xref: /freebsd/sys/netipsec/key.c (revision ff0ba87247820afbdfdc1b307c803f7923d0e4d3)
1 /*	$FreeBSD$	*/
2 /*	$KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $	*/
3 
4 /*-
5  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  * 1. Redistributions of source code must retain the above copyright
12  *    notice, this list of conditions and the following disclaimer.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. Neither the name of the project nor the names of its contributors
17  *    may be used to endorse or promote products derived from this software
18  *    without specific prior written permission.
19  *
20  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
21  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
23  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
24  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
26  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
27  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
28  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
29  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
30  * SUCH DAMAGE.
31  */
32 
33 /*
34  * This code is referd to RFC 2367
35  */
36 
37 #include "opt_inet.h"
38 #include "opt_inet6.h"
39 #include "opt_ipsec.h"
40 
41 #include <sys/types.h>
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/kernel.h>
45 #include <sys/lock.h>
46 #include <sys/mutex.h>
47 #include <sys/mbuf.h>
48 #include <sys/domain.h>
49 #include <sys/protosw.h>
50 #include <sys/malloc.h>
51 #include <sys/socket.h>
52 #include <sys/socketvar.h>
53 #include <sys/sysctl.h>
54 #include <sys/errno.h>
55 #include <sys/proc.h>
56 #include <sys/queue.h>
57 #include <sys/refcount.h>
58 #include <sys/syslog.h>
59 
60 #include <net/if.h>
61 #include <net/if_var.h>
62 #include <net/route.h>
63 #include <net/vnet.h>
64 #include <net/raw_cb.h>
65 
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/ip.h>
69 #include <netinet/in_var.h>
70 
71 #ifdef INET6
72 #include <netinet/ip6.h>
73 #include <netinet6/in6_var.h>
74 #include <netinet6/ip6_var.h>
75 #endif /* INET6 */
76 
77 #if defined(INET) || defined(INET6)
78 #include <netinet/in_pcb.h>
79 #endif
80 #ifdef INET6
81 #include <netinet6/in6_pcb.h>
82 #endif /* INET6 */
83 
84 #include <net/pfkeyv2.h>
85 #include <netipsec/keydb.h>
86 #include <netipsec/key.h>
87 #include <netipsec/keysock.h>
88 #include <netipsec/key_debug.h>
89 
90 #include <netipsec/ipsec.h>
91 #ifdef INET6
92 #include <netipsec/ipsec6.h>
93 #endif
94 
95 #include <netipsec/xform.h>
96 
97 #include <machine/stdarg.h>
98 
99 /* randomness */
100 #include <sys/random.h>
101 
102 #define FULLMASK	0xff
103 #define	_BITS(bytes)	((bytes) << 3)
104 
105 /*
106  * Note on SA reference counting:
107  * - SAs that are not in DEAD state will have (total external reference + 1)
108  *   following value in reference count field.  they cannot be freed and are
109  *   referenced from SA header.
110  * - SAs that are in DEAD state will have (total external reference)
111  *   in reference count field.  they are ready to be freed.  reference from
112  *   SA header will be removed in key_delsav(), when the reference count
113  *   field hits 0 (= no external reference other than from SA header.
114  */
115 
116 VNET_DEFINE(u_int32_t, key_debug_level) = 0;
117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000;
118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100;
119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff;	/* XXX */
120 static VNET_DEFINE(u_int32_t, policy_id) = 0;
121 /*interval to initialize randseed,1(m)*/
122 static VNET_DEFINE(u_int, key_int_random) = 60;
123 /* interval to expire acquiring, 30(s)*/
124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30;
125 /* counter for blocking SADB_ACQUIRE.*/
126 static VNET_DEFINE(int, key_blockacq_count) = 10;
127 /* lifetime for blocking SADB_ACQUIRE.*/
128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20;
129 /* preferred old sa rather than new sa.*/
130 static VNET_DEFINE(int, key_preferred_oldsa) = 1;
131 #define	V_key_spi_trycnt	VNET(key_spi_trycnt)
132 #define	V_key_spi_minval	VNET(key_spi_minval)
133 #define	V_key_spi_maxval	VNET(key_spi_maxval)
134 #define	V_policy_id		VNET(policy_id)
135 #define	V_key_int_random	VNET(key_int_random)
136 #define	V_key_larval_lifetime	VNET(key_larval_lifetime)
137 #define	V_key_blockacq_count	VNET(key_blockacq_count)
138 #define	V_key_blockacq_lifetime	VNET(key_blockacq_lifetime)
139 #define	V_key_preferred_oldsa	VNET(key_preferred_oldsa)
140 
141 static VNET_DEFINE(u_int32_t, acq_seq) = 0;
142 #define	V_acq_seq		VNET(acq_seq)
143 
144 								/* SPD */
145 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]);
146 #define	V_sptree		VNET(sptree)
147 static struct mtx sptree_lock;
148 #define	SPTREE_LOCK_INIT() \
149 	mtx_init(&sptree_lock, "sptree", \
150 		"fast ipsec security policy database", MTX_DEF)
151 #define	SPTREE_LOCK_DESTROY()	mtx_destroy(&sptree_lock)
152 #define	SPTREE_LOCK()		mtx_lock(&sptree_lock)
153 #define	SPTREE_UNLOCK()	mtx_unlock(&sptree_lock)
154 #define	SPTREE_LOCK_ASSERT()	mtx_assert(&sptree_lock, MA_OWNED)
155 
156 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree);	/* SAD */
157 #define	V_sahtree		VNET(sahtree)
158 static struct mtx sahtree_lock;
159 #define	SAHTREE_LOCK_INIT() \
160 	mtx_init(&sahtree_lock, "sahtree", \
161 		"fast ipsec security association database", MTX_DEF)
162 #define	SAHTREE_LOCK_DESTROY()	mtx_destroy(&sahtree_lock)
163 #define	SAHTREE_LOCK()		mtx_lock(&sahtree_lock)
164 #define	SAHTREE_UNLOCK()	mtx_unlock(&sahtree_lock)
165 #define	SAHTREE_LOCK_ASSERT()	mtx_assert(&sahtree_lock, MA_OWNED)
166 
167 							/* registed list */
168 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]);
169 #define	V_regtree		VNET(regtree)
170 static struct mtx regtree_lock;
171 #define	REGTREE_LOCK_INIT() \
172 	mtx_init(&regtree_lock, "regtree", "fast ipsec regtree", MTX_DEF)
173 #define	REGTREE_LOCK_DESTROY()	mtx_destroy(&regtree_lock)
174 #define	REGTREE_LOCK()		mtx_lock(&regtree_lock)
175 #define	REGTREE_UNLOCK()	mtx_unlock(&regtree_lock)
176 #define	REGTREE_LOCK_ASSERT()	mtx_assert(&regtree_lock, MA_OWNED)
177 
178 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */
179 #define	V_acqtree		VNET(acqtree)
180 static struct mtx acq_lock;
181 #define	ACQ_LOCK_INIT() \
182 	mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF)
183 #define	ACQ_LOCK_DESTROY()	mtx_destroy(&acq_lock)
184 #define	ACQ_LOCK()		mtx_lock(&acq_lock)
185 #define	ACQ_UNLOCK()		mtx_unlock(&acq_lock)
186 #define	ACQ_LOCK_ASSERT()	mtx_assert(&acq_lock, MA_OWNED)
187 
188 							/* SP acquiring list */
189 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree);
190 #define	V_spacqtree		VNET(spacqtree)
191 static struct mtx spacq_lock;
192 #define	SPACQ_LOCK_INIT() \
193 	mtx_init(&spacq_lock, "spacqtree", \
194 		"fast ipsec security policy acquire list", MTX_DEF)
195 #define	SPACQ_LOCK_DESTROY()	mtx_destroy(&spacq_lock)
196 #define	SPACQ_LOCK()		mtx_lock(&spacq_lock)
197 #define	SPACQ_UNLOCK()		mtx_unlock(&spacq_lock)
198 #define	SPACQ_LOCK_ASSERT()	mtx_assert(&spacq_lock, MA_OWNED)
199 
200 /* search order for SAs */
201 static const u_int saorder_state_valid_prefer_old[] = {
