1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright 2001 Niels Provos <provos@citi.umich.edu> 5 * Copyright 2011-2018 Alexander Bluhm <bluhm@openbsd.org> 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 27 * 28 * $OpenBSD: pf_norm.c,v 1.114 2009/01/29 14:11:45 henning Exp $ 29 */ 30 31 #include <sys/cdefs.h> 32 #include "opt_inet.h" 33 #include "opt_inet6.h" 34 #include "opt_pf.h" 35 36 #include <sys/param.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/mutex.h> 41 #include <sys/refcount.h> 42 #include <sys/socket.h> 43 44 #include <net/if.h> 45 #include <net/vnet.h> 46 #include <net/pfvar.h> 47 #include <net/if_pflog.h> 48 49 #include <netinet/in.h> 50 #include <netinet/ip.h> 51 #include <netinet/ip_var.h> 52 #include <netinet6/ip6_var.h> 53 #include <netinet6/scope6_var.h> 54 #include <netinet/tcp.h> 55 #include <netinet/tcp_fsm.h> 56 #include <netinet/tcp_seq.h> 57 #include <netinet/sctp_constants.h> 58 #include <netinet/sctp_header.h> 59 60 #ifdef INET6 61 #include <netinet/ip6.h> 62 #endif /* INET6 */ 63 64 struct pf_frent { 65 TAILQ_ENTRY(pf_frent) fr_next; 66 struct mbuf *fe_m; 67 uint16_t fe_hdrlen; /* ipv4 header length with ip options 68 ipv6, extension, fragment header */ 69 uint16_t fe_extoff; /* last extension header offset or 0 */ 70 uint16_t fe_len; /* fragment length */ 71 uint16_t fe_off; /* fragment offset */ 72 uint16_t fe_mff; /* more fragment flag */ 73 }; 74 75 struct pf_fragment_cmp { 76 struct pf_addr frc_src; 77 struct pf_addr frc_dst; 78 uint32_t frc_id; 79 sa_family_t frc_af; 80 uint8_t frc_proto; 81 }; 82 83 struct pf_fragment { 84 struct pf_fragment_cmp fr_key; 85 #define fr_src fr_key.frc_src 86 #define fr_dst fr_key.frc_dst 87 #define fr_id fr_key.frc_id 88 #define fr_af fr_key.frc_af 89 #define fr_proto fr_key.frc_proto 90 91 /* pointers to queue element */ 92 struct pf_frent *fr_firstoff[PF_FRAG_ENTRY_POINTS]; 93 /* count entries between pointers */ 94 uint8_t fr_entries[PF_FRAG_ENTRY_POINTS]; 95 RB_ENTRY(pf_fragment) fr_entry; 96 TAILQ_ENTRY(pf_fragment) frag_next; 97 uint32_t fr_timeout; 98 uint16_t fr_maxlen; /* maximum length of single fragment */ 99 u_int16_t fr_holes; /* number of holes in the queue */ 100 TAILQ_HEAD(pf_fragq, pf_frent) fr_queue; 101 }; 102 103 struct pf_fragment_tag { 104 uint16_t ft_hdrlen; /* header length of reassembled pkt */ 105 uint16_t ft_extoff; /* last extension header offset or 0 */ 106 uint16_t ft_maxlen; /* maximum fragment payload length */ 107 uint32_t ft_id; /* fragment id */ 108 }; 109 110 VNET_DEFINE_STATIC(struct mtx, pf_frag_mtx); 111 #define V_pf_frag_mtx VNET(pf_frag_mtx) 112 #define PF_FRAG_LOCK() mtx_lock(&V_pf_frag_mtx) 113 #define PF_FRAG_UNLOCK() mtx_unlock(&V_pf_frag_mtx) 114 #define PF_FRAG_ASSERT() mtx_assert(&V_pf_frag_mtx, MA_OWNED) 115 116 VNET_DEFINE(uma_zone_t, pf_state_scrub_z); /* XXX: shared with pfsync */ 117 118 VNET_DEFINE_STATIC(uma_zone_t, pf_frent_z); 119 #define V_pf_frent_z VNET(pf_frent_z) 120 VNET_DEFINE_STATIC(uma_zone_t, pf_frag_z); 121 #define V_pf_frag_z VNET(pf_frag_z) 122 123 TAILQ_HEAD(pf_fragqueue, pf_fragment); 124 TAILQ_HEAD(pf_cachequeue, pf_fragment); 125 VNET_DEFINE_STATIC(struct pf_fragqueue, pf_fragqueue); 126 #define V_pf_fragqueue VNET(pf_fragqueue) 127 RB_HEAD(pf_frag_tree, pf_fragment); 128 VNET_DEFINE_STATIC(struct pf_frag_tree, pf_frag_tree); 129 #define V_pf_frag_tree VNET(pf_frag_tree) 130 static int pf_frag_compare(struct pf_fragment *, 131 struct pf_fragment *); 132 static RB_PROTOTYPE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 133 static RB_GENERATE(pf_frag_tree, pf_fragment, fr_entry, pf_frag_compare); 134 135 static void pf_flush_fragments(void); 136 static void pf_free_fragment(struct pf_fragment *); 137 static void pf_remove_fragment(struct pf_fragment *); 138 139 static struct pf_frent *pf_create_fragment(u_short *); 140 static int pf_frent_holes(struct pf_frent *frent); 141 static struct pf_fragment *pf_find_fragment(struct pf_fragment_cmp *key, 142 struct pf_frag_tree *tree); 143 static inline int pf_frent_index(struct pf_frent *); 144 static int pf_frent_insert(struct pf_fragment *, 145 struct pf_frent *, struct pf_frent *); 146 void pf_frent_remove(struct pf_fragment *, 147 struct pf_frent *); 148 struct pf_frent *pf_frent_previous(struct pf_fragment *, 149 struct pf_frent *); 150 static struct pf_fragment *pf_fillup_fragment(struct pf_fragment_cmp *, 151 struct pf_frent *, u_short *); 152 static struct mbuf *pf_join_fragment(struct pf_fragment *); 153 #ifdef INET 154 static int pf_reassemble(struct mbuf **, struct ip *, int, u_short *); 155 #endif /* INET */ 156 #ifdef INET6 157 static int pf_reassemble6(struct mbuf **, struct ip6_hdr *, 158 struct ip6_frag *, uint16_t, uint16_t, u_short *); 159 #endif /* INET6 */ 160 161 #define DPFPRINTF(x) do { \ 162 if (V_pf_status.debug >= PF_DEBUG_MISC) { \ 163 printf("%s: ", __func__); \ 164 printf x ; \ 165 } \ 166 } while(0) 167 168 #ifdef INET 169 static void 170 pf_ip2key(struct ip *ip, int dir, struct pf_fragment_cmp *key) 171 { 172 173 key->frc_src.v4 = ip->ip_src; 174 key->frc_dst.v4 = ip->ip_dst; 175 key->frc_af = AF_INET; 176 key->frc_proto = ip->ip_p; 177 key->frc_id = ip->ip_id; 178 } 179 #endif /* INET */ 180 181 void 182 pf_normalize_init(void) 183 { 184 185 V_pf_frag_z = uma_zcreate("pf frags", sizeof(struct pf_fragment), 186 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 187 V_pf_frent_z = uma_zcreate("pf frag entries", sizeof(struct pf_frent), 188 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 189 V_pf_state_scrub_z = uma_zcreate("pf state scrubs", 190 sizeof(struct pf_state_scrub), NULL, NULL, NULL, NULL, 191 UMA_ALIGN_PTR, 0); 192 193 mtx_init(&V_pf_frag_mtx, "pf fragments", NULL, MTX_DEF); 194 195 V_pf_limits[PF_LIMIT_FRAGS].zone = V_pf_frent_z; 196 V_pf_limits[PF_LIMIT_FRAGS].limit = PFFRAG_FRENT_HIWAT; 197 uma_zone_set_max(V_pf_frent_z, PFFRAG_FRENT_HIWAT); 198 uma_zone_set_warning(V_pf_frent_z, "PF frag entries limit reached"); 199 200 TAILQ_INIT(&V_pf_fragqueue); 201 } 202 203 void 204 pf_normalize_cleanup(void) 205 { 206 207 uma_zdestroy(V_pf_state_scrub_z); 208 uma_zdestroy(V_pf_frent_z); 209 uma_zdestroy(V_pf_frag_z); 210 211 mtx_destroy(&V_pf_frag_mtx); 212 } 213 214 static int 215 pf_frag_compare(struct pf_fragment *a, struct pf_fragment *b) 216 { 217 int diff; 218 219 if ((diff = a->fr_id - b->fr_id) != 0) 220 return (diff); 221 if ((diff = a->fr_proto - b->fr_proto) != 0) 222 return (diff); 223 if ((diff = a->fr_af - b->fr_af) != 0) 224 return (diff); 225 if ((diff = pf_addr_cmp(&a->fr_src, &b->fr_src, a->fr_af)) != 0) 226 return (diff); 227 if ((diff = pf_addr_cmp(&a->fr_dst, &b->fr_dst, a->fr_af)) != 0) 228 return (diff); 229 return (0); 230 } 231 232 void 233 pf_purge_expired_fragments(void) 234 { 235 u_int32_t expire = time_uptime - 236 V_pf_default_rule.timeout[PFTM_FRAG]; 237 238 pf_purge_fragments(expire); 239 } 240 241 void 242 pf_purge_fragments(uint32_t expire) 243 { 244 struct pf_fragment *frag; 245 246 PF_FRAG_LOCK(); 247 while ((frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue)) != NULL) { 248 if (frag->fr_timeout > expire) 249 break; 250 251 DPFPRINTF(("expiring %d(%p)\n", frag->fr_id, frag)); 252 pf_free_fragment(frag); 253 } 254 255 PF_FRAG_UNLOCK(); 256 } 257 258 /* 259 * Try to flush old fragments to make space for new ones 260 */ 261 static void 262 pf_flush_fragments(void) 263 { 264 struct pf_fragment *frag; 265 int goal; 266 267 PF_FRAG_ASSERT(); 268 269 goal = uma_zone_get_cur(V_pf_frent_z) * 9 / 10; 270 DPFPRINTF(("trying to free %d frag entriess\n", goal)); 271 while (goal < uma_zone_get_cur(V_pf_frent_z)) { 272 frag = TAILQ_LAST(&V_pf_fragqueue, pf_fragqueue); 273 if (frag) 274 pf_free_fragment(frag); 275 else 276 break; 277 } 278 } 279 280 /* Frees the fragments and all associated entries */ 281 static void 282 pf_free_fragment(struct pf_fragment *frag) 283 { 284 struct pf_frent *frent; 285 286 PF_FRAG_ASSERT(); 287 288 /* Free all fragments */ 289 for (frent = TAILQ_FIRST(&frag->fr_queue); frent; 290 frent = TAILQ_FIRST(&frag->fr_queue)) { 291 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 292 293 m_freem(frent->fe_m); 294 uma_zfree(V_pf_frent_z, frent); 295 } 296 297 pf_remove_fragment(frag); 298 } 299 300 static struct pf_fragment * 301 pf_find_fragment(struct pf_fragment_cmp *key, struct pf_frag_tree *tree) 302 { 303 struct pf_fragment *frag; 304 305 PF_FRAG_ASSERT(); 306 307 frag = RB_FIND(pf_frag_tree, tree, (struct pf_fragment *)key); 308 if (frag != NULL) { 309 /* XXX Are we sure we want to update the timeout? */ 310 frag->fr_timeout = time_uptime; 311 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 312 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 313 } 314 315 return (frag); 316 } 317 318 /* Removes a fragment from the fragment queue and frees the fragment */ 319 static void 320 pf_remove_fragment(struct pf_fragment *frag) 321 { 322 323 PF_FRAG_ASSERT(); 324 KASSERT(frag, ("frag != NULL")); 325 326 RB_REMOVE(pf_frag_tree, &V_pf_frag_tree, frag); 327 TAILQ_REMOVE(&V_pf_fragqueue, frag, frag_next); 328 uma_zfree(V_pf_frag_z, frag); 329 } 330 331 static struct pf_frent * 332 pf_create_fragment(u_short *reason) 333 { 334 struct pf_frent *frent; 335 336 PF_FRAG_ASSERT(); 337 338 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 339 if (frent == NULL) { 340 pf_flush_fragments(); 341 frent = uma_zalloc(V_pf_frent_z, M_NOWAIT); 342 if (frent == NULL) { 343 REASON_SET(reason, PFRES_MEMORY); 344 return (NULL); 345 } 346 } 347 348 return (frent); 349 } 350 351 /* 352 * Calculate the additional holes that were created in the fragment 353 * queue by inserting this fragment. A fragment in the middle 354 * creates one more hole by splitting. For each connected side, 355 * it loses one hole. 356 * Fragment entry must be in the queue when calling this function. 