1 /* 2 * FQ_PIE - The FlowQueue-PIE scheduler/AQM 3 * 4 * Copyright (C) 2016 Centre for Advanced Internet Architectures, 5 * Swinburne University of Technology, Melbourne, Australia. 6 * Portions of this code were made possible in part by a gift from 7 * The Comcast Innovation Fund. 8 * Implemented by Rasool Al-Saadi <ralsaadi@swin.edu.au> 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 /* Important note: 33 * As there is no an office document for FQ-PIE specification, we used 34 * FQ-CoDel algorithm with some modifications to implement FQ-PIE. 35 * This FQ-PIE implementation is a beta version and have not been tested 36 * extensively. Our FQ-PIE uses stand-alone PIE AQM per sub-queue. By 37 * default, timestamp is used to calculate queue delay instead of departure 38 * rate estimation method. Although departure rate estimation is available 39 * as testing option, the results could be incorrect. Moreover, turning PIE on 40 * and off option is available but it does not work properly in this version. 41 */ 42 43 #ifdef _KERNEL 44 #include <sys/malloc.h> 45 #include <sys/socket.h> 46 #include <sys/kernel.h> 47 #include <sys/mbuf.h> 48 #include <sys/lock.h> 49 #include <sys/module.h> 50 #include <sys/mutex.h> 51 #include <net/if.h> /* IFNAMSIZ */ 52 #include <netinet/in.h> 53 #include <netinet/ip_var.h> /* ipfw_rule_ref */ 54 #include <netinet/ip_fw.h> /* flow_id */ 55 #include <netinet/ip_dummynet.h> 56 57 #include <sys/proc.h> 58 #include <sys/rwlock.h> 59 60 #include <netpfil/ipfw/ip_fw_private.h> 61 #include <sys/sysctl.h> 62 #include <netinet/ip.h> 63 #include <netinet/ip6.h> 64 #include <netinet/ip_icmp.h> 65 #include <netinet/tcp.h> 66 #include <netinet/udp.h> 67 #include <sys/queue.h> 68 #include <sys/hash.h> 69 70 #include <netpfil/ipfw/dn_heap.h> 71 #include <netpfil/ipfw/ip_dn_private.h> 72 73 #include <netpfil/ipfw/dn_aqm.h> 74 #include <netpfil/ipfw/dn_aqm_pie.h> 75 #include <netpfil/ipfw/dn_sched.h> 76 77 #else 78 #include <dn_test.h> 79 #endif 80 81 #define DN_SCHED_FQ_PIE 7 82 83 /* list of queues */ 84 STAILQ_HEAD(fq_pie_list, fq_pie_flow); 85 86 /* FQ_PIE parameters including PIE */ 87 struct dn_sch_fq_pie_parms { 88 struct dn_aqm_pie_parms pcfg; /* PIE configuration Parameters */ 89 /* FQ_PIE Parameters */ 90 uint32_t flows_cnt; /* number of flows */ 91 uint32_t limit; /* hard limit of FQ_PIE queue size*/ 92 uint32_t quantum; 93 }; 94 95 /* flow (sub-queue) stats */ 96 struct flow_stats { 97 uint64_t tot_pkts; /* statistics counters */ 98 uint64_t tot_bytes; 99 uint32_t length; /* Queue length, in packets */ 100 uint32_t len_bytes; /* Queue length, in bytes */ 101 uint32_t drops; 102 }; 103 104 /* A flow of packets (sub-queue)*/ 105 struct fq_pie_flow { 106 struct mq mq; /* list of packets */ 107 struct flow_stats stats; /* statistics */ 108 int deficit; 109 int active; /* 1: flow is active (in a list) */ 110 struct pie_status pst; /* pie status variables */ 111 struct fq_pie_si_extra *psi_extra; 112 STAILQ_ENTRY(fq_pie_flow) flowchain; 113 }; 114 115 /* extra fq_pie scheduler configurations */ 116 struct fq_pie_schk { 117 struct dn_sch_fq_pie_parms cfg; 118 }; 119 120 /* fq_pie scheduler instance extra state vars. 121 * The purpose of separation this structure is to preserve number of active 122 * sub-queues and the flows array pointer even after the scheduler instance 123 * is destroyed. 124 * Preserving these varaiables allows freeing the allocated memory by 125 * fqpie_callout_cleanup() independently from fq_pie_free_sched(). 126 */ 127 struct fq_pie_si_extra { 128 uint32_t nr_active_q; /* number of active queues */ 129 struct fq_pie_flow *flows; /* array of flows (queues) */ 130 }; 131 132 /* fq_pie scheduler instance */ 133 struct fq_pie_si { 134 struct dn_sch_inst _si; /* standard scheduler instance. SHOULD BE FIRST */ 135 struct dn_queue main_q; /* main queue is after si directly */ 136 uint32_t perturbation; /* random value */ 137 struct fq_pie_list newflows; /* list of new queues */ 138 struct fq_pie_list oldflows; /* list of old queues */ 139 struct fq_pie_si_extra *si_extra; /* extra state vars*/ 140 }; 141 142 static struct dn_alg fq_pie_desc; 143 144 /* Default FQ-PIE parameters including PIE */ 145 /* PIE defaults 146 * target=15ms, max_burst=150ms, max_ecnth=0.1, 147 * alpha=0.125, beta=1.25, tupdate=15ms 148 * FQ- 149 * flows=1024, limit=10240, quantum =1514 150 */ 151 struct dn_sch_fq_pie_parms 152 fq_pie_sysctl = {{15000 * AQM_TIME_1US, 