1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2001 Niels Provos <provos@citi.umich.edu> 5 * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $ 29 */ 30 31 #include <sys/cdefs.h> 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_pf.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/refcount.h> 42 #include <sys/socket.h> 43 44 #include <net/if.h> 45 #include <net/if_var.h> 46 #include <net/if_private.h> 47 #include <net/vnet.h> 48 #include <net/pfvar.h> 49 #include <net/if_pflog.h> 50 51 #include <netinet/in.h> 52 #include <netinet/ip.h> 53 #include <netinet/ip_var.h> 54 #include <netinet6/in6_var.h> 55 #include <netinet6/nd6.h> 56 #include <netinet6/ip6_var.h> 57 #include <netinet6/scope6_var.h> 58 #include <netinet/tcp.h> 59 #include <netinet/tcp_fsm.h> 60 #include <netinet/tcp_seq.h> 61 #include <netinet/sctp_constants.h> 62 #include <netinet/sctp_header.h> 63 64 #ifdef INET6 65 #include <netinet/ip6.h> 66 #endif /* INET6 */ 67 68 struct pf_frent { 69 TAILQ_ENTRY(pf_frent) fr_next; 70 struct mbuf *fe_m; 71 uint16_t fe_hdrlen; /* ipv4 header length with ip options 72 ipv6, extension, fragment header */ 73 uint16_t fe_extoff; /* last extension header offset or 0 */ 74 uint16_t fe_len; /* fragment length */ 75 uint16_t fe_off; /* fragment offset */ 76 uint16_t fe_mff; /* more fragment flag */ 77 }; 78 79 RB_HEAD(pf_frag_tree, pf_fragment); 80 struct pf_frnode { 81 struct pf_addr fn_src; /* ip source address */ 82 struct pf_addr fn_dst; /* ip destination address */ 83 sa_family_t fn_af; /* address family */ 84 u_int8_t fn_proto; /* protocol for fragments in fn_tree */ 85 u_int32_t fn_fragments; /* number of entries in fn_tree */ 86 87 RB_ENTRY(pf_frnode) fn_entry; 88 struct pf_frag_tree fn_tree; /* matching fragments, lookup by id */ 89 }; 90 91 struct pf_fragment { 92 uint32_t fr_id; /* fragment id for reassemble */ 93 94 /* pointers to queue element */ 95 struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS]; 96 /* count entries between pointers */ 97 uint8_t fr_entries[PF_FRAG_ENTRY_POINTS]; 98 RB_ENTRY(pf_fragment) fr_entry; 99 TAILQ_ENTRY(pf_fragment) frag_next; 100 uint32_t fr_timeout; 101 TAILQ_HEAD(pf_fragq, pf_frent) fr_queue; 102 uint16_t fr_maxlen; /* maximum length of single fragment */ 103 u_int16_t fr_holes; /* number of holes in the queue */ 104 struct pf_frnode *fr_node; /* ip src/dst/proto/af for fragments */ 105 }; 106 107 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx); 108 #define V_pf_frag_mtx VNET(pf_frag_mtx) 109 #define PF_FRAG_LOCK() mtx_lock(&V_pf_frag_mtx) 110 #define PF_FRAG_UNLOCK() mtx_unlock(&V_pf_frag_mtx) 111 #define PF_FRAG_ASSERT() mtx_assert(&V_pf_frag_mtx, MA_OWNED) 112 113 VNET_DEFINE(uma_zone_t, pf_state_scrub_z); /* XXX: shared with pfsync */ 114 115 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z); 116 #define V_pf_frent_z VNET(pf_frent_z) 117 VNET_DEFINE_STATIC(uma_zone_t, pf_frnode_z); 118 #define V_pf_frnode_z VNET(pf_frnode_z) 119 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z); 120 #define V_pf_frag_z VNET(pf_frag_z) 121 122 TAILQ_HEAD(pf_fragqueue, pf_fragment); 123 TAILQ_HEAD(pf_cachequeue, pf_fragment); 124 RB_HEAD(pf_frnode_tree, pf_frnode); 125 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue); 126 #define V_pf_fragqueue VNET(pf_fragqueue) 127 static __inline int pf_frnode_compare(struct pf_frnode *, 128 struct pf_frnode *); 129 VNET_DEFINE_STATIC(struct pf_frnode_tree, pf_frnode_tree); 130 #define V_pf_frnode_tree VNET(pf_frnode_tree) 131 RB_PROTOTYPE(pf_frnode_tree, pf_frnode, fn_entry, pf_frnode_compare); 132 RB_GENERATE(pf_frnode_tree, pf_frnode, fn_entry, pf_frnode_compare); 133 134 static int pf_frag_compare(struct pf_fragment *, 135 struct pf_fragment *); 136 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 137 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 138 139 static void pf_flush_fragments(void); 140 static void pf_free_fragment(struct pf_fragment *); 141 142 static struct pf_frent *pf_create_fragment(u_short *); 143 static int pf_frent_holes(struct pf_frent *frent); 144 static struct pf_fragment *pf_find_fragment(struct pf_frnode *, u_int32_t); 145 static inline int pf_frent_index(struct pf_frent *); 146 static int pf_frent_insert(struct pf_fragment *, 147 struct pf_frent *, struct pf_frent *); 148 void pf_frent_remove(struct pf_fragment *, 149 struct pf_frent *); 150 struct pf_frent *pf_frent_previous(struct pf_fragment *, 151 struct pf_frent *); 152 static struct pf_fragment *pf_fillup_fragment(struct pf_frnode *, u_int32_t, 153 struct pf_frent *, u_short *); 154 static struct mbuf *pf_join_fragment(struct pf_fragment *); 155 #ifdef INET 156 static int pf_reassemble(struct mbuf **, u_short *); 157 #endif /* INET */ 158 #ifdef INET6 159 static int pf_reassemble6(struct mbuf **, 160 struct ip6_frag *, uint16_t, uint16_t, u_short *); 161 #endif /* INET6 */ 162 163 #define DPFPRINTF(x) do { \ 164 if (V_pf_status.debug >= PF_DEBUG_MISC) { \ 165 printf("%s: ", __func__); \ 166 printf x ; \ 167 } \ 168 } while(0) 169 170 #ifdef INET 171 static void 172 pf_ip2key(struct ip *ip, struct pf_frnode *key) 173 { 174 175 key->fn_src.v4 = ip->ip_src; 176 key->fn_dst.v4 = ip->ip_dst; 177 key->fn_af = AF_INET; 178 key->fn_proto = ip->ip_p; 179 } 180 #endif /* INET */ 181 182 void 183 pf_normalize_init(void) 184 { 185 186 V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment), 187 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 188 V_pf_frnode_z = uma_zcreate("pf fragment node", 189 sizeof(struct pf_frnode), NULL, NULL, NULL, NULL, 190 UMA_ALIGN_PTR, 0); 191 V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent), 192 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 193 V_pf_state_scrub_z = uma_zcreate("pf state scrubs", 194 sizeof(struct pf_state_scrub), NULL, NULL, NULL, NULL, 195 UMA_ALIGN_PTR, 0); 196 197 mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF); 198 199 V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z; 200 V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT; 201 uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT); 202 uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached"); 203 204 TAILQ_INIT(&V_pf_fragqueue); 205 } 206 207 void 208 pf_normalize_cleanup(void) 209 { 210 211 uma_zdestroy(V_pf_state_scrub_z); 212 uma_zdestroy(V_pf_frent_z); 213 uma_zdestroy(V_pf_frnode_z); 214 uma_zdestroy(V_pf_frag_z); 215 216 mtx_destroy(&V_pf_frag_mtx); 217 } 218 219 static int 220 pf_frnode_compare(struct pf_frnode *a, struct pf_frnode *b) 221 { 222 int diff; 223 224 if ((diff = a->fn_proto - b->fn_proto) != 0) 225 return (diff); 226 if ((diff = a->fn_af - b->fn_af) != 0) 227 return (diff); 228 if ((diff = pf_addr_cmp(&a->fn_src, &b->fn_src, a->fn_af)) != 0) 229 return (diff); 230 if ((diff = pf_addr_cmp(&a->fn_dst, &b->fn_dst, a->fn_af)) != 0) 231 return (diff); 232 return (0); 233 } 234 235 static __inline int 236 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b) 237 { 238 int diff; 239 240 if ((diff = a->fr_id - b->fr_id) != 0) 241 return (diff); 242 243 return (0); 244 } 245 246 void 247 pf_purge_expired_fragments(void) 248 { 249 u_int32_t expire = time_uptime - 250 V_pf_default_rule.timeout[PFTM_FRAG]; 251 252 pf_purge_fragments(expire); 253 } 254 255 void 256 pf_purge_fragments(uint32_t expire) 257 { 258 struct pf_fragment *frag; 259 260 PF_FRAG_LOCK(); 261 while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) { 262 if (frag->fr_timeout > expire) 263 break; 264 265 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag)); 266 pf_free_fragment(frag); 267 } 268 269 PF_FRAG_UNLOCK(); 270 } 271 272 /* 273 * Try to flush old fragments to make space for new ones 274 */ 275 static void 276 pf_flush_fragments(void) 277 { 278 struct pf_fragment *frag; 279 int goal; 280 281 PF_FRAG_ASSERT(); 282 283 goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10; 284 DPFPRINTF(("trying to free %d frag entriess\n", goal)); 285 while (goal < uma_zone_get_cur(V_pf_frent_z)) { 286 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue); 287 if (frag) 288 pf_free_fragment(frag); 289 else 290 break; 291 } 292 } 293 294 /* 295 * Remove a fragment from the fragment queue, free its fragment entries, 296 * and free the fragment itself. 