1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 #include "opt_sctp.h" 48 49 #include <sys/param.h> 50 #include <sys/bus.h> 51 #include <sys/endian.h> 52 #include <sys/gsb_crc32.h> 53 #include <sys/hash.h> 54 #include <sys/interrupt.h> 55 #include <sys/kernel.h> 56 #include <sys/kthread.h> 57 #include <sys/limits.h> 58 #include <sys/mbuf.h> 59 #include <sys/md5.h> 60 #include <sys/random.h> 61 #include <sys/refcount.h> 62 #include <sys/socket.h> 63 #include <sys/sysctl.h> 64 #include <sys/taskqueue.h> 65 #include <sys/ucred.h> 66 67 #include <net/if.h> 68 #include <net/if_var.h> 69 #include <net/if_types.h> 70 #include <net/if_vlan_var.h> 71 #include <net/route.h> 72 #include <net/route/nhop.h> 73 #include <net/vnet.h> 74 75 #include <net/pfil.h> 76 #include <net/pfvar.h> 77 #include <net/if_pflog.h> 78 #include <net/if_pfsync.h> 79 80 #include <netinet/in_pcb.h> 81 #include <netinet/in_var.h> 82 #include <netinet/in_fib.h> 83 #include <netinet/ip.h> 84 #include <netinet/ip_fw.h> 85 #include <netinet/ip_icmp.h> 86 #include <netinet/icmp_var.h> 87 #include <netinet/ip_var.h> 88 #include <netinet/tcp.h> 89 #include <netinet/tcp_fsm.h> 90 #include <netinet/tcp_seq.h> 91 #include <netinet/tcp_timer.h> 92 #include <netinet/tcp_var.h> 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 96 #ifdef INET6 97 #include <netinet/ip6.h> 98 #include <netinet/icmp6.h> 99 #include <netinet6/nd6.h> 100 #include <netinet6/ip6_var.h> 101 #include <netinet6/in6_pcb.h> 102 #include <netinet6/in6_fib.h> 103 #include <netinet6/scope6_var.h> 104 #endif /* INET6 */ 105 106 #ifdef SCTP 107 #include <netinet/sctp_crc32.h> 108 #endif 109 110 #include <machine/in_cksum.h> 111 #include <security/mac/mac_framework.h> 112 113 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 114 115 /* 116 * Global variables 117 */ 118 119 /* state tables */ 120 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 121 VNET_DEFINE(struct pf_palist, pf_pabuf); 122 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 123 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 124 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 125 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 126 VNET_DEFINE(struct pf_kstatus, pf_status); 127 128 VNET_DEFINE(u_int32_t, ticket_altqs_active); 129 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 130 VNET_DEFINE(int, altqs_inactive_open); 131 VNET_DEFINE(u_int32_t, ticket_pabuf); 132 133 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 134 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 135 VNET_DEFINE(u_char, pf_tcp_secret[16]); 136 #define V_pf_tcp_secret VNET(pf_tcp_secret) 137 VNET_DEFINE(int, pf_tcp_secret_init); 138 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 139 VNET_DEFINE(int, pf_tcp_iss_off); 140 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 141 VNET_DECLARE(int, pf_vnet_active); 142 #define V_pf_vnet_active VNET(pf_vnet_active) 143 144 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 145 #define V_pf_purge_idx VNET(pf_purge_idx) 146 147 /* 148 * Queue for pf_intr() sends. 149 */ 150 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 151 struct pf_send_entry { 152 STAILQ_ENTRY(pf_send_entry) pfse_next; 153 struct mbuf *pfse_m; 154 enum { 155 PFSE_IP, 156 PFSE_IP6, 157 PFSE_ICMP, 158 PFSE_ICMP6, 159 } pfse_type; 160 struct { 161 int type; 162 int code; 163 int mtu; 164 } icmpopts; 165 }; 166 167 STAILQ_HEAD(pf_send_head, pf_send_entry); 168 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 169 #define V_pf_sendqueue VNET(pf_sendqueue) 170 171 static struct mtx pf_sendqueue_mtx; 172 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 173 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 174 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 175 176 /* 177 * Queue for pf_overload_task() tasks. 178 */ 179 struct pf_overload_entry { 180 SLIST_ENTRY(pf_overload_entry) next; 181 struct pf_addr addr; 182 sa_family_t af; 183 uint8_t dir; 184 struct pf_rule *rule; 185 }; 186 187 SLIST_HEAD(pf_overload_head, pf_overload_entry); 188 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 189 #define V_pf_overloadqueue VNET(pf_overloadqueue) 190 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 191 #define V_pf_overloadtask VNET(pf_overloadtask) 192 193 static struct mtx pf_overloadqueue_mtx; 194 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 195 "pf overload/flush queue", MTX_DEF); 196 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 197 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 198 199 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 200 struct mtx pf_unlnkdrules_mtx; 201 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 202 MTX_DEF); 203 204 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 205 #define V_pf_sources_z VNET(pf_sources_z) 206 uma_zone_t pf_mtag_z; 207 VNET_DEFINE(uma_zone_t, pf_state_z); 208 VNET_DEFINE(uma_zone_t, pf_state_key_z); 209 210 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 211 #define PFID_CPUBITS 8 212 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 213 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 214 #define PFID_MAXID (~PFID_CPUMASK) 215 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 216 217 static void pf_src_tree_remove_state(struct pf_state *); 218 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 219 u_int32_t); 220 static void pf_add_threshold(struct pf_threshold *); 221 static int pf_check_threshold(struct pf_threshold *); 222 223 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 224 u_int16_t *, u_int16_t *, struct pf_addr *, 225 u_int16_t, u_int8_t, sa_family_t); 226 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 227 struct tcphdr *, struct pf_state_peer *); 228 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 229 struct pf_addr *, struct pf_addr *, u_int16_t, 230 u_int16_t *, u_int16_t *, u_int16_t *, 231 u_int16_t *, u_int8_t, sa_family_t); 232 static void pf_send_tcp(struct mbuf *, 233 const struct pf_rule *, sa_family_t, 234 const struct pf_addr *, const struct pf_addr *, 235 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 236 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 237 u_int16_t, struct ifnet *); 238 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 239 sa_family_t, struct pf_rule *); 240 static void pf_detach_state(struct pf_state *); 241 static int pf_state_key_attach(struct pf_state_key *, 242 struct pf_state_key *, struct pf_state *); 243 static void pf_state_key_detach(struct pf_state *, int); 244 static int pf_state_key_ctor(void *, int, void *, int); 245 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 246 static int pf_test_rule(struct pf_rule **, struct pf_state **, 247 int, struct pfi_kif *, struct mbuf *, int, 248 struct pf_pdesc *, struct pf_rule **, 249 struct pf_ruleset **, struct inpcb *); 250 static int pf_create_state(struct pf_rule *, struct pf_rule *, 251 struct pf_rule *, struct pf_pdesc *, 252 struct pf_src_node *, struct pf_state_key *, 253 struct pf_state_key *, struct mbuf *, int, 254 u_int16_t, u_int16_t, int *, struct pfi_kif *, 255 struct pf_state **, int, u_int16_t, u_int16_t, 256 int); 257 static int pf_test_fragment(struct pf_rule **, int, 258 struct pfi_kif *, struct mbuf *, void *, 259 struct pf_pdesc *, struct pf_rule **, 260 struct pf_ruleset **); 261 static int pf_tcp_track_full(struct pf_state_peer *, 262 struct pf_state_peer *, struct pf_state **, 263 struct pfi_kif *, struct mbuf *, int, 264 struct pf_pdesc *, u_short *, int *); 265 static int pf_tcp_track_sloppy(struct pf_state_peer *, 266 struct pf_state_peer *, struct pf_state **, 267 struct pf_pdesc *, u_short *); 268 static int pf_test_state_tcp(struct pf_state **, int, 269 struct pfi_kif *, struct mbuf *, int, 270 void *, struct pf_pdesc *, u_short *); 271 static int pf_test_state_udp(struct pf_state **, int, 272 struct pfi_kif *, struct mbuf *, int, 273 void *, struct pf_pdesc *); 274 static int pf_test_state_icmp(struct pf_state **, int, 275 struct pfi_kif *, struct mbuf *, int, 276 void *, struct pf_pdesc *, u_short *); 277 static int pf_test_state_other(struct pf_state **, int, 278 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 279 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 280 sa_family_t); 281 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 282 sa_family_t); 283 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 284 int, u_int16_t); 285 static int pf_check_proto_cksum(struct mbuf *, int, int, 286 u_int8_t, sa_family_t); 287 static void pf_print_state_parts(struct pf_state *, 288 struct pf_state_key *, struct pf_state_key *); 289 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 290 struct pf_addr_wrap *); 291 static struct pf_state *pf_find_state(struct pfi_kif *, 292 struct pf_state_key_cmp *, u_int); 293 static int pf_src_connlimit(struct pf_state **); 294 static void pf_overload_task(void *v, int pending); 295 static int pf_insert_src_node(struct pf_src_node **, 296 struct pf_rule *, struct pf_addr *, sa_family_t); 297 static u_int pf_purge_expired_states(u_int, int); 298 static void pf_purge_unlinked_rules(void); 299 static int pf_mtag_uminit(void *, int, int); 300 static void pf_mtag_free(struct m_tag *); 301 #ifdef INET 302 static void pf_route(struct mbuf **, struct pf_rule *, int, 303 struct ifnet *, struct pf_state *, 304 struct pf_pdesc *, struct inpcb *); 305 #endif /* INET */ 306 #ifdef INET6 307 static void pf_change_a6(struct pf_addr *, u_int16_t *, 308 struct pf_addr *, u_int8_t); 309 static void pf_route6(struct mbuf **, struct pf_rule *, int, 310 struct ifnet *, struct pf_state *, 311 struct pf_pdesc *, struct inpcb *); 312 #endif /* INET6 */ 313 314 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 315 316 extern int pf_end_threads; 317 extern struct proc *pf_purge_proc; 318 319 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 320 321 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 322 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 323 324 #define STATE_LOOKUP(i, k, d, s, pd) \ 325 do { \ 326 (s) = pf_find_state((i), (k), (d)); \ 327 if ((s) == NULL) \ 328 return (PF_DROP); \ 329 if (PACKET_LOOPED(pd)) \ 330 return (PF_PASS); \ 331 if ((d) == PF_OUT && \ 332 (((s)->rule.ptr->rt == PF_ROUTETO && \ 333 (s)->rule.ptr->direction == PF_OUT) || \ 334 ((s)->rule.ptr->rt == PF_REPLYTO && \ 335 (s)->rule.ptr->direction == PF_IN)) && \ 336 (s)->rt_kif != NULL && \ 337 (s)->rt_kif != (i)) \ 338 return (PF_PASS); \ 339 } while (0) 340 341 #define BOUND_IFACE(r, k) \ 342 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 343 344 #define STATE_INC_COUNTERS(s) \ 345 do { \ 346 counter_u64_add(s->rule.ptr->states_cur, 1); \ 347 counter_u64_add(s->rule.ptr->states_tot, 1); \ 348 if (s->anchor.ptr != NULL) { \ 349 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 350 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 351 } \ 352 if (s->nat_rule.ptr != NULL) { \ 353 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 354 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 355 } \ 356 } while (0) 357 358 #define STATE_DEC_COUNTERS(s) \ 359 do { \ 360 if (s->nat_rule.ptr != NULL) \ 361 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 362 if (s->anchor.ptr != NULL) \ 363 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 364 counter_u64_add(s->rule.ptr->states_cur, -1); \ 365 } while (0) 366 367 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 368 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 369 VNET_DEFINE(struct pf_idhash *, pf_idhash); 370 VNET_DEFINE(struct pf_srchash *, pf_srchash); 371 372 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 373 "pf(4)"); 374 375 u_long pf_hashmask; 376 u_long pf_srchashmask; 377 static u_long pf_hashsize; 378 static u_long pf_srchashsize; 379 u_long pf_ioctl_maxcount = 65535; 380 381 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 382 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 383 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 384 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 385 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RW, 386 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 387 388 VNET_DEFINE(void *, pf_swi_cookie); 389 390 VNET_DEFINE(uint32_t, pf_hashseed); 391 #define V_pf_hashseed VNET(pf_hashseed) 392 393 int 394 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 395 { 396 397 switch (af) { 398 #ifdef INET 399 case AF_INET: 400 if (a->addr32[0] > b->addr32[0]) 401 return (1); 402 if (a->addr32[0] < b->addr32[0]) 403 return (-1); 404 break; 405 #endif /* INET */ 406 #ifdef INET6 407 case AF_INET6: 408 if (a->addr32[3] > b->addr32[3]) 409 return (1); 410 if (a->addr32[3] < b->addr32[3]) 411 return (-1); 412 if (a->addr32[2] > b->addr32[2]) 413 return (1); 414 if (a->addr32[2] < b->addr32[2]) 415 return (-1); 416 if (a->addr32[1] > b->addr32[1]) 417 return (1); 418 if (a->addr32[1] < b->addr32[1]) 419 return (-1); 420 if (a->addr32[0] > b->addr32[0]) 421 return (1); 422 if (a->addr32[0] < b->addr32[0]) 423 return (-1); 424 break; 425 #endif /* INET6 */ 426 default: 427 panic("%s: unknown address family %u", __func__, af); 428 } 429 return (0); 430 } 431 432 static __inline uint32_t 433 pf_hashkey(struct pf_state_key *sk) 434 { 435 uint32_t h; 436 437 h = murmur3_32_hash32((uint32_t *)sk, 438 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 439 V_pf_hashseed); 440 441 return (h & pf_hashmask); 442 } 443 444 static __inline uint32_t 445 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 446 { 447 uint32_t h; 448 449 switch (af) { 450 case AF_INET: 451 h = murmur3_32_hash32((uint32_t *)&addr->v4, 452 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 453 break; 454 case AF_INET6: 455 h = murmur3_32_hash32((uint32_t *)&addr->v6, 456 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 457 break; 458 default: 459 panic("%s: unknown address family %u", __func__, af); 460 } 461 462 return (h & pf_srchashmask); 463 } 464 465 #ifdef ALTQ 466 static int 467 pf_state_hash(struct pf_state *s) 468 { 469 u_int32_t hv = (intptr_t)s / sizeof(*s); 470 471 hv ^= crc32(&s->src, sizeof(s->src)); 472 hv ^= crc32(&s->dst, sizeof(s->dst)); 473 if (hv == 0) 474 hv = 1; 475 return (hv); 476 } 477 #endif 478 479 #ifdef INET6 480 void 481 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 482 { 483 switch (af) { 484 #ifdef INET 485 case AF_INET: 486 dst->addr32[0] = src->addr32[0]; 487 break; 488 #endif /* INET */ 489 case AF_INET6: 490 dst->addr32[0] = src->addr32[0]; 491 dst->addr32[1] = src->addr32[1]; 492 dst->addr32[2] = src->addr32[2]; 493 dst->addr32[3] = src->addr32[3]; 494 break; 495 } 496 } 497 #endif /* INET6 */ 498 499 static void 500 pf_init_threshold(struct pf_threshold *threshold, 501 u_int32_t limit, u_int32_t seconds) 502 { 503 threshold->limit = limit * PF_THRESHOLD_MULT; 504 threshold->seconds = seconds; 505 threshold->count = 0; 506 threshold->last = time_uptime; 507 } 508 509 static void 510 pf_add_threshold(struct pf_threshold *threshold) 511 { 512 u_int32_t t = time_uptime, diff = t - threshold->last; 513 514 if (diff >= threshold->seconds) 515 threshold->count = 0; 516 else 517 threshold->count -= threshold->count * diff / 518 threshold->seconds; 519 threshold->count += PF_THRESHOLD_MULT; 520 threshold->last = t; 521 } 522 523 static int 524 pf_check_threshold(struct pf_threshold *threshold) 525 { 526 return (threshold->count > threshold->limit); 527 } 528 529 static int 530 pf_src_connlimit(struct pf_state **state) 531 { 532 struct pf_overload_entry *pfoe; 533 int bad = 0; 534 535 PF_STATE_LOCK_ASSERT(*state); 536 537 (*state)->src_node->conn++; 538 (*state)->src.tcp_est = 1; 539 pf_add_threshold(&(*state)->src_node->conn_rate); 540 541 if ((*state)->rule.ptr->max_src_conn && 542 (*state)->rule.ptr->max_src_conn < 543 (*state)->src_node->conn) { 544 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 545 bad++; 546 } 547 548 if ((*state)->rule.ptr->max_src_conn_rate.limit && 549 pf_check_threshold(&(*state)->src_node->conn_rate)) { 550 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 551 bad++; 552 } 553 554 if (!bad) 555 return (0); 556 557 /* Kill this state. */ 558 (*state)->timeout = PFTM_PURGE; 559 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 560 561 if ((*state)->rule.ptr->overload_tbl == NULL) 562 return (1); 563 564 /* Schedule overloading and flushing task. */ 565 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 566 if (pfoe == NULL) 567 return (1); /* too bad :( */ 568 569 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 570 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 571 pfoe->rule = (*state)->rule.ptr; 572 pfoe->dir = (*state)->direction; 573 PF_OVERLOADQ_LOCK(); 574 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 575 PF_OVERLOADQ_UNLOCK(); 576 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 577 578 return (1); 579 } 580 581 static void 582 pf_overload_task(void *v, int pending) 583 { 584 struct pf_overload_head queue; 585 struct pfr_addr p; 586 struct pf_overload_entry *pfoe, *pfoe1; 587 uint32_t killed = 0; 588 589 CURVNET_SET((struct vnet *)v); 590 591 PF_OVERLOADQ_LOCK(); 592 queue = V_pf_overloadqueue; 593 SLIST_INIT(&V_pf_overloadqueue); 594 PF_OVERLOADQ_UNLOCK(); 595 596 bzero(&p, sizeof(p)); 597 SLIST_FOREACH(pfoe, &queue, next) { 598 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 599 if (V_pf_status.debug >= PF_DEBUG_MISC) { 600 printf("%s: blocking address ", __func__); 601 pf_print_host(&pfoe->addr, 0, pfoe->af); 602 printf("\n"); 603 } 604 605 p.pfra_af = pfoe->af; 606 switch (pfoe->af) { 607 #ifdef INET 608 case AF_INET: 609 p.pfra_net = 32; 610 p.pfra_ip4addr = pfoe->addr.v4; 611 break; 612 #endif 613 #ifdef INET6 614 case AF_INET6: 615 p.pfra_net = 128; 616 p.pfra_ip6addr = pfoe->addr.v6; 617 break; 618 #endif 619 } 620 621 PF_RULES_WLOCK(); 622 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 623 PF_RULES_WUNLOCK(); 624 } 625 626 /* 627 * Remove those entries, that don't need flushing. 628 */ 629 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 630 if (pfoe->rule->flush == 0) { 631 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 632 free(pfoe, M_PFTEMP); 633 } else 634 counter_u64_add( 635 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 636 637 /* If nothing to flush, return. */ 638 if (SLIST_EMPTY(&queue)) { 639 CURVNET_RESTORE(); 640 return; 641 } 642 643 for (int i = 0; i <= pf_hashmask; i++) { 644 struct pf_idhash *ih = &V_pf_idhash[i]; 645 struct pf_state_key *sk; 646 struct pf_state *s; 647 648 PF_HASHROW_LOCK(ih); 649 LIST_FOREACH(s, &ih->states, entry) { 650 sk = s->key[PF_SK_WIRE]; 651 SLIST_FOREACH(pfoe, &queue, next) 652 if (sk->af == pfoe->af && 653 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 654 pfoe->rule == s->rule.ptr) && 655 ((pfoe->dir == PF_OUT && 656 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 657 (pfoe->dir == PF_IN && 658 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 659 s->timeout = PFTM_PURGE; 660 s->src.state = s->dst.state = TCPS_CLOSED; 661 killed++; 662 } 663 } 664 PF_HASHROW_UNLOCK(ih); 665 } 666 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 667 free(pfoe, M_PFTEMP); 668 if (V_pf_status.debug >= PF_DEBUG_MISC) 669 printf("%s: %u states killed", __func__, killed); 670 671 CURVNET_RESTORE(); 672 } 673 674 /* 675 * Can return locked on failure, so that we can consistently 676 * allocate and insert a new one. 677 */ 678 struct pf_src_node * 679 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 680 int returnlocked) 681 { 682 struct pf_srchash *sh; 683 struct pf_src_node *n; 684 685 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 686 687 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 688 PF_HASHROW_LOCK(sh); 689 LIST_FOREACH(n, &sh->nodes, entry) 690 if (n->rule.ptr == rule && n->af == af && 691 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 692 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 693 break; 694 if (n != NULL) { 695 n->states++; 696 PF_HASHROW_UNLOCK(sh); 697 } else if (returnlocked == 0) 698 PF_HASHROW_UNLOCK(sh); 699 700 return (n); 701 } 702 703 static int 704 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 705 struct pf_addr *src, sa_family_t af) 706 { 707 708 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 709 rule->rpool.opts & PF_POOL_STICKYADDR), 710 ("%s for non-tracking rule %p", __func__, rule)); 711 712 if (*sn == NULL) 713 *sn = pf_find_src_node(src, rule, af, 1); 714 715 if (*sn == NULL) { 716 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 717 718 PF_HASHROW_ASSERT(sh); 719 720 if (!rule->max_src_nodes || 721 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 722 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 723 else 724 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 725 1); 726 if ((*sn) == NULL) { 727 PF_HASHROW_UNLOCK(sh); 728 return (-1); 729 } 730 731 pf_init_threshold(&(*sn)->conn_rate, 732 rule->max_src_conn_rate.limit, 733 rule->max_src_conn_rate.seconds); 734 735 (*sn)->af = af; 736 (*sn)->rule.ptr = rule; 737 PF_ACPY(&(*sn)->addr, src, af); 738 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 739 (*sn)->creation = time_uptime; 740 (*sn)->ruletype = rule->action; 741 (*sn)->states = 1; 742 if ((*sn)->rule.ptr != NULL) 743 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 744 PF_HASHROW_UNLOCK(sh); 745 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 746 } else { 747 if (rule->max_src_states && 748 (*sn)->states >= rule->max_src_states) { 749 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 750 1); 751 return (-1); 752 } 753 } 754 return (0); 755 } 756 757 void 758 pf_unlink_src_node(struct pf_src_node *src) 759 { 760 761 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 762 LIST_REMOVE(src, entry); 763 if (src->rule.ptr) 764 counter_u64_add(src->rule.ptr->src_nodes, -1); 765 } 766 767 u_int 768 pf_free_src_nodes(struct pf_src_node_list *head) 769 { 770 struct pf_src_node *sn, *tmp; 771 u_int count = 0; 772 773 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 774 uma_zfree(V_pf_sources_z, sn); 775 count++; 776 } 777 778 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 779 780 return (count); 781 } 782 783 void 784 pf_mtag_initialize() 785 { 786 787 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 788 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 789 UMA_ALIGN_PTR, 0); 790 } 791 792 /* Per-vnet data storage structures initialization. */ 793 void 794 pf_initialize() 795 { 796 struct pf_keyhash *kh; 797 struct pf_idhash *ih; 798 struct pf_srchash *sh; 799 u_int i; 800 801 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 802 pf_hashsize = PF_HASHSIZ; 803 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 804 pf_srchashsize = PF_SRCHASHSIZ; 805 806 V_pf_hashseed = arc4random(); 807 808 /* States and state keys storage. */ 809 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 810 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 811 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 812 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 813 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 814 815 V_pf_state_key_z = uma_zcreate("pf state keys", 816 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 817 UMA_ALIGN_PTR, 0); 818 819 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 820 M_PFHASH, M_NOWAIT | M_ZERO); 821 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 822 M_PFHASH, M_NOWAIT | M_ZERO); 823 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 824 printf("pf: Unable to allocate memory for " 825 "state_hashsize %lu.