1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (c) 2010 Fabio Checconi, Luigi Rizzo, Paolo Valente 5 * All rights reserved 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 26 * SUCH DAMAGE. 27 */ 28 29 /* 30 * $FreeBSD$ 31 */ 32 33 #ifdef _KERNEL 34 #include <sys/malloc.h> 35 #include <sys/socket.h> 36 #include <sys/socketvar.h> 37 #include <sys/kernel.h> 38 #include <sys/lock.h> 39 #include <sys/mbuf.h> 40 #include <sys/module.h> 41 #include <sys/rwlock.h> 42 #include <net/if.h> /* IFNAMSIZ */ 43 #include <netinet/in.h> 44 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 45 #include <netinet/ip_fw.h> /* flow_id */ 46 #include <netinet/ip_dummynet.h> 47 #include <netpfil/ipfw/ip_fw_private.h> 48 #include <netpfil/ipfw/dn_heap.h> 49 #include <netpfil/ipfw/ip_dn_private.h> 50 #ifdef NEW_AQM 51 #include <netpfil/ipfw/dn_aqm.h> 52 #endif 53 #include <netpfil/ipfw/dn_sched.h> 54 #else 55 #include <dn_test.h> 56 #endif 57 58 #ifdef QFQ_DEBUG 59 #define _P64 unsigned long long /* cast for printing uint64_t */ 60 struct qfq_sched; 61 static void dump_sched(struct qfq_sched *q, const char *msg); 62 #define NO(x) x 63 #else 64 #define NO(x) 65 #endif 66 #define DN_SCHED_QFQ 4 // XXX Where? 67 typedef unsigned long bitmap; 68 69 /* 70 * bitmaps ops are critical. Some linux versions have __fls 71 * and the bitmap ops. Some machines have ffs 72 * NOTE: fls() returns 1 for the least significant bit, 73 * __fls() returns 0 for the same case. 74 * We use the base-0 version __fls() to match the description in 75 * the ToN QFQ paper 76 */ 77 #if defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 78 int fls(unsigned int n) 79 { 80 int i = 0; 81 for (i = 0; n > 0; n >>= 1, i++) 82 ; 83 return i; 84 } 85 #endif 86 87 #if !defined(_KERNEL) || defined( __FreeBSD__ ) || defined(_WIN32) || (defined(__MIPSEL__) && defined(LINUX_24)) 88 static inline unsigned long __fls(unsigned long word) 89 { 90 return fls(word) - 1; 91 } 92 #endif 93 94 #if !defined(_KERNEL) || !defined(__linux__) 95 #ifdef QFQ_DEBUG 96 static int test_bit(int ix, bitmap *p) 97 { 98 if (ix < 0 || ix > 31) 99 D("bad index %d", ix); 100 return *p & (1<<ix); 101 } 102 static void __set_bit(int ix, bitmap *p) 103 { 104 if (ix < 0 || ix > 31) 105 D("bad index %d", ix); 106 *p |= (1<<ix); 107 } 108 static void __clear_bit(int ix, bitmap *p) 109 { 110 if (ix < 0 || ix > 31) 111 D("bad index %d", ix); 112 *p &= ~(1<<ix); 113 } 114 #else /* !QFQ_DEBUG */ 115 /* XXX do we have fast version, or leave it to the compiler ? */ 116 #define test_bit(ix, pData) ((*pData) & (1<<(ix))) 117 #define __set_bit(ix, pData) (*pData) |= (1<<(ix)) 118 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 119 #endif /* !QFQ_DEBUG */ 120 #endif /* !__linux__ */ 121 122 #ifdef __MIPSEL__ 123 #define __clear_bit(ix, pData) (*pData) &= ~(1<<(ix)) 124 #endif 125 126 /*-------------------------------------------*/ 127 /* 128 129 Virtual time computations. 130 131 S, F and V are all computed in fixed point arithmetic with 132 FRAC_BITS decimal bits. 133 134 QFQ_MAX_INDEX is the maximum index allowed for a group. We need 135 one bit per index. 