15000 * AQM_TIME_1US, 153 150000 * AQM_TIME_1US, PIE_SCALE * 0.1, PIE_SCALE * 0.125, 154 PIE_SCALE * 1.25, PIE_CAPDROP_ENABLED | PIE_DERAND_ENABLED}, 155 1024, 10240, 1514}; 156 157 static int 158 fqpie_sysctl_alpha_beta_handler(SYSCTL_HANDLER_ARGS) 159 { 160 int error; 161 long value; 162 163 if (!strcmp(oidp->oid_name,"alpha")) 164 value = fq_pie_sysctl.pcfg.alpha; 165 else 166 value = fq_pie_sysctl.pcfg.beta; 167 168 value = value * 1000 / PIE_SCALE; 169 error = sysctl_handle_long(oidp, &value, 0, req); 170 if (error != 0 || req->newptr == NULL) 171 return (error); 172 if (value < 1 || value > 7 * PIE_SCALE) 173 return (EINVAL); 174 value = (value * PIE_SCALE) / 1000; 175 if (!strcmp(oidp->oid_name,"alpha")) 176 fq_pie_sysctl.pcfg.alpha = value; 177 else 178 fq_pie_sysctl.pcfg.beta = value; 179 return (0); 180 } 181 182 static int 183 fqpie_sysctl_target_tupdate_maxb_handler(SYSCTL_HANDLER_ARGS) 184 { 185 int error; 186 long value; 187 188 if (!strcmp(oidp->oid_name,"target")) 189 value = fq_pie_sysctl.pcfg.qdelay_ref; 190 else if (!strcmp(oidp->oid_name,"tupdate")) 191 value = fq_pie_sysctl.pcfg.tupdate; 192 else 193 value = fq_pie_sysctl.pcfg.max_burst; 194 195 value = value / AQM_TIME_1US; 196 error = sysctl_handle_long(oidp, &value, 0, req); 197 if (error != 0 || req->newptr == NULL) 198 return (error); 199 if (value < 1 || value > 10 * AQM_TIME_1S) 200 return (EINVAL); 201 value = value * AQM_TIME_1US; 202 203 if (!strcmp(oidp->oid_name,"target")) 204 fq_pie_sysctl.pcfg.qdelay_ref = value; 205 else if (!strcmp(oidp->oid_name,"tupdate")) 206 fq_pie_sysctl.pcfg.tupdate = value; 207 else 208 fq_pie_sysctl.pcfg.max_burst = value; 209 return (0); 210 } 211 212 static int 213 fqpie_sysctl_max_ecnth_handler(SYSCTL_HANDLER_ARGS) 214 { 215 int error; 216 long value; 217 218 value = fq_pie_sysctl.pcfg.max_ecnth; 219 value = value * 1000 / PIE_SCALE; 220 error = sysctl_handle_long(oidp, &value, 0, req); 221 if (error != 0 || req->newptr == NULL) 222 return (error); 223 if (value < 1 || value > PIE_SCALE) 224 return (EINVAL); 225 value = (value * PIE_SCALE) / 1000; 226 fq_pie_sysctl.pcfg.max_ecnth = value; 227 return (0); 228 } 229 230 /* define FQ- PIE sysctl variables */ 231 SYSBEGIN(f4) 232 SYSCTL_DECL(_net_inet); 233 SYSCTL_DECL(_net_inet_ip); 234 SYSCTL_DECL(_net_inet_ip_dummynet); 235 static SYSCTL_NODE(_net_inet_ip_dummynet, OID_AUTO, fqpie, 236 CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 237 "FQ_PIE"); 238 239 #ifdef SYSCTL_NODE 240 241 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, target, 242 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 243 fqpie_sysctl_target_tupdate_maxb_handler, "L", 244 "queue target in microsecond"); 245 246 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, tupdate, 247 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 248 fqpie_sysctl_target_tupdate_maxb_handler, "L", 249 "the frequency of drop probability calculation in microsecond"); 250 251 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_burst, 252 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 253 fqpie_sysctl_target_tupdate_maxb_handler, "L", 254 "Burst allowance interval in microsecond"); 255 256 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, max_ecnth, 257 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 258 fqpie_sysctl_max_ecnth_handler, "L", 259 "ECN safeguard threshold scaled by 1000"); 260 261 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, alpha, 262 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 263 fqpie_sysctl_alpha_beta_handler, "L", 264 "PIE alpha scaled by 1000"); 265 266 SYSCTL_PROC(_net_inet_ip_dummynet_fqpie, OID_AUTO, beta, 267 CTLTYPE_LONG | CTLFLAG_RW | CTLFLAG_NEEDGIANT, NULL, 0, 268 fqpie_sysctl_alpha_beta_handler, "L", 269 "beta scaled by 1000"); 270 271 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, quantum, 272 CTLFLAG_RW, &fq_pie_sysctl.quantum, 1514, "quantum for FQ_PIE"); 273 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, flows, 274 CTLFLAG_RW, &fq_pie_sysctl.flows_cnt, 1024, "Number of queues for FQ_PIE"); 275 SYSCTL_UINT(_net_inet_ip_dummynet_fqpie, OID_AUTO, limit, 276 CTLFLAG_RW, &fq_pie_sysctl.limit, 10240, "limit for FQ_PIE"); 277 #endif 278 279 /* Helper function to update queue&main-queue and scheduler statistics. 