xref: /freebsd/sys/netpfil/pf/pf_norm.c (revision c27f7d6b9cf6d4ab01cb3d0972726c14e0aca146)
1 /*-
2  * SPDX-License-Identifier: BSD-2-Clause
3  *
4  * Copyright 2001 Niels Provos <provos@citi.umich.edu>
5  * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org>
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  *
17  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26  * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27  *
28  *	$OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $
29  */
30 
31 #include <sys/cdefs.h>
32 #include "opt_inet.h"
33 #include "opt_inet6.h"
34 #include "opt_pf.h"
35 
36 #include <sys/param.h>
37 #include <sys/kernel.h>
38 #include <sys/lock.h>
39 #include <sys/mbuf.h>
40 #include <sys/mutex.h>
41 #include <sys/refcount.h>
42 #include <sys/socket.h>
43 
44 #include <net/if.h>
45 #include <net/if_var.h>
46 #include <net/if_private.h>
47 #include <net/vnet.h>
48 #include <net/pfvar.h>
49 #include <net/if_pflog.h>
50 
51 #include <netinet/in.h>
52 #include <netinet/ip.h>
53 #include <netinet/ip_var.h>
54 #include <netinet6/in6_var.h>
55 #include <netinet6/nd6.h>
56 #include <netinet6/ip6_var.h>
57 #include <netinet6/scope6_var.h>
58 #include <netinet/tcp.h>
59 #include <netinet/tcp_fsm.h>
60 #include <netinet/tcp_seq.h>
61 #include <netinet/sctp_constants.h>
62 #include <netinet/sctp_header.h>
63 
64 #ifdef INET6
65 #include <netinet/ip6.h>
66 #endif /* INET6 */
67 
68 struct pf_frent {
69 	TAILQ_ENTRY(pf_frent)	fr_next;
70 	struct mbuf	*fe_m;
71 	uint16_t	fe_hdrlen;	/* ipv4 header length with ip options
72 					   ipv6, extension, fragment header */
73 	uint16_t	fe_extoff;	/* last extension header offset or 0 */
74 	uint16_t	fe_len;		/* fragment length */
75 	uint16_t	fe_off;		/* fragment offset */
76 	uint16_t	fe_mff;		/* more fragment flag */
77 };
78 
79 struct pf_fragment_cmp {
80 	struct pf_addr	frc_src;
81 	struct pf_addr	frc_dst;
82 	uint32_t	frc_id;
83 	sa_family_t	frc_af;
84 	uint8_t		frc_proto;
85 };
86 
87 struct pf_fragment {
88 	struct pf_fragment_cmp	fr_key;
89 #define fr_src	fr_key.frc_src
90 #define fr_dst	fr_key.frc_dst
91 #define fr_id	fr_key.frc_id
92 #define fr_af	fr_key.frc_af
93 #define fr_proto	fr_key.frc_proto
94 
95 	/* pointers to queue element */
96 	struct pf_frent	*fr_firstoff[PF_FRAG_ENTRY_POINTS];
97 	/* count entries between pointers */
98 	uint8_t	fr_entries[PF_FRAG_ENTRY_POINTS];
99 	RB_ENTRY(pf_fragment) fr_entry;
100 	TAILQ_ENTRY(pf_fragment) frag_next;
101 	uint32_t	fr_timeout;
102 	TAILQ_HEAD(pf_fragq, pf_frent) fr_queue;
103 	uint16_t	fr_maxlen;	/* maximum length of single fragment */
104 	u_int16_t	fr_holes;	/* number of holes in the queue */
105 };
106 
107 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx);
108 #define V_pf_frag_mtx		VNET(pf_frag_mtx)
109 #define PF_FRAG_LOCK()		mtx_lock(&V_pf_frag_mtx)
110 #define PF_FRAG_UNLOCK()	mtx_unlock(&V_pf_frag_mtx)
111 #define PF_FRAG_ASSERT()	mtx_assert(&V_pf_frag_mtx, MA_OWNED)
112 
113 VNET_DEFINE(uma_zone_t, pf_state_scrub_z);	/* XXX: shared with pfsync */
114 
115 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z);
116 #define	V_pf_frent_z	VNET(pf_frent_z)
117 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z);
118 #define	V_pf_frag_z	VNET(pf_frag_z)
119 
120 TAILQ_HEAD(pf_fragqueue, pf_fragment);
121 TAILQ_HEAD(pf_cachequeue, pf_fragment);
122 VNET_DEFINE_STATIC(struct pf_fragqueue,	pf_fragqueue);
123 #define	V_pf_fragqueue			VNET(pf_fragqueue)
124 RB_HEAD(pf_frag_tree, pf_fragment);
125 VNET_DEFINE_STATIC(struct pf_frag_tree,	pf_frag_tree);
126 #define	V_pf_frag_tree			VNET(pf_frag_tree)
127 static int		 pf_frag_compare(struct pf_fragment *,
128 			    struct pf_fragment *);
129 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
130 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare);
131 
132 static void	pf_flush_fragments(void);
133 static void	pf_free_fragment(struct pf_fragment *);
134 
135 static struct pf_frent *pf_create_fragment(u_short *);
136 static int	pf_frent_holes(struct pf_frent *frent);
137 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key,
138 		    struct pf_frag_tree *tree);
139 static inline int	pf_frent_index(struct pf_frent *);
140 static int	pf_frent_insert(struct pf_fragment *,
141 			    struct pf_frent *, struct pf_frent *);
142 void			pf_frent_remove(struct pf_fragment *,
143 			    struct pf_frent *);
144 struct pf_frent		*pf_frent_previous(struct pf_fragment *,
145 			    struct pf_frent *);
146 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *,
147 		    struct pf_frent *, u_short *);
148 static struct mbuf *pf_join_fragment(struct pf_fragment *);
149 #ifdef INET
150 static int	pf_reassemble(struct mbuf **, u_short *);
151 #endif	/* INET */
152 #ifdef INET6
153 static int	pf_reassemble6(struct mbuf **,
154 		    struct ip6_frag *, uint16_t, uint16_t, u_short *);
155 #endif	/* INET6 */
156 
157 #define	DPFPRINTF(x) do {				\
158 	if (V_pf_status.debug >= PF_DEBUG_MISC) {	\
159 		printf("%s: ", __func__);		\
160 		printf x ;				\
161 	}						\
162 } while(0)
163 
164 #ifdef INET
165 static void
166 pf_ip2key(struct ip *ip, struct pf_fragment_cmp *key)
167 {
168 
169 	key->frc_src.v4 = ip->ip_src;
170 	key->frc_dst.v4 = ip->ip_dst;
171 	key->frc_af = AF_INET;
172 	key->frc_proto = ip->ip_p;
173 	key->frc_id = ip->ip_id;
174 }
175 #endif	/* INET */
176 
177 void
178 pf_normalize_init(void)
179 {
180 
181 	V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment),
182 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
183 	V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent),
184 	    NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0);
185 	V_pf_state_scrub_z = uma_zcreate("pf state scrubs",
186 	    sizeof(struct pf_state_scrub),  NULL, NULL, NULL, NULL,
187 	    UMA_ALIGN_PTR, 0);
188 
189 	mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF);
190 
191 	V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z;
192 	V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT;
193 	uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT);
194 	uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached");
195 
196 	TAILQ_INIT(&V_pf_fragqueue);
197 }
198 
199 void
200 pf_normalize_cleanup(void)
201 {
202 
203 	uma_zdestroy(V_pf_state_scrub_z);
204 	uma_zdestroy(V_pf_frent_z);
205 	uma_zdestroy(V_pf_frag_z);
206 
207 	mtx_destroy(&V_pf_frag_mtx);
208 }
209 
210 static int
211 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b)
212 {
213 	int	diff;
214 
215 	if ((diff = a->fr_id - b->fr_id) != 0)
216 		return (diff);
217 	if ((diff = a->fr_proto - b->fr_proto) != 0)
218 		return (diff);
219 	if ((diff = a->fr_af - b->fr_af) != 0)
220 		return (diff);
221 	if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0)
222 		return (diff);
223 	if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0)
224 		return (diff);
225 	return (0);
226 }
227 
228 void
229 pf_purge_expired_fragments(void)
230 {
231 	u_int32_t	expire = time_uptime -
232 			    V_pf_default_rule.timeout[PFTM_FRAG];
233 
234 	pf_purge_fragments(expire);
235 }
236 
237 void
238 pf_purge_fragments(uint32_t expire)
239 {
240 	struct pf_fragment	*frag;
241 
242 	PF_FRAG_LOCK();
243 	while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) {
244 		if (frag->fr_timeout > expire)
245 			break;
246 
247 		DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag));
248 		pf_free_fragment(frag);
249 	}
250 
251 	PF_FRAG_UNLOCK();
252 }
253 
254 /*
255  * Try to flush old fragments to make space for new ones
256  */
257 static void
258 pf_flush_fragments(void)
259 {
260 	struct pf_fragment	*frag;
261 	int			 goal;
262 
263 	PF_FRAG_ASSERT();
264 
265 	goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10;
266 	DPFPRINTF(("trying to free %d frag entriess\n", goal));
267 	while (goal < uma_zone_get_cur(V_pf_frent_z)) {
268 		frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue);
269 		if (frag)
270 			pf_free_fragment(frag);
271 		else
272 			break;
273 	}
274 }
275 
276 /*
277  * Remove a fragment from the fragment queue, free its fragment entries,
278  * and free the fragment itself.
279  */
280 static void
281 pf_free_fragment(struct pf_fragment *frag)
282 {
283 	struct pf_frent		*frent;
284 
285 	PF_FRAG_ASSERT();
286 
287 	RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag);
288 	TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
289 
290 	/* Free all fragment entries */
291 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
292 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
293 
294 		m_freem(frent->fe_m);
295 		uma_zfree(V_pf_frent_z, frent);
296 	}
297 
298 	uma_zfree(V_pf_frag_z, frag);
299 }
300 
301 static struct pf_fragment *
302 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree)
303 {
304 	struct pf_fragment	*frag;
305 
306 	PF_FRAG_ASSERT();
307 
308 	frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key);
309 	if (frag != NULL) {
310 		TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next);
311 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
312 	}
313 
314 	return (frag);
315 }
316 
317 static struct pf_frent *
318 pf_create_fragment(u_short *reason)
319 {
320 	struct pf_frent *frent;
321 
322 	PF_FRAG_ASSERT();
323 
324 	frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
325 	if (frent == NULL) {
326 		pf_flush_fragments();
327 		frent = uma_zalloc(V_pf_frent_z, M_NOWAIT);
328 		if (frent == NULL) {
329 			REASON_SET(reason, PFRES_MEMORY);
330 			return (NULL);
331 		}
332 	}
333 
334 	return (frent);
335 }
336 
337 /*
338  * Calculate the additional holes that were created in the fragment
339  * queue by inserting this fragment.  A fragment in the middle
340  * creates one more hole by splitting.  For each connected side,
341  * it loses one hole.