136 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight. 137 The layout of the bits is as below: 138 139 [ MTU_SHIFT ][ FRAC_BITS ] 140 [ MAX_INDEX ][ MIN_SLOT_SHIFT ] 141 ^.__grp->index = 0 142 *.__grp->slot_shift 143 144 where MIN_SLOT_SHIFT is derived by difference from the others. 145 146 The max group index corresponds to Lmax/w_min, where 147 Lmax=1<<MTU_SHIFT, w_min = 1 . 148 From this, and knowing how many groups (MAX_INDEX) we want, 149 we can derive the shift corresponding to each group. 150 151 Because we often need to compute 152 F = S + len/w_i and V = V + len/wsum 153 instead of storing w_i store the value 154 inv_w = (1<<FRAC_BITS)/w_i 155 so we can do F = S + len * inv_w * wsum. 156 We use W_TOT in the formulas so we can easily move between 157 static and adaptive weight sum. 158 159 The per-scheduler-instance data contain all the data structures 160 for the scheduler: bitmaps and bucket lists. 161 162 */ 163 /* 164 * Maximum number of consecutive slots occupied by backlogged classes 165 * inside a group. This is approx lmax/lmin + 5. 166 * XXX check because it poses constraints on MAX_INDEX 167 */ 168 #define QFQ_MAX_SLOTS 32 169 /* 170 * Shifts used for class<->group mapping. Class weights are 171 * in the range [1, QFQ_MAX_WEIGHT], we to map each class i to the 172 * group with the smallest index that can support the L_i / r_i 173 * configured for the class. 174 * 175 * grp->index is the index of the group; and grp->slot_shift 176 * is the shift for the corresponding (scaled) sigma_i. 177 * 178 * When computing the group index, we do (len<<FP_SHIFT)/weight, 179 * then compute an FLS (which is like a log2()), and if the result 180 * is below the MAX_INDEX region we use 0 (which is the same as 181 * using a larger len). 182 */ 183 #define QFQ_MAX_INDEX 19 184 #define QFQ_MAX_WSHIFT 16 /* log2(max_weight) */ 185 186 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) 187 #define QFQ_MAX_WSUM (2*QFQ_MAX_WEIGHT) 188 189 #define FRAC_BITS 30 /* fixed point arithmetic */ 190 #define ONE_FP (1UL << FRAC_BITS) 191 192 #define QFQ_MTU_SHIFT 11 /* log2(max_len) */ 193 #define QFQ_MIN_SLOT_SHIFT (FRAC_BITS + QFQ_MTU_SHIFT - QFQ_MAX_INDEX) 194 195 /* 196 * Possible group states, also indexes for the bitmaps array in 197 * struct qfq_queue. We rely on ER, IR, EB, IB being numbered 0..3 198 */ 199 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE }; 200 201 struct qfq_group; 202 /* 203 * additional queue info. Some of this info should come from 204 * the flowset, we copy them here for faster processing. 205 * This is an overlay of the struct dn_queue 206 */ 207 struct qfq_class { 208 struct dn_queue _q; 209 uint64_t S, F; /* flow timestamps (exact) */ 210 struct qfq_class *next; /* Link for the slot list. */ 211 212 /* group we belong to. In principle we would need the index, 213 * which is log_2(lmax/weight), but we never reference it 214 * directly, only the group. 215 */ 216 struct qfq_group *grp; 217 218 /* these are copied from the flowset. */ 219 uint32_t inv_w; /* ONE_FP/weight */ 220 uint32_t lmax; /* Max packet size for this flow. */ 221 }; 222 223 /* Group descriptor, see the paper for details. 