1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 #include "opt_bpf.h" 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_pf.h" 45 #include "opt_sctp.h" 46 47 #include <sys/param.h> 48 #include <sys/bus.h> 49 #include <sys/endian.h> 50 #include <sys/gsb_crc32.h> 51 #include <sys/hash.h> 52 #include <sys/interrupt.h> 53 #include <sys/kernel.h> 54 #include <sys/kthread.h> 55 #include <sys/limits.h> 56 #include <sys/mbuf.h> 57 #include <sys/random.h> 58 #include <sys/refcount.h> 59 #include <sys/sdt.h> 60 #include <sys/socket.h> 61 #include <sys/sysctl.h> 62 #include <sys/taskqueue.h> 63 #include <sys/ucred.h> 64 65 #include <crypto/sha2/sha512.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_private.h> 70 #include <net/if_types.h> 71 #include <net/if_vlan_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/vnet.h> 75 76 #include <net/pfil.h> 77 #include <net/pfvar.h> 78 #include <net/if_pflog.h> 79 #include <net/if_pfsync.h> 80 81 #include <netinet/in_pcb.h> 82 #include <netinet/in_var.h> 83 #include <netinet/in_fib.h> 84 #include <netinet/ip.h> 85 #include <netinet/ip_fw.h> 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/tcp.h> 90 #include <netinet/tcp_fsm.h> 91 #include <netinet/tcp_seq.h> 92 #include <netinet/tcp_timer.h> 93 #include <netinet/tcp_var.h> 94 #include <netinet/udp.h> 95 #include <netinet/udp_var.h> 96 97 /* dummynet */ 98 #include <netinet/ip_dummynet.h> 99 #include <netinet/ip_fw.h> 100 #include <netpfil/ipfw/dn_heap.h> 101 #include <netpfil/ipfw/ip_fw_private.h> 102 #include <netpfil/ipfw/ip_dn_private.h> 103 104 #ifdef INET6 105 #include <netinet/ip6.h> 106 #include <netinet/icmp6.h> 107 #include <netinet6/nd6.h> 108 #include <netinet6/ip6_var.h> 109 #include <netinet6/in6_pcb.h> 110 #include <netinet6/in6_fib.h> 111 #include <netinet6/scope6_var.h> 112 #endif /* INET6 */ 113 114 #include <netinet/sctp_header.h> 115 #include <netinet/sctp_crc32.h> 116 117 #include <machine/in_cksum.h> 118 #include <security/mac/mac_framework.h> 119 120 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 121 122 SDT_PROVIDER_DEFINE(pf); 123 SDT_PROBE_DEFINE2(pf, , test, reason_set, "int", "int"); 124 SDT_PROBE_DEFINE4(pf, ip, test, done, "int", "int", "struct pf_krule *", 125 "struct pf_kstate *"); 126 SDT_PROBE_DEFINE5(pf, ip, state, lookup, "struct pfi_kkif *", 127 "struct pf_state_key_cmp *", "int", "struct pf_pdesc *", 128 "struct pf_kstate *"); 129 SDT_PROBE_DEFINE2(pf, ip, , bound_iface, "struct pf_kstate *", 130 "struct pfi_kkif *"); 131 SDT_PROBE_DEFINE4(pf, ip, route_to, entry, "struct mbuf *", 132 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 133 SDT_PROBE_DEFINE1(pf, ip, route_to, drop, "int"); 134 SDT_PROBE_DEFINE2(pf, ip, route_to, output, "struct ifnet *", "int"); 135 SDT_PROBE_DEFINE4(pf, ip6, route_to, entry, "struct mbuf *", 136 "struct pf_pdesc *", "struct pf_kstate *", "struct ifnet *"); 137 SDT_PROBE_DEFINE1(pf, ip6, route_to, drop, "int"); 138 SDT_PROBE_DEFINE2(pf, ip6, route_to, output, "struct ifnet *", "int"); 139 SDT_PROBE_DEFINE4(pf, sctp, multihome, test, "struct pfi_kkif *", 140 "struct pf_krule *", "struct mbuf *", "int"); 141 SDT_PROBE_DEFINE2(pf, sctp, multihome, add, "uint32_t", 142 "struct pf_sctp_source *"); 143 SDT_PROBE_DEFINE3(pf, sctp, multihome, remove, "uint32_t", 144 "struct pf_kstate *", "struct pf_sctp_source *"); 145 SDT_PROBE_DEFINE4(pf, sctp, multihome_scan, entry, "int", 146 "int", "struct pf_pdesc *", "int"); 147 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, param, "uint16_t", "uint16_t"); 148 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv4, "struct in_addr *", 149 "int"); 150 SDT_PROBE_DEFINE2(pf, sctp, multihome_scan, ipv6, "struct in_addr6 *", 151 "int"); 152 153 SDT_PROBE_DEFINE3(pf, eth, test_rule, entry, "int", "struct ifnet *", 154 "struct mbuf *"); 155 SDT_PROBE_DEFINE2(pf, eth, test_rule, test, "int", "struct pf_keth_rule *"); 156 SDT_PROBE_DEFINE3(pf, eth, test_rule, mismatch, 157 "int", "struct pf_keth_rule *", "char *"); 158 SDT_PROBE_DEFINE2(pf, eth, test_rule, match, "int", "struct pf_keth_rule *"); 159 SDT_PROBE_DEFINE2(pf, eth, test_rule, final_match, 160 "int", "struct pf_keth_rule *"); 161 SDT_PROBE_DEFINE2(pf, purge, state, rowcount, "int", "size_t"); 162 163 /* 164 * Global variables 165 */ 166 167 /* state tables */ 168 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 169 VNET_DEFINE(struct pf_kpalist, pf_pabuf[3]); 170 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 171 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 172 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 173 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 174 VNET_DEFINE(struct pf_kstatus, pf_status); 175 176 VNET_DEFINE(u_int32_t, ticket_altqs_active); 177 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 178 VNET_DEFINE(int, altqs_inactive_open); 179 VNET_DEFINE(u_int32_t, ticket_pabuf); 180 181 VNET_DEFINE(SHA512_CTX, pf_tcp_secret_ctx); 182 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 183 VNET_DEFINE(u_char, pf_tcp_secret[16]); 184 #define V_pf_tcp_secret VNET(pf_tcp_secret) 185 VNET_DEFINE(int, pf_tcp_secret_init); 186 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 187 VNET_DEFINE(int, pf_tcp_iss_off); 188 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 189 VNET_DECLARE(int, pf_vnet_active); 190 #define V_pf_vnet_active VNET(pf_vnet_active) 191 192 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 193 #define V_pf_purge_idx VNET(pf_purge_idx) 194 195 #ifdef PF_WANT_32_TO_64_COUNTER 196 VNET_DEFINE_STATIC(uint32_t, pf_counter_periodic_iter); 197 #define V_pf_counter_periodic_iter VNET(pf_counter_periodic_iter) 198 199 VNET_DEFINE(struct allrulelist_head, pf_allrulelist); 200 VNET_DEFINE(size_t, pf_allrulecount); 201 VNET_DEFINE(struct pf_krule *, pf_rulemarker); 202 #endif 203 204 struct pf_sctp_endpoint; 205 RB_HEAD(pf_sctp_endpoints, pf_sctp_endpoint); 206 struct pf_sctp_source { 207 sa_family_t af; 208 struct pf_addr addr; 209 TAILQ_ENTRY(pf_sctp_source) entry; 210 }; 211 TAILQ_HEAD(pf_sctp_sources, pf_sctp_source); 212 struct pf_sctp_endpoint 213 { 214 uint32_t v_tag; 215 struct pf_sctp_sources sources; 216 RB_ENTRY(pf_sctp_endpoint) entry; 217 }; 218 static int 219 pf_sctp_endpoint_compare(struct pf_sctp_endpoint *a, struct pf_sctp_endpoint *b) 220 { 221 return (a->v_tag - b->v_tag); 222 } 223 RB_PROTOTYPE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 224 RB_GENERATE(pf_sctp_endpoints, pf_sctp_endpoint, entry, pf_sctp_endpoint_compare); 225 VNET_DEFINE_STATIC(struct pf_sctp_endpoints, pf_sctp_endpoints); 226 #define V_pf_sctp_endpoints VNET(pf_sctp_endpoints) 227 static struct mtx_padalign pf_sctp_endpoints_mtx; 228 MTX_SYSINIT(pf_sctp_endpoints_mtx, &pf_sctp_endpoints_mtx, "SCTP endpoints", MTX_DEF); 229 #define PF_SCTP_ENDPOINTS_LOCK() mtx_lock(&pf_sctp_endpoints_mtx) 230 #define PF_SCTP_ENDPOINTS_UNLOCK() mtx_unlock(&pf_sctp_endpoints_mtx) 231 232 /* 233 * Queue for pf_intr() sends. 234 */ 235 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 236 struct pf_send_entry { 237 STAILQ_ENTRY(pf_send_entry) pfse_next; 238 struct mbuf *pfse_m; 239 enum { 240 PFSE_IP, 241 PFSE_IP6, 242 PFSE_ICMP, 243 PFSE_ICMP6, 244 } pfse_type; 245 struct { 246 int type; 247 int code; 248 int mtu; 249 } icmpopts; 250 }; 251 252 STAILQ_HEAD(pf_send_head, pf_send_entry); 253 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 254 #define V_pf_sendqueue VNET(pf_sendqueue) 255 256 static struct mtx_padalign pf_sendqueue_mtx; 257 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 258 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 259 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 260 261 /* 262 * Queue for pf_overload_task() tasks. 263 */ 264 struct pf_overload_entry { 265 SLIST_ENTRY(pf_overload_entry) next; 266 struct pf_addr addr; 267 sa_family_t af; 268 uint8_t dir; 269 struct pf_krule *rule; 270 }; 271 272 SLIST_HEAD(pf_overload_head, pf_overload_entry); 273 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 274 #define V_pf_overloadqueue VNET(pf_overloadqueue) 275 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 276 #define V_pf_overloadtask VNET(pf_overloadtask) 277 278 static struct mtx_padalign pf_overloadqueue_mtx; 279 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 280 "pf overload/flush queue", MTX_DEF); 281 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 282 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 283 284 VNET_DEFINE(struct pf_krulequeue, pf_unlinked_rules); 285 struct mtx_padalign pf_unlnkdrules_mtx; 286 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 287 MTX_DEF); 288 289 struct sx pf_config_lock; 290 SX_SYSINIT(pf_config_lock, &pf_config_lock, "pf config"); 291 292 struct mtx_padalign pf_table_stats_lock; 293 MTX_SYSINIT(pf_table_stats_lock, &pf_table_stats_lock, "pf table stats", 294 MTX_DEF); 295 296 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 297 #define V_pf_sources_z VNET(pf_sources_z) 298 uma_zone_t pf_mtag_z; 299 VNET_DEFINE(uma_zone_t, pf_state_z); 300 VNET_DEFINE(uma_zone_t, pf_state_key_z); 301 VNET_DEFINE(uma_zone_t, pf_udp_mapping_z); 302 303 VNET_DEFINE(struct unrhdr64, pf_stateid); 304 305 static void pf_src_tree_remove_state(struct pf_kstate *); 306 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 307 u_int32_t); 308 static void pf_add_threshold(struct pf_threshold *); 309 static int pf_check_threshold(struct pf_threshold *); 310 311 static void pf_change_ap(struct pf_pdesc *, struct pf_addr *, u_int16_t *, 312 struct pf_addr *, u_int16_t); 313 static int pf_modulate_sack(struct pf_pdesc *, 314 struct tcphdr *, struct pf_state_peer *); 315 int pf_icmp_mapping(struct pf_pdesc *, u_int8_t, int *, 316 u_int16_t *, u_int16_t *); 317 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 318 struct pf_addr *, struct pf_addr *, u_int16_t, 319 u_int16_t *, u_int16_t *, u_int16_t *, 320 u_int16_t *, u_int8_t, sa_family_t); 321 int pf_change_icmp_af(struct mbuf *, int, 322 struct pf_pdesc *, struct pf_pdesc *, 323 struct pf_addr *, struct pf_addr *, sa_family_t, 324 sa_family_t); 325 int pf_translate_icmp_af(int, void *); 326 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 327 sa_family_t, struct pf_krule *, int); 328 static void pf_detach_state(struct pf_kstate *); 329 static int pf_state_key_attach(struct pf_state_key *, 330 struct pf_state_key *, struct pf_kstate *); 331 static void pf_state_key_detach(struct pf_kstate *, int); 332 static int pf_state_key_ctor(void *, int, void *, int); 333 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 334 static __inline void pf_dummynet_flag_remove(struct mbuf *m, 335 struct pf_mtag *pf_mtag); 336 static int pf_dummynet(struct pf_pdesc *, struct pf_kstate *, 337 struct pf_krule *, struct mbuf **); 338 static int pf_dummynet_route(struct pf_pdesc *, 339 struct pf_kstate *, struct pf_krule *, 340 struct ifnet *, const struct sockaddr *, struct mbuf **); 341 static int pf_test_eth_rule(int, struct pfi_kkif *, 342 struct mbuf **); 343 static int pf_test_rule(struct pf_krule **, struct pf_kstate **, 344 struct pf_pdesc *, struct pf_krule **, 345 struct pf_kruleset **, u_short *, struct inpcb *); 346 static int pf_create_state(struct pf_krule *, 347 struct pf_test_ctx *, 348 struct pf_kstate **, u_int16_t, u_int16_t); 349 static int pf_state_key_addr_setup(struct pf_pdesc *, 350 struct pf_state_key_cmp *, int); 351 static int pf_tcp_track_full(struct pf_kstate *, 352 struct pf_pdesc *, u_short *, int *, 353 struct pf_state_peer *, struct pf_state_peer *, 354 u_int8_t, u_int8_t); 355 static int pf_tcp_track_sloppy(struct pf_kstate *, 356 struct pf_pdesc *, u_short *, 357 struct pf_state_peer *, struct pf_state_peer *, 358 u_int8_t, u_int8_t); 359 static int pf_test_state(struct pf_kstate **, struct pf_pdesc *, 360 u_short *); 361 int pf_icmp_state_lookup(struct pf_state_key_cmp *, 362 struct pf_pdesc *, struct pf_kstate **, 363 u_int16_t, u_int16_t, int, int *, int, int); 364 static int pf_test_state_icmp(struct pf_kstate **, 365 struct pf_pdesc *, u_short *); 366 static int pf_sctp_track(struct pf_kstate *, struct pf_pdesc *, 367 u_short *); 368 static void pf_sctp_multihome_detach_addr(const struct pf_kstate *); 369 static void pf_sctp_multihome_delayed(struct pf_pdesc *, 370 struct pfi_kkif *, struct pf_kstate *, int); 371 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 372 int, u_int16_t); 373 static int pf_check_proto_cksum(struct mbuf *, int, int, 374 u_int8_t, sa_family_t); 375 static int pf_walk_option6(struct pf_pdesc *, struct ip6_hdr *, 376 int, int, u_short *); 377 static int pf_walk_header6(struct pf_pdesc *, struct ip6_hdr *, 378 u_short *); 379 static void pf_print_state_parts(struct pf_kstate *, 380 struct pf_state_key *, struct pf_state_key *); 381 static int pf_patch_8(struct pf_pdesc *, u_int8_t *, u_int8_t, 382 bool); 383 static struct pf_kstate *pf_find_state(struct pfi_kkif *, 384 const struct pf_state_key_cmp *, u_int); 385 static bool pf_src_connlimit(struct pf_kstate *); 386 static int pf_match_rcvif(struct mbuf *, struct pf_krule *); 387 static void pf_counters_inc(int, struct pf_pdesc *, 388 struct pf_kstate *, struct pf_krule *, 389 struct pf_krule *); 390 static void pf_log_matches(struct pf_pdesc *, struct pf_krule *, 391 struct pf_krule *, struct pf_kruleset *, 392 struct pf_krule_slist *); 393 static void pf_overload_task(void *v, int pending); 394 static u_short pf_insert_src_node(struct pf_ksrc_node *[PF_SN_MAX], 395 struct pf_srchash *[PF_SN_MAX], struct pf_krule *, 396 struct pf_addr *, sa_family_t, struct pf_addr *, 397 struct pfi_kkif *, pf_sn_types_t); 398 static u_int pf_purge_expired_states(u_int, int); 399 static void pf_purge_unlinked_rules(void); 400 static int pf_mtag_uminit(void *, int, int); 401 static void pf_mtag_free(struct m_tag *); 402 static void pf_packet_rework_nat(struct pf_pdesc *, int, 403 struct pf_state_key *); 404 #ifdef INET 405 static void pf_route(struct pf_krule *, 406 struct ifnet *, struct pf_kstate *, 407 struct pf_pdesc *, struct inpcb *); 408 #endif /* INET */ 409 #ifdef INET6 410 static void pf_change_a6(struct pf_addr *, u_int16_t *, 411 struct pf_addr *, u_int8_t); 412 static void pf_route6(struct pf_krule *, 413 struct ifnet *, struct pf_kstate *, 414 struct pf_pdesc *, struct inpcb *); 415 #endif /* INET6 */ 416 static __inline void pf_set_protostate(struct pf_kstate *, int, u_int8_t); 417 418 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 419 420 extern int pf_end_threads; 421 extern struct proc *pf_purge_proc; 422 423 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 424 425 #define PACKET_UNDO_NAT(_pd, _off, _s) \ 426 do { \ 427 struct pf_state_key *nk; \ 428 if ((pd->dir) == PF_OUT) \ 429 nk = (_s)->key[PF_SK_STACK]; \ 430 else \ 431 nk = (_s)->key[PF_SK_WIRE]; \ 432 pf_packet_rework_nat(_pd, _off, nk); \ 433 } while (0) 434 435 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 436 (pd)->pf_mtag->flags & PF_MTAG_FLAG_PACKET_LOOPED) 437 438 #define STATE_LOOKUP(k, s, pd) \ 439 do { \ 440 (s) = pf_find_state((pd->kif), (k), (pd->dir)); \ 441 SDT_PROBE5(pf, ip, state, lookup, pd->kif, k, (pd->dir), pd, (s)); \ 442 if ((s) == NULL) \ 443 return (PF_DROP); \ 444 if (PACKET_LOOPED(pd)) \ 445 return (PF_PASS); \ 446 } while (0) 447 448 static struct pfi_kkif * 449 BOUND_IFACE(struct pf_kstate *st, struct pf_pdesc *pd) 450 { 451 struct pfi_kkif *k = pd->kif; 452 453 SDT_PROBE2(pf, ip, , bound_iface, st, k); 454 455 /* Floating unless otherwise specified. */ 456 if (! (st->rule->rule_flag & PFRULE_IFBOUND)) 457 return (V_pfi_all); 458 459 /* 460 * Initially set to all, because we don't know what interface we'll be 461 * sending this out when we create the state. 462 */ 463 if (st->rule->rt == PF_REPLYTO || (pd->af != pd->naf && st->direction == PF_IN)) 464 return (V_pfi_all); 465 466 /* 467 * If this state is created based on another state (e.g. SCTP 468 * multihome) always set it floating initially. We can't know for sure 469 * what interface the actual traffic for this state will come in on. 470 */ 471 if (pd->related_rule) 472 return (V_pfi_all); 473 474 /* Don't overrule the interface for states created on incoming packets. */ 475 if (st->direction == PF_IN) 476 return (k); 477 478 /* No route-to, so don't overrule. */ 479 if (st->act.rt != PF_ROUTETO) 480 return (k); 481 482 /* Bind to the route-to interface. */ 483 return (st->act.rt_kif); 484 } 485 486 #define STATE_INC_COUNTERS(s) \ 487 do { \ 488 struct pf_krule_item *mrm; \ 489 counter_u64_add(s->rule->states_cur, 1); \ 490 counter_u64_add(s->rule->states_tot, 1); \ 491 if (s->anchor != NULL) { \ 492 counter_u64_add(s->anchor->states_cur, 1); \ 493 counter_u64_add(s->anchor->states_tot, 1); \ 494 } \ 495 if (s->nat_rule != NULL) { \ 496 counter_u64_add(s->nat_rule->states_cur, 1);\ 497 counter_u64_add(s->nat_rule->states_tot, 1);\ 498 } \ 499 SLIST_FOREACH(mrm, &s->match_rules, entry) { \ 500 counter_u64_add(mrm->r->states_cur, 1); \ 501 counter_u64_add(mrm->r->states_tot, 1); \ 502 } \ 503 } while (0) 504 505 #define STATE_DEC_COUNTERS(s) \ 506 do { \ 507 struct pf_krule_item *mrm; \ 508 if (s->nat_rule != NULL) \ 509 counter_u64_add(s->nat_rule->states_cur, -1);\ 510 if (s->anchor != NULL) \ 511 counter_u64_add(s->anchor->states_cur, -1); \ 512 counter_u64_add(s->rule->states_cur, -1); \ 513 SLIST_FOREACH(mrm, &s->match_rules, entry) \ 514 counter_u64_add(mrm->r->states_cur, -1); \ 515 } while (0) 516 517 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 518 MALLOC_DEFINE(M_PF_RULE_ITEM, "pf_krule_item", "pf(4) rule items"); 519 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 520 VNET_DEFINE(struct pf_idhash *, pf_idhash); 521 VNET_DEFINE(struct pf_srchash *, pf_srchash); 522 VNET_DEFINE(struct pf_udpendpointhash *, pf_udpendpointhash); 523 VNET_DEFINE(struct pf_udpendpointmapping *, pf_udpendpointmapping); 524 525 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 526 "pf(4)"); 527 528 VNET_DEFINE(u_long, pf_hashmask); 529 VNET_DEFINE(u_long, pf_srchashmask); 530 VNET_DEFINE(u_long, pf_udpendpointhashmask); 531 VNET_DEFINE_STATIC(u_long, pf_hashsize); 532 #define V_pf_hashsize VNET(pf_hashsize) 533 VNET_DEFINE_STATIC(u_long, pf_srchashsize); 534 #define V_pf_srchashsize VNET(pf_srchashsize) 535 VNET_DEFINE_STATIC(u_long, pf_udpendpointhashsize); 536 #define V_pf_udpendpointhashsize VNET(pf_udpendpointhashsize) 537 u_long pf_ioctl_maxcount = 65535; 538 539 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 540 &VNET_NAME(pf_hashsize), 0, "Size of pf(4) states hashtable"); 541 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 542 &VNET_NAME(pf_srchashsize), 0, "Size of pf(4) source nodes hashtable"); 543 SYSCTL_ULONG(_net_pf, OID_AUTO, udpendpoint_hashsize, CTLFLAG_VNET | CTLFLAG_RDTUN, 544 &VNET_NAME(pf_udpendpointhashsize), 0, "Size of pf(4) endpoint hashtable"); 545 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RWTUN, 546 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 547 548 VNET_DEFINE(void *, pf_swi_cookie); 549 VNET_DEFINE(struct intr_event *, pf_swi_ie); 550 551 VNET_DEFINE(uint32_t, pf_hashseed); 552 #define V_pf_hashseed VNET(pf_hashseed) 553 554 static void 555 pf_sctp_checksum(struct mbuf *m, int off) 556 { 557 uint32_t sum = 0; 558 559 /* Zero out the checksum, to enable recalculation. */ 560 m_copyback(m, off + offsetof(struct sctphdr, checksum), 561 sizeof(sum), (caddr_t)&sum); 562 563 sum = sctp_calculate_cksum(m, off); 564 565 m_copyback(m, off + offsetof(struct sctphdr, checksum), 566 sizeof(sum), (caddr_t)&sum); 567 } 568 569 int 570 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 571 { 572 573 switch (af) { 574 #ifdef INET 575 case AF_INET: 576 if (a->addr32[0] > b->addr32[0]) 577 return (1); 578 if (a->addr32[0] < b->addr32[0]) 579 return (-1); 580 break; 581 #endif /* INET */ 582 #ifdef INET6 583 case AF_INET6: 584 if (a->addr32[3] > b->addr32[3]) 585 return (1); 586 if (a->addr32[3] < b->addr32[3]) 587 return (-1); 588 if (a->addr32[2] > b->addr32[2]) 589 return (1); 590 if (a->addr32[2] < b->addr32[2]) 591 return (-1); 592 if (a->addr32[1] > b->addr32[1]) 593 return (1); 594 if (a->addr32[1] < b->addr32[1]) 595 return (-1); 596 if (a->addr32[0] > b->addr32[0]) 597 return (1); 598 if (a->addr32[0] < b->addr32[0]) 599 return (-1); 600 break; 601 #endif /* INET6 */ 602 default: 603 unhandled_af(af); 604 } 605 return (0); 606 } 607 608 static bool 609 pf_is_loopback(sa_family_t af, struct pf_addr *addr) 610 { 611 switch (af) { 612 #ifdef INET 613 case AF_INET: 614 return IN_LOOPBACK(ntohl(addr->v4.s_addr)); 615 #endif /* INET */ 616 case AF_INET6: 617 return IN6_IS_ADDR_LOOPBACK(&addr->v6); 618 default: 619 unhandled_af(af); 620 } 621 } 622 623 static void 624 pf_packet_rework_nat(struct pf_pdesc *pd, int off, struct pf_state_key *nk) 625 { 626 627 switch (pd->proto) { 628 case IPPROTO_TCP: { 629 struct tcphdr *th = &pd->hdr.tcp; 630 631 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 632 pf_change_ap(pd, pd->src, &th->th_sport, 633 &nk->addr[pd->sidx], nk->port[pd->sidx]); 634 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 635 pf_change_ap(pd, pd->dst, &th->th_dport, 636 &nk->addr[pd->didx], nk->port[pd->didx]); 637 m_copyback(pd->m, off, sizeof(*th), (caddr_t)th); 638 break; 639 } 640 case IPPROTO_UDP: { 641 struct udphdr *uh = &pd->hdr.udp; 642 643 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) 644 pf_change_ap(pd, pd->src, &uh->uh_sport, 645 &nk->addr[pd->sidx], nk->port[pd->sidx]); 646 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) 647 pf_change_ap(pd, pd->dst, &uh->uh_dport, 648 &nk->addr[pd->didx], nk->port[pd->didx]); 649 m_copyback(pd->m, off, sizeof(*uh), (caddr_t)uh); 650 break; 651 } 652 case IPPROTO_SCTP: { 653 struct sctphdr *sh = &pd->hdr.sctp; 654 655 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 656 pf_change_ap(pd, pd->src, &sh->src_port, 657 &nk->addr[pd->sidx], nk->port[pd->sidx]); 658 } 659 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 660 pf_change_ap(pd, pd->dst, &sh->dest_port, 661 &nk->addr[pd->didx], nk->port[pd->didx]); 662 } 663 664 break; 665 } 666 case IPPROTO_ICMP: { 667 struct icmp *ih = &pd->hdr.icmp; 668 669 if (nk->port[pd->sidx] != ih->icmp_id) { 670 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 671 ih->icmp_cksum, ih->icmp_id, 672 nk->port[pd->sidx], 0); 673 ih->icmp_id = nk->port[pd->sidx]; 674 pd->sport = &ih->icmp_id; 675 676 m_copyback(pd->m, off, ICMP_MINLEN, (caddr_t)ih); 677 } 678 /* FALLTHROUGH */ 679 } 680 default: 681 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af)) { 682 switch (pd->af) { 683 case AF_INET: 684 pf_change_a(&pd->src->v4.s_addr, 685 pd->ip_sum, nk->addr[pd->sidx].v4.s_addr, 686 0); 687 break; 688 case AF_INET6: 689 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 690 break; 691 default: 692 unhandled_af(pd->af); 693 } 694 } 695 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af)) { 696 switch (pd->af) { 697 case AF_INET: 698 pf_change_a(&pd->dst->v4.s_addr, 699 pd->ip_sum, nk->addr[pd->didx].v4.s_addr, 700 0); 701 break; 702 case AF_INET6: 703 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 704 break; 705 default: 706 unhandled_af(pd->af); 707 } 708 } 709 break; 710 } 711 } 712 713 static __inline uint32_t 714 pf_hashkey(const struct pf_state_key *sk) 715 { 716 uint32_t h; 717 718 h = murmur3_32_hash32((const uint32_t *)sk, 719 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 720 V_pf_hashseed); 721 722 return (h & V_pf_hashmask); 723 } 724 725 __inline uint32_t 726 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 727 { 728 uint32_t h; 729 730 switch (af) { 731 case AF_INET: 732 h = murmur3_32_hash32((uint32_t *)&addr->v4, 733 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 734 break; 735 case AF_INET6: 736 h = murmur3_32_hash32((uint32_t *)&addr->v6, 737 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 738 break; 739 default: 740 unhandled_af(af); 741 } 742 743 return (h & V_pf_srchashmask); 744 } 745 746 static inline uint32_t 747 pf_hashudpendpoint(struct pf_udp_endpoint *endpoint) 748 { 749 uint32_t h; 750 751 h = murmur3_32_hash32((uint32_t *)endpoint, 752 sizeof(struct pf_udp_endpoint_cmp)/sizeof(uint32_t), 753 V_pf_hashseed); 754 return (h & V_pf_udpendpointhashmask); 755 } 756 757 #ifdef ALTQ 758 static int 759 pf_state_hash(struct pf_kstate *s) 760 { 761 u_int32_t hv = (intptr_t)s / sizeof(*s); 762 763 hv ^= crc32(&s->src, sizeof(s->src)); 764 hv ^= crc32(&s->dst, sizeof(s->dst)); 765 if (hv == 0) 766 hv = 1; 767 return (hv); 768 } 769 #endif /* ALTQ */ 770 771 static __inline void 772 pf_set_protostate(struct pf_kstate *s, int which, u_int8_t newstate) 773 { 774 if (which == PF_PEER_DST || which == PF_PEER_BOTH) 775 s->dst.state = newstate; 776 if (which == PF_PEER_DST) 777 return; 778 if (s->src.state == newstate) 779 return; 780 if (s->creatorid == V_pf_status.hostid && 781 s->key[PF_SK_STACK] != NULL && 782 s->key[PF_SK_STACK]->proto == IPPROTO_TCP && 783 !(TCPS_HAVEESTABLISHED(s->src.state) || 784 s->src.state == TCPS_CLOSED) && 785 (TCPS_HAVEESTABLISHED(newstate) || newstate == TCPS_CLOSED)) 786 atomic_add_32(&V_pf_status.states_halfopen, -1); 787 788 s->src.state = newstate; 789 } 790 791 static void 792 pf_init_threshold(struct pf_threshold *threshold, 793 u_int32_t limit, u_int32_t seconds) 794 { 795 threshold->limit = limit * PF_THRESHOLD_MULT; 796 threshold->seconds = seconds; 797 threshold->count = 0; 798 threshold->last = time_uptime; 799 } 800 801 static void 802 pf_add_threshold(struct pf_threshold *threshold) 803 { 804 u_int32_t t = time_uptime, diff = t - threshold->last; 805 806 if (diff >= threshold->seconds) 807 threshold->count = 0; 808 else 809 threshold->count -= threshold->count * diff / 810 threshold->seconds; 811 threshold->count += PF_THRESHOLD_MULT; 812 threshold->last = t; 813 } 814 815 static int 816 pf_check_threshold(struct pf_threshold *threshold) 817 { 818 return (threshold->count > threshold->limit); 819 } 820 821 static bool 822 pf_src_connlimit(struct pf_kstate *state) 823 { 824 struct pf_overload_entry *pfoe; 825 struct pf_ksrc_node *src_node = state->sns[PF_SN_LIMIT]; 826 bool limited = false; 827 828 PF_STATE_LOCK_ASSERT(state); 829 PF_SRC_NODE_LOCK(src_node); 830 831 src_node->conn++; 832 state->src.tcp_est = 1; 833 pf_add_threshold(&src_node->conn_rate); 834 835 if (state->rule->max_src_conn && 836 state->rule->max_src_conn < 837 src_node->conn) { 838 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 839 limited = true; 840 } 841 842 if (state->rule->max_src_conn_rate.limit && 843 pf_check_threshold(&src_node->conn_rate)) { 844 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 845 limited = true; 846 } 847 848 if (!limited) 849 goto done; 850 851 /* Kill this state. */ 852 state->timeout = PFTM_PURGE; 853 pf_set_protostate(state, PF_PEER_BOTH, TCPS_CLOSED); 854 855 if (state->rule->overload_tbl == NULL) 856 goto done; 857 858 /* Schedule overloading and flushing task. */ 859 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 860 if (pfoe == NULL) 861 goto done; /* too bad :( */ 862 863 bcopy(&src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 864 pfoe->af = state->key[PF_SK_WIRE]->af; 865 pfoe->rule = state->rule; 866 pfoe->dir = state->direction; 867 PF_OVERLOADQ_LOCK(); 868 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 869 PF_OVERLOADQ_UNLOCK(); 870 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 871 872 done: 873 PF_SRC_NODE_UNLOCK(src_node); 874 return (limited); 875 } 876 877 static void 878 pf_overload_task(void *v, int pending) 879 { 880 struct pf_overload_head queue; 881 struct pfr_addr p; 882 struct pf_overload_entry *pfoe, *pfoe1; 883 uint32_t killed = 0; 884 885 CURVNET_SET((struct vnet *)v); 886 887 PF_OVERLOADQ_LOCK(); 888 queue = V_pf_overloadqueue; 889 SLIST_INIT(&V_pf_overloadqueue); 890 PF_OVERLOADQ_UNLOCK(); 891 892 bzero(&p, sizeof(p)); 893 SLIST_FOREACH(pfoe, &queue, next) { 894 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 895 if (V_pf_status.debug >= PF_DEBUG_MISC) { 896 printf("%s: blocking address ", __func__); 897 pf_print_host(&pfoe->addr, 0, pfoe->af); 898 printf("\n"); 899 } 900 901 p.pfra_af = pfoe->af; 902 switch (pfoe->af) { 903 #ifdef INET 904 case AF_INET: 905 p.pfra_net = 32; 906 p.pfra_ip4addr = pfoe->addr.v4; 907 break; 908 #endif /* INET */ 909 #ifdef INET6 910 case AF_INET6: 911 p.pfra_net = 128; 912 p.pfra_ip6addr = pfoe->addr.v6; 913 break; 914 #endif /* INET6 */ 915 default: 916 unhandled_af(pfoe->af); 917 } 918 919 PF_RULES_WLOCK(); 920 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 921 PF_RULES_WUNLOCK(); 922 } 923 924 /* 925 * Remove those entries, that don't need flushing. 926 */ 927 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 928 if (pfoe->rule->flush == 0) { 929 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 930 free(pfoe, M_PFTEMP); 931 } else 932 counter_u64_add( 933 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 934 935 /* If nothing to flush, return. */ 936 if (SLIST_EMPTY(&queue)) { 937 CURVNET_RESTORE(); 938 return; 939 } 940 941 for (int i = 0; i <= V_pf_hashmask; i++) { 942 struct pf_idhash *ih = &V_pf_idhash[i]; 943 struct pf_state_key *sk; 944 struct pf_kstate *s; 945 946 PF_HASHROW_LOCK(ih); 947 LIST_FOREACH(s, &ih->states, entry) { 948 sk = s->key[PF_SK_WIRE]; 949 SLIST_FOREACH(pfoe, &queue, next) 950 if (sk->af == pfoe->af && 951 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 952 pfoe->rule == s->rule) && 953 ((pfoe->dir == PF_OUT && 954 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 955 (pfoe->dir == PF_IN && 956 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 957 s->timeout = PFTM_PURGE; 958 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 959 killed++; 960 } 961 } 962 PF_HASHROW_UNLOCK(ih); 963 } 964 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 965 free(pfoe, M_PFTEMP); 966 if (V_pf_status.debug >= PF_DEBUG_MISC) 967 printf("%s: %u states killed", __func__, killed); 968 969 CURVNET_RESTORE(); 970 } 971 972 /* 973 * On node found always returns locked. On not found its configurable. 974 */ 975 struct pf_ksrc_node * 976 pf_find_src_node(struct pf_addr *src, struct pf_krule *rule, sa_family_t af, 977 struct pf_srchash **sh, pf_sn_types_t sn_type, bool returnlocked) 978 { 979 struct pf_ksrc_node *n; 980 981 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 982 983 *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 984 PF_HASHROW_LOCK(*sh); 985 LIST_FOREACH(n, &(*sh)->nodes, entry) 986 if (n->rule == rule && n->af == af && n->type == sn_type && 987 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 988 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 989 break; 990 991 if (n == NULL && !returnlocked) 992 PF_HASHROW_UNLOCK(*sh); 993 994 return (n); 995 } 996 997 bool 998 pf_src_node_exists(struct pf_ksrc_node **sn, struct pf_srchash *sh) 999 { 1000 struct pf_ksrc_node *cur; 1001 1002 if ((*sn) == NULL) 1003 return (false); 1004 1005 KASSERT(sh != NULL, ("%s: sh is NULL", __func__)); 1006 1007 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 1008 PF_HASHROW_LOCK(sh); 1009 LIST_FOREACH(cur, &(sh->nodes), entry) { 1010 if (cur == (*sn) && 1011 cur->expire != 1) /* Ignore nodes being killed */ 1012 return (true); 1013 } 1014 PF_HASHROW_UNLOCK(sh); 1015 (*sn) = NULL; 1016 return (false); 1017 } 1018 1019 static void 1020 pf_free_src_node(struct pf_ksrc_node *sn) 1021 { 1022 1023 for (int i = 0; i < 2; i++) { 1024 counter_u64_free(sn->bytes[i]); 1025 counter_u64_free(sn->packets[i]); 1026 } 1027 uma_zfree(V_pf_sources_z, sn); 1028 } 1029 1030 static u_short 1031 pf_insert_src_node(struct pf_ksrc_node *sns[PF_SN_MAX], 1032 struct pf_srchash *snhs[PF_SN_MAX], struct pf_krule *rule, 1033 struct pf_addr *src, sa_family_t af, struct pf_addr *raddr, 1034 struct pfi_kkif *rkif, pf_sn_types_t sn_type) 1035 { 1036 u_short reason = 0; 1037 struct pf_krule *r_track = rule; 1038 struct pf_ksrc_node **sn = &(sns[sn_type]); 1039 struct pf_srchash **sh = &(snhs[sn_type]); 1040 1041 KASSERT(sn_type != PF_SN_LIMIT || (raddr == NULL && rkif == NULL), 1042 ("%s: raddr and rkif must be NULL for PF_SN_LIMIT", __func__)); 1043 1044 KASSERT(sn_type != PF_SN_LIMIT || (rule->rule_flag & PFRULE_SRCTRACK), 1045 ("%s: PF_SN_LIMIT only valid for rules with PFRULE_SRCTRACK", __func__)); 1046 1047 /* 1048 * XXX: There could be a KASSERT for 1049 * sn_type == PF_SN_LIMIT || (pool->opts & PF_POOL_STICKYADDR) 1050 * but we'd need to pass pool *only* for this KASSERT. 1051 */ 1052 1053 if ( (rule->rule_flag & PFRULE_SRCTRACK) && 1054 !(rule->rule_flag & PFRULE_RULESRCTRACK)) 1055 r_track = &V_pf_default_rule; 1056 1057 /* 1058 * Request the sh to always be locked, as we might insert a new sn. 1059 */ 1060 if (*sn == NULL) 1061 *sn = pf_find_src_node(src, r_track, af, sh, sn_type, true); 1062 1063 if (*sn == NULL) { 1064 PF_HASHROW_ASSERT(*sh); 1065 1066 if (sn_type == PF_SN_LIMIT && rule->max_src_nodes && 1067 counter_u64_fetch(r_track->src_nodes[sn_type]) >= rule->max_src_nodes) { 1068 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 1); 1069 reason = PFRES_SRCLIMIT; 1070 goto done; 1071 } 1072 1073 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 1074 if ((*sn) == NULL) { 1075 reason = PFRES_MEMORY; 1076 goto done; 1077 } 1078 1079 for (int i = 0; i < 2; i++) { 1080 (*sn)->bytes[i] = counter_u64_alloc(M_NOWAIT); 1081 (*sn)->packets[i] = counter_u64_alloc(M_NOWAIT); 1082 1083 if ((*sn)->bytes[i] == NULL || (*sn)->packets[i] == NULL) { 1084 pf_free_src_node(*sn); 1085 reason = PFRES_MEMORY; 1086 goto done; 1087 } 1088 } 1089 1090 if (sn_type == PF_SN_LIMIT) 1091 pf_init_threshold(&(*sn)->conn_rate, 1092 rule->max_src_conn_rate.limit, 1093 rule->max_src_conn_rate.seconds); 1094 1095 MPASS((*sn)->lock == NULL); 1096 (*sn)->lock = &(*sh)->lock; 1097 1098 (*sn)->af = af; 1099 (*sn)->rule = r_track; 1100 PF_ACPY(&(*sn)->addr, src, af); 1101 if (raddr != NULL) 1102 PF_ACPY(&(*sn)->raddr, raddr, af); 1103 (*sn)->rkif = rkif; 1104 LIST_INSERT_HEAD(&(*sh)->nodes, *sn, entry); 1105 (*sn)->creation = time_uptime; 1106 (*sn)->ruletype = rule->action; 1107 (*sn)->type = sn_type; 1108 counter_u64_add(r_track->src_nodes[sn_type], 1); 1109 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 1110 } else { 1111 if (sn_type == PF_SN_LIMIT && rule->max_src_states && 1112 (*sn)->states >= rule->max_src_states) { 1113 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 1114 1); 1115 reason = PFRES_SRCLIMIT; 1116 goto done; 1117 } 1118 } 1119 done: 1120 if (reason == 0) 1121 (*sn)->states++; 1122 else 1123 (*sn) = NULL; 1124 1125 PF_HASHROW_UNLOCK(*sh); 1126 return (reason); 1127 } 1128 1129 void 1130 pf_unlink_src_node(struct pf_ksrc_node *src) 1131 { 1132 PF_SRC_NODE_LOCK_ASSERT(src); 1133 1134 LIST_REMOVE(src, entry); 1135 if (src->rule) 1136 counter_u64_add(src->rule->src_nodes[src->type], -1); 1137 } 1138 1139 u_int 1140 pf_free_src_nodes(struct pf_ksrc_node_list *head) 1141 { 1142 struct pf_ksrc_node *sn, *tmp; 1143 u_int count = 0; 1144 1145 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 1146 pf_free_src_node(sn); 1147 count++; 1148 } 1149 1150 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 1151 1152 return (count); 1153 } 1154 1155 void 1156 pf_mtag_initialize(void) 1157 { 1158 1159 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 1160 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 1161 UMA_ALIGN_PTR, 0); 1162 } 1163 1164 /* Per-vnet data storage structures initialization. */ 1165 void 1166 pf_initialize(void) 1167 { 1168 struct pf_keyhash *kh; 1169 struct pf_idhash *ih; 1170 struct pf_srchash *sh; 1171 struct pf_udpendpointhash *uh; 1172 u_int i; 1173 1174 if (V_pf_hashsize == 0 || !powerof2(V_pf_hashsize)) 1175 V_pf_hashsize = PF_HASHSIZ; 1176 if (V_pf_srchashsize == 0 || !powerof2(V_pf_srchashsize)) 1177 V_pf_srchashsize = PF_SRCHASHSIZ; 1178 if (V_pf_udpendpointhashsize == 0 || !powerof2(V_pf_udpendpointhashsize)) 1179 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1180 1181 V_pf_hashseed = arc4random(); 1182 1183 /* States and state keys storage. */ 1184 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_kstate), 1185 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 1186 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 1187 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 1188 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 1189 1190 V_pf_state_key_z = uma_zcreate("pf state keys", 1191 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 1192 UMA_ALIGN_PTR, 0); 1193 1194 V_pf_keyhash = mallocarray(V_pf_hashsize, sizeof(struct pf_keyhash), 1195 M_PFHASH, M_NOWAIT | M_ZERO); 1196 V_pf_idhash = mallocarray(V_pf_hashsize, sizeof(struct pf_idhash), 1197 M_PFHASH, M_NOWAIT | M_ZERO); 1198 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 1199 printf("pf: Unable to allocate memory for " 1200 "state_hashsize %lu.\n", V_pf_hashsize); 1201 1202 free(V_pf_keyhash, M_PFHASH); 1203 free(V_pf_idhash, M_PFHASH); 1204 1205 V_pf_hashsize = PF_HASHSIZ; 1206 V_pf_keyhash = mallocarray(V_pf_hashsize, 1207 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 1208 V_pf_idhash = mallocarray(V_pf_hashsize, 1209 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 1210 } 1211 1212 V_pf_hashmask = V_pf_hashsize - 1; 1213 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= V_pf_hashmask; 1214 i++, kh++, ih++) { 1215 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 1216 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 1217 } 1218 1219 /* Source nodes. */ 1220 V_pf_sources_z = uma_zcreate("pf source nodes", 1221 sizeof(struct pf_ksrc_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 1222 0); 1223 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 1224 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 1225 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 1226 1227 V_pf_srchash = mallocarray(V_pf_srchashsize, 1228 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 1229 if (V_pf_srchash == NULL) { 1230 printf("pf: Unable to allocate memory for " 1231 "source_hashsize %lu.\n", V_pf_srchashsize); 1232 1233 V_pf_srchashsize = PF_SRCHASHSIZ; 1234 V_pf_srchash = mallocarray(V_pf_srchashsize, 1235 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 1236 } 1237 1238 V_pf_srchashmask = V_pf_srchashsize - 1; 1239 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) 1240 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 1241 1242 1243 /* UDP endpoint mappings. */ 1244 V_pf_udp_mapping_z = uma_zcreate("pf UDP mappings", 1245 sizeof(struct pf_udp_mapping), NULL, NULL, NULL, NULL, 1246 UMA_ALIGN_PTR, 0); 1247 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1248 sizeof(struct pf_udpendpointhash), M_PFHASH, M_NOWAIT | M_ZERO); 1249 if (V_pf_udpendpointhash == NULL) { 1250 printf("pf: Unable to allocate memory for " 1251 "udpendpoint_hashsize %lu.