1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2001 Daniel Hartmeier 5 * Copyright (c) 2002 - 2008 Henning Brauer 6 * Copyright (c) 2012 Gleb Smirnoff <glebius@FreeBSD.org> 7 * All rights reserved. 8 * 9 * Redistribution and use in source and binary forms, with or without 10 * modification, are permitted provided that the following conditions 11 * are met: 12 * 13 * - Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * - Redistributions in binary form must reproduce the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer in the documentation and/or other materials provided 18 * with the distribution. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 21 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 23 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 24 * COPYRIGHT HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 25 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 26 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 27 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 28 * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 29 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 30 * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 31 * POSSIBILITY OF SUCH DAMAGE. 32 * 33 * Effort sponsored in part by the Defense Advanced Research Projects 34 * Agency (DARPA) and Air Force Research Laboratory, Air Force 35 * Materiel Command, USAF, under agreement number F30602-01-2-0537. 36 * 37 * $OpenBSD: pf.c,v 1.634 2009/02/27 12:37:45 henning Exp $ 38 */ 39 40 #include <sys/cdefs.h> 41 __FBSDID("$FreeBSD$"); 42 43 #include "opt_inet.h" 44 #include "opt_inet6.h" 45 #include "opt_bpf.h" 46 #include "opt_pf.h" 47 48 #include <sys/param.h> 49 #include <sys/bus.h> 50 #include <sys/endian.h> 51 #include <sys/gsb_crc32.h> 52 #include <sys/hash.h> 53 #include <sys/interrupt.h> 54 #include <sys/kernel.h> 55 #include <sys/kthread.h> 56 #include <sys/limits.h> 57 #include <sys/mbuf.h> 58 #include <sys/md5.h> 59 #include <sys/random.h> 60 #include <sys/refcount.h> 61 #include <sys/socket.h> 62 #include <sys/sysctl.h> 63 #include <sys/taskqueue.h> 64 #include <sys/ucred.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/if_types.h> 69 #include <net/if_vlan_var.h> 70 #include <net/route.h> 71 #include <net/radix_mpath.h> 72 #include <net/vnet.h> 73 74 #include <net/pfil.h> 75 #include <net/pfvar.h> 76 #include <net/if_pflog.h> 77 #include <net/if_pfsync.h> 78 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_var.h> 81 #include <netinet/in_fib.h> 82 #include <netinet/ip.h> 83 #include <netinet/ip_fw.h> 84 #include <netinet/ip_icmp.h> 85 #include <netinet/icmp_var.h> 86 #include <netinet/ip_var.h> 87 #include <netinet/tcp.h> 88 #include <netinet/tcp_fsm.h> 89 #include <netinet/tcp_seq.h> 90 #include <netinet/tcp_timer.h> 91 #include <netinet/tcp_var.h> 92 #include <netinet/udp.h> 93 #include <netinet/udp_var.h> 94 95 #ifdef INET6 96 #include <netinet/ip6.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/nd6.h> 99 #include <netinet6/ip6_var.h> 100 #include <netinet6/in6_pcb.h> 101 #include <netinet6/in6_fib.h> 102 #include <netinet6/scope6_var.h> 103 #endif /* INET6 */ 104 105 #include <machine/in_cksum.h> 106 #include <security/mac/mac_framework.h> 107 108 #define DPFPRINTF(n, x) if (V_pf_status.debug >= (n)) printf x 109 110 /* 111 * Global variables 112 */ 113 114 /* state tables */ 115 VNET_DEFINE(struct pf_altqqueue, pf_altqs[4]); 116 VNET_DEFINE(struct pf_palist, pf_pabuf); 117 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_active); 118 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_active); 119 VNET_DEFINE(struct pf_altqqueue *, pf_altqs_inactive); 120 VNET_DEFINE(struct pf_altqqueue *, pf_altq_ifs_inactive); 121 VNET_DEFINE(struct pf_kstatus, pf_status); 122 123 VNET_DEFINE(u_int32_t, ticket_altqs_active); 124 VNET_DEFINE(u_int32_t, ticket_altqs_inactive); 125 VNET_DEFINE(int, altqs_inactive_open); 126 VNET_DEFINE(u_int32_t, ticket_pabuf); 127 128 VNET_DEFINE(MD5_CTX, pf_tcp_secret_ctx); 129 #define V_pf_tcp_secret_ctx VNET(pf_tcp_secret_ctx) 130 VNET_DEFINE(u_char, pf_tcp_secret[16]); 131 #define V_pf_tcp_secret VNET(pf_tcp_secret) 132 VNET_DEFINE(int, pf_tcp_secret_init); 133 #define V_pf_tcp_secret_init VNET(pf_tcp_secret_init) 134 VNET_DEFINE(int, pf_tcp_iss_off); 135 #define V_pf_tcp_iss_off VNET(pf_tcp_iss_off) 136 VNET_DECLARE(int, pf_vnet_active); 137 #define V_pf_vnet_active VNET(pf_vnet_active) 138 139 VNET_DEFINE_STATIC(uint32_t, pf_purge_idx); 140 #define V_pf_purge_idx VNET(pf_purge_idx) 141 142 /* 143 * Queue for pf_intr() sends. 144 */ 145 static MALLOC_DEFINE(M_PFTEMP, "pf_temp", "pf(4) temporary allocations"); 146 struct pf_send_entry { 147 STAILQ_ENTRY(pf_send_entry) pfse_next; 148 struct mbuf *pfse_m; 149 enum { 150 PFSE_IP, 151 PFSE_IP6, 152 PFSE_ICMP, 153 PFSE_ICMP6, 154 } pfse_type; 155 struct { 156 int type; 157 int code; 158 int mtu; 159 } icmpopts; 160 }; 161 162 STAILQ_HEAD(pf_send_head, pf_send_entry); 163 VNET_DEFINE_STATIC(struct pf_send_head, pf_sendqueue); 164 #define V_pf_sendqueue VNET(pf_sendqueue) 165 166 static struct mtx pf_sendqueue_mtx; 167 MTX_SYSINIT(pf_sendqueue_mtx, &pf_sendqueue_mtx, "pf send queue", MTX_DEF); 168 #define PF_SENDQ_LOCK() mtx_lock(&pf_sendqueue_mtx) 169 #define PF_SENDQ_UNLOCK() mtx_unlock(&pf_sendqueue_mtx) 170 171 /* 172 * Queue for pf_overload_task() tasks. 173 */ 174 struct pf_overload_entry { 175 SLIST_ENTRY(pf_overload_entry) next; 176 struct pf_addr addr; 177 sa_family_t af; 178 uint8_t dir; 179 struct pf_rule *rule; 180 }; 181 182 SLIST_HEAD(pf_overload_head, pf_overload_entry); 183 VNET_DEFINE_STATIC(struct pf_overload_head, pf_overloadqueue); 184 #define V_pf_overloadqueue VNET(pf_overloadqueue) 185 VNET_DEFINE_STATIC(struct task, pf_overloadtask); 186 #define V_pf_overloadtask VNET(pf_overloadtask) 187 188 static struct mtx pf_overloadqueue_mtx; 189 MTX_SYSINIT(pf_overloadqueue_mtx, &pf_overloadqueue_mtx, 190 "pf overload/flush queue", MTX_DEF); 191 #define PF_OVERLOADQ_LOCK() mtx_lock(&pf_overloadqueue_mtx) 192 #define PF_OVERLOADQ_UNLOCK() mtx_unlock(&pf_overloadqueue_mtx) 193 194 VNET_DEFINE(struct pf_rulequeue, pf_unlinked_rules); 195 struct mtx pf_unlnkdrules_mtx; 196 MTX_SYSINIT(pf_unlnkdrules_mtx, &pf_unlnkdrules_mtx, "pf unlinked rules", 197 MTX_DEF); 198 199 VNET_DEFINE_STATIC(uma_zone_t, pf_sources_z); 200 #define V_pf_sources_z VNET(pf_sources_z) 201 uma_zone_t pf_mtag_z; 202 VNET_DEFINE(uma_zone_t, pf_state_z); 203 VNET_DEFINE(uma_zone_t, pf_state_key_z); 204 205 VNET_DEFINE(uint64_t, pf_stateid[MAXCPU]); 206 #define PFID_CPUBITS 8 207 #define PFID_CPUSHIFT (sizeof(uint64_t) * NBBY - PFID_CPUBITS) 208 #define PFID_CPUMASK ((uint64_t)((1 << PFID_CPUBITS) - 1) << PFID_CPUSHIFT) 209 #define PFID_MAXID (~PFID_CPUMASK) 210 CTASSERT((1 << PFID_CPUBITS) >= MAXCPU); 211 212 static void pf_src_tree_remove_state(struct pf_state *); 213 static void pf_init_threshold(struct pf_threshold *, u_int32_t, 214 u_int32_t); 215 static void pf_add_threshold(struct pf_threshold *); 216 static int pf_check_threshold(struct pf_threshold *); 217 218 static void pf_change_ap(struct mbuf *, struct pf_addr *, u_int16_t *, 219 u_int16_t *, u_int16_t *, struct pf_addr *, 220 u_int16_t, u_int8_t, sa_family_t); 221 static int pf_modulate_sack(struct mbuf *, int, struct pf_pdesc *, 222 struct tcphdr *, struct pf_state_peer *); 223 static void pf_change_icmp(struct pf_addr *, u_int16_t *, 224 struct pf_addr *, struct pf_addr *, u_int16_t, 225 u_int16_t *, u_int16_t *, u_int16_t *, 226 u_int16_t *, u_int8_t, sa_family_t); 227 static void pf_send_tcp(struct mbuf *, 228 const struct pf_rule *, sa_family_t, 229 const struct pf_addr *, const struct pf_addr *, 230 u_int16_t, u_int16_t, u_int32_t, u_int32_t, 231 u_int8_t, u_int16_t, u_int16_t, u_int8_t, int, 232 u_int16_t, struct ifnet *); 233 static void pf_send_icmp(struct mbuf *, u_int8_t, u_int8_t, 234 sa_family_t, struct pf_rule *); 235 static void pf_detach_state(struct pf_state *); 236 static int pf_state_key_attach(struct pf_state_key *, 237 struct pf_state_key *, struct pf_state *); 238 static void pf_state_key_detach(struct pf_state *, int); 239 static int pf_state_key_ctor(void *, int, void *, int); 240 static u_int32_t pf_tcp_iss(struct pf_pdesc *); 241 static int pf_test_rule(struct pf_rule **, struct pf_state **, 242 int, struct pfi_kif *, struct mbuf *, int, 243 struct pf_pdesc *, struct pf_rule **, 244 struct pf_ruleset **, struct inpcb *); 245 static int pf_create_state(struct pf_rule *, struct pf_rule *, 246 struct pf_rule *, struct pf_pdesc *, 247 struct pf_src_node *, struct pf_state_key *, 248 struct pf_state_key *, struct mbuf *, int, 249 u_int16_t, u_int16_t, int *, struct pfi_kif *, 250 struct pf_state **, int, u_int16_t, u_int16_t, 251 int); 252 static int pf_test_fragment(struct pf_rule **, int, 253 struct pfi_kif *, struct mbuf *, void *, 254 struct pf_pdesc *, struct pf_rule **, 255 struct pf_ruleset **); 256 static int pf_tcp_track_full(struct pf_state_peer *, 257 struct pf_state_peer *, struct pf_state **, 258 struct pfi_kif *, struct mbuf *, int, 259 struct pf_pdesc *, u_short *, int *); 260 static int pf_tcp_track_sloppy(struct pf_state_peer *, 261 struct pf_state_peer *, struct pf_state **, 262 struct pf_pdesc *, u_short *); 263 static int pf_test_state_tcp(struct pf_state **, int, 264 struct pfi_kif *, struct mbuf *, int, 265 void *, struct pf_pdesc *, u_short *); 266 static int pf_test_state_udp(struct pf_state **, int, 267 struct pfi_kif *, struct mbuf *, int, 268 void *, struct pf_pdesc *); 269 static int pf_test_state_icmp(struct pf_state **, int, 270 struct pfi_kif *, struct mbuf *, int, 271 void *, struct pf_pdesc *, u_short *); 272 static int pf_test_state_other(struct pf_state **, int, 273 struct pfi_kif *, struct mbuf *, struct pf_pdesc *); 274 static u_int8_t pf_get_wscale(struct mbuf *, int, u_int16_t, 275 sa_family_t); 276 static u_int16_t pf_get_mss(struct mbuf *, int, u_int16_t, 277 sa_family_t); 278 static u_int16_t pf_calc_mss(struct pf_addr *, sa_family_t, 279 int, u_int16_t); 280 static int pf_check_proto_cksum(struct mbuf *, int, int, 281 u_int8_t, sa_family_t); 282 static void pf_print_state_parts(struct pf_state *, 283 struct pf_state_key *, struct pf_state_key *); 284 static int pf_addr_wrap_neq(struct pf_addr_wrap *, 285 struct pf_addr_wrap *); 286 static struct pf_state *pf_find_state(struct pfi_kif *, 287 struct pf_state_key_cmp *, u_int); 288 static int pf_src_connlimit(struct pf_state **); 289 static void pf_overload_task(void *v, int pending); 290 static int pf_insert_src_node(struct pf_src_node **, 291 struct pf_rule *, struct pf_addr *, sa_family_t); 292 static u_int pf_purge_expired_states(u_int, int); 293 static void pf_purge_unlinked_rules(void); 294 static int pf_mtag_uminit(void *, int, int); 295 static void pf_mtag_free(struct m_tag *); 296 #ifdef INET 297 static void pf_route(struct mbuf **, struct pf_rule *, int, 298 struct ifnet *, struct pf_state *, 299 struct pf_pdesc *, struct inpcb *); 300 #endif /* INET */ 301 #ifdef INET6 302 static void pf_change_a6(struct pf_addr *, u_int16_t *, 303 struct pf_addr *, u_int8_t); 304 static void pf_route6(struct mbuf **, struct pf_rule *, int, 305 struct ifnet *, struct pf_state *, 306 struct pf_pdesc *, struct inpcb *); 307 #endif /* INET6 */ 308 309 int in4_cksum(struct mbuf *m, u_int8_t nxt, int off, int len); 310 311 extern int pf_end_threads; 312 extern struct proc *pf_purge_proc; 313 314 VNET_DEFINE(struct pf_limit, pf_limits[PF_LIMIT_MAX]); 315 316 #define PACKET_LOOPED(pd) ((pd)->pf_mtag && \ 317 (pd)->pf_mtag->flags & PF_PACKET_LOOPED) 318 319 #define STATE_LOOKUP(i, k, d, s, pd) \ 320 do { \ 321 (s) = pf_find_state((i), (k), (d)); \ 322 if ((s) == NULL) \ 323 return (PF_DROP); \ 324 if (PACKET_LOOPED(pd)) \ 325 return (PF_PASS); \ 326 if ((d) == PF_OUT && \ 327 (((s)->rule.ptr->rt == PF_ROUTETO && \ 328 (s)->rule.ptr->direction == PF_OUT) || \ 329 ((s)->rule.ptr->rt == PF_REPLYTO && \ 330 (s)->rule.ptr->direction == PF_IN)) && \ 331 (s)->rt_kif != NULL && \ 332 (s)->rt_kif != (i)) \ 333 return (PF_PASS); \ 334 } while (0) 335 336 #define BOUND_IFACE(r, k) \ 337 ((r)->rule_flag & PFRULE_IFBOUND) ? (k) : V_pfi_all 338 339 #define STATE_INC_COUNTERS(s) \ 340 do { \ 341 counter_u64_add(s->rule.ptr->states_cur, 1); \ 342 counter_u64_add(s->rule.ptr->states_tot, 1); \ 343 if (s->anchor.ptr != NULL) { \ 344 counter_u64_add(s->anchor.ptr->states_cur, 1); \ 345 counter_u64_add(s->anchor.ptr->states_tot, 1); \ 346 } \ 347 if (s->nat_rule.ptr != NULL) { \ 348 counter_u64_add(s->nat_rule.ptr->states_cur, 1);\ 349 counter_u64_add(s->nat_rule.ptr->states_tot, 1);\ 350 } \ 351 } while (0) 352 353 #define STATE_DEC_COUNTERS(s) \ 354 do { \ 355 if (s->nat_rule.ptr != NULL) \ 356 counter_u64_add(s->nat_rule.ptr->states_cur, -1);\ 357 if (s->anchor.ptr != NULL) \ 358 counter_u64_add(s->anchor.ptr->states_cur, -1); \ 359 counter_u64_add(s->rule.ptr->states_cur, -1); \ 360 } while (0) 361 362 MALLOC_DEFINE(M_PFHASH, "pf_hash", "pf(4) hash header structures"); 363 VNET_DEFINE(struct pf_keyhash *, pf_keyhash); 364 VNET_DEFINE(struct pf_idhash *, pf_idhash); 365 VNET_DEFINE(struct pf_srchash *, pf_srchash); 366 367 SYSCTL_NODE(_net, OID_AUTO, pf, CTLFLAG_RW, 0, "pf(4)"); 368 369 u_long pf_hashmask; 370 u_long pf_srchashmask; 371 static u_long pf_hashsize; 372 static u_long pf_srchashsize; 373 u_long pf_ioctl_maxcount = 65535; 374 375 SYSCTL_ULONG(_net_pf, OID_AUTO, states_hashsize, CTLFLAG_RDTUN, 376 &pf_hashsize, 0, "Size of pf(4) states hashtable"); 377 SYSCTL_ULONG(_net_pf, OID_AUTO, source_nodes_hashsize, CTLFLAG_RDTUN, 378 &pf_srchashsize, 0, "Size of pf(4) source nodes hashtable"); 379 SYSCTL_ULONG(_net_pf, OID_AUTO, request_maxcount, CTLFLAG_RDTUN, 380 &pf_ioctl_maxcount, 0, "Maximum number of tables, addresses, ... in a single ioctl() call"); 381 382 VNET_DEFINE(void *, pf_swi_cookie); 383 384 VNET_DEFINE(uint32_t, pf_hashseed); 385 #define V_pf_hashseed VNET(pf_hashseed) 386 387 int 388 pf_addr_cmp(struct pf_addr *a, struct pf_addr *b, sa_family_t af) 389 { 390 391 switch (af) { 392 #ifdef INET 393 case AF_INET: 394 if (a->addr32[0] > b->addr32[0]) 395 return (1); 396 if (a->addr32[0] < b->addr32[0]) 397 return (-1); 398 break; 399 #endif /* INET */ 400 #ifdef INET6 401 case AF_INET6: 402 if (a->addr32[3] > b->addr32[3]) 403 return (1); 404 if (a->addr32[3] < b->addr32[3]) 405 return (-1); 406 if (a->addr32[2] > b->addr32[2]) 407 return (1); 408 if (a->addr32[2] < b->addr32[2]) 409 return (-1); 410 if (a->addr32[1] > b->addr32[1]) 411 return (1); 412 if (a->addr32[1] < b->addr32[1]) 413 return (-1); 414 if (a->addr32[0] > b->addr32[0]) 415 return (1); 416 if (a->addr32[0] < b->addr32[0]) 417 return (-1); 418 break; 419 #endif /* INET6 */ 420 default: 421 panic("%s: unknown address family %u", __func__, af); 422 } 423 return (0); 424 } 425 426 static __inline uint32_t 427 pf_hashkey(struct pf_state_key *sk) 428 { 429 uint32_t h; 430 431 h = murmur3_32_hash32((uint32_t *)sk, 432 sizeof(struct pf_state_key_cmp)/sizeof(uint32_t), 433 V_pf_hashseed); 434 435 return (h & pf_hashmask); 436 } 437 438 static __inline uint32_t 439 pf_hashsrc(struct pf_addr *addr, sa_family_t af) 440 { 441 uint32_t h; 442 443 switch (af) { 444 case AF_INET: 445 h = murmur3_32_hash32((uint32_t *)&addr->v4, 446 sizeof(addr->v4)/sizeof(uint32_t), V_pf_hashseed); 447 break; 448 case AF_INET6: 449 h = murmur3_32_hash32((uint32_t *)&addr->v6, 450 sizeof(addr->v6)/sizeof(uint32_t), V_pf_hashseed); 451 break; 452 default: 453 panic("%s: unknown address family %u", __func__, af); 454 } 455 456 return (h & pf_srchashmask); 457 } 458 459 #ifdef ALTQ 460 static int 461 pf_state_hash(struct pf_state *s) 462 { 463 u_int32_t hv = (intptr_t)s / sizeof(*s); 464 465 hv ^= crc32(&s->src, sizeof(s->src)); 466 hv ^= crc32(&s->dst, sizeof(s->dst)); 467 if (hv == 0) 468 hv = 1; 469 return (hv); 470 } 471 #endif 472 473 #ifdef INET6 474 void 475 pf_addrcpy(struct pf_addr *dst, struct pf_addr *src, sa_family_t af) 476 { 477 switch (af) { 478 #ifdef INET 479 case AF_INET: 480 dst->addr32[0] = src->addr32[0]; 481 break; 482 #endif /* INET */ 483 case AF_INET6: 484 dst->addr32[0] = src->addr32[0]; 485 dst->addr32[1] = src->addr32[1]; 486 dst->addr32[2] = src->addr32[2]; 487 dst->addr32[3] = src->addr32[3]; 488 break; 489 } 490 } 491 #endif /* INET6 */ 492 493 static void 494 pf_init_threshold(struct pf_threshold *threshold, 495 u_int32_t limit, u_int32_t seconds) 496 { 497 threshold->limit = limit * PF_THRESHOLD_MULT; 498 threshold->seconds = seconds; 499 threshold->count = 0; 500 threshold->last = time_uptime; 501 } 502 503 static void 504 pf_add_threshold(struct pf_threshold *threshold) 505 { 506 u_int32_t t = time_uptime, diff = t - threshold->last; 507 508 if (diff >= threshold->seconds) 509 threshold->count = 0; 510 else 511 threshold->count -= threshold->count * diff / 512 threshold->seconds; 513 threshold->count += PF_THRESHOLD_MULT; 514 threshold->last = t; 515 } 516 517 static int 518 pf_check_threshold(struct pf_threshold *threshold) 519 { 520 return (threshold->count > threshold->limit); 521 } 522 523 static int 524 pf_src_connlimit(struct pf_state **state) 525 { 526 struct pf_overload_entry *pfoe; 527 int bad = 0; 528 529 PF_STATE_LOCK_ASSERT(*state); 530 531 (*state)->src_node->conn++; 532 (*state)->src.tcp_est = 1; 533 pf_add_threshold(&(*state)->src_node->conn_rate); 534 535 if ((*state)->rule.ptr->max_src_conn && 536 (*state)->rule.ptr->max_src_conn < 537 (*state)->src_node->conn) { 538 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONN], 1); 539 bad++; 540 } 541 542 if ((*state)->rule.ptr->max_src_conn_rate.limit && 543 pf_check_threshold(&(*state)->src_node->conn_rate)) { 544 counter_u64_add(V_pf_status.lcounters[LCNT_SRCCONNRATE], 1); 545 bad++; 546 } 547 548 if (!bad) 549 return (0); 550 551 /* Kill this state. */ 552 (*state)->timeout = PFTM_PURGE; 553 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 554 555 if ((*state)->rule.ptr->overload_tbl == NULL) 556 return (1); 557 558 /* Schedule overloading and flushing task. */ 559 pfoe = malloc(sizeof(*pfoe), M_PFTEMP, M_NOWAIT); 560 if (pfoe == NULL) 561 return (1); /* too bad :( */ 562 563 bcopy(&(*state)->src_node->addr, &pfoe->addr, sizeof(pfoe->addr)); 564 pfoe->af = (*state)->key[PF_SK_WIRE]->af; 565 pfoe->rule = (*state)->rule.ptr; 566 pfoe->dir = (*state)->direction; 567 PF_OVERLOADQ_LOCK(); 568 SLIST_INSERT_HEAD(&V_pf_overloadqueue, pfoe, next); 569 PF_OVERLOADQ_UNLOCK(); 570 taskqueue_enqueue(taskqueue_swi, &V_pf_overloadtask); 571 572 return (1); 573 } 574 575 static void 576 pf_overload_task(void *v, int pending) 577 { 578 struct pf_overload_head queue; 579 struct pfr_addr p; 580 struct pf_overload_entry *pfoe, *pfoe1; 581 uint32_t killed = 0; 582 583 CURVNET_SET((struct vnet *)v); 584 585 PF_OVERLOADQ_LOCK(); 586 queue = V_pf_overloadqueue; 587 SLIST_INIT(&V_pf_overloadqueue); 588 PF_OVERLOADQ_UNLOCK(); 589 590 bzero(&p, sizeof(p)); 591 SLIST_FOREACH(pfoe, &queue, next) { 592 counter_u64_add(V_pf_status.lcounters[LCNT_OVERLOAD_TABLE], 1); 593 if (V_pf_status.debug >= PF_DEBUG_MISC) { 594 printf("%s: blocking address ", __func__); 595 pf_print_host(&pfoe->addr, 0, pfoe->af); 596 printf("\n"); 597 } 598 599 p.pfra_af = pfoe->af; 600 switch (pfoe->af) { 601 #ifdef INET 602 case AF_INET: 603 p.pfra_net = 32; 604 p.pfra_ip4addr = pfoe->addr.v4; 605 break; 606 #endif 607 #ifdef INET6 608 case AF_INET6: 609 p.pfra_net = 128; 610 p.pfra_ip6addr = pfoe->addr.v6; 611 break; 612 #endif 613 } 614 615 PF_RULES_WLOCK(); 616 pfr_insert_kentry(pfoe->rule->overload_tbl, &p, time_second); 617 PF_RULES_WUNLOCK(); 618 } 619 620 /* 621 * Remove those entries, that don't need flushing. 622 */ 623 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 624 if (pfoe->rule->flush == 0) { 625 SLIST_REMOVE(&queue, pfoe, pf_overload_entry, next); 626 free(pfoe, M_PFTEMP); 627 } else 628 counter_u64_add( 629 V_pf_status.lcounters[LCNT_OVERLOAD_FLUSH], 1); 630 631 /* If nothing to flush, return. */ 632 if (SLIST_EMPTY(&queue)) { 633 CURVNET_RESTORE(); 634 return; 635 } 636 637 for (int i = 0; i <= pf_hashmask; i++) { 638 struct pf_idhash *ih = &V_pf_idhash[i]; 639 struct pf_state_key *sk; 640 struct pf_state *s; 641 642 PF_HASHROW_LOCK(ih); 643 LIST_FOREACH(s, &ih->states, entry) { 644 sk = s->key[PF_SK_WIRE]; 645 SLIST_FOREACH(pfoe, &queue, next) 646 if (sk->af == pfoe->af && 647 ((pfoe->rule->flush & PF_FLUSH_GLOBAL) || 648 pfoe->rule == s->rule.ptr) && 649 ((pfoe->dir == PF_OUT && 650 PF_AEQ(&pfoe->addr, &sk->addr[1], sk->af)) || 651 (pfoe->dir == PF_IN && 652 PF_AEQ(&pfoe->addr, &sk->addr[0], sk->af)))) { 653 s->timeout = PFTM_PURGE; 654 s->src.state = s->dst.state = TCPS_CLOSED; 655 killed++; 656 } 657 } 658 PF_HASHROW_UNLOCK(ih); 659 } 660 SLIST_FOREACH_SAFE(pfoe, &queue, next, pfoe1) 661 free(pfoe, M_PFTEMP); 662 if (V_pf_status.debug >= PF_DEBUG_MISC) 663 printf("%s: %u states killed", __func__, killed); 664 665 CURVNET_RESTORE(); 666 } 667 668 /* 669 * Can return locked on failure, so that we can consistently 670 * allocate and insert a new one. 671 */ 672 struct pf_src_node * 673 pf_find_src_node(struct pf_addr *src, struct pf_rule *rule, sa_family_t af, 674 int returnlocked) 675 { 676 struct pf_srchash *sh; 677 struct pf_src_node *n; 678 679 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_SEARCH], 1); 680 681 sh = &V_pf_srchash[pf_hashsrc(src, af)]; 682 PF_HASHROW_LOCK(sh); 683 LIST_FOREACH(n, &sh->nodes, entry) 684 if (n->rule.ptr == rule && n->af == af && 685 ((af == AF_INET && n->addr.v4.s_addr == src->v4.s_addr) || 686 (af == AF_INET6 && bcmp(&n->addr, src, sizeof(*src)) == 0))) 687 break; 688 if (n != NULL) { 689 n->states++; 690 PF_HASHROW_UNLOCK(sh); 691 } else if (returnlocked == 0) 692 PF_HASHROW_UNLOCK(sh); 693 694 return (n); 695 } 696 697 static int 698 pf_insert_src_node(struct pf_src_node **sn, struct pf_rule *rule, 699 struct pf_addr *src, sa_family_t af) 700 { 701 702 KASSERT((rule->rule_flag & PFRULE_RULESRCTRACK || 703 rule->rpool.opts & PF_POOL_STICKYADDR), 704 ("%s for non-tracking rule %p", __func__, rule)); 705 706 if (*sn == NULL) 707 *sn = pf_find_src_node(src, rule, af, 1); 708 709 if (*sn == NULL) { 710 struct pf_srchash *sh = &V_pf_srchash[pf_hashsrc(src, af)]; 711 712 PF_HASHROW_ASSERT(sh); 713 714 if (!rule->max_src_nodes || 715 counter_u64_fetch(rule->src_nodes) < rule->max_src_nodes) 716 (*sn) = uma_zalloc(V_pf_sources_z, M_NOWAIT | M_ZERO); 717 else 718 counter_u64_add(V_pf_status.lcounters[LCNT_SRCNODES], 719 1); 720 if ((*sn) == NULL) { 721 PF_HASHROW_UNLOCK(sh); 722 return (-1); 723 } 724 725 pf_init_threshold(&(*sn)->conn_rate, 726 rule->max_src_conn_rate.limit, 727 rule->max_src_conn_rate.seconds); 728 729 (*sn)->af = af; 730 (*sn)->rule.ptr = rule; 731 PF_ACPY(&(*sn)->addr, src, af); 732 LIST_INSERT_HEAD(&sh->nodes, *sn, entry); 733 (*sn)->creation = time_uptime; 734 (*sn)->ruletype = rule->action; 735 (*sn)->states = 1; 736 if ((*sn)->rule.ptr != NULL) 737 counter_u64_add((*sn)->rule.ptr->src_nodes, 1); 738 PF_HASHROW_UNLOCK(sh); 739 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_INSERT], 1); 740 } else { 741 if (rule->max_src_states && 742 (*sn)->states >= rule->max_src_states) { 743 counter_u64_add(V_pf_status.lcounters[LCNT_SRCSTATES], 744 1); 745 return (-1); 746 } 747 } 748 return (0); 749 } 750 751 void 752 pf_unlink_src_node(struct pf_src_node *src) 753 { 754 755 PF_HASHROW_ASSERT(&V_pf_srchash[pf_hashsrc(&src->addr, src->af)]); 756 LIST_REMOVE(src, entry); 757 if (src->rule.ptr) 758 counter_u64_add(src->rule.ptr->src_nodes, -1); 759 } 760 761 u_int 762 pf_free_src_nodes(struct pf_src_node_list *head) 763 { 764 struct pf_src_node *sn, *tmp; 765 u_int count = 0; 766 767 LIST_FOREACH_SAFE(sn, head, entry, tmp) { 768 uma_zfree(V_pf_sources_z, sn); 769 count++; 770 } 771 772 counter_u64_add(V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], count); 773 774 return (count); 775 } 776 777 void 778 pf_mtag_initialize() 779 { 780 781 pf_mtag_z = uma_zcreate("pf mtags", sizeof(struct m_tag) + 782 sizeof(struct pf_mtag), NULL, NULL, pf_mtag_uminit, NULL, 783 UMA_ALIGN_PTR, 0); 784 } 785 786 /* Per-vnet data storage structures initialization. */ 787 void 788 pf_initialize() 789 { 790 struct pf_keyhash *kh; 791 struct pf_idhash *ih; 792 struct pf_srchash *sh; 793 u_int i; 794 795 if (pf_hashsize == 0 || !powerof2(pf_hashsize)) 796 pf_hashsize = PF_HASHSIZ; 797 if (pf_srchashsize == 0 || !powerof2(pf_srchashsize)) 798 pf_srchashsize = PF_SRCHASHSIZ; 799 800 V_pf_hashseed = arc4random(); 801 802 /* States and state keys storage. */ 803 V_pf_state_z = uma_zcreate("pf states", sizeof(struct pf_state), 804 NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 0); 805 V_pf_limits[PF_LIMIT_STATES].zone = V_pf_state_z; 806 uma_zone_set_max(V_pf_state_z, PFSTATE_HIWAT); 807 uma_zone_set_warning(V_pf_state_z, "PF states limit reached"); 808 809 V_pf_state_key_z = uma_zcreate("pf state keys", 810 sizeof(struct pf_state_key), pf_state_key_ctor, NULL, NULL, NULL, 811 UMA_ALIGN_PTR, 0); 812 813 V_pf_keyhash = mallocarray(pf_hashsize, sizeof(struct pf_keyhash), 814 M_PFHASH, M_NOWAIT | M_ZERO); 815 V_pf_idhash = mallocarray(pf_hashsize, sizeof(struct pf_idhash), 816 M_PFHASH, M_NOWAIT | M_ZERO); 817 if (V_pf_keyhash == NULL || V_pf_idhash == NULL) { 818 printf("pf: Unable to allocate memory for " 819 "state_hashsize %lu.