224 * Basically this contains the bucket lists 225 */ 226 struct qfq_group { 227 uint64_t S, F; /* group timestamps (approx). */ 228 unsigned int slot_shift; /* Slot shift. */ 229 unsigned int index; /* Group index. */ 230 unsigned int front; /* Index of the front slot. */ 231 bitmap full_slots; /* non-empty slots */ 232 233 /* Array of lists of active classes. */ 234 struct qfq_class *slots[QFQ_MAX_SLOTS]; 235 }; 236 237 /* scheduler instance descriptor. */ 238 struct qfq_sched { 239 uint64_t V; /* Precise virtual time. */ 240 uint32_t wsum; /* weight sum */ 241 uint32_t iwsum; /* inverse weight sum */ 242 NO(uint32_t i_wsum;) /* ONE_FP/w_sum */ 243 NO(uint32_t queued;) /* debugging */ 244 NO(uint32_t loops;) /* debugging */ 245 bitmap bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */ 246 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */ 247 }; 248 249 /*---- support functions ----------------------------*/ 250 251 /* Generic comparison function, handling wraparound. */ 252 static inline int qfq_gt(uint64_t a, uint64_t b) 253 { 254 return (int64_t)(a - b) > 0; 255 } 256 257 /* Round a precise timestamp to its slotted value. */ 258 static inline uint64_t qfq_round_down(uint64_t ts, unsigned int shift) 259 { 260 return ts & ~((1ULL << shift) - 1); 261 } 262 263 /* return the pointer to the group with lowest index in the bitmap */ 264 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q, 265 unsigned long bitmap) 266 { 267 int index = ffs(bitmap) - 1; // zero-based 268 return &q->groups[index]; 269 } 270 271 /* 272 * Calculate a flow index, given its weight and maximum packet length. 273 * index = log_2(maxlen/weight) but we need to apply the scaling. 274 * This is used only once at flow creation. 275 */ 276 static int qfq_calc_index(uint32_t inv_w, unsigned int maxlen) 277 { 278 uint64_t slot_size = (uint64_t)maxlen *inv_w; 279 unsigned long size_map; 280 int index = 0; 281 282 size_map = (unsigned long)(slot_size >> QFQ_MIN_SLOT_SHIFT); 283 if (!size_map) 284 goto out; 285 286 index = __fls(size_map) + 1; // basically a log_2() 287 index -= !(slot_size - (1ULL << (index + QFQ_MIN_SLOT_SHIFT - 1))); 288 289 if (index < 0) 290 index = 0; 291 292 out: 293 ND("W = %d, L = %d, I = %d\n", ONE_FP/inv_w, maxlen, index); 294 return index; 295 } 296 /*---- end support functions ----*/ 297 298 /*-------- API calls --------------------------------*/ 299 /* 300 * Validate and copy parameters from flowset. 301 */ 302 static int 303 qfq_new_queue(struct dn_queue *_q) 304 { 305 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 306 struct qfq_class *cl = (struct qfq_class *)_q; 307 int i; 308 uint32_t w; /* approximated weight */ 309 310 /* import parameters from the flowset. They should be correct 311 * already. 312 */ 313 w = _q->fs->fs.par[0]; 314 cl->lmax = _q->fs->fs.par[1]; 315 if (!w || w > QFQ_MAX_WEIGHT) { 316 w = 1; 317 D("rounding weight to 1"); 318 } 319 cl->inv_w = ONE_FP/w; 320 w = ONE_FP/cl->inv_w; 321 if (q->wsum + w > QFQ_MAX_WSUM) 322 return EINVAL; 323 324 i = qfq_calc_index(cl->inv_w, cl->lmax); 325 cl->grp = &q->groups[i]; 326 q->wsum += w; 327 q->iwsum = ONE_FP / q->wsum; /* XXX note theory */ 328 // XXX cl->S = q->V; ? 