357 */ 358 static int 359 pf_frent_holes(struct pf_frent *frent) 360 { 361 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 362 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 363 int holes = 1; 364 365 if (prev == NULL) { 366 if (frent->fe_off == 0) 367 holes--; 368 } else { 369 KASSERT(frent->fe_off != 0, ("frent->fe_off != 0")); 370 if (frent->fe_off == prev->fe_off + prev->fe_len) 371 holes--; 372 } 373 if (next == NULL) { 374 if (!frent->fe_mff) 375 holes--; 376 } else { 377 KASSERT(frent->fe_mff, ("frent->fe_mff")); 378 if (next->fe_off == frent->fe_off + frent->fe_len) 379 holes--; 380 } 381 return holes; 382 } 383 384 static inline int 385 pf_frent_index(struct pf_frent *frent) 386 { 387 /* 388 * We have an array of 16 entry points to the queue. A full size 389 * 65535 octet IP packet can have 8192 fragments. So the queue 390 * traversal length is at most 512 and at most 16 entry points are 391 * checked. We need 128 additional bytes on a 64 bit architecture. 392 */ 393 CTASSERT(((u_int16_t)0xffff &~ 7) / (0x10000 / PF_FRAG_ENTRY_POINTS) == 394 16 - 1); 395 CTASSERT(((u_int16_t)0xffff >> 3) / PF_FRAG_ENTRY_POINTS == 512 - 1); 396 397 return frent->fe_off / (0x10000 / PF_FRAG_ENTRY_POINTS); 398 } 399 400 static int 401 pf_frent_insert(struct pf_fragment *frag, struct pf_frent *frent, 402 struct pf_frent *prev) 403 { 404 int index; 405 406 CTASSERT(PF_FRAG_ENTRY_LIMIT <= 0xff); 407 408 /* 409 * A packet has at most 65536 octets. With 16 entry points, each one 410 * spawns 4096 octets. We limit these to 64 fragments each, which 411 * means on average every fragment must have at least 64 octets. 412 */ 413 index = pf_frent_index(frent); 414 if (frag->fr_entries[index] >= PF_FRAG_ENTRY_LIMIT) 415 return ENOBUFS; 416 frag->fr_entries[index]++; 417 418 if (prev == NULL) { 419 TAILQ_INSERT_HEAD(&frag->fr_queue, frent, fr_next); 420 } else { 421 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 422 ("overlapping fragment")); 423 TAILQ_INSERT_AFTER(&frag->fr_queue, prev, frent, fr_next); 424 } 425 426 if (frag->fr_firstoff[index] == NULL) { 427 KASSERT(prev == NULL || pf_frent_index(prev) < index, 428 ("prev == NULL || pf_frent_index(pref) < index")); 429 frag->fr_firstoff[index] = frent; 430 } else { 431 if (frent->fe_off < frag->fr_firstoff[index]->fe_off) { 432 KASSERT(prev == NULL || pf_frent_index(prev) < index, 433 ("prev == NULL || pf_frent_index(pref) < index")); 434 frag->fr_firstoff[index] = frent; 435 } else { 436 KASSERT(prev != NULL, ("prev != NULL")); 437 KASSERT(pf_frent_index(prev) == index, 438 ("pf_frent_index(prev) == index")); 439 } 440 } 441 442 frag->fr_holes += pf_frent_holes(frent); 443 444 return 0; 445 } 446 447 void 448 pf_frent_remove(struct pf_fragment *frag, struct pf_frent *frent) 449 { 450 #ifdef INVARIANTS 451 struct pf_frent *prev = TAILQ_PREV(frent, pf_fragq, fr_next); 452 #endif 453 struct pf_frent *next = TAILQ_NEXT(frent, fr_next); 454 int index; 455 456 frag->fr_holes -= pf_frent_holes(frent); 457 458 index = pf_frent_index(frent); 459 KASSERT(frag->fr_firstoff[index] != NULL, ("frent not found")); 460 if (frag->fr_firstoff[index]->fe_off == frent->fe_off) { 461 if (next == NULL) { 462 frag->fr_firstoff[index] = NULL; 463 } else { 464 KASSERT(frent->fe_off + frent->fe_len <= next->fe_off, 465 ("overlapping fragment")); 466 if (pf_frent_index(next) == index) { 467 frag->fr_firstoff[index] = next; 468 } else { 469 frag->fr_firstoff[index] = NULL; 470 } 471 } 472 } else { 473 KASSERT(frag->fr_firstoff[index]->fe_off < frent->fe_off, 474 ("frag->fr_firstoff[index]->fe_off < frent->fe_off")); 475 KASSERT(prev != NULL, ("prev != NULL")); 476 KASSERT(prev->fe_off + prev->fe_len <= frent->fe_off, 477 ("overlapping fragment")); 478 KASSERT(pf_frent_index(prev) == index, 479 ("pf_frent_index(prev) == index")); 480 } 481 482 TAILQ_REMOVE(&frag->fr_queue, frent, fr_next); 483 484 KASSERT(frag->fr_entries[index] > 0, ("No fragments remaining")); 485 frag->fr_entries[index]--; 486 } 487 488 struct pf_frent * 489 pf_frent_previous(struct pf_fragment *frag, struct pf_frent *frent) 490 { 491 struct pf_frent *prev, *next; 492 int index; 493 494 /* 495 * If there are no fragments after frag, take the final one. Assume 496 * that the global queue is not empty. 497 */ 498 prev = TAILQ_LAST(&frag->fr_queue, pf_fragq); 499 KASSERT(prev != NULL, ("prev != NULL")); 500 if (prev->fe_off <= frent->fe_off) 501 return prev; 502 /* 503 * We want to find a fragment entry that is before frag, but still 504 * close to it. Find the first fragment entry that is in the same 505 * entry point or in the first entry point after that. As we have 506 * already checked that there are entries behind frag, this will 507 * succeed. 508 */ 509 for (index = pf_frent_index(frent); index < PF_FRAG_ENTRY_POINTS; 510 index++) { 511 prev = frag->fr_firstoff[index]; 512 if (prev != NULL) 513 break; 514 } 515 KASSERT(prev != NULL, ("prev != NULL")); 516 /* 517 * In prev we may have a fragment from the same entry point that is 518 * before frent, or one that is just one position behind frent. 519 * In the latter case, we go back one step and have the predecessor. 520 * There may be none if the new fragment will be the first one. 521 */ 522 if (prev->fe_off > frent->fe_off) { 523 prev = TAILQ_PREV(prev, pf_fragq, fr_next); 524 if (prev == NULL) 525 return NULL; 526 KASSERT(prev->fe_off <= frent->fe_off, 527 ("prev->fe_off <= frent->fe_off")); 528 return prev; 529 } 530 /* 531 * In prev is the first fragment of the entry point. The offset 532 * of frag is behind it. Find the closest previous fragment. 533 */ 534 for (next = TAILQ_NEXT(prev, fr_next); next != NULL; 535 next = TAILQ_NEXT(next, fr_next)) { 536 if (next->fe_off > frent->fe_off) 537 break; 538 prev = next; 539 } 540 return prev; 541 } 542 543 static struct pf_fragment * 544 pf_fillup_fragment(struct pf_fragment_cmp *key, struct pf_frent *frent, 545 u_short *reason) 546 { 547 struct pf_frent *after, *next, *prev; 548 struct pf_fragment *frag; 549 uint16_t total; 550 int old_index, new_index; 551 552 PF_FRAG_ASSERT(); 553 554 /* No empty fragments. */ 555 if (frent->fe_len == 0) { 556 DPFPRINTF(("bad fragment: len 0\n")); 557 goto bad_fragment; 558 } 559 560 /* All fragments are 8 byte aligned. */ 561 if (frent->fe_mff && (frent->fe_len & 0x7)) { 562 DPFPRINTF(("bad fragment: mff and len %d\n", frent->fe_len)); 563 goto bad_fragment; 564 } 565 566 /* Respect maximum length, IP_MAXPACKET == IPV6_MAXPACKET. */ 567 if (frent->fe_off + frent->fe_len > IP_MAXPACKET) { 568 DPFPRINTF(("bad fragment: max packet %d\n", 569 frent->fe_off + frent->fe_len)); 570 goto bad_fragment; 571 } 572 573 DPFPRINTF((key->frc_af == AF_INET ? 