\n", pf_hashsize); 826 827 free(V_pf_keyhash, M_PFHASH); 828 free(V_pf_idhash, M_PFHASH); 829 830 pf_hashsize = PF_HASHSIZ; 831 V_pf_keyhash = mallocarray(pf_hashsize, 832 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 833 V_pf_idhash = mallocarray(pf_hashsize, 834 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 835 } 836 837 pf_hashmask = pf_hashsize - 1; 838 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 839 i++, kh++, ih++) { 840 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 841 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 842 } 843 844 /* Source nodes. */ 845 V_pf_sources_z = uma_zcreate("pf source nodes", 846 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 847 0); 848 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 849 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 850 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 851 852 V_pf_srchash = mallocarray(pf_srchashsize, 853 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 854 if (V_pf_srchash == NULL) { 855 printf("pf: Unable to allocate memory for " 856 "source_hashsize %lu.\n", pf_srchashsize); 857 858 pf_srchashsize = PF_SRCHASHSIZ; 859 V_pf_srchash = mallocarray(pf_srchashsize, 860 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 861 } 862 863 pf_srchashmask = pf_srchashsize - 1; 864 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 865 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 866 867 /* ALTQ */ 868 TAILQ_INIT(&V_pf_altqs[0]); 869 TAILQ_INIT(&V_pf_altqs[1]); 870 TAILQ_INIT(&V_pf_altqs[2]); 871 TAILQ_INIT(&V_pf_altqs[3]); 872 TAILQ_INIT(&V_pf_pabuf); 873 V_pf_altqs_active = &V_pf_altqs[0]; 874 V_pf_altq_ifs_active = &V_pf_altqs[1]; 875 V_pf_altqs_inactive = &V_pf_altqs[2]; 876 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 877 878 /* Send & overload+flush queues. */ 879 STAILQ_INIT(&V_pf_sendqueue); 880 SLIST_INIT(&V_pf_overloadqueue); 881 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 882 883 /* Unlinked, but may be referenced rules. */ 884 TAILQ_INIT(&V_pf_unlinked_rules); 885 } 886 887 void 888 pf_mtag_cleanup() 889 { 890 891 uma_zdestroy(pf_mtag_z); 892 } 893 894 void 895 pf_cleanup() 896 { 897 struct pf_keyhash *kh; 898 struct pf_idhash *ih; 899 struct pf_srchash *sh; 900 struct pf_send_entry *pfse, *next; 901 u_int i; 902 903 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 904 i++, kh++, ih++) { 905 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 906 __func__)); 907 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 908 __func__)); 909 mtx_destroy(&kh->lock); 910 mtx_destroy(&ih->lock); 911 } 912 free(V_pf_keyhash, M_PFHASH); 913 free(V_pf_idhash, M_PFHASH); 914 915 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 916 KASSERT(LIST_EMPTY(&sh->nodes), 917 ("%s: source node hash not empty", __func__)); 918 mtx_destroy(&sh->lock); 919 } 920 free(V_pf_srchash, M_PFHASH); 921 922 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 923 m_freem(pfse->pfse_m); 924 free(pfse, M_PFTEMP); 925 } 926 927 uma_zdestroy(V_pf_sources_z); 928 uma_zdestroy(V_pf_state_z); 929 uma_zdestroy(V_pf_state_key_z); 930 } 931 932 static int 933 pf_mtag_uminit(void *mem, int size, int how) 934 { 935 struct m_tag *t; 936 937 t = (struct m_tag *)mem; 938 t->m_tag_cookie = MTAG_ABI_COMPAT; 939 t->m_tag_id = PACKET_TAG_PF; 940 t->m_tag_len = sizeof(struct pf_mtag); 941 t->m_tag_free = pf_mtag_free; 942 943 return (0); 944 } 945 946 static void 947 pf_mtag_free(struct m_tag *t) 948 { 949 950 uma_zfree(pf_mtag_z, t); 951 } 952 953 struct pf_mtag * 954 pf_get_mtag(struct mbuf *m) 955 { 956 struct m_tag *mtag; 957 958 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 959 return ((struct pf_mtag *)(mtag + 1)); 960 961 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 962 if (mtag == NULL) 963 return (NULL); 964 bzero(mtag + 1, sizeof(struct pf_mtag)); 965 m_tag_prepend(m, mtag); 966 967 return ((struct pf_mtag *)(mtag + 1)); 968 } 969 970 static int 971 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 972 struct pf_state *s) 973 { 974 struct pf_keyhash *khs, *khw, *kh; 975 struct pf_state_key *sk, *cur; 976 struct pf_state *si, *olds = NULL; 977 int idx; 978 979 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 980 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 981 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 982 983 /* 984 * We need to lock hash slots of both keys. To avoid deadlock 985 * we always lock the slot with lower address first. Unlock order 986 * isn't important. 987 * 988 * We also need to lock ID hash slot before dropping key 989 * locks. On success we return with ID hash slot locked. 990 */ 991 992 if (skw == sks) { 993 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 994 PF_HASHROW_LOCK(khs); 995 } else { 996 khs = &V_pf_keyhash[pf_hashkey(sks)]; 997 khw = &V_pf_keyhash[pf_hashkey(skw)]; 998 if (khs == khw) { 999 PF_HASHROW_LOCK(khs); 1000 } else if (khs < khw) { 1001 PF_HASHROW_LOCK(khs); 1002 PF_HASHROW_LOCK(khw); 1003 } else { 1004 PF_HASHROW_LOCK(khw); 1005 PF_HASHROW_LOCK(khs); 1006 } 1007 } 1008 1009 #define KEYS_UNLOCK() do { \ 1010 if (khs != khw) { \ 1011 PF_HASHROW_UNLOCK(khs); \ 1012 PF_HASHROW_UNLOCK(khw); \ 1013 } else \ 1014 PF_HASHROW_UNLOCK(khs); \ 1015 } while (0) 1016 1017 /* 1018 * First run: start with wire key. 1019 */ 1020 sk = skw; 1021 kh = khw; 1022 idx = PF_SK_WIRE; 1023 1024 keyattach: 1025 LIST_FOREACH(cur, &kh->keys, entry) 1026 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1027 break; 1028 1029 if (cur != NULL) { 1030 /* Key exists. Check for same kif, if none, add to key. */ 1031 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1032 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1033 1034 PF_HASHROW_LOCK(ih); 1035 if (si->kif == s->kif && 1036 si->direction == s->direction) { 1037 if (sk->proto == IPPROTO_TCP && 1038 si->src.state >= TCPS_FIN_WAIT_2 && 1039 si->dst.state >= TCPS_FIN_WAIT_2) { 1040 /* 1041 * New state matches an old >FIN_WAIT_2 1042 * state. We can't drop key hash locks, 1043 * thus we can't unlink it properly. 1044 * 1045 * As a workaround we drop it into 1046 * TCPS_CLOSED state, schedule purge 1047 * ASAP and push it into the very end 1048 * of the slot TAILQ, so that it won't 1049 * conflict with our new state. 1050 */ 1051 si->src.state = si->dst.state = 1052 TCPS_CLOSED; 1053 si->timeout = PFTM_PURGE; 1054 olds = si; 1055 } else { 1056 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1057 printf("pf: %s key attach " 1058 "failed on %s: ", 1059 (idx == PF_SK_WIRE) ? 1060 "wire" : "stack", 1061 s->kif->pfik_name); 1062 pf_print_state_parts(s, 1063 (idx == PF_SK_WIRE) ? 1064 sk : NULL, 1065 (idx == PF_SK_STACK) ? 1066 sk : NULL); 1067 printf(", existing: "); 1068 pf_print_state_parts(si, 1069 (idx == PF_SK_WIRE) ? 1070 sk : NULL, 1071 (idx == PF_SK_STACK) ? 1072 sk : NULL); 1073 printf("\n"); 1074 } 1075 PF_HASHROW_UNLOCK(ih); 1076 KEYS_UNLOCK(); 1077 uma_zfree(V_pf_state_key_z, sk); 1078 if (idx == PF_SK_STACK) 1079 pf_detach_state(s); 1080 return (EEXIST); /* collision! */ 1081 } 1082 } 1083 PF_HASHROW_UNLOCK(ih); 1084 } 1085 uma_zfree(V_pf_state_key_z, sk); 1086 s->key[idx] = cur; 1087 } else { 1088 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1089 s->key[idx] = sk; 1090 } 1091 1092 stateattach: 1093 /* List is sorted, if-bound states before floating. */ 1094 if (s->kif == V_pfi_all) 1095 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1096 else 1097 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1098 1099 if (olds) { 1100 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1101 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1102 key_list[idx]); 1103 olds = NULL; 1104 } 1105 1106 /* 1107 * Attach done. See how should we (or should not?) 1108 * attach a second key. 1109 */ 1110 if (sks == skw) { 1111 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1112 idx = PF_SK_STACK; 1113 sks = NULL; 1114 goto stateattach; 1115 } else if (sks != NULL) { 1116 /* 1117 * Continue attaching with stack key. 1118 */ 1119 sk = sks; 1120 kh = khs; 1121 idx = PF_SK_STACK; 1122 sks = NULL; 1123 goto keyattach; 1124 } 1125 1126 PF_STATE_LOCK(s); 1127 KEYS_UNLOCK(); 1128 1129 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1130 ("%s failure", __func__)); 1131 1132 return (0); 1133 #undef KEYS_UNLOCK 1134 } 1135 1136 static void 1137 pf_detach_state(struct pf_state *s) 1138 { 1139 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1140 struct pf_keyhash *kh; 1141 1142 if (sks != NULL) { 1143 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1144 PF_HASHROW_LOCK(kh); 1145 if (s->key[PF_SK_STACK] != NULL) 1146 pf_state_key_detach(s, PF_SK_STACK); 1147 /* 1148 * If both point to same key, then we are done. 1149 */ 1150 if (sks == s->key[PF_SK_WIRE]) { 1151 pf_state_key_detach(s, PF_SK_WIRE); 1152 PF_HASHROW_UNLOCK(kh); 1153 return; 1154 } 1155 PF_HASHROW_UNLOCK(kh); 1156 } 1157 1158 if (s->key[PF_SK_WIRE] != NULL) { 1159 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1160 PF_HASHROW_LOCK(kh); 1161 if (s->key[PF_SK_WIRE] != NULL) 1162 pf_state_key_detach(s, PF_SK_WIRE); 1163 PF_HASHROW_UNLOCK(kh); 1164 } 1165 } 1166 1167 static void 1168 pf_state_key_detach(struct pf_state *s, int idx) 1169 { 1170 struct pf_state_key *sk = s->key[idx]; 1171 #ifdef INVARIANTS 1172 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1173 1174 PF_HASHROW_ASSERT(kh); 1175 #endif 1176 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1177 s->key[idx] = NULL; 1178 1179 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1180 LIST_REMOVE(sk, entry); 1181 uma_zfree(V_pf_state_key_z, sk); 1182 } 1183 } 1184 1185 static int 1186 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1187 { 1188 struct pf_state_key *sk = mem; 1189 1190 bzero(sk, sizeof(struct pf_state_key_cmp)); 1191 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1192 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1193 1194 return (0); 1195 } 1196 1197 struct pf_state_key * 1198 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1199 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1200 { 1201 struct pf_state_key *sk; 1202 1203 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1204 if (sk == NULL) 1205 return (NULL); 1206 1207 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1208 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1209 sk->port[pd->sidx] = sport; 1210 sk->port[pd->didx] = dport; 1211 sk->proto = pd->proto; 1212 sk->af = pd->af; 1213 1214 return (sk); 1215 } 1216 1217 struct pf_state_key * 1218 pf_state_key_clone(struct pf_state_key *orig) 1219 { 1220 struct pf_state_key *sk; 1221 1222 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1223 if (sk == NULL) 1224 return (NULL); 1225 1226 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1227 1228 return (sk); 1229 } 1230 1231 int 1232 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1233 struct pf_state_key *sks, struct pf_state *s) 1234 { 1235 struct pf_idhash *ih; 1236 struct pf_state *cur; 1237 int error; 1238 1239 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1240 ("%s: sks not pristine", __func__)); 1241 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1242 ("%s: skw not pristine", __func__)); 1243 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1244 1245 s->kif = kif; 1246 1247 if (s->id == 0 && s->creatorid == 0) { 1248 /* XXX: should be atomic, but probability of collision low */ 1249 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1250 V_pf_stateid[curcpu] = 1; 1251 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1252 s->id = htobe64(s->id); 1253 s->creatorid = V_pf_status.hostid; 1254 } 1255 1256 /* Returns with ID locked on success. */ 1257 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1258 return (error); 1259 1260 ih = &V_pf_idhash[PF_IDHASH(s)]; 1261 PF_HASHROW_ASSERT(ih); 1262 LIST_FOREACH(cur, &ih->states, entry) 1263 if (cur->id == s->id && cur->creatorid == s->creatorid) 1264 break; 1265 1266 if (cur != NULL) { 1267 PF_HASHROW_UNLOCK(ih); 1268 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1269 printf("pf: state ID collision: " 1270 "id: %016llx creatorid: %08x\n", 1271 (unsigned long long)be64toh(s->id), 1272 ntohl(s->creatorid)); 1273 } 1274 pf_detach_state(s); 1275 return (EEXIST); 1276 } 1277 LIST_INSERT_HEAD(&ih->states, s, entry); 1278 /* One for keys, one for ID hash. */ 1279 refcount_init(&s->refs, 2); 1280 1281 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1282 if (V_pfsync_insert_state_ptr != NULL) 1283 V_pfsync_insert_state_ptr(s); 1284 1285 /* Returns locked. */ 1286 return (0); 1287 } 1288 1289 /* 1290 * Find state by ID: returns with locked row on success. 1291 */ 1292 struct pf_state * 1293 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1294 { 1295 struct pf_idhash *ih; 1296 struct pf_state *s; 1297 1298 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1299 1300 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1301 1302 PF_HASHROW_LOCK(ih); 1303 LIST_FOREACH(s, &ih->states, entry) 1304 if (s->id == id && s->creatorid == creatorid) 1305 break; 1306 1307 if (s == NULL) 1308 PF_HASHROW_UNLOCK(ih); 1309 1310 return (s); 1311 } 1312 1313 /* 1314 * Find state by key. 1315 * Returns with ID hash slot locked on success. 1316 */ 1317 static struct pf_state * 1318 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1319 { 1320 struct pf_keyhash *kh; 1321 struct pf_state_key *sk; 1322 struct pf_state *s; 1323 int idx; 1324 1325 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1326 1327 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1328 1329 PF_HASHROW_LOCK(kh); 1330 LIST_FOREACH(sk, &kh->keys, entry) 1331 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1332 break; 1333 if (sk == NULL) { 1334 PF_HASHROW_UNLOCK(kh); 1335 return (NULL); 1336 } 1337 1338 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1339 1340 /* List is sorted, if-bound states before floating ones. */ 1341 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1342 if (s->kif == V_pfi_all || s->kif == kif) { 1343 PF_STATE_LOCK(s); 1344 PF_HASHROW_UNLOCK(kh); 1345 if (s->timeout >= PFTM_MAX) { 1346 /* 1347 * State is either being processed by 1348 * pf_unlink_state() in an other thread, or 1349 * is scheduled for immediate expiry. 1350 */ 1351 PF_STATE_UNLOCK(s); 1352 return (NULL); 1353 } 1354 return (s); 1355 } 1356 PF_HASHROW_UNLOCK(kh); 1357 1358 return (NULL); 1359 } 1360 1361 struct pf_state * 1362 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1363 { 1364 struct pf_keyhash *kh; 1365 struct pf_state_key *sk; 1366 struct pf_state *s, *ret = NULL; 1367 int idx, inout = 0; 1368 1369 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1370 1371 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1372 1373 PF_HASHROW_LOCK(kh); 1374 LIST_FOREACH(sk, &kh->keys, entry) 1375 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1376 break; 1377 if (sk == NULL) { 1378 PF_HASHROW_UNLOCK(kh); 1379 return (NULL); 1380 } 1381 switch (dir) { 1382 case PF_IN: 1383 idx = PF_SK_WIRE; 1384 break; 1385 case PF_OUT: 1386 idx = PF_SK_STACK; 1387 break; 1388 case PF_INOUT: 1389 idx = PF_SK_WIRE; 1390 inout = 1; 1391 break; 1392 default: 1393 panic("%s: dir %u", __func__, dir); 1394 } 1395 second_run: 1396 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1397 if (more == NULL) { 1398 PF_HASHROW_UNLOCK(kh); 1399 return (s); 1400 } 1401 1402 if (ret) 1403 (*more)++; 1404 else 1405 ret = s; 1406 } 1407 if (inout == 1) { 1408 inout = 0; 1409 idx = PF_SK_STACK; 1410 goto second_run; 1411 } 1412 PF_HASHROW_UNLOCK(kh); 1413 1414 return (ret); 1415 } 1416 1417 /* END state table stuff */ 1418 1419 static void 1420 pf_send(struct pf_send_entry *pfse) 1421 { 1422 1423 PF_SENDQ_LOCK(); 1424 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1425 PF_SENDQ_UNLOCK(); 1426 swi_sched(V_pf_swi_cookie, 0); 1427 } 1428 1429 void 1430 pf_intr(void *v) 1431 { 1432 struct epoch_tracker et; 1433 struct pf_send_head queue; 1434 struct pf_send_entry *pfse, *next; 1435 1436 CURVNET_SET((struct vnet *)v); 1437 1438 PF_SENDQ_LOCK(); 1439 queue = V_pf_sendqueue; 1440 STAILQ_INIT(&V_pf_sendqueue); 1441 PF_SENDQ_UNLOCK(); 1442 1443 NET_EPOCH_ENTER(et); 1444 1445 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1446 switch (pfse->pfse_type) { 1447 #ifdef INET 1448 case PFSE_IP: 1449 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1450 break; 1451 case PFSE_ICMP: 1452 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1453 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1454 break; 1455 #endif /* INET */ 1456 #ifdef INET6 1457 case PFSE_IP6: 1458 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1459 NULL); 1460 break; 1461 case PFSE_ICMP6: 1462 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1463 pfse->icmpopts.code, pfse->icmpopts.mtu); 1464 break; 1465 #endif /* INET6 */ 1466 default: 1467 panic("%s: unknown type", __func__); 1468 } 1469 free(pfse, M_PFTEMP); 1470 } 1471 NET_EPOCH_EXIT(et); 1472 CURVNET_RESTORE(); 1473 } 1474 1475 void 1476 pf_purge_thread(void *unused __unused) 1477 { 1478 VNET_ITERATOR_DECL(vnet_iter); 1479 1480 sx_xlock(&pf_end_lock); 1481 while (pf_end_threads == 0) { 1482 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1483 1484 VNET_LIST_RLOCK(); 1485 VNET_FOREACH(vnet_iter) { 1486 CURVNET_SET(vnet_iter); 1487 1488 1489 /* Wait until V_pf_default_rule is initialized. */ 1490 if (V_pf_vnet_active == 0) { 1491 CURVNET_RESTORE(); 1492 continue; 1493 } 1494 1495 /* 1496 * Process 1/interval fraction of the state 1497 * table every run. 1498 */ 1499 V_pf_purge_idx = 1500 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1501 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1502 1503 /* 1504 * Purge other expired types every 1505 * PFTM_INTERVAL seconds. 1506 */ 1507 if (V_pf_purge_idx == 0) { 1508 /* 1509 * Order is important: 1510 * - states and src nodes reference rules 1511 * - states and rules reference kifs 1512 */ 1513 pf_purge_expired_fragments(); 1514 pf_purge_expired_src_nodes(); 1515 pf_purge_unlinked_rules(); 1516 pfi_kif_purge(); 1517 } 1518 CURVNET_RESTORE(); 1519 } 1520 VNET_LIST_RUNLOCK(); 1521 } 1522 1523 pf_end_threads++; 1524 sx_xunlock(&pf_end_lock); 1525 kproc_exit(0); 1526 } 1527 1528 void 1529 pf_unload_vnet_purge(void) 1530 { 1531 1532 /* 1533 * To cleanse up all kifs and rules we need 1534 * two runs: first one clears reference flags, 1535 * then pf_purge_expired_states() doesn't 1536 * raise them, and then second run frees. 1537 */ 1538 pf_purge_unlinked_rules(); 1539 pfi_kif_purge(); 1540 1541 /* 1542 * Now purge everything. 1543 */ 1544 pf_purge_expired_states(0, pf_hashmask); 1545 pf_purge_fragments(UINT_MAX); 1546 pf_purge_expired_src_nodes(); 1547 1548 /* 1549 * Now all kifs & rules should be unreferenced, 1550 * thus should be successfully freed. 1551 */ 1552 pf_purge_unlinked_rules(); 1553 pfi_kif_purge(); 1554 } 1555 1556 1557 u_int32_t 1558 pf_state_expires(const struct pf_state *state) 1559 { 1560 u_int32_t timeout; 1561 u_int32_t start; 1562 u_int32_t end; 1563 u_int32_t states; 1564 1565 /* handle all PFTM_* > PFTM_MAX here */ 1566 if (state->timeout == PFTM_PURGE) 1567 return (time_uptime); 1568 KASSERT(state->timeout != PFTM_UNLINKED, 1569 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1570 KASSERT((state->timeout < PFTM_MAX), 1571 ("pf_state_expires: timeout > PFTM_MAX")); 1572 timeout = state->rule.ptr->timeout[state->timeout]; 1573 if (!timeout) 1574 timeout = V_pf_default_rule.timeout[state->timeout]; 1575 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1576 if (start && state->rule.ptr != &V_pf_default_rule) { 1577 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1578 states = counter_u64_fetch(state->rule.ptr->states_cur); 1579 } else { 1580 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1581 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1582 states = V_pf_status.states; 1583 } 1584 if (end && states > start && start < end) { 1585 if (states < end) { 1586 timeout = (u_int64_t)timeout * (end - states) / 1587 (end - start); 1588 return (state->expire + timeout); 1589 } 1590 else 1591 return (time_uptime); 1592 } 1593 return (state->expire + timeout); 1594 } 1595 1596 void 1597 pf_purge_expired_src_nodes() 1598 { 1599 struct pf_src_node_list freelist; 1600 struct pf_srchash *sh; 1601 struct pf_src_node *cur, *next; 1602 int i; 1603 1604 LIST_INIT(&freelist); 1605 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1606 PF_HASHROW_LOCK(sh); 1607 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1608 if (cur->states == 0 && cur->expire <= time_uptime) { 1609 pf_unlink_src_node(cur); 1610 LIST_INSERT_HEAD(&freelist, cur, entry); 1611 } else if (cur->rule.ptr != NULL) 1612 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1613 PF_HASHROW_UNLOCK(sh); 1614 } 1615 1616 pf_free_src_nodes(&freelist); 1617 1618 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1619 } 1620 1621 static void 1622 pf_src_tree_remove_state(struct pf_state *s) 1623 { 1624 struct pf_src_node *sn; 1625 struct pf_srchash *sh; 1626 uint32_t timeout; 1627 1628 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1629 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1630 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1631 1632 if (s->src_node != NULL) { 1633 sn = s->src_node; 1634 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1635 PF_HASHROW_LOCK(sh); 1636 if (s->src.tcp_est) 1637 --sn->conn; 1638 if (--sn->states == 0) 1639 sn->expire = time_uptime + timeout; 1640 PF_HASHROW_UNLOCK(sh); 1641 } 1642 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1643 sn = s->nat_src_node; 1644 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1645 PF_HASHROW_LOCK(sh); 1646 if (--sn->states == 0) 1647 sn->expire = time_uptime + timeout; 1648 PF_HASHROW_UNLOCK(sh); 1649 } 1650 s->src_node = s->nat_src_node = NULL; 1651 } 1652 1653 /* 1654 * Unlink and potentilly free a state. Function may be 1655 * called with ID hash row locked, but always returns 1656 * unlocked, since it needs to go through key hash locking. 1657 */ 1658 int 1659 pf_unlink_state(struct pf_state *s, u_int flags) 1660 { 1661 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1662 1663 if ((flags & PF_ENTER_LOCKED) == 0) 1664 PF_HASHROW_LOCK(ih); 1665 else 1666 PF_HASHROW_ASSERT(ih); 1667 1668 if (s->timeout == PFTM_UNLINKED) { 1669 /* 1670 * State is being processed 1671 * by pf_unlink_state() in 1672 * an other thread. 