\n", V_pf_udpendpointhashsize); 1252 1253 V_pf_udpendpointhashsize = PF_UDPENDHASHSIZ; 1254 V_pf_udpendpointhash = mallocarray(V_pf_udpendpointhashsize, 1255 sizeof(struct pf_udpendpointhash), M_PFHASH, M_WAITOK | M_ZERO); 1256 } 1257 1258 V_pf_udpendpointhashmask = V_pf_udpendpointhashsize - 1; 1259 for (i = 0, uh = V_pf_udpendpointhash; 1260 i <= V_pf_udpendpointhashmask; 1261 i++, uh++) { 1262 mtx_init(&uh->lock, "pf_udpendpointhash", NULL, 1263 MTX_DEF | MTX_DUPOK); 1264 } 1265 1266 /* ALTQ */ 1267 TAILQ_INIT(&V_pf_altqs[0]); 1268 TAILQ_INIT(&V_pf_altqs[1]); 1269 TAILQ_INIT(&V_pf_altqs[2]); 1270 TAILQ_INIT(&V_pf_altqs[3]); 1271 TAILQ_INIT(&V_pf_pabuf[0]); 1272 TAILQ_INIT(&V_pf_pabuf[1]); 1273 TAILQ_INIT(&V_pf_pabuf[2]); 1274 V_pf_altqs_active = &V_pf_altqs[0]; 1275 V_pf_altq_ifs_active = &V_pf_altqs[1]; 1276 V_pf_altqs_inactive = &V_pf_altqs[2]; 1277 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 1278 1279 /* Send & overload+flush queues. */ 1280 STAILQ_INIT(&V_pf_sendqueue); 1281 SLIST_INIT(&V_pf_overloadqueue); 1282 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 1283 1284 /* Unlinked, but may be referenced rules. */ 1285 TAILQ_INIT(&V_pf_unlinked_rules); 1286 } 1287 1288 void 1289 pf_mtag_cleanup(void) 1290 { 1291 1292 uma_zdestroy(pf_mtag_z); 1293 } 1294 1295 void 1296 pf_cleanup(void) 1297 { 1298 struct pf_keyhash *kh; 1299 struct pf_idhash *ih; 1300 struct pf_srchash *sh; 1301 struct pf_udpendpointhash *uh; 1302 struct pf_send_entry *pfse, *next; 1303 u_int i; 1304 1305 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; 1306 i <= V_pf_hashmask; 1307 i++, kh++, ih++) { 1308 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 1309 __func__)); 1310 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 1311 __func__)); 1312 mtx_destroy(&kh->lock); 1313 mtx_destroy(&ih->lock); 1314 } 1315 free(V_pf_keyhash, M_PFHASH); 1316 free(V_pf_idhash, M_PFHASH); 1317 1318 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 1319 KASSERT(LIST_EMPTY(&sh->nodes), 1320 ("%s: source node hash not empty", __func__)); 1321 mtx_destroy(&sh->lock); 1322 } 1323 free(V_pf_srchash, M_PFHASH); 1324 1325 for (i = 0, uh = V_pf_udpendpointhash; 1326 i <= V_pf_udpendpointhashmask; 1327 i++, uh++) { 1328 KASSERT(LIST_EMPTY(&uh->endpoints), 1329 ("%s: udp endpoint hash not empty", __func__)); 1330 mtx_destroy(&uh->lock); 1331 } 1332 free(V_pf_udpendpointhash, M_PFHASH); 1333 1334 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 1335 m_freem(pfse->pfse_m); 1336 free(pfse, M_PFTEMP); 1337 } 1338 MPASS(RB_EMPTY(&V_pf_sctp_endpoints)); 1339 1340 uma_zdestroy(V_pf_sources_z); 1341 uma_zdestroy(V_pf_state_z); 1342 uma_zdestroy(V_pf_state_key_z); 1343 uma_zdestroy(V_pf_udp_mapping_z); 1344 } 1345 1346 static int 1347 pf_mtag_uminit(void *mem, int size, int how) 1348 { 1349 struct m_tag *t; 1350 1351 t = (struct m_tag *)mem; 1352 t->m_tag_cookie = MTAG_ABI_COMPAT; 1353 t->m_tag_id = PACKET_TAG_PF; 1354 t->m_tag_len = sizeof(struct pf_mtag); 1355 t->m_tag_free = pf_mtag_free; 1356 1357 return (0); 1358 } 1359 1360 static void 1361 pf_mtag_free(struct m_tag *t) 1362 { 1363 1364 uma_zfree(pf_mtag_z, t); 1365 } 1366 1367 struct pf_mtag * 1368 pf_get_mtag(struct mbuf *m) 1369 { 1370 struct m_tag *mtag; 1371 1372 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 1373 return ((struct pf_mtag *)(mtag + 1)); 1374 1375 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 1376 if (mtag == NULL) 1377 return (NULL); 1378 bzero(mtag + 1, sizeof(struct pf_mtag)); 1379 m_tag_prepend(m, mtag); 1380 1381 return ((struct pf_mtag *)(mtag + 1)); 1382 } 1383 1384 static int 1385 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 1386 struct pf_kstate *s) 1387 { 1388 struct pf_keyhash *khs, *khw, *kh; 1389 struct pf_state_key *sk, *cur; 1390 struct pf_kstate *si, *olds = NULL; 1391 int idx; 1392 1393 NET_EPOCH_ASSERT(); 1394 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1395 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 1396 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 1397 1398 /* 1399 * We need to lock hash slots of both keys. To avoid deadlock 1400 * we always lock the slot with lower address first. Unlock order 1401 * isn't important. 1402 * 1403 * We also need to lock ID hash slot before dropping key 1404 * locks. On success we return with ID hash slot locked. 1405 */ 1406 1407 if (skw == sks) { 1408 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 1409 PF_HASHROW_LOCK(khs); 1410 } else { 1411 khs = &V_pf_keyhash[pf_hashkey(sks)]; 1412 khw = &V_pf_keyhash[pf_hashkey(skw)]; 1413 if (khs == khw) { 1414 PF_HASHROW_LOCK(khs); 1415 } else if (khs < khw) { 1416 PF_HASHROW_LOCK(khs); 1417 PF_HASHROW_LOCK(khw); 1418 } else { 1419 PF_HASHROW_LOCK(khw); 1420 PF_HASHROW_LOCK(khs); 1421 } 1422 } 1423 1424 #define KEYS_UNLOCK() do { \ 1425 if (khs != khw) { \ 1426 PF_HASHROW_UNLOCK(khs); \ 1427 PF_HASHROW_UNLOCK(khw); \ 1428 } else \ 1429 PF_HASHROW_UNLOCK(khs); \ 1430 } while (0) 1431 1432 /* 1433 * First run: start with wire key. 1434 */ 1435 sk = skw; 1436 kh = khw; 1437 idx = PF_SK_WIRE; 1438 1439 MPASS(s->lock == NULL); 1440 s->lock = &V_pf_idhash[PF_IDHASH(s)].lock; 1441 1442 keyattach: 1443 LIST_FOREACH(cur, &kh->keys, entry) 1444 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1445 break; 1446 1447 if (cur != NULL) { 1448 /* Key exists. Check for same kif, if none, add to key. */ 1449 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1450 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1451 1452 PF_HASHROW_LOCK(ih); 1453 if (si->kif == s->kif && 1454 ((si->key[PF_SK_WIRE]->af == sk->af && 1455 si->direction == s->direction) || 1456 (si->key[PF_SK_WIRE]->af != 1457 si->key[PF_SK_STACK]->af && 1458 sk->af == si->key[PF_SK_STACK]->af && 1459 si->direction != s->direction))) { 1460 bool reuse = false; 1461 1462 if (sk->proto == IPPROTO_TCP && 1463 si->src.state >= TCPS_FIN_WAIT_2 && 1464 si->dst.state >= TCPS_FIN_WAIT_2) 1465 reuse = true; 1466 1467 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1468 printf("pf: %s key attach " 1469 "%s on %s: ", 1470 (idx == PF_SK_WIRE) ? 1471 "wire" : "stack", 1472 reuse ? "reuse" : "failed", 1473 s->kif->pfik_name); 1474 pf_print_state_parts(s, 1475 (idx == PF_SK_WIRE) ? 1476 sk : NULL, 1477 (idx == PF_SK_STACK) ? 1478 sk : NULL); 1479 printf(", existing: "); 1480 pf_print_state_parts(si, 1481 (idx == PF_SK_WIRE) ? 1482 sk : NULL, 1483 (idx == PF_SK_STACK) ? 1484 sk : NULL); 1485 printf("\n"); 1486 } 1487 1488 if (reuse) { 1489 /* 1490 * New state matches an old >FIN_WAIT_2 1491 * state. We can't drop key hash locks, 1492 * thus we can't unlink it properly. 1493 * 1494 * As a workaround we drop it into 1495 * TCPS_CLOSED state, schedule purge 1496 * ASAP and push it into the very end 1497 * of the slot TAILQ, so that it won't 1498 * conflict with our new state. 1499 */ 1500 pf_set_protostate(si, PF_PEER_BOTH, 1501 TCPS_CLOSED); 1502 si->timeout = PFTM_PURGE; 1503 olds = si; 1504 } else { 1505 s->timeout = PFTM_UNLINKED; 1506 if (idx == PF_SK_STACK) 1507 /* 1508 * Remove the wire key from 1509 * the hash. Other threads 1510 * can't be referencing it 1511 * because we still hold the 1512 * hash lock. 1513 */ 1514 pf_state_key_detach(s, 1515 PF_SK_WIRE); 1516 PF_HASHROW_UNLOCK(ih); 1517 KEYS_UNLOCK(); 1518 if (idx == PF_SK_WIRE) 1519 /* 1520 * We've not inserted either key. 1521 * Free both. 1522 */ 1523 uma_zfree(V_pf_state_key_z, skw); 1524 if (skw != sks) 1525 uma_zfree( 1526 V_pf_state_key_z, 1527 sks); 1528 return (EEXIST); /* collision! */ 1529 } 1530 } 1531 PF_HASHROW_UNLOCK(ih); 1532 } 1533 uma_zfree(V_pf_state_key_z, sk); 1534 s->key[idx] = cur; 1535 } else { 1536 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1537 s->key[idx] = sk; 1538 } 1539 1540 stateattach: 1541 /* List is sorted, if-bound states before floating. */ 1542 if (s->kif == V_pfi_all) 1543 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1544 else 1545 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1546 1547 if (olds) { 1548 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1549 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1550 key_list[idx]); 1551 olds = NULL; 1552 } 1553 1554 /* 1555 * Attach done. See how should we (or should not?) 1556 * attach a second key. 1557 */ 1558 if (sks == skw) { 1559 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1560 idx = PF_SK_STACK; 1561 sks = NULL; 1562 goto stateattach; 1563 } else if (sks != NULL) { 1564 /* 1565 * Continue attaching with stack key. 1566 */ 1567 sk = sks; 1568 kh = khs; 1569 idx = PF_SK_STACK; 1570 sks = NULL; 1571 goto keyattach; 1572 } 1573 1574 PF_STATE_LOCK(s); 1575 KEYS_UNLOCK(); 1576 1577 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1578 ("%s failure", __func__)); 1579 1580 return (0); 1581 #undef KEYS_UNLOCK 1582 } 1583 1584 static void 1585 pf_detach_state(struct pf_kstate *s) 1586 { 1587 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1588 struct pf_keyhash *kh; 1589 1590 NET_EPOCH_ASSERT(); 1591 MPASS(s->timeout >= PFTM_MAX); 1592 1593 pf_sctp_multihome_detach_addr(s); 1594 1595 if ((s->state_flags & PFSTATE_PFLOW) && V_pflow_export_state_ptr) 1596 V_pflow_export_state_ptr(s); 1597 1598 if (sks != NULL) { 1599 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1600 PF_HASHROW_LOCK(kh); 1601 if (s->key[PF_SK_STACK] != NULL) 1602 pf_state_key_detach(s, PF_SK_STACK); 1603 /* 1604 * If both point to same key, then we are done. 1605 */ 1606 if (sks == s->key[PF_SK_WIRE]) { 1607 pf_state_key_detach(s, PF_SK_WIRE); 1608 PF_HASHROW_UNLOCK(kh); 1609 return; 1610 } 1611 PF_HASHROW_UNLOCK(kh); 1612 } 1613 1614 if (s->key[PF_SK_WIRE] != NULL) { 1615 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1616 PF_HASHROW_LOCK(kh); 1617 if (s->key[PF_SK_WIRE] != NULL) 1618 pf_state_key_detach(s, PF_SK_WIRE); 1619 PF_HASHROW_UNLOCK(kh); 1620 } 1621 } 1622 1623 static void 1624 pf_state_key_detach(struct pf_kstate *s, int idx) 1625 { 1626 struct pf_state_key *sk = s->key[idx]; 1627 #ifdef INVARIANTS 1628 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1629 1630 PF_HASHROW_ASSERT(kh); 1631 #endif /* INVARIANTS */ 1632 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1633 s->key[idx] = NULL; 1634 1635 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1636 LIST_REMOVE(sk, entry); 1637 uma_zfree(V_pf_state_key_z, sk); 1638 } 1639 } 1640 1641 static int 1642 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1643 { 1644 struct pf_state_key *sk = mem; 1645 1646 bzero(sk, sizeof(struct pf_state_key_cmp)); 1647 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1648 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1649 1650 return (0); 1651 } 1652 1653 static int 1654 pf_state_key_addr_setup(struct pf_pdesc *pd, 1655 struct pf_state_key_cmp *key, int multi) 1656 { 1657 struct pf_addr *saddr = pd->src; 1658 struct pf_addr *daddr = pd->dst; 1659 #ifdef INET6 1660 struct nd_neighbor_solicit nd; 1661 struct pf_addr *target; 1662 u_short action, reason; 1663 1664 if (pd->af == AF_INET || pd->proto != IPPROTO_ICMPV6) 1665 goto copy; 1666 1667 switch (pd->hdr.icmp6.icmp6_type) { 1668 case ND_NEIGHBOR_SOLICIT: 1669 if (multi) 1670 return (-1); 1671 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1672 return (-1); 1673 target = (struct pf_addr *)&nd.nd_ns_target; 1674 daddr = target; 1675 break; 1676 case ND_NEIGHBOR_ADVERT: 1677 if (multi) 1678 return (-1); 1679 if (!pf_pull_hdr(pd->m, pd->off, &nd, sizeof(nd), &action, &reason, pd->af)) 1680 return (-1); 1681 target = (struct pf_addr *)&nd.nd_ns_target; 1682 saddr = target; 1683 if (IN6_IS_ADDR_MULTICAST(&pd->dst->v6)) { 1684 key->addr[pd->didx].addr32[0] = 0; 1685 key->addr[pd->didx].addr32[1] = 0; 1686 key->addr[pd->didx].addr32[2] = 0; 1687 key->addr[pd->didx].addr32[3] = 0; 1688 daddr = NULL; /* overwritten */ 1689 } 1690 break; 1691 default: 1692 if (multi) { 1693 key->addr[pd->sidx].addr32[0] = IPV6_ADDR_INT32_MLL; 1694 key->addr[pd->sidx].addr32[1] = 0; 1695 key->addr[pd->sidx].addr32[2] = 0; 1696 key->addr[pd->sidx].addr32[3] = IPV6_ADDR_INT32_ONE; 1697 saddr = NULL; /* overwritten */ 1698 } 1699 } 1700 copy: 1701 #endif /* INET6 */ 1702 if (saddr) 1703 PF_ACPY(&key->addr[pd->sidx], saddr, pd->af); 1704 if (daddr) 1705 PF_ACPY(&key->addr[pd->didx], daddr, pd->af); 1706 1707 return (0); 1708 } 1709 1710 int 1711 pf_state_key_setup(struct pf_pdesc *pd, u_int16_t sport, u_int16_t dport, 1712 struct pf_state_key **sk, struct pf_state_key **nk) 1713 { 1714 *sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1715 if (*sk == NULL) 1716 return (ENOMEM); 1717 1718 if (pf_state_key_addr_setup(pd, (struct pf_state_key_cmp *)*sk, 1719 0)) { 1720 uma_zfree(V_pf_state_key_z, *sk); 1721 *sk = NULL; 1722 return (ENOMEM); 1723 } 1724 1725 (*sk)->port[pd->sidx] = sport; 1726 (*sk)->port[pd->didx] = dport; 1727 (*sk)->proto = pd->proto; 1728 (*sk)->af = pd->af; 1729 1730 *nk = pf_state_key_clone(*sk); 1731 if (*nk == NULL) { 1732 uma_zfree(V_pf_state_key_z, *sk); 1733 *sk = NULL; 1734 return (ENOMEM); 1735 } 1736 1737 if (pd->af != pd->naf) { 1738 (*sk)->port[pd->sidx] = pd->osport; 1739 (*sk)->port[pd->didx] = pd->odport; 1740 1741 (*nk)->af = pd->naf; 1742 1743 /* 1744 * We're overwriting an address here, so potentially there's bits of an IPv6 1745 * address left in here. Clear that out first. 1746 */ 1747 bzero(&(*nk)->addr[0], sizeof((*nk)->addr[0])); 1748 bzero(&(*nk)->addr[1], sizeof((*nk)->addr[1])); 1749 if (pd->dir == PF_IN) { 1750 PF_ACPY(&(*nk)->addr[pd->didx], &pd->nsaddr, pd->naf); 1751 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->ndaddr, pd->naf); 1752 (*nk)->port[pd->didx] = pd->nsport; 1753 (*nk)->port[pd->sidx] = pd->ndport; 1754 } else { 1755 PF_ACPY(&(*nk)->addr[pd->sidx], &pd->nsaddr, pd->naf); 1756 PF_ACPY(&(*nk)->addr[pd->didx], &pd->ndaddr, pd->naf); 1757 (*nk)->port[pd->sidx] = pd->nsport; 1758 (*nk)->port[pd->didx] = pd->ndport; 1759 } 1760 1761 switch (pd->proto) { 1762 case IPPROTO_ICMP: 1763 (*nk)->proto = IPPROTO_ICMPV6; 1764 break; 1765 case IPPROTO_ICMPV6: 1766 (*nk)->proto = IPPROTO_ICMP; 1767 break; 1768 default: 1769 (*nk)->proto = pd->proto; 1770 } 1771 } 1772 1773 return (0); 1774 } 1775 1776 struct pf_state_key * 1777 pf_state_key_clone(const struct pf_state_key *orig) 1778 { 1779 struct pf_state_key *sk; 1780 1781 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1782 if (sk == NULL) 1783 return (NULL); 1784 1785 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1786 1787 return (sk); 1788 } 1789 1790 int 1791 pf_state_insert(struct pfi_kkif *kif, struct pfi_kkif *orig_kif, 1792 struct pf_state_key *skw, struct pf_state_key *sks, struct pf_kstate *s) 1793 { 1794 struct pf_idhash *ih; 1795 struct pf_kstate *cur; 1796 int error; 1797 1798 NET_EPOCH_ASSERT(); 1799 1800 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1801 ("%s: sks not pristine", __func__)); 1802 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1803 ("%s: skw not pristine", __func__)); 1804 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1805 1806 s->kif = kif; 1807 s->orig_kif = orig_kif; 1808 1809 if (s->id == 0 && s->creatorid == 0) { 1810 s->id = alloc_unr64(&V_pf_stateid); 1811 s->id = htobe64(s->id); 1812 s->creatorid = V_pf_status.hostid; 1813 } 1814 1815 /* Returns with ID locked on success. */ 1816 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1817 return (error); 1818 skw = sks = NULL; 1819 1820 ih = &V_pf_idhash[PF_IDHASH(s)]; 1821 PF_HASHROW_ASSERT(ih); 1822 LIST_FOREACH(cur, &ih->states, entry) 1823 if (cur->id == s->id && cur->creatorid == s->creatorid) 1824 break; 1825 1826 if (cur != NULL) { 1827 s->timeout = PFTM_UNLINKED; 1828 PF_HASHROW_UNLOCK(ih); 1829 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1830 printf("pf: state ID collision: " 1831 "id: %016llx creatorid: %08x\n", 1832 (unsigned long long)be64toh(s->id), 1833 ntohl(s->creatorid)); 1834 } 1835 pf_detach_state(s); 1836 return (EEXIST); 1837 } 1838 LIST_INSERT_HEAD(&ih->states, s, entry); 1839 /* One for keys, one for ID hash. */ 1840 refcount_init(&s->refs, 2); 1841 1842 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1843 if (V_pfsync_insert_state_ptr != NULL) 1844 V_pfsync_insert_state_ptr(s); 1845 1846 /* Returns locked. */ 1847 return (0); 1848 } 1849 1850 /* 1851 * Find state by ID: returns with locked row on success. 1852 */ 1853 struct pf_kstate * 1854 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1855 { 1856 struct pf_idhash *ih; 1857 struct pf_kstate *s; 1858 1859 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1860 1861 ih = &V_pf_idhash[PF_IDHASHID(id)]; 1862 1863 PF_HASHROW_LOCK(ih); 1864 LIST_FOREACH(s, &ih->states, entry) 1865 if (s->id == id && s->creatorid == creatorid) 1866 break; 1867 1868 if (s == NULL) 1869 PF_HASHROW_UNLOCK(ih); 1870 1871 return (s); 1872 } 1873 1874 /* 1875 * Find state by key. 1876 * Returns with ID hash slot locked on success. 1877 */ 1878 static struct pf_kstate * 1879 pf_find_state(struct pfi_kkif *kif, const struct pf_state_key_cmp *key, 1880 u_int dir) 1881 { 1882 struct pf_keyhash *kh; 1883 struct pf_state_key *sk; 1884 struct pf_kstate *s; 1885 int idx; 1886 1887 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1888 1889 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1890 1891 PF_HASHROW_LOCK(kh); 1892 LIST_FOREACH(sk, &kh->keys, entry) 1893 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1894 break; 1895 if (sk == NULL) { 1896 PF_HASHROW_UNLOCK(kh); 1897 return (NULL); 1898 } 1899 1900 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1901 1902 /* List is sorted, if-bound states before floating ones. */ 1903 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1904 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1905 PF_STATE_LOCK(s); 1906 PF_HASHROW_UNLOCK(kh); 1907 if (__predict_false(s->timeout >= PFTM_MAX)) { 1908 /* 1909 * State is either being processed by 1910 * pf_remove_state() in an other thread, or 1911 * is scheduled for immediate expiry. 1912 */ 1913 PF_STATE_UNLOCK(s); 1914 return (NULL); 1915 } 1916 return (s); 1917 } 1918 1919 /* Look through the other list, in case of AF-TO */ 1920 idx = idx == PF_SK_WIRE ? PF_SK_STACK : PF_SK_WIRE; 1921 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1922 if (s->key[PF_SK_WIRE]->af == s->key[PF_SK_STACK]->af) 1923 continue; 1924 if (s->kif == V_pfi_all || s->kif == kif || s->orig_kif == kif) { 1925 PF_STATE_LOCK(s); 1926 PF_HASHROW_UNLOCK(kh); 1927 if (__predict_false(s->timeout >= PFTM_MAX)) { 1928 /* 1929 * State is either being processed by 1930 * pf_remove_state() in an other thread, or 1931 * is scheduled for immediate expiry. 1932 */ 1933 PF_STATE_UNLOCK(s); 1934 return (NULL); 1935 } 1936 return (s); 1937 } 1938 } 1939 1940 PF_HASHROW_UNLOCK(kh); 1941 1942 return (NULL); 1943 } 1944 1945 /* 1946 * Returns with ID hash slot locked on success. 1947 */ 1948 struct pf_kstate * 1949 pf_find_state_all(const struct pf_state_key_cmp *key, u_int dir, int *more) 1950 { 1951 struct pf_keyhash *kh; 1952 struct pf_state_key *sk; 1953 struct pf_kstate *s, *ret = NULL; 1954 int idx, inout = 0; 1955 1956 if (more != NULL) 1957 *more = 0; 1958 1959 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1960 1961 kh = &V_pf_keyhash[pf_hashkey((const struct pf_state_key *)key)]; 1962 1963 PF_HASHROW_LOCK(kh); 1964 LIST_FOREACH(sk, &kh->keys, entry) 1965 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1966 break; 1967 if (sk == NULL) { 1968 PF_HASHROW_UNLOCK(kh); 1969 return (NULL); 1970 } 1971 switch (dir) { 1972 case PF_IN: 1973 idx = PF_SK_WIRE; 1974 break; 1975 case PF_OUT: 1976 idx = PF_SK_STACK; 1977 break; 1978 case PF_INOUT: 1979 idx = PF_SK_WIRE; 1980 inout = 1; 1981 break; 1982 default: 1983 panic("%s: dir %u", __func__, dir); 1984 } 1985 second_run: 1986 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1987 if (more == NULL) { 1988 PF_STATE_LOCK(s); 1989 PF_HASHROW_UNLOCK(kh); 1990 return (s); 1991 } 1992 1993 if (ret) 1994 (*more)++; 1995 else { 1996 ret = s; 1997 PF_STATE_LOCK(s); 1998 } 1999 } 2000 if (inout == 1) { 2001 inout = 0; 2002 idx = PF_SK_STACK; 2003 goto second_run; 2004 } 2005 PF_HASHROW_UNLOCK(kh); 2006 2007 return (ret); 2008 } 2009 2010 /* 2011 * FIXME 2012 * This routine is inefficient -- locks the state only to unlock immediately on 2013 * return. 2014 * It is racy -- after the state is unlocked nothing stops other threads from 2015 * removing it. 2016 */ 2017 bool 2018 pf_find_state_all_exists(const struct pf_state_key_cmp *key, u_int dir) 2019 { 2020 struct pf_kstate *s; 2021 2022 s = pf_find_state_all(key, dir, NULL); 2023 if (s != NULL) { 2024 PF_STATE_UNLOCK(s); 2025 return (true); 2026 } 2027 return (false); 2028 } 2029 2030 struct pf_udp_mapping * 2031 pf_udp_mapping_create(sa_family_t af, struct pf_addr *src_addr, uint16_t src_port, 2032 struct pf_addr *nat_addr, uint16_t nat_port) 2033 { 2034 struct pf_udp_mapping *mapping; 2035 2036 mapping = uma_zalloc(V_pf_udp_mapping_z, M_NOWAIT | M_ZERO); 2037 if (mapping == NULL) 2038 return (NULL); 2039 PF_ACPY(&mapping->endpoints[0].addr, src_addr, af); 2040 mapping->endpoints[0].port = src_port; 2041 mapping->endpoints[0].af = af; 2042 mapping->endpoints[0].mapping = mapping; 2043 PF_ACPY(&mapping->endpoints[1].addr, nat_addr, af); 2044 mapping->endpoints[1].port = nat_port; 2045 mapping->endpoints[1].af = af; 2046 mapping->endpoints[1].mapping = mapping; 2047 refcount_init(&mapping->refs, 1); 2048 return (mapping); 2049 } 2050 2051 int 2052 pf_udp_mapping_insert(struct pf_udp_mapping *mapping) 2053 { 2054 struct pf_udpendpointhash *h0, *h1; 2055 struct pf_udp_endpoint *endpoint; 2056 int ret = EEXIST; 2057 2058 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2059 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2060 if (h0 == h1) { 2061 PF_HASHROW_LOCK(h0); 2062 } else if (h0 < h1) { 2063 PF_HASHROW_LOCK(h0); 2064 PF_HASHROW_LOCK(h1); 2065 } else { 2066 PF_HASHROW_LOCK(h1); 2067 PF_HASHROW_LOCK(h0); 2068 } 2069 2070 LIST_FOREACH(endpoint, &h0->endpoints, entry) { 2071 if (bcmp(endpoint, &mapping->endpoints[0], 2072 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2073 break; 2074 } 2075 if (endpoint != NULL) 2076 goto cleanup; 2077 LIST_FOREACH(endpoint, &h1->endpoints, entry) { 2078 if (bcmp(endpoint, &mapping->endpoints[1], 2079 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2080 break; 2081 } 2082 if (endpoint != NULL) 2083 goto cleanup; 2084 LIST_INSERT_HEAD(&h0->endpoints, &mapping->endpoints[0], entry); 2085 LIST_INSERT_HEAD(&h1->endpoints, &mapping->endpoints[1], entry); 2086 ret = 0; 2087 2088 cleanup: 2089 if (h0 != h1) { 2090 PF_HASHROW_UNLOCK(h0); 2091 PF_HASHROW_UNLOCK(h1); 2092 } else { 2093 PF_HASHROW_UNLOCK(h0); 2094 } 2095 return (ret); 2096 } 2097 2098 void 2099 pf_udp_mapping_release(struct pf_udp_mapping *mapping) 2100 { 2101 /* refcount is synchronized on the source endpoint's row lock */ 2102 struct pf_udpendpointhash *h0, *h1; 2103 2104 if (mapping == NULL) 2105 return; 2106 2107 h0 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[0])]; 2108 PF_HASHROW_LOCK(h0); 2109 if (refcount_release(&mapping->refs)) { 2110 LIST_REMOVE(&mapping->endpoints[0], entry); 2111 PF_HASHROW_UNLOCK(h0); 2112 h1 = &V_pf_udpendpointhash[pf_hashudpendpoint(&mapping->endpoints[1])]; 2113 PF_HASHROW_LOCK(h1); 2114 LIST_REMOVE(&mapping->endpoints[1], entry); 2115 PF_HASHROW_UNLOCK(h1); 2116 2117 uma_zfree(V_pf_udp_mapping_z, mapping); 2118 } else { 2119 PF_HASHROW_UNLOCK(h0); 2120 } 2121 } 2122 2123 2124 struct pf_udp_mapping * 2125 pf_udp_mapping_find(struct pf_udp_endpoint_cmp *key) 2126 { 2127 struct pf_udpendpointhash *uh; 2128 struct pf_udp_endpoint *endpoint; 2129 2130 uh = &V_pf_udpendpointhash[pf_hashudpendpoint((struct pf_udp_endpoint*)key)]; 2131 2132 PF_HASHROW_LOCK(uh); 2133 LIST_FOREACH(endpoint, &uh->endpoints, entry) { 2134 if (bcmp(endpoint, key, sizeof(struct pf_udp_endpoint_cmp)) == 0 && 2135 bcmp(endpoint, &endpoint->mapping->endpoints[0], 2136 sizeof(struct pf_udp_endpoint_cmp)) == 0) 2137 break; 2138 } 2139 if (endpoint == NULL) { 2140 PF_HASHROW_UNLOCK(uh); 2141 return (NULL); 2142 } 2143 refcount_acquire(&endpoint->mapping->refs); 2144 PF_HASHROW_UNLOCK(uh); 2145 return (endpoint->mapping); 2146 } 2147 /* END state table stuff */ 2148 2149 static void 2150 pf_send(struct pf_send_entry *pfse) 2151 { 2152 2153 PF_SENDQ_LOCK(); 2154 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 2155 PF_SENDQ_UNLOCK(); 2156 swi_sched(V_pf_swi_cookie, 0); 2157 } 2158 2159 static bool 2160 pf_isforlocal(struct mbuf *m, int af) 2161 { 2162 switch (af) { 2163 #ifdef INET 2164 case AF_INET: { 2165 struct ip *ip = mtod(m, struct ip *); 2166 2167 return (in_localip(ip->ip_dst)); 2168 } 2169 #endif /* INET */ 2170 #ifdef INET6 2171 case AF_INET6: { 2172 struct ip6_hdr *ip6; 2173 struct in6_ifaddr *ia; 2174 ip6 = mtod(m, struct ip6_hdr *); 2175 ia = in6ifa_ifwithaddr(&ip6->ip6_dst, 0 /* XXX */, false); 2176 if (ia == NULL) 2177 return (false); 2178 return (! (ia->ia6_flags & IN6_IFF_NOTREADY)); 2179 } 2180 #endif /* INET6 */ 2181 default: 2182 unhandled_af(af); 2183 } 2184 2185 return (false); 2186 } 2187 2188 int 2189 pf_icmp_mapping(struct pf_pdesc *pd, u_int8_t type, 2190 int *icmp_dir, u_int16_t *virtual_id, u_int16_t *virtual_type) 2191 { 2192 /* 2193 * ICMP types marked with PF_OUT are typically responses to 2194 * PF_IN, and will match states in the opposite direction. 2195 * PF_IN ICMP types need to match a state with that type. 2196 */ 2197 *icmp_dir = PF_OUT; 2198 2199 /* Queries (and responses) */ 2200 switch (pd->af) { 2201 #ifdef INET 2202 case AF_INET: 2203 switch (type) { 2204 case ICMP_ECHO: 2205 *icmp_dir = PF_IN; 2206 /* FALLTHROUGH */ 2207 case ICMP_ECHOREPLY: 2208 *virtual_type = ICMP_ECHO; 2209 *virtual_id = pd->hdr.icmp.icmp_id; 2210 break; 2211 2212 case ICMP_TSTAMP: 2213 *icmp_dir = PF_IN; 2214 /* FALLTHROUGH */ 2215 case ICMP_TSTAMPREPLY: 2216 *virtual_type = ICMP_TSTAMP; 2217 *virtual_id = pd->hdr.icmp.icmp_id; 2218 break; 2219 2220 case ICMP_IREQ: 2221 *icmp_dir = PF_IN; 2222 /* FALLTHROUGH */ 2223 case ICMP_IREQREPLY: 2224 *virtual_type = ICMP_IREQ; 2225 *virtual_id = pd->hdr.icmp.icmp_id; 2226 break; 2227 2228 case ICMP_MASKREQ: 2229 *icmp_dir = PF_IN; 2230 /* FALLTHROUGH */ 2231 case ICMP_MASKREPLY: 2232 *virtual_type = ICMP_MASKREQ; 2233 *virtual_id = pd->hdr.icmp.icmp_id; 2234 break; 2235 2236 case ICMP_IPV6_WHEREAREYOU: 2237 *icmp_dir = PF_IN; 2238 /* FALLTHROUGH */ 2239 case ICMP_IPV6_IAMHERE: 2240 *virtual_type = ICMP_IPV6_WHEREAREYOU; 2241 *virtual_id = 0; /* Nothing sane to match on! */ 2242 break; 2243 2244 case ICMP_MOBILE_REGREQUEST: 2245 *icmp_dir = PF_IN; 2246 /* FALLTHROUGH */ 2247 case ICMP_MOBILE_REGREPLY: 2248 *virtual_type = ICMP_MOBILE_REGREQUEST; 2249 *virtual_id = 0; /* Nothing sane to match on! */ 2250 break; 2251 2252 case ICMP_ROUTERSOLICIT: 2253 *icmp_dir = PF_IN; 2254 /* FALLTHROUGH */ 2255 case ICMP_ROUTERADVERT: 2256 *virtual_type = ICMP_ROUTERSOLICIT; 2257 *virtual_id = 0; /* Nothing sane to match on! */ 2258 break; 2259 2260 /* These ICMP types map to other connections */ 2261 case ICMP_UNREACH: 2262 case ICMP_SOURCEQUENCH: 2263 case ICMP_REDIRECT: 2264 case ICMP_TIMXCEED: 2265 case ICMP_PARAMPROB: 2266 /* These will not be used, but set them anyway */ 2267 *icmp_dir = PF_IN; 2268 *virtual_type = type; 2269 *virtual_id = 0; 2270 *virtual_type = htons(*virtual_type); 2271 return (1); /* These types match to another state */ 2272 2273 /* 2274 * All remaining ICMP types get their own states, 2275 * and will only match in one direction. 2276 */ 2277 default: 2278 *icmp_dir = PF_IN; 2279 *virtual_type = type; 2280 *virtual_id = 0; 2281 break; 2282 } 2283 break; 2284 #endif /* INET */ 2285 #ifdef INET6 2286 case AF_INET6: 2287 switch (type) { 2288 case ICMP6_ECHO_REQUEST: 2289 *icmp_dir = PF_IN; 2290 /* FALLTHROUGH */ 2291 case ICMP6_ECHO_REPLY: 2292 *virtual_type = ICMP6_ECHO_REQUEST; 2293 *virtual_id = pd->hdr.icmp6.icmp6_id; 2294 break; 2295 2296 case MLD_LISTENER_QUERY: 2297 case MLD_LISTENER_REPORT: { 2298 /* 2299 * Listener Report can be sent by clients 2300 * without an associated Listener Query. 2301 * In addition to that, when Report is sent as a 2302 * reply to a Query its source and destination 2303 * address are different. 2304 */ 2305 *icmp_dir = PF_IN; 2306 *virtual_type = MLD_LISTENER_QUERY; 2307 *virtual_id = 0; 2308 break; 2309 } 2310 case MLD_MTRACE: 2311 *icmp_dir = PF_IN; 2312 /* FALLTHROUGH */ 2313 case MLD_MTRACE_RESP: 2314 *virtual_type = MLD_MTRACE; 2315 *virtual_id = 0; /* Nothing sane to match on! */ 2316 break; 2317 2318 case ND_NEIGHBOR_SOLICIT: 2319 *icmp_dir = PF_IN; 2320 /* FALLTHROUGH */ 2321 case ND_NEIGHBOR_ADVERT: { 2322 *virtual_type = ND_NEIGHBOR_SOLICIT; 2323 *virtual_id = 0; 2324 break; 2325 } 2326 2327 /* 2328 * These ICMP types map to other connections. 2329 * ND_REDIRECT can't be in this list because the triggering 2330 * packet header is optional. 2331 */ 2332 case ICMP6_DST_UNREACH: 2333 case ICMP6_PACKET_TOO_BIG: 2334 case ICMP6_TIME_EXCEEDED: 2335 case ICMP6_PARAM_PROB: 2336 /* These will not be used, but set them anyway */ 2337 *icmp_dir = PF_IN; 2338 *virtual_type = type; 2339 *virtual_id = 0; 2340 *virtual_type = htons(*virtual_type); 2341 return (1); /* These types match to another state */ 2342 /* 2343 * All remaining ICMP6 types get their own states, 2344 * and will only match in one direction. 2345 */ 2346 default: 2347 *icmp_dir = PF_IN; 2348 *virtual_type = type; 2349 *virtual_id = 0; 2350 break; 2351 } 2352 break; 2353 #endif /* INET6 */ 2354 default: 2355 unhandled_af(pd->af); 2356 } 2357 *virtual_type = htons(*virtual_type); 2358 return (0); /* These types match to their own state */ 2359 } 2360 2361 void 2362 pf_intr(void *v) 2363 { 2364 struct epoch_tracker et; 2365 struct pf_send_head queue; 2366 struct pf_send_entry *pfse, *next; 2367 2368 CURVNET_SET((struct vnet *)v); 2369 2370 PF_SENDQ_LOCK(); 2371 queue = V_pf_sendqueue; 2372 STAILQ_INIT(&V_pf_sendqueue); 2373 PF_SENDQ_UNLOCK(); 2374 2375 NET_EPOCH_ENTER(et); 2376 2377 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 2378 switch (pfse->pfse_type) { 2379 #ifdef INET 2380 case PFSE_IP: { 2381 if (pf_isforlocal(pfse->pfse_m, AF_INET)) { 2382 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2383 ("%s: rcvif != loif", __func__)); 2384 2385 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL; 2386 pfse->pfse_m->m_pkthdr.csum_flags |= 2387 CSUM_IP_VALID | CSUM_IP_CHECKED | 2388 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2389 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2390 ip_input(pfse->pfse_m); 2391 } else { 2392 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2393 NULL); 2394 } 2395 break; 2396 } 2397 case PFSE_ICMP: 2398 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 2399 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 2400 break; 2401 #endif /* INET */ 2402 #ifdef INET6 2403 case PFSE_IP6: 2404 if (pf_isforlocal(pfse->pfse_m, AF_INET6)) { 2405 KASSERT(pfse->pfse_m->m_pkthdr.rcvif == V_loif, 2406 ("%s: rcvif != loif", __func__)); 2407 2408 pfse->pfse_m->m_flags |= M_SKIP_FIREWALL | 2409 M_LOOP; 2410 pfse->pfse_m->m_pkthdr.csum_flags |= 2411 CSUM_DATA_VALID | CSUM_PSEUDO_HDR; 2412 pfse->pfse_m->m_pkthdr.csum_data = 0xffff; 2413 ip6_input(pfse->pfse_m); 2414 } else { 2415 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, 2416 NULL, NULL); 2417 } 2418 break; 2419 case PFSE_ICMP6: 2420 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 2421 pfse->icmpopts.code, pfse->icmpopts.mtu); 2422 break; 2423 #endif /* INET6 */ 2424 default: 2425 panic("%s: unknown type", __func__); 2426 } 2427 free(pfse, M_PFTEMP); 2428 } 2429 NET_EPOCH_EXIT(et); 2430 CURVNET_RESTORE(); 2431 } 2432 2433 #define pf_purge_thread_period (hz / 10) 2434 2435 #ifdef PF_WANT_32_TO_64_COUNTER 2436 static void 2437 pf_status_counter_u64_periodic(void) 2438 { 2439 2440 PF_RULES_RASSERT(); 2441 2442 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 60)) != 0) { 2443 return; 2444 } 2445 2446 for (int i = 0; i < FCNT_MAX; i++) { 2447 pf_counter_u64_periodic(&V_pf_status.fcounters[i]); 2448 } 2449 } 2450 2451 static void 2452 pf_kif_counter_u64_periodic(void) 2453 { 2454 struct pfi_kkif *kif; 2455 size_t r, run; 2456 2457 PF_RULES_RASSERT(); 2458 2459 if (__predict_false(V_pf_allkifcount == 0)) { 2460 return; 2461 } 2462 2463 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2464 return; 2465 } 2466 2467 run = V_pf_allkifcount / 10; 2468 if (run < 5) 2469 run = 5; 2470 2471 for (r = 0; r < run; r++) { 2472 kif = LIST_NEXT(V_pf_kifmarker, pfik_allkiflist); 2473 if (kif == NULL) { 2474 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2475 LIST_INSERT_HEAD(&V_pf_allkiflist, V_pf_kifmarker, pfik_allkiflist); 2476 break; 2477 } 2478 2479 LIST_REMOVE(V_pf_kifmarker, pfik_allkiflist); 2480 LIST_INSERT_AFTER(kif, V_pf_kifmarker, pfik_allkiflist); 2481 2482 for (int i = 0; i < 2; i++) { 2483 for (int j = 0; j < 2; j++) { 2484 for (int k = 0; k < 2; k++) { 2485 pf_counter_u64_periodic(&kif->pfik_packets[i][j][k]); 2486 pf_counter_u64_periodic(&kif->pfik_bytes[i][j][k]); 2487 } 2488 } 2489 } 2490 } 2491 } 2492 2493 static void 2494 pf_rule_counter_u64_periodic(void) 2495 { 2496 struct pf_krule *rule; 2497 size_t r, run; 2498 2499 PF_RULES_RASSERT(); 2500 2501 if (__predict_false(V_pf_allrulecount == 0)) { 2502 return; 2503 } 2504 2505 if ((V_pf_counter_periodic_iter % (pf_purge_thread_period * 10 * 300)) != 0) { 2506 return; 2507 } 2508 2509 run = V_pf_allrulecount / 10; 2510 if (run < 5) 2511 run = 5; 2512 2513 for (r = 0; r < run; r++) { 2514 rule = LIST_NEXT(V_pf_rulemarker, allrulelist); 2515 if (rule == NULL) { 2516 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2517 LIST_INSERT_HEAD(&V_pf_allrulelist, V_pf_rulemarker, allrulelist); 2518 break; 2519 } 2520 2521 LIST_REMOVE(V_pf_rulemarker, allrulelist); 2522 LIST_INSERT_AFTER(rule, V_pf_rulemarker, allrulelist); 2523 2524 pf_counter_u64_periodic(&rule->evaluations); 2525 for (int i = 0; i < 2; i++) { 2526 pf_counter_u64_periodic(&rule->packets[i]); 2527 pf_counter_u64_periodic(&rule->bytes[i]); 2528 } 2529 } 2530 } 2531 2532 static void 2533 pf_counter_u64_periodic_main(void) 2534 { 2535 PF_RULES_RLOCK_TRACKER; 2536 2537 V_pf_counter_periodic_iter++; 2538 2539 PF_RULES_RLOCK(); 2540 pf_counter_u64_critical_enter(); 2541 pf_status_counter_u64_periodic(); 2542 pf_kif_counter_u64_periodic(); 2543 pf_rule_counter_u64_periodic(); 2544 pf_counter_u64_critical_exit(); 2545 PF_RULES_RUNLOCK(); 2546 } 2547 #else 2548 #define pf_counter_u64_periodic_main() do { } while (0) 2549 #endif 2550 2551 void 2552 pf_purge_thread(void *unused __unused) 2553 { 2554 struct epoch_tracker et; 2555 2556 VNET_ITERATOR_DECL(vnet_iter); 2557 2558 sx_xlock(&pf_end_lock); 2559 while (pf_end_threads == 0) { 2560 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", pf_purge_thread_period); 2561 2562 VNET_LIST_RLOCK(); 2563 NET_EPOCH_ENTER(et); 2564 VNET_FOREACH(vnet_iter) { 2565 CURVNET_SET(vnet_iter); 2566 2567 /* Wait until V_pf_default_rule is initialized. */ 2568 if (V_pf_vnet_active == 0) { 2569 CURVNET_RESTORE(); 2570 continue; 2571 } 2572 2573 pf_counter_u64_periodic_main(); 2574 2575 /* 2576 * Process 1/interval fraction of the state 2577 * table every run. 2578 */ 2579 V_pf_purge_idx = 2580 pf_purge_expired_states(V_pf_purge_idx, V_pf_hashmask / 2581 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 2582 2583 /* 2584 * Purge other expired types every 2585 * PFTM_INTERVAL seconds. 2586 */ 2587 if (V_pf_purge_idx == 0) { 2588 /* 2589 * Order is important: 2590 * - states and src nodes reference rules 2591 * - states and rules reference kifs 2592 */ 2593 pf_purge_expired_fragments(); 2594 pf_purge_expired_src_nodes(); 2595 pf_purge_unlinked_rules(); 2596 pfi_kkif_purge(); 2597 } 2598 CURVNET_RESTORE(); 2599 } 2600 NET_EPOCH_EXIT(et); 2601 VNET_LIST_RUNLOCK(); 2602 } 2603 2604 pf_end_threads++; 2605 sx_xunlock(&pf_end_lock); 2606 kproc_exit(0); 2607 } 2608 2609 void 2610 pf_unload_vnet_purge(void) 2611 { 2612 2613 /* 2614 * To cleanse up all kifs and rules we need 2615 * two runs: first one clears reference flags, 2616 * then pf_purge_expired_states() doesn't 2617 * raise them, and then second run frees. 2618 */ 2619 pf_purge_unlinked_rules(); 2620 pfi_kkif_purge(); 2621 2622 /* 2623 * Now purge everything. 2624 */ 2625 pf_purge_expired_states(0, V_pf_hashmask); 2626 pf_purge_fragments(UINT_MAX); 2627 pf_purge_expired_src_nodes(); 2628 2629 /* 2630 * Now all kifs & rules should be unreferenced, 2631 * thus should be successfully freed. 2632 */ 2633 pf_purge_unlinked_rules(); 2634 pfi_kkif_purge(); 2635 } 2636 2637 u_int32_t 2638 pf_state_expires(const struct pf_kstate *state) 2639 { 2640 u_int32_t timeout; 2641 u_int32_t start; 2642 u_int32_t end; 2643 u_int32_t states; 2644 2645 /* handle all PFTM_* > PFTM_MAX here */ 2646 if (state->timeout == PFTM_PURGE) 2647 return (time_uptime); 2648 KASSERT(state->timeout != PFTM_UNLINKED, 2649 ("pf_state_expires: timeout == PFTM_UNLINKED")); 2650 KASSERT((state->timeout < PFTM_MAX), 2651 ("pf_state_expires: timeout > PFTM_MAX")); 2652 timeout = state->rule->timeout[state->timeout]; 2653 if (!timeout) 2654 timeout = V_pf_default_rule.timeout[state->timeout]; 2655 start = state->rule->timeout[PFTM_ADAPTIVE_START]; 2656 if (start && state->rule != &V_pf_default_rule) { 2657 end = state->rule->timeout[PFTM_ADAPTIVE_END]; 2658 states = counter_u64_fetch(state->rule->states_cur); 2659 } else { 2660 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 2661 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 2662 states = V_pf_status.states; 2663 } 2664 if (end && states > start && start < end) { 2665 if (states < end) { 2666 timeout = (u_int64_t)timeout * (end - states) / 2667 (end - start); 2668 return ((state->expire / 1000) + timeout); 2669 } 2670 else 2671 return (time_uptime); 2672 } 2673 return ((state->expire / 1000) + timeout); 2674 } 2675 2676 void 2677 pf_purge_expired_src_nodes(void) 2678 { 2679 struct pf_ksrc_node_list freelist; 2680 struct pf_srchash *sh; 2681 struct pf_ksrc_node *cur, *next; 2682 int i; 2683 2684 LIST_INIT(&freelist); 2685 for (i = 0, sh = V_pf_srchash; i <= V_pf_srchashmask; i++, sh++) { 2686 PF_HASHROW_LOCK(sh); 2687 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 2688 if (cur->states == 0 && cur->expire <= time_uptime) { 2689 pf_unlink_src_node(cur); 2690 LIST_INSERT_HEAD(&freelist, cur, entry); 2691 } else if (cur->rule != NULL) 2692 cur->rule->rule_ref |= PFRULE_REFS; 2693 PF_HASHROW_UNLOCK(sh); 2694 } 2695 2696 pf_free_src_nodes(&freelist); 2697 2698 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 2699 } 2700 2701 static void 2702 pf_src_tree_remove_state(struct pf_kstate *s) 2703 { 2704 uint32_t timeout; 2705 2706 timeout = s->rule->timeout[PFTM_SRC_NODE] ? 