574 "reass frag %d @ %d-%d\n" : "reass frag %#08x @ %d-%d\n", 575 key->frc_id, frent->fe_off, frent->fe_off + frent->fe_len)); 576 577 /* Fully buffer all of the fragments in this fragment queue. */ 578 frag = pf_find_fragment(key, &V_pf_frag_tree); 579 580 /* Create a new reassembly queue for this packet. */ 581 if (frag == NULL) { 582 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 583 if (frag == NULL) { 584 pf_flush_fragments(); 585 frag = uma_zalloc(V_pf_frag_z, M_NOWAIT); 586 if (frag == NULL) { 587 REASON_SET(reason, PFRES_MEMORY); 588 goto drop_fragment; 589 } 590 } 591 592 *(struct pf_fragment_cmp *)frag = *key; 593 memset(frag->fr_firstoff, 0, sizeof(frag->fr_firstoff)); 594 memset(frag->fr_entries, 0, sizeof(frag->fr_entries)); 595 frag->fr_timeout = time_uptime; 596 frag->fr_maxlen = frent->fe_len; 597 frag->fr_holes = 1; 598 TAILQ_INIT(&frag->fr_queue); 599 600 RB_INSERT(pf_frag_tree, &V_pf_frag_tree, frag); 601 TAILQ_INSERT_HEAD(&V_pf_fragqueue, frag, frag_next); 602 603 /* We do not have a previous fragment, cannot fail. */ 604 pf_frent_insert(frag, frent, NULL); 605 606 return (frag); 607 } 608 609 KASSERT(!TAILQ_EMPTY(&frag->fr_queue), ("!TAILQ_EMPTY()->fr_queue")); 610 611 /* Remember maximum fragment len for refragmentation. */ 612 if (frent->fe_len > frag->fr_maxlen) 613 frag->fr_maxlen = frent->fe_len; 614 615 /* Maximum data we have seen already. */ 616 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 617 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 618 619 /* Non terminal fragments must have more fragments flag. */ 620 if (frent->fe_off + frent->fe_len < total && !frent->fe_mff) 621 goto bad_fragment; 622 623 /* Check if we saw the last fragment already. */ 624 if (!TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_mff) { 625 if (frent->fe_off + frent->fe_len > total || 626 (frent->fe_off + frent->fe_len == total && frent->fe_mff)) 627 goto bad_fragment; 628 } else { 629 if (frent->fe_off + frent->fe_len == total && !frent->fe_mff) 630 goto bad_fragment; 631 } 632 633 /* Find neighbors for newly inserted fragment */ 634 prev = pf_frent_previous(frag, frent); 635 if (prev == NULL) { 636 after = TAILQ_FIRST(&frag->fr_queue); 637 KASSERT(after != NULL, ("after != NULL")); 638 } else { 639 after = TAILQ_NEXT(prev, fr_next); 640 } 641 642 if (prev != NULL && prev->fe_off + prev->fe_len > frent->fe_off) { 643 uint16_t precut; 644 645 precut = prev->fe_off + prev->fe_len - frent->fe_off; 646 if (precut >= frent->fe_len) 647 goto bad_fragment; 648 DPFPRINTF(("overlap -%d\n", precut)); 649 m_adj(frent->fe_m, precut); 650 frent->fe_off += precut; 651 frent->fe_len -= precut; 652 } 653 654 for (; after != NULL && frent->fe_off + frent->fe_len > after->fe_off; 655 after = next) { 656 uint16_t aftercut; 657 658 aftercut = frent->fe_off + frent->fe_len - after->fe_off; 659 DPFPRINTF(("adjust overlap %d\n", aftercut)); 660 if (aftercut < after->fe_len) { 661 m_adj(after->fe_m, aftercut); 662 old_index = pf_frent_index(after); 663 after->fe_off += aftercut; 664 after->fe_len -= aftercut; 665 new_index = pf_frent_index(after); 666 if (old_index != new_index) { 667 DPFPRINTF(("frag index %d, new %d", 668 old_index, new_index)); 669 /* Fragment switched queue as fe_off changed */ 670 after->fe_off -= aftercut; 671 after->fe_len += aftercut; 672 /* Remove restored fragment from old queue */ 673 pf_frent_remove(frag, after); 674 after->fe_off += aftercut; 675 after->fe_len -= aftercut; 676 /* Insert into correct queue */ 677 if (pf_frent_insert(frag, after, prev)) { 678 DPFPRINTF( 679 ("fragment requeue limit exceeded")); 680 m_freem(after->fe_m); 681 uma_zfree(V_pf_frent_z, after); 682 /* There is not way to recover */ 683 goto bad_fragment; 684 } 685 } 686 break; 687 } 688 689 /* This fragment is completely overlapped, lose it. */ 690 next = TAILQ_NEXT(after, fr_next); 691 pf_frent_remove(frag, after); 692 m_freem(after->fe_m); 693 uma_zfree(V_pf_frent_z, after); 694 } 695 696 /* If part of the queue gets too long, there is not way to recover. */ 697 if (pf_frent_insert(frag, frent, prev)) { 698 DPFPRINTF(("fragment queue limit exceeded\n")); 699 goto bad_fragment; 700 } 701 702 return (frag); 703 704 bad_fragment: 705 REASON_SET(reason, PFRES_FRAG); 706 drop_fragment: 707 uma_zfree(V_pf_frent_z, frent); 708 return (NULL); 709 } 710 711 static struct mbuf * 712 pf_join_fragment(struct pf_fragment *frag) 713 { 714 struct mbuf *m, *m2; 715 struct pf_frent *frent, *next; 716 717 frent = TAILQ_FIRST(&frag->fr_queue); 718 next = TAILQ_NEXT(frent, fr_next); 719 720 m = frent->fe_m; 721 m_adj(m, (frent->fe_hdrlen + frent->fe_len) - m->m_pkthdr.len); 722 uma_zfree(V_pf_frent_z, frent); 723 for (frent = next; frent != NULL; frent = next) { 724 next = TAILQ_NEXT(frent, fr_next); 725 726 m2 = frent->fe_m; 727 /* Strip off ip header. */ 728 m_adj(m2, frent->fe_hdrlen); 729 /* Strip off any trailing bytes. */ 730 m_adj(m2, frent->fe_len - m2->m_pkthdr.len); 731 732 uma_zfree(V_pf_frent_z, frent); 733 m_cat(m, m2); 734 } 735 736 /* Remove from fragment queue. */ 737 pf_remove_fragment(frag); 738 739 return (m); 740 } 741 742 #ifdef INET 743 static int 744 pf_reassemble(struct mbuf **m0, struct ip *ip, int dir, u_short *reason) 745 { 746 struct mbuf *m = *m0; 747 struct pf_frent *frent; 748 struct pf_fragment *frag; 749 struct pf_fragment_cmp key; 750 uint16_t total, hdrlen; 751 752 /* Get an entry for the fragment queue */ 753 if ((frent = pf_create_fragment(reason)) == NULL) 754 return (PF_DROP); 755 756 frent->fe_m = m; 757 frent->fe_hdrlen = ip->ip_hl << 2; 758 frent->fe_extoff = 0; 759 frent->fe_len = ntohs(ip->ip_len) - (ip->ip_hl << 2); 760 frent->fe_off = (ntohs(ip->ip_off) & IP_OFFMASK) << 3; 761 frent->fe_mff = ntohs(ip->ip_off) & IP_MF; 762 763 pf_ip2key(ip, dir, &key); 764 765 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) 766 return (PF_DROP); 767 768 /* The mbuf is part of the fragment entry, no direct free or access */ 769 m = *m0 = NULL; 770 771 if (frag->fr_holes) { 772 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, frag->fr_holes)); 773 return (PF_PASS); /* drop because *m0 is NULL, no error */ 774 } 775 776 /* We have all the data */ 777 frent = TAILQ_FIRST(&frag->fr_queue); 778 KASSERT(frent != NULL, ("frent != NULL")); 779 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 780 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 781 hdrlen = frent->fe_hdrlen; 782 783 m = *m0 = pf_join_fragment(frag); 784 frag = NULL; 785 786 if (m->m_flags & M_PKTHDR) { 787 int plen = 0; 788 for (m = *m0; m; m = m->m_next) 789 plen += m->m_len; 790 m = *m0; 791 m->m_pkthdr.len = plen; 792 } 793 794 ip = mtod(m, struct ip *); 795 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_len, 796 htons(hdrlen + total), 0); 797 ip->ip_len = htons(hdrlen + total); 798 ip->ip_sum = pf_cksum_fixup(ip->ip_sum, ip->ip_off, 799 ip->ip_off & ~(IP_MF|IP_OFFMASK), 0); 800 ip->ip_off &= ~(IP_MF|IP_OFFMASK); 801 802 if (hdrlen + total > IP_MAXPACKET) { 803 DPFPRINTF(("drop: too big: %d\n", total)); 804 ip->ip_len = 0; 805 REASON_SET(reason, PFRES_SHORT); 806 /* PF_DROP requires a valid mbuf *m0 in pf_test() */ 807 return (PF_DROP); 808 } 809 810 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip->ip_len))); 811 return (PF_PASS); 812 } 813 #endif /* INET */ 814 815 #ifdef INET6 816 static int 817 pf_reassemble6(struct mbuf **m0, struct ip6_hdr *ip6, struct ip6_frag *fraghdr, 818 uint16_t hdrlen, uint16_t extoff, u_short *reason) 819 { 820 struct mbuf *m = *m0; 821 struct pf_frent *frent; 822 struct pf_fragment *frag; 823 struct pf_fragment_cmp key; 824 struct m_tag *mtag; 825 struct pf_fragment_tag *ftag; 826 int off; 827 uint32_t frag_id; 828 uint16_t total, maxlen; 829 uint8_t proto; 830 831 PF_FRAG_LOCK(); 832 833 /* Get an entry for the fragment queue. */ 834 if ((frent = pf_create_fragment(reason)) == NULL) { 835 PF_FRAG_UNLOCK(); 836 return (PF_DROP); 837 } 838 839 frent->fe_m = m; 840 frent->fe_hdrlen = hdrlen; 841 frent->fe_extoff = extoff; 842 frent->fe_len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen) - hdrlen; 843 frent->fe_off = ntohs(fraghdr->ip6f_offlg & IP6F_OFF_MASK); 844 frent->fe_mff = fraghdr->ip6f_offlg & IP6F_MORE_FRAG; 845 846 key.frc_src.v6 = ip6->ip6_src; 847 key.frc_dst.v6 = ip6->ip6_dst; 848 key.frc_af = AF_INET6; 849 /* Only the first fragment's protocol is relevant. */ 850 key.frc_proto = 0; 851 key.frc_id = fraghdr->ip6f_ident; 852 853 if ((frag = pf_fillup_fragment(&key, frent, reason)) == NULL) { 854 PF_FRAG_UNLOCK(); 855 return (PF_DROP); 856 } 857 858 /* The mbuf is part of the fragment entry, no direct free or access. */ 859 m = *m0 = NULL; 860 861 if (frag->fr_holes) { 862 DPFPRINTF(("frag %d, holes %d\n", frag->fr_id, 863 frag->fr_holes)); 864 PF_FRAG_UNLOCK(); 865 return (PF_PASS); /* Drop because *m0 is NULL, no error. */ 866 } 867 868 /* We have all the data. */ 869 frent = TAILQ_FIRST(&frag->fr_queue); 870 KASSERT(frent != NULL, ("frent != NULL")); 871 extoff = frent->fe_extoff; 872 maxlen = frag->fr_maxlen; 873 frag_id = frag->fr_id; 874 total = TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_off + 875 TAILQ_LAST(&frag->fr_queue, pf_fragq)->fe_len; 876 hdrlen = frent->fe_hdrlen - sizeof(struct ip6_frag); 877 878 m = *m0 = pf_join_fragment(frag); 879 frag = NULL; 880 881 PF_FRAG_UNLOCK(); 882 883 /* Take protocol from first fragment header. */ 884 m = m_getptr(m, hdrlen + offsetof(struct ip6_frag, ip6f_nxt), &off); 885 KASSERT(m, ("%s: short mbuf chain", __func__)); 886 proto = *(mtod(m, uint8_t *) + off); 887 m = *m0; 888 889 /* Delete frag6 header */ 890 if (ip6_deletefraghdr(m, hdrlen, M_NOWAIT) != 0) 891 goto fail; 892 893 if (m->m_flags & M_PKTHDR) { 894 int plen = 0; 895 for (m = *m0; m; m = m->m_next) 896 plen += m->m_len; 897 m = *m0; 898 m->m_pkthdr.len = plen; 899 } 900 901 if ((mtag = m_tag_get(PACKET_TAG_PF_REASSEMBLED, 902 sizeof(struct pf_fragment_tag), M_NOWAIT)) == NULL) 903 goto fail; 904 ftag = (struct pf_fragment_tag *)(mtag + 1); 905 ftag->ft_hdrlen = hdrlen; 906 ftag->ft_extoff = extoff; 907 ftag->ft_maxlen = maxlen; 908 ftag->ft_id = frag_id; 909 m_tag_prepend(m, mtag); 