1673 */ 1674 PF_HASHROW_UNLOCK(ih); 1675 return (0); /* XXXGL: undefined actually */ 1676 } 1677 1678 if (s->src.state == PF_TCPS_PROXY_DST) { 1679 /* XXX wire key the right one? */ 1680 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1681 &s->key[PF_SK_WIRE]->addr[1], 1682 &s->key[PF_SK_WIRE]->addr[0], 1683 s->key[PF_SK_WIRE]->port[1], 1684 s->key[PF_SK_WIRE]->port[0], 1685 s->src.seqhi, s->src.seqlo + 1, 1686 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1687 } 1688 1689 LIST_REMOVE(s, entry); 1690 pf_src_tree_remove_state(s); 1691 1692 if (V_pfsync_delete_state_ptr != NULL) 1693 V_pfsync_delete_state_ptr(s); 1694 1695 STATE_DEC_COUNTERS(s); 1696 1697 s->timeout = PFTM_UNLINKED; 1698 1699 PF_HASHROW_UNLOCK(ih); 1700 1701 pf_detach_state(s); 1702 /* pf_state_insert() initialises refs to 2, so we can never release the 1703 * last reference here, only in pf_release_state(). */ 1704 (void)refcount_release(&s->refs); 1705 1706 return (pf_release_state(s)); 1707 } 1708 1709 void 1710 pf_free_state(struct pf_state *cur) 1711 { 1712 1713 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1714 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1715 cur->timeout)); 1716 1717 pf_normalize_tcp_cleanup(cur); 1718 uma_zfree(V_pf_state_z, cur); 1719 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1720 } 1721 1722 /* 1723 * Called only from pf_purge_thread(), thus serialized. 1724 */ 1725 static u_int 1726 pf_purge_expired_states(u_int i, int maxcheck) 1727 { 1728 struct pf_idhash *ih; 1729 struct pf_state *s; 1730 1731 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1732 1733 /* 1734 * Go through hash and unlink states that expire now. 1735 */ 1736 while (maxcheck > 0) { 1737 1738 ih = &V_pf_idhash[i]; 1739 1740 /* only take the lock if we expect to do work */ 1741 if (!LIST_EMPTY(&ih->states)) { 1742 relock: 1743 PF_HASHROW_LOCK(ih); 1744 LIST_FOREACH(s, &ih->states, entry) { 1745 if (pf_state_expires(s) <= time_uptime) { 1746 V_pf_status.states -= 1747 pf_unlink_state(s, PF_ENTER_LOCKED); 1748 goto relock; 1749 } 1750 s->rule.ptr->rule_flag |= PFRULE_REFS; 1751 if (s->nat_rule.ptr != NULL) 1752 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1753 if (s->anchor.ptr != NULL) 1754 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1755 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1756 if (s->rt_kif) 1757 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1758 } 1759 PF_HASHROW_UNLOCK(ih); 1760 } 1761 1762 /* Return when we hit end of hash. */ 1763 if (++i > pf_hashmask) { 1764 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1765 return (0); 1766 } 1767 1768 maxcheck--; 1769 } 1770 1771 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1772 1773 return (i); 1774 } 1775 1776 static void 1777 pf_purge_unlinked_rules() 1778 { 1779 struct pf_rulequeue tmpq; 1780 struct pf_rule *r, *r1; 1781 1782 /* 1783 * If we have overloading task pending, then we'd 1784 * better skip purging this time. There is a tiny 1785 * probability that overloading task references 1786 * an already unlinked rule. 1787 */ 1788 PF_OVERLOADQ_LOCK(); 1789 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1790 PF_OVERLOADQ_UNLOCK(); 1791 return; 1792 } 1793 PF_OVERLOADQ_UNLOCK(); 1794 1795 /* 1796 * Do naive mark-and-sweep garbage collecting of old rules. 1797 * Reference flag is raised by pf_purge_expired_states() 1798 * and pf_purge_expired_src_nodes(). 1799 * 1800 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1801 * use a temporary queue. 1802 */ 1803 TAILQ_INIT(&tmpq); 1804 PF_UNLNKDRULES_LOCK(); 1805 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1806 if (!(r->rule_flag & PFRULE_REFS)) { 1807 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1808 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1809 } else 1810 r->rule_flag &= ~PFRULE_REFS; 1811 } 1812 PF_UNLNKDRULES_UNLOCK(); 1813 1814 if (!TAILQ_EMPTY(&tmpq)) { 1815 PF_RULES_WLOCK(); 1816 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1817 TAILQ_REMOVE(&tmpq, r, entries); 1818 pf_free_rule(r); 1819 } 1820 PF_RULES_WUNLOCK(); 1821 } 1822 } 1823 1824 void 1825 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1826 { 1827 switch (af) { 1828 #ifdef INET 1829 case AF_INET: { 1830 u_int32_t a = ntohl(addr->addr32[0]); 1831 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1832 (a>>8)&255, a&255); 1833 if (p) { 1834 p = ntohs(p); 1835 printf(":%u", p); 1836 } 1837 break; 1838 } 1839 #endif /* INET */ 1840 #ifdef INET6 1841 case AF_INET6: { 1842 u_int16_t b; 1843 u_int8_t i, curstart, curend, maxstart, maxend; 1844 curstart = curend = maxstart = maxend = 255; 1845 for (i = 0; i < 8; i++) { 1846 if (!addr->addr16[i]) { 1847 if (curstart == 255) 1848 curstart = i; 1849 curend = i; 1850 } else { 1851 if ((curend - curstart) > 1852 (maxend - maxstart)) { 1853 maxstart = curstart; 1854 maxend = curend; 1855 } 1856 curstart = curend = 255; 1857 } 1858 } 1859 if ((curend - curstart) > 1860 (maxend - maxstart)) { 1861 maxstart = curstart; 1862 maxend = curend; 1863 } 1864 for (i = 0; i < 8; i++) { 1865 if (i >= maxstart && i <= maxend) { 1866 if (i == 0) 1867 printf(":"); 1868 if (i == maxend) 1869 printf(":"); 1870 } else { 1871 b = ntohs(addr->addr16[i]); 1872 printf("%x", b); 1873 if (i < 7) 1874 printf(":"); 1875 } 1876 } 1877 if (p) { 1878 p = ntohs(p); 1879 printf("[%u]", p); 1880 } 1881 break; 1882 } 1883 #endif /* INET6 */ 1884 } 1885 } 1886 1887 void 1888 pf_print_state(struct pf_state *s) 1889 { 1890 pf_print_state_parts(s, NULL, NULL); 1891 } 1892 1893 static void 1894 pf_print_state_parts(struct pf_state *s, 1895 struct pf_state_key *skwp, struct pf_state_key *sksp) 1896 { 1897 struct pf_state_key *skw, *sks; 1898 u_int8_t proto, dir; 1899 1900 /* Do our best to fill these, but they're skipped if NULL */ 1901 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1902 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1903 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1904 dir = s ? s->direction : 0; 1905 1906 switch (proto) { 1907 case IPPROTO_IPV4: 1908 printf("IPv4"); 1909 break; 1910 case IPPROTO_IPV6: 1911 printf("IPv6"); 1912 break; 1913 case IPPROTO_TCP: 1914 printf("TCP"); 1915 break; 1916 case IPPROTO_UDP: 1917 printf("UDP"); 1918 break; 1919 case IPPROTO_ICMP: 1920 printf("ICMP"); 1921 break; 1922 case IPPROTO_ICMPV6: 1923 printf("ICMPv6"); 1924 break; 1925 default: 1926 printf("%u", proto); 1927 break; 1928 } 1929 switch (dir) { 1930 case PF_IN: 1931 printf(" in"); 1932 break; 1933 case PF_OUT: 1934 printf(" out"); 1935 break; 1936 } 1937 if (skw) { 1938 printf(" wire: "); 1939 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1940 printf(" "); 1941 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1942 } 1943 if (sks) { 1944 printf(" stack: "); 1945 if (sks != skw) { 1946 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1947 printf(" "); 1948 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1949 } else 1950 printf("-"); 1951 } 1952 if (s) { 1953 if (proto == IPPROTO_TCP) { 1954 printf(" [lo=%u high=%u win=%u modulator=%u", 1955 s->src.seqlo, s->src.seqhi, 1956 s->src.max_win, s->src.seqdiff); 1957 if (s->src.wscale && s->dst.wscale) 1958 printf(" wscale=%u", 1959 s->src.wscale & PF_WSCALE_MASK); 1960 printf("]"); 1961 printf(" [lo=%u high=%u win=%u modulator=%u", 1962 s->dst.seqlo, s->dst.seqhi, 1963 s->dst.max_win, s->dst.seqdiff); 1964 if (s->src.wscale && s->dst.wscale) 1965 printf(" wscale=%u", 1966 s->dst.wscale & PF_WSCALE_MASK); 1967 printf("]"); 1968 } 1969 printf(" %u:%u", s->src.state, s->dst.state); 1970 } 1971 } 1972 1973 void 1974 pf_print_flags(u_int8_t f) 1975 { 1976 if (f) 1977 printf(" "); 1978 if (f & TH_FIN) 1979 printf("F"); 1980 if (f & TH_SYN) 1981 printf("S"); 1982 if (f & TH_RST) 1983 printf("R"); 1984 if (f & TH_PUSH) 1985 printf("P"); 1986 if (f & TH_ACK) 1987 printf("A"); 1988 if (f & TH_URG) 1989 printf("U"); 1990 if (f & TH_ECE) 1991 printf("E"); 1992 if (f & TH_CWR) 1993 printf("W"); 1994 } 1995 1996 #define PF_SET_SKIP_STEPS(i) \ 1997 do { \ 1998 while (head[i] != cur) { \ 1999 head[i]->skip[i].ptr = cur; \ 2000 head[i] = TAILQ_NEXT(head[i], entries); \ 2001 } \ 2002 } while (0) 2003 2004 void 2005 pf_calc_skip_steps(struct pf_rulequeue *rules) 2006 { 2007 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 2008 int i; 2009 2010 cur = TAILQ_FIRST(rules); 2011 prev = cur; 2012 for (i = 0; i < PF_SKIP_COUNT; ++i) 2013 head[i] = cur; 2014 while (cur != NULL) { 2015 2016 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2017 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2018 if (cur->direction != prev->direction) 2019 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2020 if (cur->af != prev->af) 2021 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2022 if (cur->proto != prev->proto) 2023 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2024 if (cur->src.neg != prev->src.neg || 2025 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2026 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2027 if (cur->src.port[0] != prev->src.port[0] || 2028 cur->src.port[1] != prev->src.port[1] || 2029 cur->src.port_op != prev->src.port_op) 2030 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2031 if (cur->dst.neg != prev->dst.neg || 2032 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2033 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2034 if (cur->dst.port[0] != prev->dst.port[0] || 2035 cur->dst.port[1] != prev->dst.port[1] || 2036 cur->dst.port_op != prev->dst.port_op) 2037 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2038 2039 prev = cur; 2040 cur = TAILQ_NEXT(cur, entries); 2041 } 2042 for (i = 0; i < PF_SKIP_COUNT; ++i) 2043 PF_SET_SKIP_STEPS(i); 2044 } 2045 2046 static int 2047 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2048 { 2049 if (aw1->type != aw2->type) 2050 return (1); 2051 switch (aw1->type) { 2052 case PF_ADDR_ADDRMASK: 2053 case PF_ADDR_RANGE: 2054 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2055 return (1); 2056 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2057 return (1); 2058 return (0); 2059 case PF_ADDR_DYNIFTL: 2060 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2061 case PF_ADDR_NOROUTE: 2062 case PF_ADDR_URPFFAILED: 2063 return (0); 2064 case PF_ADDR_TABLE: 2065 return (aw1->p.tbl != aw2->p.tbl); 2066 default: 2067 printf("invalid address type: %d\n", aw1->type); 2068 return (1); 2069 } 2070 } 2071 2072 /** 2073 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2074 * header isn't always a full checksum. In some cases (i.e. output) it's a 2075 * pseudo-header checksum, which is a partial checksum over src/dst IP 2076 * addresses, protocol number and length. 2077 * 2078 * That means we have the following cases: 2079 * * Input or forwarding: we don't have TSO, the checksum fields are full 2080 * checksums, we need to update the checksum whenever we change anything. 2081 * * Output (i.e. the checksum is a pseudo-header checksum): 2082 * x The field being updated is src/dst address or affects the length of 2083 * the packet. We need to update the pseudo-header checksum (note that this 2084 * checksum is not ones' complement). 2085 * x Some other field is being modified (e.g. src/dst port numbers): We 2086 * don't have to update anything. 2087 **/ 2088 u_int16_t 2089 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2090 { 2091 u_int32_t l; 2092 2093 if (udp && !cksum) 2094 return (0x0000); 2095 l = cksum + old - new; 2096 l = (l >> 16) + (l & 65535); 2097 l = l & 65535; 2098 if (udp && !l) 2099 return (0xFFFF); 2100 return (l); 2101 } 2102 2103 u_int16_t 2104 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2105 u_int16_t new, u_int8_t udp) 2106 { 2107 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2108 return (cksum); 2109 2110 return (pf_cksum_fixup(cksum, old, new, udp)); 2111 } 2112 2113 static void 2114 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2115 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2116 sa_family_t af) 2117 { 2118 struct pf_addr ao; 2119 u_int16_t po = *p; 2120 2121 PF_ACPY(&ao, a, af); 2122 PF_ACPY(a, an, af); 2123 2124 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2125 *pc = ~*pc; 2126 2127 *p = pn; 2128 2129 switch (af) { 2130 #ifdef INET 2131 case AF_INET: 2132 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2133 ao.addr16[0], an->addr16[0], 0), 2134 ao.addr16[1], an->addr16[1], 0); 2135 *p = pn; 2136 2137 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2138 ao.addr16[0], an->addr16[0], u), 2139 ao.addr16[1], an->addr16[1], u); 2140 2141 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2142 break; 2143 #endif /* INET */ 2144 #ifdef INET6 2145 case AF_INET6: 2146 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2147 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2148 pf_cksum_fixup(pf_cksum_fixup(*pc, 2149 ao.addr16[0], an->addr16[0], u), 2150 ao.addr16[1], an->addr16[1], u), 2151 ao.addr16[2], an->addr16[2], u), 2152 ao.addr16[3], an->addr16[3], u), 2153 ao.addr16[4], an->addr16[4], u), 2154 ao.addr16[5], an->addr16[5], u), 2155 ao.addr16[6], an->addr16[6], u), 2156 ao.addr16[7], an->addr16[7], u); 2157 2158 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2159 break; 2160 #endif /* INET6 */ 2161 } 2162 2163 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2164 CSUM_DELAY_DATA_IPV6)) { 2165 *pc = ~*pc; 2166 if (! *pc) 2167 *pc = 0xffff; 2168 } 2169 } 2170 2171 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2172 void 2173 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2174 { 2175 u_int32_t ao; 2176 2177 memcpy(&ao, a, sizeof(ao)); 2178 memcpy(a, &an, sizeof(u_int32_t)); 2179 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2180 ao % 65536, an % 65536, u); 2181 } 2182 2183 void 2184 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2185 { 2186 u_int32_t ao; 2187 2188 memcpy(&ao, a, sizeof(ao)); 2189 memcpy(a, &an, sizeof(u_int32_t)); 2190 2191 *c = pf_proto_cksum_fixup(m, 2192 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2193 ao % 65536, an % 65536, udp); 2194 } 2195 2196 #ifdef INET6 2197 static void 2198 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2199 { 2200 struct pf_addr ao; 2201 2202 PF_ACPY(&ao, a, AF_INET6); 2203 PF_ACPY(a, an, AF_INET6); 2204 2205 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2206 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2207 pf_cksum_fixup(pf_cksum_fixup(*c, 2208 ao.addr16[0], an->addr16[0], u), 2209 ao.addr16[1], an->addr16[1], u), 2210 ao.addr16[2], an->addr16[2], u), 2211 ao.addr16[3], an->addr16[3], u), 2212 ao.addr16[4], an->addr16[4], u), 2213 ao.addr16[5], an->addr16[5], u), 2214 ao.addr16[6], an->addr16[6], u), 2215 ao.addr16[7], an->addr16[7], u); 2216 } 2217 #endif /* INET6 */ 2218 2219 static void 2220 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2221 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2222 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2223 { 2224 struct pf_addr oia, ooa; 2225 2226 PF_ACPY(&oia, ia, af); 2227 if (oa) 2228 PF_ACPY(&ooa, oa, af); 2229 2230 /* Change inner protocol port, fix inner protocol checksum. */ 2231 if (ip != NULL) { 2232 u_int16_t oip = *ip; 2233 u_int32_t opc; 2234 2235 if (pc != NULL) 2236 opc = *pc; 2237 *ip = np; 2238 if (pc != NULL) 2239 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2240 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2241 if (pc != NULL) 2242 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2243 } 2244 /* Change inner ip address, fix inner ip and icmp checksums. */ 2245 PF_ACPY(ia, na, af); 2246 switch (af) { 2247 #ifdef INET 2248 case AF_INET: { 2249 u_int32_t oh2c = *h2c; 2250 2251 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2252 oia.addr16[0], ia->addr16[0], 0), 2253 oia.addr16[1], ia->addr16[1], 0); 2254 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2255 oia.addr16[0], ia->addr16[0], 0), 2256 oia.addr16[1], ia->addr16[1], 0); 2257 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2258 break; 2259 } 2260 #endif /* INET */ 2261 #ifdef INET6 2262 case AF_INET6: 2263 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2264 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2265 pf_cksum_fixup(pf_cksum_fixup(*ic, 2266 oia.addr16[0], ia->addr16[0], u), 2267 oia.addr16[1], ia->addr16[1], u), 2268 oia.addr16[2], ia->addr16[2], u), 2269 oia.addr16[3], ia->addr16[3], u), 2270 oia.addr16[4], ia->addr16[4], u), 2271 oia.addr16[5], ia->addr16[5], u), 2272 oia.addr16[6], ia->addr16[6], u), 2273 oia.addr16[7], ia->addr16[7], u); 2274 break; 2275 #endif /* INET6 */ 2276 } 2277 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2278 if (oa) { 2279 PF_ACPY(oa, na, af); 2280 switch (af) { 2281 #ifdef INET 2282 case AF_INET: 2283 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2284 ooa.addr16[0], oa->addr16[0], 0), 2285 ooa.addr16[1], oa->addr16[1], 0); 2286 break; 2287 #endif /* INET */ 2288 #ifdef INET6 2289 case AF_INET6: 2290 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2291 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2292 pf_cksum_fixup(pf_cksum_fixup(*ic, 2293 ooa.addr16[0], oa->addr16[0], u), 2294 ooa.addr16[1], oa->addr16[1], u), 2295 ooa.addr16[2], oa->addr16[2], u), 2296 ooa.addr16[3], oa->addr16[3], u), 2297 ooa.addr16[4], oa->addr16[4], u), 2298 ooa.addr16[5], oa->addr16[5], u), 2299 ooa.addr16[6], oa->addr16[6], u), 2300 ooa.addr16[7], oa->addr16[7], u); 2301 break; 2302 #endif /* INET6 */ 2303 } 2304 } 2305 } 2306 2307 2308 /* 2309 * Need to modulate the sequence numbers in the TCP SACK option 2310 * (credits to Krzysztof Pfaff for report and patch) 2311 */ 2312 static int 2313 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2314 struct tcphdr *th, struct pf_state_peer *dst) 2315 { 2316 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2317 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2318 int copyback = 0, i, olen; 2319 struct sackblk sack; 2320 2321 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2322 if (hlen < TCPOLEN_SACKLEN || 2323 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2324 return 0; 2325 2326 while (hlen >= TCPOLEN_SACKLEN) { 2327 olen = opt[1]; 2328 switch (*opt) { 2329 case TCPOPT_EOL: /* FALLTHROUGH */ 2330 case TCPOPT_NOP: 2331 opt++; 2332 hlen--; 2333 break; 2334 case TCPOPT_SACK: 2335 if (olen > hlen) 2336 olen = hlen; 2337 if (olen >= TCPOLEN_SACKLEN) { 2338 for (i = 2; i + TCPOLEN_SACK <= olen; 2339 i += TCPOLEN_SACK) { 2340 memcpy(&sack, &opt[i], sizeof(sack)); 2341 pf_change_proto_a(m, &sack.start, &th->th_sum, 2342 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2343 pf_change_proto_a(m, &sack.end, &th->th_sum, 2344 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2345 memcpy(&opt[i], &sack, sizeof(sack)); 2346 } 2347 copyback = 1; 2348 } 2349 /* FALLTHROUGH */ 2350 default: 2351 if (olen < 2) 2352 olen = 2; 2353 hlen -= olen; 2354 opt += olen; 2355 } 2356 } 2357 2358 if (copyback) 2359 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2360 return (copyback); 2361 } 2362 2363 static void 2364 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2365 const struct pf_addr *saddr, const struct pf_addr *daddr, 2366 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2367 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2368 u_int16_t rtag, struct ifnet *ifp) 2369 { 2370 struct pf_send_entry *pfse; 2371 struct mbuf *m; 2372 int len, tlen; 2373 #ifdef INET 2374 struct ip *h = NULL; 2375 #endif /* INET */ 2376 #ifdef INET6 2377 struct ip6_hdr *h6 = NULL; 2378 #endif /* INET6 */ 2379 struct tcphdr *th; 2380 char *opt; 2381 struct pf_mtag *pf_mtag; 2382 2383 len = 0; 2384 th = NULL; 2385 2386 /* maximum segment size tcp option */ 2387 tlen = sizeof(struct tcphdr); 2388 if (mss) 2389 tlen += 4; 2390 2391 switch (af) { 2392 #ifdef INET 2393 case AF_INET: 2394 len = sizeof(struct ip) + tlen; 2395 break; 2396 #endif /* INET */ 2397 #ifdef INET6 2398 case AF_INET6: 2399 len = sizeof(struct ip6_hdr) + tlen; 2400 break; 2401 #endif /* INET6 */ 2402 default: 2403 panic("%s: unsupported af %d", __func__, af); 2404 } 2405 2406 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2407 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2408 if (pfse == NULL) 2409 return; 2410 m = m_gethdr(M_NOWAIT, MT_DATA); 2411 if (m == NULL) { 2412 free(pfse, M_PFTEMP); 2413 return; 2414 } 2415 #ifdef MAC 2416 mac_netinet_firewall_send(m); 2417 #endif 2418 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2419 free(pfse, M_PFTEMP); 2420 m_freem(m); 2421 return; 2422 } 2423 if (tag) 2424 m->m_flags |= M_SKIP_FIREWALL; 2425 pf_mtag->tag = rtag; 2426 2427 if (r != NULL && r->rtableid >= 0) 2428 M_SETFIB(m, r->rtableid); 2429 2430 #ifdef ALTQ 2431 if (r != NULL && r->qid) { 2432 pf_mtag->qid = r->qid; 2433 2434 /* add hints for ecn */ 2435 pf_mtag->hdr = mtod(m, struct ip *); 2436 } 2437 #endif /* ALTQ */ 2438 m->m_data += max_linkhdr; 2439 m->m_pkthdr.len = m->m_len = len; 2440 m->m_pkthdr.rcvif = NULL; 2441 bzero(m->m_data, len); 2442 switch (af) { 2443 #ifdef INET 2444 case AF_INET: 2445 h = mtod(m, struct ip *); 2446 2447 /* IP header fields included in the TCP checksum */ 2448 h->ip_p = IPPROTO_TCP; 2449 h->ip_len = htons(tlen); 2450 h->ip_src.s_addr = saddr->v4.s_addr; 2451 h->ip_dst.s_addr = daddr->v4.s_addr; 2452 2453 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2454 break; 2455 #endif /* INET */ 2456 #ifdef INET6 2457 case AF_INET6: 2458 h6 = mtod(m, struct ip6_hdr *); 2459 2460 /* IP header fields included in the TCP checksum */ 2461 h6->ip6_nxt = IPPROTO_TCP; 2462 h6->ip6_plen = htons(tlen); 2463 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2464 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2465 2466 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2467 break; 2468 #endif /* INET6 */ 2469 } 2470 2471 /* TCP header */ 2472 th->th_sport = sport; 2473 th->th_dport = dport; 2474 th->th_seq = htonl(seq); 2475 th->th_ack = htonl(ack); 2476 th->th_off = tlen >> 2; 2477 th->th_flags = flags; 2478 th->th_win = htons(win); 2479 2480 if (mss) { 2481 opt = (char *)(th + 1); 2482 opt[0] = TCPOPT_MAXSEG; 2483 opt[1] = 4; 2484 HTONS(mss); 2485 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2486 } 2487 2488 switch (af) { 2489 #ifdef INET 2490 case AF_INET: 2491 /* TCP checksum */ 2492 th->th_sum = in_cksum(m, len); 2493 2494 /* Finish the IP header */ 2495 h->ip_v = 4; 2496 h->ip_hl = sizeof(*h) >> 2; 2497 h->ip_tos = IPTOS_LOWDELAY; 2498 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2499 h->ip_len = htons(len); 2500 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2501 h->ip_sum = 0; 2502 2503 pfse->pfse_type = PFSE_IP; 2504 break; 2505 #endif /* INET */ 2506 #ifdef INET6 2507 case AF_INET6: 2508 /* TCP checksum */ 2509 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2510 sizeof(struct ip6_hdr), tlen); 2511 2512 h6->ip6_vfc |= IPV6_VERSION; 2513 h6->ip6_hlim = IPV6_DEFHLIM; 2514 2515 pfse->pfse_type = PFSE_IP6; 2516 break; 2517 #endif /* INET6 */ 2518 } 2519 pfse->pfse_m = m; 2520 pf_send(pfse); 2521 } 2522 2523 static void 2524 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2525 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2526 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2527 u_short *reason) 2528 { 2529 struct pf_addr * const saddr = pd->src; 2530 struct pf_addr * const daddr = pd->dst; 2531 sa_family_t af = pd->af; 2532 2533 /* undo NAT changes, if they have taken place */ 2534 if (nr != NULL) { 2535 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2536 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2537 if (pd->sport) 2538 *pd->sport = sk->port[pd->sidx]; 2539 if (pd->dport) 2540 *pd->dport = sk->port[pd->didx]; 2541 if (pd->proto_sum) 2542 *pd->proto_sum = bproto_sum; 2543 if (pd->ip_sum) 2544 *pd->ip_sum = bip_sum; 2545 m_copyback(m, off, hdrlen, pd->hdr.any); 2546 } 2547 if (pd->proto == IPPROTO_TCP && 2548 ((r->rule_flag & PFRULE_RETURNRST) || 2549 (r->rule_flag & PFRULE_RETURN)) && 2550 !