202 	SADB_SASTATE_DYING, SADB_SASTATE_MATURE,
203 };
204 static const u_int saorder_state_valid_prefer_new[] = {
205 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
206 };
207 static const u_int saorder_state_alive[] = {
208 	/* except DEAD */
209 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL
210 };
211 static const u_int saorder_state_any[] = {
212 	SADB_SASTATE_MATURE, SADB_SASTATE_DYING,
213 	SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD
214 };
215 
216 static const int minsize[] = {
217 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
218 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
219 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
220 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
221 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
222 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_SRC */
223 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_DST */
224 	sizeof(struct sadb_address),	/* SADB_EXT_ADDRESS_PROXY */
225 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_AUTH */
226 	sizeof(struct sadb_key),	/* SADB_EXT_KEY_ENCRYPT */
227 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_SRC */
228 	sizeof(struct sadb_ident),	/* SADB_EXT_IDENTITY_DST */
229 	sizeof(struct sadb_sens),	/* SADB_EXT_SENSITIVITY */
230 	sizeof(struct sadb_prop),	/* SADB_EXT_PROPOSAL */
231 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_AUTH */
232 	sizeof(struct sadb_supported),	/* SADB_EXT_SUPPORTED_ENCRYPT */
233 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
234 	0,				/* SADB_X_EXT_KMPRIVATE */
235 	sizeof(struct sadb_x_policy),	/* SADB_X_EXT_POLICY */
236 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
237 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
238 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
239 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
240 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAI */
241 	sizeof(struct sadb_address),	/* SADB_X_EXT_NAT_T_OAR */
242 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
243 };
244 static const int maxsize[] = {
245 	sizeof(struct sadb_msg),	/* SADB_EXT_RESERVED */
246 	sizeof(struct sadb_sa),		/* SADB_EXT_SA */
247 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_CURRENT */
248 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_HARD */
249 	sizeof(struct sadb_lifetime),	/* SADB_EXT_LIFETIME_SOFT */
250 	0,				/* SADB_EXT_ADDRESS_SRC */
251 	0,				/* SADB_EXT_ADDRESS_DST */
252 	0,				/* SADB_EXT_ADDRESS_PROXY */
253 	0,				/* SADB_EXT_KEY_AUTH */
254 	0,				/* SADB_EXT_KEY_ENCRYPT */
255 	0,				/* SADB_EXT_IDENTITY_SRC */
256 	0,				/* SADB_EXT_IDENTITY_DST */
257 	0,				/* SADB_EXT_SENSITIVITY */
258 	0,				/* SADB_EXT_PROPOSAL */
259 	0,				/* SADB_EXT_SUPPORTED_AUTH */
260 	0,				/* SADB_EXT_SUPPORTED_ENCRYPT */
261 	sizeof(struct sadb_spirange),	/* SADB_EXT_SPIRANGE */
262 	0,				/* SADB_X_EXT_KMPRIVATE */
263 	0,				/* SADB_X_EXT_POLICY */
264 	sizeof(struct sadb_x_sa2),	/* SADB_X_SA2 */
265 	sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */
266 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */
267 	sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */
268 	0,				/* SADB_X_EXT_NAT_T_OAI */
269 	0,				/* SADB_X_EXT_NAT_T_OAR */
270 	sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */
271 };
272 
273 static VNET_DEFINE(int, ipsec_esp_keymin) = 256;
274 static VNET_DEFINE(int, ipsec_esp_auth) = 0;
275 static VNET_DEFINE(int, ipsec_ah_keymin) = 128;
276 
277 #define	V_ipsec_esp_keymin	VNET(ipsec_esp_keymin)
278 #define	V_ipsec_esp_auth	VNET(ipsec_esp_auth)
279 #define	V_ipsec_ah_keymin	VNET(ipsec_ah_keymin)
280 
281 #ifdef SYSCTL_DECL
282 SYSCTL_DECL(_net_key);
283 #endif
284 
285 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL,	debug,
286 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, "");
287 
288 /* max count of trial for the decision of spi value */
289 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt,
290 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, "");
291 
292 /* minimum spi value to allocate automatically. */
293 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval,
294 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, "");
295 
296 /* maximun spi value to allocate automatically. */
297 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval,
298 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, "");
299 
300 /* interval to initialize randseed */
301 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random,
302 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, "");
303 
304 /* lifetime for larval SA */
305 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime,
306 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, "");
307 
308 /* counter for blocking to send SADB_ACQUIRE to IKEd */
309 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count,
310 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, "");
311 
312 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */
313 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime,
314 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, "");
315 
316 /* ESP auth */
317 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth,
318 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, "");
319 
320 /* minimum ESP key length */
321 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin,
322 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, "");
323 
324 /* minimum AH key length */
325 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin,
326 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, "");
327 
328 /* perfered old SA rather than new SA */
329 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa,
330 	CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, "");
331 
332 #define __LIST_CHAINED(elm) \
333 	(!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL))
334 #define LIST_INSERT_TAIL(head, elm, type, field) \
335 do {\
336 	struct type *curelm = LIST_FIRST(head); \
337 	if (curelm == NULL) {\
338 		LIST_INSERT_HEAD(head, elm, field); \
339 	} else { \
340 		while (LIST_NEXT(curelm, field)) \
341 			curelm = LIST_NEXT(curelm, field);\
342 		LIST_INSERT_AFTER(curelm, elm, field);\
343 	}\
344 } while (0)
345 
346 #define KEY_CHKSASTATE(head, sav, name) \
347 do { \
348 	if ((head) != (sav)) {						\
349 		ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \
350 			(name), (head), (sav)));			\
351 		continue;						\
352 	}								\
353 } while (0)
354 
355 #define KEY_CHKSPDIR(head, sp, name) \
356 do { \
357 	if ((head) != (sp)) {						\
358 		ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \
359 			"anyway continue.\n",				\
360 			(name), (head), (sp)));				\
361 	}								\
362 } while (0)
363 
364 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association");
365 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head");
366 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy");
367 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request");
368 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous");
369 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire");
370 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire");
371 
372 /*
373  * set parameters into secpolicyindex buffer.