2707 s->rule->timeout[PFTM_SRC_NODE] : 2708 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 2709 2710 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 2711 if (s->sns[sn_type] == NULL) 2712 continue; 2713 PF_SRC_NODE_LOCK(s->sns[sn_type]); 2714 if (sn_type == PF_SN_LIMIT && s->src.tcp_est) 2715 --(s->sns[sn_type]->conn); 2716 if (--(s->sns[sn_type]->states) == 0) 2717 s->sns[sn_type]->expire = time_uptime + timeout; 2718 PF_SRC_NODE_UNLOCK(s->sns[sn_type]); 2719 s->sns[sn_type] = NULL; 2720 } 2721 2722 } 2723 2724 /* 2725 * Unlink and potentilly free a state. Function may be 2726 * called with ID hash row locked, but always returns 2727 * unlocked, since it needs to go through key hash locking. 2728 */ 2729 int 2730 pf_remove_state(struct pf_kstate *s) 2731 { 2732 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 2733 2734 NET_EPOCH_ASSERT(); 2735 PF_HASHROW_ASSERT(ih); 2736 2737 if (s->timeout == PFTM_UNLINKED) { 2738 /* 2739 * State is being processed 2740 * by pf_remove_state() in 2741 * an other thread. 2742 */ 2743 PF_HASHROW_UNLOCK(ih); 2744 return (0); /* XXXGL: undefined actually */ 2745 } 2746 2747 if (s->src.state == PF_TCPS_PROXY_DST) { 2748 /* XXX wire key the right one? */ 2749 pf_send_tcp(s->rule, s->key[PF_SK_WIRE]->af, 2750 &s->key[PF_SK_WIRE]->addr[1], 2751 &s->key[PF_SK_WIRE]->addr[0], 2752 s->key[PF_SK_WIRE]->port[1], 2753 s->key[PF_SK_WIRE]->port[0], 2754 s->src.seqhi, s->src.seqlo + 1, 2755 TH_RST|TH_ACK, 0, 0, 0, M_SKIP_FIREWALL, s->tag, 0, 2756 s->act.rtableid); 2757 } 2758 2759 LIST_REMOVE(s, entry); 2760 pf_src_tree_remove_state(s); 2761 2762 if (V_pfsync_delete_state_ptr != NULL) 2763 V_pfsync_delete_state_ptr(s); 2764 2765 STATE_DEC_COUNTERS(s); 2766 2767 s->timeout = PFTM_UNLINKED; 2768 2769 /* Ensure we remove it from the list of halfopen states, if needed. */ 2770 if (s->key[PF_SK_STACK] != NULL && 2771 s->key[PF_SK_STACK]->proto == IPPROTO_TCP) 2772 pf_set_protostate(s, PF_PEER_BOTH, TCPS_CLOSED); 2773 2774 PF_HASHROW_UNLOCK(ih); 2775 2776 pf_detach_state(s); 2777 2778 pf_udp_mapping_release(s->udp_mapping); 2779 2780 /* pf_state_insert() initialises refs to 2 */ 2781 return (pf_release_staten(s, 2)); 2782 } 2783 2784 struct pf_kstate * 2785 pf_alloc_state(int flags) 2786 { 2787 2788 return (uma_zalloc(V_pf_state_z, flags | M_ZERO)); 2789 } 2790 2791 void 2792 pf_free_state(struct pf_kstate *cur) 2793 { 2794 struct pf_krule_item *ri; 2795 2796 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 2797 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 2798 cur->timeout)); 2799 2800 while ((ri = SLIST_FIRST(&cur->match_rules))) { 2801 SLIST_REMOVE_HEAD(&cur->match_rules, entry); 2802 free(ri, M_PF_RULE_ITEM); 2803 } 2804 2805 pf_normalize_tcp_cleanup(cur); 2806 uma_zfree(V_pf_state_z, cur); 2807 pf_counter_u64_add(&V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 2808 } 2809 2810 /* 2811 * Called only from pf_purge_thread(), thus serialized. 2812 */ 2813 static u_int 2814 pf_purge_expired_states(u_int i, int maxcheck) 2815 { 2816 struct pf_idhash *ih; 2817 struct pf_kstate *s; 2818 struct pf_krule_item *mrm; 2819 size_t count __unused; 2820 2821 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2822 2823 /* 2824 * Go through hash and unlink states that expire now. 2825 */ 2826 while (maxcheck > 0) { 2827 count = 0; 2828 ih = &V_pf_idhash[i]; 2829 2830 /* only take the lock if we expect to do work */ 2831 if (!LIST_EMPTY(&ih->states)) { 2832 relock: 2833 PF_HASHROW_LOCK(ih); 2834 LIST_FOREACH(s, &ih->states, entry) { 2835 if (pf_state_expires(s) <= time_uptime) { 2836 V_pf_status.states -= 2837 pf_remove_state(s); 2838 goto relock; 2839 } 2840 s->rule->rule_ref |= PFRULE_REFS; 2841 if (s->nat_rule != NULL) 2842 s->nat_rule->rule_ref |= PFRULE_REFS; 2843 if (s->anchor != NULL) 2844 s->anchor->rule_ref |= PFRULE_REFS; 2845 s->kif->pfik_flags |= PFI_IFLAG_REFS; 2846 SLIST_FOREACH(mrm, &s->match_rules, entry) 2847 mrm->r->rule_ref |= PFRULE_REFS; 2848 if (s->act.rt_kif) 2849 s->act.rt_kif->pfik_flags |= PFI_IFLAG_REFS; 2850 count++; 2851 } 2852 PF_HASHROW_UNLOCK(ih); 2853 } 2854 2855 SDT_PROBE2(pf, purge, state, rowcount, i, count); 2856 2857 /* Return when we hit end of hash. */ 2858 if (++i > V_pf_hashmask) { 2859 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2860 return (0); 2861 } 2862 2863 maxcheck--; 2864 } 2865 2866 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 2867 2868 return (i); 2869 } 2870 2871 static void 2872 pf_purge_unlinked_rules(void) 2873 { 2874 struct pf_krulequeue tmpq; 2875 struct pf_krule *r, *r1; 2876 2877 /* 2878 * If we have overloading task pending, then we'd 2879 * better skip purging this time. There is a tiny 2880 * probability that overloading task references 2881 * an already unlinked rule. 2882 */ 2883 PF_OVERLOADQ_LOCK(); 2884 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 2885 PF_OVERLOADQ_UNLOCK(); 2886 return; 2887 } 2888 PF_OVERLOADQ_UNLOCK(); 2889 2890 /* 2891 * Do naive mark-and-sweep garbage collecting of old rules. 2892 * Reference flag is raised by pf_purge_expired_states() 2893 * and pf_purge_expired_src_nodes(). 2894 * 2895 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 2896 * use a temporary queue. 2897 */ 2898 TAILQ_INIT(&tmpq); 2899 PF_UNLNKDRULES_LOCK(); 2900 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 2901 if (!(r->rule_ref & PFRULE_REFS)) { 2902 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 2903 TAILQ_INSERT_TAIL(&tmpq, r, entries); 2904 } else 2905 r->rule_ref &= ~PFRULE_REFS; 2906 } 2907 PF_UNLNKDRULES_UNLOCK(); 2908 2909 if (!TAILQ_EMPTY(&tmpq)) { 2910 PF_CONFIG_LOCK(); 2911 PF_RULES_WLOCK(); 2912 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 2913 TAILQ_REMOVE(&tmpq, r, entries); 2914 pf_free_rule(r); 2915 } 2916 PF_RULES_WUNLOCK(); 2917 PF_CONFIG_UNLOCK(); 2918 } 2919 } 2920 2921 void 2922 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 2923 { 2924 switch (af) { 2925 #ifdef INET 2926 case AF_INET: { 2927 u_int32_t a = ntohl(addr->addr32[0]); 2928 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 2929 (a>>8)&255, a&255); 2930 if (p) { 2931 p = ntohs(p); 2932 printf(":%u", p); 2933 } 2934 break; 2935 } 2936 #endif /* INET */ 2937 #ifdef INET6 2938 case AF_INET6: { 2939 u_int16_t b; 2940 u_int8_t i, curstart, curend, maxstart, maxend; 2941 curstart = curend = maxstart = maxend = 255; 2942 for (i = 0; i < 8; i++) { 2943 if (!addr->addr16[i]) { 2944 if (curstart == 255) 2945 curstart = i; 2946 curend = i; 2947 } else { 2948 if ((curend - curstart) > 2949 (maxend - maxstart)) { 2950 maxstart = curstart; 2951 maxend = curend; 2952 } 2953 curstart = curend = 255; 2954 } 2955 } 2956 if ((curend - curstart) > 2957 (maxend - maxstart)) { 2958 maxstart = curstart; 2959 maxend = curend; 2960 } 2961 for (i = 0; i < 8; i++) { 2962 if (i >= maxstart && i <= maxend) { 2963 if (i == 0) 2964 printf(":"); 2965 if (i == maxend) 2966 printf(":"); 2967 } else { 2968 b = ntohs(addr->addr16[i]); 2969 printf("%x", b); 2970 if (i < 7) 2971 printf(":"); 2972 } 2973 } 2974 if (p) { 2975 p = ntohs(p); 2976 printf("[%u]", p); 2977 } 2978 break; 2979 } 2980 #endif /* INET6 */ 2981 default: 2982 unhandled_af(af); 2983 } 2984 } 2985 2986 void 2987 pf_print_state(struct pf_kstate *s) 2988 { 2989 pf_print_state_parts(s, NULL, NULL); 2990 } 2991 2992 static void 2993 pf_print_state_parts(struct pf_kstate *s, 2994 struct pf_state_key *skwp, struct pf_state_key *sksp) 2995 { 2996 struct pf_state_key *skw, *sks; 2997 u_int8_t proto, dir; 2998 2999 /* Do our best to fill these, but they're skipped if NULL */ 3000 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 3001 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 3002 proto = skw ? skw->proto : (sks ? sks->proto : 0); 3003 dir = s ? s->direction : 0; 3004 3005 switch (proto) { 3006 case IPPROTO_IPV4: 3007 printf("IPv4"); 3008 break; 3009 case IPPROTO_IPV6: 3010 printf("IPv6"); 3011 break; 3012 case IPPROTO_TCP: 3013 printf("TCP"); 3014 break; 3015 case IPPROTO_UDP: 3016 printf("UDP"); 3017 break; 3018 case IPPROTO_ICMP: 3019 printf("ICMP"); 3020 break; 3021 case IPPROTO_ICMPV6: 3022 printf("ICMPv6"); 3023 break; 3024 default: 3025 printf("%u", proto); 3026 break; 3027 } 3028 switch (dir) { 3029 case PF_IN: 3030 printf(" in"); 3031 break; 3032 case PF_OUT: 3033 printf(" out"); 3034 break; 3035 } 3036 if (skw) { 3037 printf(" wire: "); 3038 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 3039 printf(" "); 3040 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 3041 } 3042 if (sks) { 3043 printf(" stack: "); 3044 if (sks != skw) { 3045 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 3046 printf(" "); 3047 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 3048 } else 3049 printf("-"); 3050 } 3051 if (s) { 3052 if (proto == IPPROTO_TCP) { 3053 printf(" [lo=%u high=%u win=%u modulator=%u", 3054 s->src.seqlo, s->src.seqhi, 3055 s->src.max_win, s->src.seqdiff); 3056 if (s->src.wscale && s->dst.wscale) 3057 printf(" wscale=%u", 3058 s->src.wscale & PF_WSCALE_MASK); 3059 printf("]"); 3060 printf(" [lo=%u high=%u win=%u modulator=%u", 3061 s->dst.seqlo, s->dst.seqhi, 3062 s->dst.max_win, s->dst.seqdiff); 3063 if (s->src.wscale && s->dst.wscale) 3064 printf(" wscale=%u", 3065 s->dst.wscale & PF_WSCALE_MASK); 3066 printf("]"); 3067 } 3068 printf(" %u:%u", s->src.state, s->dst.state); 3069 if (s->rule) 3070 printf(" @%d", s->rule->nr); 3071 } 3072 } 3073 3074 void 3075 pf_print_flags(uint16_t f) 3076 { 3077 if (f) 3078 printf(" "); 3079 if (f & TH_FIN) 3080 printf("F"); 3081 if (f & TH_SYN) 3082 printf("S"); 3083 if (f & TH_RST) 3084 printf("R"); 3085 if (f & TH_PUSH) 3086 printf("P"); 3087 if (f & TH_ACK) 3088 printf("A"); 3089 if (f & TH_URG) 3090 printf("U"); 3091 if (f & TH_ECE) 3092 printf("E"); 3093 if (f & TH_CWR) 3094 printf("W"); 3095 if (f & TH_AE) 3096 printf("e"); 3097 } 3098 3099 #define PF_SET_SKIP_STEPS(i) \ 3100 do { \ 3101 while (head[i] != cur) { \ 3102 head[i]->skip[i] = cur; \ 3103 head[i] = TAILQ_NEXT(head[i], entries); \ 3104 } \ 3105 } while (0) 3106 3107 void 3108 pf_calc_skip_steps(struct pf_krulequeue *rules) 3109 { 3110 struct pf_krule *cur, *prev, *head[PF_SKIP_COUNT]; 3111 int i; 3112 3113 cur = TAILQ_FIRST(rules); 3114 prev = cur; 3115 for (i = 0; i < PF_SKIP_COUNT; ++i) 3116 head[i] = cur; 3117 while (cur != NULL) { 3118 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 3119 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 3120 if (cur->direction != prev->direction) 3121 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 3122 if (cur->af != prev->af) 3123 PF_SET_SKIP_STEPS(PF_SKIP_AF); 3124 if (cur->proto != prev->proto) 3125 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 3126 if (cur->src.neg != prev->src.neg || 3127 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 3128 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 3129 if (cur->dst.neg != prev->dst.neg || 3130 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 3131 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 3132 if (cur->src.port[0] != prev->src.port[0] || 3133 cur->src.port[1] != prev->src.port[1] || 3134 cur->src.port_op != prev->src.port_op) 3135 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 3136 if (cur->dst.port[0] != prev->dst.port[0] || 3137 cur->dst.port[1] != prev->dst.port[1] || 3138 cur->dst.port_op != prev->dst.port_op) 3139 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 3140 3141 prev = cur; 3142 cur = TAILQ_NEXT(cur, entries); 3143 } 3144 for (i = 0; i < PF_SKIP_COUNT; ++i) 3145 PF_SET_SKIP_STEPS(i); 3146 } 3147 3148 int 3149 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 3150 { 3151 if (aw1->type != aw2->type) 3152 return (1); 3153 switch (aw1->type) { 3154 case PF_ADDR_ADDRMASK: 3155 case PF_ADDR_RANGE: 3156 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 3157 return (1); 3158 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 3159 return (1); 3160 return (0); 3161 case PF_ADDR_DYNIFTL: 3162 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 3163 case PF_ADDR_NONE: 3164 case PF_ADDR_NOROUTE: 3165 case PF_ADDR_URPFFAILED: 3166 return (0); 3167 case PF_ADDR_TABLE: 3168 return (aw1->p.tbl != aw2->p.tbl); 3169 default: 3170 printf("invalid address type: %d\n", aw1->type); 3171 return (1); 3172 } 3173 } 3174 3175 /** 3176 * Checksum updates are a little complicated because the checksum in the TCP/UDP 3177 * header isn't always a full checksum. In some cases (i.e. output) it's a 3178 * pseudo-header checksum, which is a partial checksum over src/dst IP 3179 * addresses, protocol number and length. 3180 * 3181 * That means we have the following cases: 3182 * * Input or forwarding: we don't have TSO, the checksum fields are full 3183 * checksums, we need to update the checksum whenever we change anything. 3184 * * Output (i.e. the checksum is a pseudo-header checksum): 3185 * x The field being updated is src/dst address or affects the length of 3186 * the packet. We need to update the pseudo-header checksum (note that this 3187 * checksum is not ones' complement). 3188 * x Some other field is being modified (e.g. src/dst port numbers): We 3189 * don't have to update anything. 3190 **/ 3191 u_int16_t 3192 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 3193 { 3194 u_int32_t x; 3195 3196 x = cksum + old - new; 3197 x = (x + (x >> 16)) & 0xffff; 3198 3199 /* optimise: eliminate a branch when not udp */ 3200 if (udp && cksum == 0x0000) 3201 return cksum; 3202 if (udp && x == 0x0000) 3203 x = 0xffff; 3204 3205 return (u_int16_t)(x); 3206 } 3207 3208 static int 3209 pf_patch_8(struct pf_pdesc *pd, u_int8_t *f, u_int8_t v, bool hi) 3210 { 3211 int rewrite = 0; 3212 3213 if (*f != v) { 3214 uint16_t old = htons(hi ? (*f << 8) : *f); 3215 uint16_t new = htons(hi ? ( v << 8) : v); 3216 3217 *f = v; 3218 3219 if (! (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3220 CSUM_DELAY_DATA_IPV6))) 3221 *pd->pcksum = pf_cksum_fixup(*pd->pcksum, old, new, 3222 pd->proto == IPPROTO_UDP); 3223 3224 rewrite = 1; 3225 } 3226 3227 return (rewrite); 3228 } 3229 3230 int 3231 pf_patch_16(struct pf_pdesc *pd, void *f, u_int16_t v, bool hi) 3232 { 3233 int rewrite = 0; 3234 u_int8_t *fb = (u_int8_t *)f; 3235 u_int8_t *vb = (u_int8_t *)&v; 3236 3237 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3238 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3239 3240 return (rewrite); 3241 } 3242 3243 int 3244 pf_patch_32(struct pf_pdesc *pd, void *f, u_int32_t v, bool hi) 3245 { 3246 int rewrite = 0; 3247 u_int8_t *fb = (u_int8_t *)f; 3248 u_int8_t *vb = (u_int8_t *)&v; 3249 3250 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3251 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3252 rewrite += pf_patch_8(pd, fb++, *vb++, hi); 3253 rewrite += pf_patch_8(pd, fb++, *vb++, !hi); 3254 3255 return (rewrite); 3256 } 3257 3258 u_int16_t 3259 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 3260 u_int16_t new, u_int8_t udp) 3261 { 3262 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3263 return (cksum); 3264 3265 return (pf_cksum_fixup(cksum, old, new, udp)); 3266 } 3267 3268 static void 3269 pf_change_ap(struct pf_pdesc *pd, struct pf_addr *a, u_int16_t *p, 3270 struct pf_addr *an, u_int16_t pn) 3271 { 3272 struct pf_addr ao; 3273 u_int16_t po; 3274 uint8_t u = pd->virtual_proto == IPPROTO_UDP; 3275 3276 MPASS(pd->pcksum); 3277 if (pd->af == AF_INET) { 3278 MPASS(pd->ip_sum); 3279 } 3280 3281 PF_ACPY(&ao, a, pd->af); 3282 if (pd->af == pd->naf) 3283 PF_ACPY(a, an, pd->af); 3284 3285 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 3286 *pd->pcksum = ~*pd->pcksum; 3287 3288 if (p == NULL) /* no port -> done. no cksum to worry about. */ 3289 return; 3290 po = *p; 3291 *p = pn; 3292 3293 switch (pd->af) { 3294 #ifdef INET 3295 case AF_INET: 3296 switch (pd->naf) { 3297 case AF_INET: 3298 *pd->ip_sum = pf_cksum_fixup(pf_cksum_fixup(*pd->ip_sum, 3299 ao.addr16[0], an->addr16[0], 0), 3300 ao.addr16[1], an->addr16[1], 0); 3301 *p = pn; 3302 3303 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3304 ao.addr16[0], an->addr16[0], u), 3305 ao.addr16[1], an->addr16[1], u); 3306 3307 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3308 break; 3309 #ifdef INET6 3310 case AF_INET6: 3311 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3312 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3313 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3314 ao.addr16[0], an->addr16[0], u), 3315 ao.addr16[1], an->addr16[1], u), 3316 0, an->addr16[2], u), 3317 0, an->addr16[3], u), 3318 0, an->addr16[4], u), 3319 0, an->addr16[5], u), 3320 0, an->addr16[6], u), 3321 0, an->addr16[7], u), 3322 po, pn, u); 3323 break; 3324 #endif /* INET6 */ 3325 default: 3326 unhandled_af(pd->naf); 3327 } 3328 break; 3329 #endif /* INET */ 3330 #ifdef INET6 3331 case AF_INET6: 3332 switch (pd->naf) { 3333 #ifdef INET 3334 case AF_INET: 3335 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3336 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3337 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3338 ao.addr16[0], an->addr16[0], u), 3339 ao.addr16[1], an->addr16[1], u), 3340 ao.addr16[2], 0, u), 3341 ao.addr16[3], 0, u), 3342 ao.addr16[4], 0, u), 3343 ao.addr16[5], 0, u), 3344 ao.addr16[6], 0, u), 3345 ao.addr16[7], 0, u), 3346 po, pn, u); 3347 break; 3348 #endif /* INET */ 3349 case AF_INET6: 3350 *pd->pcksum = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3351 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3352 pf_cksum_fixup(pf_cksum_fixup(*pd->pcksum, 3353 ao.addr16[0], an->addr16[0], u), 3354 ao.addr16[1], an->addr16[1], u), 3355 ao.addr16[2], an->addr16[2], u), 3356 ao.addr16[3], an->addr16[3], u), 3357 ao.addr16[4], an->addr16[4], u), 3358 ao.addr16[5], an->addr16[5], u), 3359 ao.addr16[6], an->addr16[6], u), 3360 ao.addr16[7], an->addr16[7], u); 3361 3362 *pd->pcksum = pf_proto_cksum_fixup(pd->m, *pd->pcksum, po, pn, u); 3363 break; 3364 default: 3365 unhandled_af(pd->naf); 3366 } 3367 break; 3368 #endif /* INET6 */ 3369 default: 3370 unhandled_af(pd->af); 3371 } 3372 3373 if (pd->m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 3374 CSUM_DELAY_DATA_IPV6)) { 3375 *pd->pcksum = ~*pd->pcksum; 3376 if (! *pd->pcksum) 3377 *pd->pcksum = 0xffff; 3378 } 3379 } 3380 3381 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 3382 void 3383 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 3384 { 3385 u_int32_t ao; 3386 3387 memcpy(&ao, a, sizeof(ao)); 3388 memcpy(a, &an, sizeof(u_int32_t)); 3389 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 3390 ao % 65536, an % 65536, u); 3391 } 3392 3393 void 3394 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 3395 { 3396 u_int32_t ao; 3397 3398 memcpy(&ao, a, sizeof(ao)); 3399 memcpy(a, &an, sizeof(u_int32_t)); 3400 3401 *c = pf_proto_cksum_fixup(m, 3402 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 3403 ao % 65536, an % 65536, udp); 3404 } 3405 3406 #ifdef INET6 3407 static void 3408 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 3409 { 3410 struct pf_addr ao; 3411 3412 PF_ACPY(&ao, a, AF_INET6); 3413 PF_ACPY(a, an, AF_INET6); 3414 3415 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3416 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3417 pf_cksum_fixup(pf_cksum_fixup(*c, 3418 ao.addr16[0], an->addr16[0], u), 3419 ao.addr16[1], an->addr16[1], u), 3420 ao.addr16[2], an->addr16[2], u), 3421 ao.addr16[3], an->addr16[3], u), 3422 ao.addr16[4], an->addr16[4], u), 3423 ao.addr16[5], an->addr16[5], u), 3424 ao.addr16[6], an->addr16[6], u), 3425 ao.addr16[7], an->addr16[7], u); 3426 } 3427 #endif /* INET6 */ 3428 3429 static void 3430 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 3431 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 3432 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 3433 { 3434 struct pf_addr oia, ooa; 3435 3436 PF_ACPY(&oia, ia, af); 3437 if (oa) 3438 PF_ACPY(&ooa, oa, af); 3439 3440 /* Change inner protocol port, fix inner protocol checksum. */ 3441 if (ip != NULL) { 3442 u_int16_t oip = *ip; 3443 u_int32_t opc; 3444 3445 if (pc != NULL) 3446 opc = *pc; 3447 *ip = np; 3448 if (pc != NULL) 3449 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 3450 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 3451 if (pc != NULL) 3452 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 3453 } 3454 /* Change inner ip address, fix inner ip and icmp checksums. */ 3455 PF_ACPY(ia, na, af); 3456 switch (af) { 3457 #ifdef INET 3458 case AF_INET: { 3459 u_int32_t oh2c = *h2c; 3460 3461 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 3462 oia.addr16[0], ia->addr16[0], 0), 3463 oia.addr16[1], ia->addr16[1], 0); 3464 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 3465 oia.addr16[0], ia->addr16[0], 0), 3466 oia.addr16[1], ia->addr16[1], 0); 3467 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 3468 break; 3469 } 3470 #endif /* INET */ 3471 #ifdef INET6 3472 case AF_INET6: 3473 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3474 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3475 pf_cksum_fixup(pf_cksum_fixup(*ic, 3476 oia.addr16[0], ia->addr16[0], u), 3477 oia.addr16[1], ia->addr16[1], u), 3478 oia.addr16[2], ia->addr16[2], u), 3479 oia.addr16[3], ia->addr16[3], u), 3480 oia.addr16[4], ia->addr16[4], u), 3481 oia.addr16[5], ia->addr16[5], u), 3482 oia.addr16[6], ia->addr16[6], u), 3483 oia.addr16[7], ia->addr16[7], u); 3484 break; 3485 #endif /* INET6 */ 3486 } 3487 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 3488 if (oa) { 3489 PF_ACPY(oa, na, af); 3490 switch (af) { 3491 #ifdef INET 3492 case AF_INET: 3493 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 3494 ooa.addr16[0], oa->addr16[0], 0), 3495 ooa.addr16[1], oa->addr16[1], 0); 3496 break; 3497 #endif /* INET */ 3498 #ifdef INET6 3499 case AF_INET6: 3500 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3501 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 3502 pf_cksum_fixup(pf_cksum_fixup(*ic, 3503 ooa.addr16[0], oa->addr16[0], u), 3504 ooa.addr16[1], oa->addr16[1], u), 3505 ooa.addr16[2], oa->addr16[2], u), 3506 ooa.addr16[3], oa->addr16[3], u), 3507 ooa.addr16[4], oa->addr16[4], u), 3508 ooa.addr16[5], oa->addr16[5], u), 3509 ooa.addr16[6], oa->addr16[6], u), 3510 ooa.addr16[7], oa->addr16[7], u); 3511 break; 3512 #endif /* INET6 */ 3513 } 3514 } 3515 } 3516 3517 int 3518 pf_translate_af(struct pf_pdesc *pd) 3519 { 3520 #if defined(INET) && defined(INET6) 3521 struct mbuf *mp; 3522 struct ip *ip4; 3523 struct ip6_hdr *ip6; 3524 struct icmp6_hdr *icmp; 3525 struct m_tag *mtag; 3526 struct pf_fragment_tag *ftag; 3527 int hlen; 3528 3529 hlen = pd->naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3530 3531 /* trim the old header */ 3532 m_adj(pd->m, pd->off); 3533 3534 /* prepend a new one */ 3535 M_PREPEND(pd->m, hlen, M_NOWAIT); 3536 if (pd->m == NULL) 3537 return (-1); 3538 3539 switch (pd->naf) { 3540 case AF_INET: 3541 ip4 = mtod(pd->m, struct ip *); 3542 bzero(ip4, hlen); 3543 ip4->ip_v = IPVERSION; 3544 ip4->ip_hl = hlen >> 2; 3545 ip4->ip_tos = pd->tos; 3546 ip4->ip_len = htons(hlen + (pd->tot_len - pd->off)); 3547 ip_fillid(ip4, V_ip_random_id); 3548 ip4->ip_ttl = pd->ttl; 3549 ip4->ip_p = pd->proto; 3550 ip4->ip_src = pd->nsaddr.v4; 3551 ip4->ip_dst = pd->ndaddr.v4; 3552 pd->src = (struct pf_addr *)&ip4->ip_src; 3553 pd->dst = (struct pf_addr *)&ip4->ip_dst; 3554 pd->off = sizeof(struct ip); 3555 break; 3556 case AF_INET6: 3557 ip6 = mtod(pd->m, struct ip6_hdr *); 3558 bzero(ip6, hlen); 3559 ip6->ip6_vfc = IPV6_VERSION; 3560 ip6->ip6_flow |= htonl((u_int32_t)pd->tos << 20); 3561 ip6->ip6_plen = htons(pd->tot_len - pd->off); 3562 ip6->ip6_nxt = pd->proto; 3563 if (!pd->ttl || pd->ttl > IPV6_DEFHLIM) 3564 ip6->ip6_hlim = IPV6_DEFHLIM; 3565 else 3566 ip6->ip6_hlim = pd->ttl; 3567 ip6->ip6_src = pd->nsaddr.v6; 3568 ip6->ip6_dst = pd->ndaddr.v6; 3569 pd->src = (struct pf_addr *)&ip6->ip6_src; 3570 pd->dst = (struct pf_addr *)&ip6->ip6_dst; 3571 pd->off = sizeof(struct ip6_hdr); 3572 3573 /* 3574 * If we're dealing with a reassembled packet we need to adjust 3575 * the header length from the IPv4 header size to IPv6 header 3576 * size. 3577 */ 3578 mtag = m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL); 3579 if (mtag) { 3580 ftag = (struct pf_fragment_tag *)(mtag + 1); 3581 ftag->ft_hdrlen = sizeof(*ip6); 3582 ftag->ft_maxlen -= sizeof(struct ip6_hdr) - 3583 sizeof(struct ip) + sizeof(struct ip6_frag); 3584 } 3585 break; 3586 default: 3587 return (-1); 3588 } 3589 3590 /* recalculate icmp/icmp6 checksums */ 3591 if (pd->proto == IPPROTO_ICMP || pd->proto == IPPROTO_ICMPV6) { 3592 int off; 3593 if ((mp = m_pulldown(pd->m, hlen, sizeof(*icmp), &off)) == 3594 NULL) { 3595 pd->m = NULL; 3596 return (-1); 3597 } 3598 icmp = (struct icmp6_hdr *)(mp->m_data + off); 3599 icmp->icmp6_cksum = 0; 3600 icmp->icmp6_cksum = pd->naf == AF_INET ? 3601 in4_cksum(pd->m, 0, hlen, ntohs(ip4->ip_len) - hlen) : 3602 in6_cksum(pd->m, IPPROTO_ICMPV6, hlen, 3603 ntohs(ip6->ip6_plen)); 3604 } 3605 #endif /* INET && INET6 */ 3606 3607 return (0); 3608 } 3609 3610 int 3611 pf_change_icmp_af(struct mbuf *m, int off, struct pf_pdesc *pd, 3612 struct pf_pdesc *pd2, struct pf_addr *src, struct pf_addr *dst, 3613 sa_family_t af, sa_family_t naf) 3614 { 3615 #if defined(INET) && defined(INET6) 3616 struct mbuf *n = NULL; 3617 struct ip *ip4; 3618 struct ip6_hdr *ip6; 3619 int hlen, olen, mlen; 3620 3621 if (af == naf || (af != AF_INET && af != AF_INET6) || 3622 (naf != AF_INET && naf != AF_INET6)) 3623 return (-1); 3624 3625 /* split the mbuf chain on the inner ip/ip6 header boundary */ 3626 if ((n = m_split(m, off, M_NOWAIT)) == NULL) 3627 return (-1); 3628 3629 /* old header */ 3630 olen = pd2->off - off; 3631 /* new header */ 3632 hlen = naf == AF_INET ? sizeof(*ip4) : sizeof(*ip6); 3633 3634 /* trim old header */ 3635 m_adj(n, olen); 3636 3637 /* prepend a new one */ 3638 M_PREPEND(n, hlen, M_NOWAIT); 3639 if (n == NULL) 3640 return (-1); 3641 3642 /* translate inner ip/ip6 header */ 3643 switch (naf) { 3644 case AF_INET: 3645 ip4 = mtod(n, struct ip *); 3646 bzero(ip4, sizeof(*ip4)); 3647 ip4->ip_v = IPVERSION; 3648 ip4->ip_hl = sizeof(*ip4) >> 2; 3649 ip4->ip_len = htons(sizeof(*ip4) + pd2->tot_len - olen); 3650 ip_fillid(ip4, V_ip_random_id); 3651 ip4->ip_off = htons(IP_DF); 3652 ip4->ip_ttl = pd2->ttl; 3653 if (pd2->proto == IPPROTO_ICMPV6) 3654 ip4->ip_p = IPPROTO_ICMP; 3655 else 3656 ip4->ip_p = pd2->proto; 3657 ip4->ip_src = src->v4; 3658 ip4->ip_dst = dst->v4; 3659 ip4->ip_sum = in_cksum(n, ip4->ip_hl << 2); 3660 break; 3661 case AF_INET6: 3662 ip6 = mtod(n, struct ip6_hdr *); 3663 bzero(ip6, sizeof(*ip6)); 3664 ip6->ip6_vfc = IPV6_VERSION; 3665 ip6->ip6_plen = htons(pd2->tot_len - olen); 3666 if (pd2->proto == IPPROTO_ICMP) 3667 ip6->ip6_nxt = IPPROTO_ICMPV6; 3668 else 3669 ip6->ip6_nxt = pd2->proto; 3670 if (!pd2->ttl || pd2->ttl > IPV6_DEFHLIM) 3671 ip6->ip6_hlim = IPV6_DEFHLIM; 3672 else 3673 ip6->ip6_hlim = pd2->ttl; 3674 ip6->ip6_src = src->v6; 3675 ip6->ip6_dst = dst->v6; 3676 break; 3677 default: 3678 unhandled_af(naf); 3679 } 3680 3681 /* adjust payload offset and total packet length */ 3682 pd2->off += hlen - olen; 3683 pd->tot_len += hlen - olen; 3684 3685 /* merge modified inner packet with the original header */ 3686 mlen = n->m_pkthdr.len; 3687 m_cat(m, n); 3688 m->m_pkthdr.len += mlen; 3689 #endif /* INET && INET6 */ 3690 3691 return (0); 3692 } 3693 3694 #define PTR_IP(field) (offsetof(struct ip, field)) 3695 #define PTR_IP6(field) (offsetof(struct ip6_hdr, field)) 3696 3697 int 3698 pf_translate_icmp_af(int af, void *arg) 3699 { 3700 #if defined(INET) && defined(INET6) 3701 struct icmp *icmp4; 3702 struct icmp6_hdr *icmp6; 3703 u_int32_t mtu; 3704 int32_t ptr = -1; 3705 u_int8_t type; 3706 u_int8_t code; 3707 3708 switch (af) { 3709 case AF_INET: 3710 icmp6 = arg; 3711 type = icmp6->icmp6_type; 3712 code = icmp6->icmp6_code; 3713 mtu = ntohl(icmp6->icmp6_mtu); 3714 3715 switch (type) { 3716 case ICMP6_ECHO_REQUEST: 3717 type = ICMP_ECHO; 3718 break; 3719 case ICMP6_ECHO_REPLY: 3720 type = ICMP_ECHOREPLY; 3721 break; 3722 case ICMP6_DST_UNREACH: 3723 type = ICMP_UNREACH; 3724 switch (code) { 3725 case ICMP6_DST_UNREACH_NOROUTE: 3726 case ICMP6_DST_UNREACH_BEYONDSCOPE: 3727 case ICMP6_DST_UNREACH_ADDR: 3728 code = ICMP_UNREACH_HOST; 3729 break; 3730 case ICMP6_DST_UNREACH_ADMIN: 3731 code = ICMP_UNREACH_HOST_PROHIB; 3732 break; 3733 case ICMP6_DST_UNREACH_NOPORT: 3734 code = ICMP_UNREACH_PORT; 3735 break; 3736 default: 3737 return (-1); 3738 } 3739 break; 3740 case ICMP6_PACKET_TOO_BIG: 3741 type = ICMP_UNREACH; 3742 code = ICMP_UNREACH_NEEDFRAG; 3743 mtu -= 20; 3744 break; 3745 case ICMP6_TIME_EXCEEDED: 3746 type = ICMP_TIMXCEED; 3747 break; 3748 case ICMP6_PARAM_PROB: 3749 switch (code) { 3750 case ICMP6_PARAMPROB_HEADER: 3751 type = ICMP_PARAMPROB; 3752 code = ICMP_PARAMPROB_ERRATPTR; 3753 ptr = ntohl(icmp6->icmp6_pptr); 3754 3755 if (ptr == PTR_IP6(ip6_vfc)) 3756 ; /* preserve */ 3757 else if (ptr == PTR_IP6(ip6_vfc) + 1) 3758 ptr = PTR_IP(ip_tos); 3759 else if (ptr == PTR_IP6(ip6_plen) || 3760 ptr == PTR_IP6(ip6_plen) + 1) 3761 ptr = PTR_IP(ip_len); 3762 else if (ptr == PTR_IP6(ip6_nxt)) 3763 ptr = PTR_IP(ip_p); 3764 else if (ptr == PTR_IP6(ip6_hlim)) 3765 ptr = PTR_IP(ip_ttl); 3766 else if (ptr >= PTR_IP6(ip6_src) && 3767 ptr < PTR_IP6(ip6_dst)) 3768 ptr = PTR_IP(ip_src); 3769 else if (ptr >= PTR_IP6(ip6_dst) && 3770 ptr < sizeof(struct ip6_hdr)) 3771 ptr = PTR_IP(ip_dst); 3772 else { 3773 return (-1); 3774 } 3775 break; 3776 case ICMP6_PARAMPROB_NEXTHEADER: 3777 type = ICMP_UNREACH; 3778 code = ICMP_UNREACH_PROTOCOL; 3779 break; 3780 default: 3781 return (-1); 3782 } 3783 break; 3784 default: 3785 return (-1); 3786 } 3787 if (icmp6->icmp6_type != type) { 3788 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3789 icmp6->icmp6_type, type, 0); 3790 icmp6->icmp6_type = type; 3791 } 3792 if (icmp6->icmp6_code != code) { 3793 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3794 icmp6->icmp6_code, code, 0); 3795 icmp6->icmp6_code = code; 3796 } 3797 if (icmp6->icmp6_mtu != htonl(mtu)) { 3798 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3799 htons(ntohl(icmp6->icmp6_mtu)), htons(mtu), 0); 3800 /* aligns well with a icmpv4 nextmtu */ 3801 icmp6->icmp6_mtu = htonl(mtu); 3802 } 3803 if (ptr >= 0 && icmp6->icmp6_pptr != htonl(ptr)) { 3804 icmp6->icmp6_cksum = pf_cksum_fixup(icmp6->icmp6_cksum, 3805 htons(ntohl(icmp6->icmp6_pptr)), htons(ptr), 0); 3806 /* icmpv4 pptr is a one most significant byte */ 3807 icmp6->icmp6_pptr = htonl(ptr << 24); 3808 } 3809 break; 3810 case AF_INET6: 3811 icmp4 = arg; 3812 type = icmp4->icmp_type; 3813 code = icmp4->icmp_code; 3814 mtu = ntohs(icmp4->icmp_nextmtu); 3815 3816 switch (type) { 3817 case ICMP_ECHO: 3818 type = ICMP6_ECHO_REQUEST; 3819 break; 3820 case ICMP_ECHOREPLY: 3821 type = ICMP6_ECHO_REPLY; 3822 break; 3823 case ICMP_UNREACH: 3824 type = ICMP6_DST_UNREACH; 3825 switch (code) { 3826 case ICMP_UNREACH_NET: 3827 case ICMP_UNREACH_HOST: 3828 case ICMP_UNREACH_NET_UNKNOWN: 3829 case ICMP_UNREACH_HOST_UNKNOWN: 3830 case ICMP_UNREACH_ISOLATED: 3831 case ICMP_UNREACH_TOSNET: 3832 case ICMP_UNREACH_TOSHOST: 3833 code = ICMP6_DST_UNREACH_NOROUTE; 3834 break; 3835 case ICMP_UNREACH_PORT: 3836 code = ICMP6_DST_UNREACH_NOPORT; 3837 break; 3838 case ICMP_UNREACH_NET_PROHIB: 3839 case ICMP_UNREACH_HOST_PROHIB: 3840 case ICMP_UNREACH_FILTER_PROHIB: 3841 case ICMP_UNREACH_PRECEDENCE_CUTOFF: 3842 code = ICMP6_DST_UNREACH_ADMIN; 3843 break; 3844 case ICMP_UNREACH_PROTOCOL: 3845 type = ICMP6_PARAM_PROB; 3846 code = ICMP6_PARAMPROB_NEXTHEADER; 3847 ptr = offsetof(struct ip6_hdr, ip6_nxt); 3848 break; 3849 case ICMP_UNREACH_NEEDFRAG: 3850 type = ICMP6_PACKET_TOO_BIG; 3851 code = 0; 3852 mtu += 20; 3853 break; 3854 default: 3855 return (-1); 3856 } 3857 break; 3858 case ICMP_TIMXCEED: 3859 type = ICMP6_TIME_EXCEEDED; 3860 break; 3861 case ICMP_PARAMPROB: 3862 type = ICMP6_PARAM_PROB; 3863 switch (code) { 3864 case ICMP_PARAMPROB_ERRATPTR: 3865 code = ICMP6_PARAMPROB_HEADER; 3866 break; 3867 case ICMP_PARAMPROB_LENGTH: 3868 code = ICMP6_PARAMPROB_HEADER; 3869 break; 3870 default: 3871 return (-1); 3872 } 3873 3874 ptr = icmp4->icmp_pptr; 3875 if (ptr == 0 || ptr == PTR_IP(ip_tos)) 3876 ; /* preserve */ 3877 else if (ptr == PTR_IP(ip_len) || 3878 ptr == PTR_IP(ip_len) + 1) 3879 ptr = PTR_IP6(ip6_plen); 3880 else if (ptr == PTR_IP(ip_ttl)) 3881 ptr = PTR_IP6(ip6_hlim); 3882 else if (ptr == PTR_IP(ip_p)) 3883 ptr = PTR_IP6(ip6_nxt); 3884 else if (ptr >= PTR_IP(ip_src) && ptr < PTR_IP(ip_dst)) 3885 ptr = PTR_IP6(ip6_src); 3886 else if (ptr >= PTR_IP(ip_dst) && 3887 ptr < sizeof(struct ip)) 3888 ptr = PTR_IP6(ip6_dst); 3889 else { 3890 return (-1); 3891 } 3892 break; 3893 default: 3894 return (-1); 3895 } 3896 if (icmp4->icmp_type != type) { 3897 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3898 icmp4->icmp_type, type, 0); 3899 icmp4->icmp_type = type; 3900 } 3901 if (icmp4->icmp_code != code) { 3902 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3903 icmp4->icmp_code, code, 0); 3904 icmp4->icmp_code = code; 3905 } 3906 if (icmp4->icmp_nextmtu != htons(mtu)) { 3907 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3908 icmp4->icmp_nextmtu, htons(mtu), 0); 3909 icmp4->icmp_nextmtu = htons(mtu); 3910 } 3911 if (ptr >= 0 && icmp4->icmp_void != ptr) { 3912 icmp4->icmp_cksum = pf_cksum_fixup(icmp4->icmp_cksum, 3913 htons(icmp4->icmp_pptr), htons(ptr), 0); 3914 icmp4->icmp_void = htonl(ptr); 3915 } 3916 break; 3917 default: 3918 unhandled_af(af); 3919 } 3920 #endif /* INET && INET6 */ 3921 3922 return (0); 3923 } 3924 3925 /* 3926 * Need to modulate the sequence numbers in the TCP SACK option 3927 * (credits to Krzysztof Pfaff for report and patch) 3928 */ 3929 static int 3930 pf_modulate_sack(struct pf_pdesc *pd, struct tcphdr *th, 3931 struct pf_state_peer *dst) 3932 { 3933 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 3934 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 3935 int copyback = 0, i, olen; 3936 struct sackblk sack; 3937 3938 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 3939 if (hlen < TCPOLEN_SACKLEN || hlen > MAX_TCPOPTLEN || 3940 !pf_pull_hdr(pd->m, pd->off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 3941 return 0; 3942 3943 while (hlen >= TCPOLEN_SACKLEN) { 3944 size_t startoff = opt - opts; 3945 olen = opt[1]; 3946 switch (*opt) { 3947 case TCPOPT_EOL: /* FALLTHROUGH */ 3948 case TCPOPT_NOP: 3949 opt++; 3950 hlen--; 3951 break; 3952 case TCPOPT_SACK: 3953 if (olen > hlen) 3954 olen = hlen; 3955 if (olen >= TCPOLEN_SACKLEN) { 3956 for (i = 2; i + TCPOLEN_SACK <= olen; 3957 i += TCPOLEN_SACK) { 3958 memcpy(&sack, &opt[i], sizeof(sack)); 3959 pf_patch_32(pd, 3960 &sack.start, 3961 htonl(ntohl(sack.start) - dst->seqdiff), 3962 PF_ALGNMNT(startoff)); 3963 pf_patch_32(pd, 3964 &sack.end, 3965 htonl(ntohl(sack.end) - dst->seqdiff), 3966 PF_ALGNMNT(startoff)); 3967 memcpy(&opt[i], &sack, sizeof(sack)); 3968 copyback = 1; 3969 } 3970 } 3971 /* FALLTHROUGH */ 3972 default: 3973 if (olen < 2) 3974 olen = 2; 3975 hlen -= olen; 3976 opt += olen; 3977 } 3978 } 3979 3980 if (copyback) 3981 m_copyback(pd->m, pd->off + sizeof(*th), thoptlen, (caddr_t)opts); 3982 return (copyback); 3983 } 3984 3985 struct mbuf * 3986 pf_build_tcp(const struct pf_krule *r, sa_family_t af, 3987 const struct pf_addr *saddr, const struct pf_addr *daddr, 3988 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 3989 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 3990 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, u_int sack, 3991 int rtableid) 3992 { 3993 struct mbuf *m; 3994 int len, tlen; 3995 #ifdef INET 3996 struct ip *h = NULL; 3997 #endif /* INET */ 3998 #ifdef INET6 3999 struct ip6_hdr *h6 = NULL; 4000 #endif /* INET6 */ 4001 struct tcphdr *th; 4002 char *opt; 4003 struct pf_mtag *pf_mtag; 4004 4005 len = 0; 4006 th = NULL; 4007 4008 /* maximum segment size tcp option */ 4009 tlen = sizeof(struct tcphdr); 4010 if (mss) 4011 tlen += 4; 4012 if (sack) 4013 tlen += 2; 4014 4015 switch (af) { 4016 #ifdef INET 4017 case AF_INET: 4018 len = sizeof(struct ip) + tlen; 4019 break; 4020 #endif /* INET */ 4021 #ifdef INET6 4022 case AF_INET6: 4023 len = sizeof(struct ip6_hdr) + tlen; 4024 break; 4025 #endif /* INET6 */ 4026 default: 4027 unhandled_af(af); 4028 } 4029 4030 m = m_gethdr(M_NOWAIT, MT_DATA); 4031 if (m == NULL) 4032 return (NULL); 4033 4034 #ifdef MAC 4035 mac_netinet_firewall_send(m); 4036 #endif 4037 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 4038 m_freem(m); 4039 return (NULL); 4040 } 4041 m->m_flags |= mbuf_flags; 4042 pf_mtag->tag = mtag_tag; 4043 pf_mtag->flags = mtag_flags; 4044 4045 if (rtableid >= 0) 4046 M_SETFIB(m, rtableid); 4047 4048 #ifdef ALTQ 4049 if (r != NULL && r->qid) { 4050 pf_mtag->qid = r->qid; 4051 4052 /* add hints for ecn */ 4053 pf_mtag->hdr = mtod(m, struct ip *); 4054 } 4055 #endif /* ALTQ */ 4056 m->m_data += max_linkhdr; 4057 m->m_pkthdr.len = m->m_len = len; 4058 /* The rest of the stack assumes a rcvif, so provide one. 4059 * This is a locally generated packet, so .. close enough. */ 4060 m->m_pkthdr.rcvif = V_loif; 4061 bzero(m->m_data, len); 4062 switch (af) { 4063 #ifdef INET 4064 case AF_INET: 4065 m->m_pkthdr.csum_flags |= CSUM_TCP; 4066 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4067 4068 h = mtod(m, struct ip *); 4069 4070 h->ip_p = IPPROTO_TCP; 4071 h->ip_len = htons(tlen); 4072 h->ip_v = 4; 4073 h->ip_hl = sizeof(*h) >> 2; 4074 h->ip_tos = IPTOS_LOWDELAY; 4075 h->ip_len = htons(len); 4076 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 4077 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4078 h->ip_sum = 0; 4079 h->ip_src.s_addr = saddr->v4.s_addr; 4080 h->ip_dst.s_addr = daddr->v4.s_addr; 4081 4082 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 4083 th->th_sum = in_pseudo(h->ip_src.s_addr, h->ip_dst.s_addr, 4084 htons(len - sizeof(struct ip) + IPPROTO_TCP)); 4085 break; 4086 #endif /* INET */ 4087 #ifdef INET6 4088 case AF_INET6: 4089 m->m_pkthdr.csum_flags |= CSUM_TCP_IPV6; 4090 m->m_pkthdr.csum_data = offsetof(struct tcphdr, th_sum); 4091 4092 h6 = mtod(m, struct ip6_hdr *); 4093 4094 /* IP header fields included in the TCP checksum */ 4095 h6->ip6_nxt = IPPROTO_TCP; 4096 h6->ip6_plen = htons(tlen); 4097 h6->ip6_vfc |= IPV6_VERSION; 4098 h6->ip6_hlim = V_ip6_defhlim; 4099 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 4100 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 4101 4102 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 4103 th->th_sum = in6_cksum_pseudo(h6, len - sizeof(struct ip6_hdr), 4104 IPPROTO_TCP, 0); 4105 break; 4106 #endif /* INET6 */ 4107 } 4108 4109 /* TCP header */ 4110 th->th_sport = sport; 4111 th->th_dport = dport; 4112 th->th_seq = htonl(seq); 4113 th->th_ack = htonl(ack); 4114 th->th_off = tlen >> 2; 4115 tcp_set_flags(th, tcp_flags); 4116 th->th_win = htons(win); 4117 4118 opt = (char *)(th + 1); 4119 if (mss) { 4120 opt = (char *)(th + 1); 4121 opt[0] = TCPOPT_MAXSEG; 4122 opt[1] = 4; 4123 mss = htons(mss); 4124 memcpy((opt + 2), &mss, 2); 4125 opt += 4; 4126 } 4127 if (sack) { 4128 opt[0] = TCPOPT_SACK_PERMITTED; 4129 opt[1] = 2; 4130 opt += 2; 4131 } 4132 4133 return (m); 4134 } 4135 4136 static void 4137 pf_send_sctp_abort(sa_family_t af, struct pf_pdesc *pd, 4138 uint8_t ttl, int rtableid) 4139 { 4140 struct mbuf *m; 4141 #ifdef INET 4142 struct ip *h = NULL; 4143 #endif /* INET */ 4144 #ifdef INET6 4145 struct ip6_hdr *h6 = NULL; 4146 #endif /* INET6 */ 4147 struct sctphdr *hdr; 4148 struct sctp_chunkhdr *chunk; 4149 struct pf_send_entry *pfse; 4150 int off = 0; 4151 4152 MPASS(af == pd->af); 4153 4154 m = m_gethdr(M_NOWAIT, MT_DATA); 4155 if (m == NULL) 4156 return; 4157 4158 m->m_data += max_linkhdr; 4159 m->m_flags |= M_SKIP_FIREWALL; 4160 /* The rest of the stack assumes a rcvif, so provide one. 4161 * This is a locally generated packet, so .. close enough. */ 4162 m->m_pkthdr.rcvif = V_loif; 4163 4164 /* IPv4|6 header */ 4165 switch (af) { 4166 #ifdef INET 4167 case AF_INET: 4168 bzero(m->m_data, sizeof(struct ip) + sizeof(*hdr) + sizeof(*chunk)); 4169 4170 h = mtod(m, struct ip *); 4171 4172 /* IP header fields included in the TCP checksum */ 4173 4174 h->ip_p = IPPROTO_SCTP; 4175 h->ip_len = htons(sizeof(*h) + sizeof(*hdr) + sizeof(*chunk)); 4176 h->ip_ttl = ttl ? ttl : V_ip_defttl; 4177 h->ip_src = pd->dst->v4; 4178 h->ip_dst = pd->src->v4; 4179 4180 off += sizeof(struct ip); 4181 break; 4182 #endif /* INET */ 4183 #ifdef INET6 4184 case AF_INET6: 4185 bzero(m->m_data, sizeof(struct ip6_hdr) + sizeof(*hdr) + sizeof(*chunk)); 4186 4187 h6 = mtod(m, struct ip6_hdr *); 4188 4189 /* IP header fields included in the TCP checksum */ 4190 h6->ip6_vfc |= IPV6_VERSION; 4191 h6->ip6_nxt = IPPROTO_SCTP; 4192 h6->ip6_plen = htons(sizeof(*h6) + sizeof(*hdr) + sizeof(*chunk)); 4193 h6->ip6_hlim = ttl ? ttl : V_ip6_defhlim; 4194 memcpy(&h6->ip6_src, &pd->dst->v6, sizeof(struct in6_addr)); 4195 memcpy(&h6->ip6_dst, &pd->src->v6, sizeof(struct in6_addr)); 4196 4197 off += sizeof(struct ip6_hdr); 4198 break; 4199 #endif /* INET6 */ 4200 default: 4201 unhandled_af(af); 4202 } 4203 4204 /* SCTP header */ 4205 hdr = mtodo(m, off); 4206 4207 hdr->src_port = pd->hdr.sctp.dest_port; 4208 hdr->dest_port = pd->hdr.sctp.src_port; 4209 hdr->v_tag = pd->sctp_initiate_tag; 4210 hdr->checksum = 0; 4211 4212 /* Abort chunk. */ 4213 off += sizeof(struct sctphdr); 4214 chunk = mtodo(m, off); 4215 4216 chunk->chunk_type = SCTP_ABORT_ASSOCIATION; 4217 chunk->chunk_length = htons(sizeof(*chunk)); 4218 4219 /* SCTP checksum */ 4220 off += sizeof(*chunk); 4221 m->m_pkthdr.len = m->m_len = off; 4222 4223 pf_sctp_checksum(m, off - sizeof(*hdr) - sizeof(*chunk)); 4224 4225 if (rtableid >= 0) 4226 M_SETFIB(m, rtableid); 4227 4228 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4229 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4230 if (pfse == NULL) { 4231 m_freem(m); 4232 return; 4233 } 4234 4235 switch (af) { 4236 #ifdef INET 4237 case AF_INET: 4238 pfse->pfse_type = PFSE_IP; 4239 break; 4240 #endif /* INET */ 4241 #ifdef INET6 4242 case AF_INET6: 4243 pfse->pfse_type = PFSE_IP6; 4244 break; 4245 #endif /* INET6 */ 4246 } 4247 4248 pfse->pfse_m = m; 4249 pf_send(pfse); 4250 } 4251 4252 void 4253 pf_send_tcp(const struct pf_krule *r, sa_family_t af, 4254 const struct pf_addr *saddr, const struct pf_addr *daddr, 4255 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 4256 u_int8_t tcp_flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, 4257 int mbuf_flags, u_int16_t mtag_tag, u_int16_t mtag_flags, int rtableid) 4258 { 4259 struct pf_send_entry *pfse; 4260 struct mbuf *m; 4261 4262 m = pf_build_tcp(r, af, saddr, daddr, sport, dport, seq, ack, tcp_flags, 4263 win, mss, ttl, mbuf_flags, mtag_tag, mtag_flags, 0, rtableid); 4264 if (m == NULL) 4265 return; 4266 4267 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4268 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4269 if (pfse == NULL) { 4270 m_freem(m); 4271 return; 4272 } 4273 4274 switch (af) { 4275 #ifdef INET 4276 case AF_INET: 4277 pfse->pfse_type = PFSE_IP; 4278 break; 4279 #endif /* INET */ 4280 #ifdef INET6 4281 case AF_INET6: 4282 pfse->pfse_type = PFSE_IP6; 4283 break; 4284 #endif /* INET6 */ 4285 default: 4286 unhandled_af(af); 4287 } 4288 4289 pfse->pfse_m = m; 4290 pf_send(pfse); 4291 } 4292 4293 static void 4294 pf_undo_nat(struct pf_krule *nr, struct pf_pdesc *pd, uint16_t bip_sum) 4295 { 4296 /* undo NAT changes, if they have taken place */ 4297 if (nr != NULL) { 4298 PF_ACPY(pd->src, &pd->osrc, pd->af); 4299 PF_ACPY(pd->dst, &pd->odst, pd->af); 4300 if (pd->sport) 4301 *pd->sport = pd->osport; 4302 if (pd->dport) 4303 *pd->dport = pd->odport; 4304 if (pd->ip_sum) 4305 *pd->ip_sum = bip_sum; 4306 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 4307 } 4308 } 4309 4310 static void 4311 pf_return(struct pf_krule *r, struct pf_krule *nr, struct pf_pdesc *pd, 4312 struct tcphdr *th, u_int16_t bproto_sum, u_int16_t bip_sum, 4313 u_short *reason, int rtableid) 4314 { 4315 pf_undo_nat(nr, pd, bip_sum); 4316 4317 if (pd->proto == IPPROTO_TCP && 4318 ((r->rule_flag & PFRULE_RETURNRST) || 4319 (r->rule_flag & PFRULE_RETURN)) && 4320 !