\n", pf_hashsize); 820 821 free(V_pf_keyhash, M_PFHASH); 822 free(V_pf_idhash, M_PFHASH); 823 824 pf_hashsize = PF_HASHSIZ; 825 V_pf_keyhash = mallocarray(pf_hashsize, 826 sizeof(struct pf_keyhash), M_PFHASH, M_WAITOK | M_ZERO); 827 V_pf_idhash = mallocarray(pf_hashsize, 828 sizeof(struct pf_idhash), M_PFHASH, M_WAITOK | M_ZERO); 829 } 830 831 pf_hashmask = pf_hashsize - 1; 832 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 833 i++, kh++, ih++) { 834 mtx_init(&kh->lock, "pf_keyhash", NULL, MTX_DEF | MTX_DUPOK); 835 mtx_init(&ih->lock, "pf_idhash", NULL, MTX_DEF); 836 } 837 838 /* Source nodes. */ 839 V_pf_sources_z = uma_zcreate("pf source nodes", 840 sizeof(struct pf_src_node), NULL, NULL, NULL, NULL, UMA_ALIGN_PTR, 841 0); 842 V_pf_limits[PF_LIMIT_SRC_NODES].zone = V_pf_sources_z; 843 uma_zone_set_max(V_pf_sources_z, PFSNODE_HIWAT); 844 uma_zone_set_warning(V_pf_sources_z, "PF source nodes limit reached"); 845 846 V_pf_srchash = mallocarray(pf_srchashsize, 847 sizeof(struct pf_srchash), M_PFHASH, M_NOWAIT | M_ZERO); 848 if (V_pf_srchash == NULL) { 849 printf("pf: Unable to allocate memory for " 850 "source_hashsize %lu.\n", pf_srchashsize); 851 852 pf_srchashsize = PF_SRCHASHSIZ; 853 V_pf_srchash = mallocarray(pf_srchashsize, 854 sizeof(struct pf_srchash), M_PFHASH, M_WAITOK | M_ZERO); 855 } 856 857 pf_srchashmask = pf_srchashsize - 1; 858 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) 859 mtx_init(&sh->lock, "pf_srchash", NULL, MTX_DEF); 860 861 /* ALTQ */ 862 TAILQ_INIT(&V_pf_altqs[0]); 863 TAILQ_INIT(&V_pf_altqs[1]); 864 TAILQ_INIT(&V_pf_altqs[2]); 865 TAILQ_INIT(&V_pf_altqs[3]); 866 TAILQ_INIT(&V_pf_pabuf); 867 V_pf_altqs_active = &V_pf_altqs[0]; 868 V_pf_altq_ifs_active = &V_pf_altqs[1]; 869 V_pf_altqs_inactive = &V_pf_altqs[2]; 870 V_pf_altq_ifs_inactive = &V_pf_altqs[3]; 871 872 /* Send & overload+flush queues. */ 873 STAILQ_INIT(&V_pf_sendqueue); 874 SLIST_INIT(&V_pf_overloadqueue); 875 TASK_INIT(&V_pf_overloadtask, 0, pf_overload_task, curvnet); 876 877 /* Unlinked, but may be referenced rules. */ 878 TAILQ_INIT(&V_pf_unlinked_rules); 879 } 880 881 void 882 pf_mtag_cleanup() 883 { 884 885 uma_zdestroy(pf_mtag_z); 886 } 887 888 void 889 pf_cleanup() 890 { 891 struct pf_keyhash *kh; 892 struct pf_idhash *ih; 893 struct pf_srchash *sh; 894 struct pf_send_entry *pfse, *next; 895 u_int i; 896 897 for (i = 0, kh = V_pf_keyhash, ih = V_pf_idhash; i <= pf_hashmask; 898 i++, kh++, ih++) { 899 KASSERT(LIST_EMPTY(&kh->keys), ("%s: key hash not empty", 900 __func__)); 901 KASSERT(LIST_EMPTY(&ih->states), ("%s: id hash not empty", 902 __func__)); 903 mtx_destroy(&kh->lock); 904 mtx_destroy(&ih->lock); 905 } 906 free(V_pf_keyhash, M_PFHASH); 907 free(V_pf_idhash, M_PFHASH); 908 909 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 910 KASSERT(LIST_EMPTY(&sh->nodes), 911 ("%s: source node hash not empty", __func__)); 912 mtx_destroy(&sh->lock); 913 } 914 free(V_pf_srchash, M_PFHASH); 915 916 STAILQ_FOREACH_SAFE(pfse, &V_pf_sendqueue, pfse_next, next) { 917 m_freem(pfse->pfse_m); 918 free(pfse, M_PFTEMP); 919 } 920 921 uma_zdestroy(V_pf_sources_z); 922 uma_zdestroy(V_pf_state_z); 923 uma_zdestroy(V_pf_state_key_z); 924 } 925 926 static int 927 pf_mtag_uminit(void *mem, int size, int how) 928 { 929 struct m_tag *t; 930 931 t = (struct m_tag *)mem; 932 t->m_tag_cookie = MTAG_ABI_COMPAT; 933 t->m_tag_id = PACKET_TAG_PF; 934 t->m_tag_len = sizeof(struct pf_mtag); 935 t->m_tag_free = pf_mtag_free; 936 937 return (0); 938 } 939 940 static void 941 pf_mtag_free(struct m_tag *t) 942 { 943 944 uma_zfree(pf_mtag_z, t); 945 } 946 947 struct pf_mtag * 948 pf_get_mtag(struct mbuf *m) 949 { 950 struct m_tag *mtag; 951 952 if ((mtag = m_tag_find(m, PACKET_TAG_PF, NULL)) != NULL) 953 return ((struct pf_mtag *)(mtag + 1)); 954 955 mtag = uma_zalloc(pf_mtag_z, M_NOWAIT); 956 if (mtag == NULL) 957 return (NULL); 958 bzero(mtag + 1, sizeof(struct pf_mtag)); 959 m_tag_prepend(m, mtag); 960 961 return ((struct pf_mtag *)(mtag + 1)); 962 } 963 964 static int 965 pf_state_key_attach(struct pf_state_key *skw, struct pf_state_key *sks, 966 struct pf_state *s) 967 { 968 struct pf_keyhash *khs, *khw, *kh; 969 struct pf_state_key *sk, *cur; 970 struct pf_state *si, *olds = NULL; 971 int idx; 972 973 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 974 KASSERT(s->key[PF_SK_WIRE] == NULL, ("%s: state has key", __func__)); 975 KASSERT(s->key[PF_SK_STACK] == NULL, ("%s: state has key", __func__)); 976 977 /* 978 * We need to lock hash slots of both keys. To avoid deadlock 979 * we always lock the slot with lower address first. Unlock order 980 * isn't important. 981 * 982 * We also need to lock ID hash slot before dropping key 983 * locks. On success we return with ID hash slot locked. 984 */ 985 986 if (skw == sks) { 987 khs = khw = &V_pf_keyhash[pf_hashkey(skw)]; 988 PF_HASHROW_LOCK(khs); 989 } else { 990 khs = &V_pf_keyhash[pf_hashkey(sks)]; 991 khw = &V_pf_keyhash[pf_hashkey(skw)]; 992 if (khs == khw) { 993 PF_HASHROW_LOCK(khs); 994 } else if (khs < khw) { 995 PF_HASHROW_LOCK(khs); 996 PF_HASHROW_LOCK(khw); 997 } else { 998 PF_HASHROW_LOCK(khw); 999 PF_HASHROW_LOCK(khs); 1000 } 1001 } 1002 1003 #define KEYS_UNLOCK() do { \ 1004 if (khs != khw) { \ 1005 PF_HASHROW_UNLOCK(khs); \ 1006 PF_HASHROW_UNLOCK(khw); \ 1007 } else \ 1008 PF_HASHROW_UNLOCK(khs); \ 1009 } while (0) 1010 1011 /* 1012 * First run: start with wire key. 1013 */ 1014 sk = skw; 1015 kh = khw; 1016 idx = PF_SK_WIRE; 1017 1018 keyattach: 1019 LIST_FOREACH(cur, &kh->keys, entry) 1020 if (bcmp(cur, sk, sizeof(struct pf_state_key_cmp)) == 0) 1021 break; 1022 1023 if (cur != NULL) { 1024 /* Key exists. Check for same kif, if none, add to key. */ 1025 TAILQ_FOREACH(si, &cur->states[idx], key_list[idx]) { 1026 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(si)]; 1027 1028 PF_HASHROW_LOCK(ih); 1029 if (si->kif == s->kif && 1030 si->direction == s->direction) { 1031 if (sk->proto == IPPROTO_TCP && 1032 si->src.state >= TCPS_FIN_WAIT_2 && 1033 si->dst.state >= TCPS_FIN_WAIT_2) { 1034 /* 1035 * New state matches an old >FIN_WAIT_2 1036 * state. We can't drop key hash locks, 1037 * thus we can't unlink it properly. 1038 * 1039 * As a workaround we drop it into 1040 * TCPS_CLOSED state, schedule purge 1041 * ASAP and push it into the very end 1042 * of the slot TAILQ, so that it won't 1043 * conflict with our new state. 1044 */ 1045 si->src.state = si->dst.state = 1046 TCPS_CLOSED; 1047 si->timeout = PFTM_PURGE; 1048 olds = si; 1049 } else { 1050 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1051 printf("pf: %s key attach " 1052 "failed on %s: ", 1053 (idx == PF_SK_WIRE) ? 1054 "wire" : "stack", 1055 s->kif->pfik_name); 1056 pf_print_state_parts(s, 1057 (idx == PF_SK_WIRE) ? 1058 sk : NULL, 1059 (idx == PF_SK_STACK) ? 1060 sk : NULL); 1061 printf(", existing: "); 1062 pf_print_state_parts(si, 1063 (idx == PF_SK_WIRE) ? 1064 sk : NULL, 1065 (idx == PF_SK_STACK) ? 1066 sk : NULL); 1067 printf("\n"); 1068 } 1069 PF_HASHROW_UNLOCK(ih); 1070 KEYS_UNLOCK(); 1071 uma_zfree(V_pf_state_key_z, sk); 1072 if (idx == PF_SK_STACK) 1073 pf_detach_state(s); 1074 return (EEXIST); /* collision! */ 1075 } 1076 } 1077 PF_HASHROW_UNLOCK(ih); 1078 } 1079 uma_zfree(V_pf_state_key_z, sk); 1080 s->key[idx] = cur; 1081 } else { 1082 LIST_INSERT_HEAD(&kh->keys, sk, entry); 1083 s->key[idx] = sk; 1084 } 1085 1086 stateattach: 1087 /* List is sorted, if-bound states before floating. */ 1088 if (s->kif == V_pfi_all) 1089 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], s, key_list[idx]); 1090 else 1091 TAILQ_INSERT_HEAD(&s->key[idx]->states[idx], s, key_list[idx]); 1092 1093 if (olds) { 1094 TAILQ_REMOVE(&s->key[idx]->states[idx], olds, key_list[idx]); 1095 TAILQ_INSERT_TAIL(&s->key[idx]->states[idx], olds, 1096 key_list[idx]); 1097 olds = NULL; 1098 } 1099 1100 /* 1101 * Attach done. See how should we (or should not?) 1102 * attach a second key. 1103 */ 1104 if (sks == skw) { 1105 s->key[PF_SK_STACK] = s->key[PF_SK_WIRE]; 1106 idx = PF_SK_STACK; 1107 sks = NULL; 1108 goto stateattach; 1109 } else if (sks != NULL) { 1110 /* 1111 * Continue attaching with stack key. 1112 */ 1113 sk = sks; 1114 kh = khs; 1115 idx = PF_SK_STACK; 1116 sks = NULL; 1117 goto keyattach; 1118 } 1119 1120 PF_STATE_LOCK(s); 1121 KEYS_UNLOCK(); 1122 1123 KASSERT(s->key[PF_SK_WIRE] != NULL && s->key[PF_SK_STACK] != NULL, 1124 ("%s failure", __func__)); 1125 1126 return (0); 1127 #undef KEYS_UNLOCK 1128 } 1129 1130 static void 1131 pf_detach_state(struct pf_state *s) 1132 { 1133 struct pf_state_key *sks = s->key[PF_SK_STACK]; 1134 struct pf_keyhash *kh; 1135 1136 if (sks != NULL) { 1137 kh = &V_pf_keyhash[pf_hashkey(sks)]; 1138 PF_HASHROW_LOCK(kh); 1139 if (s->key[PF_SK_STACK] != NULL) 1140 pf_state_key_detach(s, PF_SK_STACK); 1141 /* 1142 * If both point to same key, then we are done. 1143 */ 1144 if (sks == s->key[PF_SK_WIRE]) { 1145 pf_state_key_detach(s, PF_SK_WIRE); 1146 PF_HASHROW_UNLOCK(kh); 1147 return; 1148 } 1149 PF_HASHROW_UNLOCK(kh); 1150 } 1151 1152 if (s->key[PF_SK_WIRE] != NULL) { 1153 kh = &V_pf_keyhash[pf_hashkey(s->key[PF_SK_WIRE])]; 1154 PF_HASHROW_LOCK(kh); 1155 if (s->key[PF_SK_WIRE] != NULL) 1156 pf_state_key_detach(s, PF_SK_WIRE); 1157 PF_HASHROW_UNLOCK(kh); 1158 } 1159 } 1160 1161 static void 1162 pf_state_key_detach(struct pf_state *s, int idx) 1163 { 1164 struct pf_state_key *sk = s->key[idx]; 1165 #ifdef INVARIANTS 1166 struct pf_keyhash *kh = &V_pf_keyhash[pf_hashkey(sk)]; 1167 1168 PF_HASHROW_ASSERT(kh); 1169 #endif 1170 TAILQ_REMOVE(&sk->states[idx], s, key_list[idx]); 1171 s->key[idx] = NULL; 1172 1173 if (TAILQ_EMPTY(&sk->states[0]) && TAILQ_EMPTY(&sk->states[1])) { 1174 LIST_REMOVE(sk, entry); 1175 uma_zfree(V_pf_state_key_z, sk); 1176 } 1177 } 1178 1179 static int 1180 pf_state_key_ctor(void *mem, int size, void *arg, int flags) 1181 { 1182 struct pf_state_key *sk = mem; 1183 1184 bzero(sk, sizeof(struct pf_state_key_cmp)); 1185 TAILQ_INIT(&sk->states[PF_SK_WIRE]); 1186 TAILQ_INIT(&sk->states[PF_SK_STACK]); 1187 1188 return (0); 1189 } 1190 1191 struct pf_state_key * 1192 pf_state_key_setup(struct pf_pdesc *pd, struct pf_addr *saddr, 1193 struct pf_addr *daddr, u_int16_t sport, u_int16_t dport) 1194 { 1195 struct pf_state_key *sk; 1196 1197 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1198 if (sk == NULL) 1199 return (NULL); 1200 1201 PF_ACPY(&sk->addr[pd->sidx], saddr, pd->af); 1202 PF_ACPY(&sk->addr[pd->didx], daddr, pd->af); 1203 sk->port[pd->sidx] = sport; 1204 sk->port[pd->didx] = dport; 1205 sk->proto = pd->proto; 1206 sk->af = pd->af; 1207 1208 return (sk); 1209 } 1210 1211 struct pf_state_key * 1212 pf_state_key_clone(struct pf_state_key *orig) 1213 { 1214 struct pf_state_key *sk; 1215 1216 sk = uma_zalloc(V_pf_state_key_z, M_NOWAIT); 1217 if (sk == NULL) 1218 return (NULL); 1219 1220 bcopy(orig, sk, sizeof(struct pf_state_key_cmp)); 1221 1222 return (sk); 1223 } 1224 1225 int 1226 pf_state_insert(struct pfi_kif *kif, struct pf_state_key *skw, 1227 struct pf_state_key *sks, struct pf_state *s) 1228 { 1229 struct pf_idhash *ih; 1230 struct pf_state *cur; 1231 int error; 1232 1233 KASSERT(TAILQ_EMPTY(&sks->states[0]) && TAILQ_EMPTY(&sks->states[1]), 1234 ("%s: sks not pristine", __func__)); 1235 KASSERT(TAILQ_EMPTY(&skw->states[0]) && TAILQ_EMPTY(&skw->states[1]), 1236 ("%s: skw not pristine", __func__)); 1237 KASSERT(s->refs == 0, ("%s: state not pristine", __func__)); 1238 1239 s->kif = kif; 1240 1241 if (s->id == 0 && s->creatorid == 0) { 1242 /* XXX: should be atomic, but probability of collision low */ 1243 if ((s->id = V_pf_stateid[curcpu]++) == PFID_MAXID) 1244 V_pf_stateid[curcpu] = 1; 1245 s->id |= (uint64_t )curcpu << PFID_CPUSHIFT; 1246 s->id = htobe64(s->id); 1247 s->creatorid = V_pf_status.hostid; 1248 } 1249 1250 /* Returns with ID locked on success. */ 1251 if ((error = pf_state_key_attach(skw, sks, s)) != 0) 1252 return (error); 1253 1254 ih = &V_pf_idhash[PF_IDHASH(s)]; 1255 PF_HASHROW_ASSERT(ih); 1256 LIST_FOREACH(cur, &ih->states, entry) 1257 if (cur->id == s->id && cur->creatorid == s->creatorid) 1258 break; 1259 1260 if (cur != NULL) { 1261 PF_HASHROW_UNLOCK(ih); 1262 if (V_pf_status.debug >= PF_DEBUG_MISC) { 1263 printf("pf: state ID collision: " 1264 "id: %016llx creatorid: %08x\n", 1265 (unsigned long long)be64toh(s->id), 1266 ntohl(s->creatorid)); 1267 } 1268 pf_detach_state(s); 1269 return (EEXIST); 1270 } 1271 LIST_INSERT_HEAD(&ih->states, s, entry); 1272 /* One for keys, one for ID hash. */ 1273 refcount_init(&s->refs, 2); 1274 1275 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_INSERT], 1); 1276 if (V_pfsync_insert_state_ptr != NULL) 1277 V_pfsync_insert_state_ptr(s); 1278 1279 /* Returns locked. */ 1280 return (0); 1281 } 1282 1283 /* 1284 * Find state by ID: returns with locked row on success. 1285 */ 1286 struct pf_state * 1287 pf_find_state_byid(uint64_t id, uint32_t creatorid) 1288 { 1289 struct pf_idhash *ih; 1290 struct pf_state *s; 1291 1292 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1293 1294 ih = &V_pf_idhash[(be64toh(id) % (pf_hashmask + 1))]; 1295 1296 PF_HASHROW_LOCK(ih); 1297 LIST_FOREACH(s, &ih->states, entry) 1298 if (s->id == id && s->creatorid == creatorid) 1299 break; 1300 1301 if (s == NULL) 1302 PF_HASHROW_UNLOCK(ih); 1303 1304 return (s); 1305 } 1306 1307 /* 1308 * Find state by key. 1309 * Returns with ID hash slot locked on success. 1310 */ 1311 static struct pf_state * 1312 pf_find_state(struct pfi_kif *kif, struct pf_state_key_cmp *key, u_int dir) 1313 { 1314 struct pf_keyhash *kh; 1315 struct pf_state_key *sk; 1316 struct pf_state *s; 1317 int idx; 1318 1319 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1320 1321 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1322 1323 PF_HASHROW_LOCK(kh); 1324 LIST_FOREACH(sk, &kh->keys, entry) 1325 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1326 break; 1327 if (sk == NULL) { 1328 PF_HASHROW_UNLOCK(kh); 1329 return (NULL); 1330 } 1331 1332 idx = (dir == PF_IN ? PF_SK_WIRE : PF_SK_STACK); 1333 1334 /* List is sorted, if-bound states before floating ones. */ 1335 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) 1336 if (s->kif == V_pfi_all || s->kif == kif) { 1337 PF_STATE_LOCK(s); 1338 PF_HASHROW_UNLOCK(kh); 1339 if (s->timeout >= PFTM_MAX) { 1340 /* 1341 * State is either being processed by 1342 * pf_unlink_state() in an other thread, or 1343 * is scheduled for immediate expiry. 1344 */ 1345 PF_STATE_UNLOCK(s); 1346 return (NULL); 1347 } 1348 return (s); 1349 } 1350 PF_HASHROW_UNLOCK(kh); 1351 1352 return (NULL); 1353 } 1354 1355 struct pf_state * 1356 pf_find_state_all(struct pf_state_key_cmp *key, u_int dir, int *more) 1357 { 1358 struct pf_keyhash *kh; 1359 struct pf_state_key *sk; 1360 struct pf_state *s, *ret = NULL; 1361 int idx, inout = 0; 1362 1363 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_SEARCH], 1); 1364 1365 kh = &V_pf_keyhash[pf_hashkey((struct pf_state_key *)key)]; 1366 1367 PF_HASHROW_LOCK(kh); 1368 LIST_FOREACH(sk, &kh->keys, entry) 1369 if (bcmp(sk, key, sizeof(struct pf_state_key_cmp)) == 0) 1370 break; 1371 if (sk == NULL) { 1372 PF_HASHROW_UNLOCK(kh); 1373 return (NULL); 1374 } 1375 switch (dir) { 1376 case PF_IN: 1377 idx = PF_SK_WIRE; 1378 break; 1379 case PF_OUT: 1380 idx = PF_SK_STACK; 1381 break; 1382 case PF_INOUT: 1383 idx = PF_SK_WIRE; 1384 inout = 1; 1385 break; 1386 default: 1387 panic("%s: dir %u", __func__, dir); 1388 } 1389 second_run: 1390 TAILQ_FOREACH(s, &sk->states[idx], key_list[idx]) { 1391 if (more == NULL) { 1392 PF_HASHROW_UNLOCK(kh); 1393 return (s); 1394 } 1395 1396 if (ret) 1397 (*more)++; 1398 else 1399 ret = s; 1400 } 1401 if (inout == 1) { 1402 inout = 0; 1403 idx = PF_SK_STACK; 1404 goto second_run; 1405 } 1406 PF_HASHROW_UNLOCK(kh); 1407 1408 return (ret); 1409 } 1410 1411 /* END state table stuff */ 1412 1413 static void 1414 pf_send(struct pf_send_entry *pfse) 1415 { 1416 1417 PF_SENDQ_LOCK(); 1418 STAILQ_INSERT_TAIL(&V_pf_sendqueue, pfse, pfse_next); 1419 PF_SENDQ_UNLOCK(); 1420 swi_sched(V_pf_swi_cookie, 0); 1421 } 1422 1423 void 1424 pf_intr(void *v) 1425 { 1426 struct pf_send_head queue; 1427 struct pf_send_entry *pfse, *next; 1428 1429 CURVNET_SET((struct vnet *)v); 1430 1431 PF_SENDQ_LOCK(); 1432 queue = V_pf_sendqueue; 1433 STAILQ_INIT(&V_pf_sendqueue); 1434 PF_SENDQ_UNLOCK(); 1435 1436 STAILQ_FOREACH_SAFE(pfse, &queue, pfse_next, next) { 1437 switch (pfse->pfse_type) { 1438 #ifdef INET 1439 case PFSE_IP: 1440 ip_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL); 1441 break; 1442 case PFSE_ICMP: 1443 icmp_error(pfse->pfse_m, pfse->icmpopts.type, 1444 pfse->icmpopts.code, 0, pfse->icmpopts.mtu); 1445 break; 1446 #endif /* INET */ 1447 #ifdef INET6 1448 case PFSE_IP6: 1449 ip6_output(pfse->pfse_m, NULL, NULL, 0, NULL, NULL, 1450 NULL); 1451 break; 1452 case PFSE_ICMP6: 1453 icmp6_error(pfse->pfse_m, pfse->icmpopts.type, 1454 pfse->icmpopts.code, pfse->icmpopts.mtu); 1455 break; 1456 #endif /* INET6 */ 1457 default: 1458 panic("%s: unknown type", __func__); 1459 } 1460 free(pfse, M_PFTEMP); 1461 } 1462 CURVNET_RESTORE(); 1463 } 1464 1465 void 1466 pf_purge_thread(void *unused __unused) 1467 { 1468 VNET_ITERATOR_DECL(vnet_iter); 1469 1470 sx_xlock(&pf_end_lock); 1471 while (pf_end_threads == 0) { 1472 sx_sleep(pf_purge_thread, &pf_end_lock, 0, "pftm", hz / 10); 1473 1474 VNET_LIST_RLOCK(); 1475 VNET_FOREACH(vnet_iter) { 1476 CURVNET_SET(vnet_iter); 1477 1478 1479 /* Wait until V_pf_default_rule is initialized. */ 1480 if (V_pf_vnet_active == 0) { 1481 CURVNET_RESTORE(); 1482 continue; 1483 } 1484 1485 /* 1486 * Process 1/interval fraction of the state 1487 * table every run. 1488 */ 1489 V_pf_purge_idx = 1490 pf_purge_expired_states(V_pf_purge_idx, pf_hashmask / 1491 (V_pf_default_rule.timeout[PFTM_INTERVAL] * 10)); 1492 1493 /* 1494 * Purge other expired types every 1495 * PFTM_INTERVAL seconds. 1496 */ 1497 if (V_pf_purge_idx == 0) { 1498 /* 1499 * Order is important: 1500 * - states and src nodes reference rules 1501 * - states and rules reference kifs 1502 */ 1503 pf_purge_expired_fragments(); 1504 pf_purge_expired_src_nodes(); 1505 pf_purge_unlinked_rules(); 1506 pfi_kif_purge(); 1507 } 1508 CURVNET_RESTORE(); 1509 } 1510 VNET_LIST_RUNLOCK(); 1511 } 1512 1513 pf_end_threads++; 1514 sx_xunlock(&pf_end_lock); 1515 kproc_exit(0); 1516 } 1517 1518 void 1519 pf_unload_vnet_purge(void) 1520 { 1521 1522 /* 1523 * To cleanse up all kifs and rules we need 1524 * two runs: first one clears reference flags, 1525 * then pf_purge_expired_states() doesn't 1526 * raise them, and then second run frees. 1527 */ 1528 pf_purge_unlinked_rules(); 1529 pfi_kif_purge(); 1530 1531 /* 1532 * Now purge everything. 1533 */ 1534 pf_purge_expired_states(0, pf_hashmask); 1535 pf_purge_fragments(UINT_MAX); 1536 pf_purge_expired_src_nodes(); 1537 1538 /* 1539 * Now all kifs & rules should be unreferenced, 1540 * thus should be successfully freed. 1541 */ 1542 pf_purge_unlinked_rules(); 1543 pfi_kif_purge(); 1544 } 1545 1546 1547 u_int32_t 1548 pf_state_expires(const struct pf_state *state) 1549 { 1550 u_int32_t timeout; 1551 u_int32_t start; 1552 u_int32_t end; 1553 u_int32_t states; 1554 1555 /* handle all PFTM_* > PFTM_MAX here */ 1556 if (state->timeout == PFTM_PURGE) 1557 return (time_uptime); 1558 KASSERT(state->timeout != PFTM_UNLINKED, 1559 ("pf_state_expires: timeout == PFTM_UNLINKED")); 1560 KASSERT((state->timeout < PFTM_MAX), 1561 ("pf_state_expires: timeout > PFTM_MAX")); 1562 timeout = state->rule.ptr->timeout[state->timeout]; 1563 if (!timeout) 1564 timeout = V_pf_default_rule.timeout[state->timeout]; 1565 start = state->rule.ptr->timeout[PFTM_ADAPTIVE_START]; 1566 if (start && state->rule.ptr != &V_pf_default_rule) { 1567 end = state->rule.ptr->timeout[PFTM_ADAPTIVE_END]; 1568 states = counter_u64_fetch(state->rule.ptr->states_cur); 1569 } else { 1570 start = V_pf_default_rule.timeout[PFTM_ADAPTIVE_START]; 1571 end = V_pf_default_rule.timeout[PFTM_ADAPTIVE_END]; 1572 states = V_pf_status.states; 1573 } 1574 if (end && states > start && start < end) { 1575 if (states < end) { 1576 timeout = (u_int64_t)timeout * (end - states) / 1577 (end - start); 1578 return (state->expire + timeout); 1579 } 1580 else 1581 return (time_uptime); 1582 } 1583 return (state->expire + timeout); 1584 } 1585 1586 void 1587 pf_purge_expired_src_nodes() 1588 { 1589 struct pf_src_node_list freelist; 1590 struct pf_srchash *sh; 1591 struct pf_src_node *cur, *next; 1592 int i; 1593 1594 LIST_INIT(&freelist); 1595 for (i = 0, sh = V_pf_srchash; i <= pf_srchashmask; i++, sh++) { 1596 PF_HASHROW_LOCK(sh); 1597 LIST_FOREACH_SAFE(cur, &sh->nodes, entry, next) 1598 if (cur->states == 0 && cur->expire <= time_uptime) { 1599 pf_unlink_src_node(cur); 1600 LIST_INSERT_HEAD(&freelist, cur, entry); 1601 } else if (cur->rule.ptr != NULL) 1602 cur->rule.ptr->rule_flag |= PFRULE_REFS; 1603 PF_HASHROW_UNLOCK(sh); 1604 } 1605 1606 pf_free_src_nodes(&freelist); 1607 1608 V_pf_status.src_nodes = uma_zone_get_cur(V_pf_sources_z); 1609 } 1610 1611 static void 1612 pf_src_tree_remove_state(struct pf_state *s) 1613 { 1614 struct pf_src_node *sn; 1615 struct pf_srchash *sh; 1616 uint32_t timeout; 1617 1618 timeout = s->rule.ptr->timeout[PFTM_SRC_NODE] ? 1619 s->rule.ptr->timeout[PFTM_SRC_NODE] : 1620 V_pf_default_rule.timeout[PFTM_SRC_NODE]; 1621 1622 if (s->src_node != NULL) { 1623 sn = s->src_node; 1624 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1625 PF_HASHROW_LOCK(sh); 1626 if (s->src.tcp_est) 1627 --sn->conn; 1628 if (--sn->states == 0) 1629 sn->expire = time_uptime + timeout; 1630 PF_HASHROW_UNLOCK(sh); 1631 } 1632 if (s->nat_src_node != s->src_node && s->nat_src_node != NULL) { 1633 sn = s->nat_src_node; 1634 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 1635 PF_HASHROW_LOCK(sh); 1636 if (--sn->states == 0) 1637 sn->expire = time_uptime + timeout; 1638 PF_HASHROW_UNLOCK(sh); 1639 } 1640 s->src_node = s->nat_src_node = NULL; 1641 } 1642 1643 /* 1644 * Unlink and potentilly free a state. Function may be 1645 * called with ID hash row locked, but always returns 1646 * unlocked, since it needs to go through key hash locking. 1647 */ 1648 int 1649 pf_unlink_state(struct pf_state *s, u_int flags) 1650 { 1651 struct pf_idhash *ih = &V_pf_idhash[PF_IDHASH(s)]; 1652 1653 if ((flags & PF_ENTER_LOCKED) == 0) 1654 PF_HASHROW_LOCK(ih); 1655 else 1656 PF_HASHROW_ASSERT(ih); 1657 1658 if (s->timeout == PFTM_UNLINKED) { 1659 /* 1660 * State is being processed 1661 * by pf_unlink_state() in 1662 * an other thread. 