374  * Must allocate secpolicyindex buffer passed to this function.
375  */
376 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \
377 do { \
378 	bzero((idx), sizeof(struct secpolicyindex));                         \
379 	(idx)->dir = (_dir);                                                 \
380 	(idx)->prefs = (ps);                                                 \
381 	(idx)->prefd = (pd);                                                 \
382 	(idx)->ul_proto = (ulp);                                             \
383 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
384 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
385 } while (0)
386 
387 /*
388  * set parameters into secasindex buffer.
389  * Must allocate secasindex buffer before calling this function.
390  */
391 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \
392 do { \
393 	bzero((idx), sizeof(struct secasindex));                             \
394 	(idx)->proto = (p);                                                  \
395 	(idx)->mode = (m);                                                   \
396 	(idx)->reqid = (r);                                                  \
397 	bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len);     \
398 	bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len);     \
399 } while (0)
400 
401 /* key statistics */
402 struct _keystat {
403 	u_long getspi_count; /* the avarage of count to try to get new SPI */
404 } keystat;
405 
406 struct sadb_msghdr {
407 	struct sadb_msg *msg;
408 	struct sadb_ext *ext[SADB_EXT_MAX + 1];
409 	int extoff[SADB_EXT_MAX + 1];
410 	int extlen[SADB_EXT_MAX + 1];
411 };
412 
413 #ifndef IPSEC_DEBUG2
414 static struct callout key_timer;
415 #endif
416 
417 static struct secasvar *key_allocsa_policy __P((const struct secasindex *));
418 static void key_freesp_so __P((struct secpolicy **));
419 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int));
420 static void key_delsp __P((struct secpolicy *));
421 static struct secpolicy *key_getsp __P((struct secpolicyindex *));
422 static void _key_delsp(struct secpolicy *sp);
423 static struct secpolicy *key_getspbyid __P((u_int32_t));
424 static u_int32_t key_newreqid __P((void));
425 static struct mbuf *key_gather_mbuf __P((struct mbuf *,
426 	const struct sadb_msghdr *, int, int, ...));
427 static int key_spdadd __P((struct socket *, struct mbuf *,
428 	const struct sadb_msghdr *));
429 static u_int32_t key_getnewspid __P((void));
430 static int key_spddelete __P((struct socket *, struct mbuf *,
431 	const struct sadb_msghdr *));
432 static int key_spddelete2 __P((struct socket *, struct mbuf *,
433 	const struct sadb_msghdr *));
434 static int key_spdget __P((struct socket *, struct mbuf *,
435 	const struct sadb_msghdr *));
436 static int key_spdflush __P((struct socket *, struct mbuf *,
437 	const struct sadb_msghdr *));
438 static int key_spddump __P((struct socket *, struct mbuf *,
439 	const struct sadb_msghdr *));
440 static struct mbuf *key_setdumpsp __P((struct secpolicy *,
441 	u_int8_t, u_int32_t, u_int32_t));
442 static u_int key_getspreqmsglen __P((struct secpolicy *));
443 static int key_spdexpire __P((struct secpolicy *));
444 static struct secashead *key_newsah __P((struct secasindex *));
445 static void key_delsah __P((struct secashead *));
446 static struct secasvar *key_newsav __P((struct mbuf *,
447 	const struct sadb_msghdr *, struct secashead *, int *,
448 	const char*, int));
449 #define	KEY_NEWSAV(m, sadb, sah, e)				\
450 	key_newsav(m, sadb, sah, e, __FILE__, __LINE__)
451 static void key_delsav __P((struct secasvar *));
452 static struct secashead *key_getsah __P((struct secasindex *));
453 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t));
454 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t));
455 static int key_setsaval __P((struct secasvar *, struct mbuf *,
456 	const struct sadb_msghdr *));
457 static int key_mature __P((struct secasvar *));
458 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t,
459 	u_int8_t, u_int32_t, u_int32_t));
460 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t,
461 	u_int32_t, pid_t, u_int16_t));
462 static struct mbuf *key_setsadbsa __P((struct secasvar *));
463 static struct mbuf *key_setsadbaddr __P((u_int16_t,
464 	const struct sockaddr *, u_int8_t, u_int16_t));
465 #ifdef IPSEC_NAT_T
466 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t);
467 static struct mbuf *key_setsadbxtype(u_int16_t);
468 #endif
469 static void key_porttosaddr(struct sockaddr *, u_int16_t);
470 #define	KEY_PORTTOSADDR(saddr, port)				\
471 	key_porttosaddr((struct sockaddr *)(saddr), (port))
472 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t));
473 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t,
474 	u_int32_t));
475 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int,
476 				     struct malloc_type *);
477 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src,
478 					    struct malloc_type *type);
479 #ifdef INET6
480 static int key_ismyaddr6 __P((struct sockaddr_in6 *));
481 #endif
482 
483 /* flags for key_cmpsaidx() */
484 #define CMP_HEAD	1	/* protocol, addresses. */
485 #define CMP_MODE_REQID	2	/* additionally HEAD, reqid, mode. */
486 #define CMP_REQID	3	/* additionally HEAD, reaid. */
487 #define CMP_EXACTLY	4	/* all elements. */
488 static int key_cmpsaidx
489 	__P((const struct secasindex *, const struct secasindex *, int));
490 
491 static int key_cmpspidx_exactly
492 	__P((struct secpolicyindex *, struct secpolicyindex *));
493 static int key_cmpspidx_withmask
494 	__P((struct secpolicyindex *, struct secpolicyindex *));
495 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int));
496 static int key_bbcmp __P((const void *, const void *, u_int));
497 static u_int16_t key_satype2proto __P((u_int8_t));
498 static u_int8_t key_proto2satype __P((u_int16_t));
499 
500 static int key_getspi __P((struct socket *, struct mbuf *,
501 	const struct sadb_msghdr *));
502 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *,
503 					struct secasindex *));
504 static int key_update __P((struct socket *, struct mbuf *,
505 	const struct sadb_msghdr *));
506 #ifdef IPSEC_DOSEQCHECK
507 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t));
508 #endif
509 static int key_add __P((struct socket *, struct mbuf *,
510 	const struct sadb_msghdr *));
511 static int key_setident __P((struct secashead *, struct mbuf *,
512 	const struct sadb_msghdr *));
513 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *,
514 	const struct sadb_msghdr *));
515 static int key_delete __P((struct socket *, struct mbuf *,
516 	const struct sadb_msghdr *));
517 static int key_get __P((struct socket *, struct mbuf *,
518 	const struct sadb_msghdr *));