(tcp_get_flags(th) & TH_RST)) { 4321 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 4322 4323 if (pf_check_proto_cksum(pd->m, pd->off, pd->tot_len - pd->off, 4324 IPPROTO_TCP, pd->af)) 4325 REASON_SET(reason, PFRES_PROTCKSUM); 4326 else { 4327 if (tcp_get_flags(th) & TH_SYN) 4328 ack++; 4329 if (tcp_get_flags(th) & TH_FIN) 4330 ack++; 4331 pf_send_tcp(r, pd->af, pd->dst, 4332 pd->src, th->th_dport, th->th_sport, 4333 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 4334 r->return_ttl, M_SKIP_FIREWALL, 0, 0, rtableid); 4335 } 4336 } else if (pd->proto == IPPROTO_SCTP && 4337 (r->rule_flag & PFRULE_RETURN)) { 4338 pf_send_sctp_abort(pd->af, pd, r->return_ttl, rtableid); 4339 } else if (pd->proto != IPPROTO_ICMP && pd->af == AF_INET && 4340 r->return_icmp) 4341 pf_send_icmp(pd->m, r->return_icmp >> 8, 4342 r->return_icmp & 255, pd->af, r, rtableid); 4343 else if (pd->proto != IPPROTO_ICMPV6 && pd->af == AF_INET6 && 4344 r->return_icmp6) 4345 pf_send_icmp(pd->m, r->return_icmp6 >> 8, 4346 r->return_icmp6 & 255, pd->af, r, rtableid); 4347 } 4348 4349 static int 4350 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 4351 { 4352 struct m_tag *mtag; 4353 u_int8_t mpcp; 4354 4355 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 4356 if (mtag == NULL) 4357 return (0); 4358 4359 if (prio == PF_PRIO_ZERO) 4360 prio = 0; 4361 4362 mpcp = *(uint8_t *)(mtag + 1); 4363 4364 return (mpcp == prio); 4365 } 4366 4367 static int 4368 pf_icmp_to_bandlim(uint8_t type) 4369 { 4370 switch (type) { 4371 case ICMP_ECHO: 4372 case ICMP_ECHOREPLY: 4373 return (BANDLIM_ICMP_ECHO); 4374 case ICMP_TSTAMP: 4375 case ICMP_TSTAMPREPLY: 4376 return (BANDLIM_ICMP_TSTAMP); 4377 case ICMP_UNREACH: 4378 default: 4379 return (BANDLIM_ICMP_UNREACH); 4380 } 4381 } 4382 4383 static void 4384 pf_send_challenge_ack(struct pf_pdesc *pd, struct pf_kstate *s, 4385 struct pf_state_peer *src, struct pf_state_peer *dst) 4386 { 4387 /* 4388 * We are sending challenge ACK as a response to SYN packet, which 4389 * matches existing state (modulo TCP window check). Therefore packet 4390 * must be sent on behalf of destination. 4391 * 4392 * We expect sender to remain either silent, or send RST packet 4393 * so both, firewall and remote peer, can purge dead state from 4394 * memory. 4395 */ 4396 pf_send_tcp(s->rule, pd->af, pd->dst, pd->src, 4397 pd->hdr.tcp.th_dport, pd->hdr.tcp.th_sport, dst->seqlo, 4398 src->seqlo, TH_ACK, 0, 0, s->rule->return_ttl, 0, 0, 0, 4399 s->rule->rtableid); 4400 } 4401 4402 static void 4403 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 4404 struct pf_krule *r, int rtableid) 4405 { 4406 struct pf_send_entry *pfse; 4407 struct mbuf *m0; 4408 struct pf_mtag *pf_mtag; 4409 4410 /* ICMP packet rate limitation. */ 4411 switch (af) { 4412 #ifdef INET6 4413 case AF_INET6: 4414 if (icmp6_ratelimit(NULL, type, code)) 4415 return; 4416 break; 4417 #endif /* INET6 */ 4418 #ifdef INET 4419 case AF_INET: 4420 if (badport_bandlim(pf_icmp_to_bandlim(type)) != 0) 4421 return; 4422 break; 4423 #endif /* INET */ 4424 } 4425 4426 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 4427 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 4428 if (pfse == NULL) 4429 return; 4430 4431 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 4432 free(pfse, M_PFTEMP); 4433 return; 4434 } 4435 4436 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 4437 free(pfse, M_PFTEMP); 4438 return; 4439 } 4440 /* XXX: revisit */ 4441 m0->m_flags |= M_SKIP_FIREWALL; 4442 4443 if (rtableid >= 0) 4444 M_SETFIB(m0, rtableid); 4445 4446 #ifdef ALTQ 4447 if (r->qid) { 4448 pf_mtag->qid = r->qid; 4449 /* add hints for ecn */ 4450 pf_mtag->hdr = mtod(m0, struct ip *); 4451 } 4452 #endif /* ALTQ */ 4453 4454 switch (af) { 4455 #ifdef INET 4456 case AF_INET: 4457 pfse->pfse_type = PFSE_ICMP; 4458 break; 4459 #endif /* INET */ 4460 #ifdef INET6 4461 case AF_INET6: 4462 pfse->pfse_type = PFSE_ICMP6; 4463 break; 4464 #endif /* INET6 */ 4465 } 4466 pfse->pfse_m = m0; 4467 pfse->icmpopts.type = type; 4468 pfse->icmpopts.code = code; 4469 pf_send(pfse); 4470 } 4471 4472 /* 4473 * Return ((n = 0) == (a = b [with mask m])) 4474 * Note: n != 0 => returns (a != b [with mask m]) 4475 */ 4476 int 4477 pf_match_addr(u_int8_t n, const struct pf_addr *a, const struct pf_addr *m, 4478 const struct pf_addr *b, sa_family_t af) 4479 { 4480 switch (af) { 4481 #ifdef INET 4482 case AF_INET: 4483 if (IN_ARE_MASKED_ADDR_EQUAL(a->v4, b->v4, m->v4)) 4484 return (n == 0); 4485 break; 4486 #endif /* INET */ 4487 #ifdef INET6 4488 case AF_INET6: 4489 if (IN6_ARE_MASKED_ADDR_EQUAL(&a->v6, &b->v6, &m->v6)) 4490 return (n == 0); 4491 break; 4492 #endif /* INET6 */ 4493 } 4494 4495 return (n != 0); 4496 } 4497 4498 /* 4499 * Return 1 if b <= a <= e, otherwise return 0. 4500 */ 4501 int 4502 pf_match_addr_range(const struct pf_addr *b, const struct pf_addr *e, 4503 const struct pf_addr *a, sa_family_t af) 4504 { 4505 switch (af) { 4506 #ifdef INET 4507 case AF_INET: 4508 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 4509 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 4510 return (0); 4511 break; 4512 #endif /* INET */ 4513 #ifdef INET6 4514 case AF_INET6: { 4515 int i; 4516 4517 /* check a >= b */ 4518 for (i = 0; i < 4; ++i) 4519 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 4520 break; 4521 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 4522 return (0); 4523 /* check a <= e */ 4524 for (i = 0; i < 4; ++i) 4525 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 4526 break; 4527 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 4528 return (0); 4529 break; 4530 } 4531 #endif /* INET6 */ 4532 } 4533 return (1); 4534 } 4535 4536 static int 4537 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 4538 { 4539 switch (op) { 4540 case PF_OP_IRG: 4541 return ((p > a1) && (p < a2)); 4542 case PF_OP_XRG: 4543 return ((p < a1) || (p > a2)); 4544 case PF_OP_RRG: 4545 return ((p >= a1) && (p <= a2)); 4546 case PF_OP_EQ: 4547 return (p == a1); 4548 case PF_OP_NE: 4549 return (p != a1); 4550 case PF_OP_LT: 4551 return (p < a1); 4552 case PF_OP_LE: 4553 return (p <= a1); 4554 case PF_OP_GT: 4555 return (p > a1); 4556 case PF_OP_GE: 4557 return (p >= a1); 4558 } 4559 return (0); /* never reached */ 4560 } 4561 4562 int 4563 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 4564 { 4565 return (pf_match(op, ntohs(a1), ntohs(a2), ntohs(p))); 4566 } 4567 4568 static int 4569 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 4570 { 4571 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4572 return (0); 4573 return (pf_match(op, a1, a2, u)); 4574 } 4575 4576 static int 4577 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 4578 { 4579 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 4580 return (0); 4581 return (pf_match(op, a1, a2, g)); 4582 } 4583 4584 int 4585 pf_match_tag(struct mbuf *m, struct pf_krule *r, int *tag, int mtag) 4586 { 4587 if (*tag == -1) 4588 *tag = mtag; 4589 4590 return ((!r->match_tag_not && r->match_tag == *tag) || 4591 (r->match_tag_not && r->match_tag != *tag)); 4592 } 4593 4594 static int 4595 pf_match_rcvif(struct mbuf *m, struct pf_krule *r) 4596 { 4597 struct ifnet *ifp = m->m_pkthdr.rcvif; 4598 struct pfi_kkif *kif; 4599 4600 if (ifp == NULL) 4601 return (0); 4602 4603 kif = (struct pfi_kkif *)ifp->if_pf_kif; 4604 4605 if (kif == NULL) { 4606 DPFPRINTF(PF_DEBUG_URGENT, 4607 ("%s: kif == NULL, @%d via %s\n", __func__, r->nr, 4608 r->rcv_ifname)); 4609 return (0); 4610 } 4611 4612 return (pfi_kkif_match(r->rcv_kif, kif)); 4613 } 4614 4615 int 4616 pf_tag_packet(struct pf_pdesc *pd, int tag) 4617 { 4618 4619 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 4620 4621 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) 4622 return (ENOMEM); 4623 4624 pd->pf_mtag->tag = tag; 4625 4626 return (0); 4627 } 4628 4629 /* 4630 * XXX: We rely on malloc(9) returning pointer aligned addresses. 4631 */ 4632 #define PF_ANCHORSTACK_MATCH 0x00000001 4633 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 4634 4635 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4636 #define PF_ANCHOR_RULE(f) (struct pf_krule *) \ 4637 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4638 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4639 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4640 } while (0) 4641 4642 enum pf_test_status 4643 pf_step_into_anchor(struct pf_test_ctx *ctx, struct pf_krule *r) 4644 { 4645 enum pf_test_status rv; 4646 4647 PF_RULES_RASSERT(); 4648 4649 if (ctx->depth >= PF_ANCHOR_STACK_MAX) { 4650 printf("%s: anchor stack overflow on %s\n", 4651 __func__, r->anchor->name); 4652 return (PF_TEST_FAIL); 4653 } 4654 4655 ctx->depth++; 4656 4657 if (r->anchor_wildcard) { 4658 struct pf_kanchor *child; 4659 rv = PF_TEST_OK; 4660 RB_FOREACH(child, pf_kanchor_node, &r->anchor->children) { 4661 rv = pf_match_rule(ctx, &child->ruleset); 4662 if ((rv == PF_TEST_QUICK) || (rv == PF_TEST_FAIL)) { 4663 /* 4664 * we either hit a rule qith quick action 4665 * (more likely), or hit some runtime 4666 * error (e.g. pool_get() faillure). 4667 */ 4668 break; 4669 } 4670 } 4671 } else { 4672 rv = pf_match_rule(ctx, &r->anchor->ruleset); 4673 } 4674 4675 ctx->depth--; 4676 4677 return (rv); 4678 } 4679 4680 struct pf_keth_anchor_stackframe { 4681 struct pf_keth_ruleset *rs; 4682 struct pf_keth_rule *r; /* XXX: + match bit */ 4683 struct pf_keth_anchor *child; 4684 }; 4685 4686 #define PF_ETH_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 4687 #define PF_ETH_ANCHOR_RULE(f) (struct pf_keth_rule *) \ 4688 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 4689 #define PF_ETH_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 4690 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 4691 } while (0) 4692 4693 void 4694 pf_step_into_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4695 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4696 struct pf_keth_rule **a, int *match) 4697 { 4698 struct pf_keth_anchor_stackframe *f; 4699 4700 NET_EPOCH_ASSERT(); 4701 4702 if (match) 4703 *match = 0; 4704 if (*depth >= PF_ANCHOR_STACK_MAX) { 4705 printf("%s: anchor stack overflow on %s\n", 4706 __func__, (*r)->anchor->name); 4707 *r = TAILQ_NEXT(*r, entries); 4708 return; 4709 } else if (*depth == 0 && a != NULL) 4710 *a = *r; 4711 f = stack + (*depth)++; 4712 f->rs = *rs; 4713 f->r = *r; 4714 if ((*r)->anchor_wildcard) { 4715 struct pf_keth_anchor_node *parent = &(*r)->anchor->children; 4716 4717 if ((f->child = RB_MIN(pf_keth_anchor_node, parent)) == NULL) { 4718 *r = NULL; 4719 return; 4720 } 4721 *rs = &f->child->ruleset; 4722 } else { 4723 f->child = NULL; 4724 *rs = &(*r)->anchor->ruleset; 4725 } 4726 *r = TAILQ_FIRST((*rs)->active.rules); 4727 } 4728 4729 int 4730 pf_step_out_of_keth_anchor(struct pf_keth_anchor_stackframe *stack, int *depth, 4731 struct pf_keth_ruleset **rs, struct pf_keth_rule **r, 4732 struct pf_keth_rule **a, int *match) 4733 { 4734 struct pf_keth_anchor_stackframe *f; 4735 struct pf_keth_rule *fr; 4736 int quick = 0; 4737 4738 NET_EPOCH_ASSERT(); 4739 4740 do { 4741 if (*depth <= 0) 4742 break; 4743 f = stack + *depth - 1; 4744 fr = PF_ETH_ANCHOR_RULE(f); 4745 if (f->child != NULL) { 4746 /* 4747 * This block traverses through 4748 * a wildcard anchor. 4749 */ 4750 if (match != NULL && *match) { 4751 /* 4752 * If any of "*" matched, then 4753 * "foo/ *" matched, mark frame 4754 * appropriately. 4755 */ 4756 PF_ETH_ANCHOR_SET_MATCH(f); 4757 *match = 0; 4758 } 4759 f->child = RB_NEXT(pf_keth_anchor_node, 4760 &fr->anchor->children, f->child); 4761 if (f->child != NULL) { 4762 *rs = &f->child->ruleset; 4763 *r = TAILQ_FIRST((*rs)->active.rules); 4764 if (*r == NULL) 4765 continue; 4766 else 4767 break; 4768 } 4769 } 4770 (*depth)--; 4771 if (*depth == 0 && a != NULL) 4772 *a = NULL; 4773 *rs = f->rs; 4774 if (PF_ETH_ANCHOR_MATCH(f) || (match != NULL && *match)) 4775 quick = fr->quick; 4776 *r = TAILQ_NEXT(fr, entries); 4777 } while (*r == NULL); 4778 4779 return (quick); 4780 } 4781 4782 #ifdef INET6 4783 void 4784 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 4785 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 4786 { 4787 switch (af) { 4788 #ifdef INET 4789 case AF_INET: 4790 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4791 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4792 break; 4793 #endif /* INET */ 4794 case AF_INET6: 4795 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 4796 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 4797 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 4798 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 4799 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 4800 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 4801 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 4802 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 4803 break; 4804 } 4805 } 4806 4807 void 4808 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 4809 { 4810 switch (af) { 4811 #ifdef INET 4812 case AF_INET: 4813 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 4814 break; 4815 #endif /* INET */ 4816 case AF_INET6: 4817 if (addr->addr32[3] == 0xffffffff) { 4818 addr->addr32[3] = 0; 4819 if (addr->addr32[2] == 0xffffffff) { 4820 addr->addr32[2] = 0; 4821 if (addr->addr32[1] == 0xffffffff) { 4822 addr->addr32[1] = 0; 4823 addr->addr32[0] = 4824 htonl(ntohl(addr->addr32[0]) + 1); 4825 } else 4826 addr->addr32[1] = 4827 htonl(ntohl(addr->addr32[1]) + 1); 4828 } else 4829 addr->addr32[2] = 4830 htonl(ntohl(addr->addr32[2]) + 1); 4831 } else 4832 addr->addr32[3] = 4833 htonl(ntohl(addr->addr32[3]) + 1); 4834 break; 4835 } 4836 } 4837 #endif /* INET6 */ 4838 4839 void 4840 pf_rule_to_actions(struct pf_krule *r, struct pf_rule_actions *a) 4841 { 4842 /* 4843 * Modern rules use the same flags in rules as they do in states. 4844 */ 4845 a->flags |= (r->scrub_flags & (PFSTATE_NODF|PFSTATE_RANDOMID| 4846 PFSTATE_SCRUB_TCP|PFSTATE_SETPRIO)); 4847 4848 /* 4849 * Old-style scrub rules have different flags which need to be translated. 4850 */ 4851 if (r->rule_flag & PFRULE_RANDOMID) 4852 a->flags |= PFSTATE_RANDOMID; 4853 if (r->scrub_flags & PFSTATE_SETTOS || r->rule_flag & PFRULE_SET_TOS ) { 4854 a->flags |= PFSTATE_SETTOS; 4855 a->set_tos = r->set_tos; 4856 } 4857 4858 if (r->qid) 4859 a->qid = r->qid; 4860 if (r->pqid) 4861 a->pqid = r->pqid; 4862 if (r->rtableid >= 0) 4863 a->rtableid = r->rtableid; 4864 a->log |= r->log; 4865 if (r->min_ttl) 4866 a->min_ttl = r->min_ttl; 4867 if (r->max_mss) 4868 a->max_mss = r->max_mss; 4869 if (r->dnpipe) 4870 a->dnpipe = r->dnpipe; 4871 if (r->dnrpipe) 4872 a->dnrpipe = r->dnrpipe; 4873 if (r->dnpipe || r->dnrpipe) { 4874 if (r->free_flags & PFRULE_DN_IS_PIPE) 4875 a->flags |= PFSTATE_DN_IS_PIPE; 4876 else 4877 a->flags &= ~PFSTATE_DN_IS_PIPE; 4878 } 4879 if (r->scrub_flags & PFSTATE_SETPRIO) { 4880 a->set_prio[0] = r->set_prio[0]; 4881 a->set_prio[1] = r->set_prio[1]; 4882 } 4883 if (r->allow_opts) 4884 a->allow_opts = r->allow_opts; 4885 } 4886 4887 int 4888 pf_socket_lookup(struct pf_pdesc *pd) 4889 { 4890 struct pf_addr *saddr, *daddr; 4891 u_int16_t sport, dport; 4892 struct inpcbinfo *pi; 4893 struct inpcb *inp; 4894 4895 pd->lookup.uid = UID_MAX; 4896 pd->lookup.gid = GID_MAX; 4897 4898 switch (pd->proto) { 4899 case IPPROTO_TCP: 4900 sport = pd->hdr.tcp.th_sport; 4901 dport = pd->hdr.tcp.th_dport; 4902 pi = &V_tcbinfo; 4903 break; 4904 case IPPROTO_UDP: 4905 sport = pd->hdr.udp.uh_sport; 4906 dport = pd->hdr.udp.uh_dport; 4907 pi = &V_udbinfo; 4908 break; 4909 default: 4910 return (-1); 4911 } 4912 if (pd->dir == PF_IN) { 4913 saddr = pd->src; 4914 daddr = pd->dst; 4915 } else { 4916 u_int16_t p; 4917 4918 p = sport; 4919 sport = dport; 4920 dport = p; 4921 saddr = pd->dst; 4922 daddr = pd->src; 4923 } 4924 switch (pd->af) { 4925 #ifdef INET 4926 case AF_INET: 4927 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 4928 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4929 if (inp == NULL) { 4930 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 4931 daddr->v4, dport, INPLOOKUP_WILDCARD | 4932 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4933 if (inp == NULL) 4934 return (-1); 4935 } 4936 break; 4937 #endif /* INET */ 4938 #ifdef INET6 4939 case AF_INET6: 4940 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 4941 dport, INPLOOKUP_RLOCKPCB, NULL, pd->m); 4942 if (inp == NULL) { 4943 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 4944 &daddr->v6, dport, INPLOOKUP_WILDCARD | 4945 INPLOOKUP_RLOCKPCB, NULL, pd->m); 4946 if (inp == NULL) 4947 return (-1); 4948 } 4949 break; 4950 #endif /* INET6 */ 4951 default: 4952 unhandled_af(pd->af); 4953 } 4954 INP_RLOCK_ASSERT(inp); 4955 pd->lookup.uid = inp->inp_cred->cr_uid; 4956 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 4957 INP_RUNLOCK(inp); 4958 4959 return (1); 4960 } 4961 4962 u_int8_t 4963 pf_get_wscale(struct pf_pdesc *pd) 4964 { 4965 struct tcphdr *th = &pd->hdr.tcp; 4966 int hlen; 4967 u_int8_t hdr[60]; 4968 u_int8_t *opt, optlen; 4969 u_int8_t wscale = 0; 4970 4971 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 4972 if (hlen <= sizeof(struct tcphdr)) 4973 return (0); 4974 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 4975 return (0); 4976 opt = hdr + sizeof(struct tcphdr); 4977 hlen -= sizeof(struct tcphdr); 4978 while (hlen >= 3) { 4979 switch (*opt) { 4980 case TCPOPT_EOL: 4981 case TCPOPT_NOP: 4982 ++opt; 4983 --hlen; 4984 break; 4985 case TCPOPT_WINDOW: 4986 wscale = opt[2]; 4987 if (wscale > TCP_MAX_WINSHIFT) 4988 wscale = TCP_MAX_WINSHIFT; 4989 wscale |= PF_WSCALE_FLAG; 4990 /* FALLTHROUGH */ 4991 default: 4992 optlen = opt[1]; 4993 if (optlen < 2) 4994 optlen = 2; 4995 hlen -= optlen; 4996 opt += optlen; 4997 break; 4998 } 4999 } 5000 return (wscale); 5001 } 5002 5003 u_int16_t 5004 pf_get_mss(struct pf_pdesc *pd) 5005 { 5006 struct tcphdr *th = &pd->hdr.tcp; 5007 int hlen; 5008 u_int8_t hdr[60]; 5009 u_int8_t *opt, optlen; 5010 u_int16_t mss = V_tcp_mssdflt; 5011 5012 hlen = th->th_off << 2; /* hlen <= sizeof(hdr) */ 5013 if (hlen <= sizeof(struct tcphdr)) 5014 return (0); 5015 if (!pf_pull_hdr(pd->m, pd->off, hdr, hlen, NULL, NULL, pd->af)) 5016 return (0); 5017 opt = hdr + sizeof(struct tcphdr); 5018 hlen -= sizeof(struct tcphdr); 5019 while (hlen >= TCPOLEN_MAXSEG) { 5020 switch (*opt) { 5021 case TCPOPT_EOL: 5022 case TCPOPT_NOP: 5023 ++opt; 5024 --hlen; 5025 break; 5026 case TCPOPT_MAXSEG: 5027 memcpy(&mss, (opt + 2), 2); 5028 mss = ntohs(mss); 5029 /* FALLTHROUGH */ 5030 default: 5031 optlen = opt[1]; 5032 if (optlen < 2) 5033 optlen = 2; 5034 hlen -= optlen; 5035 opt += optlen; 5036 break; 5037 } 5038 } 5039 return (mss); 5040 } 5041 5042 static u_int16_t 5043 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 5044 { 5045 struct nhop_object *nh; 5046 #ifdef INET6 5047 struct in6_addr dst6; 5048 uint32_t scopeid; 5049 #endif /* INET6 */ 5050 int hlen = 0; 5051 uint16_t mss = 0; 5052 5053 NET_EPOCH_ASSERT(); 5054 5055 switch (af) { 5056 #ifdef INET 5057 case AF_INET: 5058 hlen = sizeof(struct ip); 5059 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 5060 if (nh != NULL) 5061 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5062 break; 5063 #endif /* INET */ 5064 #ifdef INET6 5065 case AF_INET6: 5066 hlen = sizeof(struct ip6_hdr); 5067 in6_splitscope(&addr->v6, &dst6, &scopeid); 5068 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 5069 if (nh != NULL) 5070 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 5071 break; 5072 #endif /* INET6 */ 5073 } 5074 5075 mss = max(V_tcp_mssdflt, mss); 5076 mss = min(mss, offer); 5077 mss = max(mss, 64); /* sanity - at least max opt space */ 5078 return (mss); 5079 } 5080 5081 static u_int32_t 5082 pf_tcp_iss(struct pf_pdesc *pd) 5083 { 5084 SHA512_CTX ctx; 5085 union { 5086 uint8_t bytes[SHA512_DIGEST_LENGTH]; 5087 uint32_t words[1]; 5088 } digest; 5089 5090 if (V_pf_tcp_secret_init == 0) { 5091 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 5092 SHA512_Init(&V_pf_tcp_secret_ctx); 5093 SHA512_Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 5094 sizeof(V_pf_tcp_secret)); 5095 V_pf_tcp_secret_init = 1; 5096 } 5097 5098 ctx = V_pf_tcp_secret_ctx; 5099 5100 SHA512_Update(&ctx, &pd->hdr.tcp.th_sport, sizeof(u_short)); 5101 SHA512_Update(&ctx, &pd->hdr.tcp.th_dport, sizeof(u_short)); 5102 switch (pd->af) { 5103 case AF_INET6: 5104 SHA512_Update(&ctx, &pd->src->v6, sizeof(struct in6_addr)); 5105 SHA512_Update(&ctx, &pd->dst->v6, sizeof(struct in6_addr)); 5106 break; 5107 case AF_INET: 5108 SHA512_Update(&ctx, &pd->src->v4, sizeof(struct in_addr)); 5109 SHA512_Update(&ctx, &pd->dst->v4, sizeof(struct in_addr)); 5110 break; 5111 } 5112 SHA512_Final(digest.bytes, &ctx); 5113 V_pf_tcp_iss_off += 4096; 5114 #define ISN_RANDOM_INCREMENT (4096 - 1) 5115 return (digest.words[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 5116 V_pf_tcp_iss_off); 5117 #undef ISN_RANDOM_INCREMENT 5118 } 5119 5120 static bool 5121 pf_match_eth_addr(const uint8_t *a, const struct pf_keth_rule_addr *r) 5122 { 5123 bool match = true; 5124 5125 /* Always matches if not set */ 5126 if (! r->isset) 5127 return (!r->neg); 5128 5129 for (int i = 0; i < ETHER_ADDR_LEN; i++) { 5130 if ((a[i] & r->mask[i]) != (r->addr[i] & r->mask[i])) { 5131 match = false; 5132 break; 5133 } 5134 } 5135 5136 return (match ^ r->neg); 5137 } 5138 5139 static int 5140 pf_match_eth_tag(struct mbuf *m, struct pf_keth_rule *r, int *tag, int mtag) 5141 { 5142 if (*tag == -1) 5143 *tag = mtag; 5144 5145 return ((!r->match_tag_not && r->match_tag == *tag) || 5146 (r->match_tag_not && r->match_tag != *tag)); 5147 } 5148 5149 static void 5150 pf_bridge_to(struct ifnet *ifp, struct mbuf *m) 5151 { 5152 /* If we don't have the interface drop the packet. */ 5153 if (ifp == NULL) { 5154 m_freem(m); 5155 return; 5156 } 5157 5158 switch (ifp->if_type) { 5159 case IFT_ETHER: 5160 case IFT_XETHER: 5161 case IFT_L2VLAN: 5162 case IFT_BRIDGE: 5163 case IFT_IEEE8023ADLAG: 5164 break; 5165 default: 5166 m_freem(m); 5167 return; 5168 } 5169 5170 ifp->if_transmit(ifp, m); 5171 } 5172 5173 static int 5174 pf_test_eth_rule(int dir, struct pfi_kkif *kif, struct mbuf **m0) 5175 { 5176 #ifdef INET 5177 struct ip ip; 5178 #endif /* INET */ 5179 #ifdef INET6 5180 struct ip6_hdr ip6; 5181 #endif /* INET6 */ 5182 struct mbuf *m = *m0; 5183 struct ether_header *e; 5184 struct pf_keth_rule *r, *rm, *a = NULL; 5185 struct pf_keth_ruleset *ruleset = NULL; 5186 struct pf_mtag *mtag; 5187 struct pf_keth_ruleq *rules; 5188 struct pf_addr *src = NULL, *dst = NULL; 5189 struct pfi_kkif *bridge_to; 5190 sa_family_t af = 0; 5191 uint16_t proto; 5192 int asd = 0, match = 0; 5193 int tag = -1; 5194 uint8_t action; 5195 struct pf_keth_anchor_stackframe anchor_stack[PF_ANCHOR_STACK_MAX]; 5196 5197 MPASS(kif->pfik_ifp->if_vnet == curvnet); 5198 NET_EPOCH_ASSERT(); 5199 5200 PF_RULES_RLOCK_TRACKER; 5201 5202 SDT_PROBE3(pf, eth, test_rule, entry, dir, kif->pfik_ifp, m); 5203 5204 mtag = pf_find_mtag(m); 5205 if (mtag != NULL && mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 5206 /* Dummynet re-injects packets after they've 5207 * completed their delay. We've already 5208 * processed them, so pass unconditionally. */ 5209 5210 /* But only once. We may see the packet multiple times (e.g. 5211 * PFIL_IN/PFIL_OUT). */ 5212 pf_dummynet_flag_remove(m, mtag); 5213 5214 return (PF_PASS); 5215 } 5216 5217 if (__predict_false(m->m_len < sizeof(struct ether_header)) && 5218 (m = *m0 = m_pullup(*m0, sizeof(struct ether_header))) == NULL) { 5219 DPFPRINTF(PF_DEBUG_URGENT, 5220 ("%s: m_len < sizeof(struct ether_header)" 5221 ", pullup failed\n", __func__)); 5222 return (PF_DROP); 5223 } 5224 e = mtod(m, struct ether_header *); 5225 proto = ntohs(e->ether_type); 5226 5227 switch (proto) { 5228 #ifdef INET 5229 case ETHERTYPE_IP: { 5230 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5231 sizeof(ip))) 5232 return (PF_DROP); 5233 5234 af = AF_INET; 5235 m_copydata(m, sizeof(struct ether_header), sizeof(ip), 5236 (caddr_t)&ip); 5237 src = (struct pf_addr *)&ip.ip_src; 5238 dst = (struct pf_addr *)&ip.ip_dst; 5239 break; 5240 } 5241 #endif /* INET */ 5242 #ifdef INET6 5243 case ETHERTYPE_IPV6: { 5244 if (m_length(m, NULL) < (sizeof(struct ether_header) + 5245 sizeof(ip6))) 5246 return (PF_DROP); 5247 5248 af = AF_INET6; 5249 m_copydata(m, sizeof(struct ether_header), sizeof(ip6), 5250 (caddr_t)&ip6); 5251 src = (struct pf_addr *)&ip6.ip6_src; 5252 dst = (struct pf_addr *)&ip6.ip6_dst; 5253 break; 5254 } 5255 #endif /* INET6 */ 5256 } 5257 5258 PF_RULES_RLOCK(); 5259 5260 ruleset = V_pf_keth; 5261 rules = atomic_load_ptr(&ruleset->active.rules); 5262 for (r = TAILQ_FIRST(rules), rm = NULL; r != NULL;) { 5263 counter_u64_add(r->evaluations, 1); 5264 SDT_PROBE2(pf, eth, test_rule, test, r->nr, r); 5265 5266 if (pfi_kkif_match(r->kif, kif) == r->ifnot) { 5267 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5268 "kif"); 5269 r = r->skip[PFE_SKIP_IFP].ptr; 5270 } 5271 else if (r->direction && r->direction != dir) { 5272 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5273 "dir"); 5274 r = r->skip[PFE_SKIP_DIR].ptr; 5275 } 5276 else if (r->proto && r->proto != proto) { 5277 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5278 "proto"); 5279 r = r->skip[PFE_SKIP_PROTO].ptr; 5280 } 5281 else if (! pf_match_eth_addr(e->ether_shost, &r->src)) { 5282 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5283 "src"); 5284 r = r->skip[PFE_SKIP_SRC_ADDR].ptr; 5285 } 5286 else if (! pf_match_eth_addr(e->ether_dhost, &r->dst)) { 5287 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5288 "dst"); 5289 r = r->skip[PFE_SKIP_DST_ADDR].ptr; 5290 } 5291 else if (src != NULL && PF_MISMATCHAW(&r->ipsrc.addr, src, af, 5292 r->ipsrc.neg, kif, M_GETFIB(m))) { 5293 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5294 "ip_src"); 5295 r = r->skip[PFE_SKIP_SRC_IP_ADDR].ptr; 5296 } 5297 else if (dst != NULL && PF_MISMATCHAW(&r->ipdst.addr, dst, af, 5298 r->ipdst.neg, kif, M_GETFIB(m))) { 5299 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5300 "ip_dst"); 5301 r = r->skip[PFE_SKIP_DST_IP_ADDR].ptr; 5302 } 5303 else if (r->match_tag && !pf_match_eth_tag(m, r, &tag, 5304 mtag ? mtag->tag : 0)) { 5305 SDT_PROBE3(pf, eth, test_rule, mismatch, r->nr, r, 5306 "match_tag"); 5307 r = TAILQ_NEXT(r, entries); 5308 } 5309 else { 5310 if (r->tag) 5311 tag = r->tag; 5312 if (r->anchor == NULL) { 5313 /* Rule matches */ 5314 rm = r; 5315 5316 SDT_PROBE2(pf, eth, test_rule, match, r->nr, r); 5317 5318 if (r->quick) 5319 break; 5320 5321 r = TAILQ_NEXT(r, entries); 5322 } else { 5323 pf_step_into_keth_anchor(anchor_stack, &asd, 5324 &ruleset, &r, &a, &match); 5325 } 5326 } 5327 if (r == NULL && pf_step_out_of_keth_anchor(anchor_stack, &asd, 5328 &ruleset, &r, &a, &match)) 5329 break; 5330 } 5331 5332 r = rm; 5333 5334 SDT_PROBE2(pf, eth, test_rule, final_match, (r != NULL ? r->nr : -1), r); 5335 5336 /* Default to pass. */ 5337 if (r == NULL) { 5338 PF_RULES_RUNLOCK(); 5339 return (PF_PASS); 5340 } 5341 5342 /* Execute action. */ 5343 counter_u64_add(r->packets[dir == PF_OUT], 1); 5344 counter_u64_add(r->bytes[dir == PF_OUT], m_length(m, NULL)); 5345 pf_update_timestamp(r); 5346 5347 /* Shortcut. Don't tag if we're just going to drop anyway. */ 5348 if (r->action == PF_DROP) { 5349 PF_RULES_RUNLOCK(); 5350 return (PF_DROP); 5351 } 5352 5353 if (tag > 0) { 5354 if (mtag == NULL) 5355 mtag = pf_get_mtag(m); 5356 if (mtag == NULL) { 5357 PF_RULES_RUNLOCK(); 5358 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5359 return (PF_DROP); 5360 } 5361 mtag->tag = tag; 5362 } 5363 5364 if (r->qid != 0) { 5365 if (mtag == NULL) 5366 mtag = pf_get_mtag(m); 5367 if (mtag == NULL) { 5368 PF_RULES_RUNLOCK(); 5369 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5370 return (PF_DROP); 5371 } 5372 mtag->qid = r->qid; 5373 } 5374 5375 action = r->action; 5376 bridge_to = r->bridge_to; 5377 5378 /* Dummynet */ 5379 if (r->dnpipe) { 5380 struct ip_fw_args dnflow; 5381 5382 /* Drop packet if dummynet is not loaded. */ 5383 if (ip_dn_io_ptr == NULL) { 5384 PF_RULES_RUNLOCK(); 5385 m_freem(m); 5386 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5387 return (PF_DROP); 5388 } 5389 if (mtag == NULL) 5390 mtag = pf_get_mtag(m); 5391 if (mtag == NULL) { 5392 PF_RULES_RUNLOCK(); 5393 counter_u64_add(V_pf_status.counters[PFRES_MEMORY], 1); 5394 return (PF_DROP); 5395 } 5396 5397 bzero(&dnflow, sizeof(dnflow)); 5398 5399 /* We don't have port numbers here, so we set 0. That means 5400 * that we'll be somewhat limited in distinguishing flows (i.e. 5401 * only based on IP addresses, not based on port numbers), but 5402 * it's better than nothing. */ 5403 dnflow.f_id.dst_port = 0; 5404 dnflow.f_id.src_port = 0; 5405 dnflow.f_id.proto = 0; 5406 5407 dnflow.rule.info = r->dnpipe; 5408 dnflow.rule.info |= IPFW_IS_DUMMYNET; 5409 if (r->dnflags & PFRULE_DN_IS_PIPE) 5410 dnflow.rule.info |= IPFW_IS_PIPE; 5411 5412 dnflow.f_id.extra = dnflow.rule.info; 5413 5414 dnflow.flags = dir == PF_IN ? IPFW_ARGS_IN : IPFW_ARGS_OUT; 5415 dnflow.flags |= IPFW_ARGS_ETHER; 5416 dnflow.ifp = kif->pfik_ifp; 5417 5418 switch (af) { 5419 case AF_INET: 5420 dnflow.f_id.addr_type = 4; 5421 dnflow.f_id.src_ip = src->v4.s_addr; 5422 dnflow.f_id.dst_ip = dst->v4.s_addr; 5423 break; 5424 case AF_INET6: 5425 dnflow.flags |= IPFW_ARGS_IP6; 5426 dnflow.f_id.addr_type = 6; 5427 dnflow.f_id.src_ip6 = src->v6; 5428 dnflow.f_id.dst_ip6 = dst->v6; 5429 break; 5430 } 5431 5432 PF_RULES_RUNLOCK(); 5433 5434 mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 5435 ip_dn_io_ptr(m0, &dnflow); 5436 if (*m0 != NULL) 5437 pf_dummynet_flag_remove(m, mtag); 5438 } else { 5439 PF_RULES_RUNLOCK(); 5440 } 5441 5442 if (action == PF_PASS && bridge_to) { 5443 pf_bridge_to(bridge_to->pfik_ifp, *m0); 5444 *m0 = NULL; /* We've eaten the packet. */ 5445 } 5446 5447 return (action); 5448 } 5449 5450 #define PF_TEST_ATTRIB(t, a) \ 5451 if (t) { \ 5452 r = a; \ 5453 continue; \ 5454 } else do { \ 5455 } while (0) 5456 5457 static __inline u_short 5458 pf_rule_apply_nat(struct pf_test_ctx *ctx, struct pf_krule *r) 5459 { 5460 struct pf_pdesc *pd = ctx->pd; 5461 u_short transerror; 5462 u_int8_t nat_action; 5463 5464 if (r->rule_flag & PFRULE_AFTO) { 5465 /* Don't translate if there was an old style NAT rule */ 5466 if (ctx->nr != NULL) 5467 return (PFRES_TRANSLATE); 5468 5469 /* pass af-to rules, unsupported on match rules */ 5470 KASSERT(r->action != PF_MATCH, ("%s: af-to on match rule", __func__)); 5471 /* XXX I can imagine scenarios where we have both NAT and RDR source tracking */ 5472 ctx->nat_pool = &(r->nat); 5473 ctx->nr = r; 5474 pd->naf = r->naf; 5475 if (pf_get_transaddr_af(ctx->nr, pd) == -1) { 5476 return (PFRES_TRANSLATE); 5477 } 5478 return (PFRES_MATCH); 5479 } else if (r->rdr.cur || r->nat.cur) { 5480 /* Don't translate if there was an old style NAT rule */ 5481 if (ctx->nr != NULL) 5482 return (PFRES_TRANSLATE); 5483 5484 /* match/pass nat-to/rdr-to rules */ 5485 ctx->nr = r; 5486 if (r->nat.cur) { 5487 nat_action = PF_NAT; 5488 ctx->nat_pool = &(r->nat); 5489 } else { 5490 nat_action = PF_RDR; 5491 ctx->nat_pool = &(r->rdr); 5492 } 5493 5494 transerror = pf_get_transaddr(ctx, ctx->nr, 5495 nat_action, ctx->nat_pool); 5496 if (transerror == PFRES_MATCH) { 5497 ctx->rewrite += pf_translate_compat(ctx); 5498 return(PFRES_MATCH); 5499 } 5500 return (transerror); 5501 } 5502 5503 return (PFRES_MAX); 5504 } 5505 5506 enum pf_test_status 5507 pf_match_rule(struct pf_test_ctx *ctx, struct pf_kruleset *ruleset) 5508 { 5509 struct pf_krule_item *ri; 5510 struct pf_krule *r; 5511 struct pf_pdesc *pd = ctx->pd; 5512 u_short transerror; 5513 5514 r = TAILQ_FIRST(ruleset->rules[PF_RULESET_FILTER].active.ptr); 5515 while (r != NULL) { 5516 if (ctx->pd->related_rule) { 5517 *ctx->rm = ctx->pd->related_rule; 5518 break; 5519 } 5520 pf_counter_u64_add(&r->evaluations, 1); 5521 PF_TEST_ATTRIB(pfi_kkif_match(r->kif, pd->kif) == r->ifnot, 5522 r->skip[PF_SKIP_IFP]); 5523 PF_TEST_ATTRIB(r->direction && r->direction != pd->dir, 5524 r->skip[PF_SKIP_DIR]); 5525 PF_TEST_ATTRIB(r->af && r->af != pd->af, 5526 r->skip[PF_SKIP_AF]); 5527 PF_TEST_ATTRIB(r->proto && r->proto != pd->proto, 5528 r->skip[PF_SKIP_PROTO]); 5529 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->src.addr, &pd->nsaddr, pd->naf, 5530 r->src.neg, pd->kif, M_GETFIB(pd->m)), 5531 r->skip[PF_SKIP_SRC_ADDR]); 5532 PF_TEST_ATTRIB(PF_MISMATCHAW(&r->dst.addr, &pd->ndaddr, pd->af, 5533 r->dst.neg, NULL, M_GETFIB(pd->m)), 5534 r->skip[PF_SKIP_DST_ADDR]); 5535 switch (pd->virtual_proto) { 5536 case PF_VPROTO_FRAGMENT: 5537 /* tcp/udp only. port_op always 0 in other cases */ 5538 PF_TEST_ATTRIB((r->src.port_op || r->dst.port_op), 5539 TAILQ_NEXT(r, entries)); 5540 PF_TEST_ATTRIB((pd->proto == IPPROTO_TCP && r->flagset), 5541 TAILQ_NEXT(r, entries)); 5542 /* icmp only. type/code always 0 in other cases */ 5543 PF_TEST_ATTRIB((r->type || r->code), 5544 TAILQ_NEXT(r, entries)); 5545 /* tcp/udp only. {uid|gid}.op always 0 in other cases */ 5546 PF_TEST_ATTRIB((r->gid.op || r->uid.op), 5547 TAILQ_NEXT(r, entries)); 5548 break; 5549 5550 case IPPROTO_TCP: 5551 PF_TEST_ATTRIB((r->flagset & tcp_get_flags(ctx->th)) 5552 != r->flags, 5553 TAILQ_NEXT(r, entries)); 5554 /* FALLTHROUGH */ 5555 case IPPROTO_SCTP: 5556 case IPPROTO_UDP: 5557 /* tcp/udp only. port_op always 0 in other cases */ 5558 PF_TEST_ATTRIB(r->src.port_op && !pf_match_port(r->src.port_op, 5559 r->src.port[0], r->src.port[1], pd->nsport), 5560 r->skip[PF_SKIP_SRC_PORT]); 5561 /* tcp/udp only. port_op always 0 in other cases */ 5562 PF_TEST_ATTRIB(r->dst.port_op && !pf_match_port(r->dst.port_op, 5563 r->dst.port[0], r->dst.port[1], pd->ndport), 5564 r->skip[PF_SKIP_DST_PORT]); 5565 /* tcp/udp only. uid.op always 0 in other cases */ 5566 PF_TEST_ATTRIB(r->uid.op && (pd->lookup.done || (pd->lookup.done = 5567 pf_socket_lookup(pd), 1)) && 5568 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 5569 pd->lookup.uid), 5570 TAILQ_NEXT(r, entries)); 5571 /* tcp/udp only. gid.op always 0 in other cases */ 5572 PF_TEST_ATTRIB(r->gid.op && (pd->lookup.done || (pd->lookup.done = 5573 pf_socket_lookup(pd), 1)) && 5574 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 5575 pd->lookup.gid), 5576 TAILQ_NEXT(r, entries)); 5577 break; 5578 5579 case IPPROTO_ICMP: 5580 case IPPROTO_ICMPV6: 5581 /* icmp only. type always 0 in other cases */ 5582 PF_TEST_ATTRIB(r->type && r->type != ctx->icmptype + 1, 5583 TAILQ_NEXT(r, entries)); 5584 /* icmp only. type always 0 in other cases */ 5585 PF_TEST_ATTRIB(r->code && r->code != ctx->icmpcode + 1, 5586 TAILQ_NEXT(r, entries)); 5587 break; 5588 5589 default: 5590 break; 5591 } 5592 PF_TEST_ATTRIB(r->tos && !