1663 */ 1664 PF_HASHROW_UNLOCK(ih); 1665 return (0); /* XXXGL: undefined actually */ 1666 } 1667 1668 if (s->src.state == PF_TCPS_PROXY_DST) { 1669 /* XXX wire key the right one? */ 1670 pf_send_tcp(NULL, s->rule.ptr, s->key[PF_SK_WIRE]->af, 1671 &s->key[PF_SK_WIRE]->addr[1], 1672 &s->key[PF_SK_WIRE]->addr[0], 1673 s->key[PF_SK_WIRE]->port[1], 1674 s->key[PF_SK_WIRE]->port[0], 1675 s->src.seqhi, s->src.seqlo + 1, 1676 TH_RST|TH_ACK, 0, 0, 0, 1, s->tag, NULL); 1677 } 1678 1679 LIST_REMOVE(s, entry); 1680 pf_src_tree_remove_state(s); 1681 1682 if (V_pfsync_delete_state_ptr != NULL) 1683 V_pfsync_delete_state_ptr(s); 1684 1685 STATE_DEC_COUNTERS(s); 1686 1687 s->timeout = PFTM_UNLINKED; 1688 1689 PF_HASHROW_UNLOCK(ih); 1690 1691 pf_detach_state(s); 1692 /* pf_state_insert() initialises refs to 2, so we can never release the 1693 * last reference here, only in pf_release_state(). */ 1694 (void)refcount_release(&s->refs); 1695 1696 return (pf_release_state(s)); 1697 } 1698 1699 void 1700 pf_free_state(struct pf_state *cur) 1701 { 1702 1703 KASSERT(cur->refs == 0, ("%s: %p has refs", __func__, cur)); 1704 KASSERT(cur->timeout == PFTM_UNLINKED, ("%s: timeout %u", __func__, 1705 cur->timeout)); 1706 1707 pf_normalize_tcp_cleanup(cur); 1708 uma_zfree(V_pf_state_z, cur); 1709 counter_u64_add(V_pf_status.fcounters[FCNT_STATE_REMOVALS], 1); 1710 } 1711 1712 /* 1713 * Called only from pf_purge_thread(), thus serialized. 1714 */ 1715 static u_int 1716 pf_purge_expired_states(u_int i, int maxcheck) 1717 { 1718 struct pf_idhash *ih; 1719 struct pf_state *s; 1720 1721 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1722 1723 /* 1724 * Go through hash and unlink states that expire now. 1725 */ 1726 while (maxcheck > 0) { 1727 1728 ih = &V_pf_idhash[i]; 1729 1730 /* only take the lock if we expect to do work */ 1731 if (!LIST_EMPTY(&ih->states)) { 1732 relock: 1733 PF_HASHROW_LOCK(ih); 1734 LIST_FOREACH(s, &ih->states, entry) { 1735 if (pf_state_expires(s) <= time_uptime) { 1736 V_pf_status.states -= 1737 pf_unlink_state(s, PF_ENTER_LOCKED); 1738 goto relock; 1739 } 1740 s->rule.ptr->rule_flag |= PFRULE_REFS; 1741 if (s->nat_rule.ptr != NULL) 1742 s->nat_rule.ptr->rule_flag |= PFRULE_REFS; 1743 if (s->anchor.ptr != NULL) 1744 s->anchor.ptr->rule_flag |= PFRULE_REFS; 1745 s->kif->pfik_flags |= PFI_IFLAG_REFS; 1746 if (s->rt_kif) 1747 s->rt_kif->pfik_flags |= PFI_IFLAG_REFS; 1748 } 1749 PF_HASHROW_UNLOCK(ih); 1750 } 1751 1752 /* Return when we hit end of hash. */ 1753 if (++i > pf_hashmask) { 1754 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1755 return (0); 1756 } 1757 1758 maxcheck--; 1759 } 1760 1761 V_pf_status.states = uma_zone_get_cur(V_pf_state_z); 1762 1763 return (i); 1764 } 1765 1766 static void 1767 pf_purge_unlinked_rules() 1768 { 1769 struct pf_rulequeue tmpq; 1770 struct pf_rule *r, *r1; 1771 1772 /* 1773 * If we have overloading task pending, then we'd 1774 * better skip purging this time. There is a tiny 1775 * probability that overloading task references 1776 * an already unlinked rule. 1777 */ 1778 PF_OVERLOADQ_LOCK(); 1779 if (!SLIST_EMPTY(&V_pf_overloadqueue)) { 1780 PF_OVERLOADQ_UNLOCK(); 1781 return; 1782 } 1783 PF_OVERLOADQ_UNLOCK(); 1784 1785 /* 1786 * Do naive mark-and-sweep garbage collecting of old rules. 1787 * Reference flag is raised by pf_purge_expired_states() 1788 * and pf_purge_expired_src_nodes(). 1789 * 1790 * To avoid LOR between PF_UNLNKDRULES_LOCK/PF_RULES_WLOCK, 1791 * use a temporary queue. 1792 */ 1793 TAILQ_INIT(&tmpq); 1794 PF_UNLNKDRULES_LOCK(); 1795 TAILQ_FOREACH_SAFE(r, &V_pf_unlinked_rules, entries, r1) { 1796 if (!(r->rule_flag & PFRULE_REFS)) { 1797 TAILQ_REMOVE(&V_pf_unlinked_rules, r, entries); 1798 TAILQ_INSERT_TAIL(&tmpq, r, entries); 1799 } else 1800 r->rule_flag &= ~PFRULE_REFS; 1801 } 1802 PF_UNLNKDRULES_UNLOCK(); 1803 1804 if (!TAILQ_EMPTY(&tmpq)) { 1805 PF_RULES_WLOCK(); 1806 TAILQ_FOREACH_SAFE(r, &tmpq, entries, r1) { 1807 TAILQ_REMOVE(&tmpq, r, entries); 1808 pf_free_rule(r); 1809 } 1810 PF_RULES_WUNLOCK(); 1811 } 1812 } 1813 1814 void 1815 pf_print_host(struct pf_addr *addr, u_int16_t p, sa_family_t af) 1816 { 1817 switch (af) { 1818 #ifdef INET 1819 case AF_INET: { 1820 u_int32_t a = ntohl(addr->addr32[0]); 1821 printf("%u.%u.%u.%u", (a>>24)&255, (a>>16)&255, 1822 (a>>8)&255, a&255); 1823 if (p) { 1824 p = ntohs(p); 1825 printf(":%u", p); 1826 } 1827 break; 1828 } 1829 #endif /* INET */ 1830 #ifdef INET6 1831 case AF_INET6: { 1832 u_int16_t b; 1833 u_int8_t i, curstart, curend, maxstart, maxend; 1834 curstart = curend = maxstart = maxend = 255; 1835 for (i = 0; i < 8; i++) { 1836 if (!addr->addr16[i]) { 1837 if (curstart == 255) 1838 curstart = i; 1839 curend = i; 1840 } else { 1841 if ((curend - curstart) > 1842 (maxend - maxstart)) { 1843 maxstart = curstart; 1844 maxend = curend; 1845 } 1846 curstart = curend = 255; 1847 } 1848 } 1849 if ((curend - curstart) > 1850 (maxend - maxstart)) { 1851 maxstart = curstart; 1852 maxend = curend; 1853 } 1854 for (i = 0; i < 8; i++) { 1855 if (i >= maxstart && i <= maxend) { 1856 if (i == 0) 1857 printf(":"); 1858 if (i == maxend) 1859 printf(":"); 1860 } else { 1861 b = ntohs(addr->addr16[i]); 1862 printf("%x", b); 1863 if (i < 7) 1864 printf(":"); 1865 } 1866 } 1867 if (p) { 1868 p = ntohs(p); 1869 printf("[%u]", p); 1870 } 1871 break; 1872 } 1873 #endif /* INET6 */ 1874 } 1875 } 1876 1877 void 1878 pf_print_state(struct pf_state *s) 1879 { 1880 pf_print_state_parts(s, NULL, NULL); 1881 } 1882 1883 static void 1884 pf_print_state_parts(struct pf_state *s, 1885 struct pf_state_key *skwp, struct pf_state_key *sksp) 1886 { 1887 struct pf_state_key *skw, *sks; 1888 u_int8_t proto, dir; 1889 1890 /* Do our best to fill these, but they're skipped if NULL */ 1891 skw = skwp ? skwp : (s ? s->key[PF_SK_WIRE] : NULL); 1892 sks = sksp ? sksp : (s ? s->key[PF_SK_STACK] : NULL); 1893 proto = skw ? skw->proto : (sks ? sks->proto : 0); 1894 dir = s ? s->direction : 0; 1895 1896 switch (proto) { 1897 case IPPROTO_IPV4: 1898 printf("IPv4"); 1899 break; 1900 case IPPROTO_IPV6: 1901 printf("IPv6"); 1902 break; 1903 case IPPROTO_TCP: 1904 printf("TCP"); 1905 break; 1906 case IPPROTO_UDP: 1907 printf("UDP"); 1908 break; 1909 case IPPROTO_ICMP: 1910 printf("ICMP"); 1911 break; 1912 case IPPROTO_ICMPV6: 1913 printf("ICMPv6"); 1914 break; 1915 default: 1916 printf("%u", proto); 1917 break; 1918 } 1919 switch (dir) { 1920 case PF_IN: 1921 printf(" in"); 1922 break; 1923 case PF_OUT: 1924 printf(" out"); 1925 break; 1926 } 1927 if (skw) { 1928 printf(" wire: "); 1929 pf_print_host(&skw->addr[0], skw->port[0], skw->af); 1930 printf(" "); 1931 pf_print_host(&skw->addr[1], skw->port[1], skw->af); 1932 } 1933 if (sks) { 1934 printf(" stack: "); 1935 if (sks != skw) { 1936 pf_print_host(&sks->addr[0], sks->port[0], sks->af); 1937 printf(" "); 1938 pf_print_host(&sks->addr[1], sks->port[1], sks->af); 1939 } else 1940 printf("-"); 1941 } 1942 if (s) { 1943 if (proto == IPPROTO_TCP) { 1944 printf(" [lo=%u high=%u win=%u modulator=%u", 1945 s->src.seqlo, s->src.seqhi, 1946 s->src.max_win, s->src.seqdiff); 1947 if (s->src.wscale && s->dst.wscale) 1948 printf(" wscale=%u", 1949 s->src.wscale & PF_WSCALE_MASK); 1950 printf("]"); 1951 printf(" [lo=%u high=%u win=%u modulator=%u", 1952 s->dst.seqlo, s->dst.seqhi, 1953 s->dst.max_win, s->dst.seqdiff); 1954 if (s->src.wscale && s->dst.wscale) 1955 printf(" wscale=%u", 1956 s->dst.wscale & PF_WSCALE_MASK); 1957 printf("]"); 1958 } 1959 printf(" %u:%u", s->src.state, s->dst.state); 1960 } 1961 } 1962 1963 void 1964 pf_print_flags(u_int8_t f) 1965 { 1966 if (f) 1967 printf(" "); 1968 if (f & TH_FIN) 1969 printf("F"); 1970 if (f & TH_SYN) 1971 printf("S"); 1972 if (f & TH_RST) 1973 printf("R"); 1974 if (f & TH_PUSH) 1975 printf("P"); 1976 if (f & TH_ACK) 1977 printf("A"); 1978 if (f & TH_URG) 1979 printf("U"); 1980 if (f & TH_ECE) 1981 printf("E"); 1982 if (f & TH_CWR) 1983 printf("W"); 1984 } 1985 1986 #define PF_SET_SKIP_STEPS(i) \ 1987 do { \ 1988 while (head[i] != cur) { \ 1989 head[i]->skip[i].ptr = cur; \ 1990 head[i] = TAILQ_NEXT(head[i], entries); \ 1991 } \ 1992 } while (0) 1993 1994 void 1995 pf_calc_skip_steps(struct pf_rulequeue *rules) 1996 { 1997 struct pf_rule *cur, *prev, *head[PF_SKIP_COUNT]; 1998 int i; 1999 2000 cur = TAILQ_FIRST(rules); 2001 prev = cur; 2002 for (i = 0; i < PF_SKIP_COUNT; ++i) 2003 head[i] = cur; 2004 while (cur != NULL) { 2005 2006 if (cur->kif != prev->kif || cur->ifnot != prev->ifnot) 2007 PF_SET_SKIP_STEPS(PF_SKIP_IFP); 2008 if (cur->direction != prev->direction) 2009 PF_SET_SKIP_STEPS(PF_SKIP_DIR); 2010 if (cur->af != prev->af) 2011 PF_SET_SKIP_STEPS(PF_SKIP_AF); 2012 if (cur->proto != prev->proto) 2013 PF_SET_SKIP_STEPS(PF_SKIP_PROTO); 2014 if (cur->src.neg != prev->src.neg || 2015 pf_addr_wrap_neq(&cur->src.addr, &prev->src.addr)) 2016 PF_SET_SKIP_STEPS(PF_SKIP_SRC_ADDR); 2017 if (cur->src.port[0] != prev->src.port[0] || 2018 cur->src.port[1] != prev->src.port[1] || 2019 cur->src.port_op != prev->src.port_op) 2020 PF_SET_SKIP_STEPS(PF_SKIP_SRC_PORT); 2021 if (cur->dst.neg != prev->dst.neg || 2022 pf_addr_wrap_neq(&cur->dst.addr, &prev->dst.addr)) 2023 PF_SET_SKIP_STEPS(PF_SKIP_DST_ADDR); 2024 if (cur->dst.port[0] != prev->dst.port[0] || 2025 cur->dst.port[1] != prev->dst.port[1] || 2026 cur->dst.port_op != prev->dst.port_op) 2027 PF_SET_SKIP_STEPS(PF_SKIP_DST_PORT); 2028 2029 prev = cur; 2030 cur = TAILQ_NEXT(cur, entries); 2031 } 2032 for (i = 0; i < PF_SKIP_COUNT; ++i) 2033 PF_SET_SKIP_STEPS(i); 2034 } 2035 2036 static int 2037 pf_addr_wrap_neq(struct pf_addr_wrap *aw1, struct pf_addr_wrap *aw2) 2038 { 2039 if (aw1->type != aw2->type) 2040 return (1); 2041 switch (aw1->type) { 2042 case PF_ADDR_ADDRMASK: 2043 case PF_ADDR_RANGE: 2044 if (PF_ANEQ(&aw1->v.a.addr, &aw2->v.a.addr, AF_INET6)) 2045 return (1); 2046 if (PF_ANEQ(&aw1->v.a.mask, &aw2->v.a.mask, AF_INET6)) 2047 return (1); 2048 return (0); 2049 case PF_ADDR_DYNIFTL: 2050 return (aw1->p.dyn->pfid_kt != aw2->p.dyn->pfid_kt); 2051 case PF_ADDR_NOROUTE: 2052 case PF_ADDR_URPFFAILED: 2053 return (0); 2054 case PF_ADDR_TABLE: 2055 return (aw1->p.tbl != aw2->p.tbl); 2056 default: 2057 printf("invalid address type: %d\n", aw1->type); 2058 return (1); 2059 } 2060 } 2061 2062 /** 2063 * Checksum updates are a little complicated because the checksum in the TCP/UDP 2064 * header isn't always a full checksum. In some cases (i.e. output) it's a 2065 * pseudo-header checksum, which is a partial checksum over src/dst IP 2066 * addresses, protocol number and length. 2067 * 2068 * That means we have the following cases: 2069 * * Input or forwarding: we don't have TSO, the checksum fields are full 2070 * checksums, we need to update the checksum whenever we change anything. 2071 * * Output (i.e. the checksum is a pseudo-header checksum): 2072 * x The field being updated is src/dst address or affects the length of 2073 * the packet. We need to update the pseudo-header checksum (note that this 2074 * checksum is not ones' complement). 2075 * x Some other field is being modified (e.g. src/dst port numbers): We 2076 * don't have to update anything. 2077 **/ 2078 u_int16_t 2079 pf_cksum_fixup(u_int16_t cksum, u_int16_t old, u_int16_t new, u_int8_t udp) 2080 { 2081 u_int32_t l; 2082 2083 if (udp && !cksum) 2084 return (0x0000); 2085 l = cksum + old - new; 2086 l = (l >> 16) + (l & 65535); 2087 l = l & 65535; 2088 if (udp && !l) 2089 return (0xFFFF); 2090 return (l); 2091 } 2092 2093 u_int16_t 2094 pf_proto_cksum_fixup(struct mbuf *m, u_int16_t cksum, u_int16_t old, 2095 u_int16_t new, u_int8_t udp) 2096 { 2097 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2098 return (cksum); 2099 2100 return (pf_cksum_fixup(cksum, old, new, udp)); 2101 } 2102 2103 static void 2104 pf_change_ap(struct mbuf *m, struct pf_addr *a, u_int16_t *p, u_int16_t *ic, 2105 u_int16_t *pc, struct pf_addr *an, u_int16_t pn, u_int8_t u, 2106 sa_family_t af) 2107 { 2108 struct pf_addr ao; 2109 u_int16_t po = *p; 2110 2111 PF_ACPY(&ao, a, af); 2112 PF_ACPY(a, an, af); 2113 2114 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | CSUM_DELAY_DATA_IPV6)) 2115 *pc = ~*pc; 2116 2117 *p = pn; 2118 2119 switch (af) { 2120 #ifdef INET 2121 case AF_INET: 2122 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2123 ao.addr16[0], an->addr16[0], 0), 2124 ao.addr16[1], an->addr16[1], 0); 2125 *p = pn; 2126 2127 *pc = pf_cksum_fixup(pf_cksum_fixup(*pc, 2128 ao.addr16[0], an->addr16[0], u), 2129 ao.addr16[1], an->addr16[1], u); 2130 2131 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2132 break; 2133 #endif /* INET */ 2134 #ifdef INET6 2135 case AF_INET6: 2136 *pc = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2137 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2138 pf_cksum_fixup(pf_cksum_fixup(*pc, 2139 ao.addr16[0], an->addr16[0], u), 2140 ao.addr16[1], an->addr16[1], u), 2141 ao.addr16[2], an->addr16[2], u), 2142 ao.addr16[3], an->addr16[3], u), 2143 ao.addr16[4], an->addr16[4], u), 2144 ao.addr16[5], an->addr16[5], u), 2145 ao.addr16[6], an->addr16[6], u), 2146 ao.addr16[7], an->addr16[7], u); 2147 2148 *pc = pf_proto_cksum_fixup(m, *pc, po, pn, u); 2149 break; 2150 #endif /* INET6 */ 2151 } 2152 2153 if (m->m_pkthdr.csum_flags & (CSUM_DELAY_DATA | 2154 CSUM_DELAY_DATA_IPV6)) { 2155 *pc = ~*pc; 2156 if (! *pc) 2157 *pc = 0xffff; 2158 } 2159 } 2160 2161 /* Changes a u_int32_t. Uses a void * so there are no align restrictions */ 2162 void 2163 pf_change_a(void *a, u_int16_t *c, u_int32_t an, u_int8_t u) 2164 { 2165 u_int32_t ao; 2166 2167 memcpy(&ao, a, sizeof(ao)); 2168 memcpy(a, &an, sizeof(u_int32_t)); 2169 *c = pf_cksum_fixup(pf_cksum_fixup(*c, ao / 65536, an / 65536, u), 2170 ao % 65536, an % 65536, u); 2171 } 2172 2173 void 2174 pf_change_proto_a(struct mbuf *m, void *a, u_int16_t *c, u_int32_t an, u_int8_t udp) 2175 { 2176 u_int32_t ao; 2177 2178 memcpy(&ao, a, sizeof(ao)); 2179 memcpy(a, &an, sizeof(u_int32_t)); 2180 2181 *c = pf_proto_cksum_fixup(m, 2182 pf_proto_cksum_fixup(m, *c, ao / 65536, an / 65536, udp), 2183 ao % 65536, an % 65536, udp); 2184 } 2185 2186 #ifdef INET6 2187 static void 2188 pf_change_a6(struct pf_addr *a, u_int16_t *c, struct pf_addr *an, u_int8_t u) 2189 { 2190 struct pf_addr ao; 2191 2192 PF_ACPY(&ao, a, AF_INET6); 2193 PF_ACPY(a, an, AF_INET6); 2194 2195 *c = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2196 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2197 pf_cksum_fixup(pf_cksum_fixup(*c, 2198 ao.addr16[0], an->addr16[0], u), 2199 ao.addr16[1], an->addr16[1], u), 2200 ao.addr16[2], an->addr16[2], u), 2201 ao.addr16[3], an->addr16[3], u), 2202 ao.addr16[4], an->addr16[4], u), 2203 ao.addr16[5], an->addr16[5], u), 2204 ao.addr16[6], an->addr16[6], u), 2205 ao.addr16[7], an->addr16[7], u); 2206 } 2207 #endif /* INET6 */ 2208 2209 static void 2210 pf_change_icmp(struct pf_addr *ia, u_int16_t *ip, struct pf_addr *oa, 2211 struct pf_addr *na, u_int16_t np, u_int16_t *pc, u_int16_t *h2c, 2212 u_int16_t *ic, u_int16_t *hc, u_int8_t u, sa_family_t af) 2213 { 2214 struct pf_addr oia, ooa; 2215 2216 PF_ACPY(&oia, ia, af); 2217 if (oa) 2218 PF_ACPY(&ooa, oa, af); 2219 2220 /* Change inner protocol port, fix inner protocol checksum. */ 2221 if (ip != NULL) { 2222 u_int16_t oip = *ip; 2223 u_int32_t opc; 2224 2225 if (pc != NULL) 2226 opc = *pc; 2227 *ip = np; 2228 if (pc != NULL) 2229 *pc = pf_cksum_fixup(*pc, oip, *ip, u); 2230 *ic = pf_cksum_fixup(*ic, oip, *ip, 0); 2231 if (pc != NULL) 2232 *ic = pf_cksum_fixup(*ic, opc, *pc, 0); 2233 } 2234 /* Change inner ip address, fix inner ip and icmp checksums. */ 2235 PF_ACPY(ia, na, af); 2236 switch (af) { 2237 #ifdef INET 2238 case AF_INET: { 2239 u_int32_t oh2c = *h2c; 2240 2241 *h2c = pf_cksum_fixup(pf_cksum_fixup(*h2c, 2242 oia.addr16[0], ia->addr16[0], 0), 2243 oia.addr16[1], ia->addr16[1], 0); 2244 *ic = pf_cksum_fixup(pf_cksum_fixup(*ic, 2245 oia.addr16[0], ia->addr16[0], 0), 2246 oia.addr16[1], ia->addr16[1], 0); 2247 *ic = pf_cksum_fixup(*ic, oh2c, *h2c, 0); 2248 break; 2249 } 2250 #endif /* INET */ 2251 #ifdef INET6 2252 case AF_INET6: 2253 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2254 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2255 pf_cksum_fixup(pf_cksum_fixup(*ic, 2256 oia.addr16[0], ia->addr16[0], u), 2257 oia.addr16[1], ia->addr16[1], u), 2258 oia.addr16[2], ia->addr16[2], u), 2259 oia.addr16[3], ia->addr16[3], u), 2260 oia.addr16[4], ia->addr16[4], u), 2261 oia.addr16[5], ia->addr16[5], u), 2262 oia.addr16[6], ia->addr16[6], u), 2263 oia.addr16[7], ia->addr16[7], u); 2264 break; 2265 #endif /* INET6 */ 2266 } 2267 /* Outer ip address, fix outer ip or icmpv6 checksum, if necessary. */ 2268 if (oa) { 2269 PF_ACPY(oa, na, af); 2270 switch (af) { 2271 #ifdef INET 2272 case AF_INET: 2273 *hc = pf_cksum_fixup(pf_cksum_fixup(*hc, 2274 ooa.addr16[0], oa->addr16[0], 0), 2275 ooa.addr16[1], oa->addr16[1], 0); 2276 break; 2277 #endif /* INET */ 2278 #ifdef INET6 2279 case AF_INET6: 2280 *ic = pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2281 pf_cksum_fixup(pf_cksum_fixup(pf_cksum_fixup( 2282 pf_cksum_fixup(pf_cksum_fixup(*ic, 2283 ooa.addr16[0], oa->addr16[0], u), 2284 ooa.addr16[1], oa->addr16[1], u), 2285 ooa.addr16[2], oa->addr16[2], u), 2286 ooa.addr16[3], oa->addr16[3], u), 2287 ooa.addr16[4], oa->addr16[4], u), 2288 ooa.addr16[5], oa->addr16[5], u), 2289 ooa.addr16[6], oa->addr16[6], u), 2290 ooa.addr16[7], oa->addr16[7], u); 2291 break; 2292 #endif /* INET6 */ 2293 } 2294 } 2295 } 2296 2297 2298 /* 2299 * Need to modulate the sequence numbers in the TCP SACK option 2300 * (credits to Krzysztof Pfaff for report and patch) 2301 */ 2302 static int 2303 pf_modulate_sack(struct mbuf *m, int off, struct pf_pdesc *pd, 2304 struct tcphdr *th, struct pf_state_peer *dst) 2305 { 2306 int hlen = (th->th_off << 2) - sizeof(*th), thoptlen = hlen; 2307 u_int8_t opts[TCP_MAXOLEN], *opt = opts; 2308 int copyback = 0, i, olen; 2309 struct sackblk sack; 2310 2311 #define TCPOLEN_SACKLEN (TCPOLEN_SACK + 2) 2312 if (hlen < TCPOLEN_SACKLEN || 2313 !pf_pull_hdr(m, off + sizeof(*th), opts, hlen, NULL, NULL, pd->af)) 2314 return 0; 2315 2316 while (hlen >= TCPOLEN_SACKLEN) { 2317 olen = opt[1]; 2318 switch (*opt) { 2319 case TCPOPT_EOL: /* FALLTHROUGH */ 2320 case TCPOPT_NOP: 2321 opt++; 2322 hlen--; 2323 break; 2324 case TCPOPT_SACK: 2325 if (olen > hlen) 2326 olen = hlen; 2327 if (olen >= TCPOLEN_SACKLEN) { 2328 for (i = 2; i + TCPOLEN_SACK <= olen; 2329 i += TCPOLEN_SACK) { 2330 memcpy(&sack, &opt[i], sizeof(sack)); 2331 pf_change_proto_a(m, &sack.start, &th->th_sum, 2332 htonl(ntohl(sack.start) - dst->seqdiff), 0); 2333 pf_change_proto_a(m, &sack.end, &th->th_sum, 2334 htonl(ntohl(sack.end) - dst->seqdiff), 0); 2335 memcpy(&opt[i], &sack, sizeof(sack)); 2336 } 2337 copyback = 1; 2338 } 2339 /* FALLTHROUGH */ 2340 default: 2341 if (olen < 2) 2342 olen = 2; 2343 hlen -= olen; 2344 opt += olen; 2345 } 2346 } 2347 2348 if (copyback) 2349 m_copyback(m, off + sizeof(*th), thoptlen, (caddr_t)opts); 2350 return (copyback); 2351 } 2352 2353 static void 2354 pf_send_tcp(struct mbuf *replyto, const struct pf_rule *r, sa_family_t af, 2355 const struct pf_addr *saddr, const struct pf_addr *daddr, 2356 u_int16_t sport, u_int16_t dport, u_int32_t seq, u_int32_t ack, 2357 u_int8_t flags, u_int16_t win, u_int16_t mss, u_int8_t ttl, int tag, 2358 u_int16_t rtag, struct ifnet *ifp) 2359 { 2360 struct pf_send_entry *pfse; 2361 struct mbuf *m; 2362 int len, tlen; 2363 #ifdef INET 2364 struct ip *h = NULL; 2365 #endif /* INET */ 2366 #ifdef INET6 2367 struct ip6_hdr *h6 = NULL; 2368 #endif /* INET6 */ 2369 struct tcphdr *th; 2370 char *opt; 2371 struct pf_mtag *pf_mtag; 2372 2373 len = 0; 2374 th = NULL; 2375 2376 /* maximum segment size tcp option */ 2377 tlen = sizeof(struct tcphdr); 2378 if (mss) 2379 tlen += 4; 2380 2381 switch (af) { 2382 #ifdef INET 2383 case AF_INET: 2384 len = sizeof(struct ip) + tlen; 2385 break; 2386 #endif /* INET */ 2387 #ifdef INET6 2388 case AF_INET6: 2389 len = sizeof(struct ip6_hdr) + tlen; 2390 break; 2391 #endif /* INET6 */ 2392 default: 2393 panic("%s: unsupported af %d", __func__, af); 2394 } 2395 2396 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2397 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2398 if (pfse == NULL) 2399 return; 2400 m = m_gethdr(M_NOWAIT, MT_DATA); 2401 if (m == NULL) { 2402 free(pfse, M_PFTEMP); 2403 return; 2404 } 2405 #ifdef MAC 2406 mac_netinet_firewall_send(m); 2407 #endif 2408 if ((pf_mtag = pf_get_mtag(m)) == NULL) { 2409 free(pfse, M_PFTEMP); 2410 m_freem(m); 2411 return; 2412 } 2413 if (tag) 2414 m->m_flags |= M_SKIP_FIREWALL; 2415 pf_mtag->tag = rtag; 2416 2417 if (r != NULL && r->rtableid >= 0) 2418 M_SETFIB(m, r->rtableid); 2419 2420 #ifdef ALTQ 2421 if (r != NULL && r->qid) { 2422 pf_mtag->qid = r->qid; 2423 2424 /* add hints for ecn */ 2425 pf_mtag->hdr = mtod(m, struct ip *); 2426 } 2427 #endif /* ALTQ */ 2428 m->m_data += max_linkhdr; 2429 m->m_pkthdr.len = m->m_len = len; 2430 m->m_pkthdr.rcvif = NULL; 2431 bzero(m->m_data, len); 2432 switch (af) { 2433 #ifdef INET 2434 case AF_INET: 2435 h = mtod(m, struct ip *); 2436 2437 /* IP header fields included in the TCP checksum */ 2438 h->ip_p = IPPROTO_TCP; 2439 h->ip_len = htons(tlen); 2440 h->ip_src.s_addr = saddr->v4.s_addr; 2441 h->ip_dst.s_addr = daddr->v4.s_addr; 2442 2443 th = (struct tcphdr *)((caddr_t)h + sizeof(struct ip)); 2444 break; 2445 #endif /* INET */ 2446 #ifdef INET6 2447 case AF_INET6: 2448 h6 = mtod(m, struct ip6_hdr *); 2449 2450 /* IP header fields included in the TCP checksum */ 2451 h6->ip6_nxt = IPPROTO_TCP; 2452 h6->ip6_plen = htons(tlen); 2453 memcpy(&h6->ip6_src, &saddr->v6, sizeof(struct in6_addr)); 2454 memcpy(&h6->ip6_dst, &daddr->v6, sizeof(struct in6_addr)); 2455 2456 th = (struct tcphdr *)((caddr_t)h6 + sizeof(struct ip6_hdr)); 2457 break; 2458 #endif /* INET6 */ 2459 } 2460 2461 /* TCP header */ 2462 th->th_sport = sport; 2463 th->th_dport = dport; 2464 th->th_seq = htonl(seq); 2465 th->th_ack = htonl(ack); 2466 th->th_off = tlen >> 2; 2467 th->th_flags = flags; 2468 th->th_win = htons(win); 2469 2470 if (mss) { 2471 opt = (char *)(th + 1); 2472 opt[0] = TCPOPT_MAXSEG; 2473 opt[1] = 4; 2474 HTONS(mss); 2475 bcopy((caddr_t)&mss, (caddr_t)(opt + 2), 2); 2476 } 2477 2478 switch (af) { 2479 #ifdef INET 2480 case AF_INET: 2481 /* TCP checksum */ 2482 th->th_sum = in_cksum(m, len); 2483 2484 /* Finish the IP header */ 2485 h->ip_v = 4; 2486 h->ip_hl = sizeof(*h) >> 2; 2487 h->ip_tos = IPTOS_LOWDELAY; 2488 h->ip_off = htons(V_path_mtu_discovery ? IP_DF : 0); 2489 h->ip_len = htons(len); 2490 h->ip_ttl = ttl ? ttl : V_ip_defttl; 2491 h->ip_sum = 0; 2492 2493 pfse->pfse_type = PFSE_IP; 2494 break; 2495 #endif /* INET */ 2496 #ifdef INET6 2497 case AF_INET6: 2498 /* TCP checksum */ 2499 th->th_sum = in6_cksum(m, IPPROTO_TCP, 2500 sizeof(struct ip6_hdr), tlen); 2501 2502 h6->ip6_vfc |= IPV6_VERSION; 2503 h6->ip6_hlim = IPV6_DEFHLIM; 2504 2505 pfse->pfse_type = PFSE_IP6; 2506 break; 2507 #endif /* INET6 */ 2508 } 2509 pfse->pfse_m = m; 2510 pf_send(pfse); 2511 } 2512 2513 static void 2514 pf_return(struct pf_rule *r, struct pf_rule *nr, struct pf_pdesc *pd, 2515 struct pf_state_key *sk, int off, struct mbuf *m, struct tcphdr *th, 2516 struct pfi_kif *kif, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen, 2517 u_short *reason) 2518 { 2519 struct pf_addr * const saddr = pd->src; 2520 struct pf_addr * const daddr = pd->dst; 2521 sa_family_t af = pd->af; 2522 2523 /* undo NAT changes, if they have taken place */ 2524 if (nr != NULL) { 2525 PF_ACPY(saddr, &sk->addr[pd->sidx], af); 2526 PF_ACPY(daddr, &sk->addr[pd->didx], af); 2527 if (pd->sport) 2528 *pd->sport = sk->port[pd->sidx]; 2529 if (pd->dport) 2530 *pd->dport = sk->port[pd->didx]; 2531 if (pd->proto_sum) 2532 *pd->proto_sum = bproto_sum; 2533 if (pd->ip_sum) 2534 *pd->ip_sum = bip_sum; 2535 m_copyback(m, off, hdrlen, pd->hdr.any); 2536 } 2537 if (pd->proto == IPPROTO_TCP && 2538 ((r->rule_flag & PFRULE_RETURNRST) || 2539 (r->rule_flag & PFRULE_RETURN)) && 2540 !