(th->th_flags & TH_RST)) { 2551 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2552 int len = 0; 2553 #ifdef INET 2554 struct ip *h4; 2555 #endif 2556 #ifdef INET6 2557 struct ip6_hdr *h6; 2558 #endif 2559 2560 switch (af) { 2561 #ifdef INET 2562 case AF_INET: 2563 h4 = mtod(m, struct ip *); 2564 len = ntohs(h4->ip_len) - off; 2565 break; 2566 #endif 2567 #ifdef INET6 2568 case AF_INET6: 2569 h6 = mtod(m, struct ip6_hdr *); 2570 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2571 break; 2572 #endif 2573 } 2574 2575 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2576 REASON_SET(reason, PFRES_PROTCKSUM); 2577 else { 2578 if (th->th_flags & TH_SYN) 2579 ack++; 2580 if (th->th_flags & TH_FIN) 2581 ack++; 2582 pf_send_tcp(m, r, af, pd->dst, 2583 pd->src, th->th_dport, th->th_sport, 2584 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2585 r->return_ttl, 1, 0, kif->pfik_ifp); 2586 } 2587 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2588 r->return_icmp) 2589 pf_send_icmp(m, r->return_icmp >> 8, 2590 r->return_icmp & 255, af, r); 2591 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2592 r->return_icmp6) 2593 pf_send_icmp(m, r->return_icmp6 >> 8, 2594 r->return_icmp6 & 255, af, r); 2595 } 2596 2597 2598 static int 2599 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2600 { 2601 struct m_tag *mtag; 2602 2603 KASSERT(prio <= PF_PRIO_MAX, 2604 ("%s with invalid pcp", __func__)); 2605 2606 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2607 if (mtag == NULL) { 2608 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2609 sizeof(uint8_t), M_NOWAIT); 2610 if (mtag == NULL) 2611 return (ENOMEM); 2612 m_tag_prepend(m, mtag); 2613 } 2614 2615 *(uint8_t *)(mtag + 1) = prio; 2616 return (0); 2617 } 2618 2619 static int 2620 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2621 { 2622 struct m_tag *mtag; 2623 u_int8_t mpcp; 2624 2625 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2626 if (mtag == NULL) 2627 return (0); 2628 2629 if (prio == PF_PRIO_ZERO) 2630 prio = 0; 2631 2632 mpcp = *(uint8_t *)(mtag + 1); 2633 2634 return (mpcp == prio); 2635 } 2636 2637 static void 2638 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2639 struct pf_rule *r) 2640 { 2641 struct pf_send_entry *pfse; 2642 struct mbuf *m0; 2643 struct pf_mtag *pf_mtag; 2644 2645 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2646 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2647 if (pfse == NULL) 2648 return; 2649 2650 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2651 free(pfse, M_PFTEMP); 2652 return; 2653 } 2654 2655 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2656 free(pfse, M_PFTEMP); 2657 return; 2658 } 2659 /* XXX: revisit */ 2660 m0->m_flags |= M_SKIP_FIREWALL; 2661 2662 if (r->rtableid >= 0) 2663 M_SETFIB(m0, r->rtableid); 2664 2665 #ifdef ALTQ 2666 if (r->qid) { 2667 pf_mtag->qid = r->qid; 2668 /* add hints for ecn */ 2669 pf_mtag->hdr = mtod(m0, struct ip *); 2670 } 2671 #endif /* ALTQ */ 2672 2673 switch (af) { 2674 #ifdef INET 2675 case AF_INET: 2676 pfse->pfse_type = PFSE_ICMP; 2677 break; 2678 #endif /* INET */ 2679 #ifdef INET6 2680 case AF_INET6: 2681 pfse->pfse_type = PFSE_ICMP6; 2682 break; 2683 #endif /* INET6 */ 2684 } 2685 pfse->pfse_m = m0; 2686 pfse->icmpopts.type = type; 2687 pfse->icmpopts.code = code; 2688 pf_send(pfse); 2689 } 2690 2691 /* 2692 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2693 * If n is 0, they match if they are equal. If n is != 0, they match if they 2694 * are different. 2695 */ 2696 int 2697 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2698 struct pf_addr *b, sa_family_t af) 2699 { 2700 int match = 0; 2701 2702 switch (af) { 2703 #ifdef INET 2704 case AF_INET: 2705 if ((a->addr32[0] & m->addr32[0]) == 2706 (b->addr32[0] & m->addr32[0])) 2707 match++; 2708 break; 2709 #endif /* INET */ 2710 #ifdef INET6 2711 case AF_INET6: 2712 if (((a->addr32[0] & m->addr32[0]) == 2713 (b->addr32[0] & m->addr32[0])) && 2714 ((a->addr32[1] & m->addr32[1]) == 2715 (b->addr32[1] & m->addr32[1])) && 2716 ((a->addr32[2] & m->addr32[2]) == 2717 (b->addr32[2] & m->addr32[2])) && 2718 ((a->addr32[3] & m->addr32[3]) == 2719 (b->addr32[3] & m->addr32[3]))) 2720 match++; 2721 break; 2722 #endif /* INET6 */ 2723 } 2724 if (match) { 2725 if (n) 2726 return (0); 2727 else 2728 return (1); 2729 } else { 2730 if (n) 2731 return (1); 2732 else 2733 return (0); 2734 } 2735 } 2736 2737 /* 2738 * Return 1 if b <= a <= e, otherwise return 0. 2739 */ 2740 int 2741 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2742 struct pf_addr *a, sa_family_t af) 2743 { 2744 switch (af) { 2745 #ifdef INET 2746 case AF_INET: 2747 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2748 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2749 return (0); 2750 break; 2751 #endif /* INET */ 2752 #ifdef INET6 2753 case AF_INET6: { 2754 int i; 2755 2756 /* check a >= b */ 2757 for (i = 0; i < 4; ++i) 2758 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2759 break; 2760 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2761 return (0); 2762 /* check a <= e */ 2763 for (i = 0; i < 4; ++i) 2764 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2765 break; 2766 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2767 return (0); 2768 break; 2769 } 2770 #endif /* INET6 */ 2771 } 2772 return (1); 2773 } 2774 2775 static int 2776 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2777 { 2778 switch (op) { 2779 case PF_OP_IRG: 2780 return ((p > a1) && (p < a2)); 2781 case PF_OP_XRG: 2782 return ((p < a1) || (p > a2)); 2783 case PF_OP_RRG: 2784 return ((p >= a1) && (p <= a2)); 2785 case PF_OP_EQ: 2786 return (p == a1); 2787 case PF_OP_NE: 2788 return (p != a1); 2789 case PF_OP_LT: 2790 return (p < a1); 2791 case PF_OP_LE: 2792 return (p <= a1); 2793 case PF_OP_GT: 2794 return (p > a1); 2795 case PF_OP_GE: 2796 return (p >= a1); 2797 } 2798 return (0); /* never reached */ 2799 } 2800 2801 int 2802 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2803 { 2804 NTOHS(a1); 2805 NTOHS(a2); 2806 NTOHS(p); 2807 return (pf_match(op, a1, a2, p)); 2808 } 2809 2810 static int 2811 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2812 { 2813 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2814 return (0); 2815 return (pf_match(op, a1, a2, u)); 2816 } 2817 2818 static int 2819 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2820 { 2821 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2822 return (0); 2823 return (pf_match(op, a1, a2, g)); 2824 } 2825 2826 int 2827 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2828 { 2829 if (*tag == -1) 2830 *tag = mtag; 2831 2832 return ((!r->match_tag_not && r->match_tag == *tag) || 2833 (r->match_tag_not && r->match_tag != *tag)); 2834 } 2835 2836 int 2837 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2838 { 2839 2840 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2841 2842 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2843 return (ENOMEM); 2844 2845 pd->pf_mtag->tag = tag; 2846 2847 return (0); 2848 } 2849 2850 #define PF_ANCHOR_STACKSIZE 32 2851 struct pf_anchor_stackframe { 2852 struct pf_ruleset *rs; 2853 struct pf_rule *r; /* XXX: + match bit */ 2854 struct pf_anchor *child; 2855 }; 2856 2857 /* 2858 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2859 */ 2860 #define PF_ANCHORSTACK_MATCH 0x00000001 2861 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2862 2863 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2864 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2865 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2866 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2867 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2868 } while (0) 2869 2870 void 2871 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2872 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2873 int *match) 2874 { 2875 struct pf_anchor_stackframe *f; 2876 2877 PF_RULES_RASSERT(); 2878 2879 if (match) 2880 *match = 0; 2881 if (*depth >= PF_ANCHOR_STACKSIZE) { 2882 printf("%s: anchor stack overflow on %s\n", 2883 __func__, (*r)->anchor->name); 2884 *r = TAILQ_NEXT(*r, entries); 2885 return; 2886 } else if (*depth == 0 && a != NULL) 2887 *a = *r; 2888 f = stack + (*depth)++; 2889 f->rs = *rs; 2890 f->r = *r; 2891 if ((*r)->anchor_wildcard) { 2892 struct pf_anchor_node *parent = &(*r)->anchor->children; 2893 2894 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2895 *r = NULL; 2896 return; 2897 } 2898 *rs = &f->child->ruleset; 2899 } else { 2900 f->child = NULL; 2901 *rs = &(*r)->anchor->ruleset; 2902 } 2903 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2904 } 2905 2906 int 2907 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2908 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2909 int *match) 2910 { 2911 struct pf_anchor_stackframe *f; 2912 struct pf_rule *fr; 2913 int quick = 0; 2914 2915 PF_RULES_RASSERT(); 2916 2917 do { 2918 if (*depth <= 0) 2919 break; 2920 f = stack + *depth - 1; 2921 fr = PF_ANCHOR_RULE(f); 2922 if (f->child != NULL) { 2923 struct pf_anchor_node *parent; 2924 2925 /* 2926 * This block traverses through 2927 * a wildcard anchor. 2928 */ 2929 parent = &fr->anchor->children; 2930 if (match != NULL && *match) { 2931 /* 2932 * If any of "*" matched, then 2933 * "foo/ *" matched, mark frame 2934 * appropriately. 2935 */ 2936 PF_ANCHOR_SET_MATCH(f); 2937 *match = 0; 2938 } 2939 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2940 if (f->child != NULL) { 2941 *rs = &f->child->ruleset; 2942 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2943 if (*r == NULL) 2944 continue; 2945 else 2946 break; 2947 } 2948 } 2949 (*depth)--; 2950 if (*depth == 0 && a != NULL) 2951 *a = NULL; 2952 *rs = f->rs; 2953 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2954 quick = fr->quick; 2955 *r = TAILQ_NEXT(fr, entries); 2956 } while (*r == NULL); 2957 2958 return (quick); 2959 } 2960 2961 #ifdef INET6 2962 void 2963 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2964 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2965 { 2966 switch (af) { 2967 #ifdef INET 2968 case AF_INET: 2969 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2970 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2971 break; 2972 #endif /* INET */ 2973 case AF_INET6: 2974 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2975 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2976 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2977 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2978 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2979 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2980 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2981 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2982 break; 2983 } 2984 } 2985 2986 void 2987 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2988 { 2989 switch (af) { 2990 #ifdef INET 2991 case AF_INET: 2992 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2993 break; 2994 #endif /* INET */ 2995 case AF_INET6: 2996 if (addr->addr32[3] == 0xffffffff) { 2997 addr->addr32[3] = 0; 2998 if (addr->addr32[2] == 0xffffffff) { 2999 addr->addr32[2] = 0; 3000 if (addr->addr32[1] == 0xffffffff) { 3001 addr->addr32[1] = 0; 3002 addr->addr32[0] = 3003 htonl(ntohl(addr->addr32[0]) + 1); 3004 } else 3005 addr->addr32[1] = 3006 htonl(ntohl(addr->addr32[1]) + 1); 3007 } else 3008 addr->addr32[2] = 3009 htonl(ntohl(addr->addr32[2]) + 1); 3010 } else 3011 addr->addr32[3] = 3012 htonl(ntohl(addr->addr32[3]) + 1); 3013 break; 3014 } 3015 } 3016 #endif /* INET6 */ 3017 3018 int 3019 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3020 { 3021 struct pf_addr *saddr, *daddr; 3022 u_int16_t sport, dport; 3023 struct inpcbinfo *pi; 3024 struct inpcb *inp; 3025 3026 pd->lookup.uid = UID_MAX; 3027 pd->lookup.gid = GID_MAX; 3028 3029 switch (pd->proto) { 3030 case IPPROTO_TCP: 3031 if (pd->hdr.tcp == NULL) 3032 return (-1); 3033 sport = pd->hdr.tcp->th_sport; 3034 dport = pd->hdr.tcp->th_dport; 3035 pi = &V_tcbinfo; 3036 break; 3037 case IPPROTO_UDP: 3038 if (pd->hdr.udp == NULL) 3039 return (-1); 3040 sport = pd->hdr.udp->uh_sport; 3041 dport = pd->hdr.udp->uh_dport; 3042 pi = &V_udbinfo; 3043 break; 3044 default: 3045 return (-1); 3046 } 3047 if (direction == PF_IN) { 3048 saddr = pd->src; 3049 daddr = pd->dst; 3050 } else { 3051 u_int16_t p; 3052 3053 p = sport; 3054 sport = dport; 3055 dport = p; 3056 saddr = pd->dst; 3057 daddr = pd->src; 3058 } 3059 switch (pd->af) { 3060 #ifdef INET 3061 case AF_INET: 3062 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3063 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3064 if (inp == NULL) { 3065 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3066 daddr->v4, dport, INPLOOKUP_WILDCARD | 3067 INPLOOKUP_RLOCKPCB, NULL, m); 3068 if (inp == NULL) 3069 return (-1); 3070 } 3071 break; 3072 #endif /* INET */ 3073 #ifdef INET6 3074 case AF_INET6: 3075 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3076 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3077 if (inp == NULL) { 3078 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3079 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3080 INPLOOKUP_RLOCKPCB, NULL, m); 3081 if (inp == NULL) 3082 return (-1); 3083 } 3084 break; 3085 #endif /* INET6 */ 3086 3087 default: 3088 return (-1); 3089 } 3090 INP_RLOCK_ASSERT(inp); 3091 pd->lookup.uid = inp->inp_cred->cr_uid; 3092 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3093 INP_RUNLOCK(inp); 3094 3095 return (1); 3096 } 3097 3098 static u_int8_t 3099 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3100 { 3101 int hlen; 3102 u_int8_t hdr[60]; 3103 u_int8_t *opt, optlen; 3104 u_int8_t wscale = 0; 3105 3106 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3107 if (hlen <= sizeof(struct tcphdr)) 3108 return (0); 3109 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3110 return (0); 3111 opt = hdr + sizeof(struct tcphdr); 3112 hlen -= sizeof(struct tcphdr); 3113 while (hlen >= 3) { 3114 switch (*opt) { 3115 case TCPOPT_EOL: 3116 case TCPOPT_NOP: 3117 ++opt; 3118 --hlen; 3119 break; 3120 case TCPOPT_WINDOW: 3121 wscale = opt[2]; 3122 if (wscale > TCP_MAX_WINSHIFT) 3123 wscale = TCP_MAX_WINSHIFT; 3124 wscale |= PF_WSCALE_FLAG; 3125 /* FALLTHROUGH */ 3126 default: 3127 optlen = opt[1]; 3128 if (optlen < 2) 3129 optlen = 2; 3130 hlen -= optlen; 3131 opt += optlen; 3132 break; 3133 } 3134 } 3135 return (wscale); 3136 } 3137 3138 static u_int16_t 3139 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3140 { 3141 int hlen; 3142 u_int8_t hdr[60]; 3143 u_int8_t *opt, optlen; 3144 u_int16_t mss = V_tcp_mssdflt; 3145 3146 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3147 if (hlen <= sizeof(struct tcphdr)) 3148 return (0); 3149 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3150 return (0); 3151 opt = hdr + sizeof(struct tcphdr); 3152 hlen -= sizeof(struct tcphdr); 3153 while (hlen >= TCPOLEN_MAXSEG) { 3154 switch (*opt) { 3155 case TCPOPT_EOL: 3156 case TCPOPT_NOP: 3157 ++opt; 3158 --hlen; 3159 break; 3160 case TCPOPT_MAXSEG: 3161 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3162 NTOHS(mss); 3163 /* FALLTHROUGH */ 3164 default: 3165 optlen = opt[1]; 3166 if (optlen < 2) 3167 optlen = 2; 3168 hlen -= optlen; 3169 opt += optlen; 3170 break; 3171 } 3172 } 3173 return (mss); 3174 } 3175 3176 static u_int16_t 3177 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3178 { 3179 struct nhop_object *nh; 3180 #ifdef INET6 3181 struct in6_addr dst6; 3182 uint32_t scopeid; 3183 #endif /* INET6 */ 3184 int hlen = 0; 3185 uint16_t mss = 0; 3186 3187 NET_EPOCH_ASSERT(); 3188 3189 switch (af) { 3190 #ifdef INET 3191 case AF_INET: 3192 hlen = sizeof(struct ip); 3193 nh = fib4_lookup(rtableid, addr->v4, 0, 0, 0); 3194 if (nh != NULL) 3195 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3196 break; 3197 #endif /* INET */ 3198 #ifdef INET6 3199 case AF_INET6: 3200 hlen = sizeof(struct ip6_hdr); 3201 in6_splitscope(&addr->v6, &dst6, &scopeid); 3202 nh = fib6_lookup(rtableid, &dst6, scopeid, 0, 0); 3203 if (nh != NULL) 3204 mss = nh->nh_mtu - hlen - sizeof(struct tcphdr); 3205 break; 3206 #endif /* INET6 */ 3207 } 3208 3209 mss = max(V_tcp_mssdflt, mss); 3210 mss = min(mss, offer); 3211 mss = max(mss, 64); /* sanity - at least max opt space */ 3212 return (mss); 3213 } 3214 3215 static u_int32_t 3216 pf_tcp_iss(struct pf_pdesc *pd) 3217 { 3218 MD5_CTX ctx; 3219 u_int32_t digest[4]; 3220 3221 if (V_pf_tcp_secret_init == 0) { 3222 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3223 MD5Init(&V_pf_tcp_secret_ctx); 3224 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3225 sizeof(V_pf_tcp_secret)); 3226 V_pf_tcp_secret_init = 1; 3227 } 3228 3229 ctx = V_pf_tcp_secret_ctx; 3230 3231 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3232 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3233 if (pd->af == AF_INET6) { 3234 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3235 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3236 } else { 3237 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3238 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3239 } 3240 MD5Final((u_char *)digest, &ctx); 3241 V_pf_tcp_iss_off += 4096; 3242 #define ISN_RANDOM_INCREMENT (4096 - 1) 3243 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3244 V_pf_tcp_iss_off); 3245 #undef ISN_RANDOM_INCREMENT 3246 } 3247 3248 static int 3249 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3250 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3251 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3252 { 3253 struct pf_rule *nr = NULL; 3254 struct pf_addr * const saddr = pd->src; 3255 struct pf_addr * const daddr = pd->dst; 3256 sa_family_t af = pd->af; 3257 struct pf_rule *r, *a = NULL; 3258 struct pf_ruleset *ruleset = NULL; 3259 struct pf_src_node *nsn = NULL; 3260 struct tcphdr *th = pd->hdr.tcp; 3261 struct pf_state_key *sk = NULL, *nk = NULL; 3262 u_short reason; 3263 int rewrite = 0, hdrlen = 0; 3264 int tag = -1, rtableid = -1; 3265 int asd = 0; 3266 int match = 0; 3267 int state_icmp = 0; 3268 u_int16_t sport = 0, dport = 0; 3269 u_int16_t bproto_sum = 0, bip_sum = 0; 3270 u_int8_t icmptype = 0, icmpcode = 0; 3271 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3272 3273 PF_RULES_RASSERT(); 3274 3275 if (inp != NULL) { 3276 INP_LOCK_ASSERT(inp); 3277 pd->lookup.uid = inp->inp_cred->cr_uid; 3278 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3279 pd->lookup.done = 1; 3280 } 3281 3282 switch (pd->proto) { 3283 case IPPROTO_TCP: 3284 sport = th->th_sport; 3285 dport = th->th_dport; 3286 hdrlen = sizeof(*th); 3287 break; 3288 case IPPROTO_UDP: 3289 sport = pd->hdr.udp->uh_sport; 3290 dport = pd->hdr.udp->uh_dport; 3291 hdrlen = sizeof(*pd->hdr.udp); 3292 break; 3293 #ifdef INET 3294 case IPPROTO_ICMP: 3295 if (pd->af != AF_INET) 3296 break; 3297 sport = dport = pd->hdr.icmp->icmp_id; 3298 hdrlen = sizeof(*pd->hdr.icmp); 3299 icmptype = pd->hdr.icmp->icmp_type; 3300 icmpcode = pd->hdr.icmp->icmp_code; 3301 3302 if (icmptype == ICMP_UNREACH || 3303 icmptype == ICMP_SOURCEQUENCH || 3304 icmptype == ICMP_REDIRECT || 3305 icmptype == ICMP_TIMXCEED || 3306 icmptype == ICMP_PARAMPROB) 3307 state_icmp++; 3308 break; 3309 #endif /* INET */ 3310 #ifdef INET6 3311 case IPPROTO_ICMPV6: 3312 if (af != AF_INET6) 3313 break; 3314 sport = dport = pd->hdr.icmp6->icmp6_id; 3315 hdrlen = sizeof(*pd->hdr.icmp6); 3316 icmptype = pd->hdr.icmp6->icmp6_type; 3317 icmpcode = pd->hdr.icmp6->icmp6_code; 3318 3319 if (icmptype == ICMP6_DST_UNREACH || 3320 icmptype == ICMP6_PACKET_TOO_BIG || 3321 icmptype == ICMP6_TIME_EXCEEDED || 3322 icmptype == ICMP6_PARAM_PROB) 3323 state_icmp++; 3324 break; 3325 #endif /* INET6 */ 3326 default: 3327 sport = dport = hdrlen = 0; 3328 break; 3329 } 3330 3331 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3332 3333 /* check packet for BINAT/NAT/RDR */ 3334 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3335 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3336 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3337 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3338 3339 if (pd->ip_sum) 3340 bip_sum = *pd->ip_sum; 3341 3342 switch (pd->proto) { 3343 case IPPROTO_TCP: 3344 bproto_sum = th->th_sum; 3345 pd->proto_sum = &th->th_sum; 3346 3347 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3348 nk->port[pd->sidx] != sport) { 3349 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3350 &th->th_sum, &nk->addr[pd->sidx], 3351 nk->port[pd->sidx], 0, af); 3352 pd->sport = &th->th_sport; 3353 sport = th->th_sport; 3354 } 3355 3356 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3357 nk->port[pd->didx] != dport) { 3358 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3359 &th->th_sum, &nk->addr[pd->didx], 3360 nk->port[pd->didx], 0, af); 3361 dport = th->th_dport; 3362 pd->dport = &th->th_dport; 3363 } 3364 rewrite++; 3365 break; 3366 case IPPROTO_UDP: 3367 bproto_sum = pd->hdr.udp->uh_sum; 3368 pd->proto_sum = &pd->hdr.udp->uh_sum; 3369 3370 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3371 nk->port[pd->sidx] != sport) { 3372 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3373 pd->ip_sum, &pd->hdr.udp->uh_sum, 3374 &nk->addr[pd->sidx], 3375 nk->port[pd->sidx], 1, af); 3376 sport = pd->hdr.udp->uh_sport; 3377 pd->sport = &pd->hdr.udp->uh_sport; 3378 } 3379 3380 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3381 nk->port[pd->didx] != dport) { 3382 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3383 pd->ip_sum, &pd->hdr.udp->uh_sum, 3384 &nk->addr[pd->didx], 3385 nk->port[pd->didx], 1, af); 3386 dport = pd->hdr.udp->uh_dport; 3387 pd->dport = &pd->hdr.udp->uh_dport; 3388 } 3389 rewrite++; 3390 break; 3391 #ifdef INET 3392 case IPPROTO_ICMP: 3393 nk->port[0] = nk->port[1]; 3394 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3395 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3396 nk->addr[pd->sidx].v4.s_addr, 0); 3397 3398 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3399 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3400 nk->addr[pd->didx].v4.s_addr, 0); 3401 3402 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3403 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3404 pd->hdr.icmp->icmp_cksum, sport, 3405 nk->port[1], 0); 3406 pd->hdr.icmp->icmp_id = nk->port[1]; 3407 pd->sport = &pd->hdr.icmp->icmp_id; 3408 } 3409 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3410 break; 3411 #endif /* INET */ 3412 #ifdef INET6 3413 case IPPROTO_ICMPV6: 3414 nk->port[0] = nk->port[1]; 3415 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3416 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3417 &nk->addr[pd->sidx], 0); 3418 3419 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3420 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3421 &nk->addr[pd->didx], 0); 3422 rewrite++; 3423 break; 3424 #endif /* INET */ 3425 default: 3426 switch (af) { 3427 #ifdef INET 3428 case AF_INET: 3429 if (PF_ANEQ(saddr, 3430 &nk->addr[pd->sidx], AF_INET)) 3431 pf_change_a(&saddr->v4.s_addr, 3432 pd->ip_sum, 3433 nk->addr[pd->sidx].v4.s_addr, 0); 3434 3435 if (PF_ANEQ(daddr, 3436 &nk->addr[pd->didx], AF_INET)) 3437 pf_change_a(&daddr->v4.s_addr, 3438 pd->ip_sum, 3439 nk->addr[pd->didx].v4.s_addr, 0); 3440 break; 3441 #endif /* INET */ 3442 #ifdef INET6 3443 case AF_INET6: 3444 if (PF_ANEQ(saddr, 3445 &nk->addr[pd->sidx], AF_INET6)) 3446 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3447 3448 if (PF_ANEQ(daddr, 3449 &nk->addr[pd->didx], AF_INET6)) 3450 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3451 break; 3452 #endif /* INET */ 3453 } 3454 break; 3455 } 3456 if (nr->natpass) 3457 r = NULL; 3458 pd->nat_rule = nr; 3459 } 3460 3461 while (r != NULL) { 3462 r->evaluations++; 3463 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3464 r = r->skip[PF_SKIP_IFP].ptr; 3465 else if (r->direction && r->direction != direction) 3466 r = r->skip[PF_SKIP_DIR].ptr; 3467 else if (r->af && r->af != af) 3468 r = r->skip[PF_SKIP_AF].ptr; 3469 else if (r->proto && r->proto != pd->proto) 3470 r = r->skip[PF_SKIP_PROTO].ptr; 3471 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3472 r->src.neg, kif, M_GETFIB(m))) 3473 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3474 /* tcp/udp only. port_op always 0 in other cases */ 3475 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3476 r->src.port[0], r->src.port[1], sport)) 3477 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3478 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3479 r->dst.neg, NULL, M_GETFIB(m))) 3480 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3481 /* tcp/udp only. port_op always 0 in other cases */ 3482 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3483 r->dst.port[0], r->dst.port[1], dport)) 3484 r = r->skip[PF_SKIP_DST_PORT].ptr; 3485 /* icmp only. type always 0 in other cases */ 3486 else if (r->type && r->type != icmptype + 1) 3487 r = TAILQ_NEXT(r, entries); 3488 /* icmp only. type always 0 in other cases */ 3489 else if (r->code && r->code != icmpcode + 1) 3490 r = TAILQ_NEXT(r, entries); 3491 else if (r->tos && !