(r->tos == pd->tos), 5593 TAILQ_NEXT(r, entries)); 5594 PF_TEST_ATTRIB(r->prio && 5595 !pf_match_ieee8021q_pcp(r->prio, pd->m), 5596 TAILQ_NEXT(r, entries)); 5597 PF_TEST_ATTRIB(r->prob && 5598 r->prob <= arc4random(), 5599 TAILQ_NEXT(r, entries)); 5600 PF_TEST_ATTRIB(r->match_tag && !pf_match_tag(pd->m, r, 5601 &ctx->tag, pd->pf_mtag ? pd->pf_mtag->tag : 0), 5602 TAILQ_NEXT(r, entries)); 5603 PF_TEST_ATTRIB((r->rcv_kif && pf_match_rcvif(pd->m, r) == 5604 r->rcvifnot), 5605 TAILQ_NEXT(r, entries)); 5606 PF_TEST_ATTRIB((r->rule_flag & PFRULE_FRAGMENT && 5607 pd->virtual_proto != PF_VPROTO_FRAGMENT), 5608 TAILQ_NEXT(r, entries)); 5609 PF_TEST_ATTRIB(r->os_fingerprint != PF_OSFP_ANY && 5610 (pd->virtual_proto != IPPROTO_TCP || !pf_osfp_match( 5611 pf_osfp_fingerprint(pd, ctx->th), 5612 r->os_fingerprint)), 5613 TAILQ_NEXT(r, entries)); 5614 /* FALLTHROUGH */ 5615 if (r->tag) 5616 ctx->tag = r->tag; 5617 if (r->anchor == NULL) { 5618 if (r->action == PF_MATCH) { 5619 /* 5620 * Apply translations before increasing counters, 5621 * in case it fails. 5622 */ 5623 transerror = pf_rule_apply_nat(ctx, r); 5624 switch (transerror) { 5625 case PFRES_MATCH: 5626 /* Translation action found in rule and applied successfully */ 5627 case PFRES_MAX: 5628 /* No translation action found in rule */ 5629 break; 5630 default: 5631 /* Translation action found in rule but failed to apply */ 5632 REASON_SET(&ctx->reason, transerror); 5633 return (PF_TEST_FAIL); 5634 } 5635 ri = malloc(sizeof(struct pf_krule_item), M_PF_RULE_ITEM, M_NOWAIT | M_ZERO); 5636 if (ri == NULL) { 5637 REASON_SET(&ctx->reason, PFRES_MEMORY); 5638 return (PF_TEST_FAIL); 5639 } 5640 ri->r = r; 5641 SLIST_INSERT_HEAD(&ctx->rules, ri, entry); 5642 pf_counter_u64_critical_enter(); 5643 pf_counter_u64_add_protected(&r->packets[pd->dir == PF_OUT], 1); 5644 pf_counter_u64_add_protected(&r->bytes[pd->dir == PF_OUT], pd->tot_len); 5645 pf_counter_u64_critical_exit(); 5646 pf_rule_to_actions(r, &pd->act); 5647 if (r->log) 5648 PFLOG_PACKET(r->action, PFRES_MATCH, r, 5649 ctx->a, ruleset, pd, 1, NULL); 5650 } else { 5651 /* 5652 * found matching r 5653 */ 5654 *ctx->rm = r; 5655 /* 5656 * anchor, with ruleset, where r belongs to 5657 */ 5658 *ctx->am = ctx->a; 5659 /* 5660 * ruleset where r belongs to 5661 */ 5662 *ctx->rsm = ruleset; 5663 /* 5664 * ruleset, where anchor belongs to. 5665 */ 5666 ctx->arsm = ctx->aruleset; 5667 } 5668 if (pd->act.log & PF_LOG_MATCHES) 5669 pf_log_matches(pd, r, ctx->a, ruleset, &ctx->rules); 5670 if (r->quick) { 5671 ctx->test_status = PF_TEST_QUICK; 5672 break; 5673 } 5674 } else { 5675 ctx->a = r; /* remember anchor */ 5676 ctx->aruleset = ruleset; /* and its ruleset */ 5677 if (ctx->a->quick) 5678 ctx->test_status = PF_TEST_QUICK; 5679 if (pf_step_into_anchor(ctx, r) != PF_TEST_OK) { 5680 break; 5681 } 5682 } 5683 r = TAILQ_NEXT(r, entries); 5684 } 5685 5686 return (ctx->test_status); 5687 } 5688 5689 static int 5690 pf_test_rule(struct pf_krule **rm, struct pf_kstate **sm, 5691 struct pf_pdesc *pd, struct pf_krule **am, 5692 struct pf_kruleset **rsm, u_short *reason, struct inpcb *inp) 5693 { 5694 struct pf_krule *r = NULL; 5695 struct pf_kruleset *ruleset = NULL; 5696 struct pf_krule_item *ri; 5697 struct pf_test_ctx ctx; 5698 u_short transerror; 5699 int action = PF_PASS; 5700 u_int16_t bproto_sum = 0, bip_sum = 0; 5701 enum pf_test_status rv; 5702 5703 PF_RULES_RASSERT(); 5704 5705 bzero(&ctx, sizeof(ctx)); 5706 ctx.tag = -1; 5707 ctx.pd = pd; 5708 ctx.rm = rm; 5709 ctx.am = am; 5710 ctx.rsm = rsm; 5711 ctx.th = &pd->hdr.tcp; 5712 ctx.reason = *reason; 5713 SLIST_INIT(&ctx.rules); 5714 5715 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 5716 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 5717 5718 if (inp != NULL) { 5719 INP_LOCK_ASSERT(inp); 5720 pd->lookup.uid = inp->inp_cred->cr_uid; 5721 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 5722 pd->lookup.done = 1; 5723 } 5724 5725 if (pd->ip_sum) 5726 bip_sum = *pd->ip_sum; 5727 5728 switch (pd->virtual_proto) { 5729 case IPPROTO_TCP: 5730 bproto_sum = ctx.th->th_sum; 5731 pd->nsport = ctx.th->th_sport; 5732 pd->ndport = ctx.th->th_dport; 5733 break; 5734 case IPPROTO_UDP: 5735 bproto_sum = pd->hdr.udp.uh_sum; 5736 pd->nsport = pd->hdr.udp.uh_sport; 5737 pd->ndport = pd->hdr.udp.uh_dport; 5738 break; 5739 case IPPROTO_SCTP: 5740 pd->nsport = pd->hdr.sctp.src_port; 5741 pd->ndport = pd->hdr.sctp.dest_port; 5742 break; 5743 #ifdef INET 5744 case IPPROTO_ICMP: 5745 MPASS(pd->af == AF_INET); 5746 ctx.icmptype = pd->hdr.icmp.icmp_type; 5747 ctx.icmpcode = pd->hdr.icmp.icmp_code; 5748 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5749 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5750 if (ctx.icmp_dir == PF_IN) { 5751 pd->nsport = ctx.virtual_id; 5752 pd->ndport = ctx.virtual_type; 5753 } else { 5754 pd->nsport = ctx.virtual_type; 5755 pd->ndport = ctx.virtual_id; 5756 } 5757 break; 5758 #endif /* INET */ 5759 #ifdef INET6 5760 case IPPROTO_ICMPV6: 5761 MPASS(pd->af == AF_INET6); 5762 ctx.icmptype = pd->hdr.icmp6.icmp6_type; 5763 ctx.icmpcode = pd->hdr.icmp6.icmp6_code; 5764 ctx.state_icmp = pf_icmp_mapping(pd, ctx.icmptype, 5765 &ctx.icmp_dir, &ctx.virtual_id, &ctx.virtual_type); 5766 if (ctx.icmp_dir == PF_IN) { 5767 pd->nsport = ctx.virtual_id; 5768 pd->ndport = ctx.virtual_type; 5769 } else { 5770 pd->nsport = ctx.virtual_type; 5771 pd->ndport = ctx.virtual_id; 5772 } 5773 5774 break; 5775 #endif /* INET6 */ 5776 default: 5777 pd->nsport = pd->ndport = 0; 5778 break; 5779 } 5780 pd->osport = pd->nsport; 5781 pd->odport = pd->ndport; 5782 5783 /* check packet for BINAT/NAT/RDR */ 5784 transerror = pf_get_translation(&ctx); 5785 switch (transerror) { 5786 default: 5787 /* A translation error occurred. */ 5788 REASON_SET(&ctx.reason, transerror); 5789 goto cleanup; 5790 case PFRES_MAX: 5791 /* No match. */ 5792 break; 5793 case PFRES_MATCH: 5794 KASSERT(ctx.sk != NULL, ("%s: null sk", __func__)); 5795 KASSERT(ctx.nk != NULL, ("%s: null nk", __func__)); 5796 if (ctx.nr->log) { 5797 PFLOG_PACKET(ctx.nr->action, PFRES_MATCH, ctx.nr, ctx.a, 5798 ruleset, pd, 1, NULL); 5799 } 5800 5801 ctx.rewrite += pf_translate_compat(&ctx); 5802 ctx.nat_pool = &(ctx.nr->rdr); 5803 } 5804 5805 ruleset = &pf_main_ruleset; 5806 rv = pf_match_rule(&ctx, ruleset); 5807 if (rv == PF_TEST_FAIL) { 5808 /* 5809 * Reason has been set in pf_match_rule() already. 5810 */ 5811 goto cleanup; 5812 } 5813 5814 r = *ctx.rm; /* matching rule */ 5815 ctx.a = *ctx.am; /* rule that defines an anchor containing 'r' */ 5816 ruleset = *ctx.rsm; /* ruleset of the anchor defined by the rule 'a' */ 5817 ctx.aruleset = ctx.arsm; /* ruleset of the 'a' rule itself */ 5818 5819 REASON_SET(&ctx.reason, PFRES_MATCH); 5820 5821 /* apply actions for last matching pass/block rule */ 5822 pf_rule_to_actions(r, &pd->act); 5823 transerror = pf_rule_apply_nat(&ctx, r); 5824 switch (transerror) { 5825 case PFRES_MATCH: 5826 /* Translation action found in rule and applied successfully */ 5827 case PFRES_MAX: 5828 /* No translation action found in rule */ 5829 break; 5830 default: 5831 /* Translation action found in rule but failed to apply */ 5832 REASON_SET(&ctx.reason, transerror); 5833 goto cleanup; 5834 } 5835 5836 if (r->log) { 5837 if (ctx.rewrite) 5838 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5839 PFLOG_PACKET(r->action, ctx.reason, r, ctx.a, ruleset, pd, 1, NULL); 5840 } 5841 if (pd->act.log & PF_LOG_MATCHES) 5842 pf_log_matches(pd, r, ctx.a, ruleset, &ctx.rules); 5843 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5844 (r->action == PF_DROP) && 5845 ((r->rule_flag & PFRULE_RETURNRST) || 5846 (r->rule_flag & PFRULE_RETURNICMP) || 5847 (r->rule_flag & PFRULE_RETURN))) { 5848 pf_return(r, ctx.nr, pd, ctx.th, bproto_sum, 5849 bip_sum, &ctx.reason, r->rtableid); 5850 } 5851 5852 if (r->action == PF_DROP) 5853 goto cleanup; 5854 5855 if (ctx.tag > 0 && pf_tag_packet(pd, ctx.tag)) { 5856 REASON_SET(&ctx.reason, PFRES_MEMORY); 5857 goto cleanup; 5858 } 5859 if (pd->act.rtableid >= 0) 5860 M_SETFIB(pd->m, pd->act.rtableid); 5861 5862 if (r->rt) { 5863 struct pf_ksrc_node *sn = NULL; 5864 struct pf_srchash *snh = NULL; 5865 /* 5866 * Set act.rt here instead of in pf_rule_to_actions() because 5867 * it is applied only from the last pass rule. 5868 */ 5869 pd->act.rt = r->rt; 5870 /* Don't use REASON_SET, pf_map_addr increases the reason counters */ 5871 ctx.reason = pf_map_addr_sn(pd->af, r, pd->src, &pd->act.rt_addr, 5872 &pd->act.rt_kif, NULL, &sn, &snh, &(r->route), PF_SN_ROUTE); 5873 if (ctx.reason != 0) 5874 goto cleanup; 5875 } 5876 5877 if (pd->virtual_proto != PF_VPROTO_FRAGMENT && 5878 (!ctx.state_icmp && (r->keep_state || ctx.nr != NULL || 5879 (pd->flags & PFDESC_TCP_NORM)))) { 5880 bool nat64; 5881 5882 action = pf_create_state(r, &ctx, sm, bproto_sum, bip_sum); 5883 ctx.sk = ctx.nk = NULL; 5884 if (action != PF_PASS) { 5885 pf_udp_mapping_release(ctx.udp_mapping); 5886 if (r->log || (ctx.nr != NULL && ctx.nr->log) || 5887 ctx.reason == PFRES_MEMORY) 5888 pd->act.log |= PF_LOG_FORCE; 5889 if (action == PF_DROP && 5890 (r->rule_flag & PFRULE_RETURN)) 5891 pf_return(r, ctx.nr, pd, ctx.th, 5892 bproto_sum, bip_sum, &ctx.reason, 5893 pd->act.rtableid); 5894 *reason = ctx.reason; 5895 return (action); 5896 } 5897 5898 nat64 = pd->af != pd->naf; 5899 if (nat64) { 5900 int ret; 5901 5902 if (ctx.sk == NULL) 5903 ctx.sk = (*sm)->key[pd->dir == PF_IN ? PF_SK_STACK : PF_SK_WIRE]; 5904 if (ctx.nk == NULL) 5905 ctx.nk = (*sm)->key[pd->dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK]; 5906 5907 if (pd->dir == PF_IN) { 5908 ret = pf_translate(pd, &ctx.sk->addr[pd->didx], 5909 ctx.sk->port[pd->didx], &ctx.sk->addr[pd->sidx], 5910 ctx.sk->port[pd->sidx], ctx.virtual_type, 5911 ctx.icmp_dir); 5912 } else { 5913 ret = pf_translate(pd, &ctx.sk->addr[pd->sidx], 5914 ctx.sk->port[pd->sidx], &ctx.sk->addr[pd->didx], 5915 ctx.sk->port[pd->didx], ctx.virtual_type, 5916 ctx.icmp_dir); 5917 } 5918 5919 if (ret < 0) 5920 goto cleanup; 5921 5922 ctx.rewrite += ret; 5923 5924 if (ctx.rewrite && ctx.sk->af != ctx.nk->af) 5925 action = PF_AFRT; 5926 } 5927 } else { 5928 while ((ri = SLIST_FIRST(&ctx.rules))) { 5929 SLIST_REMOVE_HEAD(&ctx.rules, entry); 5930 free(ri, M_PF_RULE_ITEM); 5931 } 5932 5933 uma_zfree(V_pf_state_key_z, ctx.sk); 5934 uma_zfree(V_pf_state_key_z, ctx.nk); 5935 ctx.sk = ctx.nk = NULL; 5936 pf_udp_mapping_release(ctx.udp_mapping); 5937 } 5938 5939 /* copy back packet headers if we performed NAT operations */ 5940 if (ctx.rewrite) 5941 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 5942 5943 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 5944 pd->dir == PF_OUT && 5945 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, pd->m)) { 5946 /* 5947 * We want the state created, but we dont 5948 * want to send this in case a partner 5949 * firewall has to know about it to allow 5950 * replies through it. 5951 */ 5952 *reason = ctx.reason; 5953 return (PF_DEFER); 5954 } 5955 5956 *reason = ctx.reason; 5957 return (action); 5958 5959 cleanup: 5960 while ((ri = SLIST_FIRST(&ctx.rules))) { 5961 SLIST_REMOVE_HEAD(&ctx.rules, entry); 5962 free(ri, M_PF_RULE_ITEM); 5963 } 5964 5965 uma_zfree(V_pf_state_key_z, ctx.sk); 5966 uma_zfree(V_pf_state_key_z, ctx.nk); 5967 pf_udp_mapping_release(ctx.udp_mapping); 5968 *reason = ctx.reason; 5969 5970 return (PF_DROP); 5971 } 5972 5973 static int 5974 pf_create_state(struct pf_krule *r, struct pf_test_ctx *ctx, 5975 struct pf_kstate **sm, u_int16_t bproto_sum, u_int16_t bip_sum) 5976 { 5977 struct pf_pdesc *pd = ctx->pd; 5978 struct pf_kstate *s = NULL; 5979 struct pf_ksrc_node *sns[PF_SN_MAX] = { NULL }; 5980 /* 5981 * XXXKS: The hash for PF_SN_LIMIT and PF_SN_ROUTE should be the same 5982 * but for PF_SN_NAT it is different. Don't try optimizing it, 5983 * just store all 3 hashes. 5984 */ 5985 struct pf_srchash *snhs[PF_SN_MAX] = { NULL }; 5986 struct tcphdr *th = &pd->hdr.tcp; 5987 u_int16_t mss = V_tcp_mssdflt; 5988 u_short sn_reason; 5989 struct pf_krule_item *ri; 5990 5991 /* check maximums */ 5992 if (r->max_states && 5993 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 5994 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 5995 REASON_SET(&ctx->reason, PFRES_MAXSTATES); 5996 goto csfailed; 5997 } 5998 /* src node for limits */ 5999 if ((r->rule_flag & PFRULE_SRCTRACK) && 6000 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, pd->af, 6001 NULL, NULL, PF_SN_LIMIT)) != 0) { 6002 REASON_SET(&ctx->reason, sn_reason); 6003 goto csfailed; 6004 } 6005 /* src node for route-to rule */ 6006 if (r->rt) { 6007 if ((r->route.opts & PF_POOL_STICKYADDR) && 6008 (sn_reason = pf_insert_src_node(sns, snhs, r, pd->src, 6009 pd->af, &pd->act.rt_addr, pd->act.rt_kif, 6010 PF_SN_ROUTE)) != 0) { 6011 REASON_SET(&ctx->reason, sn_reason); 6012 goto csfailed; 6013 } 6014 } 6015 /* src node for translation rule */ 6016 if (ctx->nr != NULL) { 6017 KASSERT(ctx->nat_pool != NULL, ("%s: nat_pool is NULL", __func__)); 6018 if ((ctx->nat_pool->opts & PF_POOL_STICKYADDR) && 6019 (sn_reason = pf_insert_src_node(sns, snhs, ctx->nr, 6020 &ctx->sk->addr[pd->sidx], pd->af, &ctx->nk->addr[1], NULL, 6021 PF_SN_NAT)) != 0 ) { 6022 REASON_SET(&ctx->reason, sn_reason); 6023 goto csfailed; 6024 } 6025 } 6026 s = pf_alloc_state(M_NOWAIT); 6027 if (s == NULL) { 6028 REASON_SET(&ctx->reason, PFRES_MEMORY); 6029 goto csfailed; 6030 } 6031 s->rule = r; 6032 s->nat_rule = ctx->nr; 6033 s->anchor = ctx->a; 6034 memcpy(&s->match_rules, &ctx->rules, sizeof(s->match_rules)); 6035 memcpy(&s->act, &pd->act, sizeof(struct pf_rule_actions)); 6036 6037 if (pd->act.allow_opts) 6038 s->state_flags |= PFSTATE_ALLOWOPTS; 6039 if (r->rule_flag & PFRULE_STATESLOPPY) 6040 s->state_flags |= PFSTATE_SLOPPY; 6041 if (pd->flags & PFDESC_TCP_NORM) /* Set by old-style scrub rules */ 6042 s->state_flags |= PFSTATE_SCRUB_TCP; 6043 if ((r->rule_flag & PFRULE_PFLOW) || 6044 (ctx->nr != NULL && ctx->nr->rule_flag & PFRULE_PFLOW)) 6045 s->state_flags |= PFSTATE_PFLOW; 6046 6047 s->act.log = pd->act.log & PF_LOG_ALL; 6048 s->sync_state = PFSYNC_S_NONE; 6049 s->state_flags |= pd->act.flags; /* Only needed for pfsync and state export */ 6050 6051 if (ctx->nr != NULL) 6052 s->act.log |= ctx->nr->log & PF_LOG_ALL; 6053 switch (pd->proto) { 6054 case IPPROTO_TCP: 6055 s->src.seqlo = ntohl(th->th_seq); 6056 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 6057 if ((tcp_get_flags(th) & (TH_SYN|TH_ACK)) == TH_SYN && 6058 r->keep_state == PF_STATE_MODULATE) { 6059 /* Generate sequence number modulator */ 6060 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 6061 0) 6062 s->src.seqdiff = 1; 6063 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, 6064 htonl(s->src.seqlo + s->src.seqdiff), 0); 6065 ctx->rewrite = 1; 6066 } else 6067 s->src.seqdiff = 0; 6068 if (tcp_get_flags(th) & TH_SYN) { 6069 s->src.seqhi++; 6070 s->src.wscale = pf_get_wscale(pd); 6071 } 6072 s->src.max_win = MAX(ntohs(th->th_win), 1); 6073 if (s->src.wscale & PF_WSCALE_MASK) { 6074 /* Remove scale factor from initial window */ 6075 int win = s->src.max_win; 6076 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 6077 s->src.max_win = (win - 1) >> 6078 (s->src.wscale & PF_WSCALE_MASK); 6079 } 6080 if (tcp_get_flags(th) & TH_FIN) 6081 s->src.seqhi++; 6082 s->dst.seqhi = 1; 6083 s->dst.max_win = 1; 6084 pf_set_protostate(s, PF_PEER_SRC, TCPS_SYN_SENT); 6085 pf_set_protostate(s, PF_PEER_DST, TCPS_CLOSED); 6086 s->timeout = PFTM_TCP_FIRST_PACKET; 6087 atomic_add_32(&V_pf_status.states_halfopen, 1); 6088 break; 6089 case IPPROTO_UDP: 6090 pf_set_protostate(s, PF_PEER_SRC, PFUDPS_SINGLE); 6091 pf_set_protostate(s, PF_PEER_DST, PFUDPS_NO_TRAFFIC); 6092 s->timeout = PFTM_UDP_FIRST_PACKET; 6093 break; 6094 case IPPROTO_SCTP: 6095 pf_set_protostate(s, PF_PEER_SRC, SCTP_COOKIE_WAIT); 6096 pf_set_protostate(s, PF_PEER_DST, SCTP_CLOSED); 6097 s->timeout = PFTM_SCTP_FIRST_PACKET; 6098 break; 6099 case IPPROTO_ICMP: 6100 #ifdef INET6 6101 case IPPROTO_ICMPV6: 6102 #endif /* INET6 */ 6103 s->timeout = PFTM_ICMP_FIRST_PACKET; 6104 break; 6105 default: 6106 pf_set_protostate(s, PF_PEER_SRC, PFOTHERS_SINGLE); 6107 pf_set_protostate(s, PF_PEER_DST, PFOTHERS_NO_TRAFFIC); 6108 s->timeout = PFTM_OTHER_FIRST_PACKET; 6109 } 6110 6111 s->creation = s->expire = pf_get_uptime(); 6112 6113 if (pd->proto == IPPROTO_TCP) { 6114 if (s->state_flags & PFSTATE_SCRUB_TCP && 6115 pf_normalize_tcp_init(pd, th, &s->src)) { 6116 REASON_SET(&ctx->reason, PFRES_MEMORY); 6117 goto csfailed; 6118 } 6119 if (s->state_flags & PFSTATE_SCRUB_TCP && s->src.scrub && 6120 pf_normalize_tcp_stateful(pd, &ctx->reason, th, s, 6121 &s->src, &s->dst, &ctx->rewrite)) { 6122 /* This really shouldn't happen!!! */ 6123 DPFPRINTF(PF_DEBUG_URGENT, 6124 ("%s: tcp normalize failed on first " 6125 "pkt\n", __func__)); 6126 goto csfailed; 6127 } 6128 } else if (pd->proto == IPPROTO_SCTP) { 6129 if (pf_normalize_sctp_init(pd, &s->src, &s->dst)) 6130 goto csfailed; 6131 if (! (pd->sctp_flags & (PFDESC_SCTP_INIT | PFDESC_SCTP_ADD_IP))) 6132 goto csfailed; 6133 } 6134 s->direction = pd->dir; 6135 6136 /* 6137 * sk/nk could already been setup by pf_get_translation(). 6138 */ 6139 if (ctx->sk == NULL && ctx->nk == NULL) { 6140 MPASS(pd->sport == NULL || (pd->osport == *pd->sport)); 6141 MPASS(pd->dport == NULL || (pd->odport == *pd->dport)); 6142 if (pf_state_key_setup(pd, pd->nsport, pd->ndport, 6143 &ctx->sk, &ctx->nk)) { 6144 goto csfailed; 6145 } 6146 } else 6147 KASSERT((ctx->sk != NULL && ctx->nk != NULL), ("%s: nr %p sk %p, nk %p", 6148 __func__, ctx->nr, ctx->sk, ctx->nk)); 6149 6150 /* Swap sk/nk for PF_OUT. */ 6151 if (pf_state_insert(BOUND_IFACE(s, pd), pd->kif, 6152 (pd->dir == PF_IN) ? ctx->sk : ctx->nk, 6153 (pd->dir == PF_IN) ? ctx->nk : ctx->sk, s)) { 6154 REASON_SET(&ctx->reason, PFRES_STATEINS); 6155 goto drop; 6156 } else 6157 *sm = s; 6158 ctx->sk = ctx->nk = NULL; 6159 6160 STATE_INC_COUNTERS(s); 6161 6162 /* 6163 * Lock order is important: first state, then source node. 6164 */ 6165 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6166 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6167 s->sns[sn_type] = sns[sn_type]; 6168 PF_HASHROW_UNLOCK(snhs[sn_type]); 6169 } 6170 } 6171 6172 if (ctx->tag > 0) 6173 s->tag = ctx->tag; 6174 if (pd->proto == IPPROTO_TCP && (tcp_get_flags(th) & (TH_SYN|TH_ACK)) == 6175 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 6176 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_SRC); 6177 pf_undo_nat(ctx->nr, pd, bip_sum); 6178 s->src.seqhi = arc4random(); 6179 /* Find mss option */ 6180 int rtid = M_GETFIB(pd->m); 6181 mss = pf_get_mss(pd); 6182 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 6183 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 6184 s->src.mss = mss; 6185 pf_send_tcp(r, pd->af, pd->dst, pd->src, th->th_dport, 6186 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 6187 TH_SYN|TH_ACK, 0, s->src.mss, 0, M_SKIP_FIREWALL, 0, 0, 6188 pd->act.rtableid); 6189 REASON_SET(&ctx->reason, PFRES_SYNPROXY); 6190 return (PF_SYNPROXY_DROP); 6191 } 6192 6193 s->udp_mapping = ctx->udp_mapping; 6194 6195 return (PF_PASS); 6196 6197 csfailed: 6198 while ((ri = SLIST_FIRST(&ctx->rules))) { 6199 SLIST_REMOVE_HEAD(&ctx->rules, entry); 6200 free(ri, M_PF_RULE_ITEM); 6201 } 6202 6203 uma_zfree(V_pf_state_key_z, ctx->sk); 6204 uma_zfree(V_pf_state_key_z, ctx->nk); 6205 6206 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 6207 if (pf_src_node_exists(&sns[sn_type], snhs[sn_type])) { 6208 if (--sns[sn_type]->states == 0 && 6209 sns[sn_type]->expire == 0) { 6210 pf_unlink_src_node(sns[sn_type]); 6211 pf_free_src_node(sns[sn_type]); 6212 counter_u64_add( 6213 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 6214 } 6215 PF_HASHROW_UNLOCK(snhs[sn_type]); 6216 } 6217 } 6218 6219 drop: 6220 if (s != NULL) { 6221 pf_src_tree_remove_state(s); 6222 s->timeout = PFTM_UNLINKED; 6223 pf_free_state(s); 6224 } 6225 6226 return (PF_DROP); 6227 } 6228 6229 int 6230 pf_translate(struct pf_pdesc *pd, struct pf_addr *saddr, u_int16_t sport, 6231 struct pf_addr *daddr, u_int16_t dport, u_int16_t virtual_type, 6232 int icmp_dir) 6233 { 6234 /* 6235 * pf_translate() implements OpenBSD's "new" NAT approach. 6236 * We don't follow it, because it involves a breaking syntax change 6237 * (removing nat/rdr rules, moving it into regular pf rules.) 6238 * It also moves NAT processing to be done after normal rules evaluation 6239 * whereas in FreeBSD that's done before rules processing. 6240 * 6241 * We adopt the function only for nat64, and keep other NAT processing 6242 * before rules processing. 6243 */ 6244 int rewrite = 0; 6245 int afto = pd->af != pd->naf; 6246 6247 MPASS(afto); 6248 6249 switch (pd->proto) { 6250 case IPPROTO_TCP: 6251 case IPPROTO_UDP: 6252 case IPPROTO_SCTP: 6253 if (afto || *pd->sport != sport) { 6254 pf_change_ap(pd, pd->src, pd->sport, 6255 saddr, sport); 6256 rewrite = 1; 6257 } 6258 if (afto || *pd->dport != dport) { 6259 pf_change_ap(pd, pd->dst, pd->dport, 6260 daddr, dport); 6261 rewrite = 1; 6262 } 6263 break; 6264 6265 #ifdef INET 6266 case IPPROTO_ICMP: 6267 /* pf_translate() is also used when logging invalid packets */ 6268 if (pd->af != AF_INET) 6269 return (0); 6270 6271 if (afto) { 6272 if (pf_translate_icmp_af(AF_INET6, &pd->hdr.icmp)) 6273 return (-1); 6274 pd->proto = IPPROTO_ICMPV6; 6275 rewrite = 1; 6276 } 6277 if (virtual_type == htons(ICMP_ECHO)) { 6278 u_int16_t icmpid = (icmp_dir == PF_IN) ? sport : dport; 6279 6280 if (icmpid != pd->hdr.icmp.icmp_id) { 6281 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6282 pd->hdr.icmp.icmp_cksum, 6283 pd->hdr.icmp.icmp_id, icmpid, 0); 6284 pd->hdr.icmp.icmp_id = icmpid; 6285 /* XXX TODO copyback. */ 6286 rewrite = 1; 6287 } 6288 } 6289 break; 6290 #endif /* INET */ 6291 6292 #ifdef INET6 6293 case IPPROTO_ICMPV6: 6294 /* pf_translate() is also used when logging invalid packets */ 6295 if (pd->af != AF_INET6) 6296 return (0); 6297 6298 if (afto) { 6299 /* ip_sum will be recalculated in pf_translate_af */ 6300 if (pf_translate_icmp_af(AF_INET, &pd->hdr.icmp6)) 6301 return (0); 6302 pd->proto = IPPROTO_ICMP; 6303 rewrite = 1; 6304 } 6305 break; 6306 #endif /* INET6 */ 6307 6308 default: 6309 break; 6310 } 6311 6312 return (rewrite); 6313 } 6314 6315 int 6316 pf_translate_compat(struct pf_test_ctx *ctx) 6317 { 6318 struct pf_pdesc *pd = ctx->pd; 6319 struct pf_state_key *nk = ctx->nk; 6320 struct tcphdr *th = &pd->hdr.tcp; 6321 int rewrite = 0; 6322 6323 KASSERT(ctx->sk != NULL, ("%s: null sk", __func__)); 6324 KASSERT(ctx->nk != NULL, ("%s: null nk", __func__)); 6325 6326 switch (pd->proto) { 6327 case IPPROTO_TCP: 6328 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6329 nk->port[pd->sidx] != pd->nsport) { 6330 pf_change_ap(pd, pd->src, &th->th_sport, 6331 &nk->addr[pd->sidx], nk->port[pd->sidx]); 6332 pd->sport = &th->th_sport; 6333 pd->nsport = th->th_sport; 6334 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6335 } 6336 6337 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6338 nk->port[pd->didx] != pd->ndport) { 6339 pf_change_ap(pd, pd->dst, &th->th_dport, 6340 &nk->addr[pd->didx], nk->port[pd->didx]); 6341 pd->dport = &th->th_dport; 6342 pd->ndport = th->th_dport; 6343 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6344 } 6345 rewrite++; 6346 break; 6347 case IPPROTO_UDP: 6348 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6349 nk->port[pd->sidx] != pd->nsport) { 6350 pf_change_ap(pd, pd->src, 6351 &pd->hdr.udp.uh_sport, 6352 &nk->addr[pd->sidx], 6353 nk->port[pd->sidx]); 6354 pd->sport = &pd->hdr.udp.uh_sport; 6355 pd->nsport = pd->hdr.udp.uh_sport; 6356 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6357 } 6358 6359 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6360 nk->port[pd->didx] != pd->ndport) { 6361 pf_change_ap(pd, pd->dst, 6362 &pd->hdr.udp.uh_dport, 6363 &nk->addr[pd->didx], 6364 nk->port[pd->didx]); 6365 pd->dport = &pd->hdr.udp.uh_dport; 6366 pd->ndport = pd->hdr.udp.uh_dport; 6367 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6368 } 6369 rewrite++; 6370 break; 6371 case IPPROTO_SCTP: { 6372 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], pd->af) || 6373 nk->port[pd->sidx] != pd->nsport) { 6374 pf_change_ap(pd, pd->src, 6375 &pd->hdr.sctp.src_port, 6376 &nk->addr[pd->sidx], 6377 nk->port[pd->sidx]); 6378 pd->sport = &pd->hdr.sctp.src_port; 6379 pd->nsport = pd->hdr.sctp.src_port; 6380 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6381 } 6382 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], pd->af) || 6383 nk->port[pd->didx] != pd->ndport) { 6384 pf_change_ap(pd, pd->dst, 6385 &pd->hdr.sctp.dest_port, 6386 &nk->addr[pd->didx], 6387 nk->port[pd->didx]); 6388 pd->dport = &pd->hdr.sctp.dest_port; 6389 pd->ndport = pd->hdr.sctp.dest_port; 6390 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6391 } 6392 break; 6393 } 6394 #ifdef INET 6395 case IPPROTO_ICMP: 6396 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET)) { 6397 pf_change_a(&pd->src->v4.s_addr, pd->ip_sum, 6398 nk->addr[pd->sidx].v4.s_addr, 0); 6399 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6400 } 6401 6402 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET)) { 6403 pf_change_a(&pd->dst->v4.s_addr, pd->ip_sum, 6404 nk->addr[pd->didx].v4.s_addr, 0); 6405 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6406 } 6407 6408 if (ctx->virtual_type == htons(ICMP_ECHO) && 6409 nk->port[pd->sidx] != pd->hdr.icmp.icmp_id) { 6410 pd->hdr.icmp.icmp_cksum = pf_cksum_fixup( 6411 pd->hdr.icmp.icmp_cksum, pd->nsport, 6412 nk->port[pd->sidx], 0); 6413 pd->hdr.icmp.icmp_id = nk->port[pd->sidx]; 6414 pd->sport = &pd->hdr.icmp.icmp_id; 6415 } 6416 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 6417 break; 6418 #endif /* INET */ 6419 #ifdef INET6 6420 case IPPROTO_ICMPV6: 6421 if (PF_ANEQ(&pd->nsaddr, &nk->addr[pd->sidx], AF_INET6)) { 6422 pf_change_a6(pd->src, &pd->hdr.icmp6.icmp6_cksum, 6423 &nk->addr[pd->sidx], 0); 6424 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6425 } 6426 6427 if (PF_ANEQ(&pd->ndaddr, &nk->addr[pd->didx], AF_INET6)) { 6428 pf_change_a6(pd->dst, &pd->hdr.icmp6.icmp6_cksum, 6429 &nk->addr[pd->didx], 0); 6430 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6431 } 6432 rewrite++; 6433 break; 6434 #endif /* INET */ 6435 default: 6436 switch (pd->af) { 6437 #ifdef INET 6438 case AF_INET: 6439 if (PF_ANEQ(&pd->nsaddr, 6440 &nk->addr[pd->sidx], AF_INET)) { 6441 pf_change_a(&pd->src->v4.s_addr, 6442 pd->ip_sum, 6443 nk->addr[pd->sidx].v4.s_addr, 0); 6444 PF_ACPY(&pd->nsaddr, pd->src, pd->af); 6445 } 6446 6447 if (PF_ANEQ(&pd->ndaddr, 6448 &nk->addr[pd->didx], AF_INET)) { 6449 pf_change_a(&pd->dst->v4.s_addr, 6450 pd->ip_sum, 6451 nk->addr[pd->didx].v4.s_addr, 0); 6452 PF_ACPY(&pd->ndaddr, pd->dst, pd->af); 6453 } 6454 break; 6455 #endif /* INET */ 6456 #ifdef INET6 6457 case AF_INET6: 6458 if (PF_ANEQ(&pd->nsaddr, 6459 &nk->addr[pd->sidx], AF_INET6)) { 6460 PF_ACPY(&pd->nsaddr, &nk->addr[pd->sidx], pd->af); 6461 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 6462 } 6463 6464 if (PF_ANEQ(&pd->ndaddr, 6465 &nk->addr[pd->didx], AF_INET6)) { 6466 PF_ACPY(&pd->ndaddr, &nk->addr[pd->didx], pd->af); 6467 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 6468 } 6469 break; 6470 #endif /* INET6 */ 6471 } 6472 break; 6473 } 6474 return (rewrite); 6475 } 6476 6477 static int 6478 pf_tcp_track_full(struct pf_kstate *state, struct pf_pdesc *pd, 6479 u_short *reason, int *copyback, struct pf_state_peer *src, 6480 struct pf_state_peer *dst, u_int8_t psrc, u_int8_t pdst) 6481 { 6482 struct tcphdr *th = &pd->hdr.tcp; 6483 u_int16_t win = ntohs(th->th_win); 6484 u_int32_t ack, end, data_end, seq, orig_seq; 6485 u_int8_t sws, dws; 6486 int ackskew; 6487 6488 if (src->wscale && dst->wscale && !(tcp_get_flags(th) & TH_SYN)) { 6489 sws = src->wscale & PF_WSCALE_MASK; 6490 dws = dst->wscale & PF_WSCALE_MASK; 6491 } else 6492 sws = dws = 0; 6493 6494 /* 6495 * Sequence tracking algorithm from Guido van Rooij's paper: 6496 * http://www.madison-gurkha.com/publications/tcp_filtering/ 6497 * tcp_filtering.ps 6498 */ 6499 6500 orig_seq = seq = ntohl(th->th_seq); 6501 if (src->seqlo == 0) { 6502 /* First packet from this end. Set its state */ 6503 6504 if ((state->state_flags & PFSTATE_SCRUB_TCP || dst->scrub) && 6505 src->scrub == NULL) { 6506 if (pf_normalize_tcp_init(pd, th, src)) { 6507 REASON_SET(reason, PFRES_MEMORY); 6508 return (PF_DROP); 6509 } 6510 } 6511 6512 /* Deferred generation of sequence number modulator */ 6513 if (dst->seqdiff && !src->seqdiff) { 6514 /* use random iss for the TCP server */ 6515 while ((src->seqdiff = arc4random() - seq) == 0) 6516 ; 6517 ack = ntohl(th->th_ack) - dst->seqdiff; 6518 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6519 src->seqdiff), 0); 6520 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6521 *copyback = 1; 6522 } else { 6523 ack = ntohl(th->th_ack); 6524 } 6525 6526 end = seq + pd->p_len; 6527 if (tcp_get_flags(th) & TH_SYN) { 6528 end++; 6529 if (dst->wscale & PF_WSCALE_FLAG) { 6530 src->wscale = pf_get_wscale(pd); 6531 if (src->wscale & PF_WSCALE_FLAG) { 6532 /* Remove scale factor from initial 6533 * window */ 6534 sws = src->wscale & PF_WSCALE_MASK; 6535 win = ((u_int32_t)win + (1 << sws) - 1) 6536 >> sws; 6537 dws = dst->wscale & PF_WSCALE_MASK; 6538 } else { 6539 /* fixup other window */ 6540 dst->max_win = MIN(TCP_MAXWIN, 6541 (u_int32_t)dst->max_win << 6542 (dst->wscale & PF_WSCALE_MASK)); 6543 /* in case of a retrans SYN|ACK */ 6544 dst->wscale = 0; 6545 } 6546 } 6547 } 6548 data_end = end; 6549 if (tcp_get_flags(th) & TH_FIN) 6550 end++; 6551 6552 src->seqlo = seq; 6553 if (src->state < TCPS_SYN_SENT) 6554 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6555 6556 /* 6557 * May need to slide the window (seqhi may have been set by 6558 * the crappy stack check or if we picked up the connection 6559 * after establishment) 6560 */ 6561 if (src->seqhi == 1 || 6562 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 6563 src->seqhi = end + MAX(1, dst->max_win << dws); 6564 if (win > src->max_win) 6565 src->max_win = win; 6566 6567 } else { 6568 ack = ntohl(th->th_ack) - dst->seqdiff; 6569 if (src->seqdiff) { 6570 /* Modulate sequence numbers */ 6571 pf_change_proto_a(pd->m, &th->th_seq, &th->th_sum, htonl(seq + 6572 src->seqdiff), 0); 6573 pf_change_proto_a(pd->m, &th->th_ack, &th->th_sum, htonl(ack), 0); 6574 *copyback = 1; 6575 } 6576 end = seq + pd->p_len; 6577 if (tcp_get_flags(th) & TH_SYN) 6578 end++; 6579 data_end = end; 6580 if (tcp_get_flags(th) & TH_FIN) 6581 end++; 6582 } 6583 6584 if ((tcp_get_flags(th) & TH_ACK) == 0) { 6585 /* Let it pass through the ack skew check */ 6586 ack = dst->seqlo; 6587 } else if ((ack == 0 && 6588 (tcp_get_flags(th) & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 6589 /* broken tcp stacks do not set ack */ 6590 (dst->state < TCPS_SYN_SENT)) { 6591 /* 6592 * Many stacks (ours included) will set the ACK number in an 6593 * FIN|ACK if the SYN times out -- no sequence to ACK. 6594 */ 6595 ack = dst->seqlo; 6596 } 6597 6598 if (seq == end) { 6599 /* Ease sequencing restrictions on no data packets */ 6600 seq = src->seqlo; 6601 data_end = end = seq; 6602 } 6603 6604 ackskew = dst->seqlo - ack; 6605 6606 /* 6607 * Need to demodulate the sequence numbers in any TCP SACK options 6608 * (Selective ACK). We could optionally validate the SACK values 6609 * against the current ACK window, either forwards or backwards, but 6610 * I'm not confident that SACK has been implemented properly 6611 * everywhere. It wouldn't surprise me if several stacks accidentally 6612 * SACK too far backwards of previously ACKed data. There really aren't 6613 * any security implications of bad SACKing unless the target stack 6614 * doesn't validate the option length correctly. Someone trying to 6615 * spoof into a TCP connection won't bother blindly sending SACK 6616 * options anyway. 6617 */ 6618 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 6619 if (pf_modulate_sack(pd, th, dst)) 6620 *copyback = 1; 6621 } 6622 6623 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 6624 if (SEQ_GEQ(src->seqhi, data_end) && 6625 /* Last octet inside other's window space */ 6626 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 6627 /* Retrans: not more than one window back */ 6628 (ackskew >= -MAXACKWINDOW) && 6629 /* Acking not more than one reassembled fragment backwards */ 6630 (ackskew <= (MAXACKWINDOW << sws)) && 6631 /* Acking not more than one window forward */ 6632 ((tcp_get_flags(th) & TH_RST) == 0 || orig_seq == src->seqlo || 6633 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo))) { 6634 /* Require an exact/+1 sequence match on resets when possible */ 6635 6636 if (dst->scrub || src->scrub) { 6637 if (pf_normalize_tcp_stateful(pd, reason, th, 6638 state, src, dst, copyback)) 6639 return (PF_DROP); 6640 } 6641 6642 /* update max window */ 6643 if (src->max_win < win) 6644 src->max_win = win; 6645 /* synchronize sequencing */ 6646 if (SEQ_GT(end, src->seqlo)) 6647 src->seqlo = end; 6648 /* slide the window of what the other end can send */ 6649 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6650 dst->seqhi = ack + MAX((win << sws), 1); 6651 6652 /* update states */ 6653 if (tcp_get_flags(th) & TH_SYN) 6654 if (src->state < TCPS_SYN_SENT) 6655 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6656 if (tcp_get_flags(th) & TH_FIN) 6657 if (src->state < TCPS_CLOSING) 6658 pf_set_protostate(state, psrc, TCPS_CLOSING); 6659 if (tcp_get_flags(th) & TH_ACK) { 6660 if (dst->state == TCPS_SYN_SENT) { 6661 pf_set_protostate(state, pdst, 6662 TCPS_ESTABLISHED); 6663 if (src->state == TCPS_ESTABLISHED && 6664 state->sns[PF_SN_LIMIT] != NULL && 6665 pf_src_connlimit(state)) { 6666 REASON_SET(reason, PFRES_SRCLIMIT); 6667 return (PF_DROP); 6668 } 6669 } else if (dst->state == TCPS_CLOSING) 6670 pf_set_protostate(state, pdst, 6671 TCPS_FIN_WAIT_2); 6672 } 6673 if (tcp_get_flags(th) & TH_RST) 6674 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6675 6676 /* update expire time */ 6677 state->expire = pf_get_uptime(); 6678 if (src->state >= TCPS_FIN_WAIT_2 && 6679 dst->state >= TCPS_FIN_WAIT_2) 6680 state->timeout = PFTM_TCP_CLOSED; 6681 else if (src->state >= TCPS_CLOSING && 6682 dst->state >= TCPS_CLOSING) 6683 state->timeout = PFTM_TCP_FIN_WAIT; 6684 else if (src->state < TCPS_ESTABLISHED || 6685 dst->state < TCPS_ESTABLISHED) 6686 state->timeout = PFTM_TCP_OPENING; 6687 else if (src->state >= TCPS_CLOSING || 6688 dst->state >= TCPS_CLOSING) 6689 state->timeout = PFTM_TCP_CLOSING; 6690 else 6691 state->timeout = PFTM_TCP_ESTABLISHED; 6692 6693 /* Fall through to PASS packet */ 6694 6695 } else if ((dst->state < TCPS_SYN_SENT || 6696 dst->state >= TCPS_FIN_WAIT_2 || 6697 src->state >= TCPS_FIN_WAIT_2) && 6698 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) && 6699 /* Within a window forward of the originating packet */ 6700 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 6701 /* Within a window backward of the originating packet */ 6702 6703 /* 6704 * This currently handles three situations: 6705 * 1) Stupid stacks will shotgun SYNs before their peer 6706 * replies. 6707 * 2) When PF catches an already established stream (the 6708 * firewall rebooted, the state table was flushed, routes 6709 * changed...) 6710 * 3) Packets get funky immediately after the connection 6711 * closes (this should catch Solaris spurious ACK|FINs 6712 * that web servers like to spew after a close) 6713 * 6714 * This must be a little more careful than the above code 6715 * since packet floods will also be caught here. We don't 6716 * update the TTL here to mitigate the damage of a packet 6717 * flood and so the same code can handle awkward establishment 6718 * and a loosened connection close. 6719 * In the establishment case, a correct peer response will 6720 * validate the connection, go through the normal state code 6721 * and keep updating the state TTL. 6722 */ 6723 6724 if (V_pf_status.debug >= PF_DEBUG_MISC) { 6725 printf("pf: loose state match: "); 6726 pf_print_state(state); 6727 pf_print_flags(tcp_get_flags(th)); 6728 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6729 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 6730 pd->p_len, ackskew, (unsigned long long)state->packets[0], 6731 (unsigned long long)state->packets[1], 6732 pd->dir == PF_IN ? "in" : "out", 6733 pd->dir == state->direction ? "fwd" : "rev"); 6734 } 6735 6736 if (dst->scrub || src->scrub) { 6737 if (pf_normalize_tcp_stateful(pd, reason, th, 6738 state, src, dst, copyback)) 6739 return (PF_DROP); 6740 } 6741 6742 /* update max window */ 6743 if (src->max_win < win) 6744 src->max_win = win; 6745 /* synchronize sequencing */ 6746 if (SEQ_GT(end, src->seqlo)) 6747 src->seqlo = end; 6748 /* slide the window of what the other end can send */ 6749 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 6750 dst->seqhi = ack + MAX((win << sws), 1); 6751 6752 /* 6753 * Cannot set dst->seqhi here since this could be a shotgunned 6754 * SYN and not an already established connection. 