(th->th_flags & TH_RST)) { 2541 u_int32_t ack = ntohl(th->th_seq) + pd->p_len; 2542 int len = 0; 2543 #ifdef INET 2544 struct ip *h4; 2545 #endif 2546 #ifdef INET6 2547 struct ip6_hdr *h6; 2548 #endif 2549 2550 switch (af) { 2551 #ifdef INET 2552 case AF_INET: 2553 h4 = mtod(m, struct ip *); 2554 len = ntohs(h4->ip_len) - off; 2555 break; 2556 #endif 2557 #ifdef INET6 2558 case AF_INET6: 2559 h6 = mtod(m, struct ip6_hdr *); 2560 len = ntohs(h6->ip6_plen) - (off - sizeof(*h6)); 2561 break; 2562 #endif 2563 } 2564 2565 if (pf_check_proto_cksum(m, off, len, IPPROTO_TCP, af)) 2566 REASON_SET(reason, PFRES_PROTCKSUM); 2567 else { 2568 if (th->th_flags & TH_SYN) 2569 ack++; 2570 if (th->th_flags & TH_FIN) 2571 ack++; 2572 pf_send_tcp(m, r, af, pd->dst, 2573 pd->src, th->th_dport, th->th_sport, 2574 ntohl(th->th_ack), ack, TH_RST|TH_ACK, 0, 0, 2575 r->return_ttl, 1, 0, kif->pfik_ifp); 2576 } 2577 } else if (pd->proto != IPPROTO_ICMP && af == AF_INET && 2578 r->return_icmp) 2579 pf_send_icmp(m, r->return_icmp >> 8, 2580 r->return_icmp & 255, af, r); 2581 else if (pd->proto != IPPROTO_ICMPV6 && af == AF_INET6 && 2582 r->return_icmp6) 2583 pf_send_icmp(m, r->return_icmp6 >> 8, 2584 r->return_icmp6 & 255, af, r); 2585 } 2586 2587 2588 static int 2589 pf_ieee8021q_setpcp(struct mbuf *m, u_int8_t prio) 2590 { 2591 struct m_tag *mtag; 2592 2593 KASSERT(prio <= PF_PRIO_MAX, 2594 ("%s with invalid pcp", __func__)); 2595 2596 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_OUT, NULL); 2597 if (mtag == NULL) { 2598 mtag = m_tag_alloc(MTAG_8021Q, MTAG_8021Q_PCP_OUT, 2599 sizeof(uint8_t), M_NOWAIT); 2600 if (mtag == NULL) 2601 return (ENOMEM); 2602 m_tag_prepend(m, mtag); 2603 } 2604 2605 *(uint8_t *)(mtag + 1) = prio; 2606 return (0); 2607 } 2608 2609 static int 2610 pf_match_ieee8021q_pcp(u_int8_t prio, struct mbuf *m) 2611 { 2612 struct m_tag *mtag; 2613 u_int8_t mpcp; 2614 2615 mtag = m_tag_locate(m, MTAG_8021Q, MTAG_8021Q_PCP_IN, NULL); 2616 if (mtag == NULL) 2617 return (0); 2618 2619 if (prio == PF_PRIO_ZERO) 2620 prio = 0; 2621 2622 mpcp = *(uint8_t *)(mtag + 1); 2623 2624 return (mpcp == prio); 2625 } 2626 2627 static void 2628 pf_send_icmp(struct mbuf *m, u_int8_t type, u_int8_t code, sa_family_t af, 2629 struct pf_rule *r) 2630 { 2631 struct pf_send_entry *pfse; 2632 struct mbuf *m0; 2633 struct pf_mtag *pf_mtag; 2634 2635 /* Allocate outgoing queue entry, mbuf and mbuf tag. */ 2636 pfse = malloc(sizeof(*pfse), M_PFTEMP, M_NOWAIT); 2637 if (pfse == NULL) 2638 return; 2639 2640 if ((m0 = m_copypacket(m, M_NOWAIT)) == NULL) { 2641 free(pfse, M_PFTEMP); 2642 return; 2643 } 2644 2645 if ((pf_mtag = pf_get_mtag(m0)) == NULL) { 2646 free(pfse, M_PFTEMP); 2647 return; 2648 } 2649 /* XXX: revisit */ 2650 m0->m_flags |= M_SKIP_FIREWALL; 2651 2652 if (r->rtableid >= 0) 2653 M_SETFIB(m0, r->rtableid); 2654 2655 #ifdef ALTQ 2656 if (r->qid) { 2657 pf_mtag->qid = r->qid; 2658 /* add hints for ecn */ 2659 pf_mtag->hdr = mtod(m0, struct ip *); 2660 } 2661 #endif /* ALTQ */ 2662 2663 switch (af) { 2664 #ifdef INET 2665 case AF_INET: 2666 pfse->pfse_type = PFSE_ICMP; 2667 break; 2668 #endif /* INET */ 2669 #ifdef INET6 2670 case AF_INET6: 2671 pfse->pfse_type = PFSE_ICMP6; 2672 break; 2673 #endif /* INET6 */ 2674 } 2675 pfse->pfse_m = m0; 2676 pfse->icmpopts.type = type; 2677 pfse->icmpopts.code = code; 2678 pf_send(pfse); 2679 } 2680 2681 /* 2682 * Return 1 if the addresses a and b match (with mask m), otherwise return 0. 2683 * If n is 0, they match if they are equal. If n is != 0, they match if they 2684 * are different. 2685 */ 2686 int 2687 pf_match_addr(u_int8_t n, struct pf_addr *a, struct pf_addr *m, 2688 struct pf_addr *b, sa_family_t af) 2689 { 2690 int match = 0; 2691 2692 switch (af) { 2693 #ifdef INET 2694 case AF_INET: 2695 if ((a->addr32[0] & m->addr32[0]) == 2696 (b->addr32[0] & m->addr32[0])) 2697 match++; 2698 break; 2699 #endif /* INET */ 2700 #ifdef INET6 2701 case AF_INET6: 2702 if (((a->addr32[0] & m->addr32[0]) == 2703 (b->addr32[0] & m->addr32[0])) && 2704 ((a->addr32[1] & m->addr32[1]) == 2705 (b->addr32[1] & m->addr32[1])) && 2706 ((a->addr32[2] & m->addr32[2]) == 2707 (b->addr32[2] & m->addr32[2])) && 2708 ((a->addr32[3] & m->addr32[3]) == 2709 (b->addr32[3] & m->addr32[3]))) 2710 match++; 2711 break; 2712 #endif /* INET6 */ 2713 } 2714 if (match) { 2715 if (n) 2716 return (0); 2717 else 2718 return (1); 2719 } else { 2720 if (n) 2721 return (1); 2722 else 2723 return (0); 2724 } 2725 } 2726 2727 /* 2728 * Return 1 if b <= a <= e, otherwise return 0. 2729 */ 2730 int 2731 pf_match_addr_range(struct pf_addr *b, struct pf_addr *e, 2732 struct pf_addr *a, sa_family_t af) 2733 { 2734 switch (af) { 2735 #ifdef INET 2736 case AF_INET: 2737 if ((ntohl(a->addr32[0]) < ntohl(b->addr32[0])) || 2738 (ntohl(a->addr32[0]) > ntohl(e->addr32[0]))) 2739 return (0); 2740 break; 2741 #endif /* INET */ 2742 #ifdef INET6 2743 case AF_INET6: { 2744 int i; 2745 2746 /* check a >= b */ 2747 for (i = 0; i < 4; ++i) 2748 if (ntohl(a->addr32[i]) > ntohl(b->addr32[i])) 2749 break; 2750 else if (ntohl(a->addr32[i]) < ntohl(b->addr32[i])) 2751 return (0); 2752 /* check a <= e */ 2753 for (i = 0; i < 4; ++i) 2754 if (ntohl(a->addr32[i]) < ntohl(e->addr32[i])) 2755 break; 2756 else if (ntohl(a->addr32[i]) > ntohl(e->addr32[i])) 2757 return (0); 2758 break; 2759 } 2760 #endif /* INET6 */ 2761 } 2762 return (1); 2763 } 2764 2765 static int 2766 pf_match(u_int8_t op, u_int32_t a1, u_int32_t a2, u_int32_t p) 2767 { 2768 switch (op) { 2769 case PF_OP_IRG: 2770 return ((p > a1) && (p < a2)); 2771 case PF_OP_XRG: 2772 return ((p < a1) || (p > a2)); 2773 case PF_OP_RRG: 2774 return ((p >= a1) && (p <= a2)); 2775 case PF_OP_EQ: 2776 return (p == a1); 2777 case PF_OP_NE: 2778 return (p != a1); 2779 case PF_OP_LT: 2780 return (p < a1); 2781 case PF_OP_LE: 2782 return (p <= a1); 2783 case PF_OP_GT: 2784 return (p > a1); 2785 case PF_OP_GE: 2786 return (p >= a1); 2787 } 2788 return (0); /* never reached */ 2789 } 2790 2791 int 2792 pf_match_port(u_int8_t op, u_int16_t a1, u_int16_t a2, u_int16_t p) 2793 { 2794 NTOHS(a1); 2795 NTOHS(a2); 2796 NTOHS(p); 2797 return (pf_match(op, a1, a2, p)); 2798 } 2799 2800 static int 2801 pf_match_uid(u_int8_t op, uid_t a1, uid_t a2, uid_t u) 2802 { 2803 if (u == UID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2804 return (0); 2805 return (pf_match(op, a1, a2, u)); 2806 } 2807 2808 static int 2809 pf_match_gid(u_int8_t op, gid_t a1, gid_t a2, gid_t g) 2810 { 2811 if (g == GID_MAX && op != PF_OP_EQ && op != PF_OP_NE) 2812 return (0); 2813 return (pf_match(op, a1, a2, g)); 2814 } 2815 2816 int 2817 pf_match_tag(struct mbuf *m, struct pf_rule *r, int *tag, int mtag) 2818 { 2819 if (*tag == -1) 2820 *tag = mtag; 2821 2822 return ((!r->match_tag_not && r->match_tag == *tag) || 2823 (r->match_tag_not && r->match_tag != *tag)); 2824 } 2825 2826 int 2827 pf_tag_packet(struct mbuf *m, struct pf_pdesc *pd, int tag) 2828 { 2829 2830 KASSERT(tag > 0, ("%s: tag %d", __func__, tag)); 2831 2832 if (pd->pf_mtag == NULL && ((pd->pf_mtag = pf_get_mtag(m)) == NULL)) 2833 return (ENOMEM); 2834 2835 pd->pf_mtag->tag = tag; 2836 2837 return (0); 2838 } 2839 2840 #define PF_ANCHOR_STACKSIZE 32 2841 struct pf_anchor_stackframe { 2842 struct pf_ruleset *rs; 2843 struct pf_rule *r; /* XXX: + match bit */ 2844 struct pf_anchor *child; 2845 }; 2846 2847 /* 2848 * XXX: We rely on malloc(9) returning pointer aligned addresses. 2849 */ 2850 #define PF_ANCHORSTACK_MATCH 0x00000001 2851 #define PF_ANCHORSTACK_MASK (PF_ANCHORSTACK_MATCH) 2852 2853 #define PF_ANCHOR_MATCH(f) ((uintptr_t)(f)->r & PF_ANCHORSTACK_MATCH) 2854 #define PF_ANCHOR_RULE(f) (struct pf_rule *) \ 2855 ((uintptr_t)(f)->r & ~PF_ANCHORSTACK_MASK) 2856 #define PF_ANCHOR_SET_MATCH(f) do { (f)->r = (void *) \ 2857 ((uintptr_t)(f)->r | PF_ANCHORSTACK_MATCH); \ 2858 } while (0) 2859 2860 void 2861 pf_step_into_anchor(struct pf_anchor_stackframe *stack, int *depth, 2862 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2863 int *match) 2864 { 2865 struct pf_anchor_stackframe *f; 2866 2867 PF_RULES_RASSERT(); 2868 2869 if (match) 2870 *match = 0; 2871 if (*depth >= PF_ANCHOR_STACKSIZE) { 2872 printf("%s: anchor stack overflow on %s\n", 2873 __func__, (*r)->anchor->name); 2874 *r = TAILQ_NEXT(*r, entries); 2875 return; 2876 } else if (*depth == 0 && a != NULL) 2877 *a = *r; 2878 f = stack + (*depth)++; 2879 f->rs = *rs; 2880 f->r = *r; 2881 if ((*r)->anchor_wildcard) { 2882 struct pf_anchor_node *parent = &(*r)->anchor->children; 2883 2884 if ((f->child = RB_MIN(pf_anchor_node, parent)) == NULL) { 2885 *r = NULL; 2886 return; 2887 } 2888 *rs = &f->child->ruleset; 2889 } else { 2890 f->child = NULL; 2891 *rs = &(*r)->anchor->ruleset; 2892 } 2893 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2894 } 2895 2896 int 2897 pf_step_out_of_anchor(struct pf_anchor_stackframe *stack, int *depth, 2898 struct pf_ruleset **rs, int n, struct pf_rule **r, struct pf_rule **a, 2899 int *match) 2900 { 2901 struct pf_anchor_stackframe *f; 2902 struct pf_rule *fr; 2903 int quick = 0; 2904 2905 PF_RULES_RASSERT(); 2906 2907 do { 2908 if (*depth <= 0) 2909 break; 2910 f = stack + *depth - 1; 2911 fr = PF_ANCHOR_RULE(f); 2912 if (f->child != NULL) { 2913 struct pf_anchor_node *parent; 2914 2915 /* 2916 * This block traverses through 2917 * a wildcard anchor. 2918 */ 2919 parent = &fr->anchor->children; 2920 if (match != NULL && *match) { 2921 /* 2922 * If any of "*" matched, then 2923 * "foo/ *" matched, mark frame 2924 * appropriately. 2925 */ 2926 PF_ANCHOR_SET_MATCH(f); 2927 *match = 0; 2928 } 2929 f->child = RB_NEXT(pf_anchor_node, parent, f->child); 2930 if (f->child != NULL) { 2931 *rs = &f->child->ruleset; 2932 *r = TAILQ_FIRST((*rs)->rules[n].active.ptr); 2933 if (*r == NULL) 2934 continue; 2935 else 2936 break; 2937 } 2938 } 2939 (*depth)--; 2940 if (*depth == 0 && a != NULL) 2941 *a = NULL; 2942 *rs = f->rs; 2943 if (PF_ANCHOR_MATCH(f) || (match != NULL && *match)) 2944 quick = fr->quick; 2945 *r = TAILQ_NEXT(fr, entries); 2946 } while (*r == NULL); 2947 2948 return (quick); 2949 } 2950 2951 #ifdef INET6 2952 void 2953 pf_poolmask(struct pf_addr *naddr, struct pf_addr *raddr, 2954 struct pf_addr *rmask, struct pf_addr *saddr, sa_family_t af) 2955 { 2956 switch (af) { 2957 #ifdef INET 2958 case AF_INET: 2959 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2960 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2961 break; 2962 #endif /* INET */ 2963 case AF_INET6: 2964 naddr->addr32[0] = (raddr->addr32[0] & rmask->addr32[0]) | 2965 ((rmask->addr32[0] ^ 0xffffffff ) & saddr->addr32[0]); 2966 naddr->addr32[1] = (raddr->addr32[1] & rmask->addr32[1]) | 2967 ((rmask->addr32[1] ^ 0xffffffff ) & saddr->addr32[1]); 2968 naddr->addr32[2] = (raddr->addr32[2] & rmask->addr32[2]) | 2969 ((rmask->addr32[2] ^ 0xffffffff ) & saddr->addr32[2]); 2970 naddr->addr32[3] = (raddr->addr32[3] & rmask->addr32[3]) | 2971 ((rmask->addr32[3] ^ 0xffffffff ) & saddr->addr32[3]); 2972 break; 2973 } 2974 } 2975 2976 void 2977 pf_addr_inc(struct pf_addr *addr, sa_family_t af) 2978 { 2979 switch (af) { 2980 #ifdef INET 2981 case AF_INET: 2982 addr->addr32[0] = htonl(ntohl(addr->addr32[0]) + 1); 2983 break; 2984 #endif /* INET */ 2985 case AF_INET6: 2986 if (addr->addr32[3] == 0xffffffff) { 2987 addr->addr32[3] = 0; 2988 if (addr->addr32[2] == 0xffffffff) { 2989 addr->addr32[2] = 0; 2990 if (addr->addr32[1] == 0xffffffff) { 2991 addr->addr32[1] = 0; 2992 addr->addr32[0] = 2993 htonl(ntohl(addr->addr32[0]) + 1); 2994 } else 2995 addr->addr32[1] = 2996 htonl(ntohl(addr->addr32[1]) + 1); 2997 } else 2998 addr->addr32[2] = 2999 htonl(ntohl(addr->addr32[2]) + 1); 3000 } else 3001 addr->addr32[3] = 3002 htonl(ntohl(addr->addr32[3]) + 1); 3003 break; 3004 } 3005 } 3006 #endif /* INET6 */ 3007 3008 int 3009 pf_socket_lookup(int direction, struct pf_pdesc *pd, struct mbuf *m) 3010 { 3011 struct pf_addr *saddr, *daddr; 3012 u_int16_t sport, dport; 3013 struct inpcbinfo *pi; 3014 struct inpcb *inp; 3015 3016 pd->lookup.uid = UID_MAX; 3017 pd->lookup.gid = GID_MAX; 3018 3019 switch (pd->proto) { 3020 case IPPROTO_TCP: 3021 if (pd->hdr.tcp == NULL) 3022 return (-1); 3023 sport = pd->hdr.tcp->th_sport; 3024 dport = pd->hdr.tcp->th_dport; 3025 pi = &V_tcbinfo; 3026 break; 3027 case IPPROTO_UDP: 3028 if (pd->hdr.udp == NULL) 3029 return (-1); 3030 sport = pd->hdr.udp->uh_sport; 3031 dport = pd->hdr.udp->uh_dport; 3032 pi = &V_udbinfo; 3033 break; 3034 default: 3035 return (-1); 3036 } 3037 if (direction == PF_IN) { 3038 saddr = pd->src; 3039 daddr = pd->dst; 3040 } else { 3041 u_int16_t p; 3042 3043 p = sport; 3044 sport = dport; 3045 dport = p; 3046 saddr = pd->dst; 3047 daddr = pd->src; 3048 } 3049 switch (pd->af) { 3050 #ifdef INET 3051 case AF_INET: 3052 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, daddr->v4, 3053 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3054 if (inp == NULL) { 3055 inp = in_pcblookup_mbuf(pi, saddr->v4, sport, 3056 daddr->v4, dport, INPLOOKUP_WILDCARD | 3057 INPLOOKUP_RLOCKPCB, NULL, m); 3058 if (inp == NULL) 3059 return (-1); 3060 } 3061 break; 3062 #endif /* INET */ 3063 #ifdef INET6 3064 case AF_INET6: 3065 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, &daddr->v6, 3066 dport, INPLOOKUP_RLOCKPCB, NULL, m); 3067 if (inp == NULL) { 3068 inp = in6_pcblookup_mbuf(pi, &saddr->v6, sport, 3069 &daddr->v6, dport, INPLOOKUP_WILDCARD | 3070 INPLOOKUP_RLOCKPCB, NULL, m); 3071 if (inp == NULL) 3072 return (-1); 3073 } 3074 break; 3075 #endif /* INET6 */ 3076 3077 default: 3078 return (-1); 3079 } 3080 INP_RLOCK_ASSERT(inp); 3081 pd->lookup.uid = inp->inp_cred->cr_uid; 3082 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3083 INP_RUNLOCK(inp); 3084 3085 return (1); 3086 } 3087 3088 static u_int8_t 3089 pf_get_wscale(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3090 { 3091 int hlen; 3092 u_int8_t hdr[60]; 3093 u_int8_t *opt, optlen; 3094 u_int8_t wscale = 0; 3095 3096 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3097 if (hlen <= sizeof(struct tcphdr)) 3098 return (0); 3099 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3100 return (0); 3101 opt = hdr + sizeof(struct tcphdr); 3102 hlen -= sizeof(struct tcphdr); 3103 while (hlen >= 3) { 3104 switch (*opt) { 3105 case TCPOPT_EOL: 3106 case TCPOPT_NOP: 3107 ++opt; 3108 --hlen; 3109 break; 3110 case TCPOPT_WINDOW: 3111 wscale = opt[2]; 3112 if (wscale > TCP_MAX_WINSHIFT) 3113 wscale = TCP_MAX_WINSHIFT; 3114 wscale |= PF_WSCALE_FLAG; 3115 /* FALLTHROUGH */ 3116 default: 3117 optlen = opt[1]; 3118 if (optlen < 2) 3119 optlen = 2; 3120 hlen -= optlen; 3121 opt += optlen; 3122 break; 3123 } 3124 } 3125 return (wscale); 3126 } 3127 3128 static u_int16_t 3129 pf_get_mss(struct mbuf *m, int off, u_int16_t th_off, sa_family_t af) 3130 { 3131 int hlen; 3132 u_int8_t hdr[60]; 3133 u_int8_t *opt, optlen; 3134 u_int16_t mss = V_tcp_mssdflt; 3135 3136 hlen = th_off << 2; /* hlen <= sizeof(hdr) */ 3137 if (hlen <= sizeof(struct tcphdr)) 3138 return (0); 3139 if (!pf_pull_hdr(m, off, hdr, hlen, NULL, NULL, af)) 3140 return (0); 3141 opt = hdr + sizeof(struct tcphdr); 3142 hlen -= sizeof(struct tcphdr); 3143 while (hlen >= TCPOLEN_MAXSEG) { 3144 switch (*opt) { 3145 case TCPOPT_EOL: 3146 case TCPOPT_NOP: 3147 ++opt; 3148 --hlen; 3149 break; 3150 case TCPOPT_MAXSEG: 3151 bcopy((caddr_t)(opt + 2), (caddr_t)&mss, 2); 3152 NTOHS(mss); 3153 /* FALLTHROUGH */ 3154 default: 3155 optlen = opt[1]; 3156 if (optlen < 2) 3157 optlen = 2; 3158 hlen -= optlen; 3159 opt += optlen; 3160 break; 3161 } 3162 } 3163 return (mss); 3164 } 3165 3166 static u_int16_t 3167 pf_calc_mss(struct pf_addr *addr, sa_family_t af, int rtableid, u_int16_t offer) 3168 { 3169 #ifdef INET 3170 struct nhop4_basic nh4; 3171 #endif /* INET */ 3172 #ifdef INET6 3173 struct nhop6_basic nh6; 3174 struct in6_addr dst6; 3175 uint32_t scopeid; 3176 #endif /* INET6 */ 3177 int hlen = 0; 3178 uint16_t mss = 0; 3179 3180 switch (af) { 3181 #ifdef INET 3182 case AF_INET: 3183 hlen = sizeof(struct ip); 3184 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) == 0) 3185 mss = nh4.nh_mtu - hlen - sizeof(struct tcphdr); 3186 break; 3187 #endif /* INET */ 3188 #ifdef INET6 3189 case AF_INET6: 3190 hlen = sizeof(struct ip6_hdr); 3191 in6_splitscope(&addr->v6, &dst6, &scopeid); 3192 if (fib6_lookup_nh_basic(rtableid, &dst6, scopeid, 0,0,&nh6)==0) 3193 mss = nh6.nh_mtu - hlen - sizeof(struct tcphdr); 3194 break; 3195 #endif /* INET6 */ 3196 } 3197 3198 mss = max(V_tcp_mssdflt, mss); 3199 mss = min(mss, offer); 3200 mss = max(mss, 64); /* sanity - at least max opt space */ 3201 return (mss); 3202 } 3203 3204 static u_int32_t 3205 pf_tcp_iss(struct pf_pdesc *pd) 3206 { 3207 MD5_CTX ctx; 3208 u_int32_t digest[4]; 3209 3210 if (V_pf_tcp_secret_init == 0) { 3211 arc4random_buf(&V_pf_tcp_secret, sizeof(V_pf_tcp_secret)); 3212 MD5Init(&V_pf_tcp_secret_ctx); 3213 MD5Update(&V_pf_tcp_secret_ctx, V_pf_tcp_secret, 3214 sizeof(V_pf_tcp_secret)); 3215 V_pf_tcp_secret_init = 1; 3216 } 3217 3218 ctx = V_pf_tcp_secret_ctx; 3219 3220 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_sport, sizeof(u_short)); 3221 MD5Update(&ctx, (char *)&pd->hdr.tcp->th_dport, sizeof(u_short)); 3222 if (pd->af == AF_INET6) { 3223 MD5Update(&ctx, (char *)&pd->src->v6, sizeof(struct in6_addr)); 3224 MD5Update(&ctx, (char *)&pd->dst->v6, sizeof(struct in6_addr)); 3225 } else { 3226 MD5Update(&ctx, (char *)&pd->src->v4, sizeof(struct in_addr)); 3227 MD5Update(&ctx, (char *)&pd->dst->v4, sizeof(struct in_addr)); 3228 } 3229 MD5Final((u_char *)digest, &ctx); 3230 V_pf_tcp_iss_off += 4096; 3231 #define ISN_RANDOM_INCREMENT (4096 - 1) 3232 return (digest[0] + (arc4random() & ISN_RANDOM_INCREMENT) + 3233 V_pf_tcp_iss_off); 3234 #undef ISN_RANDOM_INCREMENT 3235 } 3236 3237 static int 3238 pf_test_rule(struct pf_rule **rm, struct pf_state **sm, int direction, 3239 struct pfi_kif *kif, struct mbuf *m, int off, struct pf_pdesc *pd, 3240 struct pf_rule **am, struct pf_ruleset **rsm, struct inpcb *inp) 3241 { 3242 struct pf_rule *nr = NULL; 3243 struct pf_addr * const saddr = pd->src; 3244 struct pf_addr * const daddr = pd->dst; 3245 sa_family_t af = pd->af; 3246 struct pf_rule *r, *a = NULL; 3247 struct pf_ruleset *ruleset = NULL; 3248 struct pf_src_node *nsn = NULL; 3249 struct tcphdr *th = pd->hdr.tcp; 3250 struct pf_state_key *sk = NULL, *nk = NULL; 3251 u_short reason; 3252 int rewrite = 0, hdrlen = 0; 3253 int tag = -1, rtableid = -1; 3254 int asd = 0; 3255 int match = 0; 3256 int state_icmp = 0; 3257 u_int16_t sport = 0, dport = 0; 3258 u_int16_t bproto_sum = 0, bip_sum = 0; 3259 u_int8_t icmptype = 0, icmpcode = 0; 3260 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3261 3262 PF_RULES_RASSERT(); 3263 3264 if (inp != NULL) { 3265 INP_LOCK_ASSERT(inp); 3266 pd->lookup.uid = inp->inp_cred->cr_uid; 3267 pd->lookup.gid = inp->inp_cred->cr_groups[0]; 3268 pd->lookup.done = 1; 3269 } 3270 3271 switch (pd->proto) { 3272 case IPPROTO_TCP: 3273 sport = th->th_sport; 3274 dport = th->th_dport; 3275 hdrlen = sizeof(*th); 3276 break; 3277 case IPPROTO_UDP: 3278 sport = pd->hdr.udp->uh_sport; 3279 dport = pd->hdr.udp->uh_dport; 3280 hdrlen = sizeof(*pd->hdr.udp); 3281 break; 3282 #ifdef INET 3283 case IPPROTO_ICMP: 3284 if (pd->af != AF_INET) 3285 break; 3286 sport = dport = pd->hdr.icmp->icmp_id; 3287 hdrlen = sizeof(*pd->hdr.icmp); 3288 icmptype = pd->hdr.icmp->icmp_type; 3289 icmpcode = pd->hdr.icmp->icmp_code; 3290 3291 if (icmptype == ICMP_UNREACH || 3292 icmptype == ICMP_SOURCEQUENCH || 3293 icmptype == ICMP_REDIRECT || 3294 icmptype == ICMP_TIMXCEED || 3295 icmptype == ICMP_PARAMPROB) 3296 state_icmp++; 3297 break; 3298 #endif /* INET */ 3299 #ifdef INET6 3300 case IPPROTO_ICMPV6: 3301 if (af != AF_INET6) 3302 break; 3303 sport = dport = pd->hdr.icmp6->icmp6_id; 3304 hdrlen = sizeof(*pd->hdr.icmp6); 3305 icmptype = pd->hdr.icmp6->icmp6_type; 3306 icmpcode = pd->hdr.icmp6->icmp6_code; 3307 3308 if (icmptype == ICMP6_DST_UNREACH || 3309 icmptype == ICMP6_PACKET_TOO_BIG || 3310 icmptype == ICMP6_TIME_EXCEEDED || 3311 icmptype == ICMP6_PARAM_PROB) 3312 state_icmp++; 3313 break; 3314 #endif /* INET6 */ 3315 default: 3316 sport = dport = hdrlen = 0; 3317 break; 3318 } 3319 3320 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3321 3322 /* check packet for BINAT/NAT/RDR */ 3323 if ((nr = pf_get_translation(pd, m, off, direction, kif, &nsn, &sk, 3324 &nk, saddr, daddr, sport, dport, anchor_stack)) != NULL) { 3325 KASSERT(sk != NULL, ("%s: null sk", __func__)); 3326 KASSERT(nk != NULL, ("%s: null nk", __func__)); 3327 3328 if (pd->ip_sum) 3329 bip_sum = *pd->ip_sum; 3330 3331 switch (pd->proto) { 3332 case IPPROTO_TCP: 3333 bproto_sum = th->th_sum; 3334 pd->proto_sum = &th->th_sum; 3335 3336 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3337 nk->port[pd->sidx] != sport) { 3338 pf_change_ap(m, saddr, &th->th_sport, pd->ip_sum, 3339 &th->th_sum, &nk->addr[pd->sidx], 3340 nk->port[pd->sidx], 0, af); 3341 pd->sport = &th->th_sport; 3342 sport = th->th_sport; 3343 } 3344 3345 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3346 nk->port[pd->didx] != dport) { 3347 pf_change_ap(m, daddr, &th->th_dport, pd->ip_sum, 3348 &th->th_sum, &nk->addr[pd->didx], 3349 nk->port[pd->didx], 0, af); 3350 dport = th->th_dport; 3351 pd->dport = &th->th_dport; 3352 } 3353 rewrite++; 3354 break; 3355 case IPPROTO_UDP: 3356 bproto_sum = pd->hdr.udp->uh_sum; 3357 pd->proto_sum = &pd->hdr.udp->uh_sum; 3358 3359 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], af) || 3360 nk->port[pd->sidx] != sport) { 3361 pf_change_ap(m, saddr, &pd->hdr.udp->uh_sport, 3362 pd->ip_sum, &pd->hdr.udp->uh_sum, 3363 &nk->addr[pd->sidx], 3364 nk->port[pd->sidx], 1, af); 3365 sport = pd->hdr.udp->uh_sport; 3366 pd->sport = &pd->hdr.udp->uh_sport; 3367 } 3368 3369 if (PF_ANEQ(daddr, &nk->addr[pd->didx], af) || 3370 nk->port[pd->didx] != dport) { 3371 pf_change_ap(m, daddr, &pd->hdr.udp->uh_dport, 3372 pd->ip_sum, &pd->hdr.udp->uh_sum, 3373 &nk->addr[pd->didx], 3374 nk->port[pd->didx], 1, af); 3375 dport = pd->hdr.udp->uh_dport; 3376 pd->dport = &pd->hdr.udp->uh_dport; 3377 } 3378 rewrite++; 3379 break; 3380 #ifdef INET 3381 case IPPROTO_ICMP: 3382 nk->port[0] = nk->port[1]; 3383 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET)) 3384 pf_change_a(&saddr->v4.s_addr, pd->ip_sum, 3385 nk->addr[pd->sidx].v4.s_addr, 0); 3386 3387 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET)) 3388 pf_change_a(&daddr->v4.s_addr, pd->ip_sum, 3389 nk->addr[pd->didx].v4.s_addr, 0); 3390 3391 if (nk->port[1] != pd->hdr.icmp->icmp_id) { 3392 pd->hdr.icmp->icmp_cksum = pf_cksum_fixup( 3393 pd->hdr.icmp->icmp_cksum, sport, 3394 nk->port[1], 0); 3395 pd->hdr.icmp->icmp_id = nk->port[1]; 3396 pd->sport = &pd->hdr.icmp->icmp_id; 3397 } 3398 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 3399 break; 3400 #endif /* INET */ 3401 #ifdef INET6 3402 case IPPROTO_ICMPV6: 3403 nk->port[0] = nk->port[1]; 3404 if (PF_ANEQ(saddr, &nk->addr[pd->sidx], AF_INET6)) 3405 pf_change_a6(saddr, &pd->hdr.icmp6->icmp6_cksum, 3406 &nk->addr[pd->sidx], 0); 3407 3408 if (PF_ANEQ(daddr, &nk->addr[pd->didx], AF_INET6)) 3409 pf_change_a6(daddr, &pd->hdr.icmp6->icmp6_cksum, 3410 &nk->addr[pd->didx], 0); 3411 rewrite++; 3412 break; 3413 #endif /* INET */ 3414 default: 3415 switch (af) { 3416 #ifdef INET 3417 case AF_INET: 3418 if (PF_ANEQ(saddr, 3419 &nk->addr[pd->sidx], AF_INET)) 3420 pf_change_a(&saddr->v4.s_addr, 3421 pd->ip_sum, 3422 nk->addr[pd->sidx].v4.s_addr, 0); 3423 3424 if (PF_ANEQ(daddr, 3425 &nk->addr[pd->didx], AF_INET)) 3426 pf_change_a(&daddr->v4.s_addr, 3427 pd->ip_sum, 3428 nk->addr[pd->didx].v4.s_addr, 0); 3429 break; 3430 #endif /* INET */ 3431 #ifdef INET6 3432 case AF_INET6: 3433 if (PF_ANEQ(saddr, 3434 &nk->addr[pd->sidx], AF_INET6)) 3435 PF_ACPY(saddr, &nk->addr[pd->sidx], af); 3436 3437 if (PF_ANEQ(daddr, 3438 &nk->addr[pd->didx], AF_INET6)) 3439 PF_ACPY(daddr, &nk->addr[pd->didx], af); 3440 break; 3441 #endif /* INET */ 3442 } 3443 break; 3444 } 3445 if (nr->natpass) 3446 r = NULL; 3447 pd->nat_rule = nr; 3448 } 3449 3450 while (r != NULL) { 3451 r->evaluations++; 3452 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3453 r = r->skip[PF_SKIP_IFP].ptr; 3454 else if (r->direction && r->direction != direction) 3455 r = r->skip[PF_SKIP_DIR].ptr; 3456 else if (r->af && r->af != af) 3457 r = r->skip[PF_SKIP_AF].ptr; 3458 else if (r->proto && r->proto != pd->proto) 3459 r = r->skip[PF_SKIP_PROTO].ptr; 3460 else if (PF_MISMATCHAW(&r->src.addr, saddr, af, 3461 r->src.neg, kif, M_GETFIB(m))) 3462 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3463 /* tcp/udp only. port_op always 0 in other cases */ 3464 else if (r->src.port_op && !pf_match_port(r->src.port_op, 3465 r->src.port[0], r->src.port[1], sport)) 3466 r = r->skip[PF_SKIP_SRC_PORT].ptr; 3467 else if (PF_MISMATCHAW(&r->dst.addr, daddr, af, 3468 r->dst.neg, NULL, M_GETFIB(m))) 3469 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3470 /* tcp/udp only. port_op always 0 in other cases */ 3471 else if (r->dst.port_op && !pf_match_port(r->dst.port_op, 3472 r->dst.port[0], r->dst.port[1], dport)) 3473 r = r->skip[PF_SKIP_DST_PORT].ptr; 3474 /* icmp only. type always 0 in other cases */ 3475 else if (r->type && r->type != icmptype + 1) 3476 r = TAILQ_NEXT(r, entries); 3477 /* icmp only. type always 0 in other cases */ 3478 else if (r->code && r->code != icmpcode + 1) 3479 r = TAILQ_NEXT(r, entries); 3480 else if (r->tos && !