297 */ 298 static void 299 pf_free_fragment(struct pf_fragment *frag) 300 { 301 struct pf_frent *frent; 302 struct pf_frnode *frnode; 303 304 PF_FRAG_ASSERT(); 305 306 frnode = frag->fr_node; 307 RB_REMOVE(pf_frag_tree, &frnode->fn_tree, frag); 308 MPASS(frnode->fn_fragments >= 1); 309 frnode->fn_fragments--; 310 if (frnode->fn_fragments == 0) { 311 MPASS(RB_EMPTY(&frnode->fn_tree)); 312 RB_REMOVE(pf_frnode_tree, &V_pf_frnode_tree, frnode); 313 uma_zfree(V_pf_frnode_z, frnode); 314 } 315 316 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 317 318 /* Free all fragment entries */ 319 while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { 320 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 321 322 m_freem(frent->fe_m); 323 uma_zfree(V_pf_frent_z, frent); 324 } 325 326 uma_zfree(V_pf_frag_z, frag); 327 } 328 329 static struct pf_fragment * 330 pf_find_fragment(struct pf_frnode *key, uint32_t id) 331 { 332 struct pf_fragment *frag, idkey; 333 struct pf_frnode *frnode; 334 335 PF_FRAG_ASSERT(); 336 337 frnode = RB_FIND(pf_frnode_tree, &V_pf_frnode_tree, key); 338 if (frnode == NULL) 339 return (NULL); 340 MPASS(frnode->fn_fragments >= 1); 341 idkey.fr_id = id; 342 frag = RB_FIND(pf_frag_tree, &frnode->fn_tree, &idkey); 343 if (frag == NULL) 344 return (NULL); 345 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 346 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 347 348 return (frag); 349 } 350 351 static struct pf_frent * 352 pf_create_fragment(u_short *reason) 353 { 354 struct pf_frent *frent; 355 356 PF_FRAG_ASSERT(); 357 358 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 359 if (frent == NULL) { 360 pf_flush_fragments(); 361 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 362 if (frent == NULL) { 363 REASON_SET(reason, PFRES_MEMORY); 364 return (NULL); 365 } 366 } 367 368 return (frent); 369 } 370 371 /* 372 * Calculate the additional holes that were created in the fragment 373 * queue by inserting this fragment. A fragment in the middle 374 * creates one more hole by splitting. For each connected side, 375 * it loses one hole. 376 * Fragment entry must be in the queue when calling this function. 377 */ 378 static int 379 pf_frent_holes(struct pf_frent *frent) 380 { 381 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 382 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 383 int holes = 1; 384 385 if (prev == NULL) { 386 if (frent->fe_off == 0) 387 holes--; 388 } else { 389 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0")); 390 if (frent->fe_off == prev->fe_off + prev->fe_len) 391 holes--; 392 } 393 if (next == NULL) { 394 if (!frent->fe_mff) 395 holes--; 396 } else { 397 KASSERT(frent->fe_mff, ("frent->fe_mff")); 398 if (next->fe_off == frent->fe_off + frent->fe_len) 399 holes--; 400 } 401 return holes; 402 } 403 404 static inline int 405 pf_frent_index(struct pf_frent *frent) 406 { 407 /* 408 * We have an array of 16 entry points to the queue. A full size 409 * 65535 octet IP packet can have 8192 fragments. So the queue 410 * traversal length is at most 512 and at most 16 entry points are 411 * checked. We need 128 additional bytes on a 64 bit architecture. 412 */ 413 CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) == 414 16 - 1); 415 CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1); 416 417 return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS); 418 } 419 420 static int 421 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent, 422 struct pf_frent *prev) 423 { 424 int index; 425 426 CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff); 427 428 /* 429 * A packet has at most 65536 octets. With 16 entry points, each one 430 * spawns 4096 octets. We limit these to 64 fragments each, which 431 * means on average every fragment must have at least 64 octets. 432 */ 433 index = pf_frent_index(frent); 434 if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT) 435 return ENOBUFS; 436 frag->fr_entries[index]++; 437 438 if (prev == NULL) { 439 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next); 440 } else { 441 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 442 ("overlapping fragment")); 443 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next); 444 } 445 446 if (frag->fr_firstoff[index] == NULL) { 447 KASSERT(prev == NULL || pf_frent_index(prev) < index, 448 ("prev == NULL || pf_frent_index(pref) < index")); 449 frag->fr_firstoff[index] = frent; 450 } else { 451 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) { 452 KASSERT(prev == NULL || pf_frent_index(prev) < index, 453 ("prev == NULL || pf_frent_index(pref) < index")); 454 frag->fr_firstoff[index] = frent; 455 } else { 456 KASSERT(prev != NULL, ("prev != NULL")); 457 KASSERT(pf_frent_index(prev) == index, 458 ("pf_frent_index(prev) == index")); 459 } 460 } 461 462 frag->fr_holes += pf_frent_holes(frent); 463 464 return 0; 465 } 466 467 void 468 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent) 469 { 470 #ifdef INVARIANTS 471 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 472 #endif /* INVARIANTS */ 473 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 474 int index; 475 476 frag->fr_holes -= pf_frent_holes(frent); 477 478 index = pf_frent_index(frent); 479 KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found")); 480 if (frag->fr_firstoff[index]->fe_off == frent->fe_off) { 481 if (next == NULL) { 482 frag->fr_firstoff[index] = NULL; 483 } else { 484 KASSERT(frent->fe_off + frent->fe_len <= next->fe_off, 485 ("overlapping fragment")); 486 if (pf_frent_index(next) == index) { 487 frag->fr_firstoff[index] = next; 488 } else { 489 frag->fr_firstoff[index] = NULL; 490 } 491 } 492 } else { 493 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off, 494 ("frag->fr_firstoff[index]->fe_off < frent->fe_off")); 495 KASSERT(prev != NULL, ("prev != NULL")); 496 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 497 ("overlapping fragment")); 498 KASSERT(pf_frent_index(prev) == index, 499 ("pf_frent_index(prev) == index")); 500 } 501 502 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 503 504 KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining")); 505 frag->fr_entries[index]--; 506 } 507 508 struct pf_frent * 509 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent) 510 { 511 struct pf_frent *prev, *next; 512 int index; 513 514 /* 515 * If there are no fragments after frag, take the final one. Assume 516 * that the global queue is not empty. 517 */ 518 prev = TAILQ_LAST(&frag->fr_queue, pf_fragq); 519 KASSERT(prev != NULL, ("prev != NULL")); 520 if (prev->fe_off <= frent->fe_off) 521 return prev; 522 /* 523 * We want to find a fragment entry that is before frag, but still 524 * close to it. Find the first fragment entry that is in the same 525 * entry point or in the first entry point after that. As we have 526 * already checked that there are entries behind frag, this will 527 * succeed. 528 */ 529 for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS; 530 index++) { 531 prev = frag->fr_firstoff[index]; 532 if (prev != NULL) 533 break; 534 } 535 KASSERT(prev != NULL, ("prev != NULL")); 536 /* 537 * In prev we may have a fragment from the same entry point that is 538 * before frent, or one that is just one position behind frent. 539 * In the latter case, we go back one step and have the predecessor. 540 * There may be none if the new fragment will be the first one. 541 */ 542 if (prev->fe_off > frent->fe_off) { 543 prev = TAILQ_PREV(prev, pf_fragq, fr_next); 544 if (prev == NULL) 545 return NULL; 546 KASSERT(prev->fe_off <= frent->fe_off, 547 ("prev->fe_off <= frent->fe_off")); 548 return prev; 549 } 550 /* 551 * In prev is the first fragment of the entry point. The offset 552 * of frag is behind it. Find the closest previous fragment. 553 */ 554 for (next = TAILQ_NEXT(prev, fr_next); next != NULL; 555 next = TAILQ_NEXT(next, fr_next)) { 556 if (next->fe_off > frent->fe_off) 557 break; 558 prev = next; 559 } 560 return prev; 561 } 562 563 static struct pf_fragment * 564 pf_fillup_fragment(struct pf_frnode *key, uint32_t id, 565 struct pf_frent *frent, u_short *reason) 566 { 567 struct pf_frent *after, *next, *prev; 568 struct pf_fragment *frag; 569 struct pf_frnode *frnode; 570 uint16_t total; 571 572 PF_FRAG_ASSERT(); 573 574 /* No empty fragments. */ 575 if (frent->fe_len == 0) { 576 DPFPRINTF(("bad fragment: len 0\n")); 577 goto bad_fragment; 578 } 579 580 /* All fragments are 8 byte aligned. */ 581 if (frent->fe_mff && (frent->fe_len & 0x7)) { 582 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len)); 583 goto bad_fragment; 584 } 585 586 /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */ 587 if (frent->fe_off + frent->fe_len > IP_MAXPACKET) { 588 DPFPRINTF(("bad fragment: max packet %d\n", 589 frent->fe_off + frent->fe_len)); 590 goto bad_fragment; 591 } 592 593 DPFPRINTF((key->fn_af == AF_INET ? 