280 * negative len & drop -> drop 281 * negative len -> dequeue 282 * positive len -> enqueue 283 * positive len + drop -> drop during enqueue 284 */ 285 __inline static void 286 fq_update_stats(struct fq_pie_flow *q, struct fq_pie_si *si, int len, 287 int drop) 288 { 289 int inc = 0; 290 291 if (len < 0) 292 inc = -1; 293 else if (len > 0) 294 inc = 1; 295 296 if (drop) { 297 si->main_q.ni.drops ++; 298 q->stats.drops ++; 299 si->_si.ni.drops ++; 300 V_dn_cfg.io_pkt_drop ++; 301 } 302 303 if (!drop || (drop && len < 0)) { 304 /* Update stats for the main queue */ 305 si->main_q.ni.length += inc; 306 si->main_q.ni.len_bytes += len; 307 308 /*update sub-queue stats */ 309 q->stats.length += inc; 310 q->stats.len_bytes += len; 311 312 /*update scheduler instance stats */ 313 si->_si.ni.length += inc; 314 si->_si.ni.len_bytes += len; 315 } 316 317 if (inc > 0) { 318 si->main_q.ni.tot_bytes += len; 319 si->main_q.ni.tot_pkts ++; 320 321 q->stats.tot_bytes +=len; 322 q->stats.tot_pkts++; 323 324 si->_si.ni.tot_bytes +=len; 325 si->_si.ni.tot_pkts ++; 326 } 327 328 } 329 330 /* 331 * Extract a packet from the head of sub-queue 'q' 332 * Return a packet or NULL if the queue is empty. 333 * If getts is set, also extract packet's timestamp from mtag. 334 */ 335 __inline static struct mbuf * 336 fq_pie_extract_head(struct fq_pie_flow *q, aqm_time_t *pkt_ts, 337 struct fq_pie_si *si, int getts) 338 { 339 struct mbuf *m; 340 341 next: m = q->mq.head; 342 if (m == NULL) 343 return m; 344 q->mq.head = m->m_nextpkt; 345 346 fq_update_stats(q, si, -m->m_pkthdr.len, 0); 347 348 if (si->main_q.ni.length == 0) /* queue is now idle */ 349 si->main_q.q_time = V_dn_cfg.curr_time; 350 351 if (getts) { 352 /* extract packet timestamp*/ 353 struct m_tag *mtag; 354 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 355 if (mtag == NULL){ 356 D("PIE timestamp mtag not found!"); 357 *pkt_ts = 0; 358 } else { 359 *pkt_ts = *(aqm_time_t *)(mtag + 1); 360 m_tag_delete(m,mtag); 361 } 362 } 363 if (m->m_pkthdr.rcvif != NULL && 364 __predict_false(m_rcvif_restore(m) == NULL)) { 365 m_freem(m); 366 goto next; 367 } 368 return m; 369 } 370 371 /* 372 * Callout function for drop probability calculation 373 * This function is called over tupdate ms and takes pointer of FQ-PIE 374 * flow as an argument 375 */ 376 static void 377 fq_calculate_drop_prob(void *x) 378 { 379 struct fq_pie_flow *q = (struct fq_pie_flow *) x; 380 struct pie_status *pst = &q->pst; 381 struct dn_aqm_pie_parms *pprms; 382 int64_t p, prob, oldprob; 383 int p_isneg; 384 385 pprms = pst->parms; 386 prob = pst->drop_prob; 387 388 /* calculate current qdelay using DRE method. 389 * If TS is used and no data in the queue, reset current_qdelay 390 * as it stays at last value during dequeue process. 391 */ 392 if (pprms->flags & PIE_DEPRATEEST_ENABLED) 393 pst->current_qdelay = ((uint64_t)q->stats.len_bytes * pst->avg_dq_time) 394 >> PIE_DQ_THRESHOLD_BITS; 395 else 396 if (!q->stats.len_bytes) 397 pst->current_qdelay = 0; 398 399 /* calculate drop probability */ 400 p = (int64_t)pprms->alpha * 401 ((int64_t)pst->current_qdelay - (int64_t)pprms->qdelay_ref); 402 p +=(int64_t) pprms->beta * 403 ((int64_t)pst->current_qdelay - (int64_t)pst->qdelay_old); 404 405 /* take absolute value so right shift result is well defined */ 406 p_isneg = p < 0; 407 if (p_isneg) { 408 p = -p; 409 } 410 411 /* We PIE_MAX_PROB shift by 12-bits to increase the division precision */ 412 p *= (PIE_MAX_PROB << 12) / AQM_TIME_1S; 413 414 /* auto-tune drop probability */ 415 if (prob < (PIE_MAX_PROB / 1000000)) /* 0.000001 */ 416 p >>= 11 + PIE_FIX_POINT_BITS + 12; 417 else if (prob < (PIE_MAX_PROB / 100000)) /* 0.00001 */ 418 p >>= 9 + PIE_FIX_POINT_BITS + 12; 419 else if (prob < (PIE_MAX_PROB / 10000)) /* 0.0001 */ 420 p >>= 7 + PIE_FIX_POINT_BITS + 12; 421 else if (prob < (PIE_MAX_PROB / 1000)) /* 0.001 */ 422 p >>= 5 + PIE_FIX_POINT_BITS + 12; 423 else if (prob < (PIE_MAX_PROB / 100)) /* 0.01 */ 424 p >>= 3 + PIE_FIX_POINT_BITS + 12; 425 else if (prob < (PIE_MAX_PROB / 10)) /* 0.1 */ 426 p >>= 1 + PIE_FIX_POINT_BITS + 12; 427 else 428 p >>= PIE_FIX_POINT_BITS + 12; 429 430 oldprob = prob; 431 432 if (p_isneg) { 433 prob = prob - p; 434 435 /* check for multiplication underflow */ 436 if (prob > oldprob) { 437 prob= 0; 438 D("underflow"); 439 } 440 } else { 441 /* Cap Drop adjustment */ 442 if ((pprms->flags & PIE_CAPDROP_ENABLED) && 443 prob >= PIE_MAX_PROB / 10 && 444 p > PIE_MAX_PROB / 50 ) { 445 p = PIE_MAX_PROB / 50; 446 } 447 448 prob = prob + p; 449 450 /* check for multiplication overflow */ 451 