519 
520 static void key_getcomb_setlifetime __P((struct sadb_comb *));
521 static struct mbuf *key_getcomb_esp __P((void));
522 static struct mbuf *key_getcomb_ah __P((void));
523 static struct mbuf *key_getcomb_ipcomp __P((void));
524 static struct mbuf *key_getprop __P((const struct secasindex *));
525 
526 static int key_acquire __P((const struct secasindex *, struct secpolicy *));
527 static struct secacq *key_newacq __P((const struct secasindex *));
528 static struct secacq *key_getacq __P((const struct secasindex *));
529 static struct secacq *key_getacqbyseq __P((u_int32_t));
530 static struct secspacq *key_newspacq __P((struct secpolicyindex *));
531 static struct secspacq *key_getspacq __P((struct secpolicyindex *));
532 static int key_acquire2 __P((struct socket *, struct mbuf *,
533 	const struct sadb_msghdr *));
534 static int key_register __P((struct socket *, struct mbuf *,
535 	const struct sadb_msghdr *));
536 static int key_expire __P((struct secasvar *));
537 static int key_flush __P((struct socket *, struct mbuf *,
538 	const struct sadb_msghdr *));
539 static int key_dump __P((struct socket *, struct mbuf *,
540 	const struct sadb_msghdr *));
541 static int key_promisc __P((struct socket *, struct mbuf *,
542 	const struct sadb_msghdr *));
543 static int key_senderror __P((struct socket *, struct mbuf *, int));
544 static int key_validate_ext __P((const struct sadb_ext *, int));
545 static int key_align __P((struct mbuf *, struct sadb_msghdr *));
546 static struct mbuf *key_setlifetime(struct seclifetime *src,
547 				     u_int16_t exttype);
548 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype);
549 
550 #if 0
551 static const char *key_getfqdn __P((void));
552 static const char *key_getuserfqdn __P((void));
553 #endif
554 static void key_sa_chgstate __P((struct secasvar *, u_int8_t));
555 
556 static __inline void
557 sa_initref(struct secasvar *sav)
558 {
559 
560 	refcount_init(&sav->refcnt, 1);
561 }
562 static __inline void
563 sa_addref(struct secasvar *sav)
564 {
565 
566 	refcount_acquire(&sav->refcnt);
567 	IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow"));
568 }
569 static __inline int
570 sa_delref(struct secasvar *sav)
571 {
572 
573 	IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow"));
574 	return (refcount_release(&sav->refcnt));
575 }
576 
577 #define	SP_ADDREF(p) do {						\
578 	(p)->refcnt++;							\
579 	IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow"));		\
580 } while (0)
581 #define	SP_DELREF(p) do {						\
582 	IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow"));		\
583 	(p)->refcnt--;							\
584 } while (0)
585 
586 
587 /*
588  * Update the refcnt while holding the SPTREE lock.
589  */
590 void
591 key_addref(struct secpolicy *sp)
592 {
593 	SPTREE_LOCK();
594 	SP_ADDREF(sp);
595 	SPTREE_UNLOCK();
596 }
597 
598 /*
599  * Return 0 when there are known to be no SP's for the specified
600  * direction.  Otherwise return 1.  This is used by IPsec code
601  * to optimize performance.
602  */
603 int
604 key_havesp(u_int dir)
605 {
606 
607 	return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ?
608 		LIST_FIRST(&V_sptree[dir]) != NULL : 1);
609 }
610 
611 /* %%% IPsec policy management */
612 /*
613  * allocating a SP for OUTBOUND or INBOUND packet.
614  * Must call key_freesp() later.
615  * OUT:	NULL:	not found
616  *	others:	found and return the pointer.
617  */
618 struct secpolicy *
619 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag)
620 {
621 	struct secpolicy *sp;
622 
623 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
624 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
625 		("invalid direction %u", dir));
626 
627 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
628 		printf("DP %s from %s:%u\n", __func__, where, tag));
629 
630 	/* get a SP entry */
631 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
632 		printf("*** objects\n");
633 		kdebug_secpolicyindex(spidx));
634 
635 	SPTREE_LOCK();
636 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
637 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
638 			printf("*** in SPD\n");
639 			kdebug_secpolicyindex(&sp->spidx));
640 
641 		if (sp->state == IPSEC_SPSTATE_DEAD)
642 			continue;
643 		if (key_cmpspidx_withmask(&sp->spidx, spidx))
644 			goto found;
645 	}
646 	sp = NULL;
647 found:
648 	if (sp) {
649 		/* sanity check */
650 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
651 
652 		/* found a SPD entry */
653 		sp->lastused = time_second;
654 		SP_ADDREF(sp);
655 	}
656 	SPTREE_UNLOCK();
657 
658 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
659 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
660 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
661 	return sp;
662 }
663 
664 /*
665  * allocating a SP for OUTBOUND or INBOUND packet.
666  * Must call key_freesp() later.
667  * OUT:	NULL:	not found
668  *	others:	found and return the pointer.
669  */
670 struct secpolicy *
671 key_allocsp2(u_int32_t spi,
672 	     union sockaddr_union *dst,
673 	     u_int8_t proto,
674 	     u_int dir,
675 	     const char* where, int tag)
676 {
677 	struct secpolicy *sp;
678 
679 	IPSEC_ASSERT(dst != NULL, ("null dst"));
680 	IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND,
681 		("invalid direction %u", dir));
682 
683 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
684 		printf("DP %s from %s:%u\n", __func__, where, tag));
685 
686 	/* get a SP entry */
687 	KEYDEBUG(KEYDEBUG_IPSEC_DATA,
688 		printf("*** objects\n");
689 		printf("spi %u proto %u dir %u\n", spi, proto, dir);
690 		kdebug_sockaddr(&dst->sa));
691 
692 	SPTREE_LOCK();
693 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
694 		KEYDEBUG(KEYDEBUG_IPSEC_DATA,
695 			printf("*** in SPD\n");
696 			kdebug_secpolicyindex(&sp->spidx));
697 
698 		if (sp->state == IPSEC_SPSTATE_DEAD)
699 			continue;
700 		/* compare simple values, then dst address */
701 		if (sp->spidx.ul_proto != proto)
702 			continue;
703 		/* NB: spi's must exist and match */
704 		if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi)
705 			continue;
706 		if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0)
707 			goto found;
708 	}
709 	sp = NULL;
710 found:
711 	if (sp) {
712 		/* sanity check */
713 		KEY_CHKSPDIR(sp->spidx.dir, dir, __func__);
714 
715 		/* found a SPD entry */
716 		sp->lastused = time_second;
717 		SP_ADDREF(sp);
718 	}
719 	SPTREE_UNLOCK();
720 
721 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
722 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
723 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
724 	return sp;
725 }
726 
727 #if 0
728 /*
729  * return a policy that matches this particular inbound packet.