(r->tos == pd->tos)) 3492 r = TAILQ_NEXT(r, entries); 3493 else if (r->rule_flag & PFRULE_FRAGMENT) 3494 r = TAILQ_NEXT(r, entries); 3495 else if (pd->proto == IPPROTO_TCP && 3496 (r->flagset & th->th_flags) != r->flags) 3497 r = TAILQ_NEXT(r, entries); 3498 /* tcp/udp only. uid.op always 0 in other cases */ 3499 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3500 pf_socket_lookup(direction, pd, m), 1)) && 3501 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3502 pd->lookup.uid)) 3503 r = TAILQ_NEXT(r, entries); 3504 /* tcp/udp only. gid.op always 0 in other cases */ 3505 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3506 pf_socket_lookup(direction, pd, m), 1)) && 3507 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3508 pd->lookup.gid)) 3509 r = TAILQ_NEXT(r, entries); 3510 else if (r->prio && 3511 !pf_match_ieee8021q_pcp(r->prio, m)) 3512 r = TAILQ_NEXT(r, entries); 3513 else if (r->prob && 3514 r->prob <= arc4random()) 3515 r = TAILQ_NEXT(r, entries); 3516 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3517 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3518 r = TAILQ_NEXT(r, entries); 3519 else if (r->os_fingerprint != PF_OSFP_ANY && 3520 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3521 pf_osfp_fingerprint(pd, m, off, th), 3522 r->os_fingerprint))) 3523 r = TAILQ_NEXT(r, entries); 3524 else { 3525 if (r->tag) 3526 tag = r->tag; 3527 if (r->rtableid >= 0) 3528 rtableid = r->rtableid; 3529 if (r->anchor == NULL) { 3530 match = 1; 3531 *rm = r; 3532 *am = a; 3533 *rsm = ruleset; 3534 if ((*rm)->quick) 3535 break; 3536 r = TAILQ_NEXT(r, entries); 3537 } else 3538 pf_step_into_anchor(anchor_stack, &asd, 3539 &ruleset, PF_RULESET_FILTER, &r, &a, 3540 &match); 3541 } 3542 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3543 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3544 break; 3545 } 3546 r = *rm; 3547 a = *am; 3548 ruleset = *rsm; 3549 3550 REASON_SET(&reason, PFRES_MATCH); 3551 3552 if (r->log || (nr != NULL && nr->log)) { 3553 if (rewrite) 3554 m_copyback(m, off, hdrlen, pd->hdr.any); 3555 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3556 ruleset, pd, 1); 3557 } 3558 3559 if ((r->action == PF_DROP) && 3560 ((r->rule_flag & PFRULE_RETURNRST) || 3561 (r->rule_flag & PFRULE_RETURNICMP) || 3562 (r->rule_flag & PFRULE_RETURN))) { 3563 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3564 bip_sum, hdrlen, &reason); 3565 } 3566 3567 if (r->action == PF_DROP) 3568 goto cleanup; 3569 3570 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3571 REASON_SET(&reason, PFRES_MEMORY); 3572 goto cleanup; 3573 } 3574 if (rtableid >= 0) 3575 M_SETFIB(m, rtableid); 3576 3577 if (!state_icmp && (r->keep_state || nr != NULL || 3578 (pd->flags & PFDESC_TCP_NORM))) { 3579 int action; 3580 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3581 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3582 hdrlen); 3583 if (action != PF_PASS) { 3584 if (action == PF_DROP && 3585 (r->rule_flag & PFRULE_RETURN)) 3586 pf_return(r, nr, pd, sk, off, m, th, kif, 3587 bproto_sum, bip_sum, hdrlen, &reason); 3588 return (action); 3589 } 3590 } else { 3591 if (sk != NULL) 3592 uma_zfree(V_pf_state_key_z, sk); 3593 if (nk != NULL) 3594 uma_zfree(V_pf_state_key_z, nk); 3595 } 3596 3597 /* copy back packet headers if we performed NAT operations */ 3598 if (rewrite) 3599 m_copyback(m, off, hdrlen, pd->hdr.any); 3600 3601 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3602 direction == PF_OUT && 3603 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3604 /* 3605 * We want the state created, but we dont 3606 * want to send this in case a partner 3607 * firewall has to know about it to allow 3608 * replies through it. 3609 */ 3610 return (PF_DEFER); 3611 3612 return (PF_PASS); 3613 3614 cleanup: 3615 if (sk != NULL) 3616 uma_zfree(V_pf_state_key_z, sk); 3617 if (nk != NULL) 3618 uma_zfree(V_pf_state_key_z, nk); 3619 return (PF_DROP); 3620 } 3621 3622 static int 3623 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3624 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3625 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3626 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3627 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3628 { 3629 struct pf_state *s = NULL; 3630 struct pf_src_node *sn = NULL; 3631 struct tcphdr *th = pd->hdr.tcp; 3632 u_int16_t mss = V_tcp_mssdflt; 3633 u_short reason; 3634 3635 /* check maximums */ 3636 if (r->max_states && 3637 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3638 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3639 REASON_SET(&reason, PFRES_MAXSTATES); 3640 goto csfailed; 3641 } 3642 /* src node for filter rule */ 3643 if ((r->rule_flag & PFRULE_SRCTRACK || 3644 r->rpool.opts & PF_POOL_STICKYADDR) && 3645 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3646 REASON_SET(&reason, PFRES_SRCLIMIT); 3647 goto csfailed; 3648 } 3649 /* src node for translation rule */ 3650 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3651 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3652 REASON_SET(&reason, PFRES_SRCLIMIT); 3653 goto csfailed; 3654 } 3655 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3656 if (s == NULL) { 3657 REASON_SET(&reason, PFRES_MEMORY); 3658 goto csfailed; 3659 } 3660 s->rule.ptr = r; 3661 s->nat_rule.ptr = nr; 3662 s->anchor.ptr = a; 3663 STATE_INC_COUNTERS(s); 3664 if (r->allow_opts) 3665 s->state_flags |= PFSTATE_ALLOWOPTS; 3666 if (r->rule_flag & PFRULE_STATESLOPPY) 3667 s->state_flags |= PFSTATE_SLOPPY; 3668 s->log = r->log & PF_LOG_ALL; 3669 s->sync_state = PFSYNC_S_NONE; 3670 if (nr != NULL) 3671 s->log |= nr->log & PF_LOG_ALL; 3672 switch (pd->proto) { 3673 case IPPROTO_TCP: 3674 s->src.seqlo = ntohl(th->th_seq); 3675 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3676 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3677 r->keep_state == PF_STATE_MODULATE) { 3678 /* Generate sequence number modulator */ 3679 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3680 0) 3681 s->src.seqdiff = 1; 3682 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3683 htonl(s->src.seqlo + s->src.seqdiff), 0); 3684 *rewrite = 1; 3685 } else 3686 s->src.seqdiff = 0; 3687 if (th->th_flags & TH_SYN) { 3688 s->src.seqhi++; 3689 s->src.wscale = pf_get_wscale(m, off, 3690 th->th_off, pd->af); 3691 } 3692 s->src.max_win = MAX(ntohs(th->th_win), 1); 3693 if (s->src.wscale & PF_WSCALE_MASK) { 3694 /* Remove scale factor from initial window */ 3695 int win = s->src.max_win; 3696 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3697 s->src.max_win = (win - 1) >> 3698 (s->src.wscale & PF_WSCALE_MASK); 3699 } 3700 if (th->th_flags & TH_FIN) 3701 s->src.seqhi++; 3702 s->dst.seqhi = 1; 3703 s->dst.max_win = 1; 3704 s->src.state = TCPS_SYN_SENT; 3705 s->dst.state = TCPS_CLOSED; 3706 s->timeout = PFTM_TCP_FIRST_PACKET; 3707 break; 3708 case IPPROTO_UDP: 3709 s->src.state = PFUDPS_SINGLE; 3710 s->dst.state = PFUDPS_NO_TRAFFIC; 3711 s->timeout = PFTM_UDP_FIRST_PACKET; 3712 break; 3713 case IPPROTO_ICMP: 3714 #ifdef INET6 3715 case IPPROTO_ICMPV6: 3716 #endif 3717 s->timeout = PFTM_ICMP_FIRST_PACKET; 3718 break; 3719 default: 3720 s->src.state = PFOTHERS_SINGLE; 3721 s->dst.state = PFOTHERS_NO_TRAFFIC; 3722 s->timeout = PFTM_OTHER_FIRST_PACKET; 3723 } 3724 3725 if (r->rt) { 3726 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3727 REASON_SET(&reason, PFRES_MAPFAILED); 3728 pf_src_tree_remove_state(s); 3729 STATE_DEC_COUNTERS(s); 3730 uma_zfree(V_pf_state_z, s); 3731 goto csfailed; 3732 } 3733 s->rt_kif = r->rpool.cur->kif; 3734 } 3735 3736 s->creation = time_uptime; 3737 s->expire = time_uptime; 3738 3739 if (sn != NULL) 3740 s->src_node = sn; 3741 if (nsn != NULL) { 3742 /* XXX We only modify one side for now. */ 3743 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3744 s->nat_src_node = nsn; 3745 } 3746 if (pd->proto == IPPROTO_TCP) { 3747 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3748 off, pd, th, &s->src, &s->dst)) { 3749 REASON_SET(&reason, PFRES_MEMORY); 3750 pf_src_tree_remove_state(s); 3751 STATE_DEC_COUNTERS(s); 3752 uma_zfree(V_pf_state_z, s); 3753 return (PF_DROP); 3754 } 3755 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3756 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3757 &s->src, &s->dst, rewrite)) { 3758 /* This really shouldn't happen!!! */ 3759 DPFPRINTF(PF_DEBUG_URGENT, 3760 ("pf_normalize_tcp_stateful failed on first " 3761 "pkt\n")); 3762 pf_normalize_tcp_cleanup(s); 3763 pf_src_tree_remove_state(s); 3764 STATE_DEC_COUNTERS(s); 3765 uma_zfree(V_pf_state_z, s); 3766 return (PF_DROP); 3767 } 3768 } 3769 s->direction = pd->dir; 3770 3771 /* 3772 * sk/nk could already been setup by pf_get_translation(). 3773 */ 3774 if (nr == NULL) { 3775 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3776 __func__, nr, sk, nk)); 3777 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3778 if (sk == NULL) 3779 goto csfailed; 3780 nk = sk; 3781 } else 3782 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3783 __func__, nr, sk, nk)); 3784 3785 /* Swap sk/nk for PF_OUT. */ 3786 if (pf_state_insert(BOUND_IFACE(r, kif), 3787 (pd->dir == PF_IN) ? sk : nk, 3788 (pd->dir == PF_IN) ? nk : sk, s)) { 3789 if (pd->proto == IPPROTO_TCP) 3790 pf_normalize_tcp_cleanup(s); 3791 REASON_SET(&reason, PFRES_STATEINS); 3792 pf_src_tree_remove_state(s); 3793 STATE_DEC_COUNTERS(s); 3794 uma_zfree(V_pf_state_z, s); 3795 return (PF_DROP); 3796 } else 3797 *sm = s; 3798 3799 if (tag > 0) 3800 s->tag = tag; 3801 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3802 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3803 s->src.state = PF_TCPS_PROXY_SRC; 3804 /* undo NAT changes, if they have taken place */ 3805 if (nr != NULL) { 3806 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3807 if (pd->dir == PF_OUT) 3808 skt = s->key[PF_SK_STACK]; 3809 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3810 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3811 if (pd->sport) 3812 *pd->sport = skt->port[pd->sidx]; 3813 if (pd->dport) 3814 *pd->dport = skt->port[pd->didx]; 3815 if (pd->proto_sum) 3816 *pd->proto_sum = bproto_sum; 3817 if (pd->ip_sum) 3818 *pd->ip_sum = bip_sum; 3819 m_copyback(m, off, hdrlen, pd->hdr.any); 3820 } 3821 s->src.seqhi = htonl(arc4random()); 3822 /* Find mss option */ 3823 int rtid = M_GETFIB(m); 3824 mss = pf_get_mss(m, off, th->th_off, pd->af); 3825 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3826 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3827 s->src.mss = mss; 3828 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3829 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3830 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3831 REASON_SET(&reason, PFRES_SYNPROXY); 3832 return (PF_SYNPROXY_DROP); 3833 } 3834 3835 return (PF_PASS); 3836 3837 csfailed: 3838 if (sk != NULL) 3839 uma_zfree(V_pf_state_key_z, sk); 3840 if (nk != NULL) 3841 uma_zfree(V_pf_state_key_z, nk); 3842 3843 if (sn != NULL) { 3844 struct pf_srchash *sh; 3845 3846 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3847 PF_HASHROW_LOCK(sh); 3848 if (--sn->states == 0 && sn->expire == 0) { 3849 pf_unlink_src_node(sn); 3850 uma_zfree(V_pf_sources_z, sn); 3851 counter_u64_add( 3852 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3853 } 3854 PF_HASHROW_UNLOCK(sh); 3855 } 3856 3857 if (nsn != sn && nsn != NULL) { 3858 struct pf_srchash *sh; 3859 3860 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3861 PF_HASHROW_LOCK(sh); 3862 if (--nsn->states == 0 && nsn->expire == 0) { 3863 pf_unlink_src_node(nsn); 3864 uma_zfree(V_pf_sources_z, nsn); 3865 counter_u64_add( 3866 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3867 } 3868 PF_HASHROW_UNLOCK(sh); 3869 } 3870 3871 return (PF_DROP); 3872 } 3873 3874 static int 3875 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3876 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3877 struct pf_ruleset **rsm) 3878 { 3879 struct pf_rule *r, *a = NULL; 3880 struct pf_ruleset *ruleset = NULL; 3881 sa_family_t af = pd->af; 3882 u_short reason; 3883 int tag = -1; 3884 int asd = 0; 3885 int match = 0; 3886 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3887 3888 PF_RULES_RASSERT(); 3889 3890 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3891 while (r != NULL) { 3892 r->evaluations++; 3893 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3894 r = r->skip[PF_SKIP_IFP].ptr; 3895 else if (r->direction && r->direction != direction) 3896 r = r->skip[PF_SKIP_DIR].ptr; 3897 else if (r->af && r->af != af) 3898 r = r->skip[PF_SKIP_AF].ptr; 3899 else if (r->proto && r->proto != pd->proto) 3900 r = r->skip[PF_SKIP_PROTO].ptr; 3901 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3902 r->src.neg, kif, M_GETFIB(m))) 3903 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3904 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3905 r->dst.neg, NULL, M_GETFIB(m))) 3906 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3907 else if (r->tos && !(r->tos == pd->tos)) 3908 r = TAILQ_NEXT(r, entries); 3909 else if (r->os_fingerprint != PF_OSFP_ANY) 3910 r = TAILQ_NEXT(r, entries); 3911 else if (pd->proto == IPPROTO_UDP && 3912 (r->src.port_op || r->dst.port_op)) 3913 r = TAILQ_NEXT(r, entries); 3914 else if (pd->proto == IPPROTO_TCP && 3915 (r->src.port_op || r->dst.port_op || r->flagset)) 3916 r = TAILQ_NEXT(r, entries); 3917 else if ((pd->proto == IPPROTO_ICMP || 3918 pd->proto == IPPROTO_ICMPV6) && 3919 (r->type || r->code)) 3920 r = TAILQ_NEXT(r, entries); 3921 else if (r->prio && 3922 !pf_match_ieee8021q_pcp(r->prio, m)) 3923 r = TAILQ_NEXT(r, entries); 3924 else if (r->prob && r->prob <= 3925 (arc4random() % (UINT_MAX - 1) + 1)) 3926 r = TAILQ_NEXT(r, entries); 3927 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3928 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3929 r = TAILQ_NEXT(r, entries); 3930 else { 3931 if (r->anchor == NULL) { 3932 match = 1; 3933 *rm = r; 3934 *am = a; 3935 *rsm = ruleset; 3936 if ((*rm)->quick) 3937 break; 3938 r = TAILQ_NEXT(r, entries); 3939 } else 3940 pf_step_into_anchor(anchor_stack, &asd, 3941 &ruleset, PF_RULESET_FILTER, &r, &a, 3942 &match); 3943 } 3944 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3945 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3946 break; 3947 } 3948 r = *rm; 3949 a = *am; 3950 ruleset = *rsm; 3951 3952 REASON_SET(&reason, PFRES_MATCH); 3953 3954 if (r->log) 3955 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3956 1); 3957 3958 if (r->action != PF_PASS) 3959 return (PF_DROP); 3960 3961 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3962 REASON_SET(&reason, PFRES_MEMORY); 3963 return (PF_DROP); 3964 } 3965 3966 return (PF_PASS); 3967 } 3968 3969 static int 3970 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3971 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3972 struct pf_pdesc *pd, u_short *reason, int *copyback) 3973 { 3974 struct tcphdr *th = pd->hdr.tcp; 3975 u_int16_t win = ntohs(th->th_win); 3976 u_int32_t ack, end, seq, orig_seq; 3977 u_int8_t sws, dws; 3978 int ackskew; 3979 3980 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3981 sws = src->wscale & PF_WSCALE_MASK; 3982 dws = dst->wscale & PF_WSCALE_MASK; 3983 } else 3984 sws = dws = 0; 3985 3986 /* 3987 * Sequence tracking algorithm from Guido van Rooij's paper: 3988 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3989 * tcp_filtering.ps 3990 */ 3991 3992 orig_seq = seq = ntohl(th->th_seq); 3993 if (src->seqlo == 0) { 3994 /* First packet from this end. Set its state */ 3995 3996 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3997 src->scrub == NULL) { 3998 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3999 REASON_SET(reason, PFRES_MEMORY); 4000 return (PF_DROP); 4001 } 4002 } 4003 4004 /* Deferred generation of sequence number modulator */ 4005 if (dst->seqdiff && !src->seqdiff) { 4006 /* use random iss for the TCP server */ 4007 while ((src->seqdiff = arc4random() - seq) == 0) 4008 ; 4009 ack = ntohl(th->th_ack) - dst->seqdiff; 4010 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4011 src->seqdiff), 0); 4012 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4013 *copyback = 1; 4014 } else { 4015 ack = ntohl(th->th_ack); 4016 } 4017 4018 end = seq + pd->p_len; 4019 if (th->th_flags & TH_SYN) { 4020 end++; 4021 if (dst->wscale & PF_WSCALE_FLAG) { 4022 src->wscale = pf_get_wscale(m, off, th->th_off, 4023 pd->af); 4024 if (src->wscale & PF_WSCALE_FLAG) { 4025 /* Remove scale factor from initial 4026 * window */ 4027 sws = src->wscale & PF_WSCALE_MASK; 4028 win = ((u_int32_t)win + (1 << sws) - 1) 4029 >> sws; 4030 dws = dst->wscale & PF_WSCALE_MASK; 4031 } else { 4032 /* fixup other window */ 4033 dst->max_win <<= dst->wscale & 4034 PF_WSCALE_MASK; 4035 /* in case of a retrans SYN|ACK */ 4036 dst->wscale = 0; 4037 } 4038 } 4039 } 4040 if (th->th_flags & TH_FIN) 4041 end++; 4042 4043 src->seqlo = seq; 4044 if (src->state < TCPS_SYN_SENT) 4045 src->state = TCPS_SYN_SENT; 4046 4047 /* 4048 * May need to slide the window (seqhi may have been set by 4049 * the crappy stack check or if we picked up the connection 4050 * after establishment) 4051 */ 4052 if (src->seqhi == 1 || 4053 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4054 src->seqhi = end + MAX(1, dst->max_win << dws); 4055 if (win > src->max_win) 4056 src->max_win = win; 4057 4058 } else { 4059 ack = ntohl(th->th_ack) - dst->seqdiff; 4060 if (src->seqdiff) { 4061 /* Modulate sequence numbers */ 4062 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4063 src->seqdiff), 0); 4064 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4065 *copyback = 1; 4066 } 4067 end = seq + pd->p_len; 4068 if (th->th_flags & TH_SYN) 4069 end++; 4070 if (th->th_flags & TH_FIN) 4071 end++; 4072 } 4073 4074 if ((th->th_flags & TH_ACK) == 0) { 4075 /* Let it pass through the ack skew check */ 4076 ack = dst->seqlo; 4077 } else if ((ack == 0 && 4078 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4079 /* broken tcp stacks do not set ack */ 4080 (dst->state < TCPS_SYN_SENT)) { 4081 /* 4082 * Many stacks (ours included) will set the ACK number in an 4083 * FIN|ACK if the SYN times out -- no sequence to ACK. 4084 */ 4085 ack = dst->seqlo; 4086 } 4087 4088 if (seq == end) { 4089 /* Ease sequencing restrictions on no data packets */ 4090 seq = src->seqlo; 4091 end = seq; 4092 } 4093 4094 ackskew = dst->seqlo - ack; 4095 4096 4097 /* 4098 * Need to demodulate the sequence numbers in any TCP SACK options 4099 * (Selective ACK). We could optionally validate the SACK values 4100 * against the current ACK window, either forwards or backwards, but 4101 * I'm not confident that SACK has been implemented properly 4102 * everywhere. It wouldn't surprise me if several stacks accidentally 4103 * SACK too far backwards of previously ACKed data. There really aren't 4104 * any security implications of bad SACKing unless the target stack 4105 * doesn't validate the option length correctly. Someone trying to 4106 * spoof into a TCP connection won't bother blindly sending SACK 4107 * options anyway. 4108 */ 4109 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4110 if (pf_modulate_sack(m, off, pd, th, dst)) 4111 *copyback = 1; 4112 } 4113 4114 4115 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4116 if (SEQ_GEQ(src->seqhi, end) && 4117 /* Last octet inside other's window space */ 4118 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4119 /* Retrans: not more than one window back */ 4120 (ackskew >= -MAXACKWINDOW) && 4121 /* Acking not more than one reassembled fragment backwards */ 4122 (ackskew <= (MAXACKWINDOW << sws)) && 4123 /* Acking not more than one window forward */ 4124 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4125 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4126 (pd->flags & PFDESC_IP_REAS) == 0)) { 4127 /* Require an exact/+1 sequence match on resets when possible */ 4128 4129 if (dst->scrub || src->scrub) { 4130 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4131 *state, src, dst, copyback)) 4132 return (PF_DROP); 4133 } 4134 4135 /* update max window */ 4136 if (src->max_win < win) 4137 src->max_win = win; 4138 /* synchronize sequencing */ 4139 if (SEQ_GT(end, src->seqlo)) 4140 src->seqlo = end; 4141 /* slide the window of what the other end can send */ 4142 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4143 dst->seqhi = ack + MAX((win << sws), 1); 4144 4145 4146 /* update states */ 4147 if (th->th_flags & TH_SYN) 4148 if (src->state < TCPS_SYN_SENT) 4149 src->state = TCPS_SYN_SENT; 4150 if (th->th_flags & TH_FIN) 4151 if (src->state < TCPS_CLOSING) 4152 src->state = TCPS_CLOSING; 4153 if (th->th_flags & TH_ACK) { 4154 if (dst->state == TCPS_SYN_SENT) { 4155 dst->state = TCPS_ESTABLISHED; 4156 if (src->state == TCPS_ESTABLISHED && 4157 (*state)->src_node != NULL && 4158 pf_src_connlimit(state)) { 4159 REASON_SET(reason, PFRES_SRCLIMIT); 4160 return (PF_DROP); 4161 } 4162 } else if (dst->state == TCPS_CLOSING) 4163 dst->state = TCPS_FIN_WAIT_2; 4164 } 4165 if (th->th_flags & TH_RST) 4166 src->state = dst->state = TCPS_TIME_WAIT; 4167 4168 /* update expire time */ 4169 (*state)->expire = time_uptime; 4170 if (src->state >= TCPS_FIN_WAIT_2 && 4171 dst->state >= TCPS_FIN_WAIT_2) 4172 (*state)->timeout = PFTM_TCP_CLOSED; 4173 else if (src->state >= TCPS_CLOSING && 4174 dst->state >= TCPS_CLOSING) 4175 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4176 else if (src->state < TCPS_ESTABLISHED || 4177 dst->state < TCPS_ESTABLISHED) 4178 (*state)->timeout = PFTM_TCP_OPENING; 4179 else if (src->state >= TCPS_CLOSING || 4180 dst->state >= TCPS_CLOSING) 4181 (*state)->timeout = PFTM_TCP_CLOSING; 4182 else 4183 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4184 4185 /* Fall through to PASS packet */ 4186 4187 } else if ((dst->state < TCPS_SYN_SENT || 4188 dst->state >= TCPS_FIN_WAIT_2 || 4189 src->state >= TCPS_FIN_WAIT_2) && 4190 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4191 /* Within a window forward of the originating packet */ 4192 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4193 /* Within a window backward of the originating packet */ 4194 4195 /* 4196 * This currently handles three situations: 4197 * 1) Stupid stacks will shotgun SYNs before their peer 4198 * replies. 