342  * Fragment entry must be in the queue when calling this function.
343  */
344 static int
345 pf_frent_holes(struct pf_frent *frent)
346 {
347 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
348 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
349 	int holes = 1;
350 
351 	if (prev == NULL) {
352 		if (frent->fe_off == 0)
353 			holes--;
354 	} else {
355 		KASSERT(frent->fe_off != 0, ("frent->fe_off != 0"));
356 		if (frent->fe_off == prev->fe_off + prev->fe_len)
357 			holes--;
358 	}
359 	if (next == NULL) {
360 		if (!frent->fe_mff)
361 			holes--;
362 	} else {
363 		KASSERT(frent->fe_mff, ("frent->fe_mff"));
364 		if (next->fe_off == frent->fe_off + frent->fe_len)
365 			holes--;
366 	}
367 	return holes;
368 }
369 
370 static inline int
371 pf_frent_index(struct pf_frent *frent)
372 {
373 	/*
374 	 * We have an array of 16 entry points to the queue.  A full size
375 	 * 65535 octet IP packet can have 8192 fragments.  So the queue
376 	 * traversal length is at most 512 and at most 16 entry points are
377 	 * checked.  We need 128 additional bytes on a 64 bit architecture.
378 	 */
379 	CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) ==
380 	    16 - 1);
381 	CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1);
382 
383 	return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS);
384 }
385 
386 static int
387 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent,
388     struct pf_frent *prev)
389 {
390 	int index;
391 
392 	CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff);
393 
394 	/*
395 	 * A packet has at most 65536 octets.  With 16 entry points, each one
396 	 * spawns 4096 octets.  We limit these to 64 fragments each, which
397 	 * means on average every fragment must have at least 64 octets.
398 	 */
399 	index = pf_frent_index(frent);
400 	if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT)
401 		return ENOBUFS;
402 	frag->fr_entries[index]++;
403 
404 	if (prev == NULL) {
405 		TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next);
406 	} else {
407 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
408 		    ("overlapping fragment"));
409 		TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next);
410 	}
411 
412 	if (frag->fr_firstoff[index] == NULL) {
413 		KASSERT(prev == NULL || pf_frent_index(prev) < index,
414 		    ("prev == NULL || pf_frent_index(pref) < index"));
415 		frag->fr_firstoff[index] = frent;
416 	} else {
417 		if (frent->fe_off < frag->fr_firstoff[index]->fe_off) {
418 			KASSERT(prev == NULL || pf_frent_index(prev) < index,
419 			    ("prev == NULL || pf_frent_index(pref) < index"));
420 			frag->fr_firstoff[index] = frent;
421 		} else {
422 			KASSERT(prev != NULL, ("prev != NULL"));
423 			KASSERT(pf_frent_index(prev) == index,
424 			    ("pf_frent_index(prev) == index"));
425 		}
426 	}
427 
428 	frag->fr_holes += pf_frent_holes(frent);
429 
430 	return 0;
431 }
432 
433 void
434 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent)
435 {
436 #ifdef INVARIANTS
437 	struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next);
438 #endif /* INVARIANTS */
439 	struct pf_frent *next = TAILQ_NEXT(frent, fr_next);
440 	int index;
441 
442 	frag->fr_holes -= pf_frent_holes(frent);
443 
444 	index = pf_frent_index(frent);
445 	KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found"));
446 	if (frag->fr_firstoff[index]->fe_off == frent->fe_off) {
447 		if (next == NULL) {
448 			frag->fr_firstoff[index] = NULL;
449 		} else {
450 			KASSERT(frent->fe_off + frent->fe_len <= next->fe_off,
451 			    ("overlapping fragment"));
452 			if (pf_frent_index(next) == index) {
453 				frag->fr_firstoff[index] = next;
454 			} else {
455 				frag->fr_firstoff[index] = NULL;
456 			}
457 		}
458 	} else {
459 		KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off,
460 		    ("frag->fr_firstoff[index]->fe_off < frent->fe_off"));
461 		KASSERT(prev != NULL, ("prev != NULL"));
462 		KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off,
463 		    ("overlapping fragment"));
464 		KASSERT(pf_frent_index(prev) == index,
465 		    ("pf_frent_index(prev) == index"));
466 	}
467 
468 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
469 
470 	KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining"));
471 	frag->fr_entries[index]--;
472 }
473 
474 struct pf_frent *
475 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent)
476 {
477 	struct pf_frent *prev, *next;
478 	int index;
479 
480 	/*
481 	 * If there are no fragments after frag, take the final one.  Assume
482 	 * that the global queue is not empty.
483 	 */
484 	prev = TAILQ_LAST(&frag->fr_queue, pf_fragq);
485 	KASSERT(prev != NULL, ("prev != NULL"));
486 	if (prev->fe_off <= frent->fe_off)
487 		return prev;
488 	/*
489 	 * We want to find a fragment entry that is before frag, but still
490 	 * close to it.  Find the first fragment entry that is in the same
491 	 * entry point or in the first entry point after that.  As we have
492 	 * already checked that there are entries behind frag, this will
493 	 * succeed.
494 	 */
495 	for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS;
496 	    index++) {
497 		prev = frag->fr_firstoff[index];
498 		if (prev != NULL)
499 			break;
500 	}
501 	KASSERT(prev != NULL, ("prev != NULL"));
502 	/*
503 	 * In prev we may have a fragment from the same entry point that is
504 	 * before frent, or one that is just one position behind frent.
505 	 * In the latter case, we go back one step and have the predecessor.
506 	 * There may be none if the new fragment will be the first one.
507 	 */
508 	if (prev->fe_off > frent->fe_off) {
509 		prev = TAILQ_PREV(prev, pf_fragq, fr_next);
510 		if (prev == NULL)
511 			return NULL;
512 		KASSERT(prev->fe_off <= frent->fe_off,
513 		    ("prev->fe_off <= frent->fe_off"));
514 		return prev;
515 	}
516 	/*
517 	 * In prev is the first fragment of the entry point.  The offset
518 	 * of frag is behind it.  Find the closest previous fragment.
519 	 */
520 	for (next = TAILQ_NEXT(prev, fr_next); next != NULL;
521 	    next = TAILQ_NEXT(next, fr_next)) {
522 		if (next->fe_off > frent->fe_off)
523 			break;
524 		prev = next;
525 	}
526 	return prev;
527 }
528 
529 static struct pf_fragment *
530 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent,
531     u_short *reason)
532 {
533 	struct pf_frent		*after, *next, *prev;
534 	struct pf_fragment	*frag;
535 	uint16_t		total;
536 
537 	PF_FRAG_ASSERT();
538 
539 	/* No empty fragments. */
540 	if (frent->fe_len == 0) {
541 		DPFPRINTF(("bad fragment: len 0\n"));
542 		goto bad_fragment;
543 	}
544 
545 	/* All fragments are 8 byte aligned. */
546 	if (frent->fe_mff && (frent->fe_len & 0x7)) {
547 		DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len));
548 		goto bad_fragment;
549 	}
550 
551 	/* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */
552 	if (frent->fe_off + frent->fe_len > IP_MAXPACKET) {
553 		DPFPRINTF(("bad fragment: max packet %d\n",
554 		    frent->fe_off + frent->fe_len));
555 		goto bad_fragment;
556 	}
557 
558 	DPFPRINTF((key->frc_af == AF_INET ?
559 	    "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n",
560 	    key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len));
561 
562 	/* Fully buffer all of the fragments in this fragment queue. */
563 	frag = pf_find_fragment(key, &V_pf_frag_tree);
564 
565 	/* Create a new reassembly queue for this packet. */
566 	if (frag == NULL) {
567 		frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
568 		if (frag == NULL) {
569 			pf_flush_fragments();
570 			frag = uma_zalloc(V_pf_frag_z, M_NOWAIT);
571 			if (frag == NULL) {
572 				REASON_SET(reason, PFRES_MEMORY);
573 				goto drop_fragment;
574 			}
575 		}
576 
577 		*(struct pf_fragment_cmp *)frag = *key;
578 		memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff));
579 		memset(frag->fr_entries, 0, sizeof(frag->fr_entries));
580 		frag->fr_timeout = time_uptime;
581 		TAILQ_INIT(&frag->fr_queue);
582 		frag->fr_maxlen = frent->fe_len;
583 		frag->fr_holes = 1;
584 
585 		RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag);
586 		TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next);
587 
588 		/* We do not have a previous fragment, cannot fail. */
589 		pf_frent_insert(frag, frent, NULL);
590 
591 		return (frag);
592 	}
593 
594 	KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue"));
595 
596 	/* Remember maximum fragment len for refragmentation. */
597 	if (frent->fe_len > frag->fr_maxlen)
598 		frag->fr_maxlen = frent->fe_len;
599 
600 	/* Maximum data we have seen already. */
601 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
602 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
603 
604 	/* Non terminal fragments must have more fragments flag. */
605 	if (frent->fe_off + frent->fe_len < total && !frent->fe_mff)
606 		goto free_ipv6_fragment;
607 
608 	/* Check if we saw the last fragment already. */
609 	if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) {
610 		if (frent->fe_off + frent->fe_len > total ||
611 		    (frent->fe_off + frent->fe_len == total && frent->fe_mff))
612 			goto free_ipv6_fragment;
613 	} else {
614 		if (frent->fe_off + frent->fe_len == total && !frent->fe_mff)
615 			goto free_ipv6_fragment;
616 	}
617 
618 	/* Find neighbors for newly inserted fragment */
619 	prev = pf_frent_previous(frag, frent);
620 	if (prev == NULL) {
621 		after = TAILQ_FIRST(&frag->fr_queue);
622 		KASSERT(after != NULL, ("after != NULL"));
623 	} else {
624 		after = TAILQ_NEXT(prev, fr_next);
625 	}
626 
627 	if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) {
628 		uint16_t precut;
629 
630 		if (frag->fr_af == AF_INET6)
631 			goto free_fragment;
632 
633 		precut = prev->fe_off + prev->fe_len - frent->fe_off;
634 		if (precut >= frent->fe_len) {
635 			DPFPRINTF(("new frag overlapped\n"));
636 			goto drop_fragment;
637 		}
638 		DPFPRINTF(("frag head overlap %d\n", precut));
639 		m_adj(frent->fe_m, precut);
640 		frent->fe_off += precut;
641 		frent->fe_len -= precut;
642 	}
643 
644 	for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off;
645 	    after = next) {
646 		uint16_t aftercut;
647 
648 		aftercut = frent->fe_off + frent->fe_len - after->fe_off;
649 		if (aftercut < after->fe_len) {
650 			DPFPRINTF(("frag tail overlap %d", aftercut));
651 			m_adj(after->fe_m, aftercut);
652 			/* Fragment may switch queue as fe_off changes */
653 			pf_frent_remove(frag, after);
654 			after->fe_off += aftercut;
655 			after->fe_len -= aftercut;
656 			/* Insert into correct queue */
657 			if (pf_frent_insert(frag, after, prev)) {
658 				DPFPRINTF(("fragment requeue limit exceeded"));
659 				m_freem(after->fe_m);
660 				uma_zfree(V_pf_frent_z, after);
661 				/* There is not way to recover */
662 				goto free_fragment;
663 			}
664 			break;
665 		}
666 
667 		/* This fragment is completely overlapped, lose it. */
668 		DPFPRINTF(("old frag overlapped\n"));
669 		next = TAILQ_NEXT(after, fr_next);
670 		pf_frent_remove(frag, after);
671 		m_freem(after->fe_m);
672 		uma_zfree(V_pf_frent_z, after);
673 	}
674 
675 	/* If part of the queue gets too long, there is not way to recover. */
676 	if (pf_frent_insert(frag, frent, prev)) {
677 		DPFPRINTF(("fragment queue limit exceeded\n"));
678 		goto bad_fragment;
679 	}
680 
681 	return (frag);
682 
683 free_ipv6_fragment:
684 	if (frag->fr_af == AF_INET)
685 		goto bad_fragment;
686 free_fragment:
687 	/*
688 	 * RFC 5722, Errata 3089:  When reassembling an IPv6 datagram, if one
689 	 * or more its constituent fragments is determined to be an overlapping
690 	 * fragment, the entire datagram (and any constituent fragments) MUST
691 	 * be silently discarded.