910 911 ip6 = mtod(m, struct ip6_hdr *); 912 ip6->ip6_plen = htons(hdrlen - sizeof(struct ip6_hdr) + total); 913 if (extoff) { 914 /* Write protocol into next field of last extension header. */ 915 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 916 &off); 917 KASSERT(m, ("%s: short mbuf chain", __func__)); 918 *(mtod(m, char *) + off) = proto; 919 m = *m0; 920 } else 921 ip6->ip6_nxt = proto; 922 923 if (hdrlen - sizeof(struct ip6_hdr) + total > IPV6_MAXPACKET) { 924 DPFPRINTF(("drop: too big: %d\n", total)); 925 ip6->ip6_plen = 0; 926 REASON_SET(reason, PFRES_SHORT); 927 /* PF_DROP requires a valid mbuf *m0 in pf_test6(). */ 928 return (PF_DROP); 929 } 930 931 DPFPRINTF(("complete: %p(%d)\n", m, ntohs(ip6->ip6_plen))); 932 return (PF_PASS); 933 934 fail: 935 REASON_SET(reason, PFRES_MEMORY); 936 /* PF_DROP requires a valid mbuf *m0 in pf_test6(), will free later. */ 937 return (PF_DROP); 938 } 939 #endif /* INET6 */ 940 941 #ifdef INET6 942 int 943 pf_refragment6(struct ifnet *ifp, struct mbuf **m0, struct m_tag *mtag, 944 bool forward) 945 { 946 struct mbuf *m = *m0, *t; 947 struct ip6_hdr *hdr; 948 struct pf_fragment_tag *ftag = (struct pf_fragment_tag *)(mtag + 1); 949 struct pf_pdesc pd; 950 uint32_t frag_id; 951 uint16_t hdrlen, extoff, maxlen; 952 uint8_t proto; 953 int error, action; 954 955 hdrlen = ftag->ft_hdrlen; 956 extoff = ftag->ft_extoff; 957 maxlen = ftag->ft_maxlen; 958 frag_id = ftag->ft_id; 959 m_tag_delete(m, mtag); 960 mtag = NULL; 961 ftag = NULL; 962 963 if (extoff) { 964 int off; 965 966 /* Use protocol from next field of last extension header */ 967 m = m_getptr(m, extoff + offsetof(struct ip6_ext, ip6e_nxt), 968 &off); 969 KASSERT((m != NULL), ("pf_refragment6: short mbuf chain")); 970 proto = *(mtod(m, uint8_t *) + off); 971 *(mtod(m, char *) + off) = IPPROTO_FRAGMENT; 972 m = *m0; 973 } else { 974 hdr = mtod(m, struct ip6_hdr *); 975 proto = hdr->ip6_nxt; 976 hdr->ip6_nxt = IPPROTO_FRAGMENT; 977 } 978 979 /* In case of link-local traffic we'll need a scope set. */ 980 hdr = mtod(m, struct ip6_hdr *); 981 982 in6_setscope(&hdr->ip6_src, ifp, NULL); 983 in6_setscope(&hdr->ip6_dst, ifp, NULL); 984 985 /* The MTU must be a multiple of 8 bytes, or we risk doing the 986 * fragmentation wrong. */ 987 maxlen = maxlen & ~7; 988 989 /* 990 * Maxlen may be less than 8 if there was only a single 991 * fragment. As it was fragmented before, add a fragment 992 * header also for a single fragment. If total or maxlen 993 * is less than 8, ip6_fragment() will return EMSGSIZE and 994 * we drop the packet. 995 */ 996 error = ip6_fragment(ifp, m, hdrlen, proto, maxlen, frag_id); 997 m = (*m0)->m_nextpkt; 998 (*m0)->m_nextpkt = NULL; 999 if (error == 0) { 1000 /* The first mbuf contains the unfragmented packet. */ 1001 m_freem(*m0); 1002 *m0 = NULL; 1003 action = PF_PASS; 1004 } else { 1005 /* Drop expects an mbuf to free. */ 1006 DPFPRINTF(("refragment error %d\n", error)); 1007 action = PF_DROP; 1008 } 1009 for (; m; m = t) { 1010 t = m->m_nextpkt; 1011 m->m_nextpkt = NULL; 1012 m->m_flags |= M_SKIP_FIREWALL; 1013 memset(&pd, 0, sizeof(pd)); 1014 pd.pf_mtag = pf_find_mtag(m); 1015 if (error == 0) 1016 if (forward) { 1017 MPASS(m->m_pkthdr.rcvif != NULL); 1018 ip6_forward(m, 0); 1019 } else { 1020 (void)ip6_output(m, NULL, NULL, 0, NULL, NULL, 1021 NULL); 1022 } 1023 else 1024 m_freem(m); 1025 } 1026 1027 return (action); 1028 } 1029 #endif /* INET6 */ 1030 1031 #ifdef INET 1032 int 1033 pf_normalize_ip(struct mbuf **m0, struct pfi_kkif *kif, u_short *reason, 1034 struct pf_pdesc *pd) 1035 { 1036 struct mbuf *m = *m0; 1037 struct pf_krule *r; 1038 struct ip *h = mtod(m, struct ip *); 1039 int mff = (ntohs(h->ip_off) & IP_MF); 1040 int hlen = h->ip_hl << 2; 1041 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 1042 u_int16_t max; 1043 int ip_len; 1044 int tag = -1; 1045 int verdict; 1046 bool scrub_compat; 1047 1048 PF_RULES_RASSERT(); 1049 1050 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1051 /* 1052 * Check if there are any scrub rules, matching or not. 1053 * Lack of scrub rules means: 1054 * - enforced packet normalization operation just like in OpenBSD 1055 * - fragment reassembly depends on V_pf_status.reass 1056 * With scrub rules: 1057 * - packet normalization is performed if there is a matching scrub rule 1058 * - fragment reassembly is performed if the matching rule has no 1059 * PFRULE_FRAGMENT_NOREASS flag 1060 */ 1061 scrub_compat = (r != NULL); 1062 while (r != NULL) { 1063 pf_counter_u64_add(&r->evaluations, 1); 1064 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1065 r = r->skip[PF_SKIP_IFP].ptr; 1066 else if (r->direction && r->direction != pd->dir) 1067 r = r->skip[PF_SKIP_DIR].ptr; 1068 else if (r->af && r->af != AF_INET) 1069 r = r->skip[PF_SKIP_AF].ptr; 1070 else if (r->proto && r->proto != h->ip_p) 1071 r = r->skip[PF_SKIP_PROTO].ptr; 1072 else if (PF_MISMATCHAW(&r->src.addr, 1073 (struct pf_addr *)&h->ip_src.s_addr, AF_INET, 1074 r->src.neg, kif, M_GETFIB(m))) 1075 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1076 else if (PF_MISMATCHAW(&r->dst.addr, 1077 (struct pf_addr *)&h->ip_dst.s_addr, AF_INET, 1078 r->dst.neg, NULL, M_GETFIB(m))) 1079 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1080 else if (r->match_tag && !pf_match_tag(m, r, &tag, 1081 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 1082 r = TAILQ_NEXT(r, entries); 1083 else 1084 break; 1085 } 1086 1087 if (scrub_compat) { 1088 /* With scrub rules present IPv4 normalization happens only 1089 * if one of rules has matched and it's not a "no scrub" rule */ 1090 if (r == NULL || r->action == PF_NOSCRUB) 1091 return (PF_PASS); 1092 1093 pf_counter_u64_critical_enter(); 1094 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1095 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1096 pf_counter_u64_critical_exit(); 1097 pf_rule_to_actions(r, &pd->act); 1098 } 1099 1100 /* Check for illegal packets */ 1101 if (hlen < (int)sizeof(struct ip)) { 1102 REASON_SET(reason, PFRES_NORM); 1103 goto drop; 1104 } 1105 1106 if (hlen > ntohs(h->ip_len)) { 1107 REASON_SET(reason, PFRES_NORM); 1108 goto drop; 1109 } 1110 1111 /* Clear IP_DF if the rule uses the no-df option or we're in no-df mode */ 1112 if (((!scrub_compat && V_pf_status.reass & PF_REASS_NODF) || 1113 (r != NULL && r->rule_flag & PFRULE_NODF)) && 1114 (h->ip_off & htons(IP_DF)) 1115 ) { 1116 u_int16_t ip_off = h->ip_off; 1117 1118 h->ip_off &= htons(~IP_DF); 1119 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1120 } 1121 1122 /* We will need other tests here */ 1123 if (!fragoff && !mff) 1124 goto no_fragment; 1125 1126 /* We're dealing with a fragment now. Don't allow fragments 1127 * with IP_DF to enter the cache. If the flag was cleared by 1128 * no-df above, fine. Otherwise drop it. 1129 */ 1130 if (h->ip_off & htons(IP_DF)) { 1131 DPFPRINTF(("IP_DF\n")); 1132 goto bad; 1133 } 1134 1135 ip_len = ntohs(h->ip_len) - hlen; 1136 1137 /* All fragments are 8 byte aligned */ 1138 if (mff && (ip_len & 0x7)) { 1139 DPFPRINTF(("mff and %d\n", ip_len)); 1140 goto bad; 1141 } 1142 1143 /* Respect maximum length */ 1144 if (fragoff + ip_len > IP_MAXPACKET) { 1145 DPFPRINTF(("max packet %d\n", fragoff + ip_len)); 1146 goto bad; 1147 } 1148 1149 if ((!scrub_compat && V_pf_status.reass) || 1150 (r != NULL && !(r->rule_flag & PFRULE_FRAGMENT_NOREASS)) 1151 ) { 1152 max = fragoff + ip_len; 1153 1154 /* Fully buffer all of the fragments 1155 * Might return a completely reassembled mbuf, or NULL */ 1156 PF_FRAG_LOCK(); 1157 DPFPRINTF(("reass frag %d @ %d-%d\n", h->ip_id, fragoff, max)); 1158 verdict = pf_reassemble(m0, h, pd->dir, reason); 1159 PF_FRAG_UNLOCK(); 1160 1161 if (verdict != PF_PASS) 1162 return (PF_DROP); 1163 1164 m = *m0; 1165 if (m == NULL) 1166 return (PF_DROP); 1167 1168 h = mtod(m, struct ip *); 1169 1170 no_fragment: 1171 /* At this point, only IP_DF is allowed in ip_off */ 1172 if (h->ip_off & ~htons(IP_DF)) { 1173 u_int16_t ip_off = h->ip_off; 1174 1175 h->ip_off &= htons(IP_DF); 1176 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 1177 } 1178 } 1179 1180 return (PF_PASS); 1181 1182 bad: 1183 DPFPRINTF(("dropping bad fragment\n")); 1184 REASON_SET(reason, PFRES_FRAG); 1185 drop: 1186 if (r != NULL && r->log) 1187 PFLOG_PACKET(kif, m, AF_INET, PF_DROP, *reason, r, NULL, NULL, pd, 1); 1188 1189 return (PF_DROP); 1190 } 1191 #endif 1192 1193 #ifdef INET6 1194 int 1195 pf_normalize_ip6(struct mbuf **m0, struct pfi_kkif *kif, 1196 u_short *reason, struct pf_pdesc *pd) 1197 { 1198 struct mbuf *m = *m0; 1199 struct pf_krule *r; 1200 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1201 int extoff; 1202 int off; 1203 struct ip6_ext ext; 1204 struct ip6_opt opt; 1205 struct ip6_frag frag; 1206 u_int32_t plen; 1207 int optend; 1208 int ooff; 1209 u_int8_t proto; 1210 int terminal; 1211 bool scrub_compat; 1212 1213 PF_RULES_RASSERT(); 1214 1215 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1216 /* 1217 * Check if there are any scrub rules, matching or not. 1218 * Lack of scrub rules means: 1219 * - enforced packet normalization operation just like in OpenBSD 1220 * With scrub rules: 1221 * - packet normalization is performed if there is a matching scrub rule 1222 * XXX: Fragment reassembly always performed for IPv6! 