329 return 0; 330 } 331 332 /* remove an empty queue */ 333 static int 334 qfq_free_queue(struct dn_queue *_q) 335 { 336 struct qfq_sched *q = (struct qfq_sched *)(_q->_si + 1); 337 struct qfq_class *cl = (struct qfq_class *)_q; 338 if (cl->inv_w) { 339 q->wsum -= ONE_FP/cl->inv_w; 340 if (q->wsum != 0) 341 q->iwsum = ONE_FP / q->wsum; 342 cl->inv_w = 0; /* reset weight to avoid run twice */ 343 } 344 return 0; 345 } 346 347 /* Calculate a mask to mimic what would be ffs_from(). */ 348 static inline unsigned long 349 mask_from(unsigned long bitmap, int from) 350 { 351 return bitmap & ~((1UL << from) - 1); 352 } 353 354 /* 355 * The state computation relies on ER=0, IR=1, EB=2, IB=3 356 * First compute eligibility comparing grp->S, q->V, 357 * then check if someone is blocking us and possibly add EB 358 */ 359 static inline unsigned int 360 qfq_calc_state(struct qfq_sched *q, struct qfq_group *grp) 361 { 362 /* if S > V we are not eligible */ 363 unsigned int state = qfq_gt(grp->S, q->V); 364 unsigned long mask = mask_from(q->bitmaps[ER], grp->index); 365 struct qfq_group *next; 366 367 if (mask) { 368 next = qfq_ffs(q, mask); 369 if (qfq_gt(grp->F, next->F)) 370 state |= EB; 371 } 372 373 return state; 374 } 375 376 /* 377 * In principle 378 * q->bitmaps[dst] |= q->bitmaps[src] & mask; 379 * q->bitmaps[src] &= ~mask; 380 * but we should make sure that src != dst 381 */ 382 static inline void 383 qfq_move_groups(struct qfq_sched *q, unsigned long mask, int src, int dst) 384 { 385 q->bitmaps[dst] |= q->bitmaps[src] & mask; 386 q->bitmaps[src] &= ~mask; 387 } 388 389 static inline void 390 qfq_unblock_groups(struct qfq_sched *q, int index, uint64_t old_finish) 391 { 392 unsigned long mask = mask_from(q->bitmaps[ER], index + 1); 393 struct qfq_group *next; 394 395 if (mask) { 396 next = qfq_ffs(q, mask); 397 if (!qfq_gt(next->F, old_finish)) 398 return; 399 } 400 401 mask = (1UL << index) - 1; 402 qfq_move_groups(q, mask, EB, ER); 403 qfq_move_groups(q, mask, IB, IR); 404 } 405 406 /* 407 * perhaps 408 * 409 old_V ^= q->V; 410 old_V >>= QFQ_MIN_SLOT_SHIFT; 411 if (old_V) { 412 ... 413 } 414 * 415 */ 416 static inline void 417 qfq_make_eligible(struct qfq_sched *q, uint64_t old_V) 418 { 419 unsigned long mask, vslot, old_vslot; 420 421 vslot = q->V >> QFQ_MIN_SLOT_SHIFT; 422 old_vslot = old_V >> QFQ_MIN_SLOT_SHIFT; 423 424 if (vslot != old_vslot) { 425 /* must be 2ULL, see ToN QFQ article fig.5, we use base-0 fls */ 426 mask = (2ULL << (__fls(vslot ^ old_vslot))) - 1; 427 qfq_move_groups(q, mask, IR, ER); 428 qfq_move_groups(q, mask, IB, EB); 429 } 430 } 431 432 /* 433 * XXX we should make sure that slot becomes less than 32. 434 * This is guaranteed by the input values. 435 * roundedS is always cl->S rounded on grp->slot_shift bits. 436 */ 437 static inline void 438 qfq_slot_insert(struct qfq_group *grp, struct qfq_class *cl, uint64_t roundedS) 439 { 440 uint64_t slot = (roundedS - grp->S) >> grp->slot_shift; 441 unsigned int i = (grp->front + slot) % QFQ_MAX_SLOTS; 442 443 cl->next = grp->slots[i]; 444 grp->slots[i] = cl; 445 __set_bit(slot, &grp->full_slots); 446 } 447 448 /* 449 * remove the entry from the slot 450 */ 451 static inline void 452 qfq_front_slot_remove(struct qfq_group *grp) 453 { 454 struct qfq_class **h = &grp->slots[grp->front]; 455 456 *h = (*h)->next; 457 if (!