692 	 */
693 	DPFPRINTF(("flush overlapping fragments\n"));
694 	pf_free_fragment(frag);
695 
696 bad_fragment:
697 	REASON_SET(reason, PFRES_FRAG);
698 drop_fragment:
699 	uma_zfree(V_pf_frent_z, frent);
700 	return (NULL);
701 }
702 
703 static struct mbuf *
704 pf_join_fragment(struct pf_fragment *frag)
705 {
706 	struct mbuf *m, *m2;
707 	struct pf_frent	*frent;
708 
709 	frent = TAILQ_FIRST(&frag->fr_queue);
710 	TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
711 
712 	m = frent->fe_m;
713 	if ((frent->fe_hdrlen + frent->fe_len) < m->m_pkthdr.len)
714 		m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len);
715 	uma_zfree(V_pf_frent_z, frent);
716 	while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) {
717 		TAILQ_REMOVE(&frag->fr_queue, frent, fr_next);
718 
719 		m2 = frent->fe_m;
720 		/* Strip off ip header. */
721 		m_adj(m2, frent->fe_hdrlen);
722 		/* Strip off any trailing bytes. */
723 		if (frent->fe_len < m2->m_pkthdr.len)
724 			m_adj(m2, frent->fe_len - m2->m_pkthdr.len);
725 
726 		uma_zfree(V_pf_frent_z, frent);
727 		m_cat(m, m2);
728 	}
729 
730 	/* Remove from fragment queue. */
731 	pf_free_fragment(frag);
732 
733 	return (m);
734 }
735 
736 #ifdef INET
737 static int
738 pf_reassemble(struct mbuf **m0, u_short *reason)
739 {
740 	struct mbuf		*m = *m0;
741 	struct ip		*ip = mtod(m, struct ip *);
742 	struct pf_frent		*frent;
743 	struct pf_fragment	*frag;
744 	struct m_tag		*mtag;
745 	struct pf_fragment_tag	*ftag;
746 	struct pf_fragment_cmp	key;
747 	uint16_t		total, hdrlen;
748 	uint32_t		 frag_id;
749 	uint16_t		 maxlen;
750 
751 	/* Get an entry for the fragment queue */
752 	if ((frent = pf_create_fragment(reason)) == NULL)
753 		return (PF_DROP);
754 
755 	frent->fe_m = m;
756 	frent->fe_hdrlen = ip->ip_hl << 2;
757 	frent->fe_extoff = 0;
758 	frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2);
759 	frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3;
760 	frent->fe_mff = ntohs(ip->ip_off) & IP_MF;
761 
762 	pf_ip2key(ip, &key);
763 
764 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL)
765 		return (PF_DROP);
766 
767 	/* The mbuf is part of the fragment entry, no direct free or access */
768 	m = *m0 = NULL;
769 
770 	if (frag->fr_holes) {
771 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes));
772 		return (PF_PASS);  /* drop because *m0 is NULL, no error */
773 	}
774 
775 	/* We have all the data */
776 	frent = TAILQ_FIRST(&frag->fr_queue);
777 	KASSERT(frent != NULL, ("frent != NULL"));
778 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
779 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
780 	hdrlen = frent->fe_hdrlen;
781 
782 	maxlen = frag->fr_maxlen;
783 	frag_id = frag->fr_id;
784 	m = *m0 = pf_join_fragment(frag);
785 	frag = NULL;
786 
787 	if (m->m_flags & M_PKTHDR) {
788 		int plen = 0;
789 		for (m = *m0; m; m = m->m_next)
790 			plen += m->m_len;
791 		m = *m0;
792 		m->m_pkthdr.len = plen;
793 	}
794 
795 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
796 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) {
797 		REASON_SET(reason, PFRES_SHORT);
798 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
799 		return (PF_DROP);
800 	}
801 	ftag = (struct pf_fragment_tag *)(mtag + 1);
802 	ftag->ft_hdrlen = hdrlen;
803 	ftag->ft_extoff = 0;
804 	ftag->ft_maxlen = maxlen;
805 	ftag->ft_id = frag_id;
806 	m_tag_prepend(m, mtag);
807 
808 	ip = mtod(m, struct ip *);
809 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len,
810 	    htons(hdrlen + total), 0);
811 	ip->ip_len = htons(hdrlen + total);
812 	ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off,
813 	    ip->ip_off & ~(IP_MF|IP_OFFMASK), 0);
814 	ip->ip_off &= ~(IP_MF|IP_OFFMASK);
815 
816 	if (hdrlen + total > IP_MAXPACKET) {
817 		DPFPRINTF(("drop: too big: %d\n", total));
818 		ip->ip_len = 0;
819 		REASON_SET(reason, PFRES_SHORT);
820 		/* PF_DROP requires a valid mbuf *m0 in pf_test() */
821 		return (PF_DROP);
822 	}
823 
824 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len)));
825 	return (PF_PASS);
826 }
827 #endif	/* INET */
828 
829 #ifdef INET6
830 static int
831 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr,
832     uint16_t hdrlen, uint16_t extoff, u_short *reason)
833 {
834 	struct mbuf		*m = *m0;
835 	struct ip6_hdr		*ip6 = mtod(m, struct ip6_hdr *);
836 	struct pf_frent		*frent;
837 	struct pf_fragment	*frag;
838 	struct pf_fragment_cmp	 key;
839 	struct m_tag		*mtag;
840 	struct pf_fragment_tag	*ftag;
841 	int			 off;
842 	uint32_t		 frag_id;
843 	uint16_t		 total, maxlen;
844 	uint8_t			 proto;
845 
846 	PF_FRAG_LOCK();
847 
848 	/* Get an entry for the fragment queue. */
849 	if ((frent = pf_create_fragment(reason)) == NULL) {
850 		PF_FRAG_UNLOCK();
851 		return (PF_DROP);
852 	}
853 
854 	frent->fe_m = m;
855 	frent->fe_hdrlen = hdrlen;
856 	frent->fe_extoff = extoff;
857 	frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen;
858 	frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK);
859 	frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG;
860 
861 	key.frc_src.v6 = ip6->ip6_src;
862 	key.frc_dst.v6 = ip6->ip6_dst;
863 	key.frc_af = AF_INET6;
864 	/* Only the first fragment's protocol is relevant. */
865 	key.frc_proto = 0;
866 	key.frc_id = fraghdr->ip6f_ident;
867 
868 	if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) {
869 		PF_FRAG_UNLOCK();
870 		return (PF_DROP);
871 	}
872 
873 	/* The mbuf is part of the fragment entry, no direct free or access. */
874 	m = *m0 = NULL;
875 
876 	if (frag->fr_holes) {
877 		DPFPRINTF(("frag %d, holes %d\n", frag->fr_id,
878 		    frag->fr_holes));
879 		PF_FRAG_UNLOCK();
880 		return (PF_PASS);  /* Drop because *m0 is NULL, no error. */
881 	}
882 
883 	/* We have all the data. */
884 	frent = TAILQ_FIRST(&frag->fr_queue);
885 	KASSERT(frent != NULL, ("frent != NULL"));
886 	extoff = frent->fe_extoff;
887 	maxlen = frag->fr_maxlen;
888 	frag_id = frag->fr_id;
889 	total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off +
890 		TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len;
891 	hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag);
892 
893 	m = *m0 = pf_join_fragment(frag);
894 	frag = NULL;
895 
896 	PF_FRAG_UNLOCK();
897 
898 	/* Take protocol from first fragment header. */
899 	m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off);
900 	KASSERT(m, ("%s: short mbuf chain", __func__));
901 	proto = *(mtod(m, uint8_t *) + off);
902 	m = *m0;
903 
904 	/* Delete frag6 header */
905 	if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0)
906 		goto fail;
907 
908 	if (m->m_flags & M_PKTHDR) {
909 		int plen = 0;
910 		for (m = *m0; m; m = m->m_next)
911 			plen += m->m_len;
912 		m = *m0;
913 		m->m_pkthdr.len = plen;
914 	}
915 
916 	if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED,
917 	    sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL)
918 		goto fail;
919 	ftag = (struct pf_fragment_tag *)(mtag + 1);
920 	ftag->ft_hdrlen = hdrlen;
921 	ftag->ft_extoff = extoff;
922 	ftag->ft_maxlen = maxlen;
923 	ftag->ft_id = frag_id;
924 	m_tag_prepend(m, mtag);
925 
926 	ip6 = mtod(m, struct ip6_hdr *);
927 	ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total);
928 	if (extoff) {
929 		/* Write protocol into next field of last extension header. */
930 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
931 		    &off);
932 		KASSERT(m, ("%s: short mbuf chain", __func__));
933 		*(mtod(m, char *) + off) = proto;
934 		m = *m0;
935 	} else
936 		ip6->ip6_nxt = proto;
937 