if (prob<oldprob) { 452 D("overflow"); 453 prob= PIE_MAX_PROB; 454 } 455 } 456 457 /* 458 * decay the drop probability exponentially 459 * and restrict it to range 0 to PIE_MAX_PROB 460 */ 461 if (prob < 0) { 462 prob = 0; 463 } else { 464 if (pst->current_qdelay == 0 && pst->qdelay_old == 0) { 465 /* 0.98 ~= 1- 1/64 */ 466 prob = prob - (prob >> 6); 467 } 468 469 if (prob > PIE_MAX_PROB) { 470 prob = PIE_MAX_PROB; 471 } 472 } 473 474 pst->drop_prob = prob; 475 476 /* store current delay value */ 477 pst->qdelay_old = pst->current_qdelay; 478 479 /* update burst allowance */ 480 if ((pst->sflags & PIE_ACTIVE) && pst->burst_allowance) { 481 if (pst->burst_allowance > pprms->tupdate) 482 pst->burst_allowance -= pprms->tupdate; 483 else 484 pst->burst_allowance = 0; 485 } 486 487 if (pst->sflags & PIE_ACTIVE) 488 callout_reset_sbt(&pst->aqm_pie_callout, 489 (uint64_t)pprms->tupdate * SBT_1US, 490 0, fq_calculate_drop_prob, q, 0); 491 492 mtx_unlock(&pst->lock_mtx); 493 } 494 495 /* 496 * Reset PIE variables & activate the queue 497 */ 498 __inline static void 499 fq_activate_pie(struct fq_pie_flow *q) 500 { 501 struct pie_status *pst = &q->pst; 502 struct dn_aqm_pie_parms *pprms; 503 504 mtx_lock(&pst->lock_mtx); 505 pprms = pst->parms; 506 507 pprms = pst->parms; 508 pst->drop_prob = 0; 509 pst->qdelay_old = 0; 510 pst->burst_allowance = pprms->max_burst; 511 pst->accu_prob = 0; 512 pst->dq_count = 0; 513 pst->avg_dq_time = 0; 514 pst->sflags = PIE_INMEASUREMENT | PIE_ACTIVE; 515 pst->measurement_start = AQM_UNOW; 516 517 callout_reset_sbt(&pst->aqm_pie_callout, 518 (uint64_t)pprms->tupdate * SBT_1US, 519 0, fq_calculate_drop_prob, q, 0); 520 521 mtx_unlock(&pst->lock_mtx); 522 } 523 524 /* 525 * Deactivate PIE and stop probe update callout 526 */ 527 __inline static void 528 fq_deactivate_pie(struct pie_status *pst) 529 { 530 mtx_lock(&pst->lock_mtx); 531 pst->sflags &= ~(PIE_ACTIVE | PIE_INMEASUREMENT); 532 callout_stop(&pst->aqm_pie_callout); 533 //D("PIE Deactivated"); 534 mtx_unlock(&pst->lock_mtx); 535 } 536 537 /* 538 * Initialize PIE for sub-queue 'q' 539 */ 540 static int 541 pie_init(struct fq_pie_flow *q, struct fq_pie_schk *fqpie_schk) 542 { 543 struct pie_status *pst=&q->pst; 544 struct dn_aqm_pie_parms *pprms = pst->parms; 545 546 int err = 0; 547 if (!pprms){ 548 D("AQM_PIE is not configured"); 549 err = EINVAL; 550 } else { 551 q->psi_extra->nr_active_q++; 552 553 /* For speed optimization, we caculate 1/3 queue size once here */ 554 // XXX limit divided by number of queues divided by 3 ??? 555 pst->one_third_q_size = (fqpie_schk->cfg.limit / 556 fqpie_schk->cfg.flows_cnt) / 3; 557 558 mtx_init(&pst->lock_mtx, "mtx_pie", NULL, MTX_DEF); 559 callout_init_mtx(&pst->aqm_pie_callout, &pst->lock_mtx, 560 CALLOUT_RETURNUNLOCKED); 561 } 562 563 return err; 564 } 565 566 /* 567 * callout function to destroy PIE lock, and free fq_pie flows and fq_pie si 568 * extra memory when number of active sub-queues reaches zero. 569 * 'x' is a fq_pie_flow to be destroyed 570 */ 571 static void 572 fqpie_callout_cleanup(void *x) 573 { 574 struct fq_pie_flow *q = x; 575 struct pie_status *pst = &q->pst; 576 struct fq_pie_si_extra *psi_extra; 577 578 mtx_unlock(&pst->lock_mtx); 579 mtx_destroy(&pst->lock_mtx); 580 psi_extra = q->psi_extra; 581 582 dummynet_sched_lock(); 583 psi_extra->nr_active_q--; 584 585 /* when all sub-queues are destroyed, free flows fq_pie extra vars memory */ 586 if (!psi_extra->nr_active_q) { 587 free(psi_extra->flows, M_DUMMYNET); 588 free(psi_extra, M_DUMMYNET); 589 fq_pie_desc.ref_count--; 590 } 591 dummynet_sched_unlock(); 592 } 593 594 /* 595 * Clean up PIE status for sub-queue 'q' 596 * Stop callout timer and destroy mtx using fqpie_callout_cleanup() callout. 597 */ 598 static int 599 pie_cleanup(struct fq_pie_flow *q) 600 { 601 struct pie_status *pst = &q->pst; 602 603 mtx_lock(&pst->lock_mtx); 604 callout_reset_sbt(&pst->aqm_pie_callout, 605 SBT_1US, 0, fqpie_callout_cleanup, q, 0); 606 mtx_unlock(&pst->lock_mtx); 607 return 0; 608 } 609 610 /* 611 * Dequeue and return a pcaket from sub-queue 'q' or NULL if 'q' is empty. 612 * Also, caculate depature time or queue delay using timestamp 613 */ 614 static struct mbuf * 615 pie_dequeue(struct fq_pie_flow *q, struct fq_pie_si *si) 616 { 617 struct mbuf *m; 618 struct dn_aqm_pie_parms *pprms; 619 struct pie_status *pst; 620 aqm_time_t now; 621 aqm_time_t pkt_ts, dq_time; 622 int32_t w; 623 624 pst = &q->pst; 625 pprms = q->pst.parms; 626 627 /*we extarct packet ts only when Departure Rate Estimation dis not used*/ 628 m = fq_pie_extract_head(q, &pkt_ts, si, 629 !