594 "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n", 595 id, frent->fe_off, frent->fe_off + frent->fe_len)); 596 597 /* Fully buffer all of the fragments in this fragment queue. */ 598 frag = pf_find_fragment(key, id); 599 600 /* Create a new reassembly queue for this packet. */ 601 if (frag == NULL) { 602 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 603 if (frag == NULL) { 604 pf_flush_fragments(); 605 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 606 if (frag == NULL) { 607 REASON_SET(reason, PFRES_MEMORY); 608 goto drop_fragment; 609 } 610 } 611 612 frnode = RB_FIND(pf_frnode_tree, &V_pf_frnode_tree, key); 613 if (frnode == NULL) { 614 frnode = uma_zalloc(V_pf_frnode_z, M_NOWAIT); 615 if (frnode == NULL) { 616 pf_flush_fragments(); 617 frnode = uma_zalloc(V_pf_frnode_z, M_NOWAIT); 618 if (frnode == NULL) { 619 REASON_SET(reason, PFRES_MEMORY); 620 uma_zfree(V_pf_frag_z, frag); 621 goto drop_fragment; 622 } 623 } 624 *frnode = *key; 625 RB_INIT(&frnode->fn_tree); 626 frnode->fn_fragments = 0; 627 } 628 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff)); 629 memset(frag->fr_entries, 0, sizeof(frag->fr_entries)); 630 frag->fr_timeout = time_uptime; 631 TAILQ_INIT(&frag->fr_queue); 632 frag->fr_maxlen = frent->fe_len; 633 frag->fr_holes = 1; 634 635 frag->fr_id = id; 636 frag->fr_node = frnode; 637 /* RB_INSERT cannot fail as pf_find_fragment() found nothing */ 638 RB_INSERT(pf_frag_tree, &frnode->fn_tree, frag); 639 frnode->fn_fragments++; 640 if (frnode->fn_fragments == 1) 641 RB_INSERT(pf_frnode_tree, &V_pf_frnode_tree, frnode); 642 643 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 644 645 /* We do not have a previous fragment, cannot fail. */ 646 pf_frent_insert(frag, frent, NULL); 647 648 return (frag); 649 } 650 651 KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue")); 652 MPASS(frag->fr_node); 653 654 /* Remember maximum fragment len for refragmentation. */ 655 if (frent->fe_len > frag->fr_maxlen) 656 frag->fr_maxlen = frent->fe_len; 657 658 /* Maximum data we have seen already. */ 659 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 660 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 661 662 /* Non terminal fragments must have more fragments flag. */ 663 if (frent->fe_off + frent->fe_len < total && !frent->fe_mff) 664 goto free_ipv6_fragment; 665 666 /* Check if we saw the last fragment already. */ 667 if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) { 668 if (frent->fe_off + frent->fe_len > total || 669 (frent->fe_off + frent->fe_len == total && frent->fe_mff)) 670 goto free_ipv6_fragment; 671 } else { 672 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff) 673 goto free_ipv6_fragment; 674 } 675 676 /* Find neighbors for newly inserted fragment */ 677 prev = pf_frent_previous(frag, frent); 678 if (prev == NULL) { 679 after = TAILQ_FIRST(&frag->fr_queue); 680 KASSERT(after != NULL, ("after != NULL")); 681 } else { 682 after = TAILQ_NEXT(prev, fr_next); 683 } 684 685 if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) { 686 uint16_t precut; 687 688 if (frag->fr_node->fn_af == AF_INET6) 689 goto free_fragment; 690 691 precut = prev->fe_off + prev->fe_len - frent->fe_off; 692 if (precut >= frent->fe_len) { 693 DPFPRINTF(("new frag overlapped\n")); 694 goto drop_fragment; 695 } 696 DPFPRINTF(("frag head overlap %d\n", precut)); 697 m_adj(frent->fe_m, precut); 698 frent->fe_off += precut; 699 frent->fe_len -= precut; 700 } 701 702 for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off; 703 after = next) { 704 uint16_t aftercut; 705 706 aftercut = frent->fe_off + frent->fe_len - after->fe_off; 707 if (aftercut < after->fe_len) { 708 DPFPRINTF(("frag tail overlap %d", aftercut)); 709 m_adj(after->fe_m, aftercut); 710 /* Fragment may switch queue as fe_off changes */ 711 pf_frent_remove(frag, after); 712 after->fe_off += aftercut; 713 after->fe_len -= aftercut; 714 /* Insert into correct queue */ 715 if (pf_frent_insert(frag, after, prev)) { 716 DPFPRINTF(("fragment requeue limit exceeded")); 717 m_freem(after->fe_m); 718 uma_zfree(V_pf_frent_z, after); 719 /* There is not way to recover */ 720 goto free_fragment; 721 } 722 break; 723 } 724 725 /* This fragment is completely overlapped, lose it. */ 726 DPFPRINTF(("old frag overlapped\n")); 727 next = TAILQ_NEXT(after, fr_next); 728 pf_frent_remove(frag, after); 729 m_freem(after->fe_m); 730 uma_zfree(V_pf_frent_z, after); 731 } 732 733 /* If part of the queue gets too long, there is not way to recover. */ 734 if (pf_frent_insert(frag, frent, prev)) { 735 DPFPRINTF(("fragment queue limit exceeded\n")); 736 goto bad_fragment; 737 } 738 739 return (frag); 740 741 free_ipv6_fragment: 742 if (frag->fr_node->fn_af == AF_INET) 743 goto bad_fragment; 744 free_fragment: 745 /* 746 * RFC 5722, Errata 3089: When reassembling an IPv6 datagram, if one 747 * or more its constituent fragments is determined to be an overlapping 748 * fragment, the entire datagram (and any constituent fragments) MUST 749 * be silently discarded. 750 */ 751 DPFPRINTF(("flush overlapping fragments\n")); 752 pf_free_fragment(frag); 753 754 bad_fragment: 755 REASON_SET(reason, PFRES_FRAG); 756 drop_fragment: 757 uma_zfree(V_pf_frent_z, frent); 758 return (NULL); 759 } 760 761 static struct mbuf * 762 pf_join_fragment(struct pf_fragment *frag) 763 { 764 struct mbuf *m, *m2; 765 struct pf_frent *frent; 766 767 frent = TAILQ_FIRST(&frag->fr_queue); 768 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 769 770 m = frent->fe_m; 771 if ((frent->fe_hdrlen + frent->fe_len) < m->m_pkthdr.len) 772 m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len); 773 uma_zfree(V_pf_frent_z, frent); 774 while ((frent = TAILQ_FIRST(&frag->fr_queue)) != NULL) { 775 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 776 777 m2 = frent->fe_m; 778 /* Strip off ip header. */ 779 m_adj(m2, frent->fe_hdrlen); 780 /* Strip off any trailing bytes. */ 781 if (frent->fe_len < m2->m_pkthdr.len) 782 m_adj(m2, frent->fe_len - m2->m_pkthdr.len); 783 784 uma_zfree(V_pf_frent_z, frent); 785 m_cat(m, m2); 786 } 787 788 /* Remove from fragment queue. */ 789 pf_free_fragment(frag); 790 791 return (m); 792 } 793 794 #ifdef INET 795 static int 796 pf_reassemble(struct mbuf **m0, u_short *reason) 797 { 798 struct mbuf *m = *m0; 799 struct ip *ip = mtod(m, struct ip *); 800 struct pf_frent *frent; 801 struct pf_fragment *frag; 802 struct m_tag *mtag; 803 struct pf_fragment_tag *ftag; 804 struct pf_frnode key; 805 uint16_t total, hdrlen; 806 uint32_t frag_id; 807 uint16_t maxlen; 808 809 /* Get an entry for the fragment queue */ 810 if ((frent = pf_create_fragment(reason)) == NULL) 811 return (PF_DROP); 812 813 frent->fe_m = m; 814 frent->fe_hdrlen = ip->ip_hl << 2; 815 frent->fe_extoff = 0; 816 frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2); 817 frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; 818 frent->fe_mff = ntohs(ip->ip_off) & IP_MF; 819 820 pf_ip2key(ip, &key); 821 822 if ((frag = pf_fillup_fragment(&key, ip->ip_id, frent, reason)) == NULL) 823 return (PF_DROP); 824 825 /* The mbuf is part of the fragment entry, no direct free or access */ 826 m = *m0 = NULL; 827 828 if (frag->fr_holes) { 829 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes)); 830 return (PF_PASS); /* drop because *m0 is NULL, no error */ 831 } 832 833 /* We have all the data */ 834 frent = TAILQ_FIRST(&frag->fr_queue); 835 KASSERT(frent != NULL, ("frent != NULL")); 836 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 837 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 838 hdrlen = frent->fe_hdrlen; 839 840 maxlen = frag->fr_maxlen; 841 frag_id = frag->fr_id; 842 m = *m0 = pf_join_fragment(frag); 843 frag = NULL; 844 845 if (m->m_flags & M_PKTHDR) { 846 int plen = 0; 847 for (m = *m0; m; m = m->m_next) 848 plen += m->m_len; 849 m = *m0; 850 m->m_pkthdr.len = plen; 851 } 852 853 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 854 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) { 855 REASON_SET(reason, PFRES_SHORT); 856 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 857 return (PF_DROP); 858 } 859 ftag = (struct pf_fragment_tag *)(mtag + 1); 860 ftag->ft_hdrlen = hdrlen; 861 ftag->ft_extoff = 0; 862 ftag->ft_maxlen = maxlen; 863 ftag->ft_id = frag_id; 864 m_tag_prepend(m, mtag); 865 866 ip = mtod(m, struct ip *); 867 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len, 868 htons(hdrlen + total), 0); 869 ip->ip_len = htons(hdrlen + total); 870 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off, 871 ip->ip_off & ~(IP_MF|IP_OFFMASK), 0); 872 ip->ip_off &= ~(IP_MF|IP_OFFMASK); 873 874 if (hdrlen + total > IP_MAXPACKET) { 875 DPFPRINTF(("drop: too big: %d\n", total)); 876 ip->ip_len = 0; 877 REASON_SET(reason, PFRES_SHORT); 878 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 879 return (PF_DROP); 880 } 881 882 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len))); 883 return (PF_PASS); 884 } 885 #endif /* INET */ 886 887 #ifdef INET6 888 static int 889 pf_reassemble6(struct mbuf **m0, struct ip6_frag *fraghdr, 890 uint16_t hdrlen, uint16_t extoff, u_short *reason) 891 { 892 struct mbuf *m = *m0; 893 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *); 894 struct pf_frent *frent; 895 struct pf_fragment *frag; 896 struct pf_frnode key; 897 struct m_tag *mtag; 898 struct pf_fragment_tag *ftag; 899 int off; 900 uint32_t frag_id; 901 uint16_t total, maxlen; 902 uint8_t proto; 903 904 PF_FRAG_LOCK(); 905 906 /* Get an entry for the fragment queue. */ 907 if ((frent = pf_create_fragment(reason)) == NULL) { 908 PF_FRAG_UNLOCK(); 909 return (PF_DROP); 910 } 911 912 frent->fe_m = m; 913 frent->fe_hdrlen = hdrlen; 914 frent->fe_extoff = extoff; 915 frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen; 916 frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 917 frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG; 918 919 key.fn_src.v6 = ip6->ip6_src; 920 key.fn_dst.v6 = ip6->ip6_dst; 921 key.fn_af = AF_INET6; 922 /* Only the first fragment's protocol is relevant. */ 923 key.fn_proto = 0; 924 925 if ((frag = pf_fillup_fragment(&key, fraghdr->ip6f_ident, frent, reason)) == NULL) { 926 PF_FRAG_UNLOCK(); 927 return (PF_DROP); 928 } 929 930 /* The mbuf is part of the fragment entry, no direct free or access. */ 931 m = *m0 = NULL; 932 933 if (frag->fr_holes) { 934 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, 935 frag->fr_holes)); 936 PF_FRAG_UNLOCK(); 937 return (PF_PASS); /* Drop because *m0 is NULL, no error. */ 938 } 939 940 /* We have all the data. */ 941 frent = TAILQ_FIRST(&frag->fr_queue); 942 KASSERT(frent != NULL, ("frent != NULL")); 943 extoff = frent->fe_extoff; 944 maxlen = frag->fr_maxlen; 945 frag_id = frag->fr_id; 946 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 947 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 948 hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag); 949 950 m = *m0 = pf_join_fragment(frag); 951 frag = NULL; 952 953 PF_FRAG_UNLOCK(); 954 955 /* Take protocol from first fragment header. */ 956 m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off); 957 KASSERT(m, ("%s: short mbuf chain", __func__)); 958 proto = *(mtod(m, uint8_t *) + off); 959 m = *m0; 960 961 /* Delete frag6 header */ 962 if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0) 963 goto fail; 964 965 if (m->m_flags & M_PKTHDR) { 966 int plen = 0; 967 for (m = *m0; m; m = m->m_next) 968 plen += m->m_len; 969 m = *m0; 970 m->m_pkthdr.len = plen; 971 } 972 973 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 974 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) 975 goto fail; 976 ftag = (struct pf_fragment_tag *)(mtag + 1); 977 ftag->ft_hdrlen = hdrlen; 978 ftag->ft_extoff = extoff; 979 ftag->ft_maxlen = maxlen; 980 ftag->ft_id = frag_id; 981 m_tag_prepend(m, mtag); 982 983 ip6 = mtod(m, struct ip6_hdr *); 984 ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total); 985 if (extoff) { 986 /* Write protocol into next field of last extension header. */ 987 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 988 &off); 989 KASSERT(m, ("%s: short mbuf chain", __func__)); 990 *(mtod(m, char *) + off) = proto; 991 m = *m0; 992 } else 993 ip6->ip6_nxt = proto; 994 995 if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) { 996 DPFPRINTF(("drop: too big: %d\n", total)); 997 ip6->ip6_plen = 0; 998 REASON_SET(reason, PFRES_SHORT); 999 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */ 1000 return (PF_DROP); 1001 } 1002 1003 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen))); 1004 return (PF_PASS); 1005 1006 fail: 1007 REASON_SET(reason, PFRES_MEMORY); 1008 /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */ 1009 return (PF_DROP); 1010 } 1011 #endif /* INET6 */ 1012 1013 #ifdef INET6 1014 int 1015 pf_max_frag_size(struct mbuf *m) 1016 { 1017 struct m_tag *tag; 1018 struct pf_fragment_tag *ftag; 1019 1020 tag = m_tag_find(m, PACKET_TAG_PF_REASSEMBLED, NULL); 1021 if (tag == NULL) 1022 return (m->m_pkthdr.len); 1023 1024 ftag = (struct pf_fragment_tag *)(tag + 1); 1025 1026 return (ftag->ft_maxlen); 1027 } 1028 1029 int 1030 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag, 1031 struct ifnet *rt, bool forward) 1032 { 1033 struct mbuf *m = *m0, *t; 1034 struct ip6_hdr *hdr; 1035 struct pf_fragment_tag *ftag = (struct pf_fragment_tag *)(mtag + 1); 1036 struct pf_pdesc pd; 1037 uint32_t frag_id; 1038 uint16_t hdrlen, extoff, maxlen; 1039 uint8_t proto; 1040 int error, action; 1041 1042 hdrlen = ftag->ft_hdrlen; 1043 extoff = ftag->ft_extoff; 1044 maxlen = ftag->ft_maxlen; 1045 frag_id = ftag->ft_id; 1046 m_tag_delete(m, mtag); 1047 mtag = NULL; 1048 ftag = NULL; 1049 1050 if (extoff) { 1051 int off; 1052 1053 /* Use protocol from next field of last extension header */ 1054 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 1055 &off); 1056 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain")); 1057 proto = *(mtod(m, uint8_t *) + off); 1058 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT; 1059 m = *m0; 1060 } else { 1061 hdr = mtod(m, struct ip6_hdr *); 1062 proto = hdr->ip6_nxt; 1063 hdr->ip6_nxt = IPPROTO_FRAGMENT; 1064 } 1065 1066 /* In case of link-local traffic we'll need a scope set. */ 1067 hdr = mtod(m, struct ip6_hdr *); 1068 1069 in6_setscope(&hdr->ip6_src, ifp, NULL); 1070 in6_setscope(&hdr->ip6_dst, ifp, NULL); 1071 1072 /* The MTU must be a multiple of 8 bytes, or we risk doing the 1073 * fragmentation wrong. */ 1074 maxlen = maxlen & ~7; 1075 1076 /* 1077 * Maxlen may be less than 8 if there was only a single 1078 * fragment. As it was fragmented before, add a fragment 1079 * header also for a single fragment. If total or maxlen 1080 * is less than 8, ip6_fragment() will return EMSGSIZE and 1081 * we drop the packet. 1082 */ 1083 error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id); 1084 m = (*m0)->m_nextpkt; 1085 (*m0)->m_nextpkt = NULL; 1086 if (error == 0) { 1087 /* The first mbuf contains the unfragmented packet. */ 1088 m_freem(*m0); 1089 *m0 = NULL; 1090 action = PF_PASS; 1091 } else { 1092 /* Drop expects an mbuf to free. */ 1093 DPFPRINTF(("refragment error %d\n", error)); 1094 action = PF_DROP; 1095 } 1096 for (; m; m = t) { 1097 t = m->m_nextpkt; 1098 m->m_nextpkt = NULL; 1099 m->m_flags |= M_SKIP_FIREWALL; 1100 memset(&pd, 0, sizeof(pd)); 1101 pd.pf_mtag = pf_find_mtag(m); 1102 if (error != 0) { 1103 m_freem(m); 1104 continue; 1105 } 1106 if (rt != NULL) { 1107 struct sockaddr_in6 dst; 1108 hdr = mtod(m, struct ip6_hdr *); 1109 1110 bzero(&dst, sizeof(dst)); 1111 dst.sin6_family = AF_INET6; 1112 dst.sin6_len = sizeof(dst); 1113 dst.sin6_addr = hdr->ip6_dst; 1114 1115 if (m->m_pkthdr.len <= if_getmtu(ifp)) { 1116 nd6_output_ifp(rt, rt, m, &dst, NULL); 1117 } else { 1118 in6_ifstat_inc(ifp, ifs6_in_toobig); 1119 icmp6_error(m, ICMP6_PACKET_TOO_BIG, 0, 1120 if_getmtu(ifp)); 1121 } 1122 } else if (forward) { 1123 MPASS(m->m_pkthdr.rcvif != NULL); 1124 ip6_forward(m, 0); 1125 } else { 1126 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, 1127 NULL); 1128 } 1129 } 1130 1131 return (action); 1132 } 1133 #endif /* INET6 */ 1134 1135 #ifdef INET 1136 int 1137 pf_normalize_ip(u_short *reason, struct pf_pdesc *pd) 1138 { 1139 struct pf_krule *r; 1140 struct ip *h = mtod(pd->m, struct ip *); 1141 int mff = (ntohs(h->ip_off) & IP_MF); 1142 int hlen = h->ip_hl << 2; 1143 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 1144 u_int16_t max; 1145 int ip_len; 1146 int tag = -1; 1147 int verdict; 1148 bool scrub_compat; 1149 1150 PF_RULES_RASSERT(); 1151 1152 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1153 /* 1154 * Check if there are any scrub rules, matching or not. 1155 * Lack of scrub rules means: 1156 * - enforced packet normalization operation just like in OpenBSD 1157 * - fragment reassembly depends on V_pf_status.reass 1158 * With scrub rules: 1159 * - packet normalization is performed if there is a matching scrub rule 1160 * - fragment reassembly is performed if the matching rule has no 1161 * PFRULE_FRAGMENT_NOREASS flag 1162 */ 1163 scrub_compat = (r != NULL); 1164 while (r != NULL) { 1165 pf_counter_u64_add(&r->evaluations, 1); 1166 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1167 r = r->skip[PF_SKIP_IFP]; 1168 else if (r->direction && r->direction != pd->dir) 1169 r = r->skip[PF_SKIP_DIR]; 1170 else if (r->af && r->af != AF_INET) 1171 r = r->skip[PF_SKIP_AF]; 1172 else if (r->proto && r->proto != h->ip_p) 1173 r = r->skip[PF_SKIP_PROTO]; 1174 else if (PF_MISMATCHAW(&r->src.addr, 1175 (struct pf_addr *)&h->ip_src.s_addr, AF_INET, 1176 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1177 r = r->skip[PF_SKIP_SRC_ADDR]; 1178 else if (PF_MISMATCHAW(&r->dst.addr, 1179 (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, 1180 r->dst.neg, NULL, M_GETFIB(pd->m))) 1181 r = r->skip[PF_SKIP_DST_ADDR]; 1182 else if (r->match_tag && !pf_match_tag(pd->m, r, &tag, 1183 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 1184 r = TAILQ_NEXT(r, entries); 1185 else 1186 break; 1187 } 1188 1189 if (scrub_compat) { 1190 /* With scrub rules present IPv4 normalization happens only 1191 * if one of rules has matched and