1223 */ 1224 scrub_compat = (r != NULL); 1225 while (r != NULL) { 1226 pf_counter_u64_add(&r->evaluations, 1); 1227 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1228 r = r->skip[PF_SKIP_IFP].ptr; 1229 else if (r->direction && r->direction != pd->dir) 1230 r = r->skip[PF_SKIP_DIR].ptr; 1231 else if (r->af && r->af != AF_INET6) 1232 r = r->skip[PF_SKIP_AF].ptr; 1233 #if 0 /* header chain! */ 1234 else if (r->proto && r->proto != h->ip6_nxt) 1235 r = r->skip[PF_SKIP_PROTO].ptr; 1236 #endif 1237 else if (PF_MISMATCHAW(&r->src.addr, 1238 (struct pf_addr *)&h->ip6_src, AF_INET6, 1239 r->src.neg, kif, M_GETFIB(m))) 1240 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1241 else if (PF_MISMATCHAW(&r->dst.addr, 1242 (struct pf_addr *)&h->ip6_dst, AF_INET6, 1243 r->dst.neg, NULL, M_GETFIB(m))) 1244 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1245 else 1246 break; 1247 } 1248 1249 if (scrub_compat) { 1250 /* With scrub rules present IPv6 normalization happens only 1251 * if one of rules has matched and it's not a "no scrub" rule */ 1252 if (r == NULL || r->action == PF_NOSCRUB) 1253 return (PF_PASS); 1254 1255 pf_counter_u64_critical_enter(); 1256 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1257 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1258 pf_counter_u64_critical_exit(); 1259 pf_rule_to_actions(r, &pd->act); 1260 } 1261 1262 /* Check for illegal packets */ 1263 if (sizeof(struct ip6_hdr) + IPV6_MAXPACKET < m->m_pkthdr.len) 1264 goto drop; 1265 1266 again: 1267 h = mtod(m, struct ip6_hdr *); 1268 plen = ntohs(h->ip6_plen); 1269 /* jumbo payload option not supported */ 1270 if (plen == 0) 1271 goto drop; 1272 1273 extoff = 0; 1274 off = sizeof(struct ip6_hdr); 1275 proto = h->ip6_nxt; 1276 terminal = 0; 1277 do { 1278 switch (proto) { 1279 case IPPROTO_FRAGMENT: 1280 goto fragment; 1281 break; 1282 case IPPROTO_AH: 1283 case IPPROTO_ROUTING: 1284 case IPPROTO_DSTOPTS: 1285 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL, 1286 NULL, AF_INET6)) 1287 goto shortpkt; 1288 extoff = off; 1289 if (proto == IPPROTO_AH) 1290 off += (ext.ip6e_len + 2) * 4; 1291 else 1292 off += (ext.ip6e_len + 1) * 8; 1293 proto = ext.ip6e_nxt; 1294 break; 1295 case IPPROTO_HOPOPTS: 1296 if (!pf_pull_hdr(m, off, &ext, sizeof(ext), NULL, 1297 NULL, AF_INET6)) 1298 goto shortpkt; 1299 extoff = off; 1300 optend = off + (ext.ip6e_len + 1) * 8; 1301 ooff = off + sizeof(ext); 1302 do { 1303 if (!pf_pull_hdr(m, ooff, &opt.ip6o_type, 1304 sizeof(opt.ip6o_type), NULL, NULL, 1305 AF_INET6)) 1306 goto shortpkt; 1307 if (opt.ip6o_type == IP6OPT_PAD1) { 1308 ooff++; 1309 continue; 1310 } 1311 if (!pf_pull_hdr(m, ooff, &opt, sizeof(opt), 1312 NULL, NULL, AF_INET6)) 1313 goto shortpkt; 1314 if (ooff + sizeof(opt) + opt.ip6o_len > optend) 1315 goto drop; 1316 if (opt.ip6o_type == IP6OPT_JUMBO) 1317 goto drop; 1318 ooff += sizeof(opt) + opt.ip6o_len; 1319 } while (ooff < optend); 1320 1321 off = optend; 1322 proto = ext.ip6e_nxt; 1323 break; 1324 default: 1325 terminal = 1; 1326 break; 1327 } 1328 } while (!terminal); 1329 1330 if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len) 1331 goto shortpkt; 1332 1333 return (PF_PASS); 1334 1335 fragment: 1336 if (pd->flags & PFDESC_IP_REAS) 1337 return (PF_DROP); 1338 if (sizeof(struct ip6_hdr) + plen > m->m_pkthdr.len) 1339 goto shortpkt; 1340 1341 if (!pf_pull_hdr(m, off, &frag, sizeof(frag), NULL, NULL, AF_INET6)) 1342 goto shortpkt; 1343 1344 /* Offset now points to data portion. */ 1345 off += sizeof(frag); 1346 1347 /* Returns PF_DROP or *m0 is NULL or completely reassembled mbuf. */ 1348 if (pf_reassemble6(m0, h, &frag, off, extoff, reason) != PF_PASS) 1349 return (PF_DROP); 1350 m = *m0; 1351 if (m == NULL) 1352 return (PF_DROP); 1353 1354 pd->flags |= PFDESC_IP_REAS; 1355 goto again; 1356 1357 shortpkt: 1358 REASON_SET(reason, PFRES_SHORT); 1359 if (r != NULL && r->log) 1360 PFLOG_PACKET(kif, m, AF_INET6, PF_DROP, *reason, r, NULL, NULL, pd, 1); 1361 return (PF_DROP); 1362 1363 drop: 1364 REASON_SET(reason, PFRES_NORM); 1365 if (r != NULL && r->log) 1366 PFLOG_PACKET(kif, m, AF_INET6, PF_DROP, *reason, r, NULL, NULL, pd, 1); 1367 return (PF_DROP); 1368 } 1369 #endif /* INET6 */ 1370 1371 int 1372 pf_normalize_tcp(struct pfi_kkif *kif, struct mbuf *m, int ipoff, 1373 int off, void *h, struct pf_pdesc *pd) 1374 { 1375 struct pf_krule *r, *rm = NULL; 1376 struct tcphdr *th = &pd->hdr.tcp; 1377 int rewrite = 0; 1378 u_short reason; 1379 u_int16_t flags; 1380 sa_family_t af = pd->af; 1381 int srs; 1382 1383 PF_RULES_RASSERT(); 1384 1385 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 1386 /* Check if there any scrub rules. Lack of scrub rules means enforced 1387 * packet normalization operation just like in OpenBSD. */ 1388 srs = (r != NULL); 1389 while (r != NULL) { 1390 pf_counter_u64_add(&r->evaluations, 1); 1391 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 1392 r = r->skip[PF_SKIP_IFP].ptr; 1393 else if (r->direction && r->direction != pd->dir) 1394 r = r->skip[PF_SKIP_DIR].ptr; 1395 else if (r->af && r->af != af) 1396 r = r->skip[PF_SKIP_AF].ptr; 1397 else if (r->proto && r->proto != pd->proto) 1398 r = r->skip[PF_SKIP_PROTO].ptr; 1399 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 1400 r->src.neg, kif, M_GETFIB(m))) 1401 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 1402 else if (r->src.port_op && !pf_match_port(r->src.port_op, 1403 r->src.port[0], r->src.port[1], th->th_sport)) 1404 r = r->skip[PF_SKIP_SRC_PORT].ptr; 1405 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 1406 r->dst.neg, NULL, M_GETFIB(m))) 1407 r = r->skip[PF_SKIP_DST_ADDR].ptr; 1408 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 1409 r->dst.port[0], r->dst.port[1], th->th_dport)) 1410 r = r->skip[PF_SKIP_DST_PORT].ptr; 1411 else if (r->os_fingerprint != PF_OSFP_ANY && !pf_osfp_match( 1412 pf_osfp_fingerprint(pd, m, off, th), 1413 r->os_fingerprint)) 1414 r = TAILQ_NEXT(r, entries); 1415 else { 1416 rm = r; 1417 break; 1418 } 1419 } 1420 1421 if (srs) { 1422 /* With scrub rules present TCP normalization happens only 1423 * if one of rules has matched and it's not a "no scrub" rule */ 1424 if (rm == NULL || rm->action == PF_NOSCRUB) 1425 return (PF_PASS); 1426 1427 pf_counter_u64_critical_enter(); 1428 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 1429 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 1430 pf_counter_u64_critical_exit(); 1431 pf_rule_to_actions(rm, &pd->act); 1432 } 1433 1434 if (rm && rm->rule_flag & PFRULE_REASSEMBLE_TCP) 1435 pd->flags |= PFDESC_TCP_NORM; 1436 1437 flags = tcp_get_flags(th); 1438 if (flags & TH_SYN) { 1439 /* Illegal packet */ 1440 if (flags & TH_RST) 1441 goto tcp_drop; 1442 1443 if (flags & TH_FIN) 1444 goto tcp_drop; 1445 } else { 1446 /* Illegal packet */ 1447 if (!(flags & (TH_ACK|TH_RST))) 1448 goto tcp_drop; 1449 } 1450 1451 if (!(flags & TH_ACK)) { 1452 /* These flags are only valid if ACK is set */ 1453 if ((flags & TH_FIN) || (flags & TH_PUSH) || (flags & TH_URG)) 1454 goto tcp_drop; 1455 } 1456 1457 /* Check for illegal header length */ 1458 if (th->th_off < (sizeof(struct tcphdr) >> 2)) 1459 goto tcp_drop; 1460 1461 /* If flags changed, or reserved data set, then adjust */ 1462 if (flags != tcp_get_flags(th) || 1463 (tcp_get_flags(th) & (TH_RES1|TH_RES2|TH_RES2)) != 0) { 1464 u_int16_t ov, nv; 1465 1466 ov = *(u_int16_t *)(&th->th_ack + 1); 1467 flags &= ~(TH_RES1 | TH_RES2 | TH_RES3); 1468 tcp_set_flags(th, flags); 1469 nv = *(u_int16_t *)(&th->th_ack + 1); 1470 1471 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, ov, nv, 0); 1472 rewrite = 1; 1473 } 1474 1475 /* Remove urgent pointer, if TH_URG is not set */ 1476 if (!