direction direction) 3587 { 3588 if (dev->dma_ops) 3589 return dev->dma_ops->map_sg(dev, sg, nents, direction); 3590 return dma_map_sg(dev->dma_device, sg, nents, direction); 3591 } 3592 3593 /** 3594 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses 3595 * @dev: The device for which the DMA addresses were created 3596 * @sg: The array of scatter/gather entries 3597 * @nents: The number of scatter/gather entries 3598 * @direction: The direction of the DMA 3599 */ 3600 static inline void ib_dma_unmap_sg(struct ib_device *dev, 3601 struct scatterlist *sg, int nents, 3602 enum dma_data_direction direction) 3603 { 3604 if (dev->dma_ops) 3605 dev->dma_ops->unmap_sg(dev, sg, nents, direction); 3606 else 3607 dma_unmap_sg(dev->dma_device, sg, nents, direction); 3608 } 3609 3610 static inline int ib_dma_map_sg_attrs(struct ib_device *dev, 3611 struct scatterlist *sg, int nents, 3612 enum dma_data_direction direction, 3613 struct dma_attrs *dma_attrs) 3614 { 3615 if (dev->dma_ops) 3616 return dev->dma_ops->map_sg_attrs(dev, sg, nents, direction, 3617 dma_attrs); 3618 else 3619 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, 3620 dma_attrs); 3621 } 3622 3623 static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev, 3624 struct scatterlist *sg, int nents, 3625 enum dma_data_direction direction, 3626 struct dma_attrs *dma_attrs) 3627 { 3628 if (dev->dma_ops) 3629 return dev->dma_ops->unmap_sg_attrs(dev, sg, nents, direction, 3630 dma_attrs); 3631 else 3632 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, 3633 dma_attrs); 3634 } 3635 /** 3636 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry 3637 * @dev: The device for which the DMA addresses were created 3638 * @sg: The scatter/gather entry 3639 * 3640 * Note: this function is obsolete. To do: change all occurrences of 3641 * ib_sg_dma_address() into sg_dma_address(). 3642 */ 3643 static inline u64 ib_sg_dma_address(struct ib_device *dev, 3644 struct scatterlist *sg) 3645 { 3646 return sg_dma_address(sg); 3647 } 3648 3649 /** 3650 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry 3651 * @dev: The device for which the DMA addresses were created 3652 * @sg: The scatter/gather entry 3653 * 3654 * Note: this function is obsolete. To do: change all occurrences of 3655 * ib_sg_dma_len() into sg_dma_len(). 3656 */ 3657 static inline unsigned int ib_sg_dma_len(struct ib_device *dev, 3658 struct scatterlist *sg) 3659 { 3660 return sg_dma_len(sg); 3661 } 3662 3663 /** 3664 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU 3665 * @dev: The device for which the DMA address was created 3666 * @addr: The DMA address 3667 * @size: The size of the region in bytes 3668 * @dir: The direction of the DMA 3669 */ 3670 static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev, 3671 u64 addr, 3672 size_t size, 3673 enum dma_data_direction dir) 3674 { 3675 if (dev->dma_ops) 3676 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir); 3677 else 3678 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir); 3679 } 3680 3681 /** 3682 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device 3683 * @dev: The device for which the DMA address was created 3684 * @addr: The DMA address 3685 * @size: The size of the region in bytes 3686 * @dir: The direction of the DMA 3687 */ 3688 static inline void ib_dma_sync_single_for_device(struct ib_device *dev, 3689 u64 addr, 3690 size_t size, 3691 enum dma_data_direction dir) 3692 { 3693 if (dev->dma_ops) 3694 dev->dma_ops->sync_single_for_device(dev, addr, size, dir); 3695 else 3696 dma_sync_single_for_device(dev->dma_device, addr, size, dir); 3697 } 3698 3699 /** 3700 * ib_dma_alloc_coherent - Allocate memory and map it for DMA 3701 * @dev: The device for which the DMA address is requested 3702 * @size: The size of the region to allocate in bytes 3703 * @dma_handle: A pointer for returning the DMA address of the region 3704 * @flag: memory allocator flags 3705 */ 3706 static inline void *ib_dma_alloc_coherent(struct ib_device *dev, 3707 size_t size, 3708 u64 *dma_handle, 3709 gfp_t flag) 3710 { 3711 if (dev->dma_ops) 3712 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag); 3713 else { 3714 dma_addr_t handle; 3715 void *ret; 3716 3717 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag); 3718 *dma_handle = handle; 3719 return ret; 3720 } 3721 } 3722 