it's not a "no scrub" rule */ 1192 if (r == NULL || r->action == PF_NOSCRUB) 1193 return (PF_PASS); 1194 1195 pf_counter_u64_critical_enter(); 1196 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1197 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1198 pf_counter_u64_critical_exit(); 1199 pf_rule_to_actions(r, &pd->act); 1200 } 1201 1202 /* Check for illegal packets */ 1203 if (hlen < (int)sizeof(struct ip)) { 1204 REASON_SET(reason, PFRES_NORM); 1205 goto drop; 1206 } 1207 1208 if (hlen > ntohs(h->ip_len)) { 1209 REASON_SET(reason, PFRES_NORM); 1210 goto drop; 1211 } 1212 1213 /* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */ 1214 if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) || 1215 (r != NULL && r->rule_flag & PFRULE_NODF)) && 1216 (h->ip_off & htons(IP_DF)) 1217 ) { 1218 u_int16_t ip_off = h->ip_off; 1219 1220 h->ip_off &= htons(~IP_DF); 1221 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1222 } 1223 1224 /* We will need other tests here */ 1225 if (!fragoff && !mff) 1226 goto no_fragment; 1227 1228 /* We're dealing with a fragment now. Don't allow fragments 1229 * with IP_DF to enter the cache. If the flag was cleared by 1230 * no-df above, fine. Otherwise drop it. 1231 */ 1232 if (h->ip_off & htons(IP_DF)) { 1233 DPFPRINTF(("IP_DF\n")); 1234 goto bad; 1235 } 1236 1237 ip_len = ntohs(h->ip_len) - hlen; 1238 1239 /* All fragments are 8 byte aligned */ 1240 if (mff && (ip_len & 0x7)) { 1241 DPFPRINTF(("mff and %d\n", ip_len)); 1242 goto bad; 1243 } 1244 1245 /* Respect maximum length */ 1246 if (fragoff + ip_len > IP_MAXPACKET) { 1247 DPFPRINTF(("max packet %d\n", fragoff + ip_len)); 1248 goto bad; 1249 } 1250 1251 if ((!scrub_compat && V_pf_status.reass) || 1252 (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS)) 1253 ) { 1254 max = fragoff + ip_len; 1255 1256 /* Fully buffer all of the fragments 1257 * Might return a completely reassembled mbuf, or NULL */ 1258 PF_FRAG_LOCK(); 1259 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max)); 1260 verdict = pf_reassemble(&pd->m, reason); 1261 PF_FRAG_UNLOCK(); 1262 1263 if (verdict != PF_PASS) 1264 return (PF_DROP); 1265 1266 if (pd->m == NULL) 1267 return (PF_DROP); 1268 1269 h = mtod(pd->m, struct ip *); 1270 pd->tot_len = htons(h->ip_len); 1271 1272 no_fragment: 1273 /* At this point, only IP_DF is allowed in ip_off */ 1274 if (h->ip_off & ~htons(IP_DF)) { 1275 u_int16_t ip_off = h->ip_off; 1276 1277 h->ip_off &= htons(IP_DF); 1278 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1279 } 1280 } 1281 1282 return (PF_PASS); 1283 1284 bad: 1285 DPFPRINTF(("dropping bad fragment\n")); 1286 REASON_SET(reason, PFRES_FRAG); 1287 drop: 1288 if (r != NULL && r->log) 1289 PFLOG_PACKET(PF_DROP, *reason, r, NULL, NULL, pd, 1, NULL); 1290 1291 return (PF_DROP); 1292 } 1293 #endif 1294 1295 #ifdef INET6 1296 int 1297 pf_normalize_ip6(int off, u_short *reason, 1298 struct pf_pdesc *pd) 1299 { 1300 struct pf_krule *r; 1301 struct ip6_hdr *h; 1302 struct ip6_frag frag; 1303 bool scrub_compat; 1304 1305 PF_RULES_RASSERT(); 1306 1307 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1308 /* 1309 * Check if there are any scrub rules, matching or not. 1310 * Lack of scrub rules means: 1311 * - enforced packet normalization operation just like in OpenBSD 1312 * With scrub rules: 1313 * - packet normalization is performed if there is a matching scrub rule 1314 * XXX: Fragment reassembly always performed for IPv6! 1315 */ 1316 scrub_compat = (r != NULL); 1317 while (r != NULL) { 1318 pf_counter_u64_add(&r->evaluations, 1); 1319 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1320 r = r->skip[PF_SKIP_IFP]; 1321 else if (r->direction && r->direction != pd->dir) 1322 r = r->skip[PF_SKIP_DIR]; 1323 else if (r->af && r->af != AF_INET6) 1324 r = r->skip[PF_SKIP_AF]; 1325 else if (r->proto && r->proto != pd->proto) 1326 r = r->skip[PF_SKIP_PROTO]; 1327 else if (PF_MISMATCHAW(&r->src.addr, 1328 (struct pf_addr *)&pd->src, AF_INET6, 1329 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1330 r = r->skip[PF_SKIP_SRC_ADDR]; 1331 else if (PF_MISMATCHAW(&r->dst.addr, 1332 (struct pf_addr *)&pd->dst, AF_INET6, 1333 r->dst.neg, NULL, M_GETFIB(pd->m))) 1334 r = r->skip[PF_SKIP_DST_ADDR]; 1335 else 1336 break; 1337 } 1338 1339 if (scrub_compat) { 1340 /* With scrub rules present IPv6 normalization happens only 1341 * if one of rules has matched and it's not a "no scrub" rule */ 1342 if (r == NULL || r->action == PF_NOSCRUB) 1343 return (PF_PASS); 1344 1345 pf_counter_u64_critical_enter(); 1346 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1347 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1348 pf_counter_u64_critical_exit(); 1349 pf_rule_to_actions(r, &pd->act); 1350 } 1351 1352 if (!pf_pull_hdr(pd->m, off, &frag, sizeof(frag), NULL, reason, AF_INET6)) 1353 return (PF_DROP); 1354 1355 /* Offset now points to data portion. */ 1356 off += sizeof(frag); 1357 1358 if (pd->virtual_proto == PF_VPROTO_FRAGMENT) { 1359 /* Returns PF_DROP or *m0 is NULL or completely reassembled 1360 * mbuf. */ 1361 if (pf_reassemble6(&pd->m, &frag, off, pd->extoff, reason) != PF_PASS) 1362 return (PF_DROP); 1363 if (pd->m == NULL) 1364 return (PF_DROP); 1365 h = mtod(pd->m, struct ip6_hdr *); 1366 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 1367 } 1368 1369 return (PF_PASS); 1370 } 1371 #endif /* INET6 */ 1372 1373 int 1374 pf_normalize_tcp(struct pf_pdesc *pd) 1375 { 1376 struct pf_krule *r, *rm = NULL; 1377 struct tcphdr *th = &pd->hdr.tcp; 1378 int rewrite = 0; 1379 u_short reason; 1380 u_int16_t flags; 1381 sa_family_t af = pd->af; 1382 int srs; 1383 1384 PF_RULES_RASSERT(); 1385 1386 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1387 /* Check if there any scrub rules. Lack of scrub rules means enforced 1388 * packet normalization operation just like in OpenBSD. */ 1389 srs = (r != NULL); 1390 while (r != NULL) { 1391 pf_counter_u64_add(&r->evaluations, 1); 1392 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 1393 r = r->skip[PF_SKIP_IFP]; 1394 else if (r->direction && r->direction != pd->dir) 1395 r = r->skip[PF_SKIP_DIR]; 1396 else if (r->af && r->af != af) 1397 r = r->skip[PF_SKIP_AF]; 1398 else if (r->proto && r->proto != pd->proto) 1399 r = r->skip[PF_SKIP_PROTO]; 1400 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 1401 r->src.neg, pd->kif, M_GETFIB(pd->m))) 1402 r = r->skip[PF_SKIP_SRC_ADDR]; 1403 else if (r->src.port_op && !pf_match_port(r->src.port_op, 1404 r->src.port[0], r->src.port[1], th->th_sport)) 1405 r = r->skip[PF_SKIP_SRC_PORT]; 1406 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 1407 r->dst.neg, NULL, M_GETFIB(pd->m))) 1408 r = r->skip[PF_SKIP_DST_ADDR]; 1409 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 1410 r->dst.port[0], r->dst.port[1], th->th_dport)) 1411 r = r->skip[PF_SKIP_DST_PORT]; 1412 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match( 1413 pf_osfp_fingerprint(pd, th), 1414 r->os_fingerprint)) 1415 r = TAILQ_NEXT(r, entries); 1416 else { 1417 rm = r; 1418 break; 1419 } 1420 } 1421 1422 if (srs) { 1423 /* With scrub rules present TCP normalization happens only 1424 * if one of rules has matched and it's not a "no scrub" rule */ 1425 if (rm == NULL || rm->action == PF_NOSCRUB) 1426 return (PF_PASS); 1427 1428 pf_counter_u64_critical_enter(); 1429 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1430 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1431 pf_counter_u64_critical_exit(); 1432 pf_rule_to_actions(rm, &pd->act); 1433 } 1434 1435 if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP) 1436 pd->flags |= PFDESC_TCP_NORM; 1437 1438 flags = tcp_get_flags(th); 1439 if (flags & TH_SYN) { 1440 /* Illegal packet */ 1441 if (flags & TH_RST) 1442 goto tcp_drop; 1443 1444 if (flags & TH_FIN) 1445 goto tcp_drop; 1446 } else { 1447 /* Illegal packet */ 1448 if (!(flags & (TH_ACK|TH_RST))) 1449 goto tcp_drop; 1450 } 1451 1452 if (!(flags & TH_ACK)) { 1453 /* These flags are only valid if ACK is set */ 1454 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG)) 1455 goto tcp_drop; 1456 } 1457 1458 /* Check for illegal header length */ 1459 if (th->th_off < (sizeof(struct tcphdr) >> 2)) 1460 goto tcp_drop; 1461 1462 /* If flags changed, or reserved data set, then adjust */ 1463 if (flags != tcp_get_flags(th) || 1464 (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) { 1465 u_int16_t ov, nv; 1466 1467 ov = *(u_int16_t *)(&th->th_ack + 1); 1468 flags &= ~(TH_RES1 | TH_RES2 | TH_RES3); 1469 tcp_set_flags(th, flags); 1470 nv = *(u_int16_t *)(&th->th_ack + 1); 1471 1472 th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, ov, nv, 0); 1473 rewrite = 1; 1474 } 1475 1476 /* Remove urgent pointer, if TH_URG is not set */ 1477 if (!