(flags & TH_URG) && th->th_urp) { 1477 th->th_sum = pf_proto_cksum_fixup(m, th->th_sum, th->th_urp, 1478 0, 0); 1479 th->th_urp = 0; 1480 rewrite = 1; 1481 } 1482 1483 /* copy back packet headers if we sanitized */ 1484 if (rewrite) 1485 m_copyback(m, off, sizeof(*th), (caddr_t)th); 1486 1487 return (PF_PASS); 1488 1489 tcp_drop: 1490 REASON_SET(&reason, PFRES_NORM); 1491 if (rm != NULL && r->log) 1492 PFLOG_PACKET(kif, m, AF_INET, PF_DROP, reason, r, NULL, NULL, pd, 1); 1493 return (PF_DROP); 1494 } 1495 1496 int 1497 pf_normalize_tcp_init(struct mbuf *m, int off, struct pf_pdesc *pd, 1498 struct tcphdr *th, struct pf_state_peer *src, struct pf_state_peer *dst) 1499 { 1500 u_int32_t tsval, tsecr; 1501 u_int8_t hdr[60]; 1502 u_int8_t *opt; 1503 1504 KASSERT((src->scrub == NULL), 1505 ("pf_normalize_tcp_init: src->scrub != NULL")); 1506 1507 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1508 if (src->scrub == NULL) 1509 return (1); 1510 1511 switch (pd->af) { 1512 #ifdef INET 1513 case AF_INET: { 1514 struct ip *h = mtod(m, struct ip *); 1515 src->scrub->pfss_ttl = h->ip_ttl; 1516 break; 1517 } 1518 #endif /* INET */ 1519 #ifdef INET6 1520 case AF_INET6: { 1521 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1522 src->scrub->pfss_ttl = h->ip6_hlim; 1523 break; 1524 } 1525 #endif /* INET6 */ 1526 } 1527 1528 /* 1529 * All normalizations below are only begun if we see the start of 1530 * the connections. They must all set an enabled bit in pfss_flags 1531 */ 1532 if ((th->th_flags & TH_SYN) == 0) 1533 return (0); 1534 1535 if (th->th_off > (sizeof(struct tcphdr) >> 2) && src->scrub && 1536 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1537 /* Diddle with TCP options */ 1538 int hlen; 1539 opt = hdr + sizeof(struct tcphdr); 1540 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1541 while (hlen >= TCPOLEN_TIMESTAMP) { 1542 switch (*opt) { 1543 case TCPOPT_EOL: /* FALLTHROUGH */ 1544 case TCPOPT_NOP: 1545 opt++; 1546 hlen--; 1547 break; 1548 case TCPOPT_TIMESTAMP: 1549 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1550 src->scrub->pfss_flags |= 1551 PFSS_TIMESTAMP; 1552 src->scrub->pfss_ts_mod = 1553 htonl(arc4random()); 1554 1555 /* note PFSS_PAWS not set yet */ 1556 memcpy(&tsval, &opt[2], 1557 sizeof(u_int32_t)); 1558 memcpy(&tsecr, &opt[6], 1559 sizeof(u_int32_t)); 1560 src->scrub->pfss_tsval0 = ntohl(tsval); 1561 src->scrub->pfss_tsval = ntohl(tsval); 1562 src->scrub->pfss_tsecr = ntohl(tsecr); 1563 getmicrouptime(&src->scrub->pfss_last); 1564 } 1565 /* FALLTHROUGH */ 1566 default: 1567 hlen -= MAX(opt[1], 2); 1568 opt += MAX(opt[1], 2); 1569 break; 1570 } 1571 } 1572 } 1573 1574 return (0); 1575 } 1576 1577 void 1578 pf_normalize_tcp_cleanup(struct pf_kstate *state) 1579 { 1580 /* XXX Note: this also cleans up SCTP. */ 1581 uma_zfree(V_pf_state_scrub_z, state->src.scrub); 1582 uma_zfree(V_pf_state_scrub_z, state->dst.scrub); 1583 1584 /* Someday... flush the TCP segment reassembly descriptors. */ 1585 } 1586 int 1587 pf_normalize_sctp_init(struct mbuf *m, int off, struct pf_pdesc *pd, 1588 struct pf_state_peer *src, struct pf_state_peer *dst) 1589 { 1590 src->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1591 if (src->scrub == NULL) 1592 return (1); 1593 1594 dst->scrub = uma_zalloc(V_pf_state_scrub_z, M_ZERO | M_NOWAIT); 1595 if (dst->scrub == NULL) { 1596 uma_zfree(V_pf_state_scrub_z, src); 1597 return (1); 1598 } 1599 1600 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 1601 1602 return (0); 1603 } 1604 1605 int 1606 pf_normalize_tcp_stateful(struct mbuf *m, int off, struct pf_pdesc *pd, 1607 u_short *reason, struct tcphdr *th, struct pf_kstate *state, 1608 struct pf_state_peer *src, struct pf_state_peer *dst, int *writeback) 1609 { 1610 struct timeval uptime; 1611 u_int32_t tsval, tsecr; 1612 u_int tsval_from_last; 1613 u_int8_t hdr[60]; 1614 u_int8_t *opt; 1615 int copyback = 0; 1616 int got_ts = 0; 1617 size_t startoff; 1618 1619 KASSERT((src->scrub || dst->scrub), 1620 ("%s: src->scrub && dst->scrub!", __func__)); 1621 1622 /* 1623 * Enforce the minimum TTL seen for this connection. Negate a common 1624 * technique to evade an intrusion detection system and confuse 1625 * firewall state code. 1626 */ 1627 switch (pd->af) { 1628 #ifdef INET 1629 case AF_INET: { 1630 if (src->scrub) { 1631 struct ip *h = mtod(m, struct ip *); 1632 if (h->ip_ttl > src->scrub->pfss_ttl) 1633 src->scrub->pfss_ttl = h->ip_ttl; 1634 h->ip_ttl = src->scrub->pfss_ttl; 1635 } 1636 break; 1637 } 1638 #endif /* INET */ 1639 #ifdef INET6 1640 case AF_INET6: { 1641 if (src->scrub) { 1642 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 1643 if (h->ip6_hlim > src->scrub->pfss_ttl) 1644 src->scrub->pfss_ttl = h->ip6_hlim; 1645 h->ip6_hlim = src->scrub->pfss_ttl; 1646 } 1647 break; 1648 } 1649 #endif /* INET6 */ 1650 } 1651 1652 if (th->th_off > (sizeof(struct tcphdr) >> 2) && 1653 ((src->scrub && (src->scrub->pfss_flags & PFSS_TIMESTAMP)) || 1654 (dst->scrub && (dst->scrub->pfss_flags & PFSS_TIMESTAMP))) && 1655 pf_pull_hdr(m, off, hdr, th->th_off << 2, NULL, NULL, pd->af)) { 1656 /* Diddle with TCP options */ 1657 int hlen; 1658 opt = hdr + sizeof(struct tcphdr); 1659 hlen = (th->th_off << 2) - sizeof(struct tcphdr); 1660 while (hlen >= TCPOLEN_TIMESTAMP) { 1661 startoff = opt - (hdr + sizeof(struct tcphdr)); 1662 switch (*opt) { 1663 case TCPOPT_EOL: /* FALLTHROUGH */ 1664 case TCPOPT_NOP: 1665 opt++; 1666 hlen--; 1667 break; 1668 case TCPOPT_TIMESTAMP: 1669 /* Modulate the timestamps. Can be used for 1670 * NAT detection, OS uptime determination or 1671 * reboot detection. 1672 */ 1673 1674 if (got_ts) { 1675 /* Huh? Multiple timestamps!? */ 1676 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1677 DPFPRINTF(("multiple TS??\n")); 1678 pf_print_state(state); 1679 printf("\n"); 1680 } 1681 REASON_SET(reason, PFRES_TS); 1682 return (PF_DROP); 1683 } 1684 if (opt[1] >= TCPOLEN_TIMESTAMP) { 1685 memcpy(&tsval, &opt[2], 1686 sizeof(u_int32_t)); 1687 if (tsval && src->scrub && 1688 (src->scrub->pfss_flags & 1689 PFSS_TIMESTAMP)) { 1690 tsval = ntohl(tsval); 1691 pf_patch_32_unaligned(m, 1692 &th->th_sum, 1693 &opt[2], 1694 htonl(tsval + 1695 src->scrub->pfss_ts_mod), 1696 PF_ALGNMNT(startoff), 1697 0); 1698 copyback = 1; 1699 } 1700 1701 /* Modulate TS reply iff valid (!0) */ 1702 memcpy(&tsecr, &opt[6], 1703 sizeof(u_int32_t)); 1704 if (tsecr && dst->scrub && 1705 (dst->scrub->pfss_flags & 1706 PFSS_TIMESTAMP)) { 1707 tsecr = ntohl(tsecr) 1708 - dst->scrub->pfss_ts_mod; 1709 pf_patch_32_unaligned(m, 1710 &th->th_sum, 1711 &opt[6], 1712 htonl(tsecr), 1713 PF_ALGNMNT(startoff), 1714 0); 1715 copyback = 1; 1716 } 1717 got_ts = 1; 1718 } 1719 /* FALLTHROUGH */ 1720 default: 1721 hlen -= MAX(opt[1], 2); 1722 opt += MAX(opt[1], 2); 1723 break; 1724 } 1725 } 1726 if (copyback) { 1727 /* Copyback the options, caller copys back header */ 1728 *writeback = 1; 1729 m_copyback(m, off + sizeof(struct tcphdr), 1730 (th->th_off << 2) - sizeof(struct tcphdr), hdr + 1731 sizeof(struct tcphdr)); 1732 } 1733 } 1734 1735 /* 1736 * Must invalidate PAWS checks on connections idle for too long. 1737 * The fastest allowed timestamp clock is 1ms. That turns out to 1738 * be about 24 days before it wraps. XXX Right now our lowerbound 1739 * TS echo check only works for the first 12 days of a connection 1740 * when the TS has exhausted half its 32bit space 1741 */ 1742 #define TS_MAX_IDLE (24*24*60*60) 1743 #define TS_MAX_CONN (12*24*60*60) /* XXX remove when better tsecr check */ 1744 1745 getmicrouptime(&uptime); 1746 if (src->scrub && (src->scrub->pfss_flags & PFSS_PAWS) && 1747 (uptime.tv_sec - src->scrub->pfss_last.tv_sec > TS_MAX_IDLE || 1748 time_uptime - state->creation > TS_MAX_CONN)) { 1749 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1750 DPFPRINTF(("src idled out of PAWS\n")); 1751 pf_print_state(state); 1752 printf("\n"); 1753 } 1754 src->scrub->pfss_flags = (src->scrub->pfss_flags & ~PFSS_PAWS) 1755 | PFSS_PAWS_IDLED; 1756 } 1757 if (dst->scrub && (dst->scrub->pfss_flags & PFSS_PAWS) && 1758 uptime.tv_sec - dst->scrub->pfss_last.tv_sec > TS_MAX_IDLE) { 1759 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1760 DPFPRINTF(("dst idled out of PAWS\n")); 1761 pf_print_state(state); 1762 printf("\n"); 1763 } 1764 dst->scrub->pfss_flags = (dst->scrub->pfss_flags & ~PFSS_PAWS) 1765 | PFSS_PAWS_IDLED; 1766 } 1767 1768 if (got_ts && src->scrub && dst->scrub && 1769 (src->scrub->pfss_flags & PFSS_PAWS) && 1770 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1771 /* Validate that the timestamps are "in-window". 1772 * RFC1323 describes TCP Timestamp options that allow 1773 * measurement of RTT (round trip time) and PAWS 1774 * (protection against wrapped sequence numbers). PAWS 1775 * gives us a set of rules for rejecting packets on 1776 * long fat pipes (packets that were somehow delayed 1777 * in transit longer than the time it took to send the 1778 * full TCP sequence space of 4Gb). We can use these 1779 * rules and infer a few others that will let us treat 1780 * the 32bit timestamp and the 32bit echoed timestamp 1781 * as sequence numbers to prevent a blind attacker from 1782 * inserting packets into a connection. 1783 * 1784 * RFC1323 tells us: 1785 * - The timestamp on this packet must be greater than 1786 * or equal to the last value echoed by the other 1787 * endpoint. The RFC says those will be discarded 1788 * since it is a dup that has already been acked. 1789 * This gives us a lowerbound on the timestamp. 1790 * timestamp >= other last echoed timestamp 1791 * - The timestamp will be less than or equal to 1792 * the last timestamp plus the time between the 1793 * last packet and now. The RFC defines the max 1794 * clock rate as 1ms. We will allow clocks to be 1795 * up to 10% fast and will allow a total difference 1796 * or 30 seconds due to a route change. And this 1797 * gives us an upperbound on the timestamp. 