938 	if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) {
939 		DPFPRINTF(("drop: too big: %d\n", total));
940 		ip6->ip6_plen = 0;
941 		REASON_SET(reason, PFRES_SHORT);
942 		/* PF_DROP requires a valid mbuf *m0 in pf_test6(). */
943 		return (PF_DROP);
944 	}
945 
946 	DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen)));
947 	return (PF_PASS);
948 
949 fail:
950 	REASON_SET(reason, PFRES_MEMORY);
951 	/* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */
952 	return (PF_DROP);
953 }
954 #endif	/* INET6 */
955 
956 #ifdef INET6
957 int
958 pf_max_frag_size(struct mbuf *m)
959 {
960 	struct m_tag *tag;
961 	struct pf_fragment_tag *ftag;
962 
963 	tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL);
964 	if (tag == NULL)
965 		return (m->m_pkthdr.len);
966 
967 	ftag = (struct pf_fragment_tag *)(tag + 1);
968 
969 	return (ftag->ft_maxlen);
970 }
971 
972 int
973 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag,
974     struct ifnet *rt, bool forward)
975 {
976 	struct mbuf		*m = *m0, *t;
977 	struct ip6_hdr		*hdr;
978 	struct pf_fragment_tag	*ftag = (struct pf_fragment_tag *)(mtag + 1);
979 	struct pf_pdesc		 pd;
980 	uint32_t		 frag_id;
981 	uint16_t		 hdrlen, extoff, maxlen;
982 	uint8_t			 proto;
983 	int			 error, action;
984 
985 	hdrlen = ftag->ft_hdrlen;
986 	extoff = ftag->ft_extoff;
987 	maxlen = ftag->ft_maxlen;
988 	frag_id = ftag->ft_id;
989 	m_tag_delete(m, mtag);
990 	mtag = NULL;
991 	ftag = NULL;
992 
993 	if (extoff) {
994 		int off;
995 
996 		/* Use protocol from next field of last extension header */
997 		m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt),
998 		    &off);
999 		KASSERT((m != NULL), ("pf_refragment6: short mbuf chain"));
1000 		proto = *(mtod(m, uint8_t *) + off);
1001 		*(mtod(m, char *) + off) = IPPROTO_FRAGMENT;
1002 		m = *m0;
1003 	} else {
1004 		hdr = mtod(m, struct ip6_hdr *);
1005 		proto = hdr->ip6_nxt;
1006 		hdr->ip6_nxt = IPPROTO_FRAGMENT;
1007 	}
1008 
1009 	/* In case of link-local traffic we'll need a scope set. */
1010 	hdr = mtod(m, struct ip6_hdr *);
1011 
1012 	in6_setscope(&hdr->ip6_src, ifp, NULL);
1013 	in6_setscope(&hdr->ip6_dst, ifp, NULL);
1014 
1015 	/* The MTU must be a multiple of 8 bytes, or we risk doing the
1016 	 * fragmentation wrong. */
1017 	maxlen = maxlen & ~7;
1018 
1019 	/*
1020 	 * Maxlen may be less than 8 if there was only a single
1021 	 * fragment.  As it was fragmented before, add a fragment
1022 	 * header also for a single fragment.  If total or maxlen
1023 	 * is less than 8, ip6_fragment() will return EMSGSIZE and
1024 	 * we drop the packet.
1025 	 */
1026 	error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id);
1027 	m = (*m0)->m_nextpkt;
1028 	(*m0)->m_nextpkt = NULL;
1029 	if (error == 0) {
1030 		/* The first mbuf contains the unfragmented packet. */
1031 		m_freem(*m0);
1032 		*m0 = NULL;
1033 		action = PF_PASS;
1034 	} else {
1035 		/* Drop expects an mbuf to free. */
1036 		DPFPRINTF(("refragment error %d\n", error));
1037 		action = PF_DROP;
1038 	}
1039 	for (; m; m = t) {
1040 		t = m->m_nextpkt;
1041 		m->m_nextpkt = NULL;
1042 		m->m_flags |= M_SKIP_FIREWALL;
1043 		memset(&pd, 0, sizeof(pd));
1044 		pd.pf_mtag = pf_find_mtag(m);
1045 		if (error != 0) {
1046 			m_freem(m);
1047 			continue;
1048 		}
1049 		if (rt != NULL) {
1050 			struct sockaddr_in6	dst;
1051 			hdr = mtod(m, struct ip6_hdr *);
1052 
1053 			bzero(&dst, sizeof(dst));
1054 			dst.sin6_family = AF_INET6;
1055 			dst.sin6_len = sizeof(dst);
1056 			dst.sin6_addr = hdr->ip6_dst;
1057 
1058 			if (m->m_pkthdr.len <= if_getmtu(ifp)) {
1059 				nd6_output_ifp(rt, rt, m, &dst, NULL);
1060 			} else {
1061 				in6_ifstat_inc(ifp, ifs6_in_toobig);
1062 				icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0,
1063 				    if_getmtu(ifp));
1064 			}
1065 		} else if (forward) {
1066 			MPASS(m->m_pkthdr.rcvif != NULL);
1067 			ip6_forward(m, 0);
1068 		} else {
1069 			(void)ip6_output(m, NULL, NULL, 0, NULL, NULL,
1070 			    NULL);
1071 		}
1072 	}
1073 
1074 	return (action);
1075 }
1076 #endif /* INET6 */
1077 
1078 #ifdef INET
1079 int
1080 pf_normalize_ip(u_short *reason, struct pf_pdesc *pd)
1081 {
1082 	struct pf_krule		*r;
1083 	struct ip		*h = mtod(pd->m, struct ip *);
1084 	int			 mff = (ntohs(h->ip_off) & IP_MF);
1085 	int			 hlen = h->ip_hl << 2;
1086 	u_int16_t		 fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3;
1087 	u_int16_t		 max;
1088 	int			 ip_len;
1089 	int			 tag = -1;
1090 	int			 verdict;
1091 	bool			 scrub_compat;
1092 
1093 	PF_RULES_RASSERT();
1094 
1095 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1096 	/*
1097 	 * Check if there are any scrub rules, matching or not.
1098 	 * Lack of scrub rules means:
1099 	 *  - enforced packet normalization operation just like in OpenBSD
1100 	 *  - fragment reassembly depends on V_pf_status.reass
1101 	 * With scrub rules:
1102 	 *  - packet normalization is performed if there is a matching scrub rule
1103 	 *  - fragment reassembly is performed if the matching rule has no
1104 	 *    PFRULE_FRAGMENT_NOREASS flag
1105 	 */
1106 	scrub_compat = (r != NULL);
1107 	while (r != NULL) {
1108 		pf_counter_u64_add(&r->evaluations, 1);
1109 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1110 			r = r->skip[PF_SKIP_IFP];
1111 		else if (r->direction && r->direction != pd->dir)
1112 			r = r->skip[PF_SKIP_DIR];
1113 		else if (r->af && r->af != AF_INET)
1114 			r = r->skip[PF_SKIP_AF];
1115 		else if (r->proto && r->proto != h->ip_p)
1116 			r = r->skip[PF_SKIP_PROTO];
1117 		else if (PF_MISMATCHAW(&r->src.addr,
1118 		    (struct pf_addr *)&h->ip_src.s_addr, AF_INET,
1119 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1120 			r = r->skip[PF_SKIP_SRC_ADDR];
1121 		else if (PF_MISMATCHAW(&r->dst.addr,
1122 		    (struct pf_addr *)&h->ip_dst.s_addr, AF_INET,
1123 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1124 			r = r->skip[PF_SKIP_DST_ADDR];
1125 		else if (r->match_tag && !pf_match_tag(pd->m, r, &tag,
1126 		    pd->pf_mtag ? pd->pf_mtag->tag : 0))
1127 			r = TAILQ_NEXT(r, entries);
1128 		else
1129 			break;
1130 	}
1131 
1132 	if (scrub_compat) {
1133 		/* With scrub rules present IPv4 normalization happens only
1134 		 * if one of rules has matched and it's not a "no scrub" rule */
1135 		if (r == NULL || r->action == PF_NOSCRUB)
1136 			return (PF_PASS);
1137 
1138 		pf_counter_u64_critical_enter();
1139 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1140 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1141 		pf_counter_u64_critical_exit();
1142 		pf_rule_to_actions(r, &pd->act);
1143 	}
1144 
1145 	/* Check for illegal packets */
1146 	if (hlen < (int)sizeof(struct ip)) {
1147 		REASON_SET(reason, PFRES_NORM);
1148 		goto drop;
1149 	}
1150 
1151 	if (hlen > ntohs(h->ip_len)) {
1152 		REASON_SET(reason, PFRES_NORM);
1153 		goto drop;
1154 	}
1155 
1156 	/* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */
1157 	if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) ||
1158 	    (r != NULL && r->rule_flag & PFRULE_NODF)) &&
1159 	    (h->ip_off & htons(IP_DF))
1160 	) {
1161 		u_int16_t ip_off = h->ip_off;
1162 
1163 		h->ip_off &= htons(~IP_DF);
1164 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1165 	}
1166 
1167 	/* We will need other tests here */
1168 	if (!fragoff && !mff)
1169 		goto no_fragment;
1170 
1171 	/* We're dealing with a fragment now. Don't allow fragments
1172 	 * with IP_DF to enter the cache. If the flag was cleared by
1173 	 * no-df above, fine. Otherwise drop it.