(r->tos == pd->tos)) 3481 r = TAILQ_NEXT(r, entries); 3482 else if (r->rule_flag & PFRULE_FRAGMENT) 3483 r = TAILQ_NEXT(r, entries); 3484 else if (pd->proto == IPPROTO_TCP && 3485 (r->flagset & th->th_flags) != r->flags) 3486 r = TAILQ_NEXT(r, entries); 3487 /* tcp/udp only. uid.op always 0 in other cases */ 3488 else if (r->uid.op && (pd->lookup.done || (pd->lookup.done = 3489 pf_socket_lookup(direction, pd, m), 1)) && 3490 !pf_match_uid(r->uid.op, r->uid.uid[0], r->uid.uid[1], 3491 pd->lookup.uid)) 3492 r = TAILQ_NEXT(r, entries); 3493 /* tcp/udp only. gid.op always 0 in other cases */ 3494 else if (r->gid.op && (pd->lookup.done || (pd->lookup.done = 3495 pf_socket_lookup(direction, pd, m), 1)) && 3496 !pf_match_gid(r->gid.op, r->gid.gid[0], r->gid.gid[1], 3497 pd->lookup.gid)) 3498 r = TAILQ_NEXT(r, entries); 3499 else if (r->prio && 3500 !pf_match_ieee8021q_pcp(r->prio, m)) 3501 r = TAILQ_NEXT(r, entries); 3502 else if (r->prob && 3503 r->prob <= arc4random()) 3504 r = TAILQ_NEXT(r, entries); 3505 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3506 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3507 r = TAILQ_NEXT(r, entries); 3508 else if (r->os_fingerprint != PF_OSFP_ANY && 3509 (pd->proto != IPPROTO_TCP || !pf_osfp_match( 3510 pf_osfp_fingerprint(pd, m, off, th), 3511 r->os_fingerprint))) 3512 r = TAILQ_NEXT(r, entries); 3513 else { 3514 if (r->tag) 3515 tag = r->tag; 3516 if (r->rtableid >= 0) 3517 rtableid = r->rtableid; 3518 if (r->anchor == NULL) { 3519 match = 1; 3520 *rm = r; 3521 *am = a; 3522 *rsm = ruleset; 3523 if ((*rm)->quick) 3524 break; 3525 r = TAILQ_NEXT(r, entries); 3526 } else 3527 pf_step_into_anchor(anchor_stack, &asd, 3528 &ruleset, PF_RULESET_FILTER, &r, &a, 3529 &match); 3530 } 3531 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3532 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3533 break; 3534 } 3535 r = *rm; 3536 a = *am; 3537 ruleset = *rsm; 3538 3539 REASON_SET(&reason, PFRES_MATCH); 3540 3541 if (r->log || (nr != NULL && nr->log)) { 3542 if (rewrite) 3543 m_copyback(m, off, hdrlen, pd->hdr.any); 3544 PFLOG_PACKET(kif, m, af, direction, reason, r->log ? r : nr, a, 3545 ruleset, pd, 1); 3546 } 3547 3548 if ((r->action == PF_DROP) && 3549 ((r->rule_flag & PFRULE_RETURNRST) || 3550 (r->rule_flag & PFRULE_RETURNICMP) || 3551 (r->rule_flag & PFRULE_RETURN))) { 3552 pf_return(r, nr, pd, sk, off, m, th, kif, bproto_sum, 3553 bip_sum, hdrlen, &reason); 3554 } 3555 3556 if (r->action == PF_DROP) 3557 goto cleanup; 3558 3559 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3560 REASON_SET(&reason, PFRES_MEMORY); 3561 goto cleanup; 3562 } 3563 if (rtableid >= 0) 3564 M_SETFIB(m, rtableid); 3565 3566 if (!state_icmp && (r->keep_state || nr != NULL || 3567 (pd->flags & PFDESC_TCP_NORM))) { 3568 int action; 3569 action = pf_create_state(r, nr, a, pd, nsn, nk, sk, m, off, 3570 sport, dport, &rewrite, kif, sm, tag, bproto_sum, bip_sum, 3571 hdrlen); 3572 if (action != PF_PASS) { 3573 if (action == PF_DROP && 3574 (r->rule_flag & PFRULE_RETURN)) 3575 pf_return(r, nr, pd, sk, off, m, th, kif, 3576 bproto_sum, bip_sum, hdrlen, &reason); 3577 return (action); 3578 } 3579 } else { 3580 if (sk != NULL) 3581 uma_zfree(V_pf_state_key_z, sk); 3582 if (nk != NULL) 3583 uma_zfree(V_pf_state_key_z, nk); 3584 } 3585 3586 /* copy back packet headers if we performed NAT operations */ 3587 if (rewrite) 3588 m_copyback(m, off, hdrlen, pd->hdr.any); 3589 3590 if (*sm != NULL && !((*sm)->state_flags & PFSTATE_NOSYNC) && 3591 direction == PF_OUT && 3592 V_pfsync_defer_ptr != NULL && V_pfsync_defer_ptr(*sm, m)) 3593 /* 3594 * We want the state created, but we dont 3595 * want to send this in case a partner 3596 * firewall has to know about it to allow 3597 * replies through it. 3598 */ 3599 return (PF_DEFER); 3600 3601 return (PF_PASS); 3602 3603 cleanup: 3604 if (sk != NULL) 3605 uma_zfree(V_pf_state_key_z, sk); 3606 if (nk != NULL) 3607 uma_zfree(V_pf_state_key_z, nk); 3608 return (PF_DROP); 3609 } 3610 3611 static int 3612 pf_create_state(struct pf_rule *r, struct pf_rule *nr, struct pf_rule *a, 3613 struct pf_pdesc *pd, struct pf_src_node *nsn, struct pf_state_key *nk, 3614 struct pf_state_key *sk, struct mbuf *m, int off, u_int16_t sport, 3615 u_int16_t dport, int *rewrite, struct pfi_kif *kif, struct pf_state **sm, 3616 int tag, u_int16_t bproto_sum, u_int16_t bip_sum, int hdrlen) 3617 { 3618 struct pf_state *s = NULL; 3619 struct pf_src_node *sn = NULL; 3620 struct tcphdr *th = pd->hdr.tcp; 3621 u_int16_t mss = V_tcp_mssdflt; 3622 u_short reason; 3623 3624 /* check maximums */ 3625 if (r->max_states && 3626 (counter_u64_fetch(r->states_cur) >= r->max_states)) { 3627 counter_u64_add(V_pf_status.lcounters[LCNT_STATES], 1); 3628 REASON_SET(&reason, PFRES_MAXSTATES); 3629 goto csfailed; 3630 } 3631 /* src node for filter rule */ 3632 if ((r->rule_flag & PFRULE_SRCTRACK || 3633 r->rpool.opts & PF_POOL_STICKYADDR) && 3634 pf_insert_src_node(&sn, r, pd->src, pd->af) != 0) { 3635 REASON_SET(&reason, PFRES_SRCLIMIT); 3636 goto csfailed; 3637 } 3638 /* src node for translation rule */ 3639 if (nr != NULL && (nr->rpool.opts & PF_POOL_STICKYADDR) && 3640 pf_insert_src_node(&nsn, nr, &sk->addr[pd->sidx], pd->af)) { 3641 REASON_SET(&reason, PFRES_SRCLIMIT); 3642 goto csfailed; 3643 } 3644 s = uma_zalloc(V_pf_state_z, M_NOWAIT | M_ZERO); 3645 if (s == NULL) { 3646 REASON_SET(&reason, PFRES_MEMORY); 3647 goto csfailed; 3648 } 3649 s->rule.ptr = r; 3650 s->nat_rule.ptr = nr; 3651 s->anchor.ptr = a; 3652 STATE_INC_COUNTERS(s); 3653 if (r->allow_opts) 3654 s->state_flags |= PFSTATE_ALLOWOPTS; 3655 if (r->rule_flag & PFRULE_STATESLOPPY) 3656 s->state_flags |= PFSTATE_SLOPPY; 3657 s->log = r->log & PF_LOG_ALL; 3658 s->sync_state = PFSYNC_S_NONE; 3659 if (nr != NULL) 3660 s->log |= nr->log & PF_LOG_ALL; 3661 switch (pd->proto) { 3662 case IPPROTO_TCP: 3663 s->src.seqlo = ntohl(th->th_seq); 3664 s->src.seqhi = s->src.seqlo + pd->p_len + 1; 3665 if ((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN && 3666 r->keep_state == PF_STATE_MODULATE) { 3667 /* Generate sequence number modulator */ 3668 if ((s->src.seqdiff = pf_tcp_iss(pd) - s->src.seqlo) == 3669 0) 3670 s->src.seqdiff = 1; 3671 pf_change_proto_a(m, &th->th_seq, &th->th_sum, 3672 htonl(s->src.seqlo + s->src.seqdiff), 0); 3673 *rewrite = 1; 3674 } else 3675 s->src.seqdiff = 0; 3676 if (th->th_flags & TH_SYN) { 3677 s->src.seqhi++; 3678 s->src.wscale = pf_get_wscale(m, off, 3679 th->th_off, pd->af); 3680 } 3681 s->src.max_win = MAX(ntohs(th->th_win), 1); 3682 if (s->src.wscale & PF_WSCALE_MASK) { 3683 /* Remove scale factor from initial window */ 3684 int win = s->src.max_win; 3685 win += 1 << (s->src.wscale & PF_WSCALE_MASK); 3686 s->src.max_win = (win - 1) >> 3687 (s->src.wscale & PF_WSCALE_MASK); 3688 } 3689 if (th->th_flags & TH_FIN) 3690 s->src.seqhi++; 3691 s->dst.seqhi = 1; 3692 s->dst.max_win = 1; 3693 s->src.state = TCPS_SYN_SENT; 3694 s->dst.state = TCPS_CLOSED; 3695 s->timeout = PFTM_TCP_FIRST_PACKET; 3696 break; 3697 case IPPROTO_UDP: 3698 s->src.state = PFUDPS_SINGLE; 3699 s->dst.state = PFUDPS_NO_TRAFFIC; 3700 s->timeout = PFTM_UDP_FIRST_PACKET; 3701 break; 3702 case IPPROTO_ICMP: 3703 #ifdef INET6 3704 case IPPROTO_ICMPV6: 3705 #endif 3706 s->timeout = PFTM_ICMP_FIRST_PACKET; 3707 break; 3708 default: 3709 s->src.state = PFOTHERS_SINGLE; 3710 s->dst.state = PFOTHERS_NO_TRAFFIC; 3711 s->timeout = PFTM_OTHER_FIRST_PACKET; 3712 } 3713 3714 if (r->rt) { 3715 if (pf_map_addr(pd->af, r, pd->src, &s->rt_addr, NULL, &sn)) { 3716 REASON_SET(&reason, PFRES_MAPFAILED); 3717 pf_src_tree_remove_state(s); 3718 STATE_DEC_COUNTERS(s); 3719 uma_zfree(V_pf_state_z, s); 3720 goto csfailed; 3721 } 3722 s->rt_kif = r->rpool.cur->kif; 3723 } 3724 3725 s->creation = time_uptime; 3726 s->expire = time_uptime; 3727 3728 if (sn != NULL) 3729 s->src_node = sn; 3730 if (nsn != NULL) { 3731 /* XXX We only modify one side for now. */ 3732 PF_ACPY(&nsn->raddr, &nk->addr[1], pd->af); 3733 s->nat_src_node = nsn; 3734 } 3735 if (pd->proto == IPPROTO_TCP) { 3736 if ((pd->flags & PFDESC_TCP_NORM) && pf_normalize_tcp_init(m, 3737 off, pd, th, &s->src, &s->dst)) { 3738 REASON_SET(&reason, PFRES_MEMORY); 3739 pf_src_tree_remove_state(s); 3740 STATE_DEC_COUNTERS(s); 3741 uma_zfree(V_pf_state_z, s); 3742 return (PF_DROP); 3743 } 3744 if ((pd->flags & PFDESC_TCP_NORM) && s->src.scrub && 3745 pf_normalize_tcp_stateful(m, off, pd, &reason, th, s, 3746 &s->src, &s->dst, rewrite)) { 3747 /* This really shouldn't happen!!! */ 3748 DPFPRINTF(PF_DEBUG_URGENT, 3749 ("pf_normalize_tcp_stateful failed on first pkt")); 3750 pf_normalize_tcp_cleanup(s); 3751 pf_src_tree_remove_state(s); 3752 STATE_DEC_COUNTERS(s); 3753 uma_zfree(V_pf_state_z, s); 3754 return (PF_DROP); 3755 } 3756 } 3757 s->direction = pd->dir; 3758 3759 /* 3760 * sk/nk could already been setup by pf_get_translation(). 3761 */ 3762 if (nr == NULL) { 3763 KASSERT((sk == NULL && nk == NULL), ("%s: nr %p sk %p, nk %p", 3764 __func__, nr, sk, nk)); 3765 sk = pf_state_key_setup(pd, pd->src, pd->dst, sport, dport); 3766 if (sk == NULL) 3767 goto csfailed; 3768 nk = sk; 3769 } else 3770 KASSERT((sk != NULL && nk != NULL), ("%s: nr %p sk %p, nk %p", 3771 __func__, nr, sk, nk)); 3772 3773 /* Swap sk/nk for PF_OUT. */ 3774 if (pf_state_insert(BOUND_IFACE(r, kif), 3775 (pd->dir == PF_IN) ? sk : nk, 3776 (pd->dir == PF_IN) ? nk : sk, s)) { 3777 if (pd->proto == IPPROTO_TCP) 3778 pf_normalize_tcp_cleanup(s); 3779 REASON_SET(&reason, PFRES_STATEINS); 3780 pf_src_tree_remove_state(s); 3781 STATE_DEC_COUNTERS(s); 3782 uma_zfree(V_pf_state_z, s); 3783 return (PF_DROP); 3784 } else 3785 *sm = s; 3786 3787 if (tag > 0) 3788 s->tag = tag; 3789 if (pd->proto == IPPROTO_TCP && (th->th_flags & (TH_SYN|TH_ACK)) == 3790 TH_SYN && r->keep_state == PF_STATE_SYNPROXY) { 3791 s->src.state = PF_TCPS_PROXY_SRC; 3792 /* undo NAT changes, if they have taken place */ 3793 if (nr != NULL) { 3794 struct pf_state_key *skt = s->key[PF_SK_WIRE]; 3795 if (pd->dir == PF_OUT) 3796 skt = s->key[PF_SK_STACK]; 3797 PF_ACPY(pd->src, &skt->addr[pd->sidx], pd->af); 3798 PF_ACPY(pd->dst, &skt->addr[pd->didx], pd->af); 3799 if (pd->sport) 3800 *pd->sport = skt->port[pd->sidx]; 3801 if (pd->dport) 3802 *pd->dport = skt->port[pd->didx]; 3803 if (pd->proto_sum) 3804 *pd->proto_sum = bproto_sum; 3805 if (pd->ip_sum) 3806 *pd->ip_sum = bip_sum; 3807 m_copyback(m, off, hdrlen, pd->hdr.any); 3808 } 3809 s->src.seqhi = htonl(arc4random()); 3810 /* Find mss option */ 3811 int rtid = M_GETFIB(m); 3812 mss = pf_get_mss(m, off, th->th_off, pd->af); 3813 mss = pf_calc_mss(pd->src, pd->af, rtid, mss); 3814 mss = pf_calc_mss(pd->dst, pd->af, rtid, mss); 3815 s->src.mss = mss; 3816 pf_send_tcp(NULL, r, pd->af, pd->dst, pd->src, th->th_dport, 3817 th->th_sport, s->src.seqhi, ntohl(th->th_seq) + 1, 3818 TH_SYN|TH_ACK, 0, s->src.mss, 0, 1, 0, NULL); 3819 REASON_SET(&reason, PFRES_SYNPROXY); 3820 return (PF_SYNPROXY_DROP); 3821 } 3822 3823 return (PF_PASS); 3824 3825 csfailed: 3826 if (sk != NULL) 3827 uma_zfree(V_pf_state_key_z, sk); 3828 if (nk != NULL) 3829 uma_zfree(V_pf_state_key_z, nk); 3830 3831 if (sn != NULL) { 3832 struct pf_srchash *sh; 3833 3834 sh = &V_pf_srchash[pf_hashsrc(&sn->addr, sn->af)]; 3835 PF_HASHROW_LOCK(sh); 3836 if (--sn->states == 0 && sn->expire == 0) { 3837 pf_unlink_src_node(sn); 3838 uma_zfree(V_pf_sources_z, sn); 3839 counter_u64_add( 3840 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3841 } 3842 PF_HASHROW_UNLOCK(sh); 3843 } 3844 3845 if (nsn != sn && nsn != NULL) { 3846 struct pf_srchash *sh; 3847 3848 sh = &V_pf_srchash[pf_hashsrc(&nsn->addr, nsn->af)]; 3849 PF_HASHROW_LOCK(sh); 3850 if (--nsn->states == 0 && nsn->expire == 0) { 3851 pf_unlink_src_node(nsn); 3852 uma_zfree(V_pf_sources_z, nsn); 3853 counter_u64_add( 3854 V_pf_status.scounters[SCNT_SRC_NODE_REMOVALS], 1); 3855 } 3856 PF_HASHROW_UNLOCK(sh); 3857 } 3858 3859 return (PF_DROP); 3860 } 3861 3862 static int 3863 pf_test_fragment(struct pf_rule **rm, int direction, struct pfi_kif *kif, 3864 struct mbuf *m, void *h, struct pf_pdesc *pd, struct pf_rule **am, 3865 struct pf_ruleset **rsm) 3866 { 3867 struct pf_rule *r, *a = NULL; 3868 struct pf_ruleset *ruleset = NULL; 3869 sa_family_t af = pd->af; 3870 u_short reason; 3871 int tag = -1; 3872 int asd = 0; 3873 int match = 0; 3874 struct pf_anchor_stackframe anchor_stack[PF_ANCHOR_STACKSIZE]; 3875 3876 PF_RULES_RASSERT(); 3877 3878 r = TAILQ_FIRST(pf_main_ruleset.rules[PF_RULESET_FILTER].active.ptr); 3879 while (r != NULL) { 3880 r->evaluations++; 3881 if (pfi_kif_match(r->kif, kif) == r->ifnot) 3882 r = r->skip[PF_SKIP_IFP].ptr; 3883 else if (r->direction && r->direction != direction) 3884 r = r->skip[PF_SKIP_DIR].ptr; 3885 else if (r->af && r->af != af) 3886 r = r->skip[PF_SKIP_AF].ptr; 3887 else if (r->proto && r->proto != pd->proto) 3888 r = r->skip[PF_SKIP_PROTO].ptr; 3889 else if (PF_MISMATCHAW(&r->src.addr, pd->src, af, 3890 r->src.neg, kif, M_GETFIB(m))) 3891 r = r->skip[PF_SKIP_SRC_ADDR].ptr; 3892 else if (PF_MISMATCHAW(&r->dst.addr, pd->dst, af, 3893 r->dst.neg, NULL, M_GETFIB(m))) 3894 r = r->skip[PF_SKIP_DST_ADDR].ptr; 3895 else if (r->tos && !(r->tos == pd->tos)) 3896 r = TAILQ_NEXT(r, entries); 3897 else if (r->os_fingerprint != PF_OSFP_ANY) 3898 r = TAILQ_NEXT(r, entries); 3899 else if (pd->proto == IPPROTO_UDP && 3900 (r->src.port_op || r->dst.port_op)) 3901 r = TAILQ_NEXT(r, entries); 3902 else if (pd->proto == IPPROTO_TCP && 3903 (r->src.port_op || r->dst.port_op || r->flagset)) 3904 r = TAILQ_NEXT(r, entries); 3905 else if ((pd->proto == IPPROTO_ICMP || 3906 pd->proto == IPPROTO_ICMPV6) && 3907 (r->type || r->code)) 3908 r = TAILQ_NEXT(r, entries); 3909 else if (r->prio && 3910 !pf_match_ieee8021q_pcp(r->prio, m)) 3911 r = TAILQ_NEXT(r, entries); 3912 else if (r->prob && r->prob <= 3913 (arc4random() % (UINT_MAX - 1) + 1)) 3914 r = TAILQ_NEXT(r, entries); 3915 else if (r->match_tag && !pf_match_tag(m, r, &tag, 3916 pd->pf_mtag ? pd->pf_mtag->tag : 0)) 3917 r = TAILQ_NEXT(r, entries); 3918 else { 3919 if (r->anchor == NULL) { 3920 match = 1; 3921 *rm = r; 3922 *am = a; 3923 *rsm = ruleset; 3924 if ((*rm)->quick) 3925 break; 3926 r = TAILQ_NEXT(r, entries); 3927 } else 3928 pf_step_into_anchor(anchor_stack, &asd, 3929 &ruleset, PF_RULESET_FILTER, &r, &a, 3930 &match); 3931 } 3932 if (r == NULL && pf_step_out_of_anchor(anchor_stack, &asd, 3933 &ruleset, PF_RULESET_FILTER, &r, &a, &match)) 3934 break; 3935 } 3936 r = *rm; 3937 a = *am; 3938 ruleset = *rsm; 3939 3940 REASON_SET(&reason, PFRES_MATCH); 3941 3942 if (r->log) 3943 PFLOG_PACKET(kif, m, af, direction, reason, r, a, ruleset, pd, 3944 1); 3945 3946 if (r->action != PF_PASS) 3947 return (PF_DROP); 3948 3949 if (tag > 0 && pf_tag_packet(m, pd, tag)) { 3950 REASON_SET(&reason, PFRES_MEMORY); 3951 return (PF_DROP); 3952 } 3953 3954 return (PF_PASS); 3955 } 3956 3957 static int 3958 pf_tcp_track_full(struct pf_state_peer *src, struct pf_state_peer *dst, 3959 struct pf_state **state, struct pfi_kif *kif, struct mbuf *m, int off, 3960 struct pf_pdesc *pd, u_short *reason, int *copyback) 3961 { 3962 struct tcphdr *th = pd->hdr.tcp; 3963 u_int16_t win = ntohs(th->th_win); 3964 u_int32_t ack, end, seq, orig_seq; 3965 u_int8_t sws, dws; 3966 int ackskew; 3967 3968 if (src->wscale && dst->wscale && !(th->th_flags & TH_SYN)) { 3969 sws = src->wscale & PF_WSCALE_MASK; 3970 dws = dst->wscale & PF_WSCALE_MASK; 3971 } else 3972 sws = dws = 0; 3973 3974 /* 3975 * Sequence tracking algorithm from Guido van Rooij's paper: 3976 * http://www.madison-gurkha.com/publications/tcp_filtering/ 3977 * tcp_filtering.ps 3978 */ 3979 3980 orig_seq = seq = ntohl(th->th_seq); 3981 if (src->seqlo == 0) { 3982 /* First packet from this end. Set its state */ 3983 3984 if ((pd->flags & PFDESC_TCP_NORM || dst->scrub) && 3985 src->scrub == NULL) { 3986 if (pf_normalize_tcp_init(m, off, pd, th, src, dst)) { 3987 REASON_SET(reason, PFRES_MEMORY); 3988 return (PF_DROP); 3989 } 3990 } 3991 3992 /* Deferred generation of sequence number modulator */ 3993 if (dst->seqdiff && !src->seqdiff) { 3994 /* use random iss for the TCP server */ 3995 while ((src->seqdiff = arc4random() - seq) == 0) 3996 ; 3997 ack = ntohl(th->th_ack) - dst->seqdiff; 3998 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 3999 src->seqdiff), 0); 4000 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4001 *copyback = 1; 4002 } else { 4003 ack = ntohl(th->th_ack); 4004 } 4005 4006 end = seq + pd->p_len; 4007 if (th->th_flags & TH_SYN) { 4008 end++; 4009 if (dst->wscale & PF_WSCALE_FLAG) { 4010 src->wscale = pf_get_wscale(m, off, th->th_off, 4011 pd->af); 4012 if (src->wscale & PF_WSCALE_FLAG) { 4013 /* Remove scale factor from initial 4014 * window */ 4015 sws = src->wscale & PF_WSCALE_MASK; 4016 win = ((u_int32_t)win + (1 << sws) - 1) 4017 >> sws; 4018 dws = dst->wscale & PF_WSCALE_MASK; 4019 } else { 4020 /* fixup other window */ 4021 dst->max_win <<= dst->wscale & 4022 PF_WSCALE_MASK; 4023 /* in case of a retrans SYN|ACK */ 4024 dst->wscale = 0; 4025 } 4026 } 4027 } 4028 if (th->th_flags & TH_FIN) 4029 end++; 4030 4031 src->seqlo = seq; 4032 if (src->state < TCPS_SYN_SENT) 4033 src->state = TCPS_SYN_SENT; 4034 4035 /* 4036 * May need to slide the window (seqhi may have been set by 4037 * the crappy stack check or if we picked up the connection 4038 * after establishment) 4039 */ 4040 if (src->seqhi == 1 || 4041 SEQ_GEQ(end + MAX(1, dst->max_win << dws), src->seqhi)) 4042 src->seqhi = end + MAX(1, dst->max_win << dws); 4043 if (win > src->max_win) 4044 src->max_win = win; 4045 4046 } else { 4047 ack = ntohl(th->th_ack) - dst->seqdiff; 4048 if (src->seqdiff) { 4049 /* Modulate sequence numbers */ 4050 pf_change_proto_a(m, &th->th_seq, &th->th_sum, htonl(seq + 4051 src->seqdiff), 0); 4052 pf_change_proto_a(m, &th->th_ack, &th->th_sum, htonl(ack), 0); 4053 *copyback = 1; 4054 } 4055 end = seq + pd->p_len; 4056 if (th->th_flags & TH_SYN) 4057 end++; 4058 if (th->th_flags & TH_FIN) 4059 end++; 4060 } 4061 4062 if ((th->th_flags & TH_ACK) == 0) { 4063 /* Let it pass through the ack skew check */ 4064 ack = dst->seqlo; 4065 } else if ((ack == 0 && 4066 (th->th_flags & (TH_ACK|TH_RST)) == (TH_ACK|TH_RST)) || 4067 /* broken tcp stacks do not set ack */ 4068 (dst->state < TCPS_SYN_SENT)) { 4069 /* 4070 * Many stacks (ours included) will set the ACK number in an 4071 * FIN|ACK if the SYN times out -- no sequence to ACK. 4072 */ 4073 ack = dst->seqlo; 4074 } 4075 4076 if (seq == end) { 4077 /* Ease sequencing restrictions on no data packets */ 4078 seq = src->seqlo; 4079 end = seq; 4080 } 4081 4082 ackskew = dst->seqlo - ack; 4083 4084 4085 /* 4086 * Need to demodulate the sequence numbers in any TCP SACK options 4087 * (Selective ACK). We could optionally validate the SACK values 4088 * against the current ACK window, either forwards or backwards, but 4089 * I'm not confident that SACK has been implemented properly 4090 * everywhere. It wouldn't surprise me if several stacks accidentally 4091 * SACK too far backwards of previously ACKed data. There really aren't 4092 * any security implications of bad SACKing unless the target stack 4093 * doesn't validate the option length correctly. Someone trying to 4094 * spoof into a TCP connection won't bother blindly sending SACK 4095 * options anyway. 4096 */ 4097 if (dst->seqdiff && (th->th_off << 2) > sizeof(struct tcphdr)) { 4098 if (pf_modulate_sack(m, off, pd, th, dst)) 4099 *copyback = 1; 4100 } 4101 4102 4103 #define MAXACKWINDOW (0xffff + 1500) /* 1500 is an arbitrary fudge factor */ 4104 if (SEQ_GEQ(src->seqhi, end) && 4105 /* Last octet inside other's window space */ 4106 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) && 4107 /* Retrans: not more than one window back */ 4108 (ackskew >= -MAXACKWINDOW) && 4109 /* Acking not more than one reassembled fragment backwards */ 4110 (ackskew <= (MAXACKWINDOW << sws)) && 4111 /* Acking not more than one window forward */ 4112 ((th->th_flags & TH_RST) == 0 || orig_seq == src->seqlo || 4113 (orig_seq == src->seqlo + 1) || (orig_seq + 1 == src->seqlo) || 4114 (pd->flags & PFDESC_IP_REAS) == 0)) { 4115 /* Require an exact/+1 sequence match on resets when possible */ 4116 4117 if (dst->scrub || src->scrub) { 4118 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4119 *state, src, dst, copyback)) 4120 return (PF_DROP); 4121 } 4122 4123 /* update max window */ 4124 if (src->max_win < win) 4125 src->max_win = win; 4126 /* synchronize sequencing */ 4127 if (SEQ_GT(end, src->seqlo)) 4128 src->seqlo = end; 4129 /* slide the window of what the other end can send */ 4130 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4131 dst->seqhi = ack + MAX((win << sws), 1); 4132 4133 4134 /* update states */ 4135 if (th->th_flags & TH_SYN) 4136 if (src->state < TCPS_SYN_SENT) 4137 src->state = TCPS_SYN_SENT; 4138 if (th->th_flags & TH_FIN) 4139 if (src->state < TCPS_CLOSING) 4140 src->state = TCPS_CLOSING; 4141 if (th->th_flags & TH_ACK) { 4142 if (dst->state == TCPS_SYN_SENT) { 4143 dst->state = TCPS_ESTABLISHED; 4144 if (src->state == TCPS_ESTABLISHED && 4145 (*state)->src_node != NULL && 4146 pf_src_connlimit(state)) { 4147 REASON_SET(reason, PFRES_SRCLIMIT); 4148 return (PF_DROP); 4149 } 4150 } else if (dst->state == TCPS_CLOSING) 4151 dst->state = TCPS_FIN_WAIT_2; 4152 } 4153 if (th->th_flags & TH_RST) 4154 src->state = dst->state = TCPS_TIME_WAIT; 4155 4156 /* update expire time */ 4157 (*state)->expire = time_uptime; 4158 if (src->state >= TCPS_FIN_WAIT_2 && 4159 dst->state >= TCPS_FIN_WAIT_2) 4160 (*state)->timeout = PFTM_TCP_CLOSED; 4161 else if (src->state >= TCPS_CLOSING && 4162 dst->state >= TCPS_CLOSING) 4163 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4164 else if (src->state < TCPS_ESTABLISHED || 4165 dst->state < TCPS_ESTABLISHED) 4166 (*state)->timeout = PFTM_TCP_OPENING; 4167 else if (src->state >= TCPS_CLOSING || 4168 dst->state >= TCPS_CLOSING) 4169 (*state)->timeout = PFTM_TCP_CLOSING; 4170 else 4171 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4172 4173 /* Fall through to PASS packet */ 4174 4175 } else if ((dst->state < TCPS_SYN_SENT || 4176 dst->state >= TCPS_FIN_WAIT_2 || 4177 src->state >= TCPS_FIN_WAIT_2) && 4178 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) && 4179 /* Within a window forward of the originating packet */ 4180 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW)) { 4181 /* Within a window backward of the originating packet */ 4182 4183 /* 4184 * This currently handles three situations: 4185 * 1) Stupid stacks will shotgun SYNs before their peer 4186 * replies. 