(pprms->flags & PIE_DEPRATEEST_ENABLED)); 630 631 if (!m || !(pst->sflags & PIE_ACTIVE)) 632 return m; 633 634 now = AQM_UNOW; 635 if (pprms->flags & PIE_DEPRATEEST_ENABLED) { 636 /* calculate average depature time */ 637 if(pst->sflags & PIE_INMEASUREMENT) { 638 pst->dq_count += m->m_pkthdr.len; 639 640 if (pst->dq_count >= PIE_DQ_THRESHOLD) { 641 dq_time = now - pst->measurement_start; 642 643 /* 644 * if we don't have old avg dq_time i.e PIE is (re)initialized, 645 * don't use weight to calculate new avg_dq_time 646 */ 647 if(pst->avg_dq_time == 0) 648 pst->avg_dq_time = dq_time; 649 else { 650 /* 651 * weight = PIE_DQ_THRESHOLD/2^6, but we scaled 652 * weight by 2^8. Thus, scaled 653 * weight = PIE_DQ_THRESHOLD /2^8 654 * */ 655 w = PIE_DQ_THRESHOLD >> 8; 656 pst->avg_dq_time = (dq_time* w 657 + (pst->avg_dq_time * ((1L << 8) - w))) >> 8; 658 pst->sflags &= ~PIE_INMEASUREMENT; 659 } 660 } 661 } 662 663 /* 664 * Start new measurement cycle when the queue has 665 * PIE_DQ_THRESHOLD worth of bytes. 666 */ 667 if(!(pst->sflags & PIE_INMEASUREMENT) && 668 q->stats.len_bytes >= PIE_DQ_THRESHOLD) { 669 pst->sflags |= PIE_INMEASUREMENT; 670 pst->measurement_start = now; 671 pst->dq_count = 0; 672 } 673 } 674 /* Optionally, use packet timestamp to estimate queue delay */ 675 else 676 pst->current_qdelay = now - pkt_ts; 677 678 return m; 679 } 680 681 /* 682 * Enqueue a packet in q, subject to space and FQ-PIE queue management policy 683 * (whose parameters are in q->fs). 684 * Update stats for the queue and the scheduler. 685 * Return 0 on success, 1 on drop. The packet is consumed anyways. 686 */ 687 static int 688 pie_enqueue(struct fq_pie_flow *q, struct mbuf* m, struct fq_pie_si *si) 689 { 690 uint64_t len; 691 struct pie_status *pst; 692 struct dn_aqm_pie_parms *pprms; 693 int t; 694 695 len = m->m_pkthdr.len; 696 pst = &q->pst; 697 pprms = pst->parms; 698 t = ENQUE; 699 700 /* drop/mark the packet when PIE is active and burst time elapsed */ 701 if (pst->sflags & PIE_ACTIVE && pst->burst_allowance == 0 702 && drop_early(pst, q->stats.len_bytes) == DROP) { 703 /* 704 * if drop_prob over ECN threshold, drop the packet 705 * otherwise mark and enqueue it. 706 */ 707 if (pprms->flags & PIE_ECN_ENABLED && pst->drop_prob < 708 (pprms->max_ecnth << (PIE_PROB_BITS - PIE_FIX_POINT_BITS)) 709 && ecn_mark(m)) 710 t = ENQUE; 711 else 712 t = DROP; 713 } 714 715 /* Turn PIE on when 1/3 of the queue is full */ 716 if (!(pst->sflags & PIE_ACTIVE) && q->stats.len_bytes >= 717 pst->one_third_q_size) { 718 fq_activate_pie(q); 719 } 720 721 /* reset burst tolerance and optinally turn PIE off*/ 722 if (pst->drop_prob == 0 && pst->current_qdelay < (pprms->qdelay_ref >> 1) 723 && pst->qdelay_old < (pprms->qdelay_ref >> 1)) { 724 725 pst->burst_allowance = pprms->max_burst; 726 if (pprms->flags & PIE_ON_OFF_MODE_ENABLED && q->stats.len_bytes<=0) 727 fq_deactivate_pie(pst); 728 } 729 730 /* Use timestamp if Departure Rate Estimation mode is disabled */ 731 if (t != DROP && !(pprms->flags & PIE_DEPRATEEST_ENABLED)) { 732 /* Add TS to mbuf as a TAG */ 733 struct m_tag *mtag; 734 mtag = m_tag_locate(m, MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, NULL); 735 if (mtag == NULL) 736 mtag = m_tag_alloc(MTAG_ABI_COMPAT, DN_AQM_MTAG_TS, 737 sizeof(aqm_time_t), M_NOWAIT); 738 if (mtag == NULL) { 739 t = DROP; 740 } else { 741 *(aqm_time_t *)(mtag + 1) = AQM_UNOW; 742 m_tag_prepend(m, mtag); 743 } 744 } 745 746 if (t != DROP) { 747 if (m->m_pkthdr.rcvif != NULL) 748 m_rcvif_serialize(m); 749 750 mq_append(&q->mq, m); 751 fq_update_stats(q, si, len, 0); 752 return 0; 753 } else { 754 fq_update_stats(q, si, len, 1); 755 pst->accu_prob = 0; 756 FREE_PKT(m); 757 return 1; 758 } 759 760 return 0; 761 } 762 763 /* Drop a packet form the head of FQ-PIE sub-queue */ 764 static void 765 pie_drop_head(struct fq_pie_flow *q, struct fq_pie_si *si) 766 { 767 struct mbuf *m = q->mq.head; 768 769 if (m == NULL) 770 return; 771 q->mq.head = m->m_nextpkt; 772 773 fq_update_stats(q, si, -m->m_pkthdr.len, 1); 774 775 if (si->main_q.ni.length == 0) /* queue is now idle */ 776 si->main_q.q_time = V_dn_cfg.curr_time; 777 /* reset accu_prob after packet drop */ 778 q->pst.accu_prob = 0; 779 780 FREE_PKT(m); 781 } 782 783 /* 784 * Classify a packet to queue number using Jenkins hash function. 