1174 	 */
1175 	if (h->ip_off & htons(IP_DF)) {
1176 		DPFPRINTF(("IP_DF\n"));
1177 		goto bad;
1178 	}
1179 
1180 	ip_len = ntohs(h->ip_len) - hlen;
1181 
1182 	/* All fragments are 8 byte aligned */
1183 	if (mff && (ip_len & 0x7)) {
1184 		DPFPRINTF(("mff and %d\n", ip_len));
1185 		goto bad;
1186 	}
1187 
1188 	/* Respect maximum length */
1189 	if (fragoff + ip_len > IP_MAXPACKET) {
1190 		DPFPRINTF(("max packet %d\n", fragoff + ip_len));
1191 		goto bad;
1192 	}
1193 
1194 	if ((!scrub_compat && V_pf_status.reass) ||
1195 	    (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS))
1196 	) {
1197 		max = fragoff + ip_len;
1198 
1199 		/* Fully buffer all of the fragments
1200 		 * Might return a completely reassembled mbuf, or NULL */
1201 		PF_FRAG_LOCK();
1202 		DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max));
1203 		verdict = pf_reassemble(&pd->m, reason);
1204 		PF_FRAG_UNLOCK();
1205 
1206 		if (verdict != PF_PASS)
1207 			return (PF_DROP);
1208 
1209 		if (pd->m == NULL)
1210 			return (PF_DROP);
1211 
1212 		h = mtod(pd->m, struct ip *);
1213 		pd->tot_len = htons(h->ip_len);
1214 
1215  no_fragment:
1216 		/* At this point, only IP_DF is allowed in ip_off */
1217 		if (h->ip_off & ~htons(IP_DF)) {
1218 			u_int16_t ip_off = h->ip_off;
1219 
1220 			h->ip_off &= htons(IP_DF);
1221 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
1222 		}
1223 	}
1224 
1225 	return (PF_PASS);
1226 
1227  bad:
1228 	DPFPRINTF(("dropping bad fragment\n"));
1229 	REASON_SET(reason, PFRES_FRAG);
1230  drop:
1231 	if (r != NULL && r->log)
1232 		PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1, NULL);
1233 
1234 	return (PF_DROP);
1235 }
1236 #endif
1237 
1238 #ifdef INET6
1239 int
1240 pf_normalize_ip6(int off, u_short *reason,
1241     struct pf_pdesc *pd)
1242 {
1243 	struct pf_krule		*r;
1244 	struct ip6_hdr		*h;
1245 	struct ip6_frag		 frag;
1246 	bool			 scrub_compat;
1247 
1248 	PF_RULES_RASSERT();
1249 
1250 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1251 	/*
1252 	 * Check if there are any scrub rules, matching or not.
1253 	 * Lack of scrub rules means:
1254 	 *  - enforced packet normalization operation just like in OpenBSD
1255 	 * With scrub rules:
1256 	 *  - packet normalization is performed if there is a matching scrub rule
1257 	 * XXX: Fragment reassembly always performed for IPv6!
1258 	 */
1259 	scrub_compat = (r != NULL);
1260 	while (r != NULL) {
1261 		pf_counter_u64_add(&r->evaluations, 1);
1262 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1263 			r = r->skip[PF_SKIP_IFP];
1264 		else if (r->direction && r->direction != pd->dir)
1265 			r = r->skip[PF_SKIP_DIR];
1266 		else if (r->af && r->af != AF_INET6)
1267 			r = r->skip[PF_SKIP_AF];
1268 		else if (r->proto && r->proto != pd->proto)
1269 			r = r->skip[PF_SKIP_PROTO];
1270 		else if (PF_MISMATCHAW(&r->src.addr,
1271 		    (struct pf_addr *)&pd->src, AF_INET6,
1272 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1273 			r = r->skip[PF_SKIP_SRC_ADDR];
1274 		else if (PF_MISMATCHAW(&r->dst.addr,
1275 		    (struct pf_addr *)&pd->dst, AF_INET6,
1276 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1277 			r = r->skip[PF_SKIP_DST_ADDR];
1278 		else
1279 			break;
1280 	}
1281 
1282 	if (scrub_compat) {
1283 		/* With scrub rules present IPv6 normalization happens only
1284 		 * if one of rules has matched and it's not a "no scrub" rule */
1285 		if (r == NULL || r->action == PF_NOSCRUB)
1286 			return (PF_PASS);
1287 
1288 		pf_counter_u64_critical_enter();
1289 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1290 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1291 		pf_counter_u64_critical_exit();
1292 		pf_rule_to_actions(r, &pd->act);
1293 	}
1294 
1295 	if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6))
1296 		return (PF_DROP);
1297 
1298 	/* Offset now points to data portion. */
1299 	off += sizeof(frag);
1300 
1301 	if (pd->virtual_proto == PF_VPROTO_FRAGMENT) {
1302 		/* Returns PF_DROP or *m0 is NULL or completely reassembled
1303 		 * mbuf. */
1304 		if (pf_reassemble6(&pd->m, &frag, off, pd->extoff, reason) != PF_PASS)
1305 			return (PF_DROP);
1306 		if (pd->m == NULL)
1307 			return (PF_DROP);
1308 		h = mtod(pd->m, struct ip6_hdr *);
1309 		pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr);
1310 	}
1311 
1312 	return (PF_PASS);
1313 }
1314 #endif /* INET6 */
1315 
1316 int
1317 pf_normalize_tcp(struct pf_pdesc *pd)
1318 {
1319 	struct pf_krule	*r, *rm = NULL;
1320 	struct tcphdr	*th = &pd->hdr.tcp;
1321 	int		 rewrite = 0;
1322 	u_short		 reason;
1323 	u_int16_t	 flags;
1324 	sa_family_t	 af = pd->af;
1325 	int		 srs;
1326 
1327 	PF_RULES_RASSERT();
1328 
1329 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
1330 	/* Check if there any scrub rules. Lack of scrub rules means enforced
1331 	 * packet normalization operation just like in OpenBSD. */
1332 	srs = (r != NULL);
1333 	while (r != NULL) {
1334 		pf_counter_u64_add(&r->evaluations, 1);
1335 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
1336 			r = r->skip[PF_SKIP_IFP];
1337 		else if (r->direction && r->direction != pd->dir)
1338 			r = r->skip[PF_SKIP_DIR];
1339 		else if (r->af && r->af != af)
1340 			r = r->skip[PF_SKIP_AF];
1341 		else if (r->proto && r->proto != pd->proto)
1342 			r = r->skip[PF_SKIP_PROTO];
1343 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
1344 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
1345 			r = r->skip[PF_SKIP_SRC_ADDR];
1346 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
1347 			    r->src.port[0], r->src.port[1], th->th_sport))
1348 			r = r->skip[PF_SKIP_SRC_PORT];
1349 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
1350 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
1351 			r = r->skip[PF_SKIP_DST_ADDR];
1352 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
1353 			    r->dst.port[0], r->dst.port[1], th->th_dport))
1354 			r = r->skip[PF_SKIP_DST_PORT];
1355 		else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match(
1356 			    pf_osfp_fingerprint(pd, th),
1357 			    r->os_fingerprint))
1358 			r = TAILQ_NEXT(r, entries);
1359 		else {
1360 			rm = r;
1361 			break;
1362 		}
1363 	}
1364 
1365 	if (srs) {
1366 		/* With scrub rules present TCP normalization happens only
1367 		 * if one of rules has matched and it's not a "no scrub" rule */
1368 		if (rm == NULL || rm->action == PF_NOSCRUB)
1369 			return (PF_PASS);
1370 
1371 		pf_counter_u64_critical_enter();
1372 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
1373 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
1374 		pf_counter_u64_critical_exit();
1375 		pf_rule_to_actions(rm, &pd->act);
1376 	}
1377 
1378 	if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP)
1379 		pd->flags |= PFDESC_TCP_NORM;
1380 
1381 	flags = tcp_get_flags(th);
1382 	if (flags & TH_SYN) {
1383 		/* Illegal packet */
1384 		if (flags & TH_RST)
1385 			goto tcp_drop;
1386 
1387 		if (flags & TH_FIN)
1388 			goto tcp_drop;
1389 	} else {
1390 		/* Illegal packet */
1391 		if (!(flags & (TH_ACK|TH_RST)))
1392 			goto tcp_drop;
1393 	}
1394 
1395 	if (!(flags & TH_ACK)) {
1396 		/* These flags are only valid if ACK is set */
1397 		if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG))
1398 			goto tcp_drop;
1399 	}
1400 
1401 	/* Check for illegal header length */
1402 	if (th->th_off < (sizeof(struct tcphdr) >> 2))
1403 		goto tcp_drop;
1404 
1405 	/* If flags changed, or reserved data set, then adjust */
1406 	if (flags != tcp_get_flags(th) ||
1407 	    (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) {
1408 		u_int16_t	ov, nv;
1409 
1410 		ov = *(u_int16_t *)(&th->th_ack + 1);
1411 		flags &= ~(TH_RES1 | TH_RES2 | TH_RES3);
1412 		tcp_set_flags(th, flags);
1413 		nv = *(u_int16_t *)(&th->th_ack + 1);
1414 
1415 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0);
1416 		rewrite = 1;
1417 	}
1418 
1419 	/* Remove urgent pointer, if TH_URG is not set */
1420 	if (!(flags & TH_URG) && th->th_urp) {
1421 		th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp,
1422 		    0, 0);
1423 		th->th_urp = 0;
1424 		rewrite = 1;
1425 	}
1426 
1427 	/* copy back packet headers if we sanitized */
1428 	if (rewrite)
1429 		m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1430 
1431 	return (PF_PASS);
1432 
1433  tcp_drop:
1434 	REASON_SET(&reason, PFRES_NORM);
1435 	if (rm != NULL && r->log)
1436 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1, NULL);
1437 	return (PF_DROP);
1438 }
1439 
1440 int
1441 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th,
1442     struct pf_state_peer *src)
1443 {
1444 	u_int32_t tsval, tsecr;
1445 	u_int8_t hdr[60];
1446 	u_int8_t *opt;
1447 
1448 	KASSERT((src->scrub == NULL),
1449 	    ("pf_normalize_tcp_init: src->scrub != NULL"));
1450 
1451 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1452 	if (src->scrub == NULL)
1453 		return (1);
1454 
1455 	switch (pd->af) {
1456 #ifdef INET
1457 	case AF_INET: {
1458 		struct ip *h = mtod(pd->m, struct ip *);
1459 		src->scrub->pfss_ttl = h->ip_ttl;
1460 		break;
1461 	}
1462 #endif /* INET */
1463 #ifdef INET6
1464 	case AF_INET6: {
1465 		struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1466 		src->scrub->pfss_ttl = h->ip6_hlim;
1467 		break;
1468 	}
1469 #endif /* INET6 */
1470 	default:
1471 		unhandled_af(pd->af);
1472 	}
1473 
1474 	/*
1475 	 * All normalizations below are only begun if we see the start of
1476 	 * the connections.  They must all set an enabled bit in pfss_flags
1477 	 */
1478 	if ((tcp_get_flags(th) & TH_SYN) == 0)
1479 		return (0);
1480 
1481 	if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub &&
1482 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1483 		/* Diddle with TCP options */
1484 		int hlen;
1485 		opt = hdr + sizeof(struct tcphdr);
1486 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1487 		while (hlen >= TCPOLEN_TIMESTAMP) {
1488 			switch (*opt) {
1489 			case TCPOPT_EOL:	/* FALLTHROUGH */
1490 			case TCPOPT_NOP:
1491 				opt++;
1492 				hlen--;
1493 				break;
1494 			case TCPOPT_TIMESTAMP:
1495 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1496 					src->scrub->pfss_flags |=
1497 					    PFSS_TIMESTAMP;
1498 					src->scrub->pfss_ts_mod =
1499 					    arc4random();
1500 
1501 					/* note PFSS_PAWS not set yet */
1502 					memcpy(&tsval, &opt[2],
1503 					    sizeof(u_int32_t));
1504 					memcpy(&tsecr, &opt[6],
1505 					    sizeof(u_int32_t));
1506 					src->scrub->pfss_tsval0 = ntohl(tsval);
1507 					src->scrub->pfss_tsval = ntohl(tsval);
1508 					src->scrub->pfss_tsecr = ntohl(tsecr);
1509 					getmicrouptime(&src->scrub->pfss_last);
1510 				}
1511 				/* FALLTHROUGH */
1512 			default:
1513 				hlen -= MAX(opt[1], 2);
1514 				opt += MAX(opt[1], 2);
1515 				break;
1516 			}
1517 		}
1518 	}
1519 
1520 	return (0);
1521 }
1522 
1523 void
1524 pf_normalize_tcp_cleanup(struct pf_kstate *state)
1525 {
1526 	/* XXX Note: this also cleans up SCTP. */
1527 	uma_zfree(V_pf_state_scrub_z, state->src.scrub);
1528 	uma_zfree(V_pf_state_scrub_z, state->dst.scrub);
1529 
1530 	/* Someday... flush the TCP segment reassembly descriptors. */
1531 }
1532 int
1533 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src,
1534     struct pf_state_peer *dst)
1535 {
1536 	src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1537 	if (src->scrub == NULL)
1538 		return (1);
1539 
1540 	dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT);
1541 	if (dst->scrub == NULL) {
1542 		uma_zfree(V_pf_state_scrub_z, src);
1543 		return (1);
1544 	}
1545 
1546 	dst->scrub->pfss_v_tag = pd->sctp_initiate_tag;
1547 
1548 	return (0);
1549 }
1550 
1551 int
1552 pf_normalize_tcp_stateful(struct pf_pdesc *pd,
1553     u_short *reason, struct tcphdr *th, struct pf_kstate *state,
1554     struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback)
1555 {
1556 	struct timeval uptime;
1557 	u_int32_t tsval, tsecr;
1558 	u_int tsval_from_last;
1559 	u_int8_t hdr[60];
1560 	u_int8_t *opt;
1561 	int copyback = 0;
1562 	int got_ts = 0;
1563 	size_t startoff;
1564 
1565 	KASSERT((src->scrub || dst->scrub),
1566 	    ("%s: src->scrub && dst->scrub!", __func__));
1567 
1568 	/*
1569 	 * Enforce the minimum TTL seen for this connection.  Negate a common
1570 	 * technique to evade an intrusion detection system and confuse
1571 	 * firewall state code.