4187 * 2) When PF catches an already established stream (the 4188 * firewall rebooted, the state table was flushed, routes 4189 * changed...) 4190 * 3) Packets get funky immediately after the connection 4191 * closes (this should catch Solaris spurious ACK|FINs 4192 * that web servers like to spew after a close) 4193 * 4194 * This must be a little more careful than the above code 4195 * since packet floods will also be caught here. We don't 4196 * update the TTL here to mitigate the damage of a packet 4197 * flood and so the same code can handle awkward establishment 4198 * and a loosened connection close. 4199 * In the establishment case, a correct peer response will 4200 * validate the connection, go through the normal state code 4201 * and keep updating the state TTL. 4202 */ 4203 4204 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4205 printf("pf: loose state match: "); 4206 pf_print_state(*state); 4207 pf_print_flags(th->th_flags); 4208 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4209 "pkts=%llu:%llu dir=%s,%s\n", seq, orig_seq, ack, 4210 pd->p_len, ackskew, (unsigned long long)(*state)->packets[0], 4211 (unsigned long long)(*state)->packets[1], 4212 pd->dir == PF_IN ? "in" : "out", 4213 pd->dir == (*state)->direction ? "fwd" : "rev"); 4214 } 4215 4216 if (dst->scrub || src->scrub) { 4217 if (pf_normalize_tcp_stateful(m, off, pd, reason, th, 4218 *state, src, dst, copyback)) 4219 return (PF_DROP); 4220 } 4221 4222 /* update max window */ 4223 if (src->max_win < win) 4224 src->max_win = win; 4225 /* synchronize sequencing */ 4226 if (SEQ_GT(end, src->seqlo)) 4227 src->seqlo = end; 4228 /* slide the window of what the other end can send */ 4229 if (SEQ_GEQ(ack + (win << sws), dst->seqhi)) 4230 dst->seqhi = ack + MAX((win << sws), 1); 4231 4232 /* 4233 * Cannot set dst->seqhi here since this could be a shotgunned 4234 * SYN and not an already established connection. 4235 */ 4236 4237 if (th->th_flags & TH_FIN) 4238 if (src->state < TCPS_CLOSING) 4239 src->state = TCPS_CLOSING; 4240 if (th->th_flags & TH_RST) 4241 src->state = dst->state = TCPS_TIME_WAIT; 4242 4243 /* Fall through to PASS packet */ 4244 4245 } else { 4246 if ((*state)->dst.state == TCPS_SYN_SENT && 4247 (*state)->src.state == TCPS_SYN_SENT) { 4248 /* Send RST for state mismatches during handshake */ 4249 if (!(th->th_flags & TH_RST)) 4250 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4251 pd->dst, pd->src, th->th_dport, 4252 th->th_sport, ntohl(th->th_ack), 0, 4253 TH_RST, 0, 0, 4254 (*state)->rule.ptr->return_ttl, 1, 0, 4255 kif->pfik_ifp); 4256 src->seqlo = 0; 4257 src->seqhi = 1; 4258 src->max_win = 1; 4259 } else if (V_pf_status.debug >= PF_DEBUG_MISC) { 4260 printf("pf: BAD state: "); 4261 pf_print_state(*state); 4262 pf_print_flags(th->th_flags); 4263 printf(" seq=%u (%u) ack=%u len=%u ackskew=%d " 4264 "pkts=%llu:%llu dir=%s,%s\n", 4265 seq, orig_seq, ack, pd->p_len, ackskew, 4266 (unsigned long long)(*state)->packets[0], 4267 (unsigned long long)(*state)->packets[1], 4268 pd->dir == PF_IN ? "in" : "out", 4269 pd->dir == (*state)->direction ? "fwd" : "rev"); 4270 printf("pf: State failure on: %c %c %c %c | %c %c\n", 4271 SEQ_GEQ(src->seqhi, end) ? ' ' : '1', 4272 SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)) ? 4273 ' ': '2', 4274 (ackskew >= -MAXACKWINDOW) ? ' ' : '3', 4275 (ackskew <= (MAXACKWINDOW << sws)) ? ' ' : '4', 4276 SEQ_GEQ(src->seqhi + MAXACKWINDOW, end) ?' ' :'5', 4277 SEQ_GEQ(seq, src->seqlo - MAXACKWINDOW) ?' ' :'6'); 4278 } 4279 REASON_SET(reason, PFRES_BADSTATE); 4280 return (PF_DROP); 4281 } 4282 4283 return (PF_PASS); 4284 } 4285 4286 static int 4287 pf_tcp_track_sloppy(struct pf_state_peer *src, struct pf_state_peer *dst, 4288 struct pf_state **state, struct pf_pdesc *pd, u_short *reason) 4289 { 4290 struct tcphdr *th = pd->hdr.tcp; 4291 4292 if (th->th_flags & TH_SYN) 4293 if (src->state < TCPS_SYN_SENT) 4294 src->state = TCPS_SYN_SENT; 4295 if (th->th_flags & TH_FIN) 4296 if (src->state < TCPS_CLOSING) 4297 src->state = TCPS_CLOSING; 4298 if (th->th_flags & TH_ACK) { 4299 if (dst->state == TCPS_SYN_SENT) { 4300 dst->state = TCPS_ESTABLISHED; 4301 if (src->state == TCPS_ESTABLISHED && 4302 (*state)->src_node != NULL && 4303 pf_src_connlimit(state)) { 4304 REASON_SET(reason, PFRES_SRCLIMIT); 4305 return (PF_DROP); 4306 } 4307 } else if (dst->state == TCPS_CLOSING) { 4308 dst->state = TCPS_FIN_WAIT_2; 4309 } else if (src->state == TCPS_SYN_SENT && 4310 dst->state < TCPS_SYN_SENT) { 4311 /* 4312 * Handle a special sloppy case where we only see one 4313 * half of the connection. If there is a ACK after 4314 * the initial SYN without ever seeing a packet from 4315 * the destination, set the connection to established. 4316 */ 4317 dst->state = src->state = TCPS_ESTABLISHED; 4318 if ((*state)->src_node != NULL && 4319 pf_src_connlimit(state)) { 4320 REASON_SET(reason, PFRES_SRCLIMIT); 4321 return (PF_DROP); 4322 } 4323 } else if (src->state == TCPS_CLOSING && 4324 dst->state == TCPS_ESTABLISHED && 4325 dst->seqlo == 0) { 4326 /* 4327 * Handle the closing of half connections where we 4328 * don't see the full bidirectional FIN/ACK+ACK 4329 * handshake. 4330 */ 4331 dst->state = TCPS_CLOSING; 4332 } 4333 } 4334 if (th->th_flags & TH_RST) 4335 src->state = dst->state = TCPS_TIME_WAIT; 4336 4337 /* update expire time */ 4338 (*state)->expire = time_uptime; 4339 if (src->state >= TCPS_FIN_WAIT_2 && 4340 dst->state >= TCPS_FIN_WAIT_2) 4341 (*state)->timeout = PFTM_TCP_CLOSED; 4342 else if (src->state >= TCPS_CLOSING && 4343 dst->state >= TCPS_CLOSING) 4344 (*state)->timeout = PFTM_TCP_FIN_WAIT; 4345 else if (src->state < TCPS_ESTABLISHED || 4346 dst->state < TCPS_ESTABLISHED) 4347 (*state)->timeout = PFTM_TCP_OPENING; 4348 else if (src->state >= TCPS_CLOSING || 4349 dst->state >= TCPS_CLOSING) 4350 (*state)->timeout = PFTM_TCP_CLOSING; 4351 else 4352 (*state)->timeout = PFTM_TCP_ESTABLISHED; 4353 4354 return (PF_PASS); 4355 } 4356 4357 static int 4358 pf_test_state_tcp(struct pf_state **state, int direction, struct pfi_kif *kif, 4359 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, 4360 u_short *reason) 4361 { 4362 struct pf_state_key_cmp key; 4363 struct tcphdr *th = pd->hdr.tcp; 4364 int copyback = 0; 4365 struct pf_state_peer *src, *dst; 4366 struct pf_state_key *sk; 4367 4368 bzero(&key, sizeof(key)); 4369 key.af = pd->af; 4370 key.proto = IPPROTO_TCP; 4371 if (direction == PF_IN) { /* wire side, straight */ 4372 PF_ACPY(&key.addr[0], pd->src, key.af); 4373 PF_ACPY(&key.addr[1], pd->dst, key.af); 4374 key.port[0] = th->th_sport; 4375 key.port[1] = th->th_dport; 4376 } else { /* stack side, reverse */ 4377 PF_ACPY(&key.addr[1], pd->src, key.af); 4378 PF_ACPY(&key.addr[0], pd->dst, key.af); 4379 key.port[1] = th->th_sport; 4380 key.port[0] = th->th_dport; 4381 } 4382 4383 STATE_LOOKUP(kif, &key, direction, *state, pd); 4384 4385 if (direction == (*state)->direction) { 4386 src = &(*state)->src; 4387 dst = &(*state)->dst; 4388 } else { 4389 src = &(*state)->dst; 4390 dst = &(*state)->src; 4391 } 4392 4393 sk = (*state)->key[pd->didx]; 4394 4395 if ((*state)->src.state == PF_TCPS_PROXY_SRC) { 4396 if (direction != (*state)->direction) { 4397 REASON_SET(reason, PFRES_SYNPROXY); 4398 return (PF_SYNPROXY_DROP); 4399 } 4400 if (th->th_flags & TH_SYN) { 4401 if (ntohl(th->th_seq) != (*state)->src.seqlo) { 4402 REASON_SET(reason, PFRES_SYNPROXY); 4403 return (PF_DROP); 4404 } 4405 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4406 pd->src, th->th_dport, th->th_sport, 4407 (*state)->src.seqhi, ntohl(th->th_seq) + 1, 4408 TH_SYN|TH_ACK, 0, (*state)->src.mss, 0, 1, 0, NULL); 4409 REASON_SET(reason, PFRES_SYNPROXY); 4410 return (PF_SYNPROXY_DROP); 4411 } else if ((th->th_flags & (TH_ACK|TH_RST|TH_FIN)) != TH_ACK || 4412 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4413 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4414 REASON_SET(reason, PFRES_SYNPROXY); 4415 return (PF_DROP); 4416 } else if ((*state)->src_node != NULL && 4417 pf_src_connlimit(state)) { 4418 REASON_SET(reason, PFRES_SRCLIMIT); 4419 return (PF_DROP); 4420 } else 4421 (*state)->src.state = PF_TCPS_PROXY_DST; 4422 } 4423 if ((*state)->src.state == PF_TCPS_PROXY_DST) { 4424 if (direction == (*state)->direction) { 4425 if (((th->th_flags & (TH_SYN|TH_ACK)) != TH_ACK) || 4426 (ntohl(th->th_ack) != (*state)->src.seqhi + 1) || 4427 (ntohl(th->th_seq) != (*state)->src.seqlo + 1)) { 4428 REASON_SET(reason, PFRES_SYNPROXY); 4429 return (PF_DROP); 4430 } 4431 (*state)->src.max_win = MAX(ntohs(th->th_win), 1); 4432 if ((*state)->dst.seqhi == 1) 4433 (*state)->dst.seqhi = htonl(arc4random()); 4434 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4435 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4436 sk->port[pd->sidx], sk->port[pd->didx], 4437 (*state)->dst.seqhi, 0, TH_SYN, 0, 4438 (*state)->src.mss, 0, 0, (*state)->tag, NULL); 4439 REASON_SET(reason, PFRES_SYNPROXY); 4440 return (PF_SYNPROXY_DROP); 4441 } else if (((th->th_flags & (TH_SYN|TH_ACK)) != 4442 (TH_SYN|TH_ACK)) || 4443 (ntohl(th->th_ack) != (*state)->dst.seqhi + 1)) { 4444 REASON_SET(reason, PFRES_SYNPROXY); 4445 return (PF_DROP); 4446 } else { 4447 (*state)->dst.max_win = MAX(ntohs(th->th_win), 1); 4448 (*state)->dst.seqlo = ntohl(th->th_seq); 4449 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, pd->dst, 4450 pd->src, th->th_dport, th->th_sport, 4451 ntohl(th->th_ack), ntohl(th->th_seq) + 1, 4452 TH_ACK, (*state)->src.max_win, 0, 0, 0, 4453 (*state)->tag, NULL); 4454 pf_send_tcp(NULL, (*state)->rule.ptr, pd->af, 4455 &sk->addr[pd->sidx], &sk->addr[pd->didx], 4456 sk->port[pd->sidx], sk->port[pd->didx], 4457 (*state)->src.seqhi + 1, (*state)->src.seqlo + 1, 4458 TH_ACK, (*state)->dst.max_win, 0, 0, 1, 0, NULL); 4459 (*state)->src.seqdiff = (*state)->dst.seqhi - 4460 (*state)->src.seqlo; 4461 (*state)->dst.seqdiff = (*state)->src.seqhi - 4462 (*state)->dst.seqlo; 4463 (*state)->src.seqhi = (*state)->src.seqlo + 4464 (*state)->dst.max_win; 4465 (*state)->dst.seqhi = (*state)->dst.seqlo + 4466 (*state)->src.max_win; 4467 (*state)->src.wscale = (*state)->dst.wscale = 0; 4468 (*state)->src.state = (*state)->dst.state = 4469 TCPS_ESTABLISHED; 4470 REASON_SET(reason, PFRES_SYNPROXY); 4471 return (PF_SYNPROXY_DROP); 4472 } 4473 } 4474 4475 if (((th->th_flags & (TH_SYN|TH_ACK)) == TH_SYN) && 4476 dst->state >= TCPS_FIN_WAIT_2 && 4477 src->state >= TCPS_FIN_WAIT_2) { 4478 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4479 printf("pf: state reuse "); 4480 pf_print_state(*state); 4481 pf_print_flags(th->th_flags); 4482 printf("\n"); 4483 } 4484 /* XXX make sure it's the same direction ?? */ 4485 (*state)->src.state = (*state)->dst.state = TCPS_CLOSED; 4486 pf_unlink_state(*state, PF_ENTER_LOCKED); 4487 *state = NULL; 4488 return (PF_DROP); 4489 } 4490 4491 if ((*state)->state_flags & PFSTATE_SLOPPY) { 4492 if (pf_tcp_track_sloppy(src, dst, state, pd, reason) == PF_DROP) 4493 return (PF_DROP); 4494 } else { 4495 if (pf_tcp_track_full(src, dst, state, kif, m, off, pd, reason, 4496 ©back) == PF_DROP) 4497 return (PF_DROP); 4498 } 4499 4500 /* translate source/destination address, if necessary */ 4501 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4502 struct pf_state_key *nk = (*state)->key[pd->didx]; 4503 4504 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4505 nk->port[pd->sidx] != th->th_sport) 4506 pf_change_ap(m, pd->src, &th->th_sport, 4507 pd->ip_sum, &th->th_sum, &nk->addr[pd->sidx], 4508 nk->port[pd->sidx], 0, pd->af); 4509 4510 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4511 nk->port[pd->didx] != th->th_dport) 4512 pf_change_ap(m, pd->dst, &th->th_dport, 4513 pd->ip_sum, &th->th_sum, &nk->addr[pd->didx], 4514 nk->port[pd->didx], 0, pd->af); 4515 copyback = 1; 4516 } 4517 4518 /* Copyback sequence modulation or stateful scrub changes if needed */ 4519 if (copyback) 4520 m_copyback(m, off, sizeof(*th), (caddr_t)th); 4521 4522 return (PF_PASS); 4523 } 4524 4525 static int 4526 pf_test_state_udp(struct pf_state **state, int direction, struct pfi_kif *kif, 4527 struct mbuf *m, int off, void *h, struct pf_pdesc *pd) 4528 { 4529 struct pf_state_peer *src, *dst; 4530 struct pf_state_key_cmp key; 4531 struct udphdr *uh = pd->hdr.udp; 4532 4533 bzero(&key, sizeof(key)); 4534 key.af = pd->af; 4535 key.proto = IPPROTO_UDP; 4536 if (direction == PF_IN) { /* wire side, straight */ 4537 PF_ACPY(&key.addr[0], pd->src, key.af); 4538 PF_ACPY(&key.addr[1], pd->dst, key.af); 4539 key.port[0] = uh->uh_sport; 4540 key.port[1] = uh->uh_dport; 4541 } else { /* stack side, reverse */ 4542 PF_ACPY(&key.addr[1], pd->src, key.af); 4543 PF_ACPY(&key.addr[0], pd->dst, key.af); 4544 key.port[1] = uh->uh_sport; 4545 key.port[0] = uh->uh_dport; 4546 } 4547 4548 STATE_LOOKUP(kif, &key, direction, *state, pd); 4549 4550 if (direction == (*state)->direction) { 4551 src = &(*state)->src; 4552 dst = &(*state)->dst; 4553 } else { 4554 src = &(*state)->dst; 4555 dst = &(*state)->src; 4556 } 4557 4558 /* update states */ 4559 if (src->state < PFUDPS_SINGLE) 4560 src->state = PFUDPS_SINGLE; 4561 if (dst->state == PFUDPS_SINGLE) 4562 dst->state = PFUDPS_MULTIPLE; 4563 4564 /* update expire time */ 4565 (*state)->expire = time_uptime; 4566 if (src->state == PFUDPS_MULTIPLE && dst->state == PFUDPS_MULTIPLE) 4567 (*state)->timeout = PFTM_UDP_MULTIPLE; 4568 else 4569 (*state)->timeout = PFTM_UDP_SINGLE; 4570 4571 /* translate source/destination address, if necessary */ 4572 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4573 struct pf_state_key *nk = (*state)->key[pd->didx]; 4574 4575 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], pd->af) || 4576 nk->port[pd->sidx] != uh->uh_sport) 4577 pf_change_ap(m, pd->src, &uh->uh_sport, pd->ip_sum, 4578 &uh->uh_sum, &nk->addr[pd->sidx], 4579 nk->port[pd->sidx], 1, pd->af); 4580 4581 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], pd->af) || 4582 nk->port[pd->didx] != uh->uh_dport) 4583 pf_change_ap(m, pd->dst, &uh->uh_dport, pd->ip_sum, 4584 &uh->uh_sum, &nk->addr[pd->didx], 4585 nk->port[pd->didx], 1, pd->af); 4586 m_copyback(m, off, sizeof(*uh), (caddr_t)uh); 4587 } 4588 4589 return (PF_PASS); 4590 } 4591 4592 static int 4593 pf_test_state_icmp(struct pf_state **state, int direction, struct pfi_kif *kif, 4594 struct mbuf *m, int off, void *h, struct pf_pdesc *pd, u_short *reason) 4595 { 4596 struct pf_addr *saddr = pd->src, *daddr = pd->dst; 4597 u_int16_t icmpid = 0, *icmpsum; 4598 u_int8_t icmptype, icmpcode; 4599 int state_icmp = 0; 4600 struct pf_state_key_cmp key; 4601 4602 bzero(&key, sizeof(key)); 4603 switch (pd->proto) { 4604 #ifdef INET 4605 case IPPROTO_ICMP: 4606 icmptype = pd->hdr.icmp->icmp_type; 4607 icmpcode = pd->hdr.icmp->icmp_code; 4608 icmpid = pd->hdr.icmp->icmp_id; 4609 icmpsum = &pd->hdr.icmp->icmp_cksum; 4610 4611 if (icmptype == ICMP_UNREACH || 4612 icmptype == ICMP_SOURCEQUENCH || 4613 icmptype == ICMP_REDIRECT || 4614 icmptype == ICMP_TIMXCEED || 4615 icmptype == ICMP_PARAMPROB) 4616 state_icmp++; 4617 break; 4618 #endif /* INET */ 4619 #ifdef INET6 4620 case IPPROTO_ICMPV6: 4621 icmptype = pd->hdr.icmp6->icmp6_type; 4622 icmpcode = pd->hdr.icmp6->icmp6_code; 4623 icmpid = pd->hdr.icmp6->icmp6_id; 4624 icmpsum = &pd->hdr.icmp6->icmp6_cksum; 4625 4626 if (icmptype == ICMP6_DST_UNREACH || 4627 icmptype == ICMP6_PACKET_TOO_BIG || 4628 icmptype == ICMP6_TIME_EXCEEDED || 4629 icmptype == ICMP6_PARAM_PROB) 4630 state_icmp++; 4631 break; 4632 #endif /* INET6 */ 4633 } 4634 4635 if (!state_icmp) { 4636 4637 /* 4638 * ICMP query/reply message not related to a TCP/UDP packet. 4639 * Search for an ICMP state. 4640 */ 4641 key.af = pd->af; 4642 key.proto = pd->proto; 4643 key.port[0] = key.port[1] = icmpid; 4644 if (direction == PF_IN) { /* wire side, straight */ 4645 PF_ACPY(&key.addr[0], pd->src, key.af); 4646 PF_ACPY(&key.addr[1], pd->dst, key.af); 4647 } else { /* stack side, reverse */ 4648 PF_ACPY(&key.addr[1], pd->src, key.af); 4649 PF_ACPY(&key.addr[0], pd->dst, key.af); 4650 } 4651 4652 STATE_LOOKUP(kif, &key, direction, *state, pd); 4653 4654 (*state)->expire = time_uptime; 4655 (*state)->timeout = PFTM_ICMP_ERROR_REPLY; 4656 4657 /* translate source/destination address, if necessary */ 4658 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 4659 struct pf_state_key *nk = (*state)->key[pd->didx]; 4660 4661 switch (pd->af) { 4662 #ifdef INET 4663 case AF_INET: 4664 if (PF_ANEQ(pd->src, 4665 &nk->addr[pd->sidx], AF_INET)) 4666 pf_change_a(&saddr->v4.s_addr, 4667 pd->ip_sum, 4668 nk->addr[pd->sidx].v4.s_addr, 0); 4669 4670 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], 4671 AF_INET)) 4672 pf_change_a(&daddr->v4.s_addr, 4673 pd->ip_sum, 4674 nk->addr[pd->didx].v4.s_addr, 0); 4675 4676 if (nk->port[0] != 4677 pd->hdr.icmp->icmp_id) { 4678 pd->hdr.icmp->icmp_cksum = 4679 pf_cksum_fixup( 4680 pd->hdr.icmp->icmp_cksum, icmpid, 4681 nk->port[pd->sidx], 0); 4682 pd->hdr.icmp->icmp_id = 4683 nk->port[pd->sidx]; 4684 } 4685 4686 m_copyback(m, off, ICMP_MINLEN, 4687 (caddr_t )pd->hdr.icmp); 4688 break; 4689 #endif /* INET */ 4690 #ifdef INET6 4691 case AF_INET6: 4692 if (PF_ANEQ(pd->src, 4693 &nk->addr[pd->sidx], AF_INET6)) 4694 pf_change_a6(saddr, 4695 &pd->hdr.icmp6->icmp6_cksum, 4696 &nk->addr[pd->sidx], 0); 4697 4698 if (PF_ANEQ(pd->dst, 4699 &nk->addr[pd->didx], AF_INET6)) 4700 pf_change_a6(daddr, 4701 &pd->hdr.icmp6->icmp6_cksum, 4702 &nk->addr[pd->didx], 0); 4703 4704 m_copyback(m, off, sizeof(struct icmp6_hdr), 4705 (caddr_t )pd->hdr.icmp6); 4706 break; 4707 #endif /* INET6 */ 4708 } 4709 } 4710 return (PF_PASS); 4711 4712 } else { 4713 /* 4714 * ICMP error message in response to a TCP/UDP packet. 4715 * Extract the inner TCP/UDP header and search for that state. 4716 */ 4717 4718 struct pf_pdesc pd2; 4719 bzero(&pd2, sizeof pd2); 4720 #ifdef INET 4721 struct ip h2; 4722 #endif /* INET */ 4723 #ifdef INET6 4724 struct ip6_hdr h2_6; 4725 int terminal = 0; 4726 #endif /* INET6 */ 4727 int ipoff2 = 0; 4728 int off2 = 0; 4729 4730 pd2.af = pd->af; 4731 /* Payload packet is from the opposite direction. */ 4732 pd2.sidx = (direction == PF_IN) ? 1 : 0; 4733 pd2.didx = (direction == PF_IN) ? 0 : 1; 4734 switch (pd->af) { 4735 #ifdef INET 4736 case AF_INET: 4737 /* offset of h2 in mbuf chain */ 4738 ipoff2 = off + ICMP_MINLEN; 4739 4740 if (!pf_pull_hdr(m, ipoff2, &h2, sizeof(h2), 4741 NULL, reason, pd2.af)) { 4742 DPFPRINTF(PF_DEBUG_MISC, 4743 ("pf: ICMP error message too short " 4744 "(ip)\n")); 4745 return (PF_DROP); 4746 } 4747 /* 4748 * ICMP error messages don't refer to non-first 4749 * fragments 4750 */ 4751 if (h2.ip_off & htons(IP_OFFMASK)) { 4752 REASON_SET(reason, PFRES_FRAG); 4753 return (PF_DROP); 4754 } 4755 4756 /* offset of protocol header that follows h2 */ 4757 off2 = ipoff2 + (h2.ip_hl << 2); 4758 4759 pd2.proto = h2.ip_p; 4760 pd2.src = (struct pf_addr *)&h2.ip_src; 4761 pd2.dst = (struct pf_addr *)&h2.ip_dst; 4762 pd2.ip_sum = &h2.ip_sum; 4763 break; 4764 #endif /* INET */ 4765 #ifdef INET6 4766 case AF_INET6: 4767 ipoff2 = off + sizeof(struct icmp6_hdr); 4768 4769 if (!pf_pull_hdr(m, ipoff2, &h2_6, sizeof(h2_6), 4770 NULL, reason, pd2.af)) { 4771 DPFPRINTF(PF_DEBUG_MISC, 4772 ("pf: ICMP error message too short " 4773 "(ip6)\n")); 4774 return (PF_DROP); 4775 } 4776 pd2.proto = h2_6.ip6_nxt; 4777 pd2.src = (struct pf_addr *)&h2_6.ip6_src; 4778 pd2.dst = (struct pf_addr *)&h2_6.ip6_dst; 4779 pd2.ip_sum = NULL; 4780 off2 = ipoff2 + sizeof(h2_6); 4781 do { 4782 switch (pd2.proto) { 4783 case IPPROTO_FRAGMENT: 4784 /* 4785 * ICMPv6 error messages for 4786 * non-first fragments 4787 */ 4788 REASON_SET(reason, PFRES_FRAG); 4789 return (PF_DROP); 4790 case IPPROTO_AH: 4791 case IPPROTO_HOPOPTS: 4792 case IPPROTO_ROUTING: 4793 case IPPROTO_DSTOPTS: { 4794 /* get next header and header length */ 4795 struct ip6_ext opt6; 4796 4797 if (!pf_pull_hdr(m, off2, &opt6, 4798 sizeof(opt6), NULL, reason, 4799 pd2.af)) { 4800 DPFPRINTF(PF_DEBUG_MISC, 4801 ("pf: ICMPv6 short opt\n")); 4802 return (PF_DROP); 4803 } 4804 if (pd2.proto == IPPROTO_AH) 4805 off2 += (opt6.ip6e_len + 2) * 4; 4806 else 4807 off2 += (opt6.ip6e_len + 1) * 8; 4808 pd2.proto = opt6.ip6e_nxt; 4809 /* goto the next header */ 4810 break; 4811 } 4812 default: 4813 terminal++; 4814 break; 4815 } 4816 } while (!terminal); 4817 break; 4818 #endif /* INET6 */ 4819 } 4820 4821 if (PF_ANEQ(pd->dst, pd2.src, pd->af)) { 4822 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4823 printf("pf: BAD ICMP %d:%d outer dst: ", 4824 icmptype, icmpcode); 4825 pf_print_host(pd->src, 0, pd->af); 4826 printf(" -> "); 4827 pf_print_host(pd->dst, 0, pd->af); 4828 printf(" inner src: "); 4829 pf_print_host(pd2.src, 0, pd2.af); 4830 printf(" -> "); 4831 pf_print_host(pd2.dst, 0, pd2.af); 4832 printf("\n"); 4833 } 4834 REASON_SET(reason, PFRES_BADSTATE); 4835 return (PF_DROP); 4836 } 4837 4838 switch (pd2.proto) { 4839 case IPPROTO_TCP: { 4840 struct tcphdr th; 4841 u_int32_t seq; 4842 struct pf_state_peer *src, *dst; 4843 u_int8_t dws; 4844 int copyback = 0; 4845 4846 /* 4847 * Only the first 8 bytes of the TCP header can be 4848 * expected. Don't access any TCP header fields after 4849 * th_seq, an ackskew test is not possible. 4850 */ 4851 if (!pf_pull_hdr(m, off2, &th, 8, NULL, reason, 4852 pd2.af)) { 4853 DPFPRINTF(PF_DEBUG_MISC, 4854 ("pf: ICMP error message too short " 4855 "(tcp)\n")); 4856 return (PF_DROP); 4857 } 4858 4859 key.af = pd2.af; 4860 key.proto = IPPROTO_TCP; 4861 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4862 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4863 key.port[pd2.sidx] = th.th_sport; 4864 key.port[pd2.didx] = th.th_dport; 4865 4866 STATE_LOOKUP(kif, &key, direction, *state, pd); 4867 4868 if (direction == (*state)->direction) { 4869 src = &(*state)->dst; 4870 dst = &(*state)->src; 4871 } else { 4872 src = &(*state)->src; 4873 dst = &(*state)->dst; 4874 } 4875 4876 if (src->wscale && dst->wscale) 4877 dws = dst->wscale & PF_WSCALE_MASK; 4878 else 4879 dws = 0; 4880 4881 /* Demodulate sequence number */ 4882 seq = ntohl(th.th_seq) - src->seqdiff; 4883 if (src->seqdiff) { 4884 pf_change_a(&th.th_seq, icmpsum, 4885 htonl(seq), 0); 4886 copyback = 1; 4887 } 4888 4889 if (!