1798 * timestamp <= last timestamp + max ticks 1799 * We have to be careful here. Windows will send an 1800 * initial timestamp of zero and then initialize it 1801 * to a random value after the 3whs; presumably to 1802 * avoid a DoS by having to call an expensive RNG 1803 * during a SYN flood. Proof MS has at least one 1804 * good security geek. 1805 * 1806 * - The TCP timestamp option must also echo the other 1807 * endpoints timestamp. The timestamp echoed is the 1808 * one carried on the earliest unacknowledged segment 1809 * on the left edge of the sequence window. The RFC 1810 * states that the host will reject any echoed 1811 * timestamps that were larger than any ever sent. 1812 * This gives us an upperbound on the TS echo. 1813 * tescr <= largest_tsval 1814 * - The lowerbound on the TS echo is a little more 1815 * tricky to determine. The other endpoint's echoed 1816 * values will not decrease. But there may be 1817 * network conditions that re-order packets and 1818 * cause our view of them to decrease. For now the 1819 * only lowerbound we can safely determine is that 1820 * the TS echo will never be less than the original 1821 * TS. XXX There is probably a better lowerbound. 1822 * Remove TS_MAX_CONN with better lowerbound check. 1823 * tescr >= other original TS 1824 * 1825 * It is also important to note that the fastest 1826 * timestamp clock of 1ms will wrap its 32bit space in 1827 * 24 days. So we just disable TS checking after 24 1828 * days of idle time. We actually must use a 12d 1829 * connection limit until we can come up with a better 1830 * lowerbound to the TS echo check. 1831 */ 1832 struct timeval delta_ts; 1833 int ts_fudge; 1834 1835 /* 1836 * PFTM_TS_DIFF is how many seconds of leeway to allow 1837 * a host's timestamp. This can happen if the previous 1838 * packet got delayed in transit for much longer than 1839 * this packet. 1840 */ 1841 if ((ts_fudge = state->rule.ptr->timeout[PFTM_TS_DIFF]) == 0) 1842 ts_fudge = V_pf_default_rule.timeout[PFTM_TS_DIFF]; 1843 1844 /* Calculate max ticks since the last timestamp */ 1845 #define TS_MAXFREQ 1100 /* RFC max TS freq of 1Khz + 10% skew */ 1846 #define TS_MICROSECS 1000000 /* microseconds per second */ 1847 delta_ts = uptime; 1848 timevalsub(&delta_ts, &src->scrub->pfss_last); 1849 tsval_from_last = (delta_ts.tv_sec + ts_fudge) * TS_MAXFREQ; 1850 tsval_from_last += delta_ts.tv_usec / (TS_MICROSECS/TS_MAXFREQ); 1851 1852 if ((src->state >= TCPS_ESTABLISHED && 1853 dst->state >= TCPS_ESTABLISHED) && 1854 (SEQ_LT(tsval, dst->scrub->pfss_tsecr) || 1855 SEQ_GT(tsval, src->scrub->pfss_tsval + tsval_from_last) || 1856 (tsecr && (SEQ_GT(tsecr, dst->scrub->pfss_tsval) || 1857 SEQ_LT(tsecr, dst->scrub->pfss_tsval0))))) { 1858 /* Bad RFC1323 implementation or an insertion attack. 1859 * 1860 * - Solaris 2.6 and 2.7 are known to send another ACK 1861 * after the FIN,FIN|ACK,ACK closing that carries 1862 * an old timestamp. 1863 */ 1864 1865 DPFPRINTF(("Timestamp failed %c%c%c%c\n", 1866 SEQ_LT(tsval, dst->scrub->pfss_tsecr) ? '0' : ' ', 1867 SEQ_GT(tsval, src->scrub->pfss_tsval + 1868 tsval_from_last) ? '1' : ' ', 1869 SEQ_GT(tsecr, dst->scrub->pfss_tsval) ? '2' : ' ', 1870 SEQ_LT(tsecr, dst->scrub->pfss_tsval0)? '3' : ' ')); 1871 DPFPRINTF((" tsval: %u tsecr: %u +ticks: %u " 1872 "idle: %jus %lums\n", 1873 tsval, tsecr, tsval_from_last, 1874 (uintmax_t)delta_ts.tv_sec, 1875 delta_ts.tv_usec / 1000)); 1876 DPFPRINTF((" src->tsval: %u tsecr: %u\n", 1877 src->scrub->pfss_tsval, src->scrub->pfss_tsecr)); 1878 DPFPRINTF((" dst->tsval: %u tsecr: %u tsval0: %u" 1879 "\n", dst->scrub->pfss_tsval, 1880 dst->scrub->pfss_tsecr, dst->scrub->pfss_tsval0)); 1881 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1882 pf_print_state(state); 1883 pf_print_flags(th->th_flags); 1884 printf("\n"); 1885 } 1886 REASON_SET(reason, PFRES_TS); 1887 return (PF_DROP); 1888 } 1889 1890 /* XXX I'd really like to require tsecr but it's optional */ 1891 1892 } else if (!got_ts && (th->th_flags & TH_RST) == 0 && 1893 ((src->state == TCPS_ESTABLISHED && dst->state == TCPS_ESTABLISHED) 1894 || pd->p_len > 0 || (th->th_flags & TH_SYN)) && 1895 src->scrub && dst->scrub && 1896 (src->scrub->pfss_flags & PFSS_PAWS) && 1897 (dst->scrub->pfss_flags & PFSS_PAWS)) { 1898 /* Didn't send a timestamp. Timestamps aren't really useful 1899 * when: 1900 * - connection opening or closing (often not even sent). 1901 * but we must not let an attacker to put a FIN on a 1902 * data packet to sneak it through our ESTABLISHED check. 1903 * - on a TCP reset. RFC suggests not even looking at TS. 1904 * - on an empty ACK. The TS will not be echoed so it will 1905 * probably not help keep the RTT calculation in sync and 1906 * there isn't as much danger when the sequence numbers 1907 * got wrapped. So some stacks don't include TS on empty 1908 * ACKs :-( 1909 * 1910 * To minimize the disruption to mostly RFC1323 conformant 1911 * stacks, we will only require timestamps on data packets. 1912 * 1913 * And what do ya know, we cannot require timestamps on data 1914 * packets. There appear to be devices that do legitimate 1915 * TCP connection hijacking. There are HTTP devices that allow 1916 * a 3whs (with timestamps) and then buffer the HTTP request. 1917 * If the intermediate device has the HTTP response cache, it 1918 * will spoof the response but not bother timestamping its 1919 * packets. So we can look for the presence of a timestamp in 1920 * the first data packet and if there, require it in all future 1921 * packets. 1922 */ 1923 1924 if (pd->p_len > 0 && (src->scrub->pfss_flags & PFSS_DATA_TS)) { 1925 /* 1926 * Hey! Someone tried to sneak a packet in. Or the 1927 * stack changed its RFC1323 behavior?!?! 1928 */ 1929 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1930 DPFPRINTF(("Did not receive expected RFC1323 " 1931 "timestamp\n")); 1932 pf_print_state(state); 1933 pf_print_flags(th->th_flags); 1934 printf("\n"); 1935 } 1936 REASON_SET(reason, PFRES_TS); 1937 return (PF_DROP); 1938 } 1939 } 1940 1941 /* 1942 * We will note if a host sends his data packets with or without 1943 * timestamps. And require all data packets to contain a timestamp 1944 * if the first does. PAWS implicitly requires that all data packets be 1945 * timestamped. But I think there are middle-man devices that hijack 1946 * TCP streams immediately after the 3whs and don't timestamp their 1947 * packets (seen in a WWW accelerator or cache). 1948 */ 1949 if (pd->p_len > 0 && src->scrub && (src->scrub->pfss_flags & 1950 (PFSS_TIMESTAMP|PFSS_DATA_TS|PFSS_DATA_NOTS)) == PFSS_TIMESTAMP) { 1951 if (got_ts) 1952 src->scrub->pfss_flags |= PFSS_DATA_TS; 1953 else { 1954 src->scrub->pfss_flags |= PFSS_DATA_NOTS; 1955 if (V_pf_status.debug >= PF_DEBUG_MISC && dst->scrub && 1956 (dst->scrub->pfss_flags & PFSS_TIMESTAMP)) { 1957 /* Don't warn if other host rejected RFC1323 */ 1958 DPFPRINTF(("Broken RFC1323 stack did not " 1959 "timestamp data packet. Disabled PAWS " 1960 "security.\n")); 1961 pf_print_state(state); 1962 pf_print_flags(th->th_flags); 1963 printf("\n"); 1964 } 1965 } 1966 } 1967 1968 /* 1969 * Update PAWS values 1970 */ 1971 if (got_ts && src->scrub && PFSS_TIMESTAMP == (src->scrub->pfss_flags & 1972 (PFSS_PAWS_IDLED|PFSS_TIMESTAMP))) { 1973 getmicrouptime(&src->scrub->pfss_last); 1974 if (SEQ_GEQ(tsval, src->scrub->pfss_tsval) || 1975 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1976 src->scrub->pfss_tsval = tsval; 1977 1978 if (tsecr) { 1979 if (SEQ_GEQ(tsecr, src->scrub->pfss_tsecr) || 1980 (src->scrub->pfss_flags & PFSS_PAWS) == 0) 1981 src->scrub->pfss_tsecr = tsecr; 1982 1983 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0 && 1984 (SEQ_LT(tsval, src->scrub->pfss_tsval0) || 1985 src->scrub->pfss_tsval0 == 0)) { 1986 /* tsval0 MUST be the lowest timestamp */ 1987 src->scrub->pfss_tsval0 = tsval; 1988 } 1989 1990 /* Only fully initialized after a TS gets echoed */ 1991 if ((src->scrub->pfss_flags & PFSS_PAWS) == 0) 1992 src->scrub->pfss_flags |= PFSS_PAWS; 1993 } 1994 } 1995 1996 /* I have a dream.... TCP segment reassembly.... */ 1997 return (0); 1998 } 1999 2000 int 2001 pf_normalize_mss(struct mbuf *m, int off, struct pf_pdesc *pd) 2002 { 2003 struct tcphdr *th = &pd->hdr.tcp; 2004 u_int16_t *mss; 2005 int thoff; 2006 int opt, cnt, optlen = 0; 2007 u_char opts[TCP_MAXOLEN]; 2008 u_char *optp = opts; 2009 size_t startoff; 2010 2011 thoff = th->th_off << 2; 2012 cnt = thoff - sizeof(struct tcphdr); 2013 2014 if (cnt > 0 && !pf_pull_hdr(m, off + sizeof(*th), opts, cnt, 2015 NULL, NULL, pd->af)) 2016 return (0); 2017 2018 for (; cnt > 0; cnt -= optlen, optp += optlen) { 2019 startoff = optp - opts; 2020 opt = optp[0]; 2021 if (opt == TCPOPT_EOL) 2022 break; 2023 if (opt == TCPOPT_NOP) 2024 optlen = 1; 2025 else { 2026 if (cnt < 2) 2027 break; 2028 optlen = optp[1]; 2029 if (optlen < 2 || optlen > cnt) 2030 break; 2031 } 2032 switch (opt) { 2033 case TCPOPT_MAXSEG: 2034 mss = (u_int16_t *)(optp + 2); 2035 if ((ntohs(*mss)) > pd->act.max_mss) { 2036 pf_patch_16_unaligned(m, 2037 &th->th_sum, 2038 mss, htons(pd->act.max_mss), 2039 PF_ALGNMNT(startoff), 2040 0); 2041 m_copyback(m, off + sizeof(*th), 2042 thoff - sizeof(*th), opts); 2043 m_copyback(m, off, sizeof(*th), (caddr_t)th); 2044 } 2045 break; 2046 default: 2047 break; 2048 } 2049 } 2050 2051 return (0); 2052 } 2053 2054 static int 2055 pf_scan_sctp(struct mbuf *m, int ipoff, int off, struct pf_pdesc *pd, 2056 struct pfi_kkif *kif) 2057 { 2058 struct sctp_chunkhdr ch = { }; 2059 int chunk_off = sizeof(struct sctphdr); 2060 int chunk_start; 2061 int ret; 2062 2063 while (off + chunk_off < pd->tot_len) { 2064 if (!pf_pull_hdr(m, off + chunk_off, &ch, sizeof(ch), NULL, 2065 NULL, pd->af)) 2066 return (PF_DROP); 2067 2068 /* Length includes the header, this must be at least 4. */ 2069 if (ntohs(ch.chunk_length) < 4) 2070 return (PF_DROP); 2071 2072 chunk_start = chunk_off; 2073 chunk_off += roundup(ntohs(ch.chunk_length), 4); 2074 2075 switch (ch.chunk_type) { 2076 case SCTP_INITIATION: 2077 case SCTP_INITIATION_ACK: { 2078 struct sctp_init_chunk init; 2079 2080 if (!pf_pull_hdr(m, off + chunk_start, &init, 2081 sizeof(init), NULL, NULL, pd->af)) 2082 return (PF_DROP); 2083 2084 /* 2085 * RFC 9620, Section 3.3.2, "The Initiate Tag is allowed to have 2086 * any value except 0." 2087 */ 2088 if (init.init.initiate_tag == 0) 2089 return (PF_DROP); 2090 if (init.init.num_inbound_streams == 0) 2091 return (PF_DROP); 2092 if (init.init.num_outbound_streams == 0) 2093 return (PF_DROP); 2094 if (ntohl(init.init.a_rwnd) < SCTP_MIN_RWND) 2095 return (PF_DROP); 2096 2097 /* 2098 * RFC 9260, Section 3.1, INIT chunks MUST have zero 2099 * verification tag. 2100 */ 2101 if (ch.chunk_type == SCTP_INITIATION && 2102 pd->hdr.sctp.v_tag != 0) 2103 return (PF_DROP); 2104 2105 pd->sctp_initiate_tag = init.init.initiate_tag; 2106 2107 if (ch.chunk_type == SCTP_INITIATION) 2108 pd->sctp_flags |= PFDESC_SCTP_INIT; 2109 else 2110 pd->sctp_flags |= PFDESC_SCTP_INIT_ACK; 2111 2112 ret = pf_multihome_scan_init(m, off + chunk_start, 2113 ntohs(init.ch.chunk_length), pd, kif); 2114 if (ret != PF_PASS) 2115 return (ret); 2116 2117 break; 2118 } 2119 case SCTP_ABORT_ASSOCIATION: 2120 pd->sctp_flags |= PFDESC_SCTP_ABORT; 2121 break; 2122 case SCTP_SHUTDOWN: 2123 case SCTP_SHUTDOWN_ACK: 2124 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN; 2125 break; 2126 case SCTP_SHUTDOWN_COMPLETE: 2127 pd->sctp_flags |= PFDESC_SCTP_SHUTDOWN_COMPLETE; 2128 break; 2129 case SCTP_COOKIE_ECHO: 2130 pd->sctp_flags |= PFDESC_SCTP_COOKIE; 2131 break; 2132 case SCTP_COOKIE_ACK: 2133 pd->sctp_flags |= PFDESC_SCTP_COOKIE_ACK; 2134 break; 2135 case SCTP_DATA: 2136 pd->sctp_flags |= PFDESC_SCTP_DATA; 2137 break; 2138 case SCTP_HEARTBEAT_REQUEST: 2139 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT; 2140 break; 2141 case SCTP_HEARTBEAT_ACK: 2142 pd->sctp_flags |= PFDESC_SCTP_HEARTBEAT_ACK; 2143 break; 2144 case SCTP_ASCONF: 2145 pd->sctp_flags |= PFDESC_SCTP_ASCONF; 2146 2147 ret = pf_multihome_scan_asconf(m, off + chunk_start, 2148 ntohs(ch.chunk_length), pd, kif); 2149 if (ret != PF_PASS) 2150 return (ret); 2151 break; 2152 default: 2153 pd->sctp_flags |= PFDESC_SCTP_OTHER; 2154 break; 2155 } 2156 } 2157 2158 /* Validate chunk lengths vs. packet length. */ 2159 if (off + chunk_off != pd->tot_len) 2160 return (PF_DROP); 2161 2162 /* 2163 * INIT, INIT_ACK or SHUTDOWN_COMPLETE chunks must always be the only 2164 * one in a packet. 2165 */ 2166 if ((pd->sctp_flags & PFDESC_SCTP_INIT) && 2167 (pd->sctp_flags & ~PFDESC_SCTP_INIT)) 2168 return (PF_DROP); 2169 if ((pd->sctp_flags & PFDESC_SCTP_INIT_ACK) && 2170 (pd->sctp_flags & ~PFDESC_SCTP_INIT_ACK)) 2171 return (PF_DROP); 2172 if ((pd->sctp_flags & PFDESC_SCTP_SHUTDOWN_COMPLETE) && 2173 (pd->sctp_flags & ~PFDESC_SCTP_SHUTDOWN_COMPLETE)) 2174 return (PF_DROP); 2175 2176 return (PF_PASS); 2177 } 2178 2179 int 2180 pf_normalize_sctp(int dir, struct pfi_kkif *kif, struct mbuf *m, int ipoff, 2181 int off, void *h, struct pf_pdesc *pd) 2182 { 2183 struct pf_krule *r, *rm = NULL; 2184 struct sctphdr *sh = &pd->hdr.sctp; 2185 u_short reason; 2186 sa_family_t af = pd->af; 2187 int srs; 2188 2189 PF_RULES_RASSERT(); 2190 2191 /* Unconditionally scan the SCTP packet, because we need to look for 2192 * things like shutdown and asconf chunks. */ 2193 if (pf_scan_sctp(m, ipoff, off, pd, kif) != PF_PASS) 2194 goto sctp_drop; 2195 2196 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_SCRUB].active.ptr); 2197 /* Check if there any scrub rules. Lack of scrub rules means enforced 2198 * packet normalization operation just like in OpenBSD. */ 2199 srs = (r != NULL); 2200 while (r != NULL) { 2201 pf_counter_u64_add(&r->evaluations, 1); 2202 if (pfi_kkif_match(r->kif, kif) == r->ifnot) 2203 r = r->skip[PF_SKIP_IFP].ptr; 2204 else if (r->direction && r->direction != dir) 2205 r = r->skip[PF_SKIP_DIR].ptr; 2206 else if (r->af && r->af != af) 2207 r = r->skip[PF_SKIP_AF].ptr; 2208 else if (r->proto && r->proto != pd->proto) 2209 r = r->skip[PF_SKIP_PROTO].ptr; 2210 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 2211 r->src.neg, kif, M_GETFIB(m))) 2212 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 2213 else if (r->src.port_op && !pf_match_port(r->src.port_op, 2214 r->src.port[0], r->src.port[1], sh->src_port)) 2215 r = r->skip[PF_SKIP_SRC_PORT].ptr; 2216 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 2217 r->dst.neg, NULL, M_GETFIB(m))) 2218 r = r->skip[PF_SKIP_DST_ADDR].ptr; 2219 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 2220 r->dst.port[0], r->dst.port[1], sh->dest_port)) 2221 r = r->skip[PF_SKIP_DST_PORT].ptr; 2222 else { 2223 rm = r; 2224 break; 2225 } 2226 } 2227 2228 if (srs) { 2229 /* With scrub rules present SCTP normalization happens only 2230 * if one of rules has matched and it's not a "no scrub" rule */ 2231 if (rm == NULL || rm->action == PF_NOSCRUB) 2232 return (PF_PASS); 2233 2234 pf_counter_u64_critical_enter(); 2235 pf_counter_u64_add_protected(&r->packets[dir == PF_OUT], 1); 2236 pf_counter_u64_add_protected(&r->bytes[dir == PF_OUT], pd->tot_len); 2237 pf_counter_u64_critical_exit(); 2238 } 2239 2240 /* Verify we're a multiple of 4 bytes long */ 2241 if ((pd->tot_len - off - sizeof(struct sctphdr)) % 4) 2242 goto sctp_drop; 2243 2244 /* INIT chunk needs to be the only chunk */ 2245 if (pd->sctp_flags & PFDESC_SCTP_INIT) 2246 if (pd->sctp_flags & ~PFDESC_SCTP_INIT) 2247 goto sctp_drop; 2248 2249 return (PF_PASS); 2250 2251 sctp_drop: 2252 REASON_SET(&reason, PFRES_NORM); 2253 if (rm != NULL && r->log) 2254 PFLOG_PACKET(kif, m, AF_INET, PF_DROP, reason, r, NULL, NULL, pd, 2255 1); 2256 2257 return (PF_DROP); 2258 } 2259 2260 #ifdef INET 2261 void 2262 pf_scrub_ip(struct mbuf **m0, struct pf_pdesc *pd) 2263 { 2264 struct mbuf *m = *m0; 2265 struct ip *h = mtod(m, struct ip *); 2266 2267 /* Clear IP_DF if no-df was requested */ 2268 if (pd->act.flags & PFSTATE_NODF && h->ip_off & htons(IP_DF)) { 2269 u_int16_t ip_off = h->ip_off; 2270 2271 h->ip_off &= htons(~IP_DF); 2272 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_off, h->ip_off, 0); 2273 } 2274 2275 /* Enforce a minimum ttl, may cause endless packet loops */ 2276 if (pd->act.min_ttl && h->ip_ttl < pd->act.min_ttl) { 2277 u_int16_t ip_ttl = h->ip_ttl; 2278 2279 h->ip_ttl = pd->act.min_ttl; 2280 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_ttl, h->ip_ttl, 0); 2281 } 2282 2283 /* Enforce tos */ 2284 if (pd->act.flags & PFSTATE_SETTOS) { 2285 u_int16_t ov, nv; 2286 2287 ov = *(u_int16_t *)h; 2288 h->ip_tos = pd->act.set_tos | (h->ip_tos & IPTOS_ECN_MASK); 2289 nv = *(u_int16_t *)h; 2290 2291 h->ip_sum = pf_cksum_fixup(h->ip_sum, ov, nv, 0); 2292 } 2293 2294 /* random-id, but not for fragments */ 2295 if (pd->act.flags & PFSTATE_RANDOMID && !(h->ip_off & ~htons(IP_DF))) { 2296 uint16_t ip_id = h->ip_id; 2297 2298 ip_fillid(h); 2299 h->ip_sum = pf_cksum_fixup(h->ip_sum, ip_id, h->ip_id, 0); 2300 } 2301 } 2302 #endif /* INET */ 2303 2304 #ifdef INET6 2305 void 2306 pf_scrub_ip6(struct mbuf **m0, struct pf_pdesc *pd) 2307 { 2308 struct mbuf *m = *m0; 2309 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 2310 2311 /* Enforce a minimum ttl, may cause endless packet loops */ 2312 if (pd->act.min_ttl && h->ip6_hlim < pd->act.min_ttl) 2313 h->ip6_hlim = pd->act.min_ttl; 2314 2315 /* Enforce tos. Set traffic class bits */ 2316 if (pd->act.flags & PFSTATE_SETTOS) { 2317 h->ip6_flow &= IPV6_FLOWLABEL_MASK | IPV6_VERSION_MASK; 2318 h->ip6_flow |= htonl((pd->act.set_tos | IPV6_ECN(h)) << 20); 2319 } 2320 } 2321 #endif 2322