1572 	 */
1573 	switch (pd->af) {
1574 #ifdef INET
1575 	case AF_INET: {
1576 		if (src->scrub) {
1577 			struct ip *h = mtod(pd->m, struct ip *);
1578 			if (h->ip_ttl > src->scrub->pfss_ttl)
1579 				src->scrub->pfss_ttl = h->ip_ttl;
1580 			h->ip_ttl = src->scrub->pfss_ttl;
1581 		}
1582 		break;
1583 	}
1584 #endif /* INET */
1585 #ifdef INET6
1586 	case AF_INET6: {
1587 		if (src->scrub) {
1588 			struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *);
1589 			if (h->ip6_hlim > src->scrub->pfss_ttl)
1590 				src->scrub->pfss_ttl = h->ip6_hlim;
1591 			h->ip6_hlim = src->scrub->pfss_ttl;
1592 		}
1593 		break;
1594 	}
1595 #endif /* INET6 */
1596 	default:
1597 		unhandled_af(pd->af);
1598 	}
1599 
1600 	if (th->th_off > (sizeof(struct tcphdr) >> 2) &&
1601 	    ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) ||
1602 	    (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) &&
1603 	    pf_pull_hdr(pd->m, pd->off, hdr, th->th_off << 2, NULL, NULL, pd->af)) {
1604 		/* Diddle with TCP options */
1605 		int hlen;
1606 		opt = hdr + sizeof(struct tcphdr);
1607 		hlen = (th->th_off << 2) - sizeof(struct tcphdr);
1608 		while (hlen >= TCPOLEN_TIMESTAMP) {
1609 			startoff = opt - (hdr + sizeof(struct tcphdr));
1610 			switch (*opt) {
1611 			case TCPOPT_EOL:	/* FALLTHROUGH */
1612 			case TCPOPT_NOP:
1613 				opt++;
1614 				hlen--;
1615 				break;
1616 			case TCPOPT_TIMESTAMP:
1617 				/* Modulate the timestamps.  Can be used for
1618 				 * NAT detection, OS uptime determination or
1619 				 * reboot detection.
1620 				 */
1621 
1622 				if (got_ts) {
1623 					/* Huh?  Multiple timestamps!? */
1624 					if (V_pf_status.debug >= PF_DEBUG_MISC) {
1625 						DPFPRINTF(("multiple TS??\n"));
1626 						pf_print_state(state);
1627 						printf("\n");
1628 					}
1629 					REASON_SET(reason, PFRES_TS);
1630 					return (PF_DROP);
1631 				}
1632 				if (opt[1] >= TCPOLEN_TIMESTAMP) {
1633 					memcpy(&tsval, &opt[2],
1634 					    sizeof(u_int32_t));
1635 					if (tsval && src->scrub &&
1636 					    (src->scrub->pfss_flags &
1637 					    PFSS_TIMESTAMP)) {
1638 						tsval = ntohl(tsval);
1639 						copyback += pf_patch_32(pd,
1640 						    &opt[2],
1641 						    htonl(tsval +
1642 						    src->scrub->pfss_ts_mod),
1643 						    PF_ALGNMNT(startoff));
1644 					}
1645 
1646 					/* Modulate TS reply iff valid (!0) */
1647 					memcpy(&tsecr, &opt[6],
1648 					    sizeof(u_int32_t));
1649 					if (tsecr && dst->scrub &&
1650 					    (dst->scrub->pfss_flags &
1651 					    PFSS_TIMESTAMP)) {
1652 						tsecr = ntohl(tsecr)
1653 						    - dst->scrub->pfss_ts_mod;
1654 						copyback += pf_patch_32(pd,
1655 						    &opt[6],
1656 						    htonl(tsecr),
1657 						    PF_ALGNMNT(startoff));
1658 					}
1659 					got_ts = 1;
1660 				}
1661 				/* FALLTHROUGH */
1662 			default:
1663 				hlen -= MAX(opt[1], 2);
1664 				opt += MAX(opt[1], 2);
1665 				break;
1666 			}
1667 		}
1668 		if (copyback) {
1669 			/* Copyback the options, caller copys back header */
1670 			*writeback = 1;
1671 			m_copyback(pd->m, pd->off + sizeof(struct tcphdr),
1672 			    (th->th_off << 2) - sizeof(struct tcphdr), hdr +
1673 			    sizeof(struct tcphdr));
1674 		}
1675 	}
1676 
1677 	/*
1678 	 * Must invalidate PAWS checks on connections idle for too long.
1679 	 * The fastest allowed timestamp clock is 1ms.  That turns out to
1680 	 * be about 24 days before it wraps.  XXX Right now our lowerbound
1681 	 * TS echo check only works for the first 12 days of a connection
1682 	 * when the TS has exhausted half its 32bit space
1683 	 */
1684 #define TS_MAX_IDLE	(24*24*60*60)
1685 #define TS_MAX_CONN	(12*24*60*60)	/* XXX remove when better tsecr check */
1686 
1687 	getmicrouptime(&uptime);
1688 	if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) &&
1689 	    (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE ||
1690 	    time_uptime - (state->creation / 1000) > TS_MAX_CONN))  {
1691 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1692 			DPFPRINTF(("src idled out of PAWS\n"));
1693 			pf_print_state(state);
1694 			printf("\n");
1695 		}
1696 		src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS)
1697 		    | PFSS_PAWS_IDLED;
1698 	}
1699 	if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) &&
1700 	    uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) {
1701 		if (V_pf_status.debug >= PF_DEBUG_MISC) {
1702 			DPFPRINTF(("dst idled out of PAWS\n"));
1703 			pf_print_state(state);
1704 			printf("\n");
1705 		}
1706 		dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS)
1707 		    | PFSS_PAWS_IDLED;
1708 	}
1709 
1710 	if (got_ts && src->scrub && dst->scrub &&
1711 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1712 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1713 		/* Validate that the timestamps are "in-window".
1714 		 * RFC1323 describes TCP Timestamp options that allow
1715 		 * measurement of RTT (round trip time) and PAWS
1716 		 * (protection against wrapped sequence numbers).  PAWS
1717 		 * gives us a set of rules for rejecting packets on
1718 		 * long fat pipes (packets that were somehow delayed
1719 		 * in transit longer than the time it took to send the
1720 		 * full TCP sequence space of 4Gb).  We can use these
1721 		 * rules and infer a few others that will let us treat
1722 		 * the 32bit timestamp and the 32bit echoed timestamp
1723 		 * as sequence numbers to prevent a blind attacker from
1724 		 * inserting packets into a connection.
1725 		 *
1726 		 * RFC1323 tells us:
1727 		 *  - The timestamp on this packet must be greater than
1728 		 *    or equal to the last value echoed by the other
1729 		 *    endpoint.  The RFC says those will be discarded
1730 		 *    since it is a dup that has already been acked.
1731 		 *    This gives us a lowerbound on the timestamp.
1732 		 *        timestamp >= other last echoed timestamp
1733 		 *  - The timestamp will be less than or equal to
1734 		 *    the last timestamp plus the time between the
1735 		 *    last packet and now.  The RFC defines the max
1736 		 *    clock rate as 1ms.  We will allow clocks to be
1737 		 *    up to 10% fast and will allow a total difference
1738 		 *    or 30 seconds due to a route change.  And this
1739 		 *    gives us an upperbound on the timestamp.
1740 		 *        timestamp <= last timestamp + max ticks
1741 		 *    We have to be careful here.  Windows will send an
1742 		 *    initial timestamp of zero and then initialize it
1743 		 *    to a random value after the 3whs; presumably to
1744 		 *    avoid a DoS by having to call an expensive RNG
1745 		 *    during a SYN flood.  Proof MS has at least one
1746 		 *    good security geek.