((*state)->state_flags & PFSTATE_SLOPPY) && 4890 (!SEQ_GEQ(src->seqhi, seq) || 4891 !SEQ_GEQ(seq, src->seqlo - (dst->max_win << dws)))) { 4892 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4893 printf("pf: BAD ICMP %d:%d ", 4894 icmptype, icmpcode); 4895 pf_print_host(pd->src, 0, pd->af); 4896 printf(" -> "); 4897 pf_print_host(pd->dst, 0, pd->af); 4898 printf(" state: "); 4899 pf_print_state(*state); 4900 printf(" seq=%u\n", seq); 4901 } 4902 REASON_SET(reason, PFRES_BADSTATE); 4903 return (PF_DROP); 4904 } else { 4905 if (V_pf_status.debug >= PF_DEBUG_MISC) { 4906 printf("pf: OK ICMP %d:%d ", 4907 icmptype, icmpcode); 4908 pf_print_host(pd->src, 0, pd->af); 4909 printf(" -> "); 4910 pf_print_host(pd->dst, 0, pd->af); 4911 printf(" state: "); 4912 pf_print_state(*state); 4913 printf(" seq=%u\n", seq); 4914 } 4915 } 4916 4917 /* translate source/destination address, if necessary */ 4918 if ((*state)->key[PF_SK_WIRE] != 4919 (*state)->key[PF_SK_STACK]) { 4920 struct pf_state_key *nk = 4921 (*state)->key[pd->didx]; 4922 4923 if (PF_ANEQ(pd2.src, 4924 &nk->addr[pd2.sidx], pd2.af) || 4925 nk->port[pd2.sidx] != th.th_sport) 4926 pf_change_icmp(pd2.src, &th.th_sport, 4927 daddr, &nk->addr[pd2.sidx], 4928 nk->port[pd2.sidx], NULL, 4929 pd2.ip_sum, icmpsum, 4930 pd->ip_sum, 0, pd2.af); 4931 4932 if (PF_ANEQ(pd2.dst, 4933 &nk->addr[pd2.didx], pd2.af) || 4934 nk->port[pd2.didx] != th.th_dport) 4935 pf_change_icmp(pd2.dst, &th.th_dport, 4936 saddr, &nk->addr[pd2.didx], 4937 nk->port[pd2.didx], NULL, 4938 pd2.ip_sum, icmpsum, 4939 pd->ip_sum, 0, pd2.af); 4940 copyback = 1; 4941 } 4942 4943 if (copyback) { 4944 switch (pd2.af) { 4945 #ifdef INET 4946 case AF_INET: 4947 m_copyback(m, off, ICMP_MINLEN, 4948 (caddr_t )pd->hdr.icmp); 4949 m_copyback(m, ipoff2, sizeof(h2), 4950 (caddr_t )&h2); 4951 break; 4952 #endif /* INET */ 4953 #ifdef INET6 4954 case AF_INET6: 4955 m_copyback(m, off, 4956 sizeof(struct icmp6_hdr), 4957 (caddr_t )pd->hdr.icmp6); 4958 m_copyback(m, ipoff2, sizeof(h2_6), 4959 (caddr_t )&h2_6); 4960 break; 4961 #endif /* INET6 */ 4962 } 4963 m_copyback(m, off2, 8, (caddr_t)&th); 4964 } 4965 4966 return (PF_PASS); 4967 break; 4968 } 4969 case IPPROTO_UDP: { 4970 struct udphdr uh; 4971 4972 if (!pf_pull_hdr(m, off2, &uh, sizeof(uh), 4973 NULL, reason, pd2.af)) { 4974 DPFPRINTF(PF_DEBUG_MISC, 4975 ("pf: ICMP error message too short " 4976 "(udp)\n")); 4977 return (PF_DROP); 4978 } 4979 4980 key.af = pd2.af; 4981 key.proto = IPPROTO_UDP; 4982 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 4983 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 4984 key.port[pd2.sidx] = uh.uh_sport; 4985 key.port[pd2.didx] = uh.uh_dport; 4986 4987 STATE_LOOKUP(kif, &key, direction, *state, pd); 4988 4989 /* translate source/destination address, if necessary */ 4990 if ((*state)->key[PF_SK_WIRE] != 4991 (*state)->key[PF_SK_STACK]) { 4992 struct pf_state_key *nk = 4993 (*state)->key[pd->didx]; 4994 4995 if (PF_ANEQ(pd2.src, 4996 &nk->addr[pd2.sidx], pd2.af) || 4997 nk->port[pd2.sidx] != uh.uh_sport) 4998 pf_change_icmp(pd2.src, &uh.uh_sport, 4999 daddr, &nk->addr[pd2.sidx], 5000 nk->port[pd2.sidx], &uh.uh_sum, 5001 pd2.ip_sum, icmpsum, 5002 pd->ip_sum, 1, pd2.af); 5003 5004 if (PF_ANEQ(pd2.dst, 5005 &nk->addr[pd2.didx], pd2.af) || 5006 nk->port[pd2.didx] != uh.uh_dport) 5007 pf_change_icmp(pd2.dst, &uh.uh_dport, 5008 saddr, &nk->addr[pd2.didx], 5009 nk->port[pd2.didx], &uh.uh_sum, 5010 pd2.ip_sum, icmpsum, 5011 pd->ip_sum, 1, pd2.af); 5012 5013 switch (pd2.af) { 5014 #ifdef INET 5015 case AF_INET: 5016 m_copyback(m, off, ICMP_MINLEN, 5017 (caddr_t )pd->hdr.icmp); 5018 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5019 break; 5020 #endif /* INET */ 5021 #ifdef INET6 5022 case AF_INET6: 5023 m_copyback(m, off, 5024 sizeof(struct icmp6_hdr), 5025 (caddr_t )pd->hdr.icmp6); 5026 m_copyback(m, ipoff2, sizeof(h2_6), 5027 (caddr_t )&h2_6); 5028 break; 5029 #endif /* INET6 */ 5030 } 5031 m_copyback(m, off2, sizeof(uh), (caddr_t)&uh); 5032 } 5033 return (PF_PASS); 5034 break; 5035 } 5036 #ifdef INET 5037 case IPPROTO_ICMP: { 5038 struct icmp iih; 5039 5040 if (!pf_pull_hdr(m, off2, &iih, ICMP_MINLEN, 5041 NULL, reason, pd2.af)) { 5042 DPFPRINTF(PF_DEBUG_MISC, 5043 ("pf: ICMP error message too short i" 5044 "(icmp)\n")); 5045 return (PF_DROP); 5046 } 5047 5048 key.af = pd2.af; 5049 key.proto = IPPROTO_ICMP; 5050 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5051 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5052 key.port[0] = key.port[1] = iih.icmp_id; 5053 5054 STATE_LOOKUP(kif, &key, direction, *state, pd); 5055 5056 /* translate source/destination address, if necessary */ 5057 if ((*state)->key[PF_SK_WIRE] != 5058 (*state)->key[PF_SK_STACK]) { 5059 struct pf_state_key *nk = 5060 (*state)->key[pd->didx]; 5061 5062 if (PF_ANEQ(pd2.src, 5063 &nk->addr[pd2.sidx], pd2.af) || 5064 nk->port[pd2.sidx] != iih.icmp_id) 5065 pf_change_icmp(pd2.src, &iih.icmp_id, 5066 daddr, &nk->addr[pd2.sidx], 5067 nk->port[pd2.sidx], NULL, 5068 pd2.ip_sum, icmpsum, 5069 pd->ip_sum, 0, AF_INET); 5070 5071 if (PF_ANEQ(pd2.dst, 5072 &nk->addr[pd2.didx], pd2.af) || 5073 nk->port[pd2.didx] != iih.icmp_id) 5074 pf_change_icmp(pd2.dst, &iih.icmp_id, 5075 saddr, &nk->addr[pd2.didx], 5076 nk->port[pd2.didx], NULL, 5077 pd2.ip_sum, icmpsum, 5078 pd->ip_sum, 0, AF_INET); 5079 5080 m_copyback(m, off, ICMP_MINLEN, (caddr_t)pd->hdr.icmp); 5081 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5082 m_copyback(m, off2, ICMP_MINLEN, (caddr_t)&iih); 5083 } 5084 return (PF_PASS); 5085 break; 5086 } 5087 #endif /* INET */ 5088 #ifdef INET6 5089 case IPPROTO_ICMPV6: { 5090 struct icmp6_hdr iih; 5091 5092 if (!pf_pull_hdr(m, off2, &iih, 5093 sizeof(struct icmp6_hdr), NULL, reason, pd2.af)) { 5094 DPFPRINTF(PF_DEBUG_MISC, 5095 ("pf: ICMP error message too short " 5096 "(icmp6)\n")); 5097 return (PF_DROP); 5098 } 5099 5100 key.af = pd2.af; 5101 key.proto = IPPROTO_ICMPV6; 5102 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5103 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5104 key.port[0] = key.port[1] = iih.icmp6_id; 5105 5106 STATE_LOOKUP(kif, &key, direction, *state, pd); 5107 5108 /* translate source/destination address, if necessary */ 5109 if ((*state)->key[PF_SK_WIRE] != 5110 (*state)->key[PF_SK_STACK]) { 5111 struct pf_state_key *nk = 5112 (*state)->key[pd->didx]; 5113 5114 if (PF_ANEQ(pd2.src, 5115 &nk->addr[pd2.sidx], pd2.af) || 5116 nk->port[pd2.sidx] != iih.icmp6_id) 5117 pf_change_icmp(pd2.src, &iih.icmp6_id, 5118 daddr, &nk->addr[pd2.sidx], 5119 nk->port[pd2.sidx], NULL, 5120 pd2.ip_sum, icmpsum, 5121 pd->ip_sum, 0, AF_INET6); 5122 5123 if (PF_ANEQ(pd2.dst, 5124 &nk->addr[pd2.didx], pd2.af) || 5125 nk->port[pd2.didx] != iih.icmp6_id) 5126 pf_change_icmp(pd2.dst, &iih.icmp6_id, 5127 saddr, &nk->addr[pd2.didx], 5128 nk->port[pd2.didx], NULL, 5129 pd2.ip_sum, icmpsum, 5130 pd->ip_sum, 0, AF_INET6); 5131 5132 m_copyback(m, off, sizeof(struct icmp6_hdr), 5133 (caddr_t)pd->hdr.icmp6); 5134 m_copyback(m, ipoff2, sizeof(h2_6), (caddr_t)&h2_6); 5135 m_copyback(m, off2, sizeof(struct icmp6_hdr), 5136 (caddr_t)&iih); 5137 } 5138 return (PF_PASS); 5139 break; 5140 } 5141 #endif /* INET6 */ 5142 default: { 5143 key.af = pd2.af; 5144 key.proto = pd2.proto; 5145 PF_ACPY(&key.addr[pd2.sidx], pd2.src, key.af); 5146 PF_ACPY(&key.addr[pd2.didx], pd2.dst, key.af); 5147 key.port[0] = key.port[1] = 0; 5148 5149 STATE_LOOKUP(kif, &key, direction, *state, pd); 5150 5151 /* translate source/destination address, if necessary */ 5152 if ((*state)->key[PF_SK_WIRE] != 5153 (*state)->key[PF_SK_STACK]) { 5154 struct pf_state_key *nk = 5155 (*state)->key[pd->didx]; 5156 5157 if (PF_ANEQ(pd2.src, 5158 &nk->addr[pd2.sidx], pd2.af)) 5159 pf_change_icmp(pd2.src, NULL, daddr, 5160 &nk->addr[pd2.sidx], 0, NULL, 5161 pd2.ip_sum, icmpsum, 5162 pd->ip_sum, 0, pd2.af); 5163 5164 if (PF_ANEQ(pd2.dst, 5165 &nk->addr[pd2.didx], pd2.af)) 5166 pf_change_icmp(pd2.dst, NULL, saddr, 5167 &nk->addr[pd2.didx], 0, NULL, 5168 pd2.ip_sum, icmpsum, 5169 pd->ip_sum, 0, pd2.af); 5170 5171 switch (pd2.af) { 5172 #ifdef INET 5173 case AF_INET: 5174 m_copyback(m, off, ICMP_MINLEN, 5175 (caddr_t)pd->hdr.icmp); 5176 m_copyback(m, ipoff2, sizeof(h2), (caddr_t)&h2); 5177 break; 5178 #endif /* INET */ 5179 #ifdef INET6 5180 case AF_INET6: 5181 m_copyback(m, off, 5182 sizeof(struct icmp6_hdr), 5183 (caddr_t )pd->hdr.icmp6); 5184 m_copyback(m, ipoff2, sizeof(h2_6), 5185 (caddr_t )&h2_6); 5186 break; 5187 #endif /* INET6 */ 5188 } 5189 } 5190 return (PF_PASS); 5191 break; 5192 } 5193 } 5194 } 5195 } 5196 5197 static int 5198 pf_test_state_other(struct pf_state **state, int direction, struct pfi_kif *kif, 5199 struct mbuf *m, struct pf_pdesc *pd) 5200 { 5201 struct pf_state_peer *src, *dst; 5202 struct pf_state_key_cmp key; 5203 5204 bzero(&key, sizeof(key)); 5205 key.af = pd->af; 5206 key.proto = pd->proto; 5207 if (direction == PF_IN) { 5208 PF_ACPY(&key.addr[0], pd->src, key.af); 5209 PF_ACPY(&key.addr[1], pd->dst, key.af); 5210 key.port[0] = key.port[1] = 0; 5211 } else { 5212 PF_ACPY(&key.addr[1], pd->src, key.af); 5213 PF_ACPY(&key.addr[0], pd->dst, key.af); 5214 key.port[1] = key.port[0] = 0; 5215 } 5216 5217 STATE_LOOKUP(kif, &key, direction, *state, pd); 5218 5219 if (direction == (*state)->direction) { 5220 src = &(*state)->src; 5221 dst = &(*state)->dst; 5222 } else { 5223 src = &(*state)->dst; 5224 dst = &(*state)->src; 5225 } 5226 5227 /* update states */ 5228 if (src->state < PFOTHERS_SINGLE) 5229 src->state = PFOTHERS_SINGLE; 5230 if (dst->state == PFOTHERS_SINGLE) 5231 dst->state = PFOTHERS_MULTIPLE; 5232 5233 /* update expire time */ 5234 (*state)->expire = time_uptime; 5235 if (src->state == PFOTHERS_MULTIPLE && dst->state == PFOTHERS_MULTIPLE) 5236 (*state)->timeout = PFTM_OTHER_MULTIPLE; 5237 else 5238 (*state)->timeout = PFTM_OTHER_SINGLE; 5239 5240 /* translate source/destination address, if necessary */ 5241 if ((*state)->key[PF_SK_WIRE] != (*state)->key[PF_SK_STACK]) { 5242 struct pf_state_key *nk = (*state)->key[pd->didx]; 5243 5244 KASSERT(nk, ("%s: nk is null", __func__)); 5245 KASSERT(pd, ("%s: pd is null", __func__)); 5246 KASSERT(pd->src, ("%s: pd->src is null", __func__)); 5247 KASSERT(pd->dst, ("%s: pd->dst is null", __func__)); 5248 switch (pd->af) { 5249 #ifdef INET 5250 case AF_INET: 5251 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5252 pf_change_a(&pd->src->v4.s_addr, 5253 pd->ip_sum, 5254 nk->addr[pd->sidx].v4.s_addr, 5255 0); 5256 5257 5258 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5259 pf_change_a(&pd->dst->v4.s_addr, 5260 pd->ip_sum, 5261 nk->addr[pd->didx].v4.s_addr, 5262 0); 5263 5264 break; 5265 #endif /* INET */ 5266 #ifdef INET6 5267 case AF_INET6: 5268 if (PF_ANEQ(pd->src, &nk->addr[pd->sidx], AF_INET)) 5269 PF_ACPY(pd->src, &nk->addr[pd->sidx], pd->af); 5270 5271 if (PF_ANEQ(pd->dst, &nk->addr[pd->didx], AF_INET)) 5272 PF_ACPY(pd->dst, &nk->addr[pd->didx], pd->af); 5273 #endif /* INET6 */ 5274 } 5275 } 5276 return (PF_PASS); 5277 } 5278 5279 /* 5280 * ipoff and off are measured from the start of the mbuf chain. 5281 * h must be at "ipoff" on the mbuf chain. 5282 */ 5283 void * 5284 pf_pull_hdr(struct mbuf *m, int off, void *p, int len, 5285 u_short *actionp, u_short *reasonp, sa_family_t af) 5286 { 5287 switch (af) { 5288 #ifdef INET 5289 case AF_INET: { 5290 struct ip *h = mtod(m, struct ip *); 5291 u_int16_t fragoff = (ntohs(h->ip_off) & IP_OFFMASK) << 3; 5292 5293 if (fragoff) { 5294 if (fragoff >= len) 5295 ACTION_SET(actionp, PF_PASS); 5296 else { 5297 ACTION_SET(actionp, PF_DROP); 5298 REASON_SET(reasonp, PFRES_FRAG); 5299 } 5300 return (NULL); 5301 } 5302 if (m->m_pkthdr.len < off + len || 5303 ntohs(h->ip_len) < off + len) { 5304 ACTION_SET(actionp, PF_DROP); 5305 REASON_SET(reasonp, PFRES_SHORT); 5306 return (NULL); 5307 } 5308 break; 5309 } 5310 #endif /* INET */ 5311 #ifdef INET6 5312 case AF_INET6: { 5313 struct ip6_hdr *h = mtod(m, struct ip6_hdr *); 5314 5315 if (m->m_pkthdr.len < off + len || 5316 (ntohs(h->ip6_plen) + sizeof(struct ip6_hdr)) < 5317 (unsigned)(off + len)) { 5318 ACTION_SET(actionp, PF_DROP); 5319 REASON_SET(reasonp, PFRES_SHORT); 5320 return (NULL); 5321 } 5322 break; 5323 } 5324 #endif /* INET6 */ 5325 } 5326 m_copydata(m, off, len, p); 5327 return (p); 5328 } 5329 5330 #ifdef RADIX_MPATH 5331 static int 5332 pf_routable_oldmpath(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5333 int rtableid) 5334 { 5335 struct radix_node_head *rnh; 5336 struct sockaddr_in *dst; 5337 int ret = 1; 5338 int check_mpath; 5339 #ifdef INET6 5340 struct sockaddr_in6 *dst6; 5341 struct route_in6 ro; 5342 #else 5343 struct route ro; 5344 #endif 5345 struct radix_node *rn; 5346 struct rtentry *rt; 5347 struct ifnet *ifp; 5348 5349 check_mpath = 0; 5350 /* XXX: stick to table 0 for now */ 5351 rnh = rt_tables_get_rnh(0, af); 5352 if (rnh != NULL && rn_mpath_capable(rnh)) 5353 check_mpath = 1; 5354 bzero(&ro, sizeof(ro)); 5355 switch (af) { 5356 case AF_INET: 5357 dst = satosin(&ro.ro_dst); 5358 dst->sin_family = AF_INET; 5359 dst->sin_len = sizeof(*dst); 5360 dst->sin_addr = addr->v4; 5361 break; 5362 #ifdef INET6 5363 case AF_INET6: 5364 /* 5365 * Skip check for addresses with embedded interface scope, 5366 * as they would always match anyway. 5367 */ 5368 if (IN6_IS_SCOPE_EMBED(&addr->v6)) 5369 goto out; 5370 dst6 = (struct sockaddr_in6 *)&ro.ro_dst; 5371 dst6->sin6_family = AF_INET6; 5372 dst6->sin6_len = sizeof(*dst6); 5373 dst6->sin6_addr = addr->v6; 5374 break; 5375 #endif /* INET6 */ 5376 default: 5377 return (0); 5378 } 5379 5380 /* Skip checks for ipsec interfaces */ 5381 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5382 goto out; 5383 5384 switch (af) { 5385 #ifdef INET6 5386 case AF_INET6: 5387 in6_rtalloc_ign(&ro, 0, rtableid); 5388 break; 5389 #endif 5390 #ifdef INET 5391 case AF_INET: 5392 in_rtalloc_ign((struct route *)&ro, 0, rtableid); 5393 break; 5394 #endif 5395 } 5396 5397 if (ro.ro_rt != NULL) { 5398 /* No interface given, this is a no-route check */ 5399 if (kif == NULL) 5400 goto out; 5401 5402 if (kif->pfik_ifp == NULL) { 5403 ret = 0; 5404 goto out; 5405 } 5406 5407 /* Perform uRPF check if passed input interface */ 5408 ret = 0; 5409 rn = (struct radix_node *)ro.ro_rt; 5410 do { 5411 rt = (struct rtentry *)rn; 5412 ifp = rt->rt_ifp; 5413 5414 if (kif->pfik_ifp == ifp) 5415 ret = 1; 5416 rn = rn_mpath_next(rn); 5417 } while (check_mpath == 1 && rn != NULL && ret == 0); 5418 } else 5419 ret = 0; 5420 out: 5421 if (ro.ro_rt != NULL) 5422 RTFREE(ro.ro_rt); 5423 return (ret); 5424 } 5425 #endif 5426 5427 int 5428 pf_routable(struct pf_addr *addr, sa_family_t af, struct pfi_kif *kif, 5429 int rtableid) 5430 { 5431 #ifdef INET 5432 struct nhop4_basic nh4; 5433 #endif 5434 #ifdef INET6 5435 struct nhop6_basic nh6; 5436 #endif 5437 struct ifnet *ifp; 5438 #ifdef RADIX_MPATH 5439 struct radix_node_head *rnh; 5440 5441 /* XXX: stick to table 0 for now */ 5442 rnh = rt_tables_get_rnh(0, af); 5443 if (rnh != NULL && rn_mpath_capable(rnh)) 5444 return (pf_routable_oldmpath(addr, af, kif, rtableid)); 5445 #endif 5446 /* 5447 * Skip check for addresses with embedded interface scope, 5448 * as they would always match anyway. 5449 */ 5450 if (af == AF_INET6 && IN6_IS_SCOPE_EMBED(&addr->v6)) 5451 return (1); 5452 5453 if (af != AF_INET && af != AF_INET6) 5454 return (0); 5455 5456 /* Skip checks for ipsec interfaces */ 5457 if (kif != NULL && kif->pfik_ifp->if_type == IFT_ENC) 5458 return (1); 5459 5460 ifp = NULL; 5461 5462 switch (af) { 5463 #ifdef INET6 5464 case AF_INET6: 5465 if (fib6_lookup_nh_basic(rtableid, &addr->v6, 0, 0, 0, &nh6)!=0) 5466 return (0); 5467 ifp = nh6.nh_ifp; 5468 break; 5469 #endif 5470 #ifdef INET 5471 case AF_INET: 5472 if (fib4_lookup_nh_basic(rtableid, addr->v4, 0, 0, &nh4) != 0) 5473 return (0); 5474 ifp = nh4.nh_ifp; 5475 break; 5476 #endif 5477 } 5478 5479 /* No interface given, this is a no-route check */ 5480 if (kif == NULL) 5481 return (1); 5482 5483 if (kif->pfik_ifp == NULL) 5484 return (0); 5485 5486 /* Perform uRPF check if passed input interface */ 5487 if (kif->pfik_ifp == ifp) 5488 return (1); 5489 return (0); 5490 } 5491 5492 #ifdef INET 5493 static void 5494 pf_route(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5495 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5496 { 5497 struct mbuf *m0, *m1; 5498 struct sockaddr_in dst; 5499 struct ip *ip; 5500 struct ifnet *ifp = NULL; 5501 struct pf_addr naddr; 5502 struct pf_src_node *sn = NULL; 5503 int error = 0; 5504 uint16_t ip_len, ip_off; 5505 5506 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5507 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5508 __func__)); 5509 5510 if ((pd->pf_mtag == NULL && 5511 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5512 pd->pf_mtag->routed++ > 3) { 5513 m0 = *m; 5514 *m = NULL; 5515 goto bad_locked; 5516 } 5517 5518 if (r->rt == PF_DUPTO) { 5519 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5520 if (s) 5521 PF_STATE_UNLOCK(s); 5522 return; 5523 } 5524 } else { 5525 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5526 if (s) 5527 PF_STATE_UNLOCK(s); 5528 return; 5529 } 5530 m0 = *m; 5531 } 5532 5533 ip = mtod(m0, struct ip *); 5534 5535 bzero(&dst, sizeof(dst)); 5536 dst.sin_family = AF_INET; 5537 dst.sin_len = sizeof(dst); 5538 dst.sin_addr = ip->ip_dst; 5539 5540 bzero(&naddr, sizeof(naddr)); 5541 5542 if (TAILQ_EMPTY(&r->rpool.list)) { 5543 DPFPRINTF(PF_DEBUG_URGENT, 5544 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5545 goto bad_locked; 5546 } 5547 if (s == NULL) { 5548 pf_map_addr(AF_INET, r, (struct pf_addr *)&ip->ip_src, 5549 &naddr, NULL, &sn); 5550 if (!PF_AZERO(&naddr, AF_INET)) 5551 dst.sin_addr.s_addr = naddr.v4.s_addr; 5552 ifp = r->rpool.cur->kif ? 5553 r->rpool.cur->kif->pfik_ifp : NULL; 5554 } else { 5555 if (!PF_AZERO(&s->rt_addr, AF_INET)) 5556 dst.sin_addr.s_addr = 5557 s->rt_addr.v4.s_addr; 5558 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5559 PF_STATE_UNLOCK(s); 5560 } 5561 if (ifp == NULL) 5562 goto bad; 5563 5564 if (oifp != ifp) { 5565 if (pf_test(PF_OUT, 0, ifp, &m0, inp) != PF_PASS) 5566 goto bad; 5567 else if (m0 == NULL) 5568 goto done; 5569 if (m0->m_len < sizeof(struct ip)) { 5570 DPFPRINTF(PF_DEBUG_URGENT, 5571 ("%s: m0->m_len < sizeof(struct ip)\n", __func__)); 5572 goto bad; 5573 } 5574 ip = mtod(m0, struct ip *); 5575 } 5576 5577 if (ifp->if_flags & IFF_LOOPBACK) 5578 m0->m_flags |= M_SKIP_FIREWALL; 5579 5580 ip_len = ntohs(ip->ip_len); 5581 ip_off = ntohs(ip->ip_off); 5582 5583 /* Copied from FreeBSD 10.0-CURRENT ip_output. */ 5584 m0->m_pkthdr.csum_flags |= CSUM_IP; 5585 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA & ~ifp->if_hwassist) { 5586 in_delayed_cksum(m0); 5587 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA; 5588 } 5589 #ifdef SCTP 5590 if (m0->m_pkthdr.csum_flags & CSUM_SCTP & ~ifp->if_hwassist) { 5591 sctp_delayed_cksum(m, (uint32_t)(ip->ip_hl << 2)); 5592 m0->m_pkthdr.csum_flags &= ~CSUM_SCTP; 5593 } 5594 #endif 5595 5596 /* 5597 * If small enough for interface, or the interface will take 5598 * care of the fragmentation for us, we can just send directly. 5599 */ 5600 if (ip_len <= ifp->if_mtu || 5601 (m0->m_pkthdr.csum_flags & ifp->if_hwassist & CSUM_TSO) != 0) { 5602 ip->ip_sum = 0; 5603 if (m0->m_pkthdr.csum_flags & CSUM_IP & ~ifp->if_hwassist) { 5604 ip->ip_sum = in_cksum(m0, ip->ip_hl << 2); 5605 m0->m_pkthdr.csum_flags &= ~CSUM_IP; 5606 } 5607 m_clrprotoflags(m0); /* Avoid confusing lower layers. */ 5608 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5609 goto done; 5610 } 5611 5612 /* Balk when DF bit is set or the interface didn't support TSO. */ 5613 if ((ip_off & IP_DF) || (m0->m_pkthdr.csum_flags & CSUM_TSO)) { 5614 error = EMSGSIZE; 5615 KMOD_IPSTAT_INC(ips_cantfrag); 5616 if (r->rt != PF_DUPTO) { 5617 icmp_error(m0, ICMP_UNREACH, ICMP_UNREACH_NEEDFRAG, 0, 5618 ifp->if_mtu); 5619 goto done; 5620 } else 5621 goto bad; 5622 } 5623 5624 error = ip_fragment(ip, &m0, ifp->if_mtu, ifp->if_hwassist); 5625 if (error) 5626 goto bad; 5627 5628 for (; m0; m0 = m1) { 5629 m1 = m0->m_nextpkt; 5630 m0->m_nextpkt = NULL; 5631 if (error == 0) { 5632 m_clrprotoflags(m0); 5633 error = (*ifp->if_output)(ifp, m0, sintosa(&dst), NULL); 5634 } else 5635 m_freem(m0); 5636 } 5637 5638 if (error == 0) 5639 KMOD_IPSTAT_INC(ips_fragmented); 5640 5641 done: 5642 if (r->rt != PF_DUPTO) 5643 *m = NULL; 5644 return; 5645 5646 bad_locked: 5647 if (s) 5648 PF_STATE_UNLOCK(s); 5649 bad: 5650 m_freem(m0); 5651 goto done; 5652 } 5653 #endif /* INET */ 5654 5655 #ifdef INET6 5656 static void 5657 pf_route6(struct mbuf **m, struct pf_rule *r, int dir, struct ifnet *oifp, 5658 struct pf_state *s, struct pf_pdesc *pd, struct inpcb *inp) 5659 { 5660 struct mbuf *m0; 5661 struct sockaddr_in6 dst; 5662 struct ip6_hdr *ip6; 5663 struct ifnet *ifp = NULL; 5664 struct pf_addr naddr; 5665 struct pf_src_node *sn = NULL; 5666 5667 KASSERT(m && *m && r && oifp, ("%s: invalid parameters", __func__)); 5668 KASSERT(dir == PF_IN || dir == PF_OUT, ("%s: invalid direction", 5669 __func__)); 5670 5671 if ((pd->pf_mtag == NULL && 5672 ((pd->pf_mtag = pf_get_mtag(*m)) == NULL)) || 5673 pd->pf_mtag->routed++ > 3) { 5674 m0 = *m; 5675 *m = NULL; 5676 goto bad_locked; 5677 } 5678 5679 if (r->rt == PF_DUPTO) { 5680 if ((m0 = m_dup(*m, M_NOWAIT)) == NULL) { 5681 if (s) 5682 PF_STATE_UNLOCK(s); 5683 return; 5684 } 5685 } else { 5686 if ((r->rt == PF_REPLYTO) == (r->direction == dir)) { 5687 if (s) 5688 PF_STATE_UNLOCK(s); 5689 return; 5690 } 5691 m0 = *m; 5692 } 5693 5694 ip6 = mtod(m0, struct ip6_hdr *); 5695 5696 bzero(&dst, sizeof(dst)); 5697 dst.sin6_family = AF_INET6; 5698 dst.sin6_len = sizeof(dst); 5699 dst.sin6_addr = ip6->ip6_dst; 5700 5701 bzero(&naddr, sizeof(naddr)); 5702 5703 if (TAILQ_EMPTY(&r->rpool.list)) { 5704 DPFPRINTF(PF_DEBUG_URGENT, 5705 ("%s: TAILQ_EMPTY(&r->rpool.list)\n", __func__)); 5706 goto bad_locked; 5707 } 5708 if (s == NULL) { 5709 pf_map_addr(AF_INET6, r, (struct pf_addr *)&ip6->ip6_src, 5710 &naddr, NULL, &sn); 5711 if (!PF_AZERO(&naddr, AF_INET6)) 5712 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5713 &naddr, AF_INET6); 5714 ifp = r->rpool.cur->kif ? r->rpool.cur->kif->pfik_ifp : NULL; 5715 } else { 5716 if (!PF_AZERO(&s->rt_addr, AF_INET6)) 5717 PF_ACPY((struct pf_addr *)&dst.sin6_addr, 5718 &s->rt_addr, AF_INET6); 5719 ifp = s->rt_kif ? s->rt_kif->pfik_ifp : NULL; 5720 } 5721 5722 if (s) 5723 PF_STATE_UNLOCK(s); 5724 5725 if (ifp == NULL) 5726 goto bad; 5727 5728 if (oifp != ifp) { 5729 if (pf_test6(PF_OUT, PFIL_FWD, ifp, &m0, inp) != PF_PASS) 5730 goto bad; 5731 else if (m0 == NULL) 5732 goto done; 5733 if (m0->m_len < sizeof(struct ip6_hdr)) { 5734 DPFPRINTF(PF_DEBUG_URGENT, 5735 ("%s: m0->m_len < sizeof(struct ip6_hdr)\n", 5736 __func__)); 5737 goto bad; 5738 } 5739 ip6 = mtod(m0, struct ip6_hdr *); 5740 } 5741 5742 if (ifp->if_flags & IFF_LOOPBACK) 5743 m0->m_flags |= M_SKIP_FIREWALL; 5744 5745 if (m0->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6 & 5746 ~ifp->if_hwassist) { 5747 uint32_t plen = m0->m_pkthdr.len - sizeof(*ip6); 5748 in6_delayed_cksum(m0, plen, sizeof(struct ip6_hdr)); 5749 m0->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 5750 } 5751 5752 /* 5753 * If the packet is too large for the outgoing interface, 5754 * send back an icmp6 error. 5755 */ 5756 if (IN6_IS_SCOPE_EMBED(&dst.sin6_addr)) 5757 dst.sin6_addr.s6_addr16[1] = htons(ifp->if_index); 5758 if ((u_long)m0->m_pkthdr.len <= ifp->if_mtu) 5759 nd6_output_ifp(ifp, ifp, m0, &dst, NULL); 5760 else { 5761 in6_ifstat_inc(ifp, ifs6_in_toobig); 5762 if (r->rt != PF_DUPTO) 5763 icmp6_error(m0, ICMP6_PACKET_TOO_BIG, 0, ifp->if_mtu); 5764 else 5765 goto bad; 5766 } 5767 5768 done: 5769 if (r->rt != PF_DUPTO) 5770 *m = NULL; 5771 return; 5772 5773 bad_locked: 5774 if (s) 5775 PF_STATE_UNLOCK(s); 5776 bad: 5777 m_freem(m0); 5778 goto done; 5779 } 5780 #endif /* INET6 */ 5781 5782 /* 5783 * FreeBSD supports cksum offloads for the following drivers. 5784 * em(4), fxp(4), lge(4), ndis(4), nge(4), re(4), ti(4), txp(4), xl(4) 5785 * 5786 * CSUM_DATA_VALID | CSUM_PSEUDO_HDR : 5787 * network driver performed cksum including pseudo header, need to verify 5788 * csum_data 5789 * CSUM_DATA_VALID : 5790 * network driver performed cksum, needs to additional pseudo header 5791 * cksum computation with partial csum_data(i.e. lack of H/W support for 5792 * pseudo header, for instance hme(4), sk(4) and possibly gem(4)) 5793 * 5794 * After validating the cksum of packet, set both flag CSUM_DATA_VALID and 5795 * CSUM_PSEUDO_HDR in order to avoid recomputation of the cksum in upper 5796 * TCP/UDP layer. 5797 * Also, set csum_data to 0xffff to force cksum validation. 