4199 * 2) When PF catches an already established stream (the 4200 * firewall rebooted, the state table was flushed, routes 4201 * changed...) 4202 * 3) Packets get funky immediately after the connection 4203 * closes (this should catch Solaris spurious ACK|FINs 4204 * that web servers like to spew after a close) 4205 * 4206 * This must be a little more careful than the above code 4207 * since packet floods will also be caught here. We don't 4208 * update the TTL here to mitigate the damage of a packet 4209 * flood and so the same code can handle awkward establishment 4210 * and a loosened connection close. 4211 * In the establishment case, a correct peer response will 4212 * validate the connection, go through the normal state code 4213 * and keep updating the state TTL. 4214 */ 4215 4216 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4217 printf("pf: loose state match: "); 4218 pf_print_state(*state); 4219 pf_print_flags(th->th_flags); 4220 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4221 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4222 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4223 (unsigned long long)(*state)->packets[1], 4224 pd->dir == PF_IN ? "in" : "out", 4225 pd->dir == (*state)->direction ? "fwd" : "rev"); 4226 } 4227 4228 if (dst->scrub || src->scrub) { 4229 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4230 *state, src, dst, copyback)) 4231 return (PF_DROP); 4232 } 4233 4234 /* update max window */ 4235 if (src->max_win < win) 4236 src->max_win = win; 4237 /* synchronize sequencing */ 4238 if (SEQ_GT(end, src->seqlo)) 4239 src->seqlo = end; 4240 /* slide the window of what the other end can send */ 4241 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4242 dst->seqhi = ack + MAX((win << sws), 1); 4243 4244 /* 4245 * Cannot set dst->seqhi here since this could be a shotgunned 4246 * SYN and not an already established connection. 4247 */ 4248 4249 if (th->th_flags & TH_FIN) 4250 if (src->state < TCPS_CLOSING) 4251 src->state = TCPS_CLOSING; 4252 if (th->th_flags & TH_RST) 4253 src->state = dst->state = TCPS_TIME_WAIT; 4254 4255 /* Fall through to PASS packet */ 4256 4257 } else { 4258 if ((*state)->dst.state == TCPS_SYN_SENT && 4259 (*state)->src.state == TCPS_SYN_SENT) { 4260 /* Send RST for state mismatches during handshake */ 4261 if (!(th->th_flags & TH_RST)) 4262 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4263 pd->dst, pd->src, th->th_dport, 4264 th->th_sport, ntohl(th->th_ack), 0, 4265 TH_RST, 0, 0, 4266 (*state)->rule.ptr->return_ttl, 1, 0, 4267 kif->pfik_ifp); 4268 src->seqlo = 0; 4269 src->seqhi = 1; 4270 src->max_win = 1; 4271 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4272 printf("pf: BAD state: "); 4273 pf_print_state(*state); 4274 pf_print_flags(th->th_flags); 4275 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4276 "pkts=%llu:%llu dir=%s,%s\n", 4277 seq, orig_seq, ack, pd->p_len, ackskew, 4278 (unsigned long long)(*state)->packets[0], 4279 (unsigned long long)(*state)->packets[1], 4280 pd->dir == PF_IN ? "in" : "out", 4281 pd->dir == (*state)->direction ? "fwd" : "rev"); 4282 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4283 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4284 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4285 ' ': '2', 4286 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4287 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4288 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4289 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4290 } 4291 REASON_SET(reason, PFRES_BADSTATE); 4292 return (PF_DROP); 4293 } 4294 4295 return (PF_PASS); 4296 } 4297 4298 static int 4299 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4300 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4301 { 4302 struct tcphdr *th = pd->hdr.tcp; 4303 4304 if (th->th_flags & TH_SYN) 4305 if (src->state < TCPS_SYN_SENT) 4306 src->state = TCPS_SYN_SENT; 4307 if (th->th_flags & TH_FIN) 4308 if (src->state < TCPS_CLOSING) 4309 src->state = TCPS_CLOSING; 4310 if (th->th_flags & TH_ACK) { 4311 if (dst->state == TCPS_SYN_SENT) { 4312 dst->state = TCPS_ESTABLISHED; 4313 if (src->state == TCPS_ESTABLISHED && 4314 (*state)->src_node != NULL && 4315 pf_src_connlimit(state)) { 4316 REASON_SET(reason, PFRES_SRCLIMIT); 4317 return (PF_DROP); 4318 } 4319 } else if (dst->state == TCPS_CLOSING) { 4320 dst->state = TCPS_FIN_WAIT_2; 4321 } else if (src->state == TCPS_SYN_SENT && 4322 dst->state < TCPS_SYN_SENT) { 4323 /* 4324 * Handle a special sloppy case where we only see one 4325 * half of the connection. If there is a ACK after 4326 * the initial SYN without ever seeing a packet from 4327 * the destination, set the connection to established. 4328 */ 4329 dst->state = src->state = TCPS_ESTABLISHED; 4330 if ((*state)->src_node != NULL && 4331 pf_src_connlimit(state)) { 4332 REASON_SET(reason, PFRES_SRCLIMIT); 4333 return (PF_DROP); 4334 } 4335 } else if (src->state == TCPS_CLOSING && 4336 dst->state == TCPS_ESTABLISHED && 4337 dst->seqlo == 0) { 4338 /* 4339 * Handle the closing of half connections where we 4340 * don't see the full bidirectional FIN/ACK+ACK 4341 * handshake. 4342 */ 4343 dst->state = TCPS_CLOSING; 4344 } 4345 } 4346 if (th->th_flags & TH_RST) 4347 src->state = dst->state = TCPS_TIME_WAIT; 4348 4349 /* update expire time */ 4350 (*state)->expire = time_uptime; 4351 if (src->state >= TCPS_FIN_WAIT_2 && 4352 dst->state >= TCPS_FIN_WAIT_2) 4353 (*state)->timeout = PFTM_TCP_CLOSED; 4354 else if (src->state >= TCPS_CLOSING && 4355 dst->state >= TCPS_CLOSING) 4356 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4357 else if (src->state < TCPS_ESTABLISHED || 4358 dst->state < TCPS_ESTABLISHED) 4359 (*state)->timeout = PFTM_TCP_OPENING; 4360 else if (src->state >= TCPS_CLOSING || 4361 dst->state >= TCPS_CLOSING) 4362 (*state)->timeout = PFTM_TCP_CLOSING; 4363 else 4364 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4365 4366 return (PF_PASS); 4367 } 4368 4369 static int 4370 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4371 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4372 u_short *reason) 4373 { 4374 struct pf_state_key_cmp key; 4375 struct tcphdr *th = pd->hdr.tcp; 4376 int copyback = 0; 4377 struct pf_state_peer *src, *dst; 4378 struct pf_state_key *sk; 4379 4380 bzero(&key, sizeof(key)); 4381 key.af = pd->af; 4382 key.proto = IPPROTO_TCP; 4383 if (direction == PF_IN) { /* wire side, straight */ 4384 PF_ACPY(&key.addr[0], pd->src, key.af); 4385 PF_ACPY(&key.addr[1], pd->dst, key.af); 4386 key.port[0] = th->th_sport; 4387 key.port[1] = th->th_dport; 4388 } else { /* stack side, reverse */ 4389 PF_ACPY(&key.addr[1], pd->src, key.af); 4390 PF_ACPY(&key.addr[0], pd->dst, key.af); 4391 key.port[1] = th->th_sport; 4392 key.port[0] = th->th_dport; 4393 } 4394 4395 STATE_LOOKUP(kif, &key, direction, *state, pd); 4396 4397 if (direction == (*state)->direction) { 4398 src = &(*state)->src; 4399 dst = &(*state)->dst; 4400 } else { 4401 src = &(*state)->dst; 4402 dst = &(*state)->src; 4403 } 4404 4405 sk = (*state)->key[pd->didx]; 4406 4407 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4408 if (direction != (*state)->direction) { 4409 REASON_SET(reason, PFRES_SYNPROXY); 4410 return (PF_SYNPROXY_DROP); 4411 } 4412 if (th->th_flags & TH_SYN) { 4413 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4414 REASON_SET(reason, PFRES_SYNPROXY); 4415 return (PF_DROP); 4416 } 4417 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4418 pd->src, th->th_dport, th->th_sport, 4419 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4420 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4421 REASON_SET(reason, PFRES_SYNPROXY); 4422 return (PF_SYNPROXY_DROP); 4423 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4424 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4425 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4426 REASON_SET(reason, PFRES_SYNPROXY); 4427 return (PF_DROP); 4428 } else if ((*state)->src_node != NULL && 4429 pf_src_connlimit(state)) { 4430 REASON_SET(reason, PFRES_SRCLIMIT); 4431 return (PF_DROP); 4432 } else 4433 (*state)->src.state = PF_TCPS_PROXY_DST; 4434 } 4435 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4436 if (direction == (*state)->direction) { 4437 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4438 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4439 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4440 REASON_SET(reason, PFRES_SYNPROXY); 4441 return (PF_DROP); 4442 } 4443 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4444 if ((*state)->dst.seqhi == 1) 4445 (*state)->dst.seqhi = htonl(arc4random()); 4446 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4447 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4448 sk->port[pd->sidx], sk->port[pd->didx], 4449 (*state)->dst.seqhi, 0, TH_SYN, 0, 4450 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4451 REASON_SET(reason, PFRES_SYNPROXY); 4452 return (PF_SYNPROXY_DROP); 4453 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4454 (TH_SYN|TH_ACK)) || 4455 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4456 REASON_SET(reason, PFRES_SYNPROXY); 4457 return (PF_DROP); 4458 } else { 4459 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4460 (*state)->dst.seqlo = ntohl(th->th_seq); 4461 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4462 pd->src, th->th_dport, th->th_sport, 4463 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4464 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4465 (*state)->tag, NULL); 4466 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4467 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4468 sk->port[pd->sidx], sk->port[pd->didx], 4469 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4470 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4471 (*state)->src.seqdiff = (*state)->dst.seqhi - 4472 (*state)->src.seqlo; 4473 (*state)->dst.seqdiff = (*state)->src.seqhi - 4474 (*state)->dst.seqlo; 4475 (*state)->src.seqhi = (*state)->src.seqlo + 4476 (*state)->dst.max_win; 4477 (*state)->dst.seqhi = (*state)->dst.seqlo + 4478 (*state)->src.max_win; 4479 (*state)->src.wscale = (*state)->dst.wscale = 0; 4480 (*state)->src.state = (*state)->dst.state = 4481 TCPS_ESTABLISHED; 4482 REASON_SET(reason, PFRES_SYNPROXY); 4483 return (PF_SYNPROXY_DROP); 4484 } 4485 } 4486 4487 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4488 dst->state >= TCPS_FIN_WAIT_2 && 4489 src->state >= TCPS_FIN_WAIT_2) { 4490 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4491 printf("pf: state reuse "); 4492 pf_print_state(*state); 4493 pf_print_flags(th->th_flags); 4494 printf("\n"); 4495 } 4496 /* XXX make sure it's the same direction ?? */ 4497 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4498 pf_unlink_state(*state, PF_ENTER_LOCKED); 4499 *state = NULL; 4500 return (PF_DROP); 4501 } 4502 4503 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4504 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4505 return (PF_DROP); 4506 } else { 4507 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4508 ©back) == PF_DROP) 4509 return (PF_DROP); 4510 } 4511 4512 /* translate source/destination address, if necessary */ 4513 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4514 struct pf_state_key *nk = (*state)->key[pd->didx]; 4515 4516 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4517 nk->port[pd->sidx] != th->th_sport) 4518 pf_change_ap(m, pd->src, &th->th_sport, 4519 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4520 nk->port[pd->sidx], 0, pd->af); 4521 4522 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4523 nk->port[pd->didx] != th->th_dport) 4524 pf_change_ap(m, pd->dst, &th->th_dport, 4525 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4526 nk->port[pd->didx], 0, pd->af); 4527 copyback = 1; 4528 } 4529 4530 /* Copyback sequence modulation or stateful scrub changes if needed */ 4531 if (copyback) 4532 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4533 4534 return (PF_PASS); 4535 } 4536 4537 static int 4538 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4539 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4540 { 4541 struct pf_state_peer *src, *dst; 4542 struct pf_state_key_cmp key; 4543 struct udphdr *uh = pd->hdr.udp; 4544 4545 bzero(&key, sizeof(key)); 4546 key.af = pd->af; 4547 key.proto = IPPROTO_UDP; 4548 if (direction == PF_IN) { /* wire side, straight */ 4549 PF_ACPY(&key.addr[0], pd->src, key.af); 4550 PF_ACPY(&key.addr[1], pd->dst, key.af); 4551 key.port[0] = uh->uh_sport; 4552 key.port[1] = uh->uh_dport; 4553 } else { /* stack side, reverse */ 4554 PF_ACPY(&key.addr[1], pd->src, key.af); 4555 PF_ACPY(&key.addr[0], pd->dst, key.af); 4556 key.port[1] = uh->uh_sport; 4557 key.port[0] = uh->uh_dport; 4558 } 4559 4560 STATE_LOOKUP(kif, &key, direction, *state, pd); 4561 4562 if (direction == (*state)->direction) { 4563 src = &(*state)->src; 4564 dst = &(*state)->dst; 4565 } else { 4566 src = &(*state)->dst; 4567 dst = &(*state)->src; 4568 } 4569 4570 /* update states */ 4571 if (src->state < PFUDPS_SINGLE) 4572 src->state = PFUDPS_SINGLE; 4573 if (dst->state == PFUDPS_SINGLE) 4574 dst->state = PFUDPS_MULTIPLE; 4575 4576 /* update expire time */ 4577 (*state)->expire = time_uptime; 4578 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4579 (*state)->timeout = PFTM_UDP_MULTIPLE; 4580 else 4581 (*state)->timeout = PFTM_UDP_SINGLE; 4582 4583 /* translate source/destination address, if necessary */ 4584 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4585 struct pf_state_key *nk = (*state)->key[pd->didx]; 4586 4587 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4588 nk->port[pd->sidx] != uh->uh_sport) 4589 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4590 &uh->uh_sum, &nk->addr[pd->sidx], 4591 nk->port[pd->sidx], 1, pd->af); 4592 4593 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4594 nk->port[pd->didx] != uh->uh_dport) 4595 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4596 &uh->uh_sum, &nk->addr[pd->didx], 4597 nk->port[pd->didx], 1, pd->af); 4598 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4599 } 4600 4601 return (PF_PASS); 4602 } 4603 4604 static int 4605 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4606 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4607 { 4608 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4609 u_int16_t icmpid = 0, *icmpsum; 4610 u_int8_t icmptype, icmpcode; 4611 int state_icmp = 0; 4612 struct pf_state_key_cmp key; 4613 4614 bzero(&key, sizeof(key)); 4615 switch (pd->proto) { 4616 #ifdef INET 4617 case IPPROTO_ICMP: 4618 icmptype = pd->hdr.icmp->icmp_type; 4619 icmpcode = pd->hdr.icmp->icmp_code; 4620 icmpid = pd->hdr.icmp->icmp_id; 4621 icmpsum = &pd->hdr.icmp->icmp_cksum; 4622 4623 if (icmptype == ICMP_UNREACH || 4624 icmptype == ICMP_SOURCEQUENCH || 4625 icmptype == ICMP_REDIRECT || 4626 icmptype == ICMP_TIMXCEED || 4627 icmptype == ICMP_PARAMPROB) 4628 state_icmp++; 4629 break; 4630 #endif /* INET */ 4631 #ifdef INET6 4632 case IPPROTO_ICMPV6: 4633 icmptype = pd->hdr.icmp6->icmp6_type; 4634 icmpcode = pd->hdr.icmp6->icmp6_code; 4635 icmpid = pd->hdr.icmp6->icmp6_id; 4636 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4637 4638 if (icmptype == ICMP6_DST_UNREACH || 4639 icmptype == ICMP6_PACKET_TOO_BIG || 4640 icmptype == ICMP6_TIME_EXCEEDED || 4641 icmptype == ICMP6_PARAM_PROB) 4642 state_icmp++; 4643 break; 4644 #endif /* INET6 */ 4645 } 4646 4647 if (!state_icmp) { 4648 4649 /* 4650 * ICMP query/reply message not related to a TCP/UDP packet. 4651 * Search for an ICMP state. 4652 */ 4653 key.af = pd->af; 4654 key.proto = pd->proto; 4655 key.port[0] = key.port[1] = icmpid; 4656 if (direction == PF_IN) { /* wire side, straight */ 4657 PF_ACPY(&key.addr[0], pd->src, key.af); 4658 PF_ACPY(&key.addr[1], pd->dst, key.af); 4659 } else { /* stack side, reverse */ 4660 PF_ACPY(&key.addr[1], pd->src, key.af); 4661 PF_ACPY(&key.addr[0], pd->dst, key.af); 4662 } 4663 4664 STATE_LOOKUP(kif, &key, direction, *state, pd); 4665 4666 (*state)->expire = time_uptime; 4667 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4668 4669 /* translate source/destination address, if necessary */ 4670 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4671 struct pf_state_key *nk = (*state)->key[pd->didx]; 4672 4673 switch (pd->af) { 4674 #ifdef INET 4675 case AF_INET: 4676 if (PF_ANEQ(pd->src, 4677 &nk->addr[pd->sidx], AF_INET)) 4678 pf_change_a(&saddr->v4.s_addr, 4679 pd->ip_sum, 4680 nk->addr[pd->sidx].v4.s_addr, 0); 4681 4682 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4683 AF_INET)) 4684 pf_change_a(&daddr->v4.s_addr, 4685 pd->ip_sum, 4686 nk->addr[pd->didx].v4.s_addr, 0); 4687 4688 if (nk->port[0] != 4689 pd->hdr.icmp->icmp_id) { 4690 pd->hdr.icmp->icmp_cksum = 4691 pf_cksum_fixup( 4692 pd->hdr.icmp->icmp_cksum, icmpid, 4693 nk->port[pd->sidx], 0); 4694 pd->hdr.icmp->icmp_id = 4695 nk->port[pd->sidx]; 4696 } 4697 4698 m_copyback(m, off, ICMP_MINLEN, 4699 (caddr_t )pd->hdr.icmp); 4700 break; 4701 #endif /* INET */ 4702 #ifdef INET6 4703 case AF_INET6: 4704 if (PF_ANEQ(pd->src, 4705 &nk->addr[pd->sidx], AF_INET6)) 4706 pf_change_a6(saddr, 4707 &pd->hdr.icmp6->icmp6_cksum, 4708 &nk->addr[pd->sidx], 0); 4709 4710 if (PF_ANEQ(pd->dst, 4711 &nk->addr[pd->didx], AF_INET6)) 4712 pf_change_a6(daddr, 4713 &pd->hdr.icmp6->icmp6_cksum, 4714 &nk->addr[pd->didx], 0); 4715 4716 m_copyback(m, off, sizeof(struct icmp6_hdr), 4717 (caddr_t )pd->hdr.icmp6); 4718 break; 4719 #endif /* INET6 */ 4720 } 4721 } 4722 return (PF_PASS); 4723 4724 } else { 4725 /* 4726 * ICMP error message in response to a TCP/UDP packet. 4727 * Extract the inner TCP/UDP header and search for that state. 4728 */ 4729 4730 struct pf_pdesc pd2; 4731 bzero(&pd2, sizeof pd2); 4732 #ifdef INET 4733 struct ip h2; 4734 #endif /* INET */ 4735 #ifdef INET6 4736 struct ip6_hdr h2_6; 4737 int terminal = 0; 4738 #endif /* INET6 */ 4739 int ipoff2 = 0; 4740 int off2 = 0; 4741 4742 pd2.af = pd->af; 4743 /* Payload packet is from the opposite direction. */ 4744 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4745 pd2.didx = (direction == PF_IN) ? 0 : 1; 4746 switch (pd->af) { 4747 #ifdef INET 4748 case AF_INET: 4749 /* offset of h2 in mbuf chain */ 4750 ipoff2 = off + ICMP_MINLEN; 4751 4752 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4753 NULL, reason, pd2.af)) { 4754 DPFPRINTF(PF_DEBUG_MISC, 4755 ("pf: ICMP error message too short " 4756 "(ip)\n")); 4757 return (PF_DROP); 4758 } 4759 /* 4760 * ICMP error messages don't refer to non-first 4761 * fragments 4762 */ 4763 if (h2.ip_off & htons(IP_OFFMASK)) { 4764 REASON_SET(reason, PFRES_FRAG); 4765 return (PF_DROP); 4766 } 4767 4768 /* offset of protocol header that follows h2 */ 4769 off2 = ipoff2 + (h2.ip_hl << 2); 4770 4771 pd2.proto = h2.ip_p; 4772 pd2.src = (struct pf_addr *)&h2.ip_src; 4773 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4774 pd2.ip_sum = &h2.ip_sum; 4775 break; 4776 #endif /* INET */ 4777 #ifdef INET6 4778 case AF_INET6: 4779 ipoff2 = off + sizeof(struct icmp6_hdr); 4780 4781 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4782 NULL, reason, pd2.af)) { 4783 DPFPRINTF(PF_DEBUG_MISC, 4784 ("pf: ICMP error message too short " 4785 "(ip6)\n")); 4786 return (PF_DROP); 4787 } 4788 pd2.proto = h2_6.ip6_nxt; 4789 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4790 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4791 pd2.ip_sum = NULL; 4792 off2 = ipoff2 + sizeof(h2_6); 4793 do { 4794 switch (pd2.proto) { 4795 case IPPROTO_FRAGMENT: 4796 /* 4797 * ICMPv6 error messages for 4798 * non-first fragments 4799 */ 4800 REASON_SET(reason, PFRES_FRAG); 4801 return (PF_DROP); 4802 case IPPROTO_AH: 4803 case IPPROTO_HOPOPTS: 4804 case IPPROTO_ROUTING: 4805 case IPPROTO_DSTOPTS: { 4806 /* get next header and header length */ 4807 struct ip6_ext opt6; 4808 4809 if (!pf_pull_hdr(m, off2, &opt6, 4810 sizeof(opt6), NULL, reason, 4811 pd2.af)) { 4812 DPFPRINTF(PF_DEBUG_MISC, 4813 ("pf: ICMPv6 short opt\n")); 4814 return (PF_DROP); 4815 } 4816 if (pd2.proto == IPPROTO_AH) 4817 off2 += (opt6.ip6e_len + 2) * 4; 4818 else 4819 off2 += (opt6.ip6e_len + 1) * 8; 4820 pd2.proto = opt6.ip6e_nxt; 4821 /* goto the next header */ 4822 break; 4823 } 4824 default: 4825 terminal++; 4826 break; 4827 } 4828 } while (!terminal); 4829 break; 4830 #endif /* INET6 */ 4831 } 4832 4833 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4834 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4835 printf("pf: BAD ICMP %d:%d outer dst: ", 4836 icmptype, icmpcode); 4837 pf_print_host(pd->src, 0, pd->af); 4838 printf(" -> "); 4839 pf_print_host(pd->dst, 0, pd->af); 4840 printf(" inner src: "); 4841 pf_print_host(pd2.src, 0, pd2.af); 4842 printf(" -> "); 4843 pf_print_host(pd2.dst, 0, pd2.af); 4844 printf("\n"); 4845 } 4846 REASON_SET(reason, PFRES_BADSTATE); 4847 return (PF_DROP); 4848 } 4849 4850 switch (pd2.proto) { 4851 case IPPROTO_TCP: { 4852 struct tcphdr th; 4853 u_int32_t seq; 4854 struct pf_state_peer *src, *dst; 4855 u_int8_t dws; 4856 int copyback = 0; 4857 4858 /* 4859 * Only the first 8 bytes of the TCP header can be 4860 * expected. Don't access any TCP header fields after 4861 * th_seq, an ackskew test is not possible. 