1747 		 *
1748 		 *  - The TCP timestamp option must also echo the other
1749 		 *    endpoints timestamp.  The timestamp echoed is the
1750 		 *    one carried on the earliest unacknowledged segment
1751 		 *    on the left edge of the sequence window.  The RFC
1752 		 *    states that the host will reject any echoed
1753 		 *    timestamps that were larger than any ever sent.
1754 		 *    This gives us an upperbound on the TS echo.
1755 		 *        tescr <= largest_tsval
1756 		 *  - The lowerbound on the TS echo is a little more
1757 		 *    tricky to determine.  The other endpoint's echoed
1758 		 *    values will not decrease.  But there may be
1759 		 *    network conditions that re-order packets and
1760 		 *    cause our view of them to decrease.  For now the
1761 		 *    only lowerbound we can safely determine is that
1762 		 *    the TS echo will never be less than the original
1763 		 *    TS.  XXX There is probably a better lowerbound.
1764 		 *    Remove TS_MAX_CONN with better lowerbound check.
1765 		 *        tescr >= other original TS
1766 		 *
1767 		 * It is also important to note that the fastest
1768 		 * timestamp clock of 1ms will wrap its 32bit space in
1769 		 * 24 days.  So we just disable TS checking after 24
1770 		 * days of idle time.  We actually must use a 12d
1771 		 * connection limit until we can come up with a better
1772 		 * lowerbound to the TS echo check.
1773 		 */
1774 		struct timeval delta_ts;
1775 		int ts_fudge;
1776 
1777 		/*
1778 		 * PFTM_TS_DIFF is how many seconds of leeway to allow
1779 		 * a host's timestamp.  This can happen if the previous
1780 		 * packet got delayed in transit for much longer than
1781 		 * this packet.
1782 		 */
1783 		if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0)
1784 			ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF];
1785 
1786 		/* Calculate max ticks since the last timestamp */
1787 #define TS_MAXFREQ	1100		/* RFC max TS freq of 1Khz + 10% skew */
1788 #define TS_MICROSECS	1000000		/* microseconds per second */
1789 		delta_ts = uptime;
1790 		timevalsub(&delta_ts, &src->scrub->pfss_last);
1791 		tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ;
1792 		tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ);
1793 
1794 		if ((src->state >= TCPS_ESTABLISHED &&
1795 		    dst->state >= TCPS_ESTABLISHED) &&
1796 		    (SEQ_LT(tsval, dst->scrub->pfss_tsecr) ||
1797 		    SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) ||
1798 		    (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) ||
1799 		    SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) {
1800 			/* Bad RFC1323 implementation or an insertion attack.
1801 			 *
1802 			 * - Solaris 2.6 and 2.7 are known to send another ACK
1803 			 *   after the FIN,FIN|ACK,ACK closing that carries
1804 			 *   an old timestamp.
1805 			 */
1806 
1807 			DPFPRINTF(("Timestamp failed %c%c%c%c\n",
1808 			    SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ',
1809 			    SEQ_GT(tsval, src->scrub->pfss_tsval +
1810 			    tsval_from_last) ? '1' : ' ',
1811 			    SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ',
1812 			    SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' '));
1813 			DPFPRINTF((" tsval: %u  tsecr: %u  +ticks: %u  "
1814 			    "idle: %jus %lums\n",
1815 			    tsval, tsecr, tsval_from_last,
1816 			    (uintmax_t)delta_ts.tv_sec,
1817 			    delta_ts.tv_usec / 1000));
1818 			DPFPRINTF((" src->tsval: %u  tsecr: %u\n",
1819 			    src->scrub->pfss_tsval, src->scrub->pfss_tsecr));
1820 			DPFPRINTF((" dst->tsval: %u  tsecr: %u  tsval0: %u"
1821 			    "\n", dst->scrub->pfss_tsval,
1822 			    dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0));
1823 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1824 				pf_print_state(state);
1825 				pf_print_flags(tcp_get_flags(th));
1826 				printf("\n");
1827 			}
1828 			REASON_SET(reason, PFRES_TS);
1829 			return (PF_DROP);
1830 		}
1831 
1832 		/* XXX I'd really like to require tsecr but it's optional */
1833 
1834 	} else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 &&
1835 	    ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED)
1836 	    || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) &&
1837 	    src->scrub && dst->scrub &&
1838 	    (src->scrub->pfss_flags & PFSS_PAWS) &&
1839 	    (dst->scrub->pfss_flags & PFSS_PAWS)) {
1840 		/* Didn't send a timestamp.  Timestamps aren't really useful
1841 		 * when:
1842 		 *  - connection opening or closing (often not even sent).
1843 		 *    but we must not let an attacker to put a FIN on a
1844 		 *    data packet to sneak it through our ESTABLISHED check.
1845 		 *  - on a TCP reset.  RFC suggests not even looking at TS.
1846 		 *  - on an empty ACK.  The TS will not be echoed so it will
1847 		 *    probably not help keep the RTT calculation in sync and
1848 		 *    there isn't as much danger when the sequence numbers
1849 		 *    got wrapped.  So some stacks don't include TS on empty
1850 		 *    ACKs :-(
1851 		 *
1852 		 * To minimize the disruption to mostly RFC1323 conformant
1853 		 * stacks, we will only require timestamps on data packets.
1854 		 *
1855 		 * And what do ya know, we cannot require timestamps on data
1856 		 * packets.  There appear to be devices that do legitimate
1857 		 * TCP connection hijacking.  There are HTTP devices that allow
1858 		 * a 3whs (with timestamps) and then buffer the HTTP request.
1859 		 * If the intermediate device has the HTTP response cache, it
1860 		 * will spoof the response but not bother timestamping its
1861 		 * packets.  So we can look for the presence of a timestamp in
1862 		 * the first data packet and if there, require it in all future
1863 		 * packets.
1864 		 */
1865 
1866 		if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) {
1867 			/*
1868 			 * Hey!  Someone tried to sneak a packet in.  Or the
1869 			 * stack changed its RFC1323 behavior?!?!
1870 			 */
1871 			if (V_pf_status.debug >= PF_DEBUG_MISC) {
1872 				DPFPRINTF(("Did not receive expected RFC1323 "
1873 				    "timestamp\n"));
1874 				pf_print_state(state);
1875 				pf_print_flags(tcp_get_flags(th));
1876 				printf("\n");
1877 			}
1878 			REASON_SET(reason, PFRES_TS);
1879 			return (PF_DROP);
1880 		}
1881 	}
1882 
1883 	/*
1884 	 * We will note if a host sends his data packets with or without
1885 	 * timestamps.  And require all data packets to contain a timestamp
1886 	 * if the first does.  PAWS implicitly requires that all data packets be
1887 	 * timestamped.  But I think there are middle-man devices that hijack
1888 	 * TCP streams immediately after the 3whs and don't timestamp their
1889 	 * packets (seen in a WWW accelerator or cache).
1890 	 */
1891 	if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags &
1892 	    (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) {
1893 		if (got_ts)
1894 			src->scrub->pfss_flags |= PFSS_DATA_TS;
1895 		else {
1896 			src->scrub->pfss_flags |= PFSS_DATA_NOTS;
1897 			if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub &&
1898 			    (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) {
1899 				/* Don't warn if other host rejected RFC1323 */
1900 				DPFPRINTF(("Broken RFC1323 stack did not "
1901 				    "timestamp data packet. Disabled PAWS "
1902 				    "security.\n"));
1903 				pf_print_state(state);
1904 				pf_print_flags(tcp_get_flags(th));
1905 				printf("\n");
1906 			}
1907 		}
1908 	}
1909 
1910 	/*
1911 	 * Update PAWS values
1912 	 */
1913 	if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags &
1914 	    (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) {
1915 		getmicrouptime(&src->scrub->pfss_last);
1916 		if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) ||
1917 		    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1918 			src->scrub->pfss_tsval = tsval;
1919 
1920 		if (tsecr) {
1921 			if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) ||
1922 			    (src->scrub->pfss_flags & PFSS_PAWS) == 0)
1923 				src->scrub->pfss_tsecr = tsecr;
1924 
1925 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 &&
1926 			    (SEQ_LT(tsval, src->scrub->pfss_tsval0) ||
1927 			    src->scrub->pfss_tsval0 == 0)) {
1928 				/* tsval0 MUST be the lowest timestamp */
1929 				src->scrub->pfss_tsval0 = tsval;
1930 			}
1931 
1932 			/* Only fully initialized after a TS gets echoed */
1933 			if ((src->scrub->pfss_flags & PFSS_PAWS) == 0)
1934 				src->scrub->pfss_flags |= PFSS_PAWS;
1935 		}
1936 	}
1937 
1938 	/* I have a dream....  TCP segment reassembly.... */
1939 	return (0);
1940 }
1941 
1942 int
1943 pf_normalize_mss(struct pf_pdesc *pd)
1944 {
1945 	struct tcphdr	*th = &pd->hdr.tcp;
1946 	u_int16_t	*mss;
1947 	int		 thoff;
1948 	int		 opt, cnt, optlen = 0;
1949 	u_char		 opts[TCP_MAXOLEN];
1950 	u_char		*optp = opts;
1951 	size_t		 startoff;
1952 
1953 	thoff = th->th_off << 2;
1954 	cnt = thoff - sizeof(struct tcphdr);
1955 
1956 	if (cnt <= 0 || cnt > MAX_TCPOPTLEN || !pf_pull_hdr(pd->m,
1957 	    pd->off + sizeof(*th), opts, cnt, NULL, NULL, pd->af))
1958 		return (0);
1959 
1960 	for (; cnt > 0; cnt -= optlen, optp += optlen) {
1961 		startoff = optp - opts;
1962 		opt = optp[0];
1963 		if (opt == TCPOPT_EOL)
1964 			break;
1965 		if (opt == TCPOPT_NOP)
1966 			optlen = 1;
1967 		else {
1968 			if (cnt < 2)
1969 				break;
1970 			optlen = optp[1];
1971 			if (optlen < 2 || optlen > cnt)
1972 				break;
1973 		}
1974 		switch (opt) {
1975 		case TCPOPT_MAXSEG:
1976 			mss = (u_int16_t *)(optp + 2);
1977 			if ((ntohs(*mss)) > pd->act.max_mss) {
1978 				pf_patch_16(pd,
1979 				    mss, htons(pd->act.max_mss),
1980 				    PF_ALGNMNT(startoff));
1981 				m_copyback(pd->m, pd->off + sizeof(*th),
1982 				    thoff - sizeof(*th), opts);
1983 				m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th);
1984 			}
1985 			break;
1986 		default:
1987 			break;
1988 		}
1989 	}
1990 
1991 	return (0);
1992 }
1993 
1994 int
1995 pf_scan_sctp(struct pf_pdesc *pd)
1996 {
1997 	struct sctp_chunkhdr ch = { };
1998 	int chunk_off = sizeof(struct sctphdr);
1999 	int chunk_start;
2000 	int ret;
2001 
2002 	while (pd->off + chunk_off < pd->tot_len) {
2003 		if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL,
2004 		    NULL, pd->af))
2005 			return (PF_DROP);
2006 
2007 		/* Length includes the header, this must be at least 4. */
2008 		if (ntohs(ch.chunk_length) < 4)
2009 			return (PF_DROP);
2010 
2011 		chunk_start = chunk_off;
2012 		chunk_off += roundup(ntohs(ch.chunk_length), 4);
2013 
2014 		switch (ch.chunk_type) {
2015 		case SCTP_INITIATION:
2016 		case SCTP_INITIATION_ACK: {
2017 			struct sctp_init_chunk init;
2018 
2019 			if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init,
2020 			    sizeof(init), NULL, NULL, pd->af))
2021 				return (PF_DROP);
2022 
2023 			/*
2024 			 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have
2025 			 * any value except 0."