*h) 458 __clear_bit(0, &grp->full_slots); 459 } 460 461 /* 462 * Returns the first full queue in a group. As a side effect, 463 * adjust the bucket list so the first non-empty bucket is at 464 * position 0 in full_slots. 465 */ 466 static inline struct qfq_class * 467 qfq_slot_scan(struct qfq_group *grp) 468 { 469 int i; 470 471 ND("grp %d full %x", grp->index, grp->full_slots); 472 if (!grp->full_slots) 473 return NULL; 474 475 i = ffs(grp->full_slots) - 1; // zero-based 476 if (i > 0) { 477 grp->front = (grp->front + i) % QFQ_MAX_SLOTS; 478 grp->full_slots >>= i; 479 } 480 481 return grp->slots[grp->front]; 482 } 483 484 /* 485 * adjust the bucket list. When the start time of a group decreases, 486 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to 487 * move the objects. The mask of occupied slots must be shifted 488 * because we use ffs() to find the first non-empty slot. 489 * This covers decreases in the group's start time, but what about 490 * increases of the start time ? 491 * Here too we should make sure that i is less than 32 492 */ 493 static inline void 494 qfq_slot_rotate(struct qfq_sched *q, struct qfq_group *grp, uint64_t roundedS) 495 { 496 unsigned int i = (grp->S - roundedS) >> grp->slot_shift; 497 498 (void)q; 499 grp->full_slots <<= i; 500 grp->front = (grp->front - i) % QFQ_MAX_SLOTS; 501 } 502 503 504 static inline void 505 qfq_update_eligible(struct qfq_sched *q, uint64_t old_V) 506 { 507 bitmap ineligible; 508 509 ineligible = q->bitmaps[IR] | q->bitmaps[IB]; 510 if (ineligible) { 511 if (!q->bitmaps[ER]) { 512 struct qfq_group *grp; 513 grp = qfq_ffs(q, ineligible); 514 if (qfq_gt(grp->S, q->V)) 515 q->V = grp->S; 516 } 517 qfq_make_eligible(q, old_V); 518 } 519 } 520 521 /* 522 * Updates the class, returns true if also the group needs to be updated. 523 */ 524 static inline int 525 qfq_update_class(struct qfq_sched *q, struct qfq_group *grp, 526 struct qfq_class *cl) 527 { 528 529 (void)q; 530 cl->S = cl->F; 531 if (cl->_q.mq.head == NULL) { 532 qfq_front_slot_remove(grp); 533 } else { 534 unsigned int len; 535 uint64_t roundedS; 536 537 len = cl->_q.mq.head->m_pkthdr.len; 538 cl->F = cl->S + (uint64_t)len * cl->inv_w; 539 roundedS = qfq_round_down(cl->S, grp->slot_shift); 540 if (roundedS == grp->S) 541 return 0; 542 543 qfq_front_slot_remove(grp); 544 qfq_slot_insert(grp, cl, roundedS); 545 } 546 return 1; 547 } 548 549 static struct mbuf * 550 qfq_dequeue(struct dn_sch_inst *si) 551 { 552 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 553 struct qfq_group *grp; 554 struct qfq_class *cl; 555 struct mbuf *m; 556 uint64_t old_V; 557 558 NO(q->loops++;) 559 if (!q->bitmaps[ER]) { 560 NO(if (q->queued) 561 dump_sched(q, "start dequeue");) 562 return NULL; 563 } 564 565 grp = qfq_ffs(q, q->bitmaps[ER]); 566 567 cl = grp->slots[grp->front]; 568 /* extract from the first bucket in the bucket list */ 569 m = dn_dequeue(&cl->_q); 570 571 if (!m) { 572 D("BUG/* non-workconserving leaf */"); 573 return NULL; 574 } 575 