(flags & TH_URG) && th->th_urp) { 1478 th->th_sum = pf_proto_cksum_fixup(pd->m, th->th_sum, th->th_urp, 1479 0, 0); 1480 th->th_urp = 0; 1481 rewrite = 1; 1482 } 1483 1484 /* copy back packet headers if we sanitized */ 1485 if (rewrite) 1486 m_copyback(pd->m, pd->off, sizeof(*th), (caddr_t)th); 1487 1488 return (PF_PASS); 1489 1490 tcp_drop: 1491 REASON_SET(&reason, PFRES_NORM); 1492 if (rm != NULL && r->log) 1493 PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 1, NULL); 1494 return (PF_DROP); 1495 } 1496 1497 int 1498 pf_normalize_tcp_init(struct pf_pdesc *pd, struct tcphdr *th, 1499 struct pf_state_peer *src) 1500 { 1501 u_int32_t tsval, tsecr; 1502 int olen; 1503 uint8_t opts[MAX_TCPOPTLEN], *opt; 1504 1505 KASSERT((src->scrub == NULL), 1506 ("pf_normalize_tcp_init: src->scrub != NULL")); 1507 1508 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1509 if (src->scrub == NULL) 1510 return (1); 1511 1512 switch (pd->af) { 1513 #ifdef INET 1514 case AF_INET: { 1515 struct ip *h = mtod(pd->m, struct ip *); 1516 src->scrub->pfss_ttl = h->ip_ttl; 1517 break; 1518 } 1519 #endif /* INET */ 1520 #ifdef INET6 1521 case AF_INET6: { 1522 struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); 1523 src->scrub->pfss_ttl = h->ip6_hlim; 1524 break; 1525 } 1526 #endif /* INET6 */ 1527 default: 1528 unhandled_af(pd->af); 1529 } 1530 1531 /* 1532 * All normalizations below are only begun if we see the start of 1533 * the connections. They must all set an enabled bit in pfss_flags 1534 */ 1535 if ((tcp_get_flags(th) & TH_SYN) == 0) 1536 return (0); 1537 1538 olen = (th->th_off << 2) - sizeof(*th); 1539 if (olen < TCPOLEN_TIMESTAMP || !pf_pull_hdr(pd->m, 1540 pd->off + sizeof(*th), opts, olen, NULL, NULL, pd->af)) 1541 return (0); 1542 1543 opt = opts; 1544 while ((opt = pf_find_tcpopt(opt, opts, olen, 1545 TCPOPT_TIMESTAMP, TCPOLEN_TIMESTAMP)) != NULL) { 1546 src->scrub->pfss_flags |= PFSS_TIMESTAMP; 1547 src->scrub->pfss_ts_mod = arc4random(); 1548 /* note PFSS_PAWS not set yet */ 1549 memcpy(&tsval, &opt[2], sizeof(u_int32_t)); 1550 memcpy(&tsecr, &opt[6], sizeof(u_int32_t)); 1551 src->scrub->pfss_tsval0 = ntohl(tsval); 1552 src->scrub->pfss_tsval = ntohl(tsval); 1553 src->scrub->pfss_tsecr = ntohl(tsecr); 1554 getmicrouptime(&src->scrub->pfss_last); 1555 1556 opt += opt[1]; 1557 } 1558 1559 return (0); 1560 } 1561 1562 void 1563 pf_normalize_tcp_cleanup(struct pf_kstate *state) 1564 { 1565 /* XXX Note: this also cleans up SCTP. */ 1566 uma_zfree(V_pf_state_scrub_z, state->src.scrub); 1567 uma_zfree(V_pf_state_scrub_z, state->dst.scrub); 1568 1569 /* Someday... flush the TCP segment reassembly descriptors. */ 1570 } 1571 int 1572 pf_normalize_sctp_init(struct pf_pdesc *pd, struct pf_state_peer *src, 1573 struct pf_state_peer *dst) 1574 { 1575 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1576 if (src->scrub == NULL) 1577 return (1); 1578 1579 dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1580 if (dst->scrub == NULL) { 1581 uma_zfree(V_pf_state_scrub_z, src); 1582 return (1); 1583 } 1584 1585 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 1586 1587 return (0); 1588 } 1589 1590 int 1591 pf_normalize_tcp_stateful(struct pf_pdesc *pd, 1592 u_short *reason, struct tcphdr *th, struct pf_kstate *state, 1593 struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback) 1594 { 1595 struct timeval uptime; 1596 u_int tsval_from_last; 1597 uint32_t tsval, tsecr; 1598 int copyback = 0; 1599 int got_ts = 0; 1600 int olen; 1601 uint8_t opts[MAX_TCPOPTLEN], *opt; 1602 1603 KASSERT((src->scrub || dst->scrub), 1604 ("%s: src->scrub && dst->scrub!", __func__)); 1605 1606 /* 1607 * Enforce the minimum TTL seen for this connection. Negate a common 1608 * technique to evade an intrusion detection system and confuse 1609 * firewall state code. 1610 */ 1611 switch (pd->af) { 1612 #ifdef INET 1613 case AF_INET: { 1614 if (src->scrub) { 1615 struct ip *h = mtod(pd->m, struct ip *); 1616 if (h->ip_ttl > src->scrub->pfss_ttl) 1617 src->scrub->pfss_ttl = h->ip_ttl; 1618 h->ip_ttl = src->scrub->pfss_ttl; 1619 } 1620 break; 1621 } 1622 #endif /* INET */ 1623 #ifdef INET6 1624 case AF_INET6: { 1625 if (src->scrub) { 1626 struct ip6_hdr *h = mtod(pd->m, struct ip6_hdr *); 1627 if (h->ip6_hlim > src->scrub->pfss_ttl) 1628 src->scrub->pfss_ttl = h->ip6_hlim; 1629 h->ip6_hlim = src->scrub->pfss_ttl; 1630 } 1631 break; 1632 } 1633 #endif /* INET6 */ 1634 default: 1635 unhandled_af(pd->af); 1636 } 1637 1638 olen = (th->th_off << 2) - sizeof(*th); 1639 1640 if (olen >= TCPOLEN_TIMESTAMP && 1641 ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) || 1642 (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) && 1643 pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, olen, NULL, NULL, pd->af)) { 1644 /* Modulate the timestamps. Can be used for NAT detection, OS 1645 * uptime determination or reboot detection. 1646 */ 1647 opt = opts; 1648 while ((opt = pf_find_tcpopt(opt, opts, olen, 1649 TCPOPT_TIMESTAMP, TCPOLEN_TIMESTAMP)) != NULL) { 1650 uint8_t *ts = opt + 2; 1651 uint8_t *tsr = opt + 6; 1652 1653 if (got_ts) { 1654 /* Huh? Multiple timestamps!? */ 1655 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1656 printf("pf: %s: multiple TS??", __func__); 1657 pf_print_state(state); 1658 printf("\n"); 1659 } 1660 REASON_SET(reason, PFRES_TS); 1661 return (PF_DROP); 1662 } 1663 1664 memcpy(&tsval, ts, sizeof(u_int32_t)); 1665 memcpy(&tsecr, tsr, sizeof(u_int32_t)); 1666 1667 /* modulate TS */ 1668 if (tsval && src->scrub && 1669 (src->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1670 /* tsval used further on */ 1671 tsval = ntohl(tsval); 1672 pf_patch_32(pd, 1673 ts, htonl(tsval + src->scrub->pfss_ts_mod), 1674 PF_ALGNMNT(ts - opts)); 1675 copyback = 1; 1676 } 1677 1678 /* modulate TS reply if any (!0) */ 1679 if (tsecr && dst->scrub && 1680 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1681 /* tsecr used further on */ 1682 tsecr = ntohl(tsecr) - dst->scrub->pfss_ts_mod; 1683 pf_patch_32(pd, tsr, htonl(tsecr), 1684 PF_ALGNMNT(tsr - opts)); 1685 copyback = 1; 1686 } 1687 1688 got_ts = 1; 1689 opt += opt[1]; 1690 } 1691 1692 if (copyback) { 1693 /* Copyback the options, caller copys back header */ 1694 *writeback = 1; 1695 m_copyback(pd->m, pd->off + sizeof(*th), olen, opts); 1696 } 1697 } 1698 1699 /* 1700 * Must invalidate PAWS checks on connections idle for too long. 1701 * The fastest allowed timestamp clock is 1ms. That turns out to 1702 * be about 24 days before it wraps. XXX Right now our lowerbound 1703 * TS echo check only works for the first 12 days of a connection 1704 * when the TS has exhausted half its 32bit space 1705 */ 1706 #define TS_MAX_IDLE (24*24*60*60) 1707 #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */ 1708 1709 getmicrouptime(&uptime); 1710 if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && 1711 (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE || 1712 time_uptime - (state->creation / 1000) > TS_MAX_CONN)) { 1713 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1714 DPFPRINTF(("src idled out of PAWS\n")); 1715 pf_print_state(state); 1716 printf("\n"); 1717 } 1718 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS) 1719 | PFSS_PAWS_IDLED; 1720 } 1721 if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) && 1722 uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) { 1723 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1724 DPFPRINTF(("dst idled out of PAWS\n")); 1725 pf_print_state(state); 1726 printf("\n"); 1727 } 1728 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS) 1729 | PFSS_PAWS_IDLED; 1730 } 1731 1732 if (got_ts && src->scrub && dst->scrub && 1733 (src->scrub->pfss_flags & PFSS_PAWS) && 1734 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1735 /* Validate that the timestamps are "in-window". 1736 * RFC1323 describes TCP Timestamp options that allow 1737 * measurement of RTT (round trip time) and PAWS 1738 * (protection against wrapped sequence numbers). PAWS 1739 * gives us a set of rules for rejecting packets on 1740 * long fat pipes (packets that were somehow delayed 1741 * in transit longer than the time it took to send the 1742 * full TCP sequence space of 4Gb). We can use these 1743 * rules and infer a few others that will let us treat 1744 * the 32bit timestamp and the 32bit echoed timestamp 1745 * as sequence numbers to prevent a blind attacker from 1746 * inserting packets into a connection. 1747 * 1748 * RFC1323 tells us: 1749 * - The timestamp on this packet must be greater than 1750 * or equal to the last value echoed by the other 1751 * endpoint. The RFC says those will be discarded 1752 * since it is a dup that has already been acked. 1753 * This gives us a lowerbound on the timestamp. 