5798 */ 5799 static int 5800 pf_check_proto_cksum(struct mbuf *m, int off, int len, u_int8_t p, sa_family_t af) 5801 { 5802 u_int16_t sum = 0; 5803 int hw_assist = 0; 5804 struct ip *ip; 5805 5806 if (off < sizeof(struct ip) || len < sizeof(struct udphdr)) 5807 return (1); 5808 if (m->m_pkthdr.len < off + len) 5809 return (1); 5810 5811 switch (p) { 5812 case IPPROTO_TCP: 5813 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5814 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5815 sum = m->m_pkthdr.csum_data; 5816 } else { 5817 ip = mtod(m, struct ip *); 5818 sum = in_pseudo(ip->ip_src.s_addr, 5819 ip->ip_dst.s_addr, htonl((u_short)len + 5820 m->m_pkthdr.csum_data + IPPROTO_TCP)); 5821 } 5822 sum ^= 0xffff; 5823 ++hw_assist; 5824 } 5825 break; 5826 case IPPROTO_UDP: 5827 if (m->m_pkthdr.csum_flags & CSUM_DATA_VALID) { 5828 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) { 5829 sum = m->m_pkthdr.csum_data; 5830 } else { 5831 ip = mtod(m, struct ip *); 5832 sum = in_pseudo(ip->ip_src.s_addr, 5833 ip->ip_dst.s_addr, htonl((u_short)len + 5834 m->m_pkthdr.csum_data + IPPROTO_UDP)); 5835 } 5836 sum ^= 0xffff; 5837 ++hw_assist; 5838 } 5839 break; 5840 case IPPROTO_ICMP: 5841 #ifdef INET6 5842 case IPPROTO_ICMPV6: 5843 #endif /* INET6 */ 5844 break; 5845 default: 5846 return (1); 5847 } 5848 5849 if (!hw_assist) { 5850 switch (af) { 5851 case AF_INET: 5852 if (p == IPPROTO_ICMP) { 5853 if (m->m_len < off) 5854 return (1); 5855 m->m_data += off; 5856 m->m_len -= off; 5857 sum = in_cksum(m, len); 5858 m->m_data -= off; 5859 m->m_len += off; 5860 } else { 5861 if (m->m_len < sizeof(struct ip)) 5862 return (1); 5863 sum = in4_cksum(m, p, off, len); 5864 } 5865 break; 5866 #ifdef INET6 5867 case AF_INET6: 5868 if (m->m_len < sizeof(struct ip6_hdr)) 5869 return (1); 5870 sum = in6_cksum(m, p, off, len); 5871 break; 5872 #endif /* INET6 */ 5873 default: 5874 return (1); 5875 } 5876 } 5877 if (sum) { 5878 switch (p) { 5879 case IPPROTO_TCP: 5880 { 5881 KMOD_TCPSTAT_INC(tcps_rcvbadsum); 5882 break; 5883 } 5884 case IPPROTO_UDP: 5885 { 5886 KMOD_UDPSTAT_INC(udps_badsum); 5887 break; 5888 } 5889 #ifdef INET 5890 case IPPROTO_ICMP: 5891 { 5892 KMOD_ICMPSTAT_INC(icps_checksum); 5893 break; 5894 } 5895 #endif 5896 #ifdef INET6 5897 case IPPROTO_ICMPV6: 5898 { 5899 KMOD_ICMP6STAT_INC(icp6s_checksum); 5900 break; 5901 } 5902 #endif /* INET6 */ 5903 } 5904 return (1); 5905 } else { 5906 if (p == IPPROTO_TCP || p == IPPROTO_UDP) { 5907 m->m_pkthdr.csum_flags |= 5908 (CSUM_DATA_VALID | CSUM_PSEUDO_HDR); 5909 m->m_pkthdr.csum_data = 0xffff; 5910 } 5911 } 5912 return (0); 5913 } 5914 5915 5916 #ifdef INET 5917 int 5918 pf_test(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 5919 { 5920 struct pfi_kif *kif; 5921 u_short action, reason = 0, log = 0; 5922 struct mbuf *m = *m0; 5923 struct ip *h = NULL; 5924 struct m_tag *ipfwtag; 5925 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 5926 struct pf_state *s = NULL; 5927 struct pf_ruleset *ruleset = NULL; 5928 struct pf_pdesc pd; 5929 int off, dirndx, pqid = 0; 5930 5931 PF_RULES_RLOCK_TRACKER; 5932 5933 M_ASSERTPKTHDR(m); 5934 5935 if (!V_pf_status.running) 5936 return (PF_PASS); 5937 5938 memset(&pd, 0, sizeof(pd)); 5939 5940 kif = (struct pfi_kif *)ifp->if_pf_kif; 5941 5942 if (kif == NULL) { 5943 DPFPRINTF(PF_DEBUG_URGENT, 5944 ("pf_test: kif == NULL, if_xname %s\n", ifp->if_xname)); 5945 return (PF_DROP); 5946 } 5947 if (kif->pfik_flags & PFI_IFLAG_SKIP) 5948 return (PF_PASS); 5949 5950 if (m->m_flags & M_SKIP_FIREWALL) 5951 return (PF_PASS); 5952 5953 pd.pf_mtag = pf_find_mtag(m); 5954 5955 PF_RULES_RLOCK(); 5956 5957 if (ip_divert_ptr != NULL && 5958 ((ipfwtag = m_tag_locate(m, MTAG_IPFW_RULE, 0, NULL)) != NULL)) { 5959 struct ipfw_rule_ref *rr = (struct ipfw_rule_ref *)(ipfwtag+1); 5960 if (rr->info & IPFW_IS_DIVERT && rr->rulenum == 0) { 5961 if (pd.pf_mtag == NULL && 5962 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 5963 action = PF_DROP; 5964 goto done; 5965 } 5966 pd.pf_mtag->flags |= PF_PACKET_LOOPED; 5967 m_tag_delete(m, ipfwtag); 5968 } 5969 if (pd.pf_mtag && pd.pf_mtag->flags & PF_FASTFWD_OURS_PRESENT) { 5970 m->m_flags |= M_FASTFWD_OURS; 5971 pd.pf_mtag->flags &= ~PF_FASTFWD_OURS_PRESENT; 5972 } 5973 } else if (pf_normalize_ip(m0, dir, kif, &reason, &pd) != PF_PASS) { 5974 /* We do IP header normalization and packet reassembly here */ 5975 action = PF_DROP; 5976 goto done; 5977 } 5978 m = *m0; /* pf_normalize messes with m0 */ 5979 h = mtod(m, struct ip *); 5980 5981 off = h->ip_hl << 2; 5982 if (off < (int)sizeof(struct ip)) { 5983 action = PF_DROP; 5984 REASON_SET(&reason, PFRES_SHORT); 5985 log = 1; 5986 goto done; 5987 } 5988 5989 pd.src = (struct pf_addr *)&h->ip_src; 5990 pd.dst = (struct pf_addr *)&h->ip_dst; 5991 pd.sport = pd.dport = NULL; 5992 pd.ip_sum = &h->ip_sum; 5993 pd.proto_sum = NULL; 5994 pd.proto = h->ip_p; 5995 pd.dir = dir; 5996 pd.sidx = (dir == PF_IN) ? 0 : 1; 5997 pd.didx = (dir == PF_IN) ? 1 : 0; 5998 pd.af = AF_INET; 5999 pd.tos = h->ip_tos & ~IPTOS_ECN_MASK; 6000 pd.tot_len = ntohs(h->ip_len); 6001 6002 /* handle fragments that didn't get reassembled by normalization */ 6003 if (h->ip_off & htons(IP_MF | IP_OFFMASK)) { 6004 action = pf_test_fragment(&r, dir, kif, m, h, 6005 &pd, &a, &ruleset); 6006 goto done; 6007 } 6008 6009 switch (h->ip_p) { 6010 6011 case IPPROTO_TCP: { 6012 struct tcphdr th; 6013 6014 pd.hdr.tcp = &th; 6015 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6016 &action, &reason, AF_INET)) { 6017 log = action != PF_PASS; 6018 goto done; 6019 } 6020 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6021 if ((th.th_flags & TH_ACK) && pd.p_len == 0) 6022 pqid = 1; 6023 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6024 if (action == PF_DROP) 6025 goto done; 6026 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6027 &reason); 6028 if (action == PF_PASS) { 6029 if (V_pfsync_update_state_ptr != NULL) 6030 V_pfsync_update_state_ptr(s); 6031 r = s->rule.ptr; 6032 a = s->anchor.ptr; 6033 log = s->log; 6034 } else if (s == NULL) 6035 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6036 &a, &ruleset, inp); 6037 break; 6038 } 6039 6040 case IPPROTO_UDP: { 6041 struct udphdr uh; 6042 6043 pd.hdr.udp = &uh; 6044 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6045 &action, &reason, AF_INET)) { 6046 log = action != PF_PASS; 6047 goto done; 6048 } 6049 if (uh.uh_dport == 0 || 6050 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6051 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6052 action = PF_DROP; 6053 REASON_SET(&reason, PFRES_SHORT); 6054 goto done; 6055 } 6056 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6057 if (action == PF_PASS) { 6058 if (V_pfsync_update_state_ptr != NULL) 6059 V_pfsync_update_state_ptr(s); 6060 r = s->rule.ptr; 6061 a = s->anchor.ptr; 6062 log = s->log; 6063 } else if (s == NULL) 6064 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6065 &a, &ruleset, inp); 6066 break; 6067 } 6068 6069 case IPPROTO_ICMP: { 6070 struct icmp ih; 6071 6072 pd.hdr.icmp = &ih; 6073 if (!pf_pull_hdr(m, off, &ih, ICMP_MINLEN, 6074 &action, &reason, AF_INET)) { 6075 log = action != PF_PASS; 6076 goto done; 6077 } 6078 action = pf_test_state_icmp(&s, dir, kif, m, off, h, &pd, 6079 &reason); 6080 if (action == PF_PASS) { 6081 if (V_pfsync_update_state_ptr != NULL) 6082 V_pfsync_update_state_ptr(s); 6083 r = s->rule.ptr; 6084 a = s->anchor.ptr; 6085 log = s->log; 6086 } else if (s == NULL) 6087 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6088 &a, &ruleset, inp); 6089 break; 6090 } 6091 6092 #ifdef INET6 6093 case IPPROTO_ICMPV6: { 6094 action = PF_DROP; 6095 DPFPRINTF(PF_DEBUG_MISC, 6096 ("pf: dropping IPv4 packet with ICMPv6 payload\n")); 6097 goto done; 6098 } 6099 #endif 6100 6101 default: 6102 action = pf_test_state_other(&s, dir, kif, m, &pd); 6103 if (action == PF_PASS) { 6104 if (V_pfsync_update_state_ptr != NULL) 6105 V_pfsync_update_state_ptr(s); 6106 r = s->rule.ptr; 6107 a = s->anchor.ptr; 6108 log = s->log; 6109 } else if (s == NULL) 6110 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6111 &a, &ruleset, inp); 6112 break; 6113 } 6114 6115 done: 6116 PF_RULES_RUNLOCK(); 6117 if (action == PF_PASS && h->ip_hl > 5 && 6118 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6119 action = PF_DROP; 6120 REASON_SET(&reason, PFRES_IPOPTIONS); 6121 log = r->log; 6122 DPFPRINTF(PF_DEBUG_MISC, 6123 ("pf: dropping packet with ip options\n")); 6124 } 6125 6126 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6127 action = PF_DROP; 6128 REASON_SET(&reason, PFRES_MEMORY); 6129 } 6130 if (r->rtableid >= 0) 6131 M_SETFIB(m, r->rtableid); 6132 6133 if (r->scrub_flags & PFSTATE_SETPRIO) { 6134 if (pd.tos & IPTOS_LOWDELAY) 6135 pqid = 1; 6136 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6137 action = PF_DROP; 6138 REASON_SET(&reason, PFRES_MEMORY); 6139 log = 1; 6140 DPFPRINTF(PF_DEBUG_MISC, 6141 ("pf: failed to allocate 802.1q mtag\n")); 6142 } 6143 } 6144 6145 #ifdef ALTQ 6146 if (action == PF_PASS && r->qid) { 6147 if (pd.pf_mtag == NULL && 6148 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6149 action = PF_DROP; 6150 REASON_SET(&reason, PFRES_MEMORY); 6151 } else { 6152 if (s != NULL) 6153 pd.pf_mtag->qid_hash = pf_state_hash(s); 6154 if (pqid || (pd.tos & IPTOS_LOWDELAY)) 6155 pd.pf_mtag->qid = r->pqid; 6156 else 6157 pd.pf_mtag->qid = r->qid; 6158 /* Add hints for ecn. */ 6159 pd.pf_mtag->hdr = h; 6160 } 6161 6162 } 6163 #endif /* ALTQ */ 6164 6165 /* 6166 * connections redirected to loopback should not match sockets 6167 * bound specifically to loopback due to security implications, 6168 * see tcp_input() and in_pcblookup_listen(). 6169 */ 6170 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6171 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6172 (s->nat_rule.ptr->action == PF_RDR || 6173 s->nat_rule.ptr->action == PF_BINAT) && 6174 IN_LOOPBACK(ntohl(pd.dst->v4.s_addr))) 6175 m->m_flags |= M_SKIP_FIREWALL; 6176 6177 if (action == PF_PASS && r->divert.port && ip_divert_ptr != NULL && 6178 !PACKET_LOOPED(&pd)) { 6179 6180 ipfwtag = m_tag_alloc(MTAG_IPFW_RULE, 0, 6181 sizeof(struct ipfw_rule_ref), M_NOWAIT | M_ZERO); 6182 if (ipfwtag != NULL) { 6183 ((struct ipfw_rule_ref *)(ipfwtag+1))->info = 6184 ntohs(r->divert.port); 6185 ((struct ipfw_rule_ref *)(ipfwtag+1))->rulenum = dir; 6186 6187 if (s) 6188 PF_STATE_UNLOCK(s); 6189 6190 m_tag_prepend(m, ipfwtag); 6191 if (m->m_flags & M_FASTFWD_OURS) { 6192 if (pd.pf_mtag == NULL && 6193 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6194 action = PF_DROP; 6195 REASON_SET(&reason, PFRES_MEMORY); 6196 log = 1; 6197 DPFPRINTF(PF_DEBUG_MISC, 6198 ("pf: failed to allocate tag\n")); 6199 } else { 6200 pd.pf_mtag->flags |= 6201 PF_FASTFWD_OURS_PRESENT; 6202 m->m_flags &= ~M_FASTFWD_OURS; 6203 } 6204 } 6205 ip_divert_ptr(*m0, dir == PF_IN); 6206 *m0 = NULL; 6207 6208 return (action); 6209 } else { 6210 /* XXX: ipfw has the same behaviour! */ 6211 action = PF_DROP; 6212 REASON_SET(&reason, PFRES_MEMORY); 6213 log = 1; 6214 DPFPRINTF(PF_DEBUG_MISC, 6215 ("pf: failed to allocate divert tag\n")); 6216 } 6217 } 6218 6219 if (log) { 6220 struct pf_rule *lr; 6221 6222 if (s != NULL && s->nat_rule.ptr != NULL && 6223 s->nat_rule.ptr->log & PF_LOG_ALL) 6224 lr = s->nat_rule.ptr; 6225 else 6226 lr = r; 6227 PFLOG_PACKET(kif, m, AF_INET, dir, reason, lr, a, ruleset, &pd, 6228 (s == NULL)); 6229 } 6230 6231 kif->pfik_bytes[0][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6232 kif->pfik_packets[0][dir == PF_OUT][action != PF_PASS]++; 6233 6234 if (action == PF_PASS || r->action == PF_DROP) { 6235 dirndx = (dir == PF_OUT); 6236 r->packets[dirndx]++; 6237 r->bytes[dirndx] += pd.tot_len; 6238 if (a != NULL) { 6239 a->packets[dirndx]++; 6240 a->bytes[dirndx] += pd.tot_len; 6241 } 6242 if (s != NULL) { 6243 if (s->nat_rule.ptr != NULL) { 6244 s->nat_rule.ptr->packets[dirndx]++; 6245 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6246 } 6247 if (s->src_node != NULL) { 6248 s->src_node->packets[dirndx]++; 6249 s->src_node->bytes[dirndx] += pd.tot_len; 6250 } 6251 if (s->nat_src_node != NULL) { 6252 s->nat_src_node->packets[dirndx]++; 6253 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6254 } 6255 dirndx = (dir == s->direction) ? 0 : 1; 6256 s->packets[dirndx]++; 6257 s->bytes[dirndx] += pd.tot_len; 6258 } 6259 tr = r; 6260 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6261 if (nr != NULL && r == &V_pf_default_rule) 6262 tr = nr; 6263 if (tr->src.addr.type == PF_ADDR_TABLE) 6264 pfr_update_stats(tr->src.addr.p.tbl, 6265 (s == NULL) ? pd.src : 6266 &s->key[(s->direction == PF_IN)]-> 6267 addr[(s->direction == PF_OUT)], 6268 pd.af, pd.tot_len, dir == PF_OUT, 6269 r->action == PF_PASS, tr->src.neg); 6270 if (tr->dst.addr.type == PF_ADDR_TABLE) 6271 pfr_update_stats(tr->dst.addr.p.tbl, 6272 (s == NULL) ? pd.dst : 6273 &s->key[(s->direction == PF_IN)]-> 6274 addr[(s->direction == PF_IN)], 6275 pd.af, pd.tot_len, dir == PF_OUT, 6276 r->action == PF_PASS, tr->dst.neg); 6277 } 6278 6279 switch (action) { 6280 case PF_SYNPROXY_DROP: 6281 m_freem(*m0); 6282 case PF_DEFER: 6283 *m0 = NULL; 6284 action = PF_PASS; 6285 break; 6286 case PF_DROP: 6287 m_freem(*m0); 6288 *m0 = NULL; 6289 break; 6290 default: 6291 /* pf_route() returns unlocked. */ 6292 if (r->rt) { 6293 pf_route(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6294 return (action); 6295 } 6296 break; 6297 } 6298 if (s) 6299 PF_STATE_UNLOCK(s); 6300 6301 return (action); 6302 } 6303 #endif /* INET */ 6304 6305 #ifdef INET6 6306 int 6307 pf_test6(int dir, int pflags, struct ifnet *ifp, struct mbuf **m0, struct inpcb *inp) 6308 { 6309 struct pfi_kif *kif; 6310 u_short action, reason = 0, log = 0; 6311 struct mbuf *m = *m0, *n = NULL; 6312 struct m_tag *mtag; 6313 struct ip6_hdr *h = NULL; 6314 struct pf_rule *a = NULL, *r = &V_pf_default_rule, *tr, *nr; 6315 struct pf_state *s = NULL; 6316 struct pf_ruleset *ruleset = NULL; 6317 struct pf_pdesc pd; 6318 int off, terminal = 0, dirndx, rh_cnt = 0, pqid = 0; 6319 6320 PF_RULES_RLOCK_TRACKER; 6321 M_ASSERTPKTHDR(m); 6322 6323 if (!V_pf_status.running) 6324 return (PF_PASS); 6325 6326 memset(&pd, 0, sizeof(pd)); 6327 pd.pf_mtag = pf_find_mtag(m); 6328 6329 if (pd.pf_mtag && pd.pf_mtag->flags & PF_TAG_GENERATED) 6330 return (PF_PASS); 6331 6332 kif = (struct pfi_kif *)ifp->if_pf_kif; 6333 if (kif == NULL) { 6334 DPFPRINTF(PF_DEBUG_URGENT, 6335 ("pf_test6: kif == NULL, if_xname %s\n", ifp->if_xname)); 6336 return (PF_DROP); 6337 } 6338 if (kif->pfik_flags & PFI_IFLAG_SKIP) 6339 return (PF_PASS); 6340 6341 if (m->m_flags & M_SKIP_FIREWALL) 6342 return (PF_PASS); 6343 6344 PF_RULES_RLOCK(); 6345 6346 /* We do IP header normalization and packet reassembly here */ 6347 if (pf_normalize_ip6(m0, dir, kif, &reason, &pd) != PF_PASS) { 6348 action = PF_DROP; 6349 goto done; 6350 } 6351 m = *m0; /* pf_normalize messes with m0 */ 6352 h = mtod(m, struct ip6_hdr *); 6353 6354 /* 6355 * we do not support jumbogram. if we keep going, zero ip6_plen 6356 * will do something bad, so drop the packet for now. 6357 */ 6358 if (htons(h->ip6_plen) == 0) { 6359 action = PF_DROP; 6360 REASON_SET(&reason, PFRES_NORM); /*XXX*/ 6361 goto done; 6362 } 6363 6364 pd.src = (struct pf_addr *)&h->ip6_src; 6365 pd.dst = (struct pf_addr *)&h->ip6_dst; 6366 pd.sport = pd.dport = NULL; 6367 pd.ip_sum = NULL; 6368 pd.proto_sum = NULL; 6369 pd.dir = dir; 6370 pd.sidx = (dir == PF_IN) ? 0 : 1; 6371 pd.didx = (dir == PF_IN) ? 1 : 0; 6372 pd.af = AF_INET6; 6373 pd.tos = 0; 6374 pd.tot_len = ntohs(h->ip6_plen) + sizeof(struct ip6_hdr); 6375 6376 off = ((caddr_t)h - m->m_data) + sizeof(struct ip6_hdr); 6377 pd.proto = h->ip6_nxt; 6378 do { 6379 switch (pd.proto) { 6380 case IPPROTO_FRAGMENT: 6381 action = pf_test_fragment(&r, dir, kif, m, h, 6382 &pd, &a, &ruleset); 6383 if (action == PF_DROP) 6384 REASON_SET(&reason, PFRES_FRAG); 6385 goto done; 6386 case IPPROTO_ROUTING: { 6387 struct ip6_rthdr rthdr; 6388 6389 if (rh_cnt++) { 6390 DPFPRINTF(PF_DEBUG_MISC, 6391 ("pf: IPv6 more than one rthdr\n")); 6392 action = PF_DROP; 6393 REASON_SET(&reason, PFRES_IPOPTIONS); 6394 log = 1; 6395 goto done; 6396 } 6397 if (!pf_pull_hdr(m, off, &rthdr, sizeof(rthdr), NULL, 6398 &reason, pd.af)) { 6399 DPFPRINTF(PF_DEBUG_MISC, 6400 ("pf: IPv6 short rthdr\n")); 6401 action = PF_DROP; 6402 REASON_SET(&reason, PFRES_SHORT); 6403 log = 1; 6404 goto done; 6405 } 6406 if (rthdr.ip6r_type == IPV6_RTHDR_TYPE_0) { 6407 DPFPRINTF(PF_DEBUG_MISC, 6408 ("pf: IPv6 rthdr0\n")); 6409 action = PF_DROP; 6410 REASON_SET(&reason, PFRES_IPOPTIONS); 6411 log = 1; 6412 goto done; 6413 } 6414 /* FALLTHROUGH */ 6415 } 6416 case IPPROTO_AH: 6417 case IPPROTO_HOPOPTS: 6418 case IPPROTO_DSTOPTS: { 6419 /* get next header and header length */ 6420 struct ip6_ext opt6; 6421 6422 if (!pf_pull_hdr(m, off, &opt6, sizeof(opt6), 6423 NULL, &reason, pd.af)) { 6424 DPFPRINTF(PF_DEBUG_MISC, 6425 ("pf: IPv6 short opt\n")); 6426 action = PF_DROP; 6427 log = 1; 6428 goto done; 6429 } 6430 if (pd.proto == IPPROTO_AH) 6431 off += (opt6.ip6e_len + 2) * 4; 6432 else 6433 off += (opt6.ip6e_len + 1) * 8; 6434 pd.proto = opt6.ip6e_nxt; 6435 /* goto the next header */ 6436 break; 6437 } 6438 default: 6439 terminal++; 6440 break; 6441 } 6442 } while (!terminal); 6443 6444 /* if there's no routing header, use unmodified mbuf for checksumming */ 6445 if (!n) 6446 n = m; 6447 6448 switch (pd.proto) { 6449 6450 case IPPROTO_TCP: { 6451 struct tcphdr th; 6452 6453 pd.hdr.tcp = &th; 6454 if (!pf_pull_hdr(m, off, &th, sizeof(th), 6455 &action, &reason, AF_INET6)) { 6456 log = action != PF_PASS; 6457 goto done; 6458 } 6459 pd.p_len = pd.tot_len - off - (th.th_off << 2); 6460 action = pf_normalize_tcp(dir, kif, m, 0, off, h, &pd); 6461 if (action == PF_DROP) 6462 goto done; 6463 action = pf_test_state_tcp(&s, dir, kif, m, off, h, &pd, 6464 &reason); 6465 if (action == PF_PASS) { 6466 if (V_pfsync_update_state_ptr != NULL) 6467 V_pfsync_update_state_ptr(s); 6468 r = s->rule.ptr; 6469 a = s->anchor.ptr; 6470 log = s->log; 6471 } else if (s == NULL) 6472 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6473 &a, &ruleset, inp); 6474 break; 6475 } 6476 6477 case IPPROTO_UDP: { 6478 struct udphdr uh; 6479 6480 pd.hdr.udp = &uh; 6481 if (!pf_pull_hdr(m, off, &uh, sizeof(uh), 6482 &action, &reason, AF_INET6)) { 6483 log = action != PF_PASS; 6484 goto done; 6485 } 6486 if (uh.uh_dport == 0 || 6487 ntohs(uh.uh_ulen) > m->m_pkthdr.len - off || 6488 ntohs(uh.uh_ulen) < sizeof(struct udphdr)) { 6489 action = PF_DROP; 6490 REASON_SET(&reason, PFRES_SHORT); 6491 goto done; 6492 } 6493 action = pf_test_state_udp(&s, dir, kif, m, off, h, &pd); 6494 if (action == PF_PASS) { 6495 if (V_pfsync_update_state_ptr != NULL) 6496 V_pfsync_update_state_ptr(s); 6497 r = s->rule.ptr; 6498 a = s->anchor.ptr; 6499 log = s->log; 6500 } else if (s == NULL) 6501 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6502 &a, &ruleset, inp); 6503 break; 6504 } 6505 6506 case IPPROTO_ICMP: { 6507 action = PF_DROP; 6508 DPFPRINTF(PF_DEBUG_MISC, 6509 ("pf: dropping IPv6 packet with ICMPv4 payload\n")); 6510 goto done; 6511 } 6512 6513 case IPPROTO_ICMPV6: { 6514 struct icmp6_hdr ih; 6515 6516 pd.hdr.icmp6 = &ih; 6517 if (!pf_pull_hdr(m, off, &ih, sizeof(ih), 6518 &action, &reason, AF_INET6)) { 6519 log = action != PF_PASS; 6520 goto done; 6521 } 6522 action = pf_test_state_icmp(&s, dir, kif, 6523 m, off, h, &pd, &reason); 6524 if (action == PF_PASS) { 6525 if (V_pfsync_update_state_ptr != NULL) 6526 V_pfsync_update_state_ptr(s); 6527 r = s->rule.ptr; 6528 a = s->anchor.ptr; 6529 log = s->log; 6530 } else if (s == NULL) 6531 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6532 &a, &ruleset, inp); 6533 break; 6534 } 6535 6536 default: 6537 action = pf_test_state_other(&s, dir, kif, m, &pd); 6538 if (action == PF_PASS) { 6539 if (V_pfsync_update_state_ptr != NULL) 6540 V_pfsync_update_state_ptr(s); 6541 r = s->rule.ptr; 6542 a = s->anchor.ptr; 6543 log = s->log; 6544 } else if (s == NULL) 6545 action = pf_test_rule(&r, &s, dir, kif, m, off, &pd, 6546 &a, &ruleset, inp); 6547 break; 6548 } 6549 6550 done: 6551 PF_RULES_RUNLOCK(); 6552 if (n != m) { 6553 m_freem(n); 6554 n = NULL; 6555 } 6556 6557 /* handle dangerous IPv6 extension headers. */ 6558 if (action == PF_PASS && rh_cnt && 6559 !((s && s->state_flags & PFSTATE_ALLOWOPTS) || r->allow_opts)) { 6560 action = PF_DROP; 6561 REASON_SET(&reason, PFRES_IPOPTIONS); 6562 log = r->log; 6563 DPFPRINTF(PF_DEBUG_MISC, 6564 ("pf: dropping packet with dangerous v6 headers\n")); 6565 } 6566 6567 if (s && s->tag > 0 && pf_tag_packet(m, &pd, s->tag)) { 6568 action = PF_DROP; 6569 REASON_SET(&reason, PFRES_MEMORY); 6570 } 6571 if (r->rtableid >= 0) 6572 M_SETFIB(m, r->rtableid); 6573 6574 if (r->scrub_flags & PFSTATE_SETPRIO) { 6575 if (pd.tos & IPTOS_LOWDELAY) 6576 pqid = 1; 6577 if (pf_ieee8021q_setpcp(m, r->set_prio[pqid])) { 6578 action = PF_DROP; 6579 REASON_SET(&reason, PFRES_MEMORY); 6580 log = 1; 6581 DPFPRINTF(PF_DEBUG_MISC, 6582 ("pf: failed to allocate 802.1q mtag\n")); 6583 } 6584 } 6585 6586 #ifdef ALTQ 6587 if (action == PF_PASS && r->qid) { 6588 if (pd.pf_mtag == NULL && 6589 ((pd.pf_mtag = pf_get_mtag(m)) == NULL)) { 6590 action = PF_DROP; 6591 REASON_SET(&reason, PFRES_MEMORY); 6592 } else { 6593 if (s != NULL) 6594 pd.pf_mtag->qid_hash = pf_state_hash(s); 6595 if (pd.tos & IPTOS_LOWDELAY) 6596 pd.pf_mtag->qid = r->pqid; 6597 else 6598 pd.pf_mtag->qid = r->qid; 6599 /* Add hints for ecn. */ 6600 pd.pf_mtag->hdr = h; 6601 } 6602 } 6603 #endif /* ALTQ */ 6604 6605 if (dir == PF_IN && action == PF_PASS && (pd.proto == IPPROTO_TCP || 6606 pd.proto == IPPROTO_UDP) && s != NULL && s->nat_rule.ptr != NULL && 6607 (s->nat_rule.ptr->action == PF_RDR || 6608 s->nat_rule.ptr->action == PF_BINAT) && 6609 IN6_IS_ADDR_LOOPBACK(&pd.dst->v6)) 6610 m->m_flags |= M_SKIP_FIREWALL; 6611 6612 /* XXX: Anybody working on it?! */ 6613 if (r->divert.port) 6614 printf("pf: divert(9) is not supported for IPv6\n"); 6615 6616 if (log) { 6617 struct pf_rule *lr; 6618 6619 if (s != NULL && s->nat_rule.ptr != NULL && 6620 s->nat_rule.ptr->log & PF_LOG_ALL) 6621 lr = s->nat_rule.ptr; 6622 else 6623 lr = r; 6624 PFLOG_PACKET(kif, m, AF_INET6, dir, reason, lr, a, ruleset, 6625 &pd, (s == NULL)); 6626 } 6627 6628 kif->pfik_bytes[1][dir == PF_OUT][action != PF_PASS] += pd.tot_len; 6629 kif->pfik_packets[1][dir == PF_OUT][action != PF_PASS]++; 6630 6631 if (action == PF_PASS || r->action == PF_DROP) { 6632 dirndx = (dir == PF_OUT); 6633 r->packets[dirndx]++; 6634 r->bytes[dirndx] += pd.tot_len; 6635 if (a != NULL) { 6636 a->packets[dirndx]++; 6637 a->bytes[dirndx] += pd.tot_len; 6638 } 6639 if (s != NULL) { 6640 if (s->nat_rule.ptr != NULL) { 6641 s->nat_rule.ptr->packets[dirndx]++; 6642 s->nat_rule.ptr->bytes[dirndx] += pd.tot_len; 6643 } 6644 if (s->src_node != NULL) { 6645 s->src_node->packets[dirndx]++; 6646 s->src_node->bytes[dirndx] += pd.tot_len; 6647 } 6648 if (s->nat_src_node != NULL) { 6649 s->nat_src_node->packets[dirndx]++; 6650 s->nat_src_node->bytes[dirndx] += pd.tot_len; 6651 } 6652 dirndx = (dir == s->direction) ? 0 : 1; 6653 s->packets[dirndx]++; 6654 s->bytes[dirndx] += pd.tot_len; 6655 } 6656 tr = r; 6657 nr = (s != NULL) ? s->nat_rule.ptr : pd.nat_rule; 6658 if (nr != NULL && r == &V_pf_default_rule) 6659 tr = nr; 6660 if (tr->src.addr.type == PF_ADDR_TABLE) 6661 pfr_update_stats(tr->src.addr.p.tbl, 6662 (s == NULL) ? pd.src : 6663 &s->key[(s->direction == PF_IN)]->addr[0], 6664 pd.af, pd.tot_len, dir == PF_OUT, 6665 r->action == PF_PASS, tr->src.neg); 6666 if (tr->dst.addr.type == PF_ADDR_TABLE) 6667 pfr_update_stats(tr->dst.addr.p.tbl, 6668 (s == NULL) ? pd.dst : 6669 &s->key[(s->direction == PF_IN)]->addr[1], 6670 pd.af, pd.tot_len, dir == PF_OUT, 6671 r->action == PF_PASS, tr->dst.neg); 6672 } 6673 6674 switch (action) { 6675 case PF_SYNPROXY_DROP: 6676 m_freem(*m0); 6677 case PF_DEFER: 6678 *m0 = NULL; 6679 action = PF_PASS; 6680 break; 6681 case PF_DROP: 6682 m_freem(*m0); 6683 *m0 = NULL; 6684 break; 6685 default: 6686 /* pf_route6() returns unlocked. */ 6687 if (r->rt) { 6688 pf_route6(m0, r, dir, kif->pfik_ifp, s, &pd, inp); 6689 return (action); 6690 } 6691 break; 6692 } 6693 6694 if (s) 6695 PF_STATE_UNLOCK(s); 6696 6697 /* If reassembled packet passed, create new fragments. */ 6698 if (action == PF_PASS && *m0 && (pflags & PFIL_FWD) && 6699 (mtag = m_tag_find(m, PF_REASSEMBLED, NULL)) != NULL) 6700 action = pf_refragment6(ifp, m0, mtag); 6701 6702 return (action); 6703 } 6704 #endif /* INET6 */ 6705