3723 /** 3724 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent() 3725 * @dev: The device for which the DMA addresses were allocated 3726 * @size: The size of the region 3727 * @cpu_addr: the address returned by ib_dma_alloc_coherent() 3728 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent() 3729 */ 3730 static inline void ib_dma_free_coherent(struct ib_device *dev, 3731 size_t size, void *cpu_addr, 3732 u64 dma_handle) 3733 { 3734 if (dev->dma_ops) 3735 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle); 3736 else 3737 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle); 3738 } 3739 3740 /** 3741 * ib_dereg_mr - Deregisters a memory region and removes it from the 3742 * HCA translation table. 3743 * @mr: The memory region to deregister. 3744 * 3745 * This function can fail, if the memory region has memory windows bound to it. 3746 */ 3747 int ib_dereg_mr_user(struct ib_mr *mr, struct ib_udata *udata); 3748 3749 /** 3750 * ib_dereg_mr - Deregisters a kernel memory region and removes it from the 3751 * HCA translation table. 3752 * @mr: The memory region to deregister. 3753 * 3754 * This function can fail, if the memory region has memory windows bound to it. 3755 * 3756 * NOTE: for user mr use ib_dereg_mr_user with valid udata! 3757 */ 3758 static inline int ib_dereg_mr(struct ib_mr *mr) 3759 { 3760 return ib_dereg_mr_user(mr, NULL); 3761 } 3762 3763 struct ib_mr *ib_alloc_mr_user(struct ib_pd *pd, enum ib_mr_type mr_type, 3764 u32 max_num_sg, struct ib_udata *udata); 3765 3766 static inline struct ib_mr *ib_alloc_mr(struct ib_pd *pd, 3767 enum ib_mr_type mr_type, u32 max_num_sg) 3768 { 3769 return ib_alloc_mr_user(pd, mr_type, max_num_sg, NULL); 3770 } 3771 3772 struct ib_mr *ib_alloc_mr_integrity(struct ib_pd *pd, 3773 u32 max_num_data_sg, 3774 u32 max_num_meta_sg); 3775 3776 /** 3777 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR 3778 * R_Key and L_Key. 3779 * @mr - struct ib_mr pointer to be updated. 3780 * @newkey - new key to be used. 3781 */ 3782 static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey) 3783 { 3784 mr->lkey = (mr->lkey & 0xffffff00) | newkey; 3785 mr->rkey = (mr->rkey & 0xffffff00) | newkey; 3786 } 3787 3788 /** 3789 * ib_inc_rkey - increments the key portion of the given rkey. Can be used 3790 * for calculating a new rkey for type 2 memory windows. 3791 * @rkey - the rkey to increment. 3792 */ 3793 static inline u32 ib_inc_rkey(u32 rkey) 3794 { 3795 const u32 mask = 0x000000ff; 3796 return ((rkey + 1) & mask) | (rkey & ~mask); 3797 } 3798 3799 /** 3800 * ib_alloc_fmr - Allocates a unmapped fast memory region. 3801 * @pd: The protection domain associated with the unmapped region. 3802 * @mr_access_flags: Specifies the memory access rights. 3803 * @fmr_attr: Attributes of the unmapped region. 3804 * 3805 * A fast memory region must be mapped before it can be used as part of 3806 * a work request. 3807 */ 3808 struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd, 3809 int mr_access_flags, 3810 struct ib_fmr_attr *fmr_attr); 3811 3812 /** 3813 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region. 3814 * @fmr: The fast memory region to associate with the pages. 3815 * @page_list: An array of physical pages to map to the fast memory region. 3816 * @list_len: The number of pages in page_list. 3817 * @iova: The I/O virtual address to use with the mapped region. 3818 */ 3819 static inline int ib_map_phys_fmr(struct ib_fmr *fmr, 3820 u64 *page_list, int list_len, 3821 u64 iova) 3822 { 3823 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova); 3824 } 3825 3826 /** 3827 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions. 3828 * @fmr_list: A linked list of fast memory regions to unmap. 3829 */ 3830 int ib_unmap_fmr(struct list_head *fmr_list); 3831 3832 /** 3833 * ib_dealloc_fmr - Deallocates a fast memory region. 3834 * @fmr: The fast memory region to deallocate. 3835 */ 3836 int ib_dealloc_fmr(struct ib_fmr *fmr); 3837 3838 /** 3839 * ib_attach_mcast - Attaches the specified QP to a multicast group. 3840 * @qp: QP to attach to the multicast group. The QP must be type 3841 * IB_QPT_UD. 3842 * @gid: Multicast group GID. 3843 * @lid: Multicast group LID in host byte order. 