730  * XXX slow
731  */
732 struct secpolicy *
733 key_gettunnel(const struct sockaddr *osrc,
734 	      const struct sockaddr *odst,
735 	      const struct sockaddr *isrc,
736 	      const struct sockaddr *idst,
737 	      const char* where, int tag)
738 {
739 	struct secpolicy *sp;
740 	const int dir = IPSEC_DIR_INBOUND;
741 	struct ipsecrequest *r1, *r2, *p;
742 	struct secpolicyindex spidx;
743 
744 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
745 		printf("DP %s from %s:%u\n", __func__, where, tag));
746 
747 	if (isrc->sa_family != idst->sa_family) {
748 		ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.",
749 			__func__, isrc->sa_family, idst->sa_family));
750 		sp = NULL;
751 		goto done;
752 	}
753 
754 	SPTREE_LOCK();
755 	LIST_FOREACH(sp, &V_sptree[dir], chain) {
756 		if (sp->state == IPSEC_SPSTATE_DEAD)
757 			continue;
758 
759 		r1 = r2 = NULL;
760 		for (p = sp->req; p; p = p->next) {
761 			if (p->saidx.mode != IPSEC_MODE_TUNNEL)
762 				continue;
763 
764 			r1 = r2;
765 			r2 = p;
766 
767 			if (!r1) {
768 				/* here we look at address matches only */
769 				spidx = sp->spidx;
770 				if (isrc->sa_len > sizeof(spidx.src) ||
771 				    idst->sa_len > sizeof(spidx.dst))
772 					continue;
773 				bcopy(isrc, &spidx.src, isrc->sa_len);
774 				bcopy(idst, &spidx.dst, idst->sa_len);
775 				if (!key_cmpspidx_withmask(&sp->spidx, &spidx))
776 					continue;
777 			} else {
778 				if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) ||
779 				    key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0))
780 					continue;
781 			}
782 
783 			if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) ||
784 			    key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0))
785 				continue;
786 
787 			goto found;
788 		}
789 	}
790 	sp = NULL;
791 found:
792 	if (sp) {
793 		sp->lastused = time_second;
794 		SP_ADDREF(sp);
795 	}
796 	SPTREE_UNLOCK();
797 done:
798 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
799 		printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__,
800 			sp, sp ? sp->id : 0, sp ? sp->refcnt : 0));
801 	return sp;
802 }
803 #endif
804 
805 /*
806  * allocating an SA entry for an *OUTBOUND* packet.
807  * checking each request entries in SP, and acquire an SA if need.
808  * OUT:	0: there are valid requests.
809  *	ENOENT: policy may be valid, but SA with REQUIRE is on acquiring.
810  */
811 int
812 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx)
813 {
814 	u_int level;
815 	int error;
816 	struct secasvar *sav;
817 
818 	IPSEC_ASSERT(isr != NULL, ("null isr"));
819 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
820 	IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT ||
821 		saidx->mode == IPSEC_MODE_TUNNEL,
822 		("unexpected policy %u", saidx->mode));
823 
824 	/*
825 	 * XXX guard against protocol callbacks from the crypto
826 	 * thread as they reference ipsecrequest.sav which we
827 	 * temporarily null out below.  Need to rethink how we
828 	 * handle bundled SA's in the callback thread.
829 	 */
830 	IPSECREQUEST_LOCK_ASSERT(isr);
831 
832 	/* get current level */
833 	level = ipsec_get_reqlevel(isr);
834 
835 	/*
836 	 * We check new SA in the IPsec request because a different
837 	 * SA may be involved each time this request is checked, either
838 	 * because new SAs are being configured, or this request is
839 	 * associated with an unconnected datagram socket, or this request
840 	 * is associated with a system default policy.
841 	 *
842 	 * key_allocsa_policy should allocate the oldest SA available.
843 	 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt.
844 	 */
845 	sav = key_allocsa_policy(saidx);
846 	if (sav != isr->sav) {
847 		/* SA need to be updated. */
848 		if (!IPSECREQUEST_UPGRADE(isr)) {
849 			/* Kick everyone off. */
850 			IPSECREQUEST_UNLOCK(isr);
851 			IPSECREQUEST_WLOCK(isr);
852 		}
853 		if (isr->sav != NULL)
854 			KEY_FREESAV(&isr->sav);
855 		isr->sav = sav;
856 		IPSECREQUEST_DOWNGRADE(isr);
857 	} else if (sav != NULL)
858 		KEY_FREESAV(&sav);
859 
860 	/* When there is SA. */
861 	if (isr->sav != NULL) {
862 		if (isr->sav->state != SADB_SASTATE_MATURE &&
863 		    isr->sav->state != SADB_SASTATE_DYING)
864 			return EINVAL;
865 		return 0;
866 	}
867 
868 	/* there is no SA */
869 	error = key_acquire(saidx, isr->sp);
870 	if (error != 0) {
871 		/* XXX What should I do ? */
872 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
873 			__func__, error));
874 		return error;
875 	}
876 
877 	if (level != IPSEC_LEVEL_REQUIRE) {
878 		/* XXX sigh, the interface to this routine is botched */
879 		IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA"));
880 		return 0;
881 	} else {
882 		return ENOENT;
883 	}
884 }
885 
886 /*
887  * allocating a SA for policy entry from SAD.
888  * NOTE: searching SAD of aliving state.
889  * OUT:	NULL:	not found.
890  *	others:	found and return the pointer.