2026 			 */
2027 			if (init.init.initiate_tag == 0)
2028 				return (PF_DROP);
2029 			if (init.init.num_inbound_streams == 0)
2030 				return (PF_DROP);
2031 			if (init.init.num_outbound_streams == 0)
2032 				return (PF_DROP);
2033 			if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND)
2034 				return (PF_DROP);
2035 
2036 			/*
2037 			 * RFC 9260, Section 3.1, INIT chunks MUST have zero
2038 			 * verification tag.
2039 			 */
2040 			if (ch.chunk_type == SCTP_INITIATION &&
2041 			    pd->hdr.sctp.v_tag != 0)
2042 				return (PF_DROP);
2043 
2044 			pd->sctp_initiate_tag = init.init.initiate_tag;
2045 
2046 			if (ch.chunk_type == SCTP_INITIATION)
2047 				pd->sctp_flags |= PFDESC_SCTP_INIT;
2048 			else
2049 				pd->sctp_flags |= PFDESC_SCTP_INIT_ACK;
2050 
2051 			ret = pf_multihome_scan_init(pd->off + chunk_start,
2052 			    ntohs(init.ch.chunk_length), pd);
2053 			if (ret != PF_PASS)
2054 				return (ret);
2055 
2056 			break;
2057 		}
2058 		case SCTP_ABORT_ASSOCIATION:
2059 			pd->sctp_flags |= PFDESC_SCTP_ABORT;
2060 			break;
2061 		case SCTP_SHUTDOWN:
2062 		case SCTP_SHUTDOWN_ACK:
2063 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN;
2064 			break;
2065 		case SCTP_SHUTDOWN_COMPLETE:
2066 			pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE;
2067 			break;
2068 		case SCTP_COOKIE_ECHO:
2069 			pd->sctp_flags |= PFDESC_SCTP_COOKIE;
2070 			break;
2071 		case SCTP_COOKIE_ACK:
2072 			pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK;
2073 			break;
2074 		case SCTP_DATA:
2075 			pd->sctp_flags |= PFDESC_SCTP_DATA;
2076 			break;
2077 		case SCTP_HEARTBEAT_REQUEST:
2078 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT;
2079 			break;
2080 		case SCTP_HEARTBEAT_ACK:
2081 			pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK;
2082 			break;
2083 		case SCTP_ASCONF:
2084 			pd->sctp_flags |= PFDESC_SCTP_ASCONF;
2085 
2086 			ret = pf_multihome_scan_asconf(pd->off + chunk_start,
2087 			    ntohs(ch.chunk_length), pd);
2088 			if (ret != PF_PASS)
2089 				return (ret);
2090 			break;
2091 		default:
2092 			pd->sctp_flags |= PFDESC_SCTP_OTHER;
2093 			break;
2094 		}
2095 	}
2096 
2097 	/* Validate chunk lengths vs. packet length. */
2098 	if (pd->off + chunk_off != pd->tot_len)
2099 		return (PF_DROP);
2100 
2101 	/*
2102 	 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only
2103 	 * one in a packet.
2104 	 */
2105 	if ((pd->sctp_flags & PFDESC_SCTP_INIT) &&
2106 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT))
2107 		return (PF_DROP);
2108 	if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) &&
2109 	    (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK))
2110 		return (PF_DROP);
2111 	if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) &&
2112 	    (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE))
2113 		return (PF_DROP);
2114 	if ((pd->sctp_flags & PFDESC_SCTP_ABORT) &&
2115 	    (pd->sctp_flags & PFDESC_SCTP_DATA)) {
2116 		/*
2117 		 * RFC4960 3.3.7: DATA chunks MUST NOT be
2118 		 * bundled with ABORT.
2119 		 */
2120 		return (PF_DROP);
2121 	}
2122 
2123 	return (PF_PASS);
2124 }
2125 
2126 int
2127 pf_normalize_sctp(struct pf_pdesc *pd)
2128 {
2129 	struct pf_krule	*r, *rm = NULL;
2130 	struct sctphdr	*sh = &pd->hdr.sctp;
2131 	u_short		 reason;
2132 	sa_family_t	 af = pd->af;
2133 	int		 srs;
2134 
2135 	PF_RULES_RASSERT();
2136 
2137 	r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr);
2138 	/* Check if there any scrub rules. Lack of scrub rules means enforced
2139 	 * packet normalization operation just like in OpenBSD. */
2140 	srs = (r != NULL);
2141 	while (r != NULL) {
2142 		pf_counter_u64_add(&r->evaluations, 1);
2143 		if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot)
2144 			r = r->skip[PF_SKIP_IFP];
2145 		else if (r->direction && r->direction != pd->dir)
2146 			r = r->skip[PF_SKIP_DIR];
2147 		else if (r->af && r->af != af)
2148 			r = r->skip[PF_SKIP_AF];
2149 		else if (r->proto && r->proto != pd->proto)
2150 			r = r->skip[PF_SKIP_PROTO];
2151 		else if (PF_MISMATCHAW(&r->src.addr, pd->src, af,
2152 		    r->src.neg, pd->kif, M_GETFIB(pd->m)))
2153 			r = r->skip[PF_SKIP_SRC_ADDR];
2154 		else if (r->src.port_op && !pf_match_port(r->src.port_op,
2155 			    r->src.port[0], r->src.port[1], sh->src_port))
2156 			r = r->skip[PF_SKIP_SRC_PORT];
2157 		else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af,
2158 		    r->dst.neg, NULL, M_GETFIB(pd->m)))
2159 			r = r->skip[PF_SKIP_DST_ADDR];
2160 		else if (r->dst.port_op && !pf_match_port(r->dst.port_op,
2161 			    r->dst.port[0], r->dst.port[1], sh->dest_port))
2162 			r = r->skip[PF_SKIP_DST_PORT];
2163 		else {
2164 			rm = r;
2165 			break;
2166 		}
2167 	}
2168 
2169 	if (srs) {
2170 		/* With scrub rules present SCTP normalization happens only
2171 		 * if one of rules has matched and it's not a "no scrub" rule */
2172 		if (rm == NULL || rm->action == PF_NOSCRUB)
2173 			return (PF_PASS);
2174 
2175 		pf_counter_u64_critical_enter();
2176 		pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1);
2177 		pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len);
2178 		pf_counter_u64_critical_exit();
2179 	}
2180 
2181 	/* Verify we're a multiple of 4 bytes long */
2182 	if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4)
2183 		goto sctp_drop;
2184 
2185 	/* INIT chunk needs to be the only chunk */
2186 	if (pd->sctp_flags & PFDESC_SCTP_INIT)
2187 		if (pd->sctp_flags & ~PFDESC_SCTP_INIT)
2188 			goto sctp_drop;
2189 
2190 	return (PF_PASS);
2191 
2192 sctp_drop:
2193 	REASON_SET(&reason, PFRES_NORM);
2194 	if (rm != NULL && r->log)
2195 		PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd,
2196 		    1, NULL);
2197 
2198 	return (PF_DROP);
2199 }
2200 
2201 #if defined(INET) || defined(INET6)
2202 void
2203 pf_scrub(struct pf_pdesc *pd)
2204 {
2205 
2206 	struct ip		*h = mtod(pd->m, struct ip *);
2207 #ifdef INET6
2208 	struct ip6_hdr		*h6 = mtod(pd->m, struct ip6_hdr *);
2209 #endif /* INET6 */
2210 
2211 	/* Clear IP_DF if no-df was requested */
2212 	if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF &&
2213 	    h->ip_off & htons(IP_DF))
2214 	{
2215 		u_int16_t ip_off = h->ip_off;
2216 
2217 		h->ip_off &= htons(~IP_DF);
2218 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0);
2219 	}
2220 
2221 	/* Enforce a minimum ttl, may cause endless packet loops */
2222 	if (pd->af == AF_INET && pd->act.min_ttl &&
2223 	    h->ip_ttl < pd->act.min_ttl) {
2224 		u_int16_t ip_ttl = h->ip_ttl;
2225 
2226 		h->ip_ttl = pd->act.min_ttl;
2227 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0);
2228 	}
2229 #ifdef INET6
2230 	/* Enforce a minimum ttl, may cause endless packet loops */
2231 	if (pd->af == AF_INET6 && pd->act.min_ttl &&
2232 	    h6->ip6_hlim < pd->act.min_ttl)
2233 		h6->ip6_hlim = pd->act.min_ttl;
2234 #endif /* INET6 */
2235 	/* Enforce tos */
2236 	if (pd->act.flags & PFSTATE_SETTOS) {
2237 		switch (pd->af) {
2238 		case AF_INET: {
2239 			u_int16_t	ov, nv;
2240 
2241 			ov = *(u_int16_t *)h;
2242 			h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK);
2243 			nv = *(u_int16_t *)h;
2244 
2245 			h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0);
2246 			break;
2247 		}
2248 #ifdef INET6
2249 		case AF_INET6:
2250 			h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK;
2251 			h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20);
2252 			break;
2253 #endif /* INET6 */
2254 		}
2255 	}
2256 
2257 	/* random-id, but not for fragments */
2258 #ifdef INET
2259 	if (pd->af == AF_INET &&
2260 	    pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) {
2261 		uint16_t ip_id = h->ip_id;
2262 
2263 		ip_fillid(h, V_ip_random_id);
2264 		h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0);
2265 	}
2266 #endif /* INET */
2267 }
2268 #endif /* INET || INET6 */
2269