3844 * 3845 * In order to send and receive multicast packets, subnet 3846 * administration must have created the multicast group and configured 3847 * the fabric appropriately. The port associated with the specified 3848 * QP must also be a member of the multicast group. 3849 */ 3850 int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3851 3852 /** 3853 * ib_detach_mcast - Detaches the specified QP from a multicast group. 3854 * @qp: QP to detach from the multicast group. 3855 * @gid: Multicast group GID. 3856 * @lid: Multicast group LID in host byte order. 3857 */ 3858 int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid); 3859 3860 /** 3861 * ib_alloc_xrcd - Allocates an XRC domain. 3862 * @device: The device on which to allocate the XRC domain. 3863 * @caller: Module name for kernel consumers 3864 */ 3865 struct ib_xrcd *__ib_alloc_xrcd(struct ib_device *device, const char *caller); 3866 #define ib_alloc_xrcd(device) \ 3867 __ib_alloc_xrcd((device), "ibcore") 3868 3869 /** 3870 * ib_dealloc_xrcd - Deallocates an XRC domain. 3871 * @xrcd: The XRC domain to deallocate. 3872 * @udata: Valid user data or NULL for kernel object 3873 */ 3874 int ib_dealloc_xrcd(struct ib_xrcd *xrcd, struct ib_udata *udata); 3875 3876 static inline int ib_check_mr_access(int flags) 3877 { 3878 /* 3879 * Local write permission is required if remote write or 3880 * remote atomic permission is also requested. 3881 */ 3882 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) && 3883 !(flags & IB_ACCESS_LOCAL_WRITE)) 3884 return -EINVAL; 3885 3886 if (flags & ~IB_ACCESS_SUPPORTED) 3887 return -EINVAL; 3888 3889 return 0; 3890 } 3891 3892 static inline bool ib_access_writable(int access_flags) 3893 { 3894 /* 3895 * We have writable memory backing the MR if any of the following 3896 * access flags are set. "Local write" and "remote write" obviously 3897 * require write access. "Remote atomic" can do things like fetch and 3898 * add, which will modify memory, and "MW bind" can change permissions 3899 * by binding a window. 3900 */ 3901 return access_flags & 3902 (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | 3903 IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_MW_BIND); 3904 } 3905 3906 /** 3907 * ib_check_mr_status: lightweight check of MR status. 3908 * This routine may provide status checks on a selected 3909 * ib_mr. first use is for signature status check. 3910 * 3911 * @mr: A memory region. 3912 * @check_mask: Bitmask of which checks to perform from 3913 * ib_mr_status_check enumeration. 3914 * @mr_status: The container of relevant status checks. 3915 * failed checks will be indicated in the status bitmask 3916 * and the relevant info shall be in the error item. 3917 */ 3918 int ib_check_mr_status(struct ib_mr *mr, u32 check_mask, 3919 struct ib_mr_status *mr_status); 3920 3921 struct ifnet *ib_get_net_dev_by_params(struct ib_device *dev, u8 port, 3922 u16 pkey, const union ib_gid *gid, 3923 const struct sockaddr *addr); 3924 struct ib_wq *ib_create_wq(struct ib_pd *pd, 3925 struct ib_wq_init_attr *init_attr); 3926 int ib_destroy_wq(struct ib_wq *wq, struct ib_udata *udata); 3927 int ib_modify_wq(struct ib_wq *wq, struct ib_wq_attr *attr, 3928 u32 wq_attr_mask); 3929 struct ib_rwq_ind_table *ib_create_rwq_ind_table(struct ib_device *device, 3930 struct ib_rwq_ind_table_init_attr* 3931 wq_ind_table_init_attr); 3932 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table *wq_ind_table); 3933 3934 int ib_map_mr_sg(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3935 unsigned int *sg_offset, unsigned int page_size); 3936 3937 static inline int 3938 ib_map_mr_sg_zbva(struct ib_mr *mr, struct scatterlist *sg, int sg_nents, 3939 unsigned int *sg_offset, unsigned int page_size) 3940 { 3941 int n; 3942 3943 n = ib_map_mr_sg(mr, sg, sg_nents, sg_offset, page_size); 3944 mr->iova = 0; 3945 3946 return n; 3947 } 3948 3949 int ib_sg_to_pages(struct ib_mr *mr, struct scatterlist *sgl, int sg_nents, 3950 unsigned int *sg_offset, int (*set_page)(struct ib_mr *, u64)); 3951 3952 void ib_drain_rq(struct ib_qp *qp); 3953 void ib_drain_sq(struct ib_qp *qp); 3954 void ib_drain_qp(struct ib_qp *qp); 3955 3956 struct ib_ucontext *ib_uverbs_get_ucontext_file(struct ib_uverbs_file *ufile); 3957 3958 int uverbs_destroy_def_handler(struct uverbs_attr_bundle *attrs); 3959 3960 int ib_resolve_eth_dmac(struct ib_device *device, 3961 struct ib_ah_attr *ah_attr); 3962 #endif /* IB_VERBS_H */ 3963