6755 */ 6756 6757 if (tcp_get_flags(th) & TH_FIN) 6758 if (src->state < TCPS_CLOSING) 6759 pf_set_protostate(state, psrc, TCPS_CLOSING); 6760 if (tcp_get_flags(th) & TH_RST) 6761 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6762 6763 /* Fall through to PASS packet */ 6764 6765 } else { 6766 if (state->dst.state == TCPS_SYN_SENT && 6767 state->src.state == TCPS_SYN_SENT) { 6768 /* Send RST for state mismatches during handshake */ 6769 if (!(tcp_get_flags(th) & TH_RST)) 6770 pf_send_tcp(state->rule, pd->af, 6771 pd->dst, pd->src, th->th_dport, 6772 th->th_sport, ntohl(th->th_ack), 0, 6773 TH_RST, 0, 0, 6774 state->rule->return_ttl, M_SKIP_FIREWALL, 6775 0, 0, state->act.rtableid); 6776 src->seqlo = 0; 6777 src->seqhi = 1; 6778 src->max_win = 1; 6779 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 6780 printf("pf: BAD state: "); 6781 pf_print_state(state); 6782 pf_print_flags(tcp_get_flags(th)); 6783 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 6784 "pkts=%llu:%llu dir=%s,%s\n", 6785 seq, orig_seq, ack, pd->p_len, ackskew, 6786 (unsigned long long)state->packets[0], 6787 (unsigned long long)state->packets[1], 6788 pd->dir == PF_IN ? "in" : "out", 6789 pd->dir == state->direction ? "fwd" : "rev"); 6790 printf("pf: State failure on: %c %c %c %c | %c %c\n", 6791 SEQ_GEQ(src->seqhi, data_end) ? ' ' : '1', 6792 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 6793 ' ': '2', 6794 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 6795 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 6796 SEQ_GEQ(src->seqhi + MAXACKWINDOW, data_end) ?' ' :'5', 6797 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 6798 } 6799 REASON_SET(reason, PFRES_BADSTATE); 6800 return (PF_DROP); 6801 } 6802 6803 return (PF_PASS); 6804 } 6805 6806 static int 6807 pf_tcp_track_sloppy(struct pf_kstate *state, struct pf_pdesc *pd, 6808 u_short *reason, struct pf_state_peer *src, struct pf_state_peer *dst, 6809 u_int8_t psrc, u_int8_t pdst) 6810 { 6811 struct tcphdr *th = &pd->hdr.tcp; 6812 6813 if (tcp_get_flags(th) & TH_SYN) 6814 if (src->state < TCPS_SYN_SENT) 6815 pf_set_protostate(state, psrc, TCPS_SYN_SENT); 6816 if (tcp_get_flags(th) & TH_FIN) 6817 if (src->state < TCPS_CLOSING) 6818 pf_set_protostate(state, psrc, TCPS_CLOSING); 6819 if (tcp_get_flags(th) & TH_ACK) { 6820 if (dst->state == TCPS_SYN_SENT) { 6821 pf_set_protostate(state, pdst, TCPS_ESTABLISHED); 6822 if (src->state == TCPS_ESTABLISHED && 6823 state->sns[PF_SN_LIMIT] != NULL && 6824 pf_src_connlimit(state)) { 6825 REASON_SET(reason, PFRES_SRCLIMIT); 6826 return (PF_DROP); 6827 } 6828 } else if (dst->state == TCPS_CLOSING) { 6829 pf_set_protostate(state, pdst, TCPS_FIN_WAIT_2); 6830 } else if (src->state == TCPS_SYN_SENT && 6831 dst->state < TCPS_SYN_SENT) { 6832 /* 6833 * Handle a special sloppy case where we only see one 6834 * half of the connection. If there is a ACK after 6835 * the initial SYN without ever seeing a packet from 6836 * the destination, set the connection to established. 6837 */ 6838 pf_set_protostate(state, PF_PEER_BOTH, 6839 TCPS_ESTABLISHED); 6840 dst->state = src->state = TCPS_ESTABLISHED; 6841 if (state->sns[PF_SN_LIMIT] != NULL && 6842 pf_src_connlimit(state)) { 6843 REASON_SET(reason, PFRES_SRCLIMIT); 6844 return (PF_DROP); 6845 } 6846 } else if (src->state == TCPS_CLOSING && 6847 dst->state == TCPS_ESTABLISHED && 6848 dst->seqlo == 0) { 6849 /* 6850 * Handle the closing of half connections where we 6851 * don't see the full bidirectional FIN/ACK+ACK 6852 * handshake. 6853 */ 6854 pf_set_protostate(state, pdst, TCPS_CLOSING); 6855 } 6856 } 6857 if (tcp_get_flags(th) & TH_RST) 6858 pf_set_protostate(state, PF_PEER_BOTH, TCPS_TIME_WAIT); 6859 6860 /* update expire time */ 6861 state->expire = pf_get_uptime(); 6862 if (src->state >= TCPS_FIN_WAIT_2 && 6863 dst->state >= TCPS_FIN_WAIT_2) 6864 state->timeout = PFTM_TCP_CLOSED; 6865 else if (src->state >= TCPS_CLOSING && 6866 dst->state >= TCPS_CLOSING) 6867 state->timeout = PFTM_TCP_FIN_WAIT; 6868 else if (src->state < TCPS_ESTABLISHED || 6869 dst->state < TCPS_ESTABLISHED) 6870 state->timeout = PFTM_TCP_OPENING; 6871 else if (src->state >= TCPS_CLOSING || 6872 dst->state >= TCPS_CLOSING) 6873 state->timeout = PFTM_TCP_CLOSING; 6874 else 6875 state->timeout = PFTM_TCP_ESTABLISHED; 6876 6877 return (PF_PASS); 6878 } 6879 6880 static int 6881 pf_synproxy(struct pf_pdesc *pd, struct pf_kstate *state, u_short *reason) 6882 { 6883 struct pf_state_key *sk = state->key[pd->didx]; 6884 struct tcphdr *th = &pd->hdr.tcp; 6885 6886 if (state->src.state == PF_TCPS_PROXY_SRC) { 6887 if (pd->dir != state->direction) { 6888 REASON_SET(reason, PFRES_SYNPROXY); 6889 return (PF_SYNPROXY_DROP); 6890 } 6891 if (tcp_get_flags(th) & TH_SYN) { 6892 if (ntohl(th->th_seq) != state->src.seqlo) { 6893 REASON_SET(reason, PFRES_SYNPROXY); 6894 return (PF_DROP); 6895 } 6896 pf_send_tcp(state->rule, pd->af, pd->dst, 6897 pd->src, th->th_dport, th->th_sport, 6898 state->src.seqhi, ntohl(th->th_seq) + 1, 6899 TH_SYN|TH_ACK, 0, state->src.mss, 0, 6900 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6901 REASON_SET(reason, PFRES_SYNPROXY); 6902 return (PF_SYNPROXY_DROP); 6903 } else if ((tcp_get_flags(th) & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 6904 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6905 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6906 REASON_SET(reason, PFRES_SYNPROXY); 6907 return (PF_DROP); 6908 } else if (state->sns[PF_SN_LIMIT] != NULL && 6909 pf_src_connlimit(state)) { 6910 REASON_SET(reason, PFRES_SRCLIMIT); 6911 return (PF_DROP); 6912 } else 6913 pf_set_protostate(state, PF_PEER_SRC, 6914 PF_TCPS_PROXY_DST); 6915 } 6916 if (state->src.state == PF_TCPS_PROXY_DST) { 6917 if (pd->dir == state->direction) { 6918 if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != TH_ACK) || 6919 (ntohl(th->th_ack) != state->src.seqhi + 1) || 6920 (ntohl(th->th_seq) != state->src.seqlo + 1)) { 6921 REASON_SET(reason, PFRES_SYNPROXY); 6922 return (PF_DROP); 6923 } 6924 state->src.max_win = MAX(ntohs(th->th_win), 1); 6925 if (state->dst.seqhi == 1) 6926 state->dst.seqhi = arc4random(); 6927 pf_send_tcp(state->rule, pd->af, 6928 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6929 sk->port[pd->sidx], sk->port[pd->didx], 6930 state->dst.seqhi, 0, TH_SYN, 0, 6931 state->src.mss, 0, 6932 state->orig_kif->pfik_ifp == V_loif ? M_LOOP : 0, 6933 state->tag, 0, state->act.rtableid); 6934 REASON_SET(reason, PFRES_SYNPROXY); 6935 return (PF_SYNPROXY_DROP); 6936 } else if (((tcp_get_flags(th) & (TH_SYN|TH_ACK)) != 6937 (TH_SYN|TH_ACK)) || 6938 (ntohl(th->th_ack) != state->dst.seqhi + 1)) { 6939 REASON_SET(reason, PFRES_SYNPROXY); 6940 return (PF_DROP); 6941 } else { 6942 state->dst.max_win = MAX(ntohs(th->th_win), 1); 6943 state->dst.seqlo = ntohl(th->th_seq); 6944 pf_send_tcp(state->rule, pd->af, pd->dst, 6945 pd->src, th->th_dport, th->th_sport, 6946 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 6947 TH_ACK, state->src.max_win, 0, 0, 0, 6948 state->tag, 0, state->act.rtableid); 6949 pf_send_tcp(state->rule, pd->af, 6950 &sk->addr[pd->sidx], &sk->addr[pd->didx], 6951 sk->port[pd->sidx], sk->port[pd->didx], 6952 state->src.seqhi + 1, state->src.seqlo + 1, 6953 TH_ACK, state->dst.max_win, 0, 0, 6954 M_SKIP_FIREWALL, 0, 0, state->act.rtableid); 6955 state->src.seqdiff = state->dst.seqhi - 6956 state->src.seqlo; 6957 state->dst.seqdiff = state->src.seqhi - 6958 state->dst.seqlo; 6959 state->src.seqhi = state->src.seqlo + 6960 state->dst.max_win; 6961 state->dst.seqhi = state->dst.seqlo + 6962 state->src.max_win; 6963 state->src.wscale = state->dst.wscale = 0; 6964 pf_set_protostate(state, PF_PEER_BOTH, 6965 TCPS_ESTABLISHED); 6966 REASON_SET(reason, PFRES_SYNPROXY); 6967 return (PF_SYNPROXY_DROP); 6968 } 6969 } 6970 6971 return (PF_PASS); 6972 } 6973 6974 static int 6975 pf_test_state(struct pf_kstate **state, struct pf_pdesc *pd, u_short *reason) 6976 { 6977 struct pf_state_key_cmp key; 6978 int copyback = 0; 6979 struct pf_state_peer *src, *dst; 6980 uint8_t psrc, pdst; 6981 int action = PF_PASS; 6982 6983 bzero(&key, sizeof(key)); 6984 key.af = pd->af; 6985 key.proto = pd->virtual_proto; 6986 PF_ACPY(&key.addr[pd->sidx], pd->src, key.af); 6987 PF_ACPY(&key.addr[pd->didx], pd->dst, key.af); 6988 key.port[pd->sidx] = pd->osport; 6989 key.port[pd->didx] = pd->odport; 6990 6991 STATE_LOOKUP(&key, *state, pd); 6992 6993 if (pd->dir == (*state)->direction) { 6994 if (PF_REVERSED_KEY(*state, pd->af)) { 6995 src = &(*state)->dst; 6996 dst = &(*state)->src; 6997 psrc = PF_PEER_DST; 6998 pdst = PF_PEER_SRC; 6999 } else { 7000 src = &(*state)->src; 7001 dst = &(*state)->dst; 7002 psrc = PF_PEER_SRC; 7003 pdst = PF_PEER_DST; 7004 } 7005 } else { 7006 if (PF_REVERSED_KEY(*state, pd->af)) { 7007 src = &(*state)->src; 7008 dst = &(*state)->dst; 7009 psrc = PF_PEER_SRC; 7010 pdst = PF_PEER_DST; 7011 } else { 7012 src = &(*state)->dst; 7013 dst = &(*state)->src; 7014 psrc = PF_PEER_DST; 7015 pdst = PF_PEER_SRC; 7016 } 7017 } 7018 7019 switch (pd->virtual_proto) { 7020 case IPPROTO_TCP: { 7021 struct tcphdr *th = &pd->hdr.tcp; 7022 7023 if ((action = pf_synproxy(pd, *state, reason)) != PF_PASS) 7024 return (action); 7025 if (((tcp_get_flags(th) & (TH_SYN | TH_ACK)) == TH_SYN) || 7026 ((th->th_flags & (TH_SYN | TH_ACK | TH_RST)) == TH_ACK && 7027 pf_syncookie_check(pd) && pd->dir == PF_IN)) { 7028 if ((*state)->src.state >= TCPS_FIN_WAIT_2 && 7029 (*state)->dst.state >= TCPS_FIN_WAIT_2) { 7030 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7031 printf("pf: state reuse "); 7032 pf_print_state(*state); 7033 pf_print_flags(tcp_get_flags(th)); 7034 printf("\n"); 7035 } 7036 /* XXX make sure it's the same direction ?? */ 7037 pf_set_protostate(*state, PF_PEER_BOTH, TCPS_CLOSED); 7038 pf_remove_state(*state); 7039 *state = NULL; 7040 return (PF_DROP); 7041 } else if ((*state)->src.state >= TCPS_ESTABLISHED && 7042 (*state)->dst.state >= TCPS_ESTABLISHED) { 7043 /* 7044 * SYN matches existing state??? 7045 * Typically happens when sender boots up after 7046 * sudden panic. Certain protocols (NFSv3) are 7047 * always using same port numbers. Challenge 7048 * ACK enables all parties (firewall and peers) 7049 * to get in sync again. 7050 */ 7051 pf_send_challenge_ack(pd, *state, src, dst); 7052 return (PF_DROP); 7053 } 7054 } 7055 if ((*state)->state_flags & PFSTATE_SLOPPY) { 7056 if (pf_tcp_track_sloppy(*state, pd, reason, src, dst, 7057 psrc, pdst) == PF_DROP) 7058 return (PF_DROP); 7059 } else { 7060 int ret; 7061 7062 ret = pf_tcp_track_full(*state, pd, reason, 7063 ©back, src, dst, psrc, pdst); 7064 if (ret == PF_DROP) 7065 return (PF_DROP); 7066 } 7067 break; 7068 } 7069 case IPPROTO_UDP: 7070 /* update states */ 7071 if (src->state < PFUDPS_SINGLE) 7072 pf_set_protostate(*state, psrc, PFUDPS_SINGLE); 7073 if (dst->state == PFUDPS_SINGLE) 7074 pf_set_protostate(*state, pdst, PFUDPS_MULTIPLE); 7075 7076 /* update expire time */ 7077 (*state)->expire = pf_get_uptime(); 7078 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 7079 (*state)->timeout = PFTM_UDP_MULTIPLE; 7080 else 7081 (*state)->timeout = PFTM_UDP_SINGLE; 7082 break; 7083 case IPPROTO_SCTP: 7084 if ((src->state >= SCTP_SHUTDOWN_SENT || src->state == SCTP_CLOSED) && 7085 (dst->state >= SCTP_SHUTDOWN_SENT || dst->state == SCTP_CLOSED) && 7086 pd->sctp_flags & PFDESC_SCTP_INIT) { 7087 pf_set_protostate(*state, PF_PEER_BOTH, SCTP_CLOSED); 7088 pf_remove_state(*state); 7089 *state = NULL; 7090 return (PF_DROP); 7091 } 7092 7093 if (pf_sctp_track(*state, pd, reason) != PF_PASS) 7094 return (PF_DROP); 7095 7096 /* Track state. */ 7097 if (pd->sctp_flags & PFDESC_SCTP_INIT) { 7098 if (src->state < SCTP_COOKIE_WAIT) { 7099 pf_set_protostate(*state, psrc, SCTP_COOKIE_WAIT); 7100 (*state)->timeout = PFTM_SCTP_OPENING; 7101 } 7102 } 7103 if (pd->sctp_flags & PFDESC_SCTP_INIT_ACK) { 7104 MPASS(dst->scrub != NULL); 7105 if (dst->scrub->pfss_v_tag == 0) 7106 dst->scrub->pfss_v_tag = pd->sctp_initiate_tag; 7107 } 7108 7109 /* 7110 * Bind to the correct interface if we're if-bound. For multihomed 7111 * extra associations we don't know which interface that will be until 7112 * here, so we've inserted the state on V_pf_all. Fix that now. 7113 */ 7114 if ((*state)->kif == V_pfi_all && 7115 (*state)->rule->rule_flag & PFRULE_IFBOUND) 7116 (*state)->kif = pd->kif; 7117 7118 if (pd->sctp_flags & (PFDESC_SCTP_COOKIE | PFDESC_SCTP_HEARTBEAT_ACK)) { 7119 if (src->state < SCTP_ESTABLISHED) { 7120 pf_set_protostate(*state, psrc, SCTP_ESTABLISHED); 7121 (*state)->timeout = PFTM_SCTP_ESTABLISHED; 7122 } 7123 } 7124 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN | 7125 PFDESC_SCTP_SHUTDOWN_COMPLETE)) { 7126 if (src->state < SCTP_SHUTDOWN_PENDING) { 7127 pf_set_protostate(*state, psrc, SCTP_SHUTDOWN_PENDING); 7128 (*state)->timeout = PFTM_SCTP_CLOSING; 7129 } 7130 } 7131 if (pd->sctp_flags & (PFDESC_SCTP_SHUTDOWN_COMPLETE | PFDESC_SCTP_ABORT)) { 7132 pf_set_protostate(*state, psrc, SCTP_CLOSED); 7133 (*state)->timeout = PFTM_SCTP_CLOSED; 7134 } 7135 7136 (*state)->expire = pf_get_uptime(); 7137 break; 7138 default: 7139 /* update states */ 7140 if (src->state < PFOTHERS_SINGLE) 7141 pf_set_protostate(*state, psrc, PFOTHERS_SINGLE); 7142 if (dst->state == PFOTHERS_SINGLE) 7143 pf_set_protostate(*state, pdst, PFOTHERS_MULTIPLE); 7144 7145 /* update expire time */ 7146 (*state)->expire = pf_get_uptime(); 7147 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 7148 (*state)->timeout = PFTM_OTHER_MULTIPLE; 7149 else 7150 (*state)->timeout = PFTM_OTHER_SINGLE; 7151 break; 7152 } 7153 7154 /* translate source/destination address, if necessary */ 7155 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7156 struct pf_state_key *nk; 7157 int afto, sidx, didx; 7158 7159 if (PF_REVERSED_KEY(*state, pd->af)) 7160 nk = (*state)->key[pd->sidx]; 7161 else 7162 nk = (*state)->key[pd->didx]; 7163 7164 afto = pd->af != nk->af; 7165 7166 if (afto && (*state)->direction == PF_IN) { 7167 sidx = pd->didx; 7168 didx = pd->sidx; 7169 } else { 7170 sidx = pd->sidx; 7171 didx = pd->didx; 7172 } 7173 7174 if (afto) { 7175 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7176 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7177 pd->naf = nk->af; 7178 action = PF_AFRT; 7179 } 7180 7181 if (afto || PF_ANEQ(pd->src, &nk->addr[sidx], pd->af) || 7182 nk->port[sidx] != pd->osport) 7183 pf_change_ap(pd, pd->src, pd->sport, 7184 &nk->addr[sidx], nk->port[sidx]); 7185 7186 if (afto || PF_ANEQ(pd->dst, &nk->addr[didx], pd->af) || 7187 nk->port[didx] != pd->odport) 7188 pf_change_ap(pd, pd->dst, pd->dport, 7189 &nk->addr[didx], nk->port[didx]); 7190 7191 copyback = 1; 7192 } 7193 7194 if (copyback && pd->hdrlen > 0) 7195 m_copyback(pd->m, pd->off, pd->hdrlen, pd->hdr.any); 7196 7197 return (action); 7198 } 7199 7200 static int 7201 pf_sctp_track(struct pf_kstate *state, struct pf_pdesc *pd, 7202 u_short *reason) 7203 { 7204 struct pf_state_peer *src; 7205 if (pd->dir == state->direction) { 7206 if (PF_REVERSED_KEY(state, pd->af)) 7207 src = &state->dst; 7208 else 7209 src = &state->src; 7210 } else { 7211 if (PF_REVERSED_KEY(state, pd->af)) 7212 src = &state->src; 7213 else 7214 src = &state->dst; 7215 } 7216 7217 if (src->scrub != NULL) { 7218 if (src->scrub->pfss_v_tag == 0) 7219 src->scrub->pfss_v_tag = pd->hdr.sctp.v_tag; 7220 else if (src->scrub->pfss_v_tag != pd->hdr.sctp.v_tag) 7221 return (PF_DROP); 7222 } 7223 7224 return (PF_PASS); 7225 } 7226 7227 static void 7228 pf_sctp_multihome_detach_addr(const struct pf_kstate *s) 7229 { 7230 struct pf_sctp_endpoint key; 7231 struct pf_sctp_endpoint *ep; 7232 struct pf_state_key *sks = s->key[PF_SK_STACK]; 7233 struct pf_sctp_source *i, *tmp; 7234 7235 if (sks == NULL || sks->proto != IPPROTO_SCTP || s->dst.scrub == NULL) 7236 return; 7237 7238 PF_SCTP_ENDPOINTS_LOCK(); 7239 7240 key.v_tag = s->dst.scrub->pfss_v_tag; 7241 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7242 if (ep != NULL) { 7243 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7244 if (pf_addr_cmp(&i->addr, 7245 &s->key[PF_SK_WIRE]->addr[s->direction == PF_OUT], 7246 s->key[PF_SK_WIRE]->af) == 0) { 7247 SDT_PROBE3(pf, sctp, multihome, remove, 7248 key.v_tag, s, i); 7249 TAILQ_REMOVE(&ep->sources, i, entry); 7250 free(i, M_PFTEMP); 7251 break; 7252 } 7253 } 7254 7255 if (TAILQ_EMPTY(&ep->sources)) { 7256 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7257 free(ep, M_PFTEMP); 7258 } 7259 } 7260 7261 /* Other direction. */ 7262 key.v_tag = s->src.scrub->pfss_v_tag; 7263 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7264 if (ep != NULL) { 7265 TAILQ_FOREACH_SAFE(i, &ep->sources, entry, tmp) { 7266 if (pf_addr_cmp(&i->addr, 7267 &s->key[PF_SK_WIRE]->addr[s->direction == PF_IN], 7268 s->key[PF_SK_WIRE]->af) == 0) { 7269 SDT_PROBE3(pf, sctp, multihome, remove, 7270 key.v_tag, s, i); 7271 TAILQ_REMOVE(&ep->sources, i, entry); 7272 free(i, M_PFTEMP); 7273 break; 7274 } 7275 } 7276 7277 if (TAILQ_EMPTY(&ep->sources)) { 7278 RB_REMOVE(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7279 free(ep, M_PFTEMP); 7280 } 7281 } 7282 7283 PF_SCTP_ENDPOINTS_UNLOCK(); 7284 } 7285 7286 static void 7287 pf_sctp_multihome_add_addr(struct pf_pdesc *pd, struct pf_addr *a, uint32_t v_tag) 7288 { 7289 struct pf_sctp_endpoint key = { 7290 .v_tag = v_tag, 7291 }; 7292 struct pf_sctp_source *i; 7293 struct pf_sctp_endpoint *ep; 7294 7295 PF_SCTP_ENDPOINTS_LOCK(); 7296 7297 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7298 if (ep == NULL) { 7299 ep = malloc(sizeof(struct pf_sctp_endpoint), 7300 M_PFTEMP, M_NOWAIT); 7301 if (ep == NULL) { 7302 PF_SCTP_ENDPOINTS_UNLOCK(); 7303 return; 7304 } 7305 7306 ep->v_tag = v_tag; 7307 TAILQ_INIT(&ep->sources); 7308 RB_INSERT(pf_sctp_endpoints, &V_pf_sctp_endpoints, ep); 7309 } 7310 7311 /* Avoid inserting duplicates. */ 7312 TAILQ_FOREACH(i, &ep->sources, entry) { 7313 if (pf_addr_cmp(&i->addr, a, pd->af) == 0) { 7314 PF_SCTP_ENDPOINTS_UNLOCK(); 7315 return; 7316 } 7317 } 7318 7319 i = malloc(sizeof(*i), M_PFTEMP, M_NOWAIT); 7320 if (i == NULL) { 7321 PF_SCTP_ENDPOINTS_UNLOCK(); 7322 return; 7323 } 7324 7325 i->af = pd->af; 7326 memcpy(&i->addr, a, sizeof(*a)); 7327 TAILQ_INSERT_TAIL(&ep->sources, i, entry); 7328 SDT_PROBE2(pf, sctp, multihome, add, v_tag, i); 7329 7330 PF_SCTP_ENDPOINTS_UNLOCK(); 7331 } 7332 7333 static void 7334 pf_sctp_multihome_delayed(struct pf_pdesc *pd, struct pfi_kkif *kif, 7335 struct pf_kstate *s, int action) 7336 { 7337 struct pf_sctp_multihome_job *j, *tmp; 7338 struct pf_sctp_source *i; 7339 int ret __unused; 7340 struct pf_kstate *sm = NULL; 7341 struct pf_krule *ra = NULL; 7342 struct pf_krule *r = &V_pf_default_rule; 7343 struct pf_kruleset *rs = NULL; 7344 u_short reason; 7345 bool do_extra = true; 7346 7347 PF_RULES_RLOCK_TRACKER; 7348 7349 again: 7350 TAILQ_FOREACH_SAFE(j, &pd->sctp_multihome_jobs, next, tmp) { 7351 if (s == NULL || action != PF_PASS) 7352 goto free; 7353 7354 /* Confirm we don't recurse here. */ 7355 MPASS(! (pd->sctp_flags & PFDESC_SCTP_ADD_IP)); 7356 7357 switch (j->op) { 7358 case SCTP_ADD_IP_ADDRESS: { 7359 uint32_t v_tag = pd->sctp_initiate_tag; 7360 7361 if (v_tag == 0) { 7362 if (s->direction == pd->dir) 7363 v_tag = s->src.scrub->pfss_v_tag; 7364 else 7365 v_tag = s->dst.scrub->pfss_v_tag; 7366 } 7367 7368 /* 7369 * Avoid duplicating states. We'll already have 7370 * created a state based on the source address of 7371 * the packet, but SCTP endpoints may also list this 7372 * address again in the INIT(_ACK) parameters. 7373 */ 7374 if (pf_addr_cmp(&j->src, pd->src, pd->af) == 0) { 7375 break; 7376 } 7377 7378 j->pd.sctp_flags |= PFDESC_SCTP_ADD_IP; 7379 PF_RULES_RLOCK(); 7380 sm = NULL; 7381 if (s->rule->rule_flag & PFRULE_ALLOW_RELATED) { 7382 j->pd.related_rule = s->rule; 7383 } 7384 ret = pf_test_rule(&r, &sm, 7385 &j->pd, &ra, &rs, &reason, NULL); 7386 PF_RULES_RUNLOCK(); 7387 SDT_PROBE4(pf, sctp, multihome, test, kif, r, j->pd.m, ret); 7388 if (ret != PF_DROP && sm != NULL) { 7389 /* Inherit v_tag values. */ 7390 if (sm->direction == s->direction) { 7391 sm->src.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7392 sm->dst.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7393 } else { 7394 sm->src.scrub->pfss_v_tag = s->dst.scrub->pfss_v_tag; 7395 sm->dst.scrub->pfss_v_tag = s->src.scrub->pfss_v_tag; 7396 } 7397 PF_STATE_UNLOCK(sm); 7398 } else { 7399 /* If we try duplicate inserts? */ 7400 break; 7401 } 7402 7403 /* Only add the address if we've actually allowed the state. */ 7404 pf_sctp_multihome_add_addr(pd, &j->src, v_tag); 7405 7406 if (! do_extra) { 7407 break; 7408 } 7409 /* 7410 * We need to do this for each of our source addresses. 7411 * Find those based on the verification tag. 7412 */ 7413 struct pf_sctp_endpoint key = { 7414 .v_tag = pd->hdr.sctp.v_tag, 7415 }; 7416 struct pf_sctp_endpoint *ep; 7417 7418 PF_SCTP_ENDPOINTS_LOCK(); 7419 ep = RB_FIND(pf_sctp_endpoints, &V_pf_sctp_endpoints, &key); 7420 if (ep == NULL) { 7421 PF_SCTP_ENDPOINTS_UNLOCK(); 7422 break; 7423 } 7424 MPASS(ep != NULL); 7425 7426 TAILQ_FOREACH(i, &ep->sources, entry) { 7427 struct pf_sctp_multihome_job *nj; 7428 7429 /* SCTP can intermingle IPv4 and IPv6. */ 7430 if (i->af != pd->af) 7431 continue; 7432 7433 nj = malloc(sizeof(*nj), M_PFTEMP, M_NOWAIT | M_ZERO); 7434 if (! nj) { 7435 continue; 7436 } 7437 memcpy(&nj->pd, &j->pd, sizeof(j->pd)); 7438 memcpy(&nj->src, &j->src, sizeof(nj->src)); 7439 nj->pd.src = &nj->src; 7440 // New destination address! 7441 memcpy(&nj->dst, &i->addr, sizeof(nj->dst)); 7442 nj->pd.dst = &nj->dst; 7443 nj->pd.m = j->pd.m; 7444 nj->op = j->op; 7445 7446 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, nj, next); 7447 } 7448 PF_SCTP_ENDPOINTS_UNLOCK(); 7449 7450 break; 7451 } 7452 case SCTP_DEL_IP_ADDRESS: { 7453 struct pf_state_key_cmp key; 7454 uint8_t psrc; 7455 7456 bzero(&key, sizeof(key)); 7457 key.af = j->pd.af; 7458 key.proto = IPPROTO_SCTP; 7459 if (j->pd.dir == PF_IN) { /* wire side, straight */ 7460 PF_ACPY(&key.addr[0], j->pd.src, key.af); 7461 PF_ACPY(&key.addr[1], j->pd.dst, key.af); 7462 key.port[0] = j->pd.hdr.sctp.src_port; 7463 key.port[1] = j->pd.hdr.sctp.dest_port; 7464 } else { /* stack side, reverse */ 7465 PF_ACPY(&key.addr[1], j->pd.src, key.af); 7466 PF_ACPY(&key.addr[0], j->pd.dst, key.af); 7467 key.port[1] = j->pd.hdr.sctp.src_port; 7468 key.port[0] = j->pd.hdr.sctp.dest_port; 7469 } 7470 7471 sm = pf_find_state(kif, &key, j->pd.dir); 7472 if (sm != NULL) { 7473 PF_STATE_LOCK_ASSERT(sm); 7474 if (j->pd.dir == sm->direction) { 7475 psrc = PF_PEER_SRC; 7476 } else { 7477 psrc = PF_PEER_DST; 7478 } 7479 pf_set_protostate(sm, psrc, SCTP_SHUTDOWN_PENDING); 7480 sm->timeout = PFTM_SCTP_CLOSING; 7481 PF_STATE_UNLOCK(sm); 7482 } 7483 break; 7484 default: 7485 panic("Unknown op %#x", j->op); 7486 } 7487 } 7488 7489 free: 7490 TAILQ_REMOVE(&pd->sctp_multihome_jobs, j, next); 7491 free(j, M_PFTEMP); 7492 } 7493 7494 /* We may have inserted extra work while processing the list. */ 7495 if (! TAILQ_EMPTY(&pd->sctp_multihome_jobs)) { 7496 do_extra = false; 7497 goto again; 7498 } 7499 } 7500 7501 static int 7502 pf_multihome_scan(int start, int len, struct pf_pdesc *pd, int op) 7503 { 7504 int off = 0; 7505 struct pf_sctp_multihome_job *job; 7506 7507 SDT_PROBE4(pf, sctp, multihome_scan, entry, start, len, pd, op); 7508 7509 while (off < len) { 7510 struct sctp_paramhdr h; 7511 7512 if (!pf_pull_hdr(pd->m, start + off, &h, sizeof(h), NULL, NULL, 7513 pd->af)) 7514 return (PF_DROP); 7515 7516 /* Parameters are at least 4 bytes. */ 7517 if (ntohs(h.param_length) < 4) 7518 return (PF_DROP); 7519 7520 SDT_PROBE2(pf, sctp, multihome_scan, param, ntohs(h.param_type), 7521 ntohs(h.param_length)); 7522 7523 switch (ntohs(h.param_type)) { 7524 case SCTP_IPV4_ADDRESS: { 7525 struct in_addr t; 7526 7527 if (ntohs(h.param_length) != 7528 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7529 return (PF_DROP); 7530 7531 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7532 NULL, NULL, pd->af)) 7533 return (PF_DROP); 7534 7535 if (in_nullhost(t)) 7536 t.s_addr = pd->src->v4.s_addr; 7537 7538 /* 7539 * We hold the state lock (idhash) here, which means 7540 * that we can't acquire the keyhash, or we'll get a 7541 * LOR (and potentially double-lock things too). We also 7542 * can't release the state lock here, so instead we'll 7543 * enqueue this for async handling. 7544 * There's a relatively small race here, in that a 7545 * packet using the new addresses could arrive already, 7546 * but that's just though luck for it. 7547 */ 7548 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7549 if (! job) 7550 return (PF_DROP); 7551 7552 SDT_PROBE2(pf, sctp, multihome_scan, ipv4, &t, op); 7553 7554 memcpy(&job->pd, pd, sizeof(*pd)); 7555 7556 // New source address! 7557 memcpy(&job->src, &t, sizeof(t)); 7558 job->pd.src = &job->src; 7559 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7560 job->pd.dst = &job->dst; 7561 job->pd.m = pd->m; 7562 job->op = op; 7563 7564 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7565 break; 7566 } 7567 #ifdef INET6 7568 case SCTP_IPV6_ADDRESS: { 7569 struct in6_addr t; 7570 7571 if (ntohs(h.param_length) != 7572 (sizeof(struct sctp_paramhdr) + sizeof(t))) 7573 return (PF_DROP); 7574 7575 if (!pf_pull_hdr(pd->m, start + off + sizeof(h), &t, sizeof(t), 7576 NULL, NULL, pd->af)) 7577 return (PF_DROP); 7578 if (memcmp(&t, &pd->src->v6, sizeof(t)) == 0) 7579 break; 7580 if (memcmp(&t, &in6addr_any, sizeof(t)) == 0) 7581 memcpy(&t, &pd->src->v6, sizeof(t)); 7582 7583 job = malloc(sizeof(*job), M_PFTEMP, M_NOWAIT | M_ZERO); 7584 if (! job) 7585 return (PF_DROP); 7586 7587 SDT_PROBE2(pf, sctp, multihome_scan, ipv6, &t, op); 7588 7589 memcpy(&job->pd, pd, sizeof(*pd)); 7590 memcpy(&job->src, &t, sizeof(t)); 7591 job->pd.src = &job->src; 7592 memcpy(&job->dst, pd->dst, sizeof(job->dst)); 7593 job->pd.dst = &job->dst; 7594 job->pd.m = pd->m; 7595 job->op = op; 7596 7597 TAILQ_INSERT_TAIL(&pd->sctp_multihome_jobs, job, next); 7598 break; 7599 } 7600 #endif /* INET6 */ 7601 case SCTP_ADD_IP_ADDRESS: { 7602 int ret; 7603 struct sctp_asconf_paramhdr ah; 7604 7605 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7606 NULL, NULL, pd->af)) 7607 return (PF_DROP); 7608 7609 ret = pf_multihome_scan(start + off + sizeof(ah), 7610 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7611 SCTP_ADD_IP_ADDRESS); 7612 if (ret != PF_PASS) 7613 return (ret); 7614 break; 7615 } 7616 case SCTP_DEL_IP_ADDRESS: { 7617 int ret; 7618 struct sctp_asconf_paramhdr ah; 7619 7620 if (!pf_pull_hdr(pd->m, start + off, &ah, sizeof(ah), 7621 NULL, NULL, pd->af)) 7622 return (PF_DROP); 7623 ret = pf_multihome_scan(start + off + sizeof(ah), 7624 ntohs(ah.ph.param_length) - sizeof(ah), pd, 7625 SCTP_DEL_IP_ADDRESS); 7626 if (ret != PF_PASS) 7627 return (ret); 7628 break; 7629 } 7630 default: 7631 break; 7632 } 7633 7634 off += roundup(ntohs(h.param_length), 4); 7635 } 7636 7637 return (PF_PASS); 7638 } 7639 7640 int 7641 pf_multihome_scan_init(int start, int len, struct pf_pdesc *pd) 7642 { 7643 start += sizeof(struct sctp_init_chunk); 7644 len -= sizeof(struct sctp_init_chunk); 7645 7646 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7647 } 7648 7649 int 7650 pf_multihome_scan_asconf(int start, int len, struct pf_pdesc *pd) 7651 { 7652 start += sizeof(struct sctp_asconf_chunk); 7653 len -= sizeof(struct sctp_asconf_chunk); 7654 7655 return (pf_multihome_scan(start, len, pd, SCTP_ADD_IP_ADDRESS)); 7656 } 7657 7658 int 7659 pf_icmp_state_lookup(struct pf_state_key_cmp *key, struct pf_pdesc *pd, 7660 struct pf_kstate **state, u_int16_t icmpid, u_int16_t type, int icmp_dir, 7661 int *iidx, int multi, int inner) 7662 { 7663 int direction = pd->dir; 7664 7665 key->af = pd->af; 7666 key->proto = pd->proto; 7667 if (icmp_dir == PF_IN) { 7668 *iidx = pd->sidx; 7669 key->port[pd->sidx] = icmpid; 7670 key->port[pd->didx] = type; 7671 } else { 7672 *iidx = pd->didx; 7673 key->port[pd->sidx] = type; 7674 key->port[pd->didx] = icmpid; 7675 } 7676 if (pf_state_key_addr_setup(pd, key, multi)) 7677 return (PF_DROP); 7678 7679 STATE_LOOKUP(key, *state, pd); 7680 7681 if ((*state)->state_flags & PFSTATE_SLOPPY) 7682 return (-1); 7683 7684 /* Is this ICMP message flowing in right direction? */ 7685 if ((*state)->key[PF_SK_WIRE]->af != (*state)->key[PF_SK_STACK]->af) 7686 direction = (pd->af == (*state)->key[PF_SK_WIRE]->af) ? 7687 PF_IN : PF_OUT; 7688 else 7689 direction = (*state)->direction; 7690 if ((*state)->rule->type && 7691 (((!inner && direction == pd->dir) || 7692 (inner && direction != pd->dir)) ? 7693 PF_IN : PF_OUT) != icmp_dir) { 7694 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7695 printf("pf: icmp type %d in wrong direction (%d): ", 7696 ntohs(type), icmp_dir); 7697 pf_print_state(*state); 7698 printf("\n"); 7699 } 7700 PF_STATE_UNLOCK(*state); 7701 *state = NULL; 7702 return (PF_DROP); 7703 } 7704 return (-1); 7705 } 7706 7707 static int 7708 pf_test_state_icmp(struct pf_kstate **state, struct pf_pdesc *pd, 7709 u_short *reason) 7710 { 7711 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 7712 u_int16_t *icmpsum, virtual_id, virtual_type; 7713 u_int8_t icmptype, icmpcode; 7714 int icmp_dir, iidx, ret; 7715 struct pf_state_key_cmp key; 7716 #ifdef INET 7717 u_int16_t icmpid; 7718 #endif /* INET*/ 7719 7720 MPASS(*state == NULL); 7721 7722 bzero(&key, sizeof(key)); 7723 switch (pd->proto) { 7724 #ifdef INET 7725 case IPPROTO_ICMP: 7726 icmptype = pd->hdr.icmp.icmp_type; 7727 icmpcode = pd->hdr.icmp.icmp_code; 7728 icmpid = pd->hdr.icmp.icmp_id; 7729 icmpsum = &pd->hdr.icmp.icmp_cksum; 7730 break; 7731 #endif /* INET */ 7732 #ifdef INET6 7733 case IPPROTO_ICMPV6: 7734 icmptype = pd->hdr.icmp6.icmp6_type; 7735 icmpcode = pd->hdr.icmp6.icmp6_code; 7736 #ifdef INET 7737 icmpid = pd->hdr.icmp6.icmp6_id; 7738 #endif /* INET */ 7739 icmpsum = &pd->hdr.icmp6.icmp6_cksum; 7740 break; 7741 #endif /* INET6 */ 7742 default: 7743 panic("unhandled proto %d", pd->proto); 7744 } 7745 7746 if (pf_icmp_mapping(pd, icmptype, &icmp_dir, &virtual_id, 7747 &virtual_type) == 0) { 7748 /* 7749 * ICMP query/reply message not related to a TCP/UDP/SCTP 7750 * packet. Search for an ICMP state. 7751 */ 7752 ret = pf_icmp_state_lookup(&key, pd, state, virtual_id, 7753 virtual_type, icmp_dir, &iidx, 0, 0); 7754 /* IPv6? try matching a multicast address */ 7755 if (ret == PF_DROP && pd->af == AF_INET6 && icmp_dir == PF_OUT) { 7756 MPASS(*state == NULL); 7757 ret = pf_icmp_state_lookup(&key, pd, state, 7758 virtual_id, virtual_type, 7759 icmp_dir, &iidx, 1, 0); 7760 } 7761 if (ret >= 0) { 7762 MPASS(*state == NULL); 7763 return (ret); 7764 } 7765 7766 (*state)->expire = pf_get_uptime(); 7767 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 7768 7769 /* translate source/destination address, if necessary */ 7770 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 7771 struct pf_state_key *nk; 7772 int afto, sidx, didx; 7773 7774 if (PF_REVERSED_KEY(*state, pd->af)) 7775 nk = (*state)->key[pd->sidx]; 7776 else 7777 nk = (*state)->key[pd->didx]; 7778 7779 afto = pd->af != nk->af; 7780 7781 if (afto && (*state)->direction == PF_IN) { 7782 sidx = pd->didx; 7783 didx = pd->sidx; 7784 iidx = !iidx; 7785 } else { 7786 sidx = pd->sidx; 7787 didx = pd->didx; 7788 } 7789 7790 switch (pd->af) { 7791 #ifdef INET 7792 case AF_INET: 7793 #ifdef INET6 7794 if (afto) { 7795 if (pf_translate_icmp_af(AF_INET6, 7796 &pd->hdr.icmp)) 7797 return (PF_DROP); 7798 pd->proto = IPPROTO_ICMPV6; 7799 } 7800 #endif /* INET6 */ 7801 if (!afto && 7802 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET)) 7803 pf_change_a(&saddr->v4.s_addr, 7804 pd->ip_sum, 7805 nk->addr[sidx].v4.s_addr, 7806 0); 7807 7808 if (!afto && PF_ANEQ(pd->dst, 7809 &nk->addr[didx], AF_INET)) 7810 pf_change_a(&daddr->v4.s_addr, 7811 pd->ip_sum, 7812 nk->addr[didx].v4.s_addr, 0); 7813 7814 if (nk->port[iidx] != 7815 pd->hdr.icmp.icmp_id) { 7816 pd->hdr.icmp.icmp_cksum = 7817 pf_cksum_fixup( 7818 pd->hdr.icmp.icmp_cksum, icmpid, 7819 nk->port[iidx], 0); 7820 pd->hdr.icmp.icmp_id = 7821 nk->port[iidx]; 7822 } 7823 7824 m_copyback(pd->m, pd->off, ICMP_MINLEN, 7825 (caddr_t )&pd->hdr.icmp); 7826 break; 7827 #endif /* INET */ 7828 #ifdef INET6 7829 case AF_INET6: 7830 #ifdef INET 7831 if (afto) { 7832 if (pf_translate_icmp_af(AF_INET, 7833 &pd->hdr.icmp6)) 7834 return (PF_DROP); 7835 pd->proto = IPPROTO_ICMP; 7836 } 7837 #endif /* INET */ 7838 if (!afto && 7839 PF_ANEQ(pd->src, &nk->addr[sidx], AF_INET6)) 7840 pf_change_a6(saddr, 7841 &pd->hdr.icmp6.icmp6_cksum, 7842 &nk->addr[sidx], 0); 7843 7844 if (!afto && PF_ANEQ(pd->dst, 7845 &nk->addr[didx], AF_INET6)) 7846 pf_change_a6(daddr, 7847 &pd->hdr.icmp6.icmp6_cksum, 7848 &nk->addr[didx], 0); 7849 7850 if (nk->port[iidx] != pd->hdr.icmp6.icmp6_id) 7851 pd->hdr.icmp6.icmp6_id = 7852 nk->port[iidx]; 7853 7854 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 7855 (caddr_t )&pd->hdr.icmp6); 7856 break; 7857 #endif /* INET6 */ 7858 } 7859 if (afto) { 7860 PF_ACPY(&pd->nsaddr, &nk->addr[sidx], nk->af); 7861 PF_ACPY(&pd->ndaddr, &nk->addr[didx], nk->af); 7862 pd->naf = nk->af; 7863 return (PF_AFRT); 7864 } 7865 } 7866 return (PF_PASS); 7867 7868 } else { 7869 /* 7870 * ICMP error message in response to a TCP/UDP packet. 7871 * Extract the inner TCP/UDP header and search for that state. 7872 */ 7873 7874 struct pf_pdesc pd2; 7875 bzero(&pd2, sizeof pd2); 7876 #ifdef INET 7877 struct ip h2; 7878 #endif /* INET */ 7879 #ifdef INET6 7880 struct ip6_hdr h2_6; 7881 #endif /* INET6 */ 7882 int ipoff2 = 0; 7883 7884 pd2.af = pd->af; 7885 pd2.dir = pd->dir; 7886 /* Payload packet is from the opposite direction. */ 7887 pd2.sidx = (pd->dir == PF_IN) ? 1 : 0; 7888 pd2.didx = (pd->dir == PF_IN) ? 0 : 1; 7889 pd2.m = pd->m; 7890 pd2.kif = pd->kif; 7891 switch (pd->af) { 7892 #ifdef INET 7893 case AF_INET: 7894 /* offset of h2 in mbuf chain */ 7895 ipoff2 = pd->off + ICMP_MINLEN; 7896 7897 if (!pf_pull_hdr(pd->m, ipoff2, &h2, sizeof(h2), 7898 NULL, reason, pd2.af)) { 7899 DPFPRINTF(PF_DEBUG_MISC, 7900 ("pf: ICMP error message too short " 7901 "(ip)\n")); 7902 return (PF_DROP); 7903 } 7904 /* 7905 * ICMP error messages don't refer to non-first 7906 * fragments 7907 */ 7908 if (h2.ip_off & htons(IP_OFFMASK)) { 7909 REASON_SET(reason, PFRES_FRAG); 7910 return (PF_DROP); 7911 } 7912 7913 /* offset of protocol header that follows h2 */ 7914 pd2.off = ipoff2 + (h2.ip_hl << 2); 7915 7916 pd2.proto = h2.ip_p; 7917 pd2.tot_len = ntohs(h2.ip_len); 7918 pd2.src = (struct pf_addr *)&h2.ip_src; 7919 pd2.dst = (struct pf_addr *)&h2.ip_dst; 7920 pd2.ip_sum = &h2.ip_sum; 7921 break; 7922 #endif /* INET */ 7923 #ifdef INET6 7924 case AF_INET6: 7925 ipoff2 = pd->off + sizeof(struct icmp6_hdr); 7926 7927 if (!pf_pull_hdr(pd->m, ipoff2, &h2_6, sizeof(h2_6), 7928 NULL, reason, pd2.af)) { 7929 DPFPRINTF(PF_DEBUG_MISC, 7930 ("pf: ICMP error message too short " 7931 "(ip6)\n")); 7932 return (PF_DROP); 7933 } 7934 pd2.off = ipoff2; 7935 if (pf_walk_header6(&pd2, &h2_6, reason) != PF_PASS) 7936 return (PF_DROP); 7937 7938 pd2.tot_len = ntohs(h2_6.ip6_plen) + 7939 sizeof(struct ip6_hdr); 7940 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 7941 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 7942 pd2.ip_sum = NULL; 7943 break; 7944 #endif /* INET6 */ 7945 default: 7946 unhandled_af(pd->af); 7947 } 7948 7949 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 7950 if (V_pf_status.debug >= PF_DEBUG_MISC) { 7951 printf("pf: BAD ICMP %d:%d outer dst: ", 7952 icmptype, icmpcode); 7953 pf_print_host(pd->src, 0, pd->af); 7954 printf(" -> "); 7955 pf_print_host(pd->dst, 0, pd->af); 7956 printf(" inner src: "); 7957 pf_print_host(pd2.src, 0, pd2.af); 7958 printf(" -> "); 7959 pf_print_host(pd2.dst, 0, pd2.af); 7960 printf("\n"); 7961 } 7962 REASON_SET(reason, PFRES_BADSTATE); 7963 return (PF_DROP); 7964 } 7965 7966 switch (pd2.proto) { 7967 case IPPROTO_TCP: { 7968 struct tcphdr *th = &pd2.hdr.tcp; 7969 u_int32_t seq; 7970 struct pf_state_peer *src, *dst; 7971 u_int8_t dws; 7972 int copyback = 0; 7973 7974 /* 7975 * Only the first 8 bytes of the TCP header can be 7976 * expected. Don't access any TCP header fields after 7977 * th_seq, an ackskew test is not possible. 7978 */ 7979 if (!pf_pull_hdr(pd->m, pd2.off, th, 8, NULL, reason, 7980 pd2.af)) { 7981 DPFPRINTF(PF_DEBUG_MISC, 7982 ("pf: ICMP error message too short " 7983 "(tcp)\n")); 7984 return (PF_DROP); 7985 } 7986 pd2.pcksum = &pd2.hdr.tcp.th_sum; 7987 7988 key.af = pd2.af; 7989 key.proto = IPPROTO_TCP; 7990 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 7991 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 7992 key.port[pd2.sidx] = th->th_sport; 7993 key.port[pd2.didx] = th->th_dport; 7994 7995 STATE_LOOKUP(&key, *state, pd); 7996 7997 if (pd->dir == (*state)->direction) { 7998 if (PF_REVERSED_KEY(*state, pd->af)) { 7999 src = &(*state)->src; 8000 dst = &(*state)->dst; 8001 } else { 8002 src = &(*state)->dst; 8003 dst = &(*state)->src; 8004 } 8005 } else { 8006 if (PF_REVERSED_KEY(*state, pd->af)) { 8007 src = &(*state)->dst; 8008 dst = &(*state)->src; 8009 } else { 8010 src = &(*state)->src; 8011 dst = &(*state)->dst; 8012 } 8013 } 8014 8015 if (src->wscale && dst->wscale) 8016 dws = dst->wscale & PF_WSCALE_MASK; 8017 else 8018 dws = 0; 8019 8020 /* Demodulate sequence number */ 8021 seq = ntohl(th->th_seq) - src->seqdiff; 8022 if (src->seqdiff) { 8023 pf_change_a(&th->th_seq, icmpsum, 8024 htonl(seq), 0); 8025 copyback = 1; 8026 } 8027 8028 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 8029 (!SEQ_GEQ(src->seqhi, seq) || 8030 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 8031 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8032 printf("pf: BAD ICMP %d:%d ", 8033 icmptype, icmpcode); 8034 pf_print_host(pd->src, 0, pd->af); 8035 printf(" -> "); 8036 pf_print_host(pd->dst, 0, pd->af); 8037 printf(" state: "); 8038 pf_print_state(*state); 8039 printf(" seq=%u\n", seq); 8040 } 8041 REASON_SET(reason, PFRES_BADSTATE); 8042 return (PF_DROP); 8043 } else { 8044 if (V_pf_status.debug >= PF_DEBUG_MISC) { 8045 printf("pf: OK ICMP %d:%d ", 8046 icmptype, icmpcode); 8047 pf_print_host(pd->src, 0, pd->af); 8048 printf(" -> "); 8049 pf_print_host(pd->dst, 0, pd->af); 8050 printf(" state: "); 8051 pf_print_state(*state); 8052 printf(" seq=%u\n", seq); 8053 } 8054 } 8055 8056 /* translate source/destination address, if necessary */ 8057 if ((*state)->key[PF_SK_WIRE] != 8058 (*state)->key[PF_SK_STACK]) { 8059 8060 struct pf_state_key *nk; 8061 8062 if (PF_REVERSED_KEY(*state, pd->af)) 8063 nk = (*state)->key[pd->sidx]; 8064 else 8065 nk = (*state)->key[pd->didx]; 8066 8067 #if defined(INET) && defined(INET6) 8068 int afto, sidx, didx; 8069 8070 afto = pd->af != nk->af; 8071 8072 if (afto && (*state)->direction == PF_IN) { 8073 sidx = pd2.didx; 8074 didx = pd2.sidx; 8075 } else { 8076 sidx = pd2.sidx; 8077 didx = pd2.didx; 8078 } 8079 8080 if (afto) { 8081 if (pf_translate_icmp_af(nk->af, 8082 &pd->hdr.icmp)) 8083 return (PF_DROP); 8084 m_copyback(pd->m, pd->off, 8085 sizeof(struct icmp6_hdr), 8086 (c_caddr_t)&pd->hdr.icmp6); 8087 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8088 &pd2, &nk->addr[sidx], 8089 &nk->addr[didx], pd->af, 8090 nk->af)) 8091 return (PF_DROP); 8092 PF_ACPY(&pd->nsaddr, &nk->addr[pd2.sidx], 8093 nk->af); 8094 PF_ACPY(&pd->ndaddr, 8095 &nk->addr[pd2.didx], nk->af); 8096 if (nk->af == AF_INET) { 8097 pd->proto = IPPROTO_ICMP; 8098 } else { 8099 pd->proto = IPPROTO_ICMPV6; 8100 /* 8101 * IPv4 becomes IPv6 so we must 8102 * copy IPv4 src addr to least 8103 * 32bits in IPv6 address to 8104 * keep traceroute/icmp 8105 * working. 