785 * Return: queue number 786 * the input of the hash are protocol no, perturbation, src IP, dst IP, 787 * src port, dst port, 788 */ 789 static inline int 790 fq_pie_classify_flow(struct mbuf *m, uint16_t fcount, struct fq_pie_si *si) 791 { 792 struct ip *ip; 793 struct tcphdr *th; 794 struct udphdr *uh; 795 uint8_t tuple[41]; 796 uint16_t hash=0; 797 798 ip = (struct ip *)mtodo(m, dn_tag_get(m)->iphdr_off); 799 //#ifdef INET6 800 struct ip6_hdr *ip6; 801 int isip6; 802 isip6 = (ip->ip_v == 6); 803 804 if(isip6) { 805 ip6 = (struct ip6_hdr *)ip; 806 *((uint8_t *) &tuple[0]) = ip6->ip6_nxt; 807 *((uint32_t *) &tuple[1]) = si->perturbation; 808 memcpy(&tuple[5], ip6->ip6_src.s6_addr, 16); 809 memcpy(&tuple[21], ip6->ip6_dst.s6_addr, 16); 810 811 switch (ip6->ip6_nxt) { 812 case IPPROTO_TCP: 813 th = (struct tcphdr *)(ip6 + 1); 814 *((uint16_t *) &tuple[37]) = th->th_dport; 815 *((uint16_t *) &tuple[39]) = th->th_sport; 816 break; 817 818 case IPPROTO_UDP: 819 uh = (struct udphdr *)(ip6 + 1); 820 *((uint16_t *) &tuple[37]) = uh->uh_dport; 821 *((uint16_t *) &tuple[39]) = uh->uh_sport; 822 break; 823 default: 824 memset(&tuple[37], 0, 4); 825 } 826 827 hash = jenkins_hash(tuple, 41, HASHINIT) % fcount; 828 return hash; 829 } 830 //#endif 831 832 /* IPv4 */ 833 *((uint8_t *) &tuple[0]) = ip->ip_p; 834 *((uint32_t *) &tuple[1]) = si->perturbation; 835 *((uint32_t *) &tuple[5]) = ip->ip_src.s_addr; 836 *((uint32_t *) &tuple[9]) = ip->ip_dst.s_addr; 837 838 switch (ip->ip_p) { 839 case IPPROTO_TCP: 840 th = (struct tcphdr *)(ip + 1); 841 *((uint16_t *) &tuple[13]) = th->th_dport; 842 *((uint16_t *) &tuple[15]) = th->th_sport; 843 break; 844 845 case IPPROTO_UDP: 846 uh = (struct udphdr *)(ip + 1); 847 *((uint16_t *) &tuple[13]) = uh->uh_dport; 848 *((uint16_t *) &tuple[15]) = uh->uh_sport; 849 break; 850 default: 851 memset(&tuple[13], 0, 4); 852 } 853 hash = jenkins_hash(tuple, 17, HASHINIT) % fcount; 854 855 return hash; 856 } 857 858 /* 859 * Enqueue a packet into an appropriate queue according to 860 * FQ-CoDe; algorithm. 861 */ 862 static int 863 fq_pie_enqueue(struct dn_sch_inst *_si, struct dn_queue *_q, 864 struct mbuf *m) 865 { 866 struct fq_pie_si *si; 867 struct fq_pie_schk *schk; 868 struct dn_sch_fq_pie_parms *param; 869 struct dn_queue *mainq; 870 struct fq_pie_flow *flows; 871 int idx, drop, i, maxidx; 872 873 mainq = (struct dn_queue *)(_si + 1); 874 si = (struct fq_pie_si *)_si; 875 flows = si->si_extra->flows; 876 schk = (struct fq_pie_schk *)(si->_si.sched+1); 877 param = &schk->cfg; 878 879 /* classify a packet to queue number*/ 880 idx = fq_pie_classify_flow(m, param->flows_cnt, si); 881 882 /* enqueue packet into appropriate queue using PIE AQM. 883 * Note: 'pie_enqueue' function returns 1 only when it unable to 884 * add timestamp to packet (no limit check)*/ 885 drop = pie_enqueue(&flows[idx], m, si); 886 887 /* pie unable to timestamp a packet */ 888 if (drop) 889 return 1; 890 891 /* If the flow (sub-queue) is not active ,then add it to tail of 892 * new flows list, initialize and activate it. 893 */ 894 if (!flows[idx].active) { 895 STAILQ_INSERT_TAIL(&si->newflows, &flows[idx], flowchain); 896 flows[idx].deficit = param->quantum; 897 fq_activate_pie(&flows[idx]); 898 flows[idx].active = 1; 899 } 900 901 /* check the limit for all queues and remove a packet from the 902 * largest one 903 */ 904 if (mainq->ni.length > schk->cfg.limit) { 905 /* find first active flow */ 906 for (maxidx = 0; maxidx < schk->cfg.flows_cnt; maxidx++) 907 if (flows[maxidx].active) 908 break; 909 if (maxidx < schk->cfg.flows_cnt) { 910 /* find the largest sub- queue */ 911 for (i = maxidx + 1; i < schk->cfg.flows_cnt; i++) 912 if (flows[i].active && flows[i].stats.length > 913 flows[maxidx].stats.length) 914 maxidx = i; 915 pie_drop_head(&flows[maxidx], si); 916 drop = 1; 917 } 918 } 919 920 return drop; 921 } 922 923 /* 924 * Dequeue a packet from an appropriate queue according to 925 * FQ-CoDel algorithm. 