NO(q->queued--;) 576 old_V = q->V; 577 q->V += (uint64_t)m->m_pkthdr.len * q->iwsum; 578 ND("m is %p F 0x%llx V now 0x%llx", m, cl->F, q->V); 579 580 if (qfq_update_class(q, grp, cl)) { 581 uint64_t old_F = grp->F; 582 cl = qfq_slot_scan(grp); 583 if (!cl) { /* group gone, remove from ER */ 584 __clear_bit(grp->index, &q->bitmaps[ER]); 585 // grp->S = grp->F + 1; // XXX debugging only 586 } else { 587 uint64_t roundedS = qfq_round_down(cl->S, grp->slot_shift); 588 unsigned int s; 589 590 if (grp->S == roundedS) 591 goto skip_unblock; 592 grp->S = roundedS; 593 grp->F = roundedS + (2ULL << grp->slot_shift); 594 /* remove from ER and put in the new set */ 595 __clear_bit(grp->index, &q->bitmaps[ER]); 596 s = qfq_calc_state(q, grp); 597 __set_bit(grp->index, &q->bitmaps[s]); 598 } 599 /* we need to unblock even if the group has gone away */ 600 qfq_unblock_groups(q, grp->index, old_F); 601 } 602 603 skip_unblock: 604 qfq_update_eligible(q, old_V); 605 NO(if (!q->bitmaps[ER] && q->queued) 606 dump_sched(q, "end dequeue");) 607 608 return m; 609 } 610 611 /* 612 * Assign a reasonable start time for a new flow k in group i. 613 * Admissible values for \hat(F) are multiples of \sigma_i 614 * no greater than V+\sigma_i . Larger values mean that 615 * we had a wraparound so we consider the timestamp to be stale. 616 * 617 * If F is not stale and F >= V then we set S = F. 618 * Otherwise we should assign S = V, but this may violate 619 * the ordering in ER. So, if we have groups in ER, set S to 620 * the F_j of the first group j which would be blocking us. 621 * We are guaranteed not to move S backward because 622 * otherwise our group i would still be blocked. 623 */ 624 static inline void 625 qfq_update_start(struct qfq_sched *q, struct qfq_class *cl) 626 { 627 unsigned long mask; 628 uint64_t limit, roundedF; 629 int slot_shift = cl->grp->slot_shift; 630 631 roundedF = qfq_round_down(cl->F, slot_shift); 632 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift); 633 634 if (!qfq_gt(cl->F, q->V) || qfq_gt(roundedF, limit)) { 635 /* timestamp was stale */ 636 mask = mask_from(q->bitmaps[ER], cl->grp->index); 637 if (mask) { 638 struct qfq_group *next = qfq_ffs(q, mask); 639 if (qfq_gt(roundedF, next->F)) { 640 /* from pv 71261956973ba9e0637848a5adb4a5819b4bae83 */ 641 if (qfq_gt(limit, next->F)) 642 cl->S = next->F; 643 else /* preserve timestamp correctness */ 644 cl->S = limit; 645 return; 646 } 647 } 648 cl->S = q->V; 649 } else { /* timestamp is not stale */ 650 cl->S = cl->F; 651 } 652 } 653 654 static int 655 qfq_enqueue(struct dn_sch_inst *si, struct dn_queue *_q, struct mbuf *m) 656 { 657 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 658 struct qfq_group *grp; 659 struct qfq_class *cl = (struct qfq_class *)_q; 660 uint64_t roundedS; 661 int s; 662 663 NO(q->loops++;) 664 DX(4, "len %d flow %p inv_w 0x%x grp %d", m->m_pkthdr.len, 665 _q, cl->inv_w, cl->grp->index); 666 /* XXX verify that the packet obeys the parameters */ 667 if (m != _q->mq.head) { 668 if (dn_enqueue(_q, m, 0)) /* packet was dropped */ 669 return 1; 670 NO(q->queued++;) 671 if (m != _q->mq.head) 672 return 0; 673 } 674 /* If reach this point, queue q was idle */ 675 grp = cl->grp; 676 qfq_update_start(q, cl); /* adjust start time */ 677 /* compute new finish time and rounded start. */ 678 cl->F = cl->S + (uint64_t)(m->m_pkthdr.len) * cl->inv_w; 679 roundedS = qfq_round_down(cl->S, grp->slot_shift); 680 681 /* 682 * insert cl in the correct bucket. 