8106 */ 8107 pd->nsaddr.addr32[3] = 8108 pd->src->addr32[0]; 8109 } 8110 pd->naf = pd2.naf = nk->af; 8111 pf_change_ap(&pd2, pd2.src, &th->th_sport, 8112 &nk->addr[pd2.sidx], nk->port[sidx]); 8113 pf_change_ap(&pd2, pd2.dst, &th->th_dport, 8114 &nk->addr[pd2.didx], nk->port[didx]); 8115 m_copyback(pd2.m, pd2.off, 8, (c_caddr_t)th); 8116 return (PF_AFRT); 8117 } 8118 #endif /* INET && INET6 */ 8119 8120 if (PF_ANEQ(pd2.src, 8121 &nk->addr[pd2.sidx], pd2.af) || 8122 nk->port[pd2.sidx] != th->th_sport) 8123 pf_change_icmp(pd2.src, &th->th_sport, 8124 daddr, &nk->addr[pd2.sidx], 8125 nk->port[pd2.sidx], NULL, 8126 pd2.ip_sum, icmpsum, 8127 pd->ip_sum, 0, pd2.af); 8128 8129 if (PF_ANEQ(pd2.dst, 8130 &nk->addr[pd2.didx], pd2.af) || 8131 nk->port[pd2.didx] != th->th_dport) 8132 pf_change_icmp(pd2.dst, &th->th_dport, 8133 saddr, &nk->addr[pd2.didx], 8134 nk->port[pd2.didx], NULL, 8135 pd2.ip_sum, icmpsum, 8136 pd->ip_sum, 0, pd2.af); 8137 copyback = 1; 8138 } 8139 8140 if (copyback) { 8141 switch (pd2.af) { 8142 #ifdef INET 8143 case AF_INET: 8144 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8145 (caddr_t )&pd->hdr.icmp); 8146 m_copyback(pd->m, ipoff2, sizeof(h2), 8147 (caddr_t )&h2); 8148 break; 8149 #endif /* INET */ 8150 #ifdef INET6 8151 case AF_INET6: 8152 m_copyback(pd->m, pd->off, 8153 sizeof(struct icmp6_hdr), 8154 (caddr_t )&pd->hdr.icmp6); 8155 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8156 (caddr_t )&h2_6); 8157 break; 8158 #endif /* INET6 */ 8159 default: 8160 unhandled_af(pd->af); 8161 } 8162 m_copyback(pd->m, pd2.off, 8, (caddr_t)th); 8163 } 8164 8165 return (PF_PASS); 8166 break; 8167 } 8168 case IPPROTO_UDP: { 8169 struct udphdr *uh = &pd2.hdr.udp; 8170 8171 if (!pf_pull_hdr(pd->m, pd2.off, uh, sizeof(*uh), 8172 NULL, reason, pd2.af)) { 8173 DPFPRINTF(PF_DEBUG_MISC, 8174 ("pf: ICMP error message too short " 8175 "(udp)\n")); 8176 return (PF_DROP); 8177 } 8178 pd2.pcksum = &pd2.hdr.udp.uh_sum; 8179 8180 key.af = pd2.af; 8181 key.proto = IPPROTO_UDP; 8182 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8183 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8184 key.port[pd2.sidx] = uh->uh_sport; 8185 key.port[pd2.didx] = uh->uh_dport; 8186 8187 STATE_LOOKUP(&key, *state, pd); 8188 8189 /* translate source/destination address, if necessary */ 8190 if ((*state)->key[PF_SK_WIRE] != 8191 (*state)->key[PF_SK_STACK]) { 8192 struct pf_state_key *nk; 8193 8194 if (PF_REVERSED_KEY(*state, pd->af)) 8195 nk = (*state)->key[pd->sidx]; 8196 else 8197 nk = (*state)->key[pd->didx]; 8198 8199 #if defined(INET) && defined(INET6) 8200 int afto, sidx, didx; 8201 8202 afto = pd->af != nk->af; 8203 8204 if (afto && (*state)->direction == PF_IN) { 8205 sidx = pd2.didx; 8206 didx = pd2.sidx; 8207 } else { 8208 sidx = pd2.sidx; 8209 didx = pd2.didx; 8210 } 8211 8212 if (afto) { 8213 if (pf_translate_icmp_af(nk->af, 8214 &pd->hdr.icmp)) 8215 return (PF_DROP); 8216 m_copyback(pd->m, pd->off, 8217 sizeof(struct icmp6_hdr), 8218 (c_caddr_t)&pd->hdr.icmp6); 8219 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8220 &pd2, &nk->addr[sidx], 8221 &nk->addr[didx], pd->af, 8222 nk->af)) 8223 return (PF_DROP); 8224 PF_ACPY(&pd->nsaddr, 8225 &nk->addr[pd2.sidx], nk->af); 8226 PF_ACPY(&pd->ndaddr, 8227 &nk->addr[pd2.didx], nk->af); 8228 if (nk->af == AF_INET) { 8229 pd->proto = IPPROTO_ICMP; 8230 } else { 8231 pd->proto = IPPROTO_ICMPV6; 8232 /* 8233 * IPv4 becomes IPv6 so we must 8234 * copy IPv4 src addr to least 8235 * 32bits in IPv6 address to 8236 * keep traceroute/icmp 8237 * working. 8238 */ 8239 pd->nsaddr.addr32[3] = 8240 pd->src->addr32[0]; 8241 } 8242 pd->naf = pd2.naf = nk->af; 8243 pf_change_ap(&pd2, pd2.src, &uh->uh_sport, 8244 &nk->addr[pd2.sidx], nk->port[sidx]); 8245 pf_change_ap(&pd2, pd2.dst, &uh->uh_dport, 8246 &nk->addr[pd2.didx], nk->port[didx]); 8247 m_copyback(pd2.m, pd2.off, sizeof(*uh), 8248 (c_caddr_t)uh); 8249 return (PF_AFRT); 8250 } 8251 #endif /* INET && INET6 */ 8252 8253 if (PF_ANEQ(pd2.src, 8254 &nk->addr[pd2.sidx], pd2.af) || 8255 nk->port[pd2.sidx] != uh->uh_sport) 8256 pf_change_icmp(pd2.src, &uh->uh_sport, 8257 daddr, &nk->addr[pd2.sidx], 8258 nk->port[pd2.sidx], &uh->uh_sum, 8259 pd2.ip_sum, icmpsum, 8260 pd->ip_sum, 1, pd2.af); 8261 8262 if (PF_ANEQ(pd2.dst, 8263 &nk->addr[pd2.didx], pd2.af) || 8264 nk->port[pd2.didx] != uh->uh_dport) 8265 pf_change_icmp(pd2.dst, &uh->uh_dport, 8266 saddr, &nk->addr[pd2.didx], 8267 nk->port[pd2.didx], &uh->uh_sum, 8268 pd2.ip_sum, icmpsum, 8269 pd->ip_sum, 1, pd2.af); 8270 8271 switch (pd2.af) { 8272 #ifdef INET 8273 case AF_INET: 8274 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8275 (caddr_t )&pd->hdr.icmp); 8276 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8277 break; 8278 #endif /* INET */ 8279 #ifdef INET6 8280 case AF_INET6: 8281 m_copyback(pd->m, pd->off, 8282 sizeof(struct icmp6_hdr), 8283 (caddr_t )&pd->hdr.icmp6); 8284 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8285 (caddr_t )&h2_6); 8286 break; 8287 #endif /* INET6 */ 8288 } 8289 m_copyback(pd->m, pd2.off, sizeof(*uh), (caddr_t)uh); 8290 } 8291 return (PF_PASS); 8292 break; 8293 } 8294 #ifdef INET 8295 case IPPROTO_SCTP: { 8296 struct sctphdr *sh = &pd2.hdr.sctp; 8297 struct pf_state_peer *src; 8298 int copyback = 0; 8299 8300 if (! pf_pull_hdr(pd->m, pd2.off, sh, sizeof(*sh), NULL, reason, 8301 pd2.af)) { 8302 DPFPRINTF(PF_DEBUG_MISC, 8303 ("pf: ICMP error message too short " 8304 "(sctp)\n")); 8305 return (PF_DROP); 8306 } 8307 pd2.pcksum = &pd2.sctp_dummy_sum; 8308 8309 key.af = pd2.af; 8310 key.proto = IPPROTO_SCTP; 8311 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8312 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8313 key.port[pd2.sidx] = sh->src_port; 8314 key.port[pd2.didx] = sh->dest_port; 8315 8316 STATE_LOOKUP(&key, *state, pd); 8317 8318 if (pd->dir == (*state)->direction) { 8319 if (PF_REVERSED_KEY(*state, pd->af)) 8320 src = &(*state)->src; 8321 else 8322 src = &(*state)->dst; 8323 } else { 8324 if (PF_REVERSED_KEY(*state, pd->af)) 8325 src = &(*state)->dst; 8326 else 8327 src = &(*state)->src; 8328 } 8329 8330 if (src->scrub->pfss_v_tag != sh->v_tag) { 8331 DPFPRINTF(PF_DEBUG_MISC, 8332 ("pf: ICMP error message has incorrect " 8333 "SCTP v_tag\n")); 8334 return (PF_DROP); 8335 } 8336 8337 /* translate source/destination address, if necessary */ 8338 if ((*state)->key[PF_SK_WIRE] != 8339 (*state)->key[PF_SK_STACK]) { 8340 8341 struct pf_state_key *nk; 8342 8343 if (PF_REVERSED_KEY(*state, pd->af)) 8344 nk = (*state)->key[pd->sidx]; 8345 else 8346 nk = (*state)->key[pd->didx]; 8347 8348 #if defined(INET) && defined(INET6) 8349 int afto, sidx, didx; 8350 8351 afto = pd->af != nk->af; 8352 8353 if (afto && (*state)->direction == PF_IN) { 8354 sidx = pd2.didx; 8355 didx = pd2.sidx; 8356 } else { 8357 sidx = pd2.sidx; 8358 didx = pd2.didx; 8359 } 8360 8361 if (afto) { 8362 if (pf_translate_icmp_af(nk->af, 8363 &pd->hdr.icmp)) 8364 return (PF_DROP); 8365 m_copyback(pd->m, pd->off, 8366 sizeof(struct icmp6_hdr), 8367 (c_caddr_t)&pd->hdr.icmp6); 8368 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8369 &pd2, &nk->addr[sidx], 8370 &nk->addr[didx], pd->af, 8371 nk->af)) 8372 return (PF_DROP); 8373 sh->src_port = nk->port[sidx]; 8374 sh->dest_port = nk->port[didx]; 8375 m_copyback(pd2.m, pd2.off, sizeof(*sh), (c_caddr_t)sh); 8376 PF_ACPY(&pd->nsaddr, 8377 &nk->addr[pd2.sidx], nk->af); 8378 PF_ACPY(&pd->ndaddr, 8379 &nk->addr[pd2.didx], nk->af); 8380 if (nk->af == AF_INET) { 8381 pd->proto = IPPROTO_ICMP; 8382 } else { 8383 pd->proto = IPPROTO_ICMPV6; 8384 /* 8385 * IPv4 becomes IPv6 so we must 8386 * copy IPv4 src addr to least 8387 * 32bits in IPv6 address to 8388 * keep traceroute/icmp 8389 * working. 8390 */ 8391 pd->nsaddr.addr32[3] = 8392 pd->src->addr32[0]; 8393 } 8394 pd->naf = nk->af; 8395 return (PF_AFRT); 8396 } 8397 #endif /* INET && INET6 */ 8398 8399 if (PF_ANEQ(pd2.src, 8400 &nk->addr[pd2.sidx], pd2.af) || 8401 nk->port[pd2.sidx] != sh->src_port) 8402 pf_change_icmp(pd2.src, &sh->src_port, 8403 daddr, &nk->addr[pd2.sidx], 8404 nk->port[pd2.sidx], NULL, 8405 pd2.ip_sum, icmpsum, 8406 pd->ip_sum, 0, pd2.af); 8407 8408 if (PF_ANEQ(pd2.dst, 8409 &nk->addr[pd2.didx], pd2.af) || 8410 nk->port[pd2.didx] != sh->dest_port) 8411 pf_change_icmp(pd2.dst, &sh->dest_port, 8412 saddr, &nk->addr[pd2.didx], 8413 nk->port[pd2.didx], NULL, 8414 pd2.ip_sum, icmpsum, 8415 pd->ip_sum, 0, pd2.af); 8416 copyback = 1; 8417 } 8418 8419 if (copyback) { 8420 switch (pd2.af) { 8421 #ifdef INET 8422 case AF_INET: 8423 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8424 (caddr_t )&pd->hdr.icmp); 8425 m_copyback(pd->m, ipoff2, sizeof(h2), 8426 (caddr_t )&h2); 8427 break; 8428 #endif /* INET */ 8429 #ifdef INET6 8430 case AF_INET6: 8431 m_copyback(pd->m, pd->off, 8432 sizeof(struct icmp6_hdr), 8433 (caddr_t )&pd->hdr.icmp6); 8434 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8435 (caddr_t )&h2_6); 8436 break; 8437 #endif /* INET6 */ 8438 } 8439 m_copyback(pd->m, pd2.off, sizeof(*sh), (caddr_t)sh); 8440 } 8441 8442 return (PF_PASS); 8443 break; 8444 } 8445 case IPPROTO_ICMP: { 8446 struct icmp *iih = &pd2.hdr.icmp; 8447 8448 if (pd2.af != AF_INET) { 8449 REASON_SET(reason, PFRES_NORM); 8450 return (PF_DROP); 8451 } 8452 8453 if (!pf_pull_hdr(pd->m, pd2.off, iih, ICMP_MINLEN, 8454 NULL, reason, pd2.af)) { 8455 DPFPRINTF(PF_DEBUG_MISC, 8456 ("pf: ICMP error message too short i" 8457 "(icmp)\n")); 8458 return (PF_DROP); 8459 } 8460 pd2.pcksum = &pd2.hdr.icmp.icmp_cksum; 8461 8462 icmpid = iih->icmp_id; 8463 pf_icmp_mapping(&pd2, iih->icmp_type, 8464 &icmp_dir, &virtual_id, &virtual_type); 8465 8466 ret = pf_icmp_state_lookup(&key, &pd2, state, 8467 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8468 if (ret >= 0) { 8469 MPASS(*state == NULL); 8470 return (ret); 8471 } 8472 8473 /* translate source/destination address, if necessary */ 8474 if ((*state)->key[PF_SK_WIRE] != 8475 (*state)->key[PF_SK_STACK]) { 8476 struct pf_state_key *nk; 8477 8478 if (PF_REVERSED_KEY(*state, pd->af)) 8479 nk = (*state)->key[pd->sidx]; 8480 else 8481 nk = (*state)->key[pd->didx]; 8482 8483 #if defined(INET) && defined(INET6) 8484 int afto, sidx, didx; 8485 8486 afto = pd->af != nk->af; 8487 8488 if (afto && (*state)->direction == PF_IN) { 8489 sidx = pd2.didx; 8490 didx = pd2.sidx; 8491 iidx = !iidx; 8492 } else { 8493 sidx = pd2.sidx; 8494 didx = pd2.didx; 8495 } 8496 8497 if (afto) { 8498 if (nk->af != AF_INET6) 8499 return (PF_DROP); 8500 if (pf_translate_icmp_af(nk->af, 8501 &pd->hdr.icmp)) 8502 return (PF_DROP); 8503 m_copyback(pd->m, pd->off, 8504 sizeof(struct icmp6_hdr), 8505 (c_caddr_t)&pd->hdr.icmp6); 8506 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8507 &pd2, &nk->addr[sidx], 8508 &nk->addr[didx], pd->af, 8509 nk->af)) 8510 return (PF_DROP); 8511 pd->proto = IPPROTO_ICMPV6; 8512 if (pf_translate_icmp_af(nk->af, iih)) 8513 return (PF_DROP); 8514 if (virtual_type == htons(ICMP_ECHO) && 8515 nk->port[iidx] != iih->icmp_id) 8516 iih->icmp_id = nk->port[iidx]; 8517 m_copyback(pd2.m, pd2.off, ICMP_MINLEN, 8518 (c_caddr_t)iih); 8519 PF_ACPY(&pd->nsaddr, 8520 &nk->addr[pd2.sidx], nk->af); 8521 PF_ACPY(&pd->ndaddr, 8522 &nk->addr[pd2.didx], nk->af); 8523 /* 8524 * IPv4 becomes IPv6 so we must copy 8525 * IPv4 src addr to least 32bits in 8526 * IPv6 address to keep traceroute 8527 * working. 8528 */ 8529 pd->nsaddr.addr32[3] = 8530 pd->src->addr32[0]; 8531 pd->naf = nk->af; 8532 return (PF_AFRT); 8533 } 8534 #endif /* INET && INET6 */ 8535 8536 if (PF_ANEQ(pd2.src, 8537 &nk->addr[pd2.sidx], pd2.af) || 8538 (virtual_type == htons(ICMP_ECHO) && 8539 nk->port[iidx] != iih->icmp_id)) 8540 pf_change_icmp(pd2.src, 8541 (virtual_type == htons(ICMP_ECHO)) ? 8542 &iih->icmp_id : NULL, 8543 daddr, &nk->addr[pd2.sidx], 8544 (virtual_type == htons(ICMP_ECHO)) ? 8545 nk->port[iidx] : 0, NULL, 8546 pd2.ip_sum, icmpsum, 8547 pd->ip_sum, 0, AF_INET); 8548 8549 if (PF_ANEQ(pd2.dst, 8550 &nk->addr[pd2.didx], pd2.af)) 8551 pf_change_icmp(pd2.dst, NULL, NULL, 8552 &nk->addr[pd2.didx], 0, NULL, 8553 pd2.ip_sum, icmpsum, pd->ip_sum, 0, 8554 AF_INET); 8555 8556 m_copyback(pd->m, pd->off, ICMP_MINLEN, (caddr_t)&pd->hdr.icmp); 8557 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8558 m_copyback(pd->m, pd2.off, ICMP_MINLEN, (caddr_t)iih); 8559 } 8560 return (PF_PASS); 8561 break; 8562 } 8563 #endif /* INET */ 8564 #ifdef INET6 8565 case IPPROTO_ICMPV6: { 8566 struct icmp6_hdr *iih = &pd2.hdr.icmp6; 8567 8568 if (pd2.af != AF_INET6) { 8569 REASON_SET(reason, PFRES_NORM); 8570 return (PF_DROP); 8571 } 8572 8573 if (!pf_pull_hdr(pd->m, pd2.off, iih, 8574 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 8575 DPFPRINTF(PF_DEBUG_MISC, 8576 ("pf: ICMP error message too short " 8577 "(icmp6)\n")); 8578 return (PF_DROP); 8579 } 8580 pd2.pcksum = &pd2.hdr.icmp6.icmp6_cksum; 8581 8582 pf_icmp_mapping(&pd2, iih->icmp6_type, 8583 &icmp_dir, &virtual_id, &virtual_type); 8584 8585 ret = pf_icmp_state_lookup(&key, &pd2, state, 8586 virtual_id, virtual_type, icmp_dir, &iidx, 0, 1); 8587 /* IPv6? try matching a multicast address */ 8588 if (ret == PF_DROP && pd2.af == AF_INET6 && 8589 icmp_dir == PF_OUT) { 8590 MPASS(*state == NULL); 8591 ret = pf_icmp_state_lookup(&key, &pd2, 8592 state, virtual_id, virtual_type, 8593 icmp_dir, &iidx, 1, 1); 8594 } 8595 if (ret >= 0) { 8596 MPASS(*state == NULL); 8597 return (ret); 8598 } 8599 8600 /* translate source/destination address, if necessary */ 8601 if ((*state)->key[PF_SK_WIRE] != 8602 (*state)->key[PF_SK_STACK]) { 8603 struct pf_state_key *nk; 8604 8605 if (PF_REVERSED_KEY(*state, pd->af)) 8606 nk = (*state)->key[pd->sidx]; 8607 else 8608 nk = (*state)->key[pd->didx]; 8609 8610 #if defined(INET) && defined(INET6) 8611 int afto, sidx, didx; 8612 8613 afto = pd->af != nk->af; 8614 8615 if (afto && (*state)->direction == PF_IN) { 8616 sidx = pd2.didx; 8617 didx = pd2.sidx; 8618 iidx = !iidx; 8619 } else { 8620 sidx = pd2.sidx; 8621 didx = pd2.didx; 8622 } 8623 8624 if (afto) { 8625 if (nk->af != AF_INET) 8626 return (PF_DROP); 8627 if (pf_translate_icmp_af(nk->af, 8628 &pd->hdr.icmp)) 8629 return (PF_DROP); 8630 m_copyback(pd->m, pd->off, 8631 sizeof(struct icmp6_hdr), 8632 (c_caddr_t)&pd->hdr.icmp6); 8633 if (pf_change_icmp_af(pd->m, ipoff2, pd, 8634 &pd2, &nk->addr[sidx], 8635 &nk->addr[didx], pd->af, 8636 nk->af)) 8637 return (PF_DROP); 8638 pd->proto = IPPROTO_ICMP; 8639 if (pf_translate_icmp_af(nk->af, iih)) 8640 return (PF_DROP); 8641 if (virtual_type == 8642 htons(ICMP6_ECHO_REQUEST) && 8643 nk->port[iidx] != iih->icmp6_id) 8644 iih->icmp6_id = nk->port[iidx]; 8645 m_copyback(pd2.m, pd2.off, 8646 sizeof(struct icmp6_hdr), (c_caddr_t)iih); 8647 PF_ACPY(&pd->nsaddr, 8648 &nk->addr[pd2.sidx], nk->af); 8649 PF_ACPY(&pd->ndaddr, 8650 &nk->addr[pd2.didx], nk->af); 8651 pd->naf = nk->af; 8652 return (PF_AFRT); 8653 } 8654 #endif /* INET && INET6 */ 8655 8656 if (PF_ANEQ(pd2.src, 8657 &nk->addr[pd2.sidx], pd2.af) || 8658 ((virtual_type == htons(ICMP6_ECHO_REQUEST)) && 8659 nk->port[pd2.sidx] != iih->icmp6_id)) 8660 pf_change_icmp(pd2.src, 8661 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8662 ? &iih->icmp6_id : NULL, 8663 daddr, &nk->addr[pd2.sidx], 8664 (virtual_type == htons(ICMP6_ECHO_REQUEST)) 8665 ? nk->port[iidx] : 0, NULL, 8666 pd2.ip_sum, icmpsum, 8667 pd->ip_sum, 0, AF_INET6); 8668 8669 if (PF_ANEQ(pd2.dst, 8670 &nk->addr[pd2.didx], pd2.af)) 8671 pf_change_icmp(pd2.dst, NULL, NULL, 8672 &nk->addr[pd2.didx], 0, NULL, 8673 pd2.ip_sum, icmpsum, 8674 pd->ip_sum, 0, AF_INET6); 8675 8676 m_copyback(pd->m, pd->off, sizeof(struct icmp6_hdr), 8677 (caddr_t)&pd->hdr.icmp6); 8678 m_copyback(pd->m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 8679 m_copyback(pd->m, pd2.off, sizeof(struct icmp6_hdr), 8680 (caddr_t)iih); 8681 } 8682 return (PF_PASS); 8683 break; 8684 } 8685 #endif /* INET6 */ 8686 default: { 8687 key.af = pd2.af; 8688 key.proto = pd2.proto; 8689 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 8690 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 8691 key.port[0] = key.port[1] = 0; 8692 8693 STATE_LOOKUP(&key, *state, pd); 8694 8695 /* translate source/destination address, if necessary */ 8696 if ((*state)->key[PF_SK_WIRE] != 8697 (*state)->key[PF_SK_STACK]) { 8698 struct pf_state_key *nk = 8699 (*state)->key[pd->didx]; 8700 8701 if (PF_ANEQ(pd2.src, 8702 &nk->addr[pd2.sidx], pd2.af)) 8703 pf_change_icmp(pd2.src, NULL, daddr, 8704 &nk->addr[pd2.sidx], 0, NULL, 8705 pd2.ip_sum, icmpsum, 8706 pd->ip_sum, 0, pd2.af); 8707 8708 if (PF_ANEQ(pd2.dst, 8709 &nk->addr[pd2.didx], pd2.af)) 8710 pf_change_icmp(pd2.dst, NULL, saddr, 8711 &nk->addr[pd2.didx], 0, NULL, 8712 pd2.ip_sum, icmpsum, 8713 pd->ip_sum, 0, pd2.af); 8714 8715 switch (pd2.af) { 8716 #ifdef INET 8717 case AF_INET: 8718 m_copyback(pd->m, pd->off, ICMP_MINLEN, 8719 (caddr_t)&pd->hdr.icmp); 8720 m_copyback(pd->m, ipoff2, sizeof(h2), (caddr_t)&h2); 8721 break; 8722 #endif /* INET */ 8723 #ifdef INET6 8724 case AF_INET6: 8725 m_copyback(pd->m, pd->off, 8726 sizeof(struct icmp6_hdr), 8727 (caddr_t )&pd->hdr.icmp6); 8728 m_copyback(pd->m, ipoff2, sizeof(h2_6), 8729 (caddr_t )&h2_6); 8730 break; 8731 #endif /* INET6 */ 8732 } 8733 } 8734 return (PF_PASS); 8735 break; 8736 } 8737 } 8738 } 8739 } 8740 8741 /* 8742 * ipoff and off are measured from the start of the mbuf chain. 8743 * h must be at "ipoff" on the mbuf chain. 8744 */ 8745 void * 8746 pf_pull_hdr(const struct mbuf *m, int off, void *p, int len, 8747 u_short *actionp, u_short *reasonp, sa_family_t af) 8748 { 8749 int iplen = 0; 8750 switch (af) { 8751 #ifdef INET 8752 case AF_INET: { 8753 const struct ip *h = mtod(m, struct ip *); 8754 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 8755 8756 if (fragoff) { 8757 if (fragoff >= len) 8758 ACTION_SET(actionp, PF_PASS); 8759 else { 8760 ACTION_SET(actionp, PF_DROP); 8761 REASON_SET(reasonp, PFRES_FRAG); 8762 } 8763 return (NULL); 8764 } 8765 iplen = ntohs(h->ip_len); 8766 break; 8767 } 8768 #endif /* INET */ 8769 #ifdef INET6 8770 case AF_INET6: { 8771 const struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 8772 8773 iplen = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 8774 break; 8775 } 8776 #endif /* INET6 */ 8777 } 8778 if (m->m_pkthdr.len < off + len || iplen < off + len) { 8779 ACTION_SET(actionp, PF_DROP); 8780 REASON_SET(reasonp, PFRES_SHORT); 8781 return (NULL); 8782 } 8783 m_copydata(m, off, len, p); 8784 return (p); 8785 } 8786 8787 int 8788 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kkif *kif, 8789 int rtableid) 8790 { 8791 struct ifnet *ifp; 8792 8793 /* 8794 * Skip check for addresses with embedded interface scope, 8795 * as they would always match anyway. 8796 */ 8797 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 8798 return (1); 8799 8800 if (af != AF_INET && af != AF_INET6) 8801 return (0); 8802 8803 if (kif == V_pfi_all) 8804 return (1); 8805 8806 /* Skip checks for ipsec interfaces */ 8807 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 8808 return (1); 8809 8810 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 8811 8812 switch (af) { 8813 #ifdef INET6 8814 case AF_INET6: 8815 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 8816 ifp)); 8817 #endif /* INET6 */ 8818 #ifdef INET 8819 case AF_INET: 8820 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 8821 ifp)); 8822 #endif /* INET */ 8823 } 8824 8825 return (0); 8826 } 8827 8828 #ifdef INET 8829 static void 8830 pf_route(struct pf_krule *r, struct ifnet *oifp, 8831 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 8832 { 8833 struct mbuf *m0, *m1, *md; 8834 struct route ro; 8835 const struct sockaddr *gw = &ro.ro_dst; 8836 struct sockaddr_in *dst; 8837 struct ip *ip; 8838 struct ifnet *ifp = NULL; 8839 int error = 0; 8840 uint16_t ip_len, ip_off; 8841 uint16_t tmp; 8842 int r_dir; 8843 bool skip_test = false; 8844 8845 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 8846 8847 SDT_PROBE4(pf, ip, route_to, entry, pd->m, pd, s, oifp); 8848 8849 if (s) { 8850 r_dir = s->direction; 8851 } else { 8852 r_dir = r->direction; 8853 } 8854 8855 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 8856 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 8857 __func__)); 8858 8859 if ((pd->pf_mtag == NULL && 8860 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 8861 pd->pf_mtag->routed++ > 3) { 8862 m0 = pd->m; 8863 pd->m = NULL; 8864 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8865 goto bad_locked; 8866 } 8867 8868 if (pd->act.rt_kif != NULL) 8869 ifp = pd->act.rt_kif->pfik_ifp; 8870 8871 if (pd->act.rt == PF_DUPTO) { 8872 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 8873 if (s != NULL) { 8874 PF_STATE_UNLOCK(s); 8875 } 8876 if (ifp == oifp) { 8877 /* When the 2nd interface is not skipped */ 8878 return; 8879 } else { 8880 m0 = pd->m; 8881 pd->m = NULL; 8882 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8883 goto bad; 8884 } 8885 } else { 8886 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 8887 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 8888 if (s) 8889 PF_STATE_UNLOCK(s); 8890 return; 8891 } 8892 } 8893 } else { 8894 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 8895 if (pd->af == pd->naf) { 8896 pf_dummynet(pd, s, r, &pd->m); 8897 if (s) 8898 PF_STATE_UNLOCK(s); 8899 return; 8900 } else { 8901 if (r_dir == PF_IN) { 8902 skip_test = true; 8903 } 8904 } 8905 } 8906 8907 /* 8908 * If we're actually doing route-to and af-to and are in the 8909 * reply direction. 8910 */ 8911 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 8912 pd->af != pd->naf) { 8913 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET) { 8914 /* Un-set ifp so we do a plain route lookup. */ 8915 ifp = NULL; 8916 } 8917 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET6) { 8918 /* Un-set ifp so we do a plain route lookup. */ 8919 ifp = NULL; 8920 } 8921 } 8922 m0 = pd->m; 8923 } 8924 8925 ip = mtod(m0, struct ip *); 8926 8927 bzero(&ro, sizeof(ro)); 8928 dst = (struct sockaddr_in *)&ro.ro_dst; 8929 dst->sin_family = AF_INET; 8930 dst->sin_len = sizeof(struct sockaddr_in); 8931 dst->sin_addr.s_addr = pd->act.rt_addr.v4.s_addr; 8932 8933 if (s != NULL){ 8934 if (ifp == NULL && (pd->af != pd->naf)) { 8935 /* We're in the AFTO case. Do a route lookup. */ 8936 const struct nhop_object *nh; 8937 nh = fib4_lookup(M_GETFIB(m0), ip->ip_dst, 0, NHR_NONE, 0); 8938 if (nh) { 8939 ifp = nh->nh_ifp; 8940 8941 /* Use the gateway if needed. */ 8942 if (nh->nh_flags & NHF_GATEWAY) { 8943 gw = &nh->gw_sa; 8944 ro.ro_flags |= RT_HAS_GW; 8945 } else { 8946 dst->sin_addr = ip->ip_dst; 8947 } 8948 8949 /* 8950 * Bind to the correct interface if we're 8951 * if-bound. We don't know which interface 8952 * that will be until here, so we've inserted 8953 * the state on V_pf_all. Fix that now. 8954 */ 8955 if (s->kif == V_pfi_all && ifp != NULL && 8956 r->rule_flag & PFRULE_IFBOUND) 8957 s->kif = ifp->if_pf_kif; 8958 } 8959 } 8960 8961 if (r->rule_flag & PFRULE_IFBOUND && 8962 pd->act.rt == PF_REPLYTO && 8963 s->kif == V_pfi_all) { 8964 s->kif = pd->act.rt_kif; 8965 s->orig_kif = oifp->if_pf_kif; 8966 } 8967 8968 PF_STATE_UNLOCK(s); 8969 } 8970 8971 if (ifp == NULL) { 8972 m0 = pd->m; 8973 pd->m = NULL; 8974 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8975 goto bad; 8976 } 8977 8978 if (pd->dir == PF_IN && !skip_test) { 8979 if (pf_test(AF_INET, PF_OUT, PFIL_FWD, ifp, &m0, inp, 8980 &pd->act) != PF_PASS) { 8981 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8982 goto bad; 8983 } else if (m0 == NULL) { 8984 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8985 goto done; 8986 } 8987 if (m0->m_len < sizeof(struct ip)) { 8988 DPFPRINTF(PF_DEBUG_URGENT, 8989 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 8990 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 8991 goto bad; 8992 } 8993 ip = mtod(m0, struct ip *); 8994 } 8995 8996 if (ifp->if_flags & IFF_LOOPBACK) 8997 m0->m_flags |= M_SKIP_FIREWALL; 8998 8999 ip_len = ntohs(ip->ip_len); 9000 ip_off = ntohs(ip->ip_off); 9001 9002 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 9003 m0->m_pkthdr.csum_flags |= CSUM_IP; 9004 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 9005 in_delayed_cksum(m0); 9006 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 9007 } 9008 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 9009 pf_sctp_checksum(m0, (uint32_t)(ip->ip_hl << 2)); 9010 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 9011 } 9012 9013 if (pd->dir == PF_IN) { 9014 /* 9015 * Make sure dummynet gets the correct direction, in case it needs to 9016 * re-inject later. 9017 */ 9018 pd->dir = PF_OUT; 9019 9020 /* 9021 * The following processing is actually the rest of the inbound processing, even 9022 * though we've marked it as outbound (so we don't look through dummynet) and it 9023 * happens after the outbound processing (pf_test(PF_OUT) above). 9024 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9025 * conclusion about what direction it's processing, and we can't fix it or it 9026 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9027 * decision will pick the right pipe, and everything will mostly work as expected. 9028 */ 9029 tmp = pd->act.dnrpipe; 9030 pd->act.dnrpipe = pd->act.dnpipe; 9031 pd->act.dnpipe = tmp; 9032 } 9033 9034 /* 9035 * If small enough for interface, or the interface will take 9036 * care of the fragmentation for us, we can just send directly. 9037 */ 9038 if (ip_len <= ifp->if_mtu || 9039 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 9040 ip->ip_sum = 0; 9041 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 9042 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 9043 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 9044 } 9045 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 9046 9047 md = m0; 9048 error = pf_dummynet_route(pd, s, r, ifp, gw, &md); 9049 if (md != NULL) { 9050 error = (*ifp->if_output)(ifp, md, gw, &ro); 9051 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9052 } 9053 goto done; 9054 } 9055 9056 /* Balk when DF bit is set or the interface didn't support TSO. */ 9057 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 9058 error = EMSGSIZE; 9059 KMOD_IPSTAT_INC(ips_cantfrag); 9060 if (pd->act.rt != PF_DUPTO) { 9061 if (s && s->nat_rule != NULL) { 9062 MPASS(m0 == pd->m); 9063 PACKET_UNDO_NAT(pd, 9064 (ip->ip_hl << 2) + (ip_off & IP_OFFMASK), 9065 s); 9066 } 9067 9068 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 9069 ifp->if_mtu); 9070 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9071 goto done; 9072 } else { 9073 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9074 goto bad; 9075 } 9076 } 9077 9078 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 9079 if (error) { 9080 SDT_PROBE1(pf, ip, route_to, drop, __LINE__); 9081 goto bad; 9082 } 9083 9084 for (; m0; m0 = m1) { 9085 m1 = m0->m_nextpkt; 9086 m0->m_nextpkt = NULL; 9087 if (error == 0) { 9088 m_clrprotoflags(m0); 9089 md = m0; 9090 pd->pf_mtag = pf_find_mtag(md); 9091 error = pf_dummynet_route(pd, s, r, ifp, 9092 gw, &md); 9093 if (md != NULL) { 9094 error = (*ifp->if_output)(ifp, md, gw, &ro); 9095 SDT_PROBE2(pf, ip, route_to, output, ifp, error); 9096 } 9097 } else 9098 m_freem(m0); 9099 } 9100 9101 if (error == 0) 9102 KMOD_IPSTAT_INC(ips_fragmented); 9103 9104 done: 9105 if (pd->act.rt != PF_DUPTO) 9106 pd->m = NULL; 9107 return; 9108 9109 bad_locked: 9110 if (s) 9111 PF_STATE_UNLOCK(s); 9112 bad: 9113 m_freem(m0); 9114 goto done; 9115 } 9116 #endif /* INET */ 9117 9118 #ifdef INET6 9119 static void 9120 pf_route6(struct pf_krule *r, struct ifnet *oifp, 9121 struct pf_kstate *s, struct pf_pdesc *pd, struct inpcb *inp) 9122 { 9123 struct mbuf *m0, *md; 9124 struct m_tag *mtag; 9125 struct sockaddr_in6 dst; 9126 struct ip6_hdr *ip6; 9127 struct ifnet *ifp = NULL; 9128 int r_dir; 9129 bool skip_test = false; 9130 9131 KASSERT(pd->m && r && oifp, ("%s: invalid parameters", __func__)); 9132 9133 SDT_PROBE4(pf, ip6, route_to, entry, pd->m, pd, s, oifp); 9134 9135 if (s) { 9136 r_dir = s->direction; 9137 } else { 9138 r_dir = r->direction; 9139 } 9140 9141 KASSERT(pd->dir == PF_IN || pd->dir == PF_OUT || 9142 r_dir == PF_IN || r_dir == PF_OUT, ("%s: invalid direction", 9143 __func__)); 9144 9145 if ((pd->pf_mtag == NULL && 9146 ((pd->pf_mtag = pf_get_mtag(pd->m)) == NULL)) || 9147 pd->pf_mtag->routed++ > 3) { 9148 m0 = pd->m; 9149 pd->m = NULL; 9150 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9151 goto bad_locked; 9152 } 9153 9154 if (pd->act.rt_kif != NULL) 9155 ifp = pd->act.rt_kif->pfik_ifp; 9156 9157 if (pd->act.rt == PF_DUPTO) { 9158 if ((pd->pf_mtag->flags & PF_MTAG_FLAG_DUPLICATED)) { 9159 if (s != NULL) { 9160 PF_STATE_UNLOCK(s); 9161 } 9162 if (ifp == oifp) { 9163 /* When the 2nd interface is not skipped */ 9164 return; 9165 } else { 9166 m0 = pd->m; 9167 pd->m = NULL; 9168 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9169 goto bad; 9170 } 9171 } else { 9172 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUPLICATED; 9173 if (((m0 = m_dup(pd->m, M_NOWAIT)) == NULL)) { 9174 if (s) 9175 PF_STATE_UNLOCK(s); 9176 return; 9177 } 9178 } 9179 } else { 9180 if ((pd->act.rt == PF_REPLYTO) == (r_dir == pd->dir)) { 9181 if (pd->af == pd->naf) { 9182 pf_dummynet(pd, s, r, &pd->m); 9183 if (s) 9184 PF_STATE_UNLOCK(s); 9185 return; 9186 } else { 9187 if (r_dir == PF_IN) { 9188 skip_test = true; 9189 } 9190 } 9191 } 9192 9193 /* 9194 * If we're actually doing route-to and af-to and are in the 9195 * reply direction. 9196 */ 9197 if (pd->act.rt_kif && pd->act.rt_kif->pfik_ifp && 9198 pd->af != pd->naf) { 9199 if (pd->act.rt == PF_ROUTETO && r->naf != AF_INET6) { 9200 /* Un-set ifp so we do a plain route lookup. */ 9201 ifp = NULL; 9202 } 9203 if (pd->act.rt == PF_REPLYTO && r->naf != AF_INET) { 9204 /* Un-set ifp so we do a plain route lookup. */ 9205 ifp = NULL; 9206 } 9207 } 9208 m0 = pd->m; 9209 } 9210 9211 ip6 = mtod(m0, struct ip6_hdr *); 9212 9213 bzero(&dst, sizeof(dst)); 9214 dst.sin6_family = AF_INET6; 9215 dst.sin6_len = sizeof(dst); 9216 PF_ACPY((struct pf_addr *)&dst.sin6_addr, &pd->act.rt_addr, AF_INET6); 9217 9218 if (s != NULL) { 9219 if (ifp == NULL && (pd->af != pd->naf)) { 9220 const struct nhop_object *nh; 9221 nh = fib6_lookup(M_GETFIB(m0), &ip6->ip6_dst, 0, NHR_NONE, 0); 9222 if (nh) { 9223 ifp = nh->nh_ifp; 9224 9225 /* Use the gateway if needed. */ 9226 if (nh->nh_flags & NHF_GATEWAY) 9227 bcopy(&nh->gw6_sa.sin6_addr, &dst.sin6_addr, 9228 sizeof(dst.sin6_addr)); 9229 else 9230 dst.sin6_addr = ip6->ip6_dst; 9231 9232 /* 9233 * Bind to the correct interface if we're 9234 * if-bound. We don't know which interface 9235 * that will be until here, so we've inserted 9236 * the state on V_pf_all. Fix that now. 9237 */ 9238 if (s->kif == V_pfi_all && ifp != NULL && 9239 r->rule_flag & PFRULE_IFBOUND) 9240 s->kif = ifp->if_pf_kif; 9241 } 9242 } 9243 9244 if (r->rule_flag & PFRULE_IFBOUND && 9245 pd->act.rt == PF_REPLYTO && 9246 s->kif == V_pfi_all) { 9247 s->kif = pd->act.rt_kif; 9248 s->orig_kif = oifp->if_pf_kif; 9249 } 9250 9251 PF_STATE_UNLOCK(s); 9252 } 9253 9254 if (pd->af != pd->naf) { 9255 struct udphdr *uh = &pd->hdr.udp; 9256 9257 if (pd->proto == IPPROTO_UDP && uh->uh_sum == 0) { 9258 uh->uh_sum = in6_cksum_pseudo(ip6, 9259 ntohs(uh->uh_ulen), IPPROTO_UDP, 0); 9260 m_copyback(m0, pd->off, sizeof(*uh), pd->hdr.any); 9261 } 9262 } 9263 9264 if (ifp == NULL) { 9265 m0 = pd->m; 9266 pd->m = NULL; 9267 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9268 goto bad; 9269 } 9270 9271 if (pd->dir == PF_IN && !skip_test) { 9272 if (pf_test(AF_INET6, PF_OUT, PFIL_FWD | PF_PFIL_NOREFRAGMENT, 9273 ifp, &m0, inp, &pd->act) != PF_PASS) { 9274 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9275 goto bad; 9276 } else if (m0 == NULL) { 9277 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9278 goto done; 9279 } 9280 if (m0->m_len < sizeof(struct ip6_hdr)) { 9281 DPFPRINTF(PF_DEBUG_URGENT, 9282 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 9283 __func__)); 9284 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9285 goto bad; 9286 } 9287 ip6 = mtod(m0, struct ip6_hdr *); 9288 } 9289 9290 if (ifp->if_flags & IFF_LOOPBACK) 9291 m0->m_flags |= M_SKIP_FIREWALL; 9292 9293 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 9294 ~ifp->if_hwassist) { 9295 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 9296 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 9297 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 9298 } 9299 9300 if (pd->dir == PF_IN) { 9301 uint16_t tmp; 9302 /* 9303 * Make sure dummynet gets the correct direction, in case it needs to 9304 * re-inject later. 9305 */ 9306 pd->dir = PF_OUT; 9307 9308 /* 9309 * The following processing is actually the rest of the inbound processing, even 9310 * though we've marked it as outbound (so we don't look through dummynet) and it 9311 * happens after the outbound processing (pf_test(PF_OUT) above). 9312 * Swap the dummynet pipe numbers, because it's going to come to the wrong 9313 * conclusion about what direction it's processing, and we can't fix it or it 9314 * will re-inject incorrectly. Swapping the pipe numbers means that its incorrect 9315 * decision will pick the right pipe, and everything will mostly work as expected. 9316 */ 9317 tmp = pd->act.dnrpipe; 9318 pd->act.dnrpipe = pd->act.dnpipe; 9319 pd->act.dnpipe = tmp; 9320 } 9321 9322 /* 9323 * If the packet is too large for the outgoing interface, 9324 * send back an icmp6 error. 9325 */ 9326 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 9327 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 9328 mtag = m_tag_find(m0, PACKET_TAG_PF_REASSEMBLED, NULL); 9329 if (mtag != NULL) { 9330 int ret __sdt_used; 9331 ret = pf_refragment6(ifp, &m0, mtag, ifp, true); 9332 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9333 goto done; 9334 } 9335 9336 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) { 9337 md = m0; 9338 pf_dummynet_route(pd, s, r, ifp, sintosa(&dst), &md); 9339 if (md != NULL) { 9340 int ret __sdt_used; 9341 ret = nd6_output_ifp(ifp, ifp, md, &dst, NULL); 9342 SDT_PROBE2(pf, ip6, route_to, output, ifp, ret); 9343 } 9344 } 9345 else { 9346 in6_ifstat_inc(ifp, ifs6_in_toobig); 9347 if (pd->act.rt != PF_DUPTO) { 9348 if (s && s->nat_rule != NULL) { 9349 MPASS(m0 == pd->m); 9350 PACKET_UNDO_NAT(pd, 9351 ((caddr_t)ip6 - m0->m_data) + 9352 sizeof(struct ip6_hdr), s); 9353 } 9354 9355 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 9356 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9357 } else { 9358 SDT_PROBE1(pf, ip6, route_to, drop, __LINE__); 9359 goto bad; 9360 } 9361 } 9362 9363 done: 9364 if (pd->act.rt != PF_DUPTO) 9365 pd->m = NULL; 9366 return; 9367 9368 bad_locked: 9369 if (s) 9370 PF_STATE_UNLOCK(s); 9371 bad: 9372 m_freem(m0); 9373 goto done; 9374 } 9375 #endif /* INET6 */ 9376 9377 /* 9378 * FreeBSD supports cksum offloads for the following drivers. 9379 * em(4), fxp(4), lge(4), nge(4), re(4), ti(4), txp(4), xl(4) 9380 * 9381 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 9382 * network driver performed cksum including pseudo header, need to verify 9383 * csum_data 9384 * CSUM_DATA_VALID : 9385 * network driver performed cksum, needs to additional pseudo header 9386 * cksum computation with partial csum_data(i.e. lack of H/W support for 9387 * pseudo header, for instance sk(4) and possibly gem(4)) 9388 * 9389 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 9390 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 9391 * TCP/UDP layer. 9392 * Also, set csum_data to 0xffff to force cksum validation. 9393 */ 9394 static int 9395 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 9396 { 9397 u_int16_t sum = 0; 9398 int hw_assist = 0; 9399 struct ip *ip; 9400 9401 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 9402 return (1); 9403 if (m->m_pkthdr.len < off + len) 9404 return (1); 9405 9406 switch (p) { 9407 case IPPROTO_TCP: 9408 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9409 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9410 sum = m->m_pkthdr.csum_data; 9411 } else { 9412 ip = mtod(m, struct ip *); 9413 sum = in_pseudo(ip->ip_src.s_addr, 9414 ip->ip_dst.s_addr, htonl((u_short)len + 9415 m->m_pkthdr.csum_data + IPPROTO_TCP)); 9416 } 9417 sum ^= 0xffff; 9418 ++hw_assist; 9419 } 9420 break; 9421 case IPPROTO_UDP: 9422 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 9423 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 9424 sum = m->m_pkthdr.csum_data; 9425 } else { 9426 ip = mtod(m, struct ip *); 9427 sum = in_pseudo(ip->ip_src.s_addr, 9428 ip->ip_dst.s_addr, htonl((u_short)len + 9429 m->m_pkthdr.csum_data + IPPROTO_UDP)); 9430 } 9431 sum ^= 0xffff; 9432 ++hw_assist; 9433 } 9434 break; 9435 case IPPROTO_ICMP: 9436 #ifdef INET6 9437 case IPPROTO_ICMPV6: 9438 #endif /* INET6 */ 9439 break; 9440 default: 9441 return (1); 9442 } 9443 9444 if (!hw_assist) { 9445 switch (af) { 9446 case AF_INET: 9447 if (m->m_len < sizeof(struct ip)) 9448 return (1); 9449 sum = in4_cksum(m, (p == IPPROTO_ICMP ? 