926 */ 927 static struct mbuf * 928 fq_pie_dequeue(struct dn_sch_inst *_si) 929 { 930 struct fq_pie_si *si; 931 struct fq_pie_schk *schk; 932 struct dn_sch_fq_pie_parms *param; 933 struct fq_pie_flow *f; 934 struct mbuf *mbuf; 935 struct fq_pie_list *fq_pie_flowlist; 936 937 si = (struct fq_pie_si *)_si; 938 schk = (struct fq_pie_schk *)(si->_si.sched+1); 939 param = &schk->cfg; 940 941 do { 942 /* select a list to start with */ 943 if (STAILQ_EMPTY(&si->newflows)) 944 fq_pie_flowlist = &si->oldflows; 945 else 946 fq_pie_flowlist = &si->newflows; 947 948 /* Both new and old queue lists are empty, return NULL */ 949 if (STAILQ_EMPTY(fq_pie_flowlist)) 950 return NULL; 951 952 f = STAILQ_FIRST(fq_pie_flowlist); 953 while (f != NULL) { 954 /* if there is no flow(sub-queue) deficit, increase deficit 955 * by quantum, move the flow to the tail of old flows list 956 * and try another flow. 957 * Otherwise, the flow will be used for dequeue. 958 */ 959 if (f->deficit < 0) { 960 f->deficit += param->quantum; 961 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 962 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 963 } else 964 break; 965 966 f = STAILQ_FIRST(fq_pie_flowlist); 967 } 968 969 /* the new flows list is empty, try old flows list */ 970 if (STAILQ_EMPTY(fq_pie_flowlist)) 971 continue; 972 973 /* Dequeue a packet from the selected flow */ 974 mbuf = pie_dequeue(f, si); 975 976 /* pie did not return a packet */ 977 if (!mbuf) { 978 /* If the selected flow belongs to new flows list, then move 979 * it to the tail of old flows list. Otherwise, deactivate it and 980 * remove it from the old list and 981 */ 982 if (fq_pie_flowlist == &si->newflows) { 983 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 984 STAILQ_INSERT_TAIL(&si->oldflows, f, flowchain); 985 } else { 986 f->active = 0; 987 fq_deactivate_pie(&f->pst); 988 STAILQ_REMOVE_HEAD(fq_pie_flowlist, flowchain); 989 } 990 /* start again */ 991 continue; 992 } 993 994 /* we have a packet to return, 995 * update flow deficit and return the packet*/ 996 f->deficit -= mbuf->m_pkthdr.len; 997 return mbuf; 998 999 } while (1); 1000 1001 /* unreachable point */ 1002 return NULL; 1003 } 1004 1005 /* 1006 * Initialize fq_pie scheduler instance. 1007 * also, allocate memory for flows array. 1008 */ 1009 static int 1010 fq_pie_new_sched(struct dn_sch_inst *_si) 1011 { 1012 struct fq_pie_si *si; 1013 struct dn_queue *q; 1014 struct fq_pie_schk *schk; 1015 struct fq_pie_flow *flows; 1016 int i; 1017 1018 si = (struct fq_pie_si *)_si; 1019 schk = (struct fq_pie_schk *)(_si->sched+1); 1020 1021 if(si->si_extra) { 1022 D("si already configured!"); 1023 return 0; 1024 } 1025 1026 /* init the main queue */ 1027 q = &si->main_q; 1028 set_oid(&q->ni.oid, DN_QUEUE, sizeof(*q)); 1029 q->_si = _si; 1030 q->fs = _si->sched->fs; 1031 1032 /* allocate memory for scheduler instance extra vars */ 1033 si->si_extra = malloc(sizeof(struct fq_pie_si_extra), 1034 M_DUMMYNET, M_NOWAIT | M_ZERO); 1035 if (si->si_extra == NULL) { 1036 D("cannot allocate memory for fq_pie si extra vars"); 1037 return ENOMEM ; 1038 } 1039 /* allocate memory for flows array */ 1040 si->si_extra->flows = mallocarray(schk->cfg.flows_cnt, 1041 sizeof(struct fq_pie_flow), M_DUMMYNET, M_NOWAIT | M_ZERO); 1042 flows = si->si_extra->flows; 1043 if (flows == NULL) { 1044 free(si->si_extra, M_DUMMYNET); 1045 si->si_extra = NULL; 1046 D("cannot allocate memory for fq_pie flows"); 1047 return ENOMEM ; 1048 } 1049 1050 /* init perturbation for this si */ 1051 si->perturbation = random(); 1052 si->si_extra->nr_active_q = 0; 1053 1054 /* init the old and new flows lists */ 1055 STAILQ_INIT(&si->newflows); 1056 STAILQ_INIT(&si->oldflows); 1057 1058 /* init the flows (sub-queues) */ 1059 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1060 flows[i].pst.parms = &schk->cfg.pcfg; 1061 flows[i].psi_extra = si->si_extra; 1062 pie_init(&flows[i], schk); 1063 } 1064 1065 dummynet_sched_lock(); 1066 fq_pie_desc.ref_count++; 1067 dummynet_sched_unlock(); 1068 1069 return 0; 1070 } 1071 1072 /* 1073 * Free fq_pie scheduler instance. 1074 */ 1075 static int 1076 fq_pie_free_sched(struct dn_sch_inst *_si) 1077 { 1078 struct fq_pie_si *si; 1079 struct fq_pie_schk *schk; 1080 struct fq_pie_flow *flows; 1081 int i; 1082 1083 si = (struct fq_pie_si *)_si; 1084 schk = (struct fq_pie_schk *)(_si->sched+1); 1085 flows = si->si_extra->flows; 1086 for (i = 0; i < schk->cfg.flows_cnt; i++) { 1087 pie_cleanup(&flows[i]); 1088 } 1089 si->si_extra = NULL; 1090 return 0; 1091 } 1092 1093 /* 1094 * Configure FQ-PIE scheduler. 1095 * the configurations for the scheduler is passed fromipfw userland. 