891  */
892 static struct secasvar *
893 key_allocsa_policy(const struct secasindex *saidx)
894 {
895 #define	N(a)	_ARRAYLEN(a)
896 	struct secashead *sah;
897 	struct secasvar *sav;
898 	u_int stateidx, arraysize;
899 	const u_int *state_valid;
900 
901 	state_valid = NULL;	/* silence gcc */
902 	arraysize = 0;		/* silence gcc */
903 
904 	SAHTREE_LOCK();
905 	LIST_FOREACH(sah, &V_sahtree, chain) {
906 		if (sah->state == SADB_SASTATE_DEAD)
907 			continue;
908 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) {
909 			if (V_key_preferred_oldsa) {
910 				state_valid = saorder_state_valid_prefer_old;
911 				arraysize = N(saorder_state_valid_prefer_old);
912 			} else {
913 				state_valid = saorder_state_valid_prefer_new;
914 				arraysize = N(saorder_state_valid_prefer_new);
915 			}
916 			break;
917 		}
918 	}
919 	SAHTREE_UNLOCK();
920 	if (sah == NULL)
921 		return NULL;
922 
923 	/* search valid state */
924 	for (stateidx = 0; stateidx < arraysize; stateidx++) {
925 		sav = key_do_allocsa_policy(sah, state_valid[stateidx]);
926 		if (sav != NULL)
927 			return sav;
928 	}
929 
930 	return NULL;
931 #undef N
932 }
933 
934 /*
935  * searching SAD with direction, protocol, mode and state.
936  * called by key_allocsa_policy().
937  * OUT:
938  *	NULL	: not found
939  *	others	: found, pointer to a SA.
940  */
941 static struct secasvar *
942 key_do_allocsa_policy(struct secashead *sah, u_int state)
943 {
944 	struct secasvar *sav, *nextsav, *candidate, *d;
945 
946 	/* initilize */
947 	candidate = NULL;
948 
949 	SAHTREE_LOCK();
950 	for (sav = LIST_FIRST(&sah->savtree[state]);
951 	     sav != NULL;
952 	     sav = nextsav) {
953 
954 		nextsav = LIST_NEXT(sav, chain);
955 
956 		/* sanity check */
957 		KEY_CHKSASTATE(sav->state, state, __func__);
958 
959 		/* initialize */
960 		if (candidate == NULL) {
961 			candidate = sav;
962 			continue;
963 		}
964 
965 		/* Which SA is the better ? */
966 
967 		IPSEC_ASSERT(candidate->lft_c != NULL,
968 			("null candidate lifetime"));
969 		IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime"));
970 
971 		/* What the best method is to compare ? */
972 		if (V_key_preferred_oldsa) {
973 			if (candidate->lft_c->addtime >
974 					sav->lft_c->addtime) {
975 				candidate = sav;
976 			}
977 			continue;
978 			/*NOTREACHED*/
979 		}
980 
981 		/* preferred new sa rather than old sa */
982 		if (candidate->lft_c->addtime <
983 				sav->lft_c->addtime) {
984 			d = candidate;
985 			candidate = sav;
986 		} else
987 			d = sav;
988 
989 		/*
990 		 * prepared to delete the SA when there is more
991 		 * suitable candidate and the lifetime of the SA is not
992 		 * permanent.
993 		 */
994 		if (d->lft_h->addtime != 0) {
995 			struct mbuf *m, *result;
996 			u_int8_t satype;
997 
998 			key_sa_chgstate(d, SADB_SASTATE_DEAD);
999 
1000 			IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count"));
1001 
1002 			satype = key_proto2satype(d->sah->saidx.proto);
1003 			if (satype == 0)
1004 				goto msgfail;
1005 
1006 			m = key_setsadbmsg(SADB_DELETE, 0,
1007 			    satype, 0, 0, d->refcnt - 1);
1008 			if (!m)
1009 				goto msgfail;
1010 			result = m;
1011 
1012 			/* set sadb_address for saidx's. */
1013 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
1014 				&d->sah->saidx.src.sa,
1015 				d->sah->saidx.src.sa.sa_len << 3,
1016 				IPSEC_ULPROTO_ANY);
1017 			if (!m)
1018 				goto msgfail;
1019 			m_cat(result, m);
1020 
1021 			/* set sadb_address for saidx's. */
1022 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
1023 				&d->sah->saidx.dst.sa,
1024 				d->sah->saidx.dst.sa.sa_len << 3,
1025 				IPSEC_ULPROTO_ANY);
1026 			if (!m)
1027 				goto msgfail;
1028 			m_cat(result, m);
1029 
1030 			/* create SA extension */
1031 			m = key_setsadbsa(d);
1032 			if (!m)
1033 				goto msgfail;
1034 			m_cat(result, m);
1035 
1036 			if (result->m_len < sizeof(struct sadb_msg)) {
1037 				result = m_pullup(result,
1038 						sizeof(struct sadb_msg));
1039 				if (result == NULL)
1040 					goto msgfail;
1041 			}
1042 
1043 			result->m_pkthdr.len = 0;
1044 			for (m = result; m; m = m->m_next)
1045 				result->m_pkthdr.len += m->m_len;
1046 			mtod(result, struct sadb_msg *)->sadb_msg_len =
1047 				PFKEY_UNIT64(result->m_pkthdr.len);
1048 
1049 			if (key_sendup_mbuf(NULL, result,
1050 					KEY_SENDUP_REGISTERED))
1051 				goto msgfail;
1052 		 msgfail:
1053 			KEY_FREESAV(&d);
1054 		}
1055 	}
1056 	if (candidate) {
1057 		sa_addref(candidate);
1058 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1059 			printf("DP %s cause refcnt++:%d SA:%p\n",
1060 				__func__, candidate->refcnt, candidate));
1061 	}
1062 	SAHTREE_UNLOCK();
1063 
1064 	return candidate;
1065 }
1066 
1067 /*
1068  * allocating a usable SA entry for a *INBOUND* packet.
1069  * Must call key_freesav() later.
1070  * OUT: positive:	pointer to a usable sav (i.e. MATURE or DYING state).
1071  *	NULL:		not found, or error occured.
1072  *
1073  * In the comparison, no source address is used--for RFC2401 conformance.
1074  * To quote, from section 4.1:
1075  *	A security association is uniquely identified by a triple consisting
1076  *	of a Security Parameter Index (SPI), an IP Destination Address, and a
1077  *	security protocol (AH or ESP) identifier.
1078  * Note that, however, we do need to keep source address in IPsec SA.
1079  * IKE specification and PF_KEY specification do assume that we
1080  * keep source address in IPsec SA.  We see a tricky situation here.