0 : p), off, len); 9450 break; 9451 #ifdef INET6 9452 case AF_INET6: 9453 if (m->m_len < sizeof(struct ip6_hdr)) 9454 return (1); 9455 sum = in6_cksum(m, p, off, len); 9456 break; 9457 #endif /* INET6 */ 9458 } 9459 } 9460 if (sum) { 9461 switch (p) { 9462 case IPPROTO_TCP: 9463 { 9464 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 9465 break; 9466 } 9467 case IPPROTO_UDP: 9468 { 9469 KMOD_UDPSTAT_INC(udps_badsum); 9470 break; 9471 } 9472 #ifdef INET 9473 case IPPROTO_ICMP: 9474 { 9475 KMOD_ICMPSTAT_INC(icps_checksum); 9476 break; 9477 } 9478 #endif 9479 #ifdef INET6 9480 case IPPROTO_ICMPV6: 9481 { 9482 KMOD_ICMP6STAT_INC(icp6s_checksum); 9483 break; 9484 } 9485 #endif /* INET6 */ 9486 } 9487 return (1); 9488 } else { 9489 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 9490 m->m_pkthdr.csum_flags |= 9491 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 9492 m->m_pkthdr.csum_data = 0xffff; 9493 } 9494 } 9495 return (0); 9496 } 9497 9498 static bool 9499 pf_pdesc_to_dnflow(const struct pf_pdesc *pd, const struct pf_krule *r, 9500 const struct pf_kstate *s, struct ip_fw_args *dnflow) 9501 { 9502 int dndir = r->direction; 9503 9504 if (s && dndir == PF_INOUT) { 9505 dndir = s->direction; 9506 } else if (dndir == PF_INOUT) { 9507 /* Assume primary direction. Happens when we've set dnpipe in 9508 * the ethernet level code. */ 9509 dndir = pd->dir; 9510 } 9511 9512 if (pd->pf_mtag->flags & PF_MTAG_FLAG_DUMMYNETED) 9513 return (false); 9514 9515 memset(dnflow, 0, sizeof(*dnflow)); 9516 9517 if (pd->dport != NULL) 9518 dnflow->f_id.dst_port = ntohs(*pd->dport); 9519 if (pd->sport != NULL) 9520 dnflow->f_id.src_port = ntohs(*pd->sport); 9521 9522 if (pd->dir == PF_IN) 9523 dnflow->flags |= IPFW_ARGS_IN; 9524 else 9525 dnflow->flags |= IPFW_ARGS_OUT; 9526 9527 if (pd->dir != dndir && pd->act.dnrpipe) { 9528 dnflow->rule.info = pd->act.dnrpipe; 9529 } 9530 else if (pd->dir == dndir && pd->act.dnpipe) { 9531 dnflow->rule.info = pd->act.dnpipe; 9532 } 9533 else { 9534 return (false); 9535 } 9536 9537 dnflow->rule.info |= IPFW_IS_DUMMYNET; 9538 if (r->free_flags & PFRULE_DN_IS_PIPE || pd->act.flags & PFSTATE_DN_IS_PIPE) 9539 dnflow->rule.info |= IPFW_IS_PIPE; 9540 9541 dnflow->f_id.proto = pd->proto; 9542 dnflow->f_id.extra = dnflow->rule.info; 9543 switch (pd->naf) { 9544 case AF_INET: 9545 dnflow->f_id.addr_type = 4; 9546 dnflow->f_id.src_ip = ntohl(pd->src->v4.s_addr); 9547 dnflow->f_id.dst_ip = ntohl(pd->dst->v4.s_addr); 9548 break; 9549 case AF_INET6: 9550 dnflow->flags |= IPFW_ARGS_IP6; 9551 dnflow->f_id.addr_type = 6; 9552 dnflow->f_id.src_ip6 = pd->src->v6; 9553 dnflow->f_id.dst_ip6 = pd->dst->v6; 9554 break; 9555 } 9556 9557 return (true); 9558 } 9559 9560 int 9561 pf_test_eth(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 9562 struct inpcb *inp) 9563 { 9564 struct pfi_kkif *kif; 9565 struct mbuf *m = *m0; 9566 9567 M_ASSERTPKTHDR(m); 9568 MPASS(ifp->if_vnet == curvnet); 9569 NET_EPOCH_ASSERT(); 9570 9571 if (!V_pf_status.running) 9572 return (PF_PASS); 9573 9574 kif = (struct pfi_kkif *)ifp->if_pf_kif; 9575 9576 if (kif == NULL) { 9577 DPFPRINTF(PF_DEBUG_URGENT, 9578 ("%s: kif == NULL, if_xname %s\n", __func__, ifp->if_xname)); 9579 return (PF_DROP); 9580 } 9581 if (kif->pfik_flags & PFI_IFLAG_SKIP) 9582 return (PF_PASS); 9583 9584 if (m->m_flags & M_SKIP_FIREWALL) 9585 return (PF_PASS); 9586 9587 if (__predict_false(! M_WRITABLE(*m0))) { 9588 m = *m0 = m_unshare(*m0, M_NOWAIT); 9589 if (*m0 == NULL) 9590 return (PF_DROP); 9591 } 9592 9593 /* Stateless! */ 9594 return (pf_test_eth_rule(dir, kif, m0)); 9595 } 9596 9597 static __inline void 9598 pf_dummynet_flag_remove(struct mbuf *m, struct pf_mtag *pf_mtag) 9599 { 9600 struct m_tag *mtag; 9601 9602 pf_mtag->flags &= ~PF_MTAG_FLAG_DUMMYNET; 9603 9604 /* dummynet adds this tag, but pf does not need it, 9605 * and keeping it creates unexpected behavior, 9606 * e.g. in case of divert(4) usage right after dummynet. */ 9607 mtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL); 9608 if (mtag != NULL) 9609 m_tag_delete(m, mtag); 9610 } 9611 9612 static int 9613 pf_dummynet(struct pf_pdesc *pd, struct pf_kstate *s, 9614 struct pf_krule *r, struct mbuf **m0) 9615 { 9616 return (pf_dummynet_route(pd, s, r, NULL, NULL, m0)); 9617 } 9618 9619 static int 9620 pf_dummynet_route(struct pf_pdesc *pd, struct pf_kstate *s, 9621 struct pf_krule *r, struct ifnet *ifp, const struct sockaddr *sa, 9622 struct mbuf **m0) 9623 { 9624 struct ip_fw_args dnflow; 9625 9626 NET_EPOCH_ASSERT(); 9627 9628 if (pd->act.dnpipe == 0 && pd->act.dnrpipe == 0) 9629 return (0); 9630 9631 if (ip_dn_io_ptr == NULL) { 9632 m_freem(*m0); 9633 *m0 = NULL; 9634 return (ENOMEM); 9635 } 9636 9637 if (pd->pf_mtag == NULL && 9638 ((pd->pf_mtag = pf_get_mtag(*m0)) == NULL)) { 9639 m_freem(*m0); 9640 *m0 = NULL; 9641 return (ENOMEM); 9642 } 9643 9644 if (ifp != NULL) { 9645 pd->pf_mtag->flags |= PF_MTAG_FLAG_ROUTE_TO; 9646 9647 pd->pf_mtag->if_index = ifp->if_index; 9648 pd->pf_mtag->if_idxgen = ifp->if_idxgen; 9649 9650 MPASS(sa != NULL); 9651 9652 switch (sa->sa_family) { 9653 case AF_INET: 9654 memcpy(&pd->pf_mtag->dst, sa, 9655 sizeof(struct sockaddr_in)); 9656 break; 9657 case AF_INET6: 9658 memcpy(&pd->pf_mtag->dst, sa, 9659 sizeof(struct sockaddr_in6)); 9660 break; 9661 } 9662 } 9663 9664 if (s != NULL && s->nat_rule != NULL && 9665 s->nat_rule->action == PF_RDR && 9666 ( 9667 #ifdef INET 9668 (pd->af == AF_INET && IN_LOOPBACK(ntohl(pd->dst->v4.s_addr))) || 9669 #endif /* INET */ 9670 (pd->af == AF_INET6 && IN6_IS_ADDR_LOOPBACK(&pd->dst->v6)))) { 9671 /* 9672 * If we're redirecting to loopback mark this packet 9673 * as being local. Otherwise it might get dropped 9674 * if dummynet re-injects. 9675 */ 9676 (*m0)->m_pkthdr.rcvif = V_loif; 9677 } 9678 9679 if (pf_pdesc_to_dnflow(pd, r, s, &dnflow)) { 9680 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNET; 9681 pd->pf_mtag->flags |= PF_MTAG_FLAG_DUMMYNETED; 9682 ip_dn_io_ptr(m0, &dnflow); 9683 if (*m0 != NULL) { 9684 pd->pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 9685 pf_dummynet_flag_remove(*m0, pd->pf_mtag); 9686 } 9687 } 9688 9689 return (0); 9690 } 9691 9692 #ifdef INET6 9693 static int 9694 pf_walk_option6(struct pf_pdesc *pd, struct ip6_hdr *h, int off, int end, 9695 u_short *reason) 9696 { 9697 struct ip6_opt opt; 9698 struct ip6_opt_jumbo jumbo; 9699 9700 while (off < end) { 9701 if (!pf_pull_hdr(pd->m, off, &opt.ip6o_type, 9702 sizeof(opt.ip6o_type), NULL, reason, AF_INET6)) { 9703 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt type")); 9704 return (PF_DROP); 9705 } 9706 if (opt.ip6o_type == IP6OPT_PAD1) { 9707 off++; 9708 continue; 9709 } 9710 if (!pf_pull_hdr(pd->m, off, &opt, sizeof(opt), NULL, 9711 reason, AF_INET6)) { 9712 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short opt")); 9713 return (PF_DROP); 9714 } 9715 if (off + sizeof(opt) + opt.ip6o_len > end) { 9716 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 long opt")); 9717 REASON_SET(reason, PFRES_IPOPTIONS); 9718 return (PF_DROP); 9719 } 9720 switch (opt.ip6o_type) { 9721 case IP6OPT_JUMBO: 9722 if (pd->jumbolen != 0) { 9723 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple jumbo")); 9724 REASON_SET(reason, PFRES_IPOPTIONS); 9725 return (PF_DROP); 9726 } 9727 if (ntohs(h->ip6_plen) != 0) { 9728 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 bad jumbo plen")); 9729 REASON_SET(reason, PFRES_IPOPTIONS); 9730 return (PF_DROP); 9731 } 9732 if (!pf_pull_hdr(pd->m, off, &jumbo, sizeof(jumbo), NULL, 9733 reason, AF_INET6)) { 9734 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbo")); 9735 return (PF_DROP); 9736 } 9737 memcpy(&pd->jumbolen, jumbo.ip6oj_jumbo_len, 9738 sizeof(pd->jumbolen)); 9739 pd->jumbolen = ntohl(pd->jumbolen); 9740 if (pd->jumbolen < IPV6_MAXPACKET) { 9741 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short jumbolen")); 9742 REASON_SET(reason, PFRES_IPOPTIONS); 9743 return (PF_DROP); 9744 } 9745 break; 9746 default: 9747 break; 9748 } 9749 off += sizeof(opt) + opt.ip6o_len; 9750 } 9751 9752 return (PF_PASS); 9753 } 9754 9755 int 9756 pf_walk_header6(struct pf_pdesc *pd, struct ip6_hdr *h, u_short *reason) 9757 { 9758 struct ip6_frag frag; 9759 struct ip6_ext ext; 9760 struct ip6_rthdr rthdr; 9761 uint32_t end; 9762 int hdr_cnt = 0, fraghdr_cnt = 0, rthdr_cnt = 0; 9763 9764 pd->off += sizeof(struct ip6_hdr); 9765 end = pd->off + ntohs(h->ip6_plen); 9766 pd->fragoff = pd->extoff = pd->jumbolen = 0; 9767 pd->proto = h->ip6_nxt; 9768 for (;;) { 9769 hdr_cnt++; 9770 switch (pd->proto) { 9771 case IPPROTO_FRAGMENT: 9772 if (fraghdr_cnt++) { 9773 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple fragment")); 9774 REASON_SET(reason, PFRES_FRAG); 9775 return (PF_DROP); 9776 } 9777 /* jumbo payload packets cannot be fragmented */ 9778 if (pd->jumbolen != 0) { 9779 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 fragmented jumbo")); 9780 REASON_SET(reason, PFRES_FRAG); 9781 return (PF_DROP); 9782 } 9783 if (!pf_pull_hdr(pd->m, pd->off, &frag, sizeof(frag), 9784 NULL, reason, AF_INET6)) { 9785 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short fragment")); 9786 return (PF_DROP); 9787 } 9788 /* stop walking over non initial fragments */ 9789 if (ntohs((frag.ip6f_offlg & IP6F_OFF_MASK)) != 0) { 9790 pd->fragoff = pd->off; 9791 return (PF_PASS); 9792 } 9793 /* RFC6946: reassemble only non atomic fragments */ 9794 if (frag.ip6f_offlg & IP6F_MORE_FRAG) 9795 pd->fragoff = pd->off; 9796 pd->off += sizeof(frag); 9797 pd->proto = frag.ip6f_nxt; 9798 break; 9799 case IPPROTO_ROUTING: 9800 if (rthdr_cnt++) { 9801 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 multiple rthdr")); 9802 REASON_SET(reason, PFRES_IPOPTIONS); 9803 return (PF_DROP); 9804 } 9805 /* fragments may be short */ 9806 if (pd->fragoff != 0 && end < pd->off + sizeof(rthdr)) { 9807 pd->off = pd->fragoff; 9808 pd->proto = IPPROTO_FRAGMENT; 9809 return (PF_PASS); 9810 } 9811 if (!pf_pull_hdr(pd->m, pd->off, &rthdr, sizeof(rthdr), 9812 NULL, reason, AF_INET6)) { 9813 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short rthdr")); 9814 return (PF_DROP); 9815 } 9816 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 9817 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 rthdr0")); 9818 REASON_SET(reason, PFRES_IPOPTIONS); 9819 return (PF_DROP); 9820 } 9821 /* FALLTHROUGH */ 9822 case IPPROTO_HOPOPTS: 9823 /* RFC2460 4.1: Hop-by-Hop only after IPv6 header */ 9824 if (pd->proto == IPPROTO_HOPOPTS && hdr_cnt > 1) { 9825 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 hopopts not first")); 9826 REASON_SET(reason, PFRES_IPOPTIONS); 9827 return (PF_DROP); 9828 } 9829 /* FALLTHROUGH */ 9830 case IPPROTO_AH: 9831 case IPPROTO_DSTOPTS: 9832 if (!pf_pull_hdr(pd->m, pd->off, &ext, sizeof(ext), 9833 NULL, reason, AF_INET6)) { 9834 DPFPRINTF(PF_DEBUG_MISC, ("IPv6 short exthdr")); 9835 return (PF_DROP); 9836 } 9837 /* fragments may be short */ 9838 if (pd->fragoff != 0 && end < pd->off + sizeof(ext)) { 9839 pd->off = pd->fragoff; 9840 pd->proto = IPPROTO_FRAGMENT; 9841 return (PF_PASS); 9842 } 9843 /* reassembly needs the ext header before the frag */ 9844 if (pd->fragoff == 0) 9845 pd->extoff = pd->off; 9846 if (pd->proto == IPPROTO_HOPOPTS && pd->fragoff == 0) { 9847 if (pf_walk_option6(pd, h, 9848 pd->off + sizeof(ext), 9849 pd->off + (ext.ip6e_len + 1) * 8, reason) 9850 != PF_PASS) 9851 return (PF_DROP); 9852 if (ntohs(h->ip6_plen) == 0 && pd->jumbolen != 0) { 9853 DPFPRINTF(PF_DEBUG_MISC, 9854 ("IPv6 missing jumbo")); 9855 REASON_SET(reason, PFRES_IPOPTIONS); 9856 return (PF_DROP); 9857 } 9858 } 9859 if (pd->proto == IPPROTO_AH) 9860 pd->off += (ext.ip6e_len + 2) * 4; 9861 else 9862 pd->off += (ext.ip6e_len + 1) * 8; 9863 pd->proto = ext.ip6e_nxt; 9864 break; 9865 case IPPROTO_TCP: 9866 case IPPROTO_UDP: 9867 case IPPROTO_SCTP: 9868 case IPPROTO_ICMPV6: 9869 /* fragments may be short, ignore inner header then */ 9870 if (pd->fragoff != 0 && end < pd->off + 9871 (pd->proto == IPPROTO_TCP ? sizeof(struct tcphdr) : 9872 pd->proto == IPPROTO_UDP ? sizeof(struct udphdr) : 9873 pd->proto == IPPROTO_SCTP ? sizeof(struct sctphdr) : 9874 sizeof(struct icmp6_hdr))) { 9875 pd->off = pd->fragoff; 9876 pd->proto = IPPROTO_FRAGMENT; 9877 } 9878 /* FALLTHROUGH */ 9879 default: 9880 return (PF_PASS); 9881 } 9882 } 9883 } 9884 #endif /* INET6 */ 9885 9886 static void 9887 pf_init_pdesc(struct pf_pdesc *pd, struct mbuf *m) 9888 { 9889 memset(pd, 0, sizeof(*pd)); 9890 pd->pf_mtag = pf_find_mtag(m); 9891 pd->m = m; 9892 } 9893 9894 static int 9895 pf_setup_pdesc(sa_family_t af, int dir, struct pf_pdesc *pd, struct mbuf **m0, 9896 u_short *action, u_short *reason, struct pfi_kkif *kif, 9897 struct pf_rule_actions *default_actions) 9898 { 9899 pd->dir = dir; 9900 pd->kif = kif; 9901 pd->m = *m0; 9902 pd->sidx = (dir == PF_IN) ? 0 : 1; 9903 pd->didx = (dir == PF_IN) ? 1 : 0; 9904 pd->af = pd->naf = af; 9905 9906 TAILQ_INIT(&pd->sctp_multihome_jobs); 9907 if (default_actions != NULL) 9908 memcpy(&pd->act, default_actions, sizeof(pd->act)); 9909 9910 if (pd->pf_mtag && pd->pf_mtag->dnpipe) { 9911 pd->act.dnpipe = pd->pf_mtag->dnpipe; 9912 pd->act.flags = pd->pf_mtag->dnflags; 9913 } 9914 9915 switch (af) { 9916 #ifdef INET 9917 case AF_INET: { 9918 struct ip *h; 9919 9920 if (__predict_false((*m0)->m_len < sizeof(struct ip)) && 9921 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip))) == NULL) { 9922 DPFPRINTF(PF_DEBUG_URGENT, 9923 ("%s: m_len < sizeof(struct ip), pullup failed\n", 9924 __func__)); 9925 *action = PF_DROP; 9926 REASON_SET(reason, PFRES_SHORT); 9927 return (-1); 9928 } 9929 9930 if (pf_normalize_ip(reason, pd) != PF_PASS) { 9931 /* We do IP header normalization and packet reassembly here */ 9932 *m0 = pd->m; 9933 *action = PF_DROP; 9934 return (-1); 9935 } 9936 *m0 = pd->m; 9937 9938 h = mtod(pd->m, struct ip *); 9939 pd->off = h->ip_hl << 2; 9940 if (pd->off < (int)sizeof(*h)) { 9941 *action = PF_DROP; 9942 REASON_SET(reason, PFRES_SHORT); 9943 return (-1); 9944 } 9945 pd->src = (struct pf_addr *)&h->ip_src; 9946 pd->dst = (struct pf_addr *)&h->ip_dst; 9947 PF_ACPY(&pd->osrc, pd->src, af); 9948 PF_ACPY(&pd->odst, pd->dst, af); 9949 pd->ip_sum = &h->ip_sum; 9950 pd->virtual_proto = pd->proto = h->ip_p; 9951 pd->tos = h->ip_tos & ~IPTOS_ECN_MASK; 9952 pd->ttl = h->ip_ttl; 9953 pd->tot_len = ntohs(h->ip_len); 9954 pd->act.rtableid = -1; 9955 pd->df = h->ip_off & htons(IP_DF); 9956 9957 if (h->ip_hl > 5) /* has options */ 9958 pd->badopts++; 9959 9960 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) 9961 pd->virtual_proto = PF_VPROTO_FRAGMENT; 9962 9963 break; 9964 } 9965 #endif /* INET */ 9966 #ifdef INET6 9967 case AF_INET6: { 9968 struct ip6_hdr *h; 9969 9970 if (__predict_false((*m0)->m_len < sizeof(struct ip6_hdr)) && 9971 (pd->m = *m0 = m_pullup(*m0, sizeof(struct ip6_hdr))) == NULL) { 9972 DPFPRINTF(PF_DEBUG_URGENT, 9973 ("%s: m_len < sizeof(struct ip6_hdr)" 9974 ", pullup failed\n", __func__)); 9975 *action = PF_DROP; 9976 REASON_SET(reason, PFRES_SHORT); 9977 return (-1); 9978 } 9979 9980 h = mtod(pd->m, struct ip6_hdr *); 9981 pd->off = 0; 9982 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 9983 *action = PF_DROP; 9984 return (-1); 9985 } 9986 9987 h = mtod(pd->m, struct ip6_hdr *); 9988 pd->src = (struct pf_addr *)&h->ip6_src; 9989 pd->dst = (struct pf_addr *)&h->ip6_dst; 9990 PF_ACPY(&pd->osrc, pd->src, af); 9991 PF_ACPY(&pd->odst, pd->dst, af); 9992 pd->ip_sum = NULL; 9993 pd->tos = IPV6_DSCP(h); 9994 pd->ttl = h->ip6_hlim; 9995 pd->tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 9996 pd->virtual_proto = pd->proto = h->ip6_nxt; 9997 pd->act.rtableid = -1; 9998 9999 if (pd->fragoff != 0) 10000 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10001 10002 /* 10003 * we do not support jumbogram. if we keep going, zero ip6_plen 10004 * will do something bad, so drop the packet for now. 10005 */ 10006 if (htons(h->ip6_plen) == 0) { 10007 *action = PF_DROP; 10008 return (-1); 10009 } 10010 10011 /* We do IP header normalization and packet reassembly here */ 10012 if (pf_normalize_ip6(pd->fragoff, reason, pd) != 10013 PF_PASS) { 10014 *m0 = pd->m; 10015 *action = PF_DROP; 10016 return (-1); 10017 } 10018 *m0 = pd->m; 10019 if (pd->m == NULL) { 10020 /* packet sits in reassembly queue, no error */ 10021 *action = PF_PASS; 10022 return (-1); 10023 } 10024 10025 /* Update pointers into the packet. */ 10026 h = mtod(pd->m, struct ip6_hdr *); 10027 pd->src = (struct pf_addr *)&h->ip6_src; 10028 pd->dst = (struct pf_addr *)&h->ip6_dst; 10029 10030 pd->off = 0; 10031 10032 if (pf_walk_header6(pd, h, reason) != PF_PASS) { 10033 *action = PF_DROP; 10034 return (-1); 10035 } 10036 10037 if (m_tag_find(pd->m, PACKET_TAG_PF_REASSEMBLED, NULL) != NULL) { 10038 /* 10039 * Reassembly may have changed the next protocol from 10040 * fragment to something else, so update. 10041 */ 10042 pd->virtual_proto = pd->proto; 10043 MPASS(pd->fragoff == 0); 10044 } 10045 10046 if (pd->fragoff != 0) 10047 pd->virtual_proto = PF_VPROTO_FRAGMENT; 10048 10049 break; 10050 } 10051 #endif /* INET6 */ 10052 default: 10053 panic("pf_setup_pdesc called with illegal af %u", af); 10054 } 10055 10056 switch (pd->virtual_proto) { 10057 case IPPROTO_TCP: { 10058 struct tcphdr *th = &pd->hdr.tcp; 10059 10060 if (!pf_pull_hdr(pd->m, pd->off, th, sizeof(*th), action, 10061 reason, af)) { 10062 *action = PF_DROP; 10063 REASON_SET(reason, PFRES_SHORT); 10064 return (-1); 10065 } 10066 pd->hdrlen = sizeof(*th); 10067 pd->p_len = pd->tot_len - pd->off - (th->th_off << 2); 10068 pd->sport = &th->th_sport; 10069 pd->dport = &th->th_dport; 10070 pd->pcksum = &th->th_sum; 10071 break; 10072 } 10073 case IPPROTO_UDP: { 10074 struct udphdr *uh = &pd->hdr.udp; 10075 10076 if (!pf_pull_hdr(pd->m, pd->off, uh, sizeof(*uh), action, 10077 reason, af)) { 10078 *action = PF_DROP; 10079 REASON_SET(reason, PFRES_SHORT); 10080 return (-1); 10081 } 10082 pd->hdrlen = sizeof(*uh); 10083 if (uh->uh_dport == 0 || 10084 ntohs(uh->uh_ulen) > pd->m->m_pkthdr.len - pd->off || 10085 ntohs(uh->uh_ulen) < sizeof(struct udphdr)) { 10086 *action = PF_DROP; 10087 REASON_SET(reason, PFRES_SHORT); 10088 return (-1); 10089 } 10090 pd->sport = &uh->uh_sport; 10091 pd->dport = &uh->uh_dport; 10092 pd->pcksum = &uh->uh_sum; 10093 break; 10094 } 10095 case IPPROTO_SCTP: { 10096 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.sctp, sizeof(pd->hdr.sctp), 10097 action, reason, af)) { 10098 *action = PF_DROP; 10099 REASON_SET(reason, PFRES_SHORT); 10100 return (-1); 10101 } 10102 pd->hdrlen = sizeof(pd->hdr.sctp); 10103 pd->p_len = pd->tot_len - pd->off; 10104 10105 pd->sport = &pd->hdr.sctp.src_port; 10106 pd->dport = &pd->hdr.sctp.dest_port; 10107 if (pd->hdr.sctp.src_port == 0 || pd->hdr.sctp.dest_port == 0) { 10108 *action = PF_DROP; 10109 REASON_SET(reason, PFRES_SHORT); 10110 return (-1); 10111 } 10112 if (pf_scan_sctp(pd) != PF_PASS) { 10113 *action = PF_DROP; 10114 REASON_SET(reason, PFRES_SHORT); 10115 return (-1); 10116 } 10117 /* 10118 * Placeholder. The SCTP checksum is 32-bits, but 10119 * pf_test_state() expects to update a 16-bit checksum. 10120 * Provide a dummy value which we'll subsequently ignore. 10121 */ 10122 pd->pcksum = &pd->sctp_dummy_sum; 10123 break; 10124 } 10125 case IPPROTO_ICMP: { 10126 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp, ICMP_MINLEN, 10127 action, reason, af)) { 10128 *action = PF_DROP; 10129 REASON_SET(reason, PFRES_SHORT); 10130 return (-1); 10131 } 10132 pd->pcksum = &pd->hdr.icmp.icmp_cksum; 10133 pd->hdrlen = ICMP_MINLEN; 10134 break; 10135 } 10136 #ifdef INET6 10137 case IPPROTO_ICMPV6: { 10138 size_t icmp_hlen = sizeof(struct icmp6_hdr); 10139 10140 if (!pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10141 action, reason, af)) { 10142 *action = PF_DROP; 10143 REASON_SET(reason, PFRES_SHORT); 10144 return (-1); 10145 } 10146 /* ICMP headers we look further into to match state */ 10147 switch (pd->hdr.icmp6.icmp6_type) { 10148 case MLD_LISTENER_QUERY: 10149 case MLD_LISTENER_REPORT: 10150 icmp_hlen = sizeof(struct mld_hdr); 10151 break; 10152 case ND_NEIGHBOR_SOLICIT: 10153 case ND_NEIGHBOR_ADVERT: 10154 icmp_hlen = sizeof(struct nd_neighbor_solicit); 10155 break; 10156 } 10157 if (icmp_hlen > sizeof(struct icmp6_hdr) && 10158 !pf_pull_hdr(pd->m, pd->off, &pd->hdr.icmp6, icmp_hlen, 10159 action, reason, af)) { 10160 *action = PF_DROP; 10161 REASON_SET(reason, PFRES_SHORT); 10162 return (-1); 10163 } 10164 pd->hdrlen = icmp_hlen; 10165 pd->pcksum = &pd->hdr.icmp6.icmp6_cksum; 10166 break; 10167 } 10168 #endif /* INET6 */ 10169 } 10170 10171 if (pd->sport) 10172 pd->osport = pd->nsport = *pd->sport; 10173 if (pd->dport) 10174 pd->odport = pd->ndport = *pd->dport; 10175 10176 return (0); 10177 } 10178 10179 static void 10180 pf_counters_inc(int action, struct pf_pdesc *pd, 10181 struct pf_kstate *s, struct pf_krule *r, struct pf_krule *a) 10182 { 10183 struct pf_krule *tr; 10184 int dir = pd->dir; 10185 int dirndx; 10186 10187 pf_counter_u64_critical_enter(); 10188 pf_counter_u64_add_protected( 10189 &pd->kif->pfik_bytes[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10190 pd->tot_len); 10191 pf_counter_u64_add_protected( 10192 &pd->kif->pfik_packets[pd->af == AF_INET6][dir == PF_OUT][action != PF_PASS], 10193 1); 10194 10195 if (action == PF_PASS || action == PF_AFRT || r->action == PF_DROP) { 10196 dirndx = (dir == PF_OUT); 10197 pf_counter_u64_add_protected(&r->packets[dirndx], 1); 10198 pf_counter_u64_add_protected(&r->bytes[dirndx], pd->tot_len); 10199 pf_update_timestamp(r); 10200 10201 if (a != NULL) { 10202 pf_counter_u64_add_protected(&a->packets[dirndx], 1); 10203 pf_counter_u64_add_protected(&a->bytes[dirndx], pd->tot_len); 10204 } 10205 if (s != NULL) { 10206 struct pf_krule_item *ri; 10207 10208 if (s->nat_rule != NULL) { 10209 pf_counter_u64_add_protected(&s->nat_rule->packets[dirndx], 10210 1); 10211 pf_counter_u64_add_protected(&s->nat_rule->bytes[dirndx], 10212 pd->tot_len); 10213 } 10214 /* 10215 * Source nodes are accessed unlocked here. 10216 * But since we are operating with stateful tracking 10217 * and the state is locked, those SNs could not have 10218 * been freed. 10219 */ 10220 for (pf_sn_types_t sn_type=0; sn_type<PF_SN_MAX; sn_type++) { 10221 if (s->sns[sn_type] != NULL) { 10222 counter_u64_add( 10223 s->sns[sn_type]->packets[dirndx], 10224 1); 10225 counter_u64_add( 10226 s->sns[sn_type]->bytes[dirndx], 10227 pd->tot_len); 10228 } 10229 } 10230 dirndx = (dir == s->direction) ? 0 : 1; 10231 s->packets[dirndx]++; 10232 s->bytes[dirndx] += pd->tot_len; 10233 10234 SLIST_FOREACH(ri, &s->match_rules, entry) { 10235 pf_counter_u64_add_protected(&ri->r->packets[dirndx], 1); 10236 pf_counter_u64_add_protected(&ri->r->bytes[dirndx], pd->tot_len); 10237 10238 if (ri->r->src.addr.type == PF_ADDR_TABLE) 10239 pfr_update_stats(ri->r->src.addr.p.tbl, 10240 (s == NULL) ? pd->src : 10241 &s->key[(s->direction == PF_IN)]-> 10242 addr[(s->direction == PF_OUT)], 10243 pd->af, pd->tot_len, dir == PF_OUT, 10244 r->action == PF_PASS, ri->r->src.neg); 10245 if (ri->r->dst.addr.type == PF_ADDR_TABLE) 10246 pfr_update_stats(ri->r->dst.addr.p.tbl, 10247 (s == NULL) ? pd->dst : 10248 &s->key[(s->direction == PF_IN)]-> 10249 addr[(s->direction == PF_IN)], 10250 pd->af, pd->tot_len, dir == PF_OUT, 10251 r->action == PF_PASS, ri->r->dst.neg); 10252 } 10253 } 10254 10255 tr = r; 10256 if (s != NULL && s->nat_rule != NULL && 10257 r == &V_pf_default_rule) 10258 tr = s->nat_rule; 10259 10260 if (tr->src.addr.type == PF_ADDR_TABLE) 10261 pfr_update_stats(tr->src.addr.p.tbl, 10262 (s == NULL) ? pd->src : 10263 &s->key[(s->direction == PF_IN)]-> 10264 addr[(s->direction == PF_OUT)], 10265 pd->af, pd->tot_len, dir == PF_OUT, 10266 r->action == PF_PASS, tr->src.neg); 10267 if (tr->dst.addr.type == PF_ADDR_TABLE) 10268 pfr_update_stats(tr->dst.addr.p.tbl, 10269 (s == NULL) ? pd->dst : 10270 &s->key[(s->direction == PF_IN)]-> 10271 addr[(s->direction == PF_IN)], 10272 pd->af, pd->tot_len, dir == PF_OUT, 10273 r->action == PF_PASS, tr->dst.neg); 10274 } 10275 pf_counter_u64_critical_exit(); 10276 } 10277 static void 10278 pf_log_matches(struct pf_pdesc *pd, struct pf_krule *rm, 10279 struct pf_krule *am, struct pf_kruleset *ruleset, 10280 struct pf_krule_slist *matchrules) 10281 { 10282 struct pf_krule_item *ri; 10283 10284 /* if this is the log(matches) rule, packet has been logged already */ 10285 if (rm->log & PF_LOG_MATCHES) 10286 return; 10287 10288 SLIST_FOREACH(ri, matchrules, entry) 10289 if (ri->r->log & PF_LOG_MATCHES) 10290 PFLOG_PACKET(rm->action, PFRES_MATCH, rm, am, 10291 ruleset, pd, 1, ri->r); 10292 } 10293 10294 #if defined(INET) || defined(INET6) 10295 int 10296 pf_test(sa_family_t af, int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, 10297 struct inpcb *inp, struct pf_rule_actions *default_actions) 10298 { 10299 struct pfi_kkif *kif; 10300 u_short action, reason = 0; 10301 struct m_tag *mtag; 10302 struct pf_krule *a = NULL, *r = &V_pf_default_rule; 10303 struct pf_kstate *s = NULL; 10304 struct pf_kruleset *ruleset = NULL; 10305 struct pf_pdesc pd; 10306 int use_2nd_queue = 0; 10307 uint16_t tag; 10308 10309 PF_RULES_RLOCK_TRACKER; 10310 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: bad direction %d\n", __func__, dir)); 10311 M_ASSERTPKTHDR(*m0); 10312 10313 if (!V_pf_status.running) 10314 return (PF_PASS); 10315 10316 PF_RULES_RLOCK(); 10317 10318 kif = (struct pfi_kkif *)ifp->if_pf_kif; 10319 10320 if (__predict_false(kif == NULL)) { 10321 DPFPRINTF(PF_DEBUG_URGENT, 10322 ("%s: kif == NULL, if_xname %s\n", 10323 __func__, ifp->if_xname)); 10324 PF_RULES_RUNLOCK(); 10325 return (PF_DROP); 10326 } 10327 if (kif->pfik_flags & PFI_IFLAG_SKIP) { 10328 PF_RULES_RUNLOCK(); 10329 return (PF_PASS); 10330 } 10331 10332 if ((*m0)->m_flags & M_SKIP_FIREWALL) { 10333 PF_RULES_RUNLOCK(); 10334 return (PF_PASS); 10335 } 10336 10337 if (__predict_false(! M_WRITABLE(*m0))) { 10338 *m0 = m_unshare(*m0, M_NOWAIT); 10339 if (*m0 == NULL) { 10340 PF_RULES_RUNLOCK(); 10341 return (PF_DROP); 10342 } 10343 } 10344 10345 pf_init_pdesc(&pd, *m0); 10346 10347 if (pd.pf_mtag != NULL && (pd.pf_mtag->flags & PF_MTAG_FLAG_ROUTE_TO)) { 10348 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_ROUTE_TO; 10349 10350 ifp = ifnet_byindexgen(pd.pf_mtag->if_index, 10351 pd.pf_mtag->if_idxgen); 10352 if (ifp == NULL || ifp->if_flags & IFF_DYING) { 10353 PF_RULES_RUNLOCK(); 10354 m_freem(*m0); 10355 *m0 = NULL; 10356 return (PF_PASS); 10357 } 10358 PF_RULES_RUNLOCK(); 10359 (ifp->if_output)(ifp, *m0, sintosa(&pd.pf_mtag->dst), NULL); 10360 *m0 = NULL; 10361 return (PF_PASS); 10362 } 10363 10364 if (ip_dn_io_ptr != NULL && pd.pf_mtag != NULL && 10365 pd.pf_mtag->flags & PF_MTAG_FLAG_DUMMYNET) { 10366 /* Dummynet re-injects packets after they've 10367 * completed their delay. We've already 10368 * processed them, so pass unconditionally. */ 10369 10370 /* But only once. We may see the packet multiple times (e.g. 10371 * PFIL_IN/PFIL_OUT). */ 10372 pf_dummynet_flag_remove(pd.m, pd.pf_mtag); 10373 PF_RULES_RUNLOCK(); 10374 10375 return (PF_PASS); 10376 } 10377 10378 if (pf_setup_pdesc(af, dir, &pd, m0, &action, &reason, 10379 kif, default_actions) == -1) { 10380 if (action != PF_PASS) 10381 pd.act.log |= PF_LOG_FORCE; 10382 goto done; 10383 } 10384 10385 #ifdef INET 10386 if (af == AF_INET && dir == PF_OUT && pflags & PFIL_FWD && 10387 pd.df && (*m0)->m_pkthdr.len > ifp->if_mtu) { 10388 PF_RULES_RUNLOCK(); 10389 icmp_error(*m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 10390 0, ifp->if_mtu); 10391 *m0 = NULL; 10392 return (PF_DROP); 10393 } 10394 #endif /* INET */ 10395 #ifdef INET6 10396 /* 10397 * If we end up changing IP addresses (e.g. binat) the stack may get 10398 * confused and fail to send the icmp6 packet too big error. Just send 10399 * it here, before we do any NAT. 10400 */ 10401 if (af == AF_INET6 && dir == PF_OUT && pflags & PFIL_FWD && 10402 IN6_LINKMTU(ifp) < pf_max_frag_size(*m0)) { 10403 PF_RULES_RUNLOCK(); 10404 icmp6_error(*m0, ICMP6_PACKET_TOO_BIG, 0, IN6_LINKMTU(ifp)); 10405 *m0 = NULL; 10406 return (PF_DROP); 10407 } 10408 #endif /* INET6 */ 10409 10410 if (__predict_false(ip_divert_ptr != NULL) && 10411 ((mtag = m_tag_locate(pd.m, MTAG_PF_DIVERT, 0, NULL)) != NULL)) { 10412 struct pf_divert_mtag *dt = (struct pf_divert_mtag *)(mtag+1); 10413 if ((dt->idir == PF_DIVERT_MTAG_DIR_IN && dir == PF_IN) || 10414 (dt->idir == PF_DIVERT_MTAG_DIR_OUT && dir == PF_OUT)) { 10415 if (pd.pf_mtag == NULL && 10416 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10417 action = PF_DROP; 10418 goto done; 10419 } 10420 pd.pf_mtag->flags |= PF_MTAG_FLAG_PACKET_LOOPED; 10421 } 10422 if (pd.pf_mtag && pd.pf_mtag->flags & PF_MTAG_FLAG_FASTFWD_OURS_PRESENT) { 10423 pd.m->m_flags |= M_FASTFWD_OURS; 10424 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10425 } 10426 m_tag_delete(pd.m, mtag); 10427 10428 mtag = m_tag_locate(pd.m, MTAG_IPFW_RULE, 0, NULL); 10429 if (mtag != NULL) 10430 m_tag_delete(pd.m, mtag); 10431 } 10432 10433 switch (pd.virtual_proto) { 10434 case PF_VPROTO_FRAGMENT: 10435 /* 10436 * handle fragments that aren't reassembled by 10437 * normalization 10438 */ 10439 if (kif == NULL || r == NULL) /* pflog */ 10440 action = PF_DROP; 10441 else 10442 action = pf_test_rule(&r, &s, &pd, &a, 10443 &ruleset, &reason, inp); 10444 if (action != PF_PASS) 10445 REASON_SET(&reason, PFRES_FRAG); 10446 break; 10447 10448 case IPPROTO_TCP: { 10449 /* Respond to SYN with a syncookie. */ 10450 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == TH_SYN && 10451 pd.dir == PF_IN && pf_synflood_check(&pd)) { 10452 pf_syncookie_send(&pd); 10453 action = PF_DROP; 10454 break; 10455 } 10456 10457 if ((tcp_get_flags(&pd.hdr.tcp) & TH_ACK) && pd.p_len == 0) 10458 use_2nd_queue = 1; 10459 action = pf_normalize_tcp(&pd); 10460 if (action == PF_DROP) 10461 goto done; 10462 action = pf_test_state(&s, &pd, &reason); 10463 if (action == PF_PASS || action == PF_AFRT) { 10464 if (V_pfsync_update_state_ptr != NULL) 10465 V_pfsync_update_state_ptr(s); 10466 r = s->rule; 10467 a = s->anchor; 10468 } else if (s == NULL) { 10469 /* Validate remote SYN|ACK, re-create original SYN if 10470 * valid. */ 10471 if ((tcp_get_flags(&pd.hdr.tcp) & (TH_SYN|TH_ACK|TH_RST)) == 10472 TH_ACK && pf_syncookie_validate(&pd) && 10473 pd.dir == PF_IN) { 10474 struct mbuf *msyn; 10475 10476 msyn = pf_syncookie_recreate_syn(&pd); 10477 if (msyn == NULL) { 10478 action = PF_DROP; 10479 break; 10480 } 10481 10482 action = pf_test(af, dir, pflags, ifp, &msyn, inp, 10483 &pd.act); 10484 m_freem(msyn); 10485 if (action != PF_PASS) 10486 break; 10487 10488 action = pf_test_state(&s, &pd, &reason); 10489 if (action != PF_PASS || s == NULL) { 10490 action = PF_DROP; 10491 break; 10492 } 10493 10494 s->src.seqhi = ntohl(pd.hdr.tcp.th_ack) - 1; 10495 s->src.seqlo = ntohl(pd.hdr.tcp.th_seq) - 1; 10496 pf_set_protostate(s, PF_PEER_SRC, PF_TCPS_PROXY_DST); 10497 action = pf_synproxy(&pd, s, &reason); 10498 break; 10499 } else { 10500 action = pf_test_rule(&r, &s, &pd, 10501 &a, &ruleset, &reason, inp); 10502 } 10503 } 10504 break; 10505 } 10506 10507 case IPPROTO_SCTP: 10508 action = pf_normalize_sctp(&pd); 10509 if (action == PF_DROP) 10510 goto done; 10511 /* fallthrough */ 10512 case IPPROTO_UDP: 10513 default: 10514 action = pf_test_state(&s, &pd, &reason); 10515 if (action == PF_PASS || action == PF_AFRT) { 10516 if (V_pfsync_update_state_ptr != NULL) 10517 V_pfsync_update_state_ptr(s); 10518 r = s->rule; 10519 a = s->anchor; 10520 } else if (s == NULL) { 10521 action = pf_test_rule(&r, &s, 10522 &pd, &a, &ruleset, &reason, inp); 10523 } 10524 break; 10525 10526 case IPPROTO_ICMP: 10527 case IPPROTO_ICMPV6: { 10528 if (pd.virtual_proto == IPPROTO_ICMP && af != AF_INET) { 10529 action = PF_DROP; 10530 REASON_SET(&reason, PFRES_NORM); 10531 DPFPRINTF(PF_DEBUG_MISC, 10532 ("dropping IPv6 packet with ICMPv4 payload")); 10533 goto done; 10534 } 10535 if (pd.virtual_proto == IPPROTO_ICMPV6 && af != AF_INET6) { 10536 action = PF_DROP; 10537 REASON_SET(&reason, PFRES_NORM); 10538 DPFPRINTF(PF_DEBUG_MISC, 10539 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 10540 goto done; 10541 } 10542 action = pf_test_state_icmp(&s, &pd, &reason); 10543 if (action == PF_PASS || action == PF_AFRT) { 10544 if (V_pfsync_update_state_ptr != NULL) 10545 V_pfsync_update_state_ptr(s); 10546 r = s->rule; 10547 a = s->anchor; 10548 } else if (s == NULL) 10549 action = pf_test_rule(&r, &s, &pd, 10550 &a, &ruleset, &reason, inp); 10551 break; 10552 } 10553 10554 } 10555 10556 done: 10557 PF_RULES_RUNLOCK(); 10558 10559 if (pd.m == NULL) 10560 goto eat_pkt; 10561 10562 if (action == PF_PASS && pd.badopts && 10563 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || pd.act.allow_opts)) { 10564 action = PF_DROP; 10565 REASON_SET(&reason, PFRES_IPOPTIONS); 10566 pd.act.log = PF_LOG_FORCE; 10567 DPFPRINTF(PF_DEBUG_MISC, 10568 ("pf: dropping packet with dangerous headers\n")); 10569 } 10570 10571 if (s) { 10572 uint8_t log = pd.act.log; 10573 memcpy(&pd.act, &s->act, sizeof(struct pf_rule_actions)); 10574 pd.act.log |= log; 10575 tag = s->tag; 10576 } else { 10577 tag = r->tag; 10578 } 10579 10580 if (tag > 0 && pf_tag_packet(&pd, tag)) { 10581 action = PF_DROP; 10582 REASON_SET(&reason, PFRES_MEMORY); 10583 } 10584 10585 pf_scrub(&pd); 10586 if (pd.proto == IPPROTO_TCP && pd.act.max_mss) 10587 pf_normalize_mss(&pd); 10588 10589 if (pd.act.rtableid >= 0) 10590 M_SETFIB(pd.m, pd.act.rtableid); 10591 10592 if (pd.act.flags & PFSTATE_SETPRIO) { 10593 if (pd.tos & IPTOS_LOWDELAY) 10594 use_2nd_queue = 1; 10595 if (vlan_set_pcp(pd.m, pd.act.set_prio[use_2nd_queue])) { 10596 action = PF_DROP; 10597 REASON_SET(&reason, PFRES_MEMORY); 10598 pd.act.log = PF_LOG_FORCE; 10599 DPFPRINTF(PF_DEBUG_MISC, 10600 ("pf: failed to allocate 802.1q mtag\n")); 10601 } 10602 } 10603 10604 #ifdef ALTQ 10605 if (action == PF_PASS && pd.act.qid) { 10606 if (pd.pf_mtag == NULL && 10607 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10608 action = PF_DROP; 10609 REASON_SET(&reason, PFRES_MEMORY); 10610 } else { 10611 if (s != NULL) 10612 pd.pf_mtag->qid_hash = pf_state_hash(s); 10613 if (use_2nd_queue || (pd.tos & IPTOS_LOWDELAY)) 10614 pd.pf_mtag->qid = pd.act.pqid; 10615 else 10616 pd.pf_mtag->qid = pd.act.qid; 10617 /* Add hints for ecn. */ 10618 pd.pf_mtag->hdr = mtod(pd.m, void *); 10619 } 10620 } 10621 #endif /* ALTQ */ 10622 10623 /* 10624 * connections redirected to loopback should not match sockets 10625 * bound specifically to loopback due to security implications, 10626 * see tcp_input() and in_pcblookup_listen(). 10627 */ 10628 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 10629 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule != NULL && 10630 (s->nat_rule->action == PF_RDR || 10631 s->nat_rule->action == PF_BINAT) && 10632 pf_is_loopback(af, pd.dst)) 10633 pd.m->m_flags |= M_SKIP_FIREWALL; 10634 10635 if (af == AF_INET && __predict_false(ip_divert_ptr != NULL) && 10636 action == PF_PASS && r->divert.port && !PACKET_LOOPED(&pd)) { 10637 mtag = m_tag_alloc(MTAG_PF_DIVERT, 0, 10638 sizeof(struct pf_divert_mtag), M_NOWAIT | M_ZERO); 10639 if (mtag != NULL) { 10640 ((struct pf_divert_mtag *)(mtag+1))->port = 10641 ntohs(r->divert.port); 10642 ((struct pf_divert_mtag *)(mtag+1))->idir = 10643 (dir == PF_IN) ? PF_DIVERT_MTAG_DIR_IN : 10644 PF_DIVERT_MTAG_DIR_OUT; 10645 10646 if (s) 10647 PF_STATE_UNLOCK(s); 10648 10649 m_tag_prepend(pd.m, mtag); 10650 if (pd.m->m_flags & M_FASTFWD_OURS) { 10651 if (pd.pf_mtag == NULL && 10652 ((pd.pf_mtag = pf_get_mtag(pd.m)) == NULL)) { 10653 action = PF_DROP; 10654 REASON_SET(&reason, PFRES_MEMORY); 10655 pd.act.log = PF_LOG_FORCE; 10656 DPFPRINTF(PF_DEBUG_MISC, 10657 ("pf: failed to allocate tag\n")); 10658 } else { 10659 pd.pf_mtag->flags |= 10660 PF_MTAG_FLAG_FASTFWD_OURS_PRESENT; 10661 pd.m->m_flags &= ~M_FASTFWD_OURS; 10662 } 10663 } 10664 ip_divert_ptr(*m0, dir == PF_IN); 10665 *m0 = NULL; 10666 10667 return (action); 10668 } else { 10669 /* XXX: ipfw has the same behaviour! */ 10670 action = PF_DROP; 10671 REASON_SET(&reason, PFRES_MEMORY); 10672 pd.act.log = PF_LOG_FORCE; 10673 DPFPRINTF(PF_DEBUG_MISC, 10674 ("pf: failed to allocate divert tag\n")); 10675 } 10676 } 10677 /* XXX: Anybody working on it?! */ 10678 if (af == AF_INET6 && r->divert.port) 10679 printf("pf: divert(9) is not supported for IPv6\n"); 10680 10681 /* this flag will need revising if the pkt is forwarded */ 10682 if (pd.pf_mtag) 10683 pd.pf_mtag->flags &= ~PF_MTAG_FLAG_PACKET_LOOPED; 10684 10685 if (pd.act.log) { 10686 struct pf_krule *lr; 10687 struct pf_krule_item *ri; 10688 10689 if (s != NULL && s->nat_rule != NULL && 10690 s->nat_rule->log & PF_LOG_ALL) 10691 lr = s->nat_rule; 10692 else 10693 lr = r; 10694 10695 if (pd.act.log & PF_LOG_FORCE || lr->log & PF_LOG_ALL) 10696 PFLOG_PACKET(action, reason, lr, a, 10697 ruleset, &pd, (s == NULL), NULL); 10698 if (s) { 10699 SLIST_FOREACH(ri, &s->match_rules, entry) 10700 if (ri->r->log & PF_LOG_ALL) 10701 PFLOG_PACKET(action, 10702 reason, ri->r, a, ruleset, &pd, 0, NULL); 10703 } 10704 } 10705 10706 pf_counters_inc(action, &pd, s, r, a); 10707 10708 switch (action) { 10709 case PF_SYNPROXY_DROP: 10710 m_freem(*m0); 10711 case PF_DEFER: 10712 *m0 = NULL; 10713 action = PF_PASS; 10714 break; 10715 case PF_DROP: 10716 m_freem(*m0); 10717 *m0 = NULL; 10718 break; 10719 case PF_AFRT: 10720 if (pf_translate_af(&pd)) { 10721 *m0 = pd.m; 10722 action = PF_DROP; 10723 break; 10724 } 10725 #ifdef INET 10726 if (pd.naf == AF_INET) 10727 pf_route(r, kif->pfik_ifp, s, &pd, inp); 10728 #endif /* INET */ 10729 #ifdef INET6 10730 if (pd.naf == AF_INET6) 10731 pf_route6(r, kif->pfik_ifp, s, &pd, inp); 10732 #endif /* INET6 */ 10733 *m0 = pd.m; 10734 action = PF_PASS; 10735 goto out; 10736 break; 10737 default: 10738 if (pd.act.rt) { 10739 switch (af) { 10740 #ifdef INET 10741 case AF_INET: 10742 /* pf_route() returns unlocked. */ 10743 pf_route(r, kif->pfik_ifp, s, &pd, inp); 10744 break; 10745 #endif /* INET */ 10746 #ifdef INET6 10747 case AF_INET6: 10748 /* pf_route6() returns unlocked. */ 10749 pf_route6(r, kif->pfik_ifp, s, &pd, inp); 10750 break; 10751 #endif /* INET6 */ 10752 } 10753 *m0 = pd.m; 10754 goto out; 10755 } 10756 if (pf_dummynet(&pd, s, r, m0) != 0) { 10757 action = PF_DROP; 10758 REASON_SET(&reason, PFRES_MEMORY); 10759 } 10760 break; 10761 } 10762 10763 eat_pkt: 10764 SDT_PROBE4(pf, ip, test, done, action, reason, r, s); 10765 10766 if (s && action != PF_DROP) { 10767 if (!s->if_index_in && dir == PF_IN) 10768 s->if_index_in = ifp->if_index; 10769 else if (!s->if_index_out && dir == PF_OUT) 10770 s->if_index_out = ifp->if_index; 10771 } 10772 10773 if (s) 10774 PF_STATE_UNLOCK(s); 10775 10776 out: 10777 #ifdef INET6 10778 /* If reassembled packet passed, create new fragments. */ 10779 if (af == AF_INET6 && action == PF_PASS && *m0 && dir == PF_OUT && 10780 (! (pflags & PF_PFIL_NOREFRAGMENT)) && 10781 (mtag = m_tag_find(pd.m, PACKET_TAG_PF_REASSEMBLED, NULL)) != NULL) 10782 action = pf_refragment6(ifp, m0, mtag, NULL, pflags & PFIL_FWD); 10783 #endif /* INET6 */ 10784 10785 pf_sctp_multihome_delayed(&pd, kif, s, action); 10786 10787 return (action); 10788 } 10789 #endif /* INET || INET6 */ 10790