4862 */ 4863 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4864 pd2.af)) { 4865 DPFPRINTF(PF_DEBUG_MISC, 4866 ("pf: ICMP error message too short " 4867 "(tcp)\n")); 4868 return (PF_DROP); 4869 } 4870 4871 key.af = pd2.af; 4872 key.proto = IPPROTO_TCP; 4873 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4874 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4875 key.port[pd2.sidx] = th.th_sport; 4876 key.port[pd2.didx] = th.th_dport; 4877 4878 STATE_LOOKUP(kif, &key, direction, *state, pd); 4879 4880 if (direction == (*state)->direction) { 4881 src = &(*state)->dst; 4882 dst = &(*state)->src; 4883 } else { 4884 src = &(*state)->src; 4885 dst = &(*state)->dst; 4886 } 4887 4888 if (src->wscale && dst->wscale) 4889 dws = dst->wscale & PF_WSCALE_MASK; 4890 else 4891 dws = 0; 4892 4893 /* Demodulate sequence number */ 4894 seq = ntohl(th.th_seq) - src->seqdiff; 4895 if (src->seqdiff) { 4896 pf_change_a(&th.th_seq, icmpsum, 4897 htonl(seq), 0); 4898 copyback = 1; 4899 } 4900 4901 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4902 (!SEQ_GEQ(src->seqhi, seq) || 4903 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4904 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4905 printf("pf: BAD ICMP %d:%d ", 4906 icmptype, icmpcode); 4907 pf_print_host(pd->src, 0, pd->af); 4908 printf(" -> "); 4909 pf_print_host(pd->dst, 0, pd->af); 4910 printf(" state: "); 4911 pf_print_state(*state); 4912 printf(" seq=%u\n", seq); 4913 } 4914 REASON_SET(reason, PFRES_BADSTATE); 4915 return (PF_DROP); 4916 } else { 4917 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4918 printf("pf: OK ICMP %d:%d ", 4919 icmptype, icmpcode); 4920 pf_print_host(pd->src, 0, pd->af); 4921 printf(" -> "); 4922 pf_print_host(pd->dst, 0, pd->af); 4923 printf(" state: "); 4924 pf_print_state(*state); 4925 printf(" seq=%u\n", seq); 4926 } 4927 } 4928 4929 /* translate source/destination address, if necessary */ 4930 if ((*state)->key[PF_SK_WIRE] != 4931 (*state)->key[PF_SK_STACK]) { 4932 struct pf_state_key *nk = 4933 (*state)->key[pd->didx]; 4934 4935 if (PF_ANEQ(pd2.src, 4936 &nk->addr[pd2.sidx], pd2.af) || 4937 nk->port[pd2.sidx] != th.th_sport) 4938 pf_change_icmp(pd2.src, &th.th_sport, 4939 daddr, &nk->addr[pd2.sidx], 4940 nk->port[pd2.sidx], NULL, 4941 pd2.ip_sum, icmpsum, 4942 pd->ip_sum, 0, pd2.af); 4943 4944 if (PF_ANEQ(pd2.dst, 4945 &nk->addr[pd2.didx], pd2.af) || 4946 nk->port[pd2.didx] != th.th_dport) 4947 pf_change_icmp(pd2.dst, &th.th_dport, 4948 saddr, &nk->addr[pd2.didx], 4949 nk->port[pd2.didx], NULL, 4950 pd2.ip_sum, icmpsum, 4951 pd->ip_sum, 0, pd2.af); 4952 copyback = 1; 4953 } 4954 4955 if (copyback) { 4956 switch (pd2.af) { 4957 #ifdef INET 4958 case AF_INET: 4959 m_copyback(m, off, ICMP_MINLEN, 4960 (caddr_t )pd->hdr.icmp); 4961 m_copyback(m, ipoff2, sizeof(h2), 4962 (caddr_t )&h2); 4963 break; 4964 #endif /* INET */ 4965 #ifdef INET6 4966 case AF_INET6: 4967 m_copyback(m, off, 4968 sizeof(struct icmp6_hdr), 4969 (caddr_t )pd->hdr.icmp6); 4970 m_copyback(m, ipoff2, sizeof(h2_6), 4971 (caddr_t )&h2_6); 4972 break; 4973 #endif /* INET6 */ 4974 } 4975 m_copyback(m, off2, 8, (caddr_t)&th); 4976 } 4977 4978 return (PF_PASS); 4979 break; 4980 } 4981 case IPPROTO_UDP: { 4982 struct udphdr uh; 4983 4984 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4985 NULL, reason, pd2.af)) { 4986 DPFPRINTF(PF_DEBUG_MISC, 4987 ("pf: ICMP error message too short " 4988 "(udp)\n")); 4989 return (PF_DROP); 4990 } 4991 4992 key.af = pd2.af; 4993 key.proto = IPPROTO_UDP; 4994 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4995 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4996 key.port[pd2.sidx] = uh.uh_sport; 4997 key.port[pd2.didx] = uh.uh_dport; 4998 4999 STATE_LOOKUP(kif, &key, direction, *state, pd); 5000 5001 /* translate source/destination address, if necessary */ 5002 if ((*state)->key[PF_SK_WIRE] != 5003 (*state)->key[PF_SK_STACK]) { 5004 struct pf_state_key *nk = 5005 (*state)->key[pd->didx]; 5006 5007 if (PF_ANEQ(pd2.src, 5008 &nk->addr[pd2.sidx], pd2.af) || 5009 nk->port[pd2.sidx] != uh.uh_sport) 5010 pf_change_icmp(pd2.src, &uh.uh_sport, 5011 daddr, &nk->addr[pd2.sidx], 5012 nk->port[pd2.sidx], &uh.uh_sum, 5013 pd2.ip_sum, icmpsum, 5014 pd->ip_sum, 1, pd2.af); 5015 5016 if (PF_ANEQ(pd2.dst, 5017 &nk->addr[pd2.didx], pd2.af) || 5018 nk->port[pd2.didx] != uh.uh_dport) 5019 pf_change_icmp(pd2.dst, &uh.uh_dport, 5020 saddr, &nk->addr[pd2.didx], 5021 nk->port[pd2.didx], &uh.uh_sum, 5022 pd2.ip_sum, icmpsum, 5023 pd->ip_sum, 1, pd2.af); 5024 5025 switch (pd2.af) { 5026 #ifdef INET 5027 case AF_INET: 5028 m_copyback(m, off, ICMP_MINLEN, 5029 (caddr_t )pd->hdr.icmp); 5030 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5031 break; 5032 #endif /* INET */ 5033 #ifdef INET6 5034 case AF_INET6: 5035 m_copyback(m, off, 5036 sizeof(struct icmp6_hdr), 5037 (caddr_t )pd->hdr.icmp6); 5038 m_copyback(m, ipoff2, sizeof(h2_6), 5039 (caddr_t )&h2_6); 5040 break; 5041 #endif /* INET6 */ 5042 } 5043 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5044 } 5045 return (PF_PASS); 5046 break; 5047 } 5048 #ifdef INET 5049 case IPPROTO_ICMP: { 5050 struct icmp iih; 5051 5052 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5053 NULL, reason, pd2.af)) { 5054 DPFPRINTF(PF_DEBUG_MISC, 5055 ("pf: ICMP error message too short i" 5056 "(icmp)\n")); 5057 return (PF_DROP); 5058 } 5059 5060 key.af = pd2.af; 5061 key.proto = IPPROTO_ICMP; 5062 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5063 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5064 key.port[0] = key.port[1] = iih.icmp_id; 5065 5066 STATE_LOOKUP(kif, &key, direction, *state, pd); 5067 5068 /* translate source/destination address, if necessary */ 5069 if ((*state)->key[PF_SK_WIRE] != 5070 (*state)->key[PF_SK_STACK]) { 5071 struct pf_state_key *nk = 5072 (*state)->key[pd->didx]; 5073 5074 if (PF_ANEQ(pd2.src, 5075 &nk->addr[pd2.sidx], pd2.af) || 5076 nk->port[pd2.sidx] != iih.icmp_id) 5077 pf_change_icmp(pd2.src, &iih.icmp_id, 5078 daddr, &nk->addr[pd2.sidx], 5079 nk->port[pd2.sidx], NULL, 5080 pd2.ip_sum, icmpsum, 5081 pd->ip_sum, 0, AF_INET); 5082 5083 if (PF_ANEQ(pd2.dst, 5084 &nk->addr[pd2.didx], pd2.af) || 5085 nk->port[pd2.didx] != iih.icmp_id) 5086 pf_change_icmp(pd2.dst, &iih.icmp_id, 5087 saddr, &nk->addr[pd2.didx], 5088 nk->port[pd2.didx], NULL, 5089 pd2.ip_sum, icmpsum, 5090 pd->ip_sum, 0, AF_INET); 5091 5092 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5093 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5094 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5095 } 5096 return (PF_PASS); 5097 break; 5098 } 5099 #endif /* INET */ 5100 #ifdef INET6 5101 case IPPROTO_ICMPV6: { 5102 struct icmp6_hdr iih; 5103 5104 if (!pf_pull_hdr(m, off2, &iih, 5105 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5106 DPFPRINTF(PF_DEBUG_MISC, 5107 ("pf: ICMP error message too short " 5108 "(icmp6)\n")); 5109 return (PF_DROP); 5110 } 5111 5112 key.af = pd2.af; 5113 key.proto = IPPROTO_ICMPV6; 5114 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5115 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5116 key.port[0] = key.port[1] = iih.icmp6_id; 5117 5118 STATE_LOOKUP(kif, &key, direction, *state, pd); 5119 5120 /* translate source/destination address, if necessary */ 5121 if ((*state)->key[PF_SK_WIRE] != 5122 (*state)->key[PF_SK_STACK]) { 5123 struct pf_state_key *nk = 5124 (*state)->key[pd->didx]; 5125 5126 if (PF_ANEQ(pd2.src, 5127 &nk->addr[pd2.sidx], pd2.af) || 5128 nk->port[pd2.sidx] != iih.icmp6_id) 5129 pf_change_icmp(pd2.src, &iih.icmp6_id, 5130 daddr, &nk->addr[pd2.sidx], 5131 nk->port[pd2.sidx], NULL, 5132 pd2.ip_sum, icmpsum, 5133 pd->ip_sum, 0, AF_INET6); 5134 5135 if (PF_ANEQ(pd2.dst, 5136 &nk->addr[pd2.didx], pd2.af) || 5137 nk->port[pd2.didx] != iih.icmp6_id) 5138 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5139 saddr, &nk->addr[pd2.didx], 5140 nk->port[pd2.didx], NULL, 5141 pd2.ip_sum, icmpsum, 5142 pd->ip_sum, 0, AF_INET6); 5143 5144 m_copyback(m, off, sizeof(struct icmp6_hdr), 5145 (caddr_t)pd->hdr.icmp6); 5146 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5147 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5148 (caddr_t)&iih); 5149 } 5150 return (PF_PASS); 5151 break; 5152 } 5153 #endif /* INET6 */ 5154 default: { 5155 key.af = pd2.af; 5156 key.proto = pd2.proto; 5157 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5158 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5159 key.port[0] = key.port[1] = 0; 5160 5161 STATE_LOOKUP(kif, &key, direction, *state, pd); 5162 5163 /* translate source/destination address, if necessary */ 5164 if ((*state)->key[PF_SK_WIRE] != 5165 (*state)->key[PF_SK_STACK]) { 5166 struct pf_state_key *nk = 5167 (*state)->key[pd->didx]; 5168 5169 if (PF_ANEQ(pd2.src, 5170 &nk->addr[pd2.sidx], pd2.af)) 5171 pf_change_icmp(pd2.src, NULL, daddr, 5172 &nk->addr[pd2.sidx], 0, NULL, 5173 pd2.ip_sum, icmpsum, 5174 pd->ip_sum, 0, pd2.af); 5175 5176 if (PF_ANEQ(pd2.dst, 5177 &nk->addr[pd2.didx], pd2.af)) 5178 pf_change_icmp(pd2.dst, NULL, saddr, 5179 &nk->addr[pd2.didx], 0, NULL, 5180 pd2.ip_sum, icmpsum, 5181 pd->ip_sum, 0, pd2.af); 5182 5183 switch (pd2.af) { 5184 #ifdef INET 5185 case AF_INET: 5186 m_copyback(m, off, ICMP_MINLEN, 5187 (caddr_t)pd->hdr.icmp); 5188 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5189 break; 5190 #endif /* INET */ 5191 #ifdef INET6 5192 case AF_INET6: 5193 m_copyback(m, off, 5194 sizeof(struct icmp6_hdr), 5195 (caddr_t )pd->hdr.icmp6); 5196 m_copyback(m, ipoff2, sizeof(h2_6), 5197 (caddr_t )&h2_6); 5198 break; 5199 #endif /* INET6 */ 5200 } 5201 } 5202 return (PF_PASS); 5203 break; 5204 } 5205 } 5206 } 5207 } 5208 5209 static int 5210 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5211 struct mbuf *m, struct pf_pdesc *pd) 5212 { 5213 struct pf_state_peer *src, *dst; 5214 struct pf_state_key_cmp key; 5215 5216 bzero(&key, sizeof(key)); 5217 key.af = pd->af; 5218 key.proto = pd->proto; 5219 if (direction == PF_IN) { 5220 PF_ACPY(&key.addr[0], pd->src, key.af); 5221 PF_ACPY(&key.addr[1], pd->dst, key.af); 5222 key.port[0] = key.port[1] = 0; 5223 } else { 5224 PF_ACPY(&key.addr[1], pd->src, key.af); 5225 PF_ACPY(&key.addr[0], pd->dst, key.af); 5226 key.port[1] = key.port[0] = 0; 5227 } 5228 5229 STATE_LOOKUP(kif, &key, direction, *state, pd); 5230 5231 if (direction == (*state)->direction) { 5232 src = &(*state)->src; 5233 dst = &(*state)->dst; 5234 } else { 5235 src = &(*state)->dst; 5236 dst = &(*state)->src; 5237 } 5238 5239 /* update states */ 5240 if (src->state < PFOTHERS_SINGLE) 5241 src->state = PFOTHERS_SINGLE; 5242 if (dst->state == PFOTHERS_SINGLE) 5243 dst->state = PFOTHERS_MULTIPLE; 5244 5245 /* update expire time */ 5246 (*state)->expire = time_uptime; 5247 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5248 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5249 else 5250 (*state)->timeout = PFTM_OTHER_SINGLE; 5251 5252 /* translate source/destination address, if necessary */ 5253 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5254 struct pf_state_key *nk = (*state)->key[pd->didx]; 5255 5256 KASSERT(nk, ("%s: nk is null", __func__)); 5257 KASSERT(pd, ("%s: pd is null", __func__)); 5258 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5259 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5260 switch (pd->af) { 5261 #ifdef INET 5262 case AF_INET: 5263 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5264 pf_change_a(&pd->src->v4.s_addr, 5265 pd->ip_sum, 5266 nk->addr[pd->sidx].v4.s_addr, 5267 0); 5268 5269 5270 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5271 pf_change_a(&pd->dst->v4.s_addr, 5272 pd->ip_sum, 5273 nk->addr[pd->didx].v4.s_addr, 5274 0); 5275 5276 break; 5277 #endif /* INET */ 5278 #ifdef INET6 5279 case AF_INET6: 5280 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5281 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5282 5283 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5284 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5285 #endif /* INET6 */ 5286 } 5287 } 5288 return (PF_PASS); 5289 } 5290 5291 /* 5292 * ipoff and off are measured from the start of the mbuf chain. 5293 * h must be at "ipoff" on the mbuf chain. 5294 */ 5295 void * 5296 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5297 u_short *actionp, u_short *reasonp, sa_family_t af) 5298 { 5299 switch (af) { 5300 #ifdef INET 5301 case AF_INET: { 5302 struct ip *h = mtod(m, struct ip *); 5303 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5304 5305 if (fragoff) { 5306 if (fragoff >= len) 5307 ACTION_SET(actionp, PF_PASS); 5308 else { 5309 ACTION_SET(actionp, PF_DROP); 5310 REASON_SET(reasonp, PFRES_FRAG); 5311 } 5312 return (NULL); 5313 } 5314 if (m->m_pkthdr.len < off + len || 5315 ntohs(h->ip_len) < off + len) { 5316 ACTION_SET(actionp, PF_DROP); 5317 REASON_SET(reasonp, PFRES_SHORT); 5318 return (NULL); 5319 } 5320 break; 5321 } 5322 #endif /* INET */ 5323 #ifdef INET6 5324 case AF_INET6: { 5325 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5326 5327 if (m->m_pkthdr.len < off + len || 5328 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5329 (unsigned)(off + len)) { 5330 ACTION_SET(actionp, PF_DROP); 5331 REASON_SET(reasonp, PFRES_SHORT); 5332 return (NULL); 5333 } 5334 break; 5335 } 5336 #endif /* INET6 */ 5337 } 5338 m_copydata(m, off, len, p); 5339 return (p); 5340 } 5341 5342 int 5343 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5344 int rtableid) 5345 { 5346 struct ifnet *ifp; 5347 5348 /* 5349 * Skip check for addresses with embedded interface scope, 5350 * as they would always match anyway. 5351 */ 5352 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5353 return (1); 5354 5355 if (af != AF_INET && af != AF_INET6) 5356 return (0); 5357 5358 /* Skip checks for ipsec interfaces */ 5359 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5360 return (1); 5361 5362 ifp = (kif != NULL) ? kif->pfik_ifp : NULL; 5363 5364 switch (af) { 5365 #ifdef INET6 5366 case AF_INET6: 5367 return (fib6_check_urpf(rtableid, &addr->v6, 0, NHR_NONE, 5368 ifp)); 5369 #endif 5370 #ifdef INET 5371 case AF_INET: 5372 return (fib4_check_urpf(rtableid, addr->v4, 0, NHR_NONE, 5373 ifp)); 5374 #endif 5375 } 5376 5377 return (0); 5378 } 5379 5380 #ifdef INET 5381 static void 5382 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5383 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5384 { 5385 struct mbuf *m0, *m1; 5386 struct sockaddr_in dst; 5387 struct ip *ip; 5388 struct ifnet *ifp = NULL; 5389 struct pf_addr naddr; 5390 struct pf_src_node *sn = NULL; 5391 int error = 0; 5392 uint16_t ip_len, ip_off; 5393 5394 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5395 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5396 __func__)); 5397 5398 if ((pd->pf_mtag == NULL && 5399 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5400 pd->pf_mtag->routed++ > 3) { 5401 m0 = *m; 5402 *m = NULL; 5403 goto bad_locked; 5404 } 5405 5406 if (r->rt == PF_DUPTO) { 5407 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5408 if (s) 5409 PF_STATE_UNLOCK(s); 5410 return; 5411 } 5412 } else { 5413 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5414 if (s) 5415 PF_STATE_UNLOCK(s); 5416 return; 5417 } 5418 m0 = *m; 5419 } 5420 5421 ip = mtod(m0, struct ip *); 5422 5423 bzero(&dst, sizeof(dst)); 5424 dst.sin_family = AF_INET; 5425 dst.sin_len = sizeof(dst); 5426 dst.sin_addr = ip->ip_dst; 5427 5428 bzero(&naddr, sizeof(naddr)); 5429 5430 if (TAILQ_EMPTY(&r->rpool.list)) { 5431 DPFPRINTF(PF_DEBUG_URGENT, 5432 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5433 goto bad_locked; 5434 } 5435 if (s == NULL) { 5436 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5437 &naddr, NULL, &sn); 5438 if (!PF_AZERO(&naddr, AF_INET)) 5439 dst.sin_addr.s_addr = naddr.v4.s_addr; 5440 ifp = r->rpool.cur->kif ? 5441 r->rpool.cur->kif->pfik_ifp : NULL; 5442 } else { 5443 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5444 dst.sin_addr.s_addr = 5445 s->rt_addr.v4.s_addr; 5446 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5447 PF_STATE_UNLOCK(s); 5448 } 5449 if (ifp == NULL) 5450 goto bad; 5451 5452 if (oifp != ifp) { 5453 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5454 goto bad; 5455 else if (m0 == NULL) 5456 goto done; 5457 if (m0->m_len < sizeof(struct ip)) { 5458 DPFPRINTF(PF_DEBUG_URGENT, 5459 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5460 goto bad; 5461 } 5462 ip = mtod(m0, struct ip *); 5463 } 5464 5465 if (ifp->if_flags & IFF_LOOPBACK) 5466 m0->m_flags |= M_SKIP_FIREWALL; 5467 5468 ip_len = ntohs(ip->ip_len); 5469 ip_off = ntohs(ip->ip_off); 5470 5471 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5472 m0->m_pkthdr.csum_flags |= CSUM_IP; 5473 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5474 in_delayed_cksum(m0); 5475 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5476 } 5477 #ifdef SCTP 5478 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5479 sctp_delayed_cksum(m0, (uint32_t)(ip->ip_hl << 2)); 5480 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5481 } 5482 #endif 5483 5484 /* 5485 * If small enough for interface, or the interface will take 5486 * care of the fragmentation for us, we can just send directly. 5487 */ 5488 if (ip_len <= ifp->if_mtu || 5489 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5490 ip->ip_sum = 0; 5491 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5492 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5493 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5494 } 5495 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5496 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5497 goto done; 5498 } 5499 5500 /* Balk when DF bit is set or the interface didn't support TSO. */ 5501 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5502 error = EMSGSIZE; 5503 KMOD_IPSTAT_INC(ips_cantfrag); 5504 if (r->rt != PF_DUPTO) { 5505 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5506 ifp->if_mtu); 5507 goto done; 5508 } else 5509 goto bad; 5510 } 5511 5512 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5513 if (error) 5514 goto bad; 5515 5516 for (; m0; m0 = m1) { 5517 m1 = m0->m_nextpkt; 5518 m0->m_nextpkt = NULL; 5519 if (error == 0) { 5520 m_clrprotoflags(m0); 5521 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5522 } else 5523 m_freem(m0); 5524 } 5525 5526 if (error == 0) 5527 KMOD_IPSTAT_INC(ips_fragmented); 5528 5529 done: 5530 if (r->rt != PF_DUPTO) 5531 *m = NULL; 5532 return; 5533 5534 bad_locked: 5535 if (s) 5536 PF_STATE_UNLOCK(s); 5537 bad: 5538 m_freem(m0); 5539 goto done; 5540 } 5541 #endif /* INET */ 5542 5543 #ifdef INET6 5544 static void 5545 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5546 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5547 { 5548 struct mbuf *m0; 5549 struct sockaddr_in6 dst; 5550 struct ip6_hdr *ip6; 5551 struct ifnet *ifp = NULL; 5552 struct pf_addr naddr; 5553 struct pf_src_node *sn = NULL; 5554 5555 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5556 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5557 __func__)); 5558 5559 if ((pd->pf_mtag == NULL && 5560 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5561 pd->pf_mtag->routed++ > 3) { 5562 m0 = *m; 5563 *m = NULL; 5564 goto bad_locked; 5565 } 5566 5567 if (r->rt == PF_DUPTO) { 5568 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5569 if (s) 5570 PF_STATE_UNLOCK(s); 5571 return; 5572 } 5573 } else { 5574 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5575 if (s) 5576 PF_STATE_UNLOCK(s); 5577 return; 5578 } 5579 m0 = *m; 5580 } 5581 5582 ip6 = mtod(m0, struct ip6_hdr *); 5583 5584 bzero(&dst, sizeof(dst)); 5585 dst.sin6_family = AF_INET6; 5586 dst.sin6_len = sizeof(dst); 5587 dst.sin6_addr = ip6->ip6_dst; 5588 5589 bzero(&naddr, sizeof(naddr)); 5590 5591 if (TAILQ_EMPTY(&r->rpool.list)) { 5592 DPFPRINTF(PF_DEBUG_URGENT, 5593 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5594 goto bad_locked; 5595 } 5596 if (s == NULL) { 5597 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5598 &naddr, NULL, &sn); 5599 if (!PF_AZERO(&naddr, AF_INET6)) 5600 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5601 &naddr, AF_INET6); 5602 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5603 } else { 5604 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5605 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5606 &s->rt_addr, AF_INET6); 5607 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5608 } 5609 5610 if (s) 5611 PF_STATE_UNLOCK(s); 5612 5613 if (ifp == NULL) 5614 goto bad; 5615 5616 if (oifp != ifp) { 5617 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5618 goto bad; 5619 else if (m0 == NULL) 5620 goto done; 5621 if (m0->m_len < sizeof(struct ip6_hdr)) { 5622 DPFPRINTF(PF_DEBUG_URGENT, 5623 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5624 __func__)); 5625 goto bad; 5626 } 5627 ip6 = mtod(m0, struct ip6_hdr *); 5628 } 5629 5630 if (ifp->if_flags & IFF_LOOPBACK) 5631 m0->m_flags |= M_SKIP_FIREWALL; 5632 5633 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5634 ~ifp->if_hwassist) { 5635 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5636 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5637 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5638 } 5639 5640 /* 5641 * If the packet is too large for the outgoing interface, 5642 * send back an icmp6 error. 5643 */ 5644 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5645 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5646 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5647 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5648 else { 5649 in6_ifstat_inc(ifp, ifs6_in_toobig); 5650 if (r->rt != PF_DUPTO) 5651 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5652 else 5653 goto bad; 5654 } 5655 5656 done: 5657 if (r->rt != PF_DUPTO) 5658 *m = NULL; 5659 return; 5660 5661 bad_locked: 5662 if (s) 5663 PF_STATE_UNLOCK(s); 5664 bad: 5665 m_freem(m0); 5666 goto done; 5667 } 5668 #endif /* INET6 */ 5669 5670 /* 5671 * FreeBSD supports cksum offloads for the following drivers. 5672 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5673 * 5674 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5675 * network driver performed cksum including pseudo header, need to verify 5676 * csum_data 5677 * CSUM_DATA_VALID : 5678 * network driver performed cksum, needs to additional pseudo header 5679 * cksum computation with partial csum_data(i.e. lack of H/W support for 5680 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5681 * 5682 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5683 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5684 * TCP/UDP layer. 5685 * Also, set csum_data to 0xffff to force cksum validation. 