1081  */
1082 struct secasvar *
1083 key_allocsa(
1084 	union sockaddr_union *dst,
1085 	u_int proto,
1086 	u_int32_t spi,
1087 	const char* where, int tag)
1088 {
1089 	struct secashead *sah;
1090 	struct secasvar *sav;
1091 	u_int stateidx, arraysize, state;
1092 	const u_int *saorder_state_valid;
1093 #ifdef IPSEC_NAT_T
1094 	int natt_chkport;
1095 #endif
1096 
1097 	IPSEC_ASSERT(dst != NULL, ("null dst address"));
1098 
1099 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1100 		printf("DP %s from %s:%u\n", __func__, where, tag));
1101 
1102 #ifdef IPSEC_NAT_T
1103         natt_chkport = (dst->sa.sa_family == AF_INET &&
1104 	    dst->sa.sa_len == sizeof(struct sockaddr_in) &&
1105 	    dst->sin.sin_port != 0);
1106 #endif
1107 
1108 	/*
1109 	 * searching SAD.
1110 	 * XXX: to be checked internal IP header somewhere.  Also when
1111 	 * IPsec tunnel packet is received.  But ESP tunnel mode is
1112 	 * encrypted so we can't check internal IP header.
1113 	 */
1114 	SAHTREE_LOCK();
1115 	if (V_key_preferred_oldsa) {
1116 		saorder_state_valid = saorder_state_valid_prefer_old;
1117 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_old);
1118 	} else {
1119 		saorder_state_valid = saorder_state_valid_prefer_new;
1120 		arraysize = _ARRAYLEN(saorder_state_valid_prefer_new);
1121 	}
1122 	LIST_FOREACH(sah, &V_sahtree, chain) {
1123 		int checkport;
1124 
1125 		/* search valid state */
1126 		for (stateidx = 0; stateidx < arraysize; stateidx++) {
1127 			state = saorder_state_valid[stateidx];
1128 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
1129 				/* sanity check */
1130 				KEY_CHKSASTATE(sav->state, state, __func__);
1131 				/* do not return entries w/ unusable state */
1132 				if (sav->state != SADB_SASTATE_MATURE &&
1133 				    sav->state != SADB_SASTATE_DYING)
1134 					continue;
1135 				if (proto != sav->sah->saidx.proto)
1136 					continue;
1137 				if (spi != sav->spi)
1138 					continue;
1139 				checkport = 0;
1140 #ifdef IPSEC_NAT_T
1141 				/*
1142 				 * Really only check ports when this is a NAT-T
1143 				 * SA.  Otherwise other lookups providing ports
1144 				 * might suffer.
1145 				 */
1146 				if (sav->natt_type && natt_chkport)
1147 					checkport = 1;
1148 #endif
1149 #if 0	/* don't check src */
1150 				/* check src address */
1151 				if (key_sockaddrcmp(&src->sa,
1152 				    &sav->sah->saidx.src.sa, checkport) != 0)
1153 					continue;
1154 #endif
1155 				/* check dst address */
1156 				if (key_sockaddrcmp(&dst->sa,
1157 				    &sav->sah->saidx.dst.sa, checkport) != 0)
1158 					continue;
1159 				sa_addref(sav);
1160 				goto done;
1161 			}
1162 		}
1163 	}
1164 	sav = NULL;
1165 done:
1166 	SAHTREE_UNLOCK();
1167 
1168 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1169 		printf("DP %s return SA:%p; refcnt %u\n", __func__,
1170 			sav, sav ? sav->refcnt : 0));
1171 	return sav;
1172 }
1173 
1174 /*
1175  * Must be called after calling key_allocsp().
1176  * For both the packet without socket and key_freeso().
1177  */
1178 void
1179 _key_freesp(struct secpolicy **spp, const char* where, int tag)
1180 {
1181 	struct secpolicy *sp = *spp;
1182 
1183 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1184 
1185 	SPTREE_LOCK();
1186 	SP_DELREF(sp);
1187 
1188 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1189 		printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n",
1190 			__func__, sp, sp->id, where, tag, sp->refcnt));
1191 
1192 	if (sp->refcnt == 0) {
1193 		*spp = NULL;
1194 		key_delsp(sp);
1195 	}
1196 	SPTREE_UNLOCK();
1197 }
1198 
1199 /*
1200  * Must be called after calling key_allocsp().
1201  * For the packet with socket.
1202  */
1203 void
1204 key_freeso(struct socket *so)
1205 {
1206 	IPSEC_ASSERT(so != NULL, ("null so"));
1207 
1208 	switch (so->so_proto->pr_domain->dom_family) {
1209 #if defined(INET) || defined(INET6)
1210 #ifdef INET
1211 	case PF_INET:
1212 #endif
1213 #ifdef INET6
1214 	case PF_INET6:
1215 #endif
1216 	    {
1217 		struct inpcb *pcb = sotoinpcb(so);
1218 
1219 		/* Does it have a PCB ? */
1220 		if (pcb == NULL)
1221 			return;
1222 		key_freesp_so(&pcb->inp_sp->sp_in);
1223 		key_freesp_so(&pcb->inp_sp->sp_out);
1224 	    }
1225 		break;
1226 #endif /* INET || INET6 */
1227 	default:
1228 		ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n",
1229 		    __func__, so->so_proto->pr_domain->dom_family));
1230 		return;
1231 	}
1232 }
1233 
1234 static void
1235 key_freesp_so(struct secpolicy **sp)
1236 {
1237 	IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp"));
1238 
1239 	if ((*sp)->policy == IPSEC_POLICY_ENTRUST ||
1240 	    (*sp)->policy == IPSEC_POLICY_BYPASS)
1241 		return;
1242 
1243 	IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC,
1244 		("invalid policy %u", (*sp)->policy));
1245 	KEY_FREESP(sp);
1246 }
1247 
1248 void
1249 key_addrefsa(struct secasvar *sav, const char* where, int tag)
1250 {
1251 
1252 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1253 	IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist"));
1254 
1255 	sa_addref(sav);
1256 }
1257 
1258 /*
1259  * Must be called after calling key_allocsa().
1260  * This function is called by key_freesp() to free some SA allocated
1261  * for a policy.
1262  */
1263 void
1264 key_freesav(struct secasvar **psav, const char* where, int tag)
1265 {
1266 	struct secasvar *sav = *psav;
1267 
1268 	IPSEC_ASSERT(sav != NULL, ("null sav"));
1269 
1270 	if (sa_delref(sav)) {
1271 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1272 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1273 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1274 		*psav = NULL;
1275 		key_delsav(sav);
1276 	} else {
1277 		KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1278 			printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n",
1279 				__func__, sav, ntohl(sav->spi), where, tag, sav->refcnt));
1280 	}
1281 }
1282 
1283 /* %%% SPD management */
1284 /*
1285  * free security policy entry.