1754 * timestamp >= other last echoed timestamp 1755 * - The timestamp will be less than or equal to 1756 * the last timestamp plus the time between the 1757 * last packet and now. The RFC defines the max 1758 * clock rate as 1ms. We will allow clocks to be 1759 * up to 10% fast and will allow a total difference 1760 * or 30 seconds due to a route change. And this 1761 * gives us an upperbound on the timestamp. 1762 * timestamp <= last timestamp + max ticks 1763 * We have to be careful here. Windows will send an 1764 * initial timestamp of zero and then initialize it 1765 * to a random value after the 3whs; presumably to 1766 * avoid a DoS by having to call an expensive RNG 1767 * during a SYN flood. Proof MS has at least one 1768 * good security geek. 1769 * 1770 * - The TCP timestamp option must also echo the other 1771 * endpoints timestamp. The timestamp echoed is the 1772 * one carried on the earliest unacknowledged segment 1773 * on the left edge of the sequence window. The RFC 1774 * states that the host will reject any echoed 1775 * timestamps that were larger than any ever sent. 1776 * This gives us an upperbound on the TS echo. 1777 * tescr <= largest_tsval 1778 * - The lowerbound on the TS echo is a little more 1779 * tricky to determine. The other endpoint's echoed 1780 * values will not decrease. But there may be 1781 * network conditions that re-order packets and 1782 * cause our view of them to decrease. For now the 1783 * only lowerbound we can safely determine is that 1784 * the TS echo will never be less than the original 1785 * TS. XXX There is probably a better lowerbound. 1786 * Remove TS_MAX_CONN with better lowerbound check. 1787 * tescr >= other original TS 1788 * 1789 * It is also important to note that the fastest 1790 * timestamp clock of 1ms will wrap its 32bit space in 1791 * 24 days. So we just disable TS checking after 24 1792 * days of idle time. We actually must use a 12d 1793 * connection limit until we can come up with a better 1794 * lowerbound to the TS echo check. 1795 */ 1796 struct timeval delta_ts; 1797 int ts_fudge; 1798 1799 /* 1800 * PFTM_TS_DIFF is how many seconds of leeway to allow 1801 * a host's timestamp. This can happen if the previous 1802 * packet got delayed in transit for much longer than 1803 * this packet. 1804 */ 1805 if ((ts_fudge = state->rule->timeout[PFTM_TS_DIFF]) == 0) 1806 ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF]; 1807 1808 /* Calculate max ticks since the last timestamp */ 1809 #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */ 1810 #define TS_MICROSECS 1000000 /* microseconds per second */ 1811 delta_ts = uptime; 1812 timevalsub(&delta_ts, &src->scrub->pfss_last); 1813 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ; 1814 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ); 1815 1816 if ((src->state >= TCPS_ESTABLISHED && 1817 dst->state >= TCPS_ESTABLISHED) && 1818 (SEQ_LT(tsval, dst->scrub->pfss_tsecr) || 1819 SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) || 1820 (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) || 1821 SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) { 1822 /* Bad RFC1323 implementation or an insertion attack. 1823 * 1824 * - Solaris 2.6 and 2.7 are known to send another ACK 1825 * after the FIN,FIN|ACK,ACK closing that carries 1826 * an old timestamp. 1827 */ 1828 1829 DPFPRINTF(("Timestamp failed %c%c%c%c\n", 1830 SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ', 1831 SEQ_GT(tsval, src->scrub->pfss_tsval + 1832 tsval_from_last) ? '1' : ' ', 1833 SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ', 1834 SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' ')); 1835 DPFPRINTF((" tsval: %u tsecr: %u +ticks: %u " 1836 "idle: %jus %lums\n", 1837 tsval, tsecr, tsval_from_last, 1838 (uintmax_t)delta_ts.tv_sec, 1839 delta_ts.tv_usec / 1000)); 1840 DPFPRINTF((" src->tsval: %u tsecr: %u\n", 1841 src->scrub->pfss_tsval, src->scrub->pfss_tsecr)); 1842 DPFPRINTF((" dst->tsval: %u tsecr: %u tsval0: %u" 1843 "\n", dst->scrub->pfss_tsval, 1844 dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0)); 1845 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1846 pf_print_state(state); 1847 pf_print_flags(tcp_get_flags(th)); 1848 printf("\n"); 1849 } 1850 REASON_SET(reason, PFRES_TS); 1851 return (PF_DROP); 1852 } 1853 1854 /* XXX I'd really like to require tsecr but it's optional */ 1855 1856 } else if (!got_ts && (tcp_get_flags(th) & TH_RST) == 0 && 1857 ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED) 1858 || pd->p_len > 0 || (tcp_get_flags(th) & TH_SYN)) && 1859 src->scrub && dst->scrub && 1860 (src->scrub->pfss_flags & PFSS_PAWS) && 1861 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1862 /* Didn't send a timestamp. Timestamps aren't really useful 1863 * when: 1864 * - connection opening or closing (often not even sent). 1865 * but we must not let an attacker to put a FIN on a 1866 * data packet to sneak it through our ESTABLISHED check. 1867 * - on a TCP reset. RFC suggests not even looking at TS. 1868 * - on an empty ACK. The TS will not be echoed so it will 1869 * probably not help keep the RTT calculation in sync and 1870 * there isn't as much danger when the sequence numbers 1871 * got wrapped. So some stacks don't include TS on empty 1872 * ACKs :-( 1873 * 1874 * To minimize the disruption to mostly RFC1323 conformant 1875 * stacks, we will only require timestamps on data packets. 1876 * 1877 * And what do ya know, we cannot require timestamps on data 1878 * packets. There appear to be devices that do legitimate 1879 * TCP connection hijacking. There are HTTP devices that allow 1880 * a 3whs (with timestamps) and then buffer the HTTP request. 1881 * If the intermediate device has the HTTP response cache, it 1882 * will spoof the response but not bother timestamping its 1883 * packets. So we can look for the presence of a timestamp in 1884 * the first data packet and if there, require it in all future 1885 * packets. 1886 */ 1887 1888 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) { 1889 /* 1890 * Hey! Someone tried to sneak a packet in. Or the 1891 * stack changed its RFC1323 behavior?!?! 1892 */ 1893 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1894 DPFPRINTF(("Did not receive expected RFC1323 " 1895 "timestamp\n")); 1896 pf_print_state(state); 1897 pf_print_flags(tcp_get_flags(th)); 1898 printf("\n"); 1899 } 1900 REASON_SET(reason, PFRES_TS); 1901 return (PF_DROP); 1902 } 1903 } 1904 1905 /* 1906 * We will note if a host sends his data packets with or without 1907 * timestamps. And require all data packets to contain a timestamp 1908 * if the first does. PAWS implicitly requires that all data packets be 1909 * timestamped. But I think there are middle-man devices that hijack 1910 * TCP streams immediately after the 3whs and don't timestamp their 1911 * packets (seen in a WWW accelerator or cache). 1912 */ 1913 if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags & 1914 (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) { 1915 if (got_ts) 1916 src->scrub->pfss_flags |= PFSS_DATA_TS; 1917 else { 1918 src->scrub->pfss_flags |= PFSS_DATA_NOTS; 1919 if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub && 1920 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1921 /* Don't warn if other host rejected RFC1323 */ 1922 DPFPRINTF(("Broken RFC1323 stack did not " 1923 "timestamp data packet. Disabled PAWS " 1924 "security.\n")); 1925 pf_print_state(state); 1926 pf_print_flags(tcp_get_flags(th)); 1927 printf("\n"); 1928 } 1929 } 1930 } 1931 1932 /* 1933 * Update PAWS values 1934 */ 1935 if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags & 1936 (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) { 1937 getmicrouptime(&src->scrub->pfss_last); 1938 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) || 1939 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1940 src->scrub->pfss_tsval = tsval; 1941 1942 if (tsecr) { 1943 if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) || 1944 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1945 src->scrub->pfss_tsecr = tsecr; 1946 1947 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 && 1948 (SEQ_LT(tsval, src->scrub->pfss_tsval0) || 1949 src->scrub->pfss_tsval0 == 0)) { 1950 /* tsval0 MUST be the lowest timestamp */ 1951 src->scrub->pfss_tsval0 = tsval; 1952 } 1953 1954 /* Only fully initialized after a TS gets echoed */ 1955 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) 1956 src->scrub->pfss_flags |= PFSS_PAWS; 1957 } 1958 } 1959 1960 /* I have a dream.... TCP segment reassembly.... */ 1961 return (0); 1962 } 1963 1964 int 1965 pf_normalize_mss(struct pf_pdesc *pd) 1966 { 1967 int olen, optsoff; 1968 uint8_t opts[MAX_TCPOPTLEN], *opt; 1969 1970 olen = (pd->hdr.tcp.th_off << 2) - sizeof(struct tcphdr); 1971 optsoff = pd->off + sizeof(struct tcphdr); 1972 if (olen < TCPOLEN_MAXSEG || 1973 !pf_pull_hdr(pd->m, optsoff, opts, olen, NULL, NULL, pd->af)) 1974 