5686 */ 5687 static int 5688 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5689 { 5690 u_int16_t sum = 0; 5691 int hw_assist = 0; 5692 struct ip *ip; 5693 5694 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5695 return (1); 5696 if (m->m_pkthdr.len < off + len) 5697 return (1); 5698 5699 switch (p) { 5700 case IPPROTO_TCP: 5701 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5702 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5703 sum = m->m_pkthdr.csum_data; 5704 } else { 5705 ip = mtod(m, struct ip *); 5706 sum = in_pseudo(ip->ip_src.s_addr, 5707 ip->ip_dst.s_addr, htonl((u_short)len + 5708 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5709 } 5710 sum ^= 0xffff; 5711 ++hw_assist; 5712 } 5713 break; 5714 case IPPROTO_UDP: 5715 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5716 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5717 sum = m->m_pkthdr.csum_data; 5718 } else { 5719 ip = mtod(m, struct ip *); 5720 sum = in_pseudo(ip->ip_src.s_addr, 5721 ip->ip_dst.s_addr, htonl((u_short)len + 5722 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5723 } 5724 sum ^= 0xffff; 5725 ++hw_assist; 5726 } 5727 break; 5728 case IPPROTO_ICMP: 5729 #ifdef INET6 5730 case IPPROTO_ICMPV6: 5731 #endif /* INET6 */ 5732 break; 5733 default: 5734 return (1); 5735 } 5736 5737 if (!hw_assist) { 5738 switch (af) { 5739 case AF_INET: 5740 if (p == IPPROTO_ICMP) { 5741 if (m->m_len < off) 5742 return (1); 5743 m->m_data += off; 5744 m->m_len -= off; 5745 sum = in_cksum(m, len); 5746 m->m_data -= off; 5747 m->m_len += off; 5748 } else { 5749 if (m->m_len < sizeof(struct ip)) 5750 return (1); 5751 sum = in4_cksum(m, p, off, len); 5752 } 5753 break; 5754 #ifdef INET6 5755 case AF_INET6: 5756 if (m->m_len < sizeof(struct ip6_hdr)) 5757 return (1); 5758 sum = in6_cksum(m, p, off, len); 5759 break; 5760 #endif /* INET6 */ 5761 default: 5762 return (1); 5763 } 5764 } 5765 if (sum) { 5766 switch (p) { 5767 case IPPROTO_TCP: 5768 { 5769 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5770 break; 5771 } 5772 case IPPROTO_UDP: 5773 { 5774 KMOD_UDPSTAT_INC(udps_badsum); 5775 break; 5776 } 5777 #ifdef INET 5778 case IPPROTO_ICMP: 5779 { 5780 KMOD_ICMPSTAT_INC(icps_checksum); 5781 break; 5782 } 5783 #endif 5784 #ifdef INET6 5785 case IPPROTO_ICMPV6: 5786 { 5787 KMOD_ICMP6STAT_INC(icp6s_checksum); 5788 break; 5789 } 5790 #endif /* INET6 */ 5791 } 5792 return (1); 5793 } else { 5794 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5795 m->m_pkthdr.csum_flags |= 5796 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5797 m->m_pkthdr.csum_data = 0xffff; 5798 } 5799 } 5800 return (0); 5801 } 5802 5803 5804 #ifdef INET 5805 int 5806 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5807 { 5808 struct pfi_kif *kif; 5809 u_short action, reason = 0, log = 0; 5810 struct mbuf *m = *m0; 5811 struct ip *h = NULL; 5812 struct m_tag *ipfwtag; 5813 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5814 struct pf_state *s = NULL; 5815 struct pf_ruleset *ruleset = NULL; 5816 struct pf_pdesc pd; 5817 int off, dirndx, pqid = 0; 5818 5819 PF_RULES_RLOCK_TRACKER; 5820 5821 M_ASSERTPKTHDR(m); 5822 5823 if (!V_pf_status.running) 5824 return (PF_PASS); 5825 5826 memset(&pd, 0, sizeof(pd)); 5827 5828 kif = (struct pfi_kif *)ifp->if_pf_kif; 5829 5830 if (kif == NULL) { 5831 DPFPRINTF(PF_DEBUG_URGENT, 5832 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5833 return (PF_DROP); 5834 } 5835 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5836 return (PF_PASS); 5837 5838 if (m->m_flags & M_SKIP_FIREWALL) 5839 return (PF_PASS); 5840 5841 pd.pf_mtag = pf_find_mtag(m); 5842 5843 PF_RULES_RLOCK(); 5844 5845 if (ip_divert_ptr != NULL && 5846 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5847 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5848 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5849 if (pd.pf_mtag == NULL && 5850 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5851 action = PF_DROP; 5852 goto done; 5853 } 5854 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5855 m_tag_delete(m, ipfwtag); 5856 } 5857 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5858 m->m_flags |= M_FASTFWD_OURS; 5859 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5860 } 5861 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5862 /* We do IP header normalization and packet reassembly here */ 5863 action = PF_DROP; 5864 goto done; 5865 } 5866 m = *m0; /* pf_normalize messes with m0 */ 5867 h = mtod(m, struct ip *); 5868 5869 off = h->ip_hl << 2; 5870 if (off < (int)sizeof(struct ip)) { 5871 action = PF_DROP; 5872 REASON_SET(&reason, PFRES_SHORT); 5873 log = 1; 5874 goto done; 5875 } 5876 5877 pd.src = (struct pf_addr *)&h->ip_src; 5878 pd.dst = (struct pf_addr *)&h->ip_dst; 5879 pd.sport = pd.dport = NULL; 5880 pd.ip_sum = &h->ip_sum; 5881 pd.proto_sum = NULL; 5882 pd.proto = h->ip_p; 5883 pd.dir = dir; 5884 pd.sidx = (dir == PF_IN) ? 0 : 1; 5885 pd.didx = (dir == PF_IN) ? 1 : 0; 5886 pd.af = AF_INET; 5887 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 5888 pd.tot_len = ntohs(h->ip_len); 5889 5890 /* handle fragments that didn't get reassembled by normalization */ 5891 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 5892 action = pf_test_fragment(&r, dir, kif, m, h, 5893 &pd, &a, &ruleset); 5894 goto done; 5895 } 5896 5897 switch (h->ip_p) { 5898 5899 case IPPROTO_TCP: { 5900 struct tcphdr th; 5901 5902 pd.hdr.tcp = &th; 5903 if (!pf_pull_hdr(m, off, &th, sizeof(th), 5904 &action, &reason, AF_INET)) { 5905 log = action != PF_PASS; 5906 goto done; 5907 } 5908 pd.p_len = pd.tot_len - off - (th.th_off << 2); 5909 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 5910 pqid = 1; 5911 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 5912 if (action == PF_DROP) 5913 goto done; 5914 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 5915 &reason); 5916 if (action == PF_PASS) { 5917 if (V_pfsync_update_state_ptr != NULL) 5918 V_pfsync_update_state_ptr(s); 5919 r = s->rule.ptr; 5920 a = s->anchor.ptr; 5921 log = s->log; 5922 } else if (s == NULL) 5923 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5924 &a, &ruleset, inp); 5925 break; 5926 } 5927 5928 case IPPROTO_UDP: { 5929 struct udphdr uh; 5930 5931 pd.hdr.udp = &uh; 5932 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 5933 &action, &reason, AF_INET)) { 5934 log = action != PF_PASS; 5935 goto done; 5936 } 5937 if (uh.uh_dport == 0 || 5938 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 5939 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 5940 action = PF_DROP; 5941 REASON_SET(&reason, PFRES_SHORT); 5942 goto done; 5943 } 5944 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 5945 if (action == PF_PASS) { 5946 if (V_pfsync_update_state_ptr != NULL) 5947 V_pfsync_update_state_ptr(s); 5948 r = s->rule.ptr; 5949 a = s->anchor.ptr; 5950 log = s->log; 5951 } else if (s == NULL) 5952 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5953 &a, &ruleset, inp); 5954 break; 5955 } 5956 5957 case IPPROTO_ICMP: { 5958 struct icmp ih; 5959 5960 pd.hdr.icmp = &ih; 5961 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 5962 &action, &reason, AF_INET)) { 5963 log = action != PF_PASS; 5964 goto done; 5965 } 5966 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 5967 &reason); 5968 if (action == PF_PASS) { 5969 if (V_pfsync_update_state_ptr != NULL) 5970 V_pfsync_update_state_ptr(s); 5971 r = s->rule.ptr; 5972 a = s->anchor.ptr; 5973 log = s->log; 5974 } else if (s == NULL) 5975 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5976 &a, &ruleset, inp); 5977 break; 5978 } 5979 5980 #ifdef INET6 5981 case IPPROTO_ICMPV6: { 5982 action = PF_DROP; 5983 DPFPRINTF(PF_DEBUG_MISC, 5984 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 5985 goto done; 5986 } 5987 #endif 5988 5989 default: 5990 action = pf_test_state_other(&s, dir, kif, m, &pd); 5991 if (action == PF_PASS) { 5992 if (V_pfsync_update_state_ptr != NULL) 5993 V_pfsync_update_state_ptr(s); 5994 r = s->rule.ptr; 5995 a = s->anchor.ptr; 5996 log = s->log; 5997 } else if (s == NULL) 5998 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 5999 &a, &ruleset, inp); 6000 break; 6001 } 6002 6003 done: 6004 PF_RULES_RUNLOCK(); 6005 if (action == PF_PASS && h->ip_hl > 5 && 6006 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6007 action = PF_DROP; 6008 REASON_SET(&reason, PFRES_IPOPTIONS); 6009 log = r->log; 6010 DPFPRINTF(PF_DEBUG_MISC, 6011 ("pf: dropping packet with ip options\n")); 6012 } 6013 6014 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6015 action = PF_DROP; 6016 REASON_SET(&reason, PFRES_MEMORY); 6017 } 6018 if (r->rtableid >= 0) 6019 M_SETFIB(m, r->rtableid); 6020 6021 if (r->scrub_flags & PFSTATE_SETPRIO) { 6022 if (pd.tos & IPTOS_LOWDELAY) 6023 pqid = 1; 6024 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6025 action = PF_DROP; 6026 REASON_SET(&reason, PFRES_MEMORY); 6027 log = 1; 6028 DPFPRINTF(PF_DEBUG_MISC, 6029 ("pf: failed to allocate 802.1q mtag\n")); 6030 } 6031 } 6032 6033 #ifdef ALTQ 6034 if (action == PF_PASS && r->qid) { 6035 if (pd.pf_mtag == NULL && 6036 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6037 action = PF_DROP; 6038 REASON_SET(&reason, PFRES_MEMORY); 6039 } else { 6040 if (s != NULL) 6041 pd.pf_mtag->qid_hash = pf_state_hash(s); 6042 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6043 pd.pf_mtag->qid = r->pqid; 6044 else 6045 pd.pf_mtag->qid = r->qid; 6046 /* Add hints for ecn. */ 6047 pd.pf_mtag->hdr = h; 6048 } 6049 6050 } 6051 #endif /* ALTQ */ 6052 6053 /* 6054 * connections redirected to loopback should not match sockets 6055 * bound specifically to loopback due to security implications, 6056 * see tcp_input() and in_pcblookup_listen(). 6057 */ 6058 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6059 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6060 (s->nat_rule.ptr->action == PF_RDR || 6061 s->nat_rule.ptr->action == PF_BINAT) && 6062 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6063 m->m_flags |= M_SKIP_FIREWALL; 6064 6065 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6066 !PACKET_LOOPED(&pd)) { 6067 6068 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6069 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6070 if (ipfwtag != NULL) { 6071 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6072 ntohs(r->divert.port); 6073 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6074 6075 if (s) 6076 PF_STATE_UNLOCK(s); 6077 6078 m_tag_prepend(m, ipfwtag); 6079 if (m->m_flags & M_FASTFWD_OURS) { 6080 if (pd.pf_mtag == NULL && 6081 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6082 action = PF_DROP; 6083 REASON_SET(&reason, PFRES_MEMORY); 6084 log = 1; 6085 DPFPRINTF(PF_DEBUG_MISC, 6086 ("pf: failed to allocate tag\n")); 6087 } else { 6088 pd.pf_mtag->flags |= 6089 PF_FASTFWD_OURS_PRESENT; 6090 m->m_flags &= ~M_FASTFWD_OURS; 6091 } 6092 } 6093 ip_divert_ptr(*m0, dir == PF_IN); 6094 *m0 = NULL; 6095 6096 return (action); 6097 } else { 6098 /* XXX: ipfw has the same behaviour! */ 6099 action = PF_DROP; 6100 REASON_SET(&reason, PFRES_MEMORY); 6101 log = 1; 6102 DPFPRINTF(PF_DEBUG_MISC, 6103 ("pf: failed to allocate divert tag\n")); 6104 } 6105 } 6106 6107 if (log) { 6108 struct pf_rule *lr; 6109 6110 if (s != NULL && s->nat_rule.ptr != NULL && 6111 s->nat_rule.ptr->log & PF_LOG_ALL) 6112 lr = s->nat_rule.ptr; 6113 else 6114 lr = r; 6115 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6116 (s == NULL)); 6117 } 6118 6119 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6120 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6121 6122 if (action == PF_PASS || r->action == PF_DROP) { 6123 dirndx = (dir == PF_OUT); 6124 r->packets[dirndx]++; 6125 r->bytes[dirndx] += pd.tot_len; 6126 if (a != NULL) { 6127 a->packets[dirndx]++; 6128 a->bytes[dirndx] += pd.tot_len; 6129 } 6130 if (s != NULL) { 6131 if (s->nat_rule.ptr != NULL) { 6132 s->nat_rule.ptr->packets[dirndx]++; 6133 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6134 } 6135 if (s->src_node != NULL) { 6136 s->src_node->packets[dirndx]++; 6137 s->src_node->bytes[dirndx] += pd.tot_len; 6138 } 6139 if (s->nat_src_node != NULL) { 6140 s->nat_src_node->packets[dirndx]++; 6141 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6142 } 6143 dirndx = (dir == s->direction) ? 0 : 1; 6144 s->packets[dirndx]++; 6145 s->bytes[dirndx] += pd.tot_len; 6146 } 6147 tr = r; 6148 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6149 if (nr != NULL && r == &V_pf_default_rule) 6150 tr = nr; 6151 if (tr->src.addr.type == PF_ADDR_TABLE) 6152 pfr_update_stats(tr->src.addr.p.tbl, 6153 (s == NULL) ? pd.src : 6154 &s->key[(s->direction == PF_IN)]-> 6155 addr[(s->direction == PF_OUT)], 6156 pd.af, pd.tot_len, dir == PF_OUT, 6157 r->action == PF_PASS, tr->src.neg); 6158 if (tr->dst.addr.type == PF_ADDR_TABLE) 6159 pfr_update_stats(tr->dst.addr.p.tbl, 6160 (s == NULL) ? pd.dst : 6161 &s->key[(s->direction == PF_IN)]-> 6162 addr[(s->direction == PF_IN)], 6163 pd.af, pd.tot_len, dir == PF_OUT, 6164 r->action == PF_PASS, tr->dst.neg); 6165 } 6166 6167 switch (action) { 6168 case PF_SYNPROXY_DROP: 6169 m_freem(*m0); 6170 case PF_DEFER: 6171 *m0 = NULL; 6172 action = PF_PASS; 6173 break; 6174 case PF_DROP: 6175 m_freem(*m0); 6176 *m0 = NULL; 6177 break; 6178 default: 6179 /* pf_route() returns unlocked. */ 6180 if (r->rt) { 6181 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6182 return (action); 6183 } 6184 break; 6185 } 6186 if (s) 6187 PF_STATE_UNLOCK(s); 6188 6189 return (action); 6190 } 6191 #endif /* INET */ 6192 6193 #ifdef INET6 6194 int 6195 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6196 { 6197 struct pfi_kif *kif; 6198 u_short action, reason = 0, log = 0; 6199 struct mbuf *m = *m0, *n = NULL; 6200 struct m_tag *mtag; 6201 struct ip6_hdr *h = NULL; 6202 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6203 struct pf_state *s = NULL; 6204 struct pf_ruleset *ruleset = NULL; 6205 struct pf_pdesc pd; 6206 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6207 6208 PF_RULES_RLOCK_TRACKER; 6209 M_ASSERTPKTHDR(m); 6210 6211 if (!V_pf_status.running) 6212 return (PF_PASS); 6213 6214 memset(&pd, 0, sizeof(pd)); 6215 pd.pf_mtag = pf_find_mtag(m); 6216 6217 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6218 return (PF_PASS); 6219 6220 kif = (struct pfi_kif *)ifp->if_pf_kif; 6221 if (kif == NULL) { 6222 DPFPRINTF(PF_DEBUG_URGENT, 6223 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6224 return (PF_DROP); 6225 } 6226 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6227 return (PF_PASS); 6228 6229 if (m->m_flags & M_SKIP_FIREWALL) 6230 return (PF_PASS); 6231 6232 PF_RULES_RLOCK(); 6233 6234 /* We do IP header normalization and packet reassembly here */ 6235 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6236 action = PF_DROP; 6237 goto done; 6238 } 6239 m = *m0; /* pf_normalize messes with m0 */ 6240 h = mtod(m, struct ip6_hdr *); 6241 6242 /* 6243 * we do not support jumbogram. if we keep going, zero ip6_plen 6244 * will do something bad, so drop the packet for now. 6245 */ 6246 if (htons(h->ip6_plen) == 0) { 6247 action = PF_DROP; 6248 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6249 goto done; 6250 } 6251 6252 pd.src = (struct pf_addr *)&h->ip6_src; 6253 pd.dst = (struct pf_addr *)&h->ip6_dst; 6254 pd.sport = pd.dport = NULL; 6255 pd.ip_sum = NULL; 6256 pd.proto_sum = NULL; 6257 pd.dir = dir; 6258 pd.sidx = (dir == PF_IN) ? 0 : 1; 6259 pd.didx = (dir == PF_IN) ? 1 : 0; 6260 pd.af = AF_INET6; 6261 pd.tos = 0; 6262 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6263 6264 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6265 pd.proto = h->ip6_nxt; 6266 do { 6267 switch (pd.proto) { 6268 case IPPROTO_FRAGMENT: 6269 action = pf_test_fragment(&r, dir, kif, m, h, 6270 &pd, &a, &ruleset); 6271 if (action == PF_DROP) 6272 REASON_SET(&reason, PFRES_FRAG); 6273 goto done; 6274 case IPPROTO_ROUTING: { 6275 struct ip6_rthdr rthdr; 6276 6277 if (rh_cnt++) { 6278 DPFPRINTF(PF_DEBUG_MISC, 6279 ("pf: IPv6 more than one rthdr\n")); 6280 action = PF_DROP; 6281 REASON_SET(&reason, PFRES_IPOPTIONS); 6282 log = 1; 6283 goto done; 6284 } 6285 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6286 &reason, pd.af)) { 6287 DPFPRINTF(PF_DEBUG_MISC, 6288 ("pf: IPv6 short rthdr\n")); 6289 action = PF_DROP; 6290 REASON_SET(&reason, PFRES_SHORT); 6291 log = 1; 6292 goto done; 6293 } 6294 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6295 DPFPRINTF(PF_DEBUG_MISC, 6296 ("pf: IPv6 rthdr0\n")); 6297 action = PF_DROP; 6298 REASON_SET(&reason, PFRES_IPOPTIONS); 6299 log = 1; 6300 goto done; 6301 } 6302 /* FALLTHROUGH */ 6303 } 6304 case IPPROTO_AH: 6305 case IPPROTO_HOPOPTS: 6306 case IPPROTO_DSTOPTS: { 6307 /* get next header and header length */ 6308 struct ip6_ext opt6; 6309 6310 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6311 NULL, &reason, pd.af)) { 6312 DPFPRINTF(PF_DEBUG_MISC, 6313 ("pf: IPv6 short opt\n")); 6314 action = PF_DROP; 6315 log = 1; 6316 goto done; 6317 } 6318 if (pd.proto == IPPROTO_AH) 6319 off += (opt6.ip6e_len + 2) * 4; 6320 else 6321 off += (opt6.ip6e_len + 1) * 8; 6322 pd.proto = opt6.ip6e_nxt; 6323 /* goto the next header */ 6324 break; 6325 } 6326 default: 6327 terminal++; 6328 break; 6329 } 6330 } while (!terminal); 6331 6332 /* if there's no routing header, use unmodified mbuf for checksumming */ 6333 if (!n) 6334 n = m; 6335 6336 switch (pd.proto) { 6337 6338 case IPPROTO_TCP: { 6339 struct tcphdr th; 6340 6341 pd.hdr.tcp = &th; 6342 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6343 &action, &reason, AF_INET6)) { 6344 log = action != PF_PASS; 6345 goto done; 6346 } 6347 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6348 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6349 if (action == PF_DROP) 6350 goto done; 6351 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6352 &reason); 6353 if (action == PF_PASS) { 6354 if (V_pfsync_update_state_ptr != NULL) 6355 V_pfsync_update_state_ptr(s); 6356 r = s->rule.ptr; 6357 a = s->anchor.ptr; 6358 log = s->log; 6359 } else if (s == NULL) 6360 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6361 &a, &ruleset, inp); 6362 break; 6363 } 6364 6365 case IPPROTO_UDP: { 6366 struct udphdr uh; 6367 6368 pd.hdr.udp = &uh; 6369 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6370 &action, &reason, AF_INET6)) { 6371 log = action != PF_PASS; 6372 goto done; 6373 } 6374 if (uh.uh_dport == 0 || 6375 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6376 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6377 action = PF_DROP; 6378 REASON_SET(&reason, PFRES_SHORT); 6379 goto done; 6380 } 6381 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6382 if (action == PF_PASS) { 6383 if (V_pfsync_update_state_ptr != NULL) 6384 V_pfsync_update_state_ptr(s); 6385 r = s->rule.ptr; 6386 a = s->anchor.ptr; 6387 log = s->log; 6388 } else if (s == NULL) 6389 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6390 &a, &ruleset, inp); 6391 break; 6392 } 6393 6394 case IPPROTO_ICMP: { 6395 action = PF_DROP; 6396 DPFPRINTF(PF_DEBUG_MISC, 6397 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6398 goto done; 6399 } 6400 6401 case IPPROTO_ICMPV6: { 6402 struct icmp6_hdr ih; 6403 6404 pd.hdr.icmp6 = &ih; 6405 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6406 &action, &reason, AF_INET6)) { 6407 log = action != PF_PASS; 6408 goto done; 6409 } 6410 action = pf_test_state_icmp(&s, dir, kif, 6411 m, off, h, &pd, &reason); 6412 if (action == PF_PASS) { 6413 if (V_pfsync_update_state_ptr != NULL) 6414 V_pfsync_update_state_ptr(s); 6415 r = s->rule.ptr; 6416 a = s->anchor.ptr; 6417 log = s->log; 6418 } else if (s == NULL) 6419 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6420 &a, &ruleset, inp); 6421 break; 6422 } 6423 6424 default: 6425 action = pf_test_state_other(&s, dir, kif, m, &pd); 6426 if (action == PF_PASS) { 6427 if (V_pfsync_update_state_ptr != NULL) 6428 V_pfsync_update_state_ptr(s); 6429 r = s->rule.ptr; 6430 a = s->anchor.ptr; 6431 log = s->log; 6432 } else if (s == NULL) 6433 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6434 &a, &ruleset, inp); 6435 break; 6436 } 6437 6438 done: 6439 PF_RULES_RUNLOCK(); 6440 if (n != m) { 6441 m_freem(n); 6442 n = NULL; 6443 } 6444 6445 /* handle dangerous IPv6 extension headers. */ 6446 if (action == PF_PASS && rh_cnt && 6447 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6448 action = PF_DROP; 6449 REASON_SET(&reason, PFRES_IPOPTIONS); 6450 log = r->log; 6451 DPFPRINTF(PF_DEBUG_MISC, 6452 ("pf: dropping packet with dangerous v6 headers\n")); 6453 } 6454 6455 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6456 action = PF_DROP; 6457 REASON_SET(&reason, PFRES_MEMORY); 6458 } 6459 if (r->rtableid >= 0) 6460 M_SETFIB(m, r->rtableid); 6461 6462 if (r->scrub_flags & PFSTATE_SETPRIO) { 6463 if (pd.tos & IPTOS_LOWDELAY) 6464 pqid = 1; 6465 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6466 action = PF_DROP; 6467 REASON_SET(&reason, PFRES_MEMORY); 6468 log = 1; 6469 DPFPRINTF(PF_DEBUG_MISC, 6470 ("pf: failed to allocate 802.1q mtag\n")); 6471 } 6472 } 6473 6474 #ifdef ALTQ 6475 if (action == PF_PASS && r->qid) { 6476 if (pd.pf_mtag == NULL && 6477 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6478 action = PF_DROP; 6479 REASON_SET(&reason, PFRES_MEMORY); 6480 } else { 6481 if (s != NULL) 6482 pd.pf_mtag->qid_hash = pf_state_hash(s); 6483 if (pd.tos & IPTOS_LOWDELAY) 6484 pd.pf_mtag->qid = r->pqid; 6485 else 6486 pd.pf_mtag->qid = r->qid; 6487 /* Add hints for ecn. */ 6488 pd.pf_mtag->hdr = h; 6489 } 6490 } 6491 #endif /* ALTQ */ 6492 6493 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6494 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6495 (s->nat_rule.ptr->action == PF_RDR || 6496 s->nat_rule.ptr->action == PF_BINAT) && 6497 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6498 m->m_flags |= M_SKIP_FIREWALL; 6499 6500 /* XXX: Anybody working on it?! */ 6501 if (r->divert.port) 6502 printf("pf: divert(9) is not supported for IPv6\n"); 6503 6504 if (log) { 6505 struct pf_rule *lr; 6506 6507 if (s != NULL && s->nat_rule.ptr != NULL && 6508 s->nat_rule.ptr->log & PF_LOG_ALL) 6509 lr = s->nat_rule.ptr; 6510 else 6511 lr = r; 6512 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6513 &pd, (s == NULL)); 6514 } 6515 6516 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6517 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6518 6519 if (action == PF_PASS || r->action == PF_DROP) { 6520 dirndx = (dir == PF_OUT); 6521 r->packets[dirndx]++; 6522 r->bytes[dirndx] += pd.tot_len; 6523 if (a != NULL) { 6524 a->packets[dirndx]++; 6525 a->bytes[dirndx] += pd.tot_len; 6526 } 6527 if (s != NULL) { 6528 if (s->nat_rule.ptr != NULL) { 6529 s->nat_rule.ptr->packets[dirndx]++; 6530 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6531 } 6532 if (s->src_node != NULL) { 6533 s->src_node->packets[dirndx]++; 6534 s->src_node->bytes[dirndx] += pd.tot_len; 6535 } 6536 if (s->nat_src_node != NULL) { 6537 s->nat_src_node->packets[dirndx]++; 6538 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6539 } 6540 dirndx = (dir == s->direction) ? 0 : 1; 6541 s->packets[dirndx]++; 6542 s->bytes[dirndx] += pd.tot_len; 6543 } 6544 tr = r; 6545 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6546 if (nr != NULL && r == &V_pf_default_rule) 6547 tr = nr; 6548 if (tr->src.addr.type == PF_ADDR_TABLE) 6549 pfr_update_stats(tr->src.addr.p.tbl, 6550 (s == NULL) ? pd.src : 6551 &s->key[(s->direction == PF_IN)]->addr[0], 6552 pd.af, pd.tot_len, dir == PF_OUT, 6553 r->action == PF_PASS, tr->src.neg); 6554 if (tr->dst.addr.type == PF_ADDR_TABLE) 6555 pfr_update_stats(tr->dst.addr.p.tbl, 6556 (s == NULL) ? pd.dst : 6557 &s->key[(s->direction == PF_IN)]->addr[1], 6558 pd.af, pd.tot_len, dir == PF_OUT, 6559 r->action == PF_PASS, tr->dst.neg); 6560 } 6561 6562 switch (action) { 6563 case PF_SYNPROXY_DROP: 6564 m_freem(*m0); 6565 case PF_DEFER: 6566 *m0 = NULL; 6567 action = PF_PASS; 6568 break; 6569 case PF_DROP: 6570 m_freem(*m0); 6571 *m0 = NULL; 6572 break; 6573 default: 6574 /* pf_route6() returns unlocked. */ 6575 if (r->rt) { 6576 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6577 return (action); 6578 } 6579 break; 6580 } 6581 6582 if (s) 6583 PF_STATE_UNLOCK(s); 6584 6585 /* If reassembled packet passed, create new fragments. */ 6586 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6587 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6588 action = pf_refragment6(ifp, m0, mtag); 6589 6590 return (action); 6591 } 6592 #endif /* INET6 */ 6593