1096 */ 1097 static int 1098 fq_pie_config(struct dn_schk *_schk) 1099 { 1100 struct fq_pie_schk *schk; 1101 struct dn_extra_parms *ep; 1102 struct dn_sch_fq_pie_parms *fqp_cfg; 1103 1104 schk = (struct fq_pie_schk *)(_schk+1); 1105 ep = (struct dn_extra_parms *) _schk->cfg; 1106 1107 /* par array contains fq_pie configuration as follow 1108 * PIE: 0- qdelay_ref,1- tupdate, 2- max_burst 1109 * 3- max_ecnth, 4- alpha, 5- beta, 6- flags 1110 * FQ_PIE: 7- quantum, 8- limit, 9- flows 1111 */ 1112 if (ep && ep->oid.len ==sizeof(*ep) && 1113 ep->oid.subtype == DN_SCH_PARAMS) { 1114 fqp_cfg = &schk->cfg; 1115 if (ep->par[0] < 0) 1116 fqp_cfg->pcfg.qdelay_ref = fq_pie_sysctl.pcfg.qdelay_ref; 1117 else 1118 fqp_cfg->pcfg.qdelay_ref = ep->par[0]; 1119 if (ep->par[1] < 0) 1120 fqp_cfg->pcfg.tupdate = fq_pie_sysctl.pcfg.tupdate; 1121 else 1122 fqp_cfg->pcfg.tupdate = ep->par[1]; 1123 if (ep->par[2] < 0) 1124 fqp_cfg->pcfg.max_burst = fq_pie_sysctl.pcfg.max_burst; 1125 else 1126 fqp_cfg->pcfg.max_burst = ep->par[2]; 1127 if (ep->par[3] < 0) 1128 fqp_cfg->pcfg.max_ecnth = fq_pie_sysctl.pcfg.max_ecnth; 1129 else 1130 fqp_cfg->pcfg.max_ecnth = ep->par[3]; 1131 if (ep->par[4] < 0) 1132 fqp_cfg->pcfg.alpha = fq_pie_sysctl.pcfg.alpha; 1133 else 1134 fqp_cfg->pcfg.alpha = ep->par[4]; 1135 if (ep->par[5] < 0) 1136 fqp_cfg->pcfg.beta = fq_pie_sysctl.pcfg.beta; 1137 else 1138 fqp_cfg->pcfg.beta = ep->par[5]; 1139 if (ep->par[6] < 0) 1140 fqp_cfg->pcfg.flags = 0; 1141 else 1142 fqp_cfg->pcfg.flags = ep->par[6]; 1143 1144 /* FQ configurations */ 1145 if (ep->par[7] < 0) 1146 fqp_cfg->quantum = fq_pie_sysctl.quantum; 1147 else 1148 fqp_cfg->quantum = ep->par[7]; 1149 if (ep->par[8] < 0) 1150 fqp_cfg->limit = fq_pie_sysctl.limit; 1151 else 1152 fqp_cfg->limit = ep->par[8]; 1153 if (ep->par[9] < 0) 1154 fqp_cfg->flows_cnt = fq_pie_sysctl.flows_cnt; 1155 else 1156 fqp_cfg->flows_cnt = ep->par[9]; 1157 1158 /* Bound the configurations */ 1159 fqp_cfg->pcfg.qdelay_ref = BOUND_VAR(fqp_cfg->pcfg.qdelay_ref, 1160 1, 5 * AQM_TIME_1S); 1161 fqp_cfg->pcfg.tupdate = BOUND_VAR(fqp_cfg->pcfg.tupdate, 1162 1, 5 * AQM_TIME_1S); 1163 fqp_cfg->pcfg.max_burst = BOUND_VAR(fqp_cfg->pcfg.max_burst, 1164 0, 5 * AQM_TIME_1S); 1165 fqp_cfg->pcfg.max_ecnth = BOUND_VAR(fqp_cfg->pcfg.max_ecnth, 1166 0, PIE_SCALE); 1167 fqp_cfg->pcfg.alpha = BOUND_VAR(fqp_cfg->pcfg.alpha, 0, 7 * PIE_SCALE); 1168 fqp_cfg->pcfg.beta = BOUND_VAR(fqp_cfg->pcfg.beta, 0, 7 * PIE_SCALE); 1169 1170 fqp_cfg->quantum = BOUND_VAR(fqp_cfg->quantum,1,9000); 1171 fqp_cfg->limit= BOUND_VAR(fqp_cfg->limit,1,20480); 1172 fqp_cfg->flows_cnt= BOUND_VAR(fqp_cfg->flows_cnt,1,65536); 1173 } 1174 else { 1175 D("Wrong parameters for fq_pie scheduler"); 1176 return 1; 1177 } 1178 1179 return 0; 1180 } 1181 1182 /* 1183 * Return FQ-PIE scheduler configurations 1184 * the configurations for the scheduler is passed to userland. 1185 */ 1186 static int 1187 fq_pie_getconfig (struct dn_schk *_schk, struct dn_extra_parms *ep) { 1188 struct fq_pie_schk *schk = (struct fq_pie_schk *)(_schk+1); 1189 struct dn_sch_fq_pie_parms *fqp_cfg; 1190 1191 fqp_cfg = &schk->cfg; 1192 1193 strcpy(ep->name, fq_pie_desc.name); 1194 ep->par[0] = fqp_cfg->pcfg.qdelay_ref; 1195 ep->par[1] = fqp_cfg->pcfg.tupdate; 1196 ep->par[2] = fqp_cfg->pcfg.max_burst; 1197 ep->par[3] = fqp_cfg->pcfg.max_ecnth; 1198 ep->par[4] = fqp_cfg->pcfg.alpha; 1199 ep->par[5] = fqp_cfg->pcfg.beta; 1200 ep->par[6] = fqp_cfg->pcfg.flags; 1201 1202 ep->par[7] = fqp_cfg->quantum; 1203 ep->par[8] = fqp_cfg->limit; 1204 ep->par[9] = fqp_cfg->flows_cnt; 1205 1206 return 0; 1207 } 1208 1209 /* 1210 * FQ-PIE scheduler descriptor 1211 * contains the type of the scheduler, the name, the size of extra 1212 * data structures, and function pointers. 1213 */ 1214 static struct dn_alg fq_pie_desc = { 1215 _SI( .type = ) DN_SCHED_FQ_PIE, 1216 _SI( .name = ) "FQ_PIE", 1217 _SI( .flags = ) 0, 1218 1219 _SI( .schk_datalen = ) sizeof(struct fq_pie_schk), 1220 _SI( .si_datalen = ) sizeof(struct fq_pie_si) - sizeof(struct dn_sch_inst), 1221 _SI( .q_datalen = ) 0, 1222 1223 _SI( .enqueue = ) fq_pie_enqueue, 1224 _SI( .dequeue = ) fq_pie_dequeue, 1225 _SI( .config = ) fq_pie_config, /* new sched i.e. sched X config ...*/ 1226 _SI( .destroy = ) NULL, /*sched x delete */ 1227 _SI( .new_sched = ) fq_pie_new_sched, /* new schd instance */ 1228 _SI( .free_sched = ) fq_pie_free_sched, /* delete schd instance */ 1229 _SI( .new_fsk = ) NULL, 1230 _SI( .free_fsk = ) NULL, 1231 _SI( .new_queue = ) NULL, 1232 _SI( .free_queue = ) NULL, 1233 _SI( .getconfig = ) fq_pie_getconfig, 1234 _SI( .ref_count = ) 0 1235 }; 1236 1237 DECLARE_DNSCHED_MODULE(dn_fq_pie, &fq_pie_desc); 1238