683 * If cl->S >= grp->S we don't need to adjust the 684 * bucket list and simply go to the insertion phase. 685 * Otherwise grp->S is decreasing, we must make room 686 * in the bucket list, and also recompute the group state. 687 * Finally, if there were no flows in this group and nobody 688 * was in ER make sure to adjust V. 689 */ 690 if (grp->full_slots) { 691 if (!qfq_gt(grp->S, cl->S)) 692 goto skip_update; 693 /* create a slot for this cl->S */ 694 qfq_slot_rotate(q, grp, roundedS); 695 /* group was surely ineligible, remove */ 696 __clear_bit(grp->index, &q->bitmaps[IR]); 697 __clear_bit(grp->index, &q->bitmaps[IB]); 698 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V)) 699 q->V = roundedS; 700 701 grp->S = roundedS; 702 grp->F = roundedS + (2ULL << grp->slot_shift); // i.e. 2\sigma_i 703 s = qfq_calc_state(q, grp); 704 __set_bit(grp->index, &q->bitmaps[s]); 705 ND("new state %d 0x%x", s, q->bitmaps[s]); 706 ND("S %llx F %llx V %llx", cl->S, cl->F, q->V); 707 skip_update: 708 qfq_slot_insert(grp, cl, roundedS); 709 710 return 0; 711 } 712 713 714 #if 0 715 static inline void 716 qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp, 717 struct qfq_class *cl, struct qfq_class **pprev) 718 { 719 unsigned int i, offset; 720 uint64_t roundedS; 721 722 roundedS = qfq_round_down(cl->S, grp->slot_shift); 723 offset = (roundedS - grp->S) >> grp->slot_shift; 724 i = (grp->front + offset) % QFQ_MAX_SLOTS; 725 726 #ifdef notyet 727 if (!pprev) { 728 pprev = &grp->slots[i]; 729 while (*pprev && *pprev != cl) 730 pprev = &(*pprev)->next; 731 } 732 #endif 733 734 *pprev = cl->next; 735 if (!grp->slots[i]) 736 __clear_bit(offset, &grp->full_slots); 737 } 738 739 /* 740 * called to forcibly destroy a queue. 741 * If the queue is not in the front bucket, or if it has 742 * other queues in the front bucket, we can simply remove 743 * the queue with no other side effects. 744 * Otherwise we must propagate the event up. 745 * XXX description to be completed. 746 */ 747 static void 748 qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl, 749 struct qfq_class **pprev) 750 { 751 struct qfq_group *grp = &q->groups[cl->index]; 752 unsigned long mask; 753 uint64_t roundedS; 754 int s; 755 756 cl->F = cl->S; // not needed if the class goes away. 757 qfq_slot_remove(q, grp, cl, pprev); 758 759 if (!grp->full_slots) { 760 /* nothing left in the group, remove from all sets. 761 * Do ER last because if we were blocking other groups 762 * we must unblock them. 763 */ 764 __clear_bit(grp->index, &q->bitmaps[IR]); 765 __clear_bit(grp->index, &q->bitmaps[EB]); 766 __clear_bit(grp->index, &q->bitmaps[IB]); 767 768 if (test_bit(grp->index, &q->bitmaps[ER]) && 769 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) { 770 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1); 771 if (mask) 772 mask = ~((1UL << __fls(mask)) - 1); 773 else 774 mask = ~0UL; 775 qfq_move_groups(q, mask, EB, ER); 776 qfq_move_groups(q, mask, IB, IR); 777 } 778 __clear_bit(grp->index, &q->bitmaps[ER]); 779 } else if (!grp->slots[grp->front]) { 780 cl = qfq_slot_scan(grp); 781 roundedS = qfq_round_down(cl->S, grp->slot_shift); 782 if (grp->S != roundedS) { 783 __clear_bit(grp->index, &q->bitmaps[ER]); 784 __clear_bit(grp->index, &q->bitmaps[IR]); 785 __clear_bit(grp->index, &q->bitmaps[EB]); 786 __clear_bit(grp->index, &q->bitmaps[IB]); 787 grp->S = roundedS; 788 grp->F = roundedS + (2ULL << grp->slot_shift); 789 s = qfq_calc_state(q, grp); 790 __set_bit(grp->index, &q->bitmaps[s]); 791 } 792 } 793 qfq_update_eligible(q, q->V); 794 } 795 #endif 796 797 static int 798 qfq_new_fsk(struct dn_fsk *f) 799 { 800 ipdn_bound_var(&f->fs.par[0], 1, 1, QFQ_MAX_WEIGHT, "qfq weight"); 801 ipdn_bound_var(&f->fs.par[1], 1500, 1, 2000, "qfq maxlen"); 802 ND("weight %d len %d\n", f->fs.par[0], f->fs.par[1]); 803 return 0; 804 } 805 806 /* 807 * initialize a new scheduler instance 808 */ 809 static int 810 qfq_new_sched(struct dn_sch_inst *si) 811 { 812 struct qfq_sched *q = (struct qfq_sched *)(si + 1); 813 struct qfq_group *grp; 814 int i; 815 816 for (i = 0; i <= QFQ_MAX_INDEX; i++) { 817 grp = &q->groups[i]; 818 grp->index = i; 819 grp->slot_shift = QFQ_MTU_SHIFT + FRAC_BITS - 820 (QFQ_MAX_INDEX - i); 821 } 822 return 0; 823 } 824 825 /* 826 * QFQ scheduler descriptor 827 */ 828 static struct dn_alg qfq_desc = { 829 _SI( .type = ) DN_SCHED_QFQ, 830 _SI( .name = ) "QFQ", 831 _SI( .flags = ) DN_MULTIQUEUE, 832 833 _SI( .schk_datalen = ) 0, 834 _SI( .si_datalen = ) sizeof(struct qfq_sched), 835 _SI( .q_datalen = ) sizeof(struct qfq_class) - sizeof(struct dn_queue), 836 837 _SI( .enqueue = ) qfq_enqueue, 838 _SI( .dequeue = ) qfq_dequeue, 839 840 _SI( .config = ) NULL, 841 _SI( .destroy = ) NULL, 842 _SI( .new_sched = ) qfq_new_sched, 843 _SI( .free_sched = ) NULL, 844 _SI( .new_fsk = ) qfq_new_fsk, 845 _SI( .free_fsk = ) NULL, 846 _SI( .new_queue = ) qfq_new_queue, 847 _SI( .free_queue = ) qfq_free_queue, 848 #ifdef NEW_AQM 849 _SI( .getconfig = ) NULL, 850 #endif 851 }; 852 853 DECLARE_DNSCHED_MODULE(dn_qfq, &qfq_desc); 854 855 #ifdef QFQ_DEBUG 856 static void 857 dump_groups(struct qfq_sched *q, uint32_t mask) 858 { 859 int i, j; 860 861 for (i = 0; i < QFQ_MAX_INDEX + 1; i++) { 862 struct qfq_group *g = &q->groups[i]; 863 864 if (0 == (mask & (1<<i))) 865 continue; 866 for (j = 0; j < QFQ_MAX_SLOTS; j++) { 867 if (g->slots[j]) 868 D(" bucket %d %p", j, g->slots[j]); 869 } 870 D("full_slots 0x%llx", (_P64)g->full_slots); 871 D(" %2d S 0x%20llx F 0x%llx %c", i, 872 (_P64)g->S, (_P64)g->F, 873 mask & (1<<i) ? '1' : '0'); 874 } 875 } 876 877 static void 878 dump_sched(struct qfq_sched *q, const char *msg) 879 { 880 D("--- in %s: ---", msg); 881 D("loops %d queued %d V 0x%llx", q->loops, q->queued, (_P64)q->V); 882 D(" ER 0x%08x", (unsigned)q->bitmaps[ER]); 883 D(" EB 0x%08x", (unsigned)q->bitmaps[EB]); 884 D(" IR 0x%08x", (unsigned)q->bitmaps[IR]); 885 D(" IB 0x%08x", (unsigned)q->bitmaps[IB]); 886 dump_groups(q, 0xffffffff); 887 }; 888 #endif /* QFQ_DEBUG */ 889