return (0); 1975 1976 opt = opts; 1977 while ((opt = pf_find_tcpopt(opt, opts, olen, 1978 TCPOPT_MAXSEG, TCPOLEN_MAXSEG)) != NULL) { 1979 uint16_t mss; 1980 uint8_t *mssp = opt + 2; 1981 memcpy(&mss, mssp, sizeof(mss)); 1982 if (ntohs(mss) > pd->act.max_mss) { 1983 size_t mssoffopts = mssp - opts; 1984 pf_patch_16(pd, &mss, 1985 htons(pd->act.max_mss), PF_ALGNMNT(mssoffopts)); 1986 m_copyback(pd->m, optsoff + mssoffopts, 1987 sizeof(mss), (caddr_t)&mss); 1988 m_copyback(pd->m, pd->off, 1989 sizeof(struct tcphdr), (caddr_t)&pd->hdr.tcp); 1990 } 1991 1992 opt += opt[1]; 1993 } 1994 1995 return (0); 1996 } 1997 1998 int 1999 pf_scan_sctp(struct pf_pdesc *pd) 2000 { 2001 struct sctp_chunkhdr ch = { }; 2002 int chunk_off = sizeof(struct sctphdr); 2003 int chunk_start; 2004 int ret; 2005 2006 while (pd->off + chunk_off < pd->tot_len) { 2007 if (!pf_pull_hdr(pd->m, pd->off + chunk_off, &ch, sizeof(ch), NULL, 2008 NULL, pd->af)) 2009 return (PF_DROP); 2010 2011 /* Length includes the header, this must be at least 4. */ 2012 if (ntohs(ch.chunk_length) < 4) 2013 return (PF_DROP); 2014 2015 chunk_start = chunk_off; 2016 chunk_off += roundup(ntohs(ch.chunk_length), 4); 2017 2018 switch (ch.chunk_type) { 2019 case SCTP_INITIATION: 2020 case SCTP_INITIATION_ACK: { 2021 struct sctp_init_chunk init; 2022 2023 if (!pf_pull_hdr(pd->m, pd->off + chunk_start, &init, 2024 sizeof(init), NULL, NULL, pd->af)) 2025 return (PF_DROP); 2026 2027 /* 2028 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have 2029 * any value except 0." 2030 */ 2031 if (init.init.initiate_tag == 0) 2032 return (PF_DROP); 2033 if (init.init.num_inbound_streams == 0) 2034 return (PF_DROP); 2035 if (init.init.num_outbound_streams == 0) 2036 return (PF_DROP); 2037 if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND) 2038 return (PF_DROP); 2039 2040 /* 2041 * RFC 9260, Section 3.1, INIT chunks MUST have zero 2042 * verification tag. 2043 */ 2044 if (ch.chunk_type == SCTP_INITIATION && 2045 pd->hdr.sctp.v_tag != 0) 2046 return (PF_DROP); 2047 2048 pd->sctp_initiate_tag = init.init.initiate_tag; 2049 2050 if (ch.chunk_type == SCTP_INITIATION) 2051 pd->sctp_flags |= PFDESC_SCTP_INIT; 2052 else 2053 pd->sctp_flags |= PFDESC_SCTP_INIT_ACK; 2054 2055 ret = pf_multihome_scan_init(pd->off + chunk_start, 2056 ntohs(init.ch.chunk_length), pd); 2057 if (ret != PF_PASS) 2058 return (ret); 2059 2060 break; 2061 } 2062 case SCTP_ABORT_ASSOCIATION: 2063 pd->sctp_flags |= PFDESC_SCTP_ABORT; 2064 break; 2065 case SCTP_SHUTDOWN: 2066 case SCTP_SHUTDOWN_ACK: 2067 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN; 2068 break; 2069 case SCTP_SHUTDOWN_COMPLETE: 2070 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE; 2071 break; 2072 case SCTP_COOKIE_ECHO: 2073 pd->sctp_flags |= PFDESC_SCTP_COOKIE; 2074 break; 2075 case SCTP_COOKIE_ACK: 2076 pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK; 2077 break; 2078 case SCTP_DATA: 2079 pd->sctp_flags |= PFDESC_SCTP_DATA; 2080 break; 2081 case SCTP_HEARTBEAT_REQUEST: 2082 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT; 2083 break; 2084 case SCTP_HEARTBEAT_ACK: 2085 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK; 2086 break; 2087 case SCTP_ASCONF: 2088 pd->sctp_flags |= PFDESC_SCTP_ASCONF; 2089 2090 ret = pf_multihome_scan_asconf(pd->off + chunk_start, 2091 ntohs(ch.chunk_length), pd); 2092 if (ret != PF_PASS) 2093 return (ret); 2094 break; 2095 default: 2096 pd->sctp_flags |= PFDESC_SCTP_OTHER; 2097 break; 2098 } 2099 } 2100 2101 /* Validate chunk lengths vs. packet length. */ 2102 if (pd->off + chunk_off != pd->tot_len) 2103 return (PF_DROP); 2104 2105 /* 2106 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only 2107 * one in a packet. 2108 */ 2109 if ((pd->sctp_flags & PFDESC_SCTP_INIT) && 2110 (pd->sctp_flags & ~PFDESC_SCTP_INIT)) 2111 return (PF_DROP); 2112 if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) && 2113 (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK)) 2114 return (PF_DROP); 2115 if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) && 2116 (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE)) 2117 return (PF_DROP); 2118 if ((pd->sctp_flags & PFDESC_SCTP_ABORT) && 2119 (pd->sctp_flags & PFDESC_SCTP_DATA)) { 2120 /* 2121 * RFC4960 3.3.7: DATA chunks MUST NOT be 2122 * bundled with ABORT. 2123 */ 2124 return (PF_DROP); 2125 } 2126 2127 return (PF_PASS); 2128 } 2129 2130 int 2131 pf_normalize_sctp(struct pf_pdesc *pd) 2132 { 2133 struct pf_krule *r, *rm = NULL; 2134 struct sctphdr *sh = &pd->hdr.sctp; 2135 u_short reason; 2136 sa_family_t af = pd->af; 2137 int srs; 2138 2139 PF_RULES_RASSERT(); 2140 2141 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 2142 /* Check if there any scrub rules. Lack of scrub rules means enforced 2143 * packet normalization operation just like in OpenBSD. */ 2144 srs = (r != NULL); 2145 while (r != NULL) { 2146 pf_counter_u64_add(&r->evaluations, 1); 2147 if (pfi_kkif_match(r->kif, pd->kif) == r->ifnot) 2148 r = r->skip[PF_SKIP_IFP]; 2149 else if (r->direction && r->direction != pd->dir) 2150 r = r->skip[PF_SKIP_DIR]; 2151 else if (r->af && r->af != af) 2152 r = r->skip[PF_SKIP_AF]; 2153 else if (r->proto && r->proto != pd->proto) 2154 r = r->skip[PF_SKIP_PROTO]; 2155 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 2156 r->src.neg, pd->kif, M_GETFIB(pd->m))) 2157 r = r->skip[PF_SKIP_SRC_ADDR]; 2158 else if (r->src.port_op && !pf_match_port(r->src.port_op, 2159 r->src.port[0], r->src.port[1], sh->src_port)) 2160 r = r->skip[PF_SKIP_SRC_PORT]; 2161 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 2162 r->dst.neg, NULL, M_GETFIB(pd->m))) 2163 r = r->skip[PF_SKIP_DST_ADDR]; 2164 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 2165 r->dst.port[0], r->dst.port[1], sh->dest_port)) 2166 r = r->skip[PF_SKIP_DST_PORT]; 2167 else { 2168 rm = r; 2169 break; 2170 } 2171 } 2172 2173 if (srs) { 2174 /* With scrub rules present SCTP normalization happens only 2175 * if one of rules has matched and it's not a "no scrub" rule */ 2176 if (rm == NULL || rm->action == PF_NOSCRUB) 2177 return (PF_PASS); 2178 2179 pf_counter_u64_critical_enter(); 2180 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 2181 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 2182 pf_counter_u64_critical_exit(); 2183 } 2184 2185 /* Verify we're a multiple of 4 bytes long */ 2186 if ((pd->tot_len - pd->off - sizeof(struct sctphdr)) % 4) 2187 goto sctp_drop; 2188 2189 /* INIT chunk needs to be the only chunk */ 2190 if (pd->sctp_flags & PFDESC_SCTP_INIT) 2191 if (pd->sctp_flags & ~PFDESC_SCTP_INIT) 2192 goto sctp_drop; 2193 2194 return (PF_PASS); 2195 2196 sctp_drop: 2197 REASON_SET(&reason, PFRES_NORM); 2198 if (rm != NULL && r->log) 2199 PFLOG_PACKET(PF_DROP, reason, r, NULL, NULL, pd, 2200 1, NULL); 2201 2202 return (PF_DROP); 2203 } 2204 2205 #if defined(INET) || defined(INET6) 2206 void 2207 pf_scrub(struct pf_pdesc *pd) 2208 { 2209 2210 struct ip *h = mtod(pd->m, struct ip *); 2211 #ifdef INET6 2212 struct ip6_hdr *h6 = mtod(pd->m, struct ip6_hdr *); 2213 #endif /* INET6 */ 2214 2215 /* Clear IP_DF if no-df was requested */ 2216 if (pd->af == AF_INET && pd->act.flags & PFSTATE_NODF && 2217 h->ip_off & htons(IP_DF)) 2218 { 2219 u_int16_t ip_off = h->ip_off; 2220 2221 h->ip_off &= htons(~IP_DF); 2222 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 2223 } 2224 2225 /* Enforce a minimum ttl, may cause endless packet loops */ 2226 if (pd->af == AF_INET && pd->act.min_ttl && 2227 h->ip_ttl < pd->act.min_ttl) { 2228 u_int16_t ip_ttl = h->ip_ttl; 2229 2230 h->ip_ttl = pd->act.min_ttl; 2231 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0); 2232 } 2233 #ifdef INET6 2234 /* Enforce a minimum ttl, may cause endless packet loops */ 2235 if (pd->af == AF_INET6 && pd->act.min_ttl && 2236 h6->ip6_hlim < pd->act.min_ttl) 2237 h6->ip6_hlim = pd->act.min_ttl; 2238 #endif /* INET6 */ 2239 /* Enforce tos */ 2240 if (pd->act.flags & PFSTATE_SETTOS) { 2241 switch (pd->af) { 2242 case AF_INET: { 2243 u_int16_t ov, nv; 2244 2245 ov = *(u_int16_t *)h; 2246 h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK); 2247 nv = *(u_int16_t *)h; 2248 2249 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0); 2250 break; 2251 } 2252 #ifdef INET6 2253 case AF_INET6: 2254 h6->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK; 2255 h6->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h6)) << 20); 2256 break; 2257 #endif /* INET6 */ 2258 } 2259 } 2260 2261 /* random-id, but not for fragments */ 2262 #ifdef INET 2263 if (pd->af == AF_INET && 2264 pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) { 2265 uint16_t ip_id = h->ip_id; 2266 2267 ip_fillid(h, V_ip_random_id); 2268 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0); 2269 } 2270 #endif /* INET */ 2271 } 2272 #endif /* INET || INET6 */ 2273