1286  */
1287 static void
1288 key_delsp(struct secpolicy *sp)
1289 {
1290 	struct ipsecrequest *isr, *nextisr;
1291 
1292 	IPSEC_ASSERT(sp != NULL, ("null sp"));
1293 	SPTREE_LOCK_ASSERT();
1294 
1295 	sp->state = IPSEC_SPSTATE_DEAD;
1296 
1297 	IPSEC_ASSERT(sp->refcnt == 0,
1298 		("SP with references deleted (refcnt %u)", sp->refcnt));
1299 
1300 	/* remove from SP index */
1301 	if (__LIST_CHAINED(sp))
1302 		LIST_REMOVE(sp, chain);
1303 
1304 	for (isr = sp->req; isr != NULL; isr = nextisr) {
1305 		if (isr->sav != NULL) {
1306 			KEY_FREESAV(&isr->sav);
1307 			isr->sav = NULL;
1308 		}
1309 
1310 		nextisr = isr->next;
1311 		ipsec_delisr(isr);
1312 	}
1313 	_key_delsp(sp);
1314 }
1315 
1316 /*
1317  * search SPD
1318  * OUT:	NULL	: not found
1319  *	others	: found, pointer to a SP.
1320  */
1321 static struct secpolicy *
1322 key_getsp(struct secpolicyindex *spidx)
1323 {
1324 	struct secpolicy *sp;
1325 
1326 	IPSEC_ASSERT(spidx != NULL, ("null spidx"));
1327 
1328 	SPTREE_LOCK();
1329 	LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) {
1330 		if (sp->state == IPSEC_SPSTATE_DEAD)
1331 			continue;
1332 		if (key_cmpspidx_exactly(spidx, &sp->spidx)) {
1333 			SP_ADDREF(sp);
1334 			break;
1335 		}
1336 	}
1337 	SPTREE_UNLOCK();
1338 
1339 	return sp;
1340 }
1341 
1342 /*
1343  * get SP by index.
1344  * OUT:	NULL	: not found
1345  *	others	: found, pointer to a SP.
1346  */
1347 static struct secpolicy *
1348 key_getspbyid(u_int32_t id)
1349 {
1350 	struct secpolicy *sp;
1351 
1352 	SPTREE_LOCK();
1353 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) {
1354 		if (sp->state == IPSEC_SPSTATE_DEAD)
1355 			continue;
1356 		if (sp->id == id) {
1357 			SP_ADDREF(sp);
1358 			goto done;
1359 		}
1360 	}
1361 
1362 	LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) {
1363 		if (sp->state == IPSEC_SPSTATE_DEAD)
1364 			continue;
1365 		if (sp->id == id) {
1366 			SP_ADDREF(sp);
1367 			goto done;
1368 		}
1369 	}
1370 done:
1371 	SPTREE_UNLOCK();
1372 
1373 	return sp;
1374 }
1375 
1376 struct secpolicy *
1377 key_newsp(const char* where, int tag)
1378 {
1379 	struct secpolicy *newsp = NULL;
1380 
1381 	newsp = (struct secpolicy *)
1382 		malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO);
1383 	if (newsp) {
1384 		SECPOLICY_LOCK_INIT(newsp);
1385 		newsp->refcnt = 1;
1386 		newsp->req = NULL;
1387 	}
1388 
1389 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
1390 		printf("DP %s from %s:%u return SP:%p\n", __func__,
1391 			where, tag, newsp));
1392 	return newsp;
1393 }
1394 
1395 static void
1396 _key_delsp(struct secpolicy *sp)
1397 {
1398 	SECPOLICY_LOCK_DESTROY(sp);
1399 	free(sp, M_IPSEC_SP);
1400 }
1401 
1402 /*
1403  * create secpolicy structure from sadb_x_policy structure.
1404  * NOTE: `state', `secpolicyindex' in secpolicy structure are not set,
1405  * so must be set properly later.
1406  */
1407 struct secpolicy *
1408 key_msg2sp(xpl0, len, error)
1409 	struct sadb_x_policy *xpl0;
1410 	size_t len;
1411 	int *error;
1412 {
1413 	struct secpolicy *newsp;
1414 
1415 	IPSEC_ASSERT(xpl0 != NULL, ("null xpl0"));
1416 	IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len));
1417 
1418 	if (len != PFKEY_EXTLEN(xpl0)) {
1419 		ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__));
1420 		*error = EINVAL;
1421 		return NULL;
1422 	}
1423 
1424 	if ((newsp = KEY_NEWSP()) == NULL) {
1425 		*error = ENOBUFS;
1426 		return NULL;
1427 	}
1428 
1429 	newsp->spidx.dir = xpl0->sadb_x_policy_dir;
1430 	newsp->policy = xpl0->sadb_x_policy_type;
1431 
1432 	/* check policy */
1433 	switch (xpl0->sadb_x_policy_type) {
1434 	case IPSEC_POLICY_DISCARD:
1435 	case IPSEC_POLICY_NONE:
1436 	case IPSEC_POLICY_ENTRUST:
1437 	case IPSEC_POLICY_BYPASS:
1438 		newsp->req = NULL;
1439 		break;
1440 
1441 	case IPSEC_POLICY_IPSEC:
1442 	    {
1443 		int tlen;
1444 		struct sadb_x_ipsecrequest *xisr;
1445 		struct ipsecrequest **p_isr = &newsp->req;
1446 
1447 		/* validity check */
1448 		if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) {
1449 			ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n",
1450 				__func__));
1451 			KEY_FREESP(&newsp);
1452 			*error = EINVAL;
1453 			return NULL;
1454 		}
1455 
1456 		tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0);
1457 		xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1);
1458 
1459 		while (tlen > 0) {
1460 			/* length check */
1461 			if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) {
1462 				ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest "
1463 					"length.\n", __func__));
1464 				KEY_FREESP(&newsp);
1465 				*error = EINVAL;
1466 				return NULL;
1467 			}
1468 
1469 			/* allocate request buffer */
1470 			/* NB: data structure is zero'd */
1471 			*p_isr = ipsec_newisr();
1472 			if ((*p_isr) == NULL) {
1473 				ipseclog((LOG_DEBUG,
1474 				    "%s: No more memory.\n", __func__));
1475 				KEY_FREESP(&newsp);
1476 				*error = ENOBUFS;
1477 				return NULL;
1478 			}
1479 
1480 			/* set values */
1481 			switch (xisr->sadb_x_ipsecrequest_proto) {
1482 			case IPPROTO_ESP:
1483 			case IPPROTO_AH:
1484 			case IPPROTO_IPCOMP:
1485 				break;
1486 			default:
1487 				ipseclog((LOG_DEBUG,
1488 				    "%s: invalid proto type=%u\n", __func__,
1489 				    xisr->sadb_x_ipsecrequest_proto));
1490 				KEY_FREESP(&newsp);
1491 				*error = EPROTONOSUPPORT;
1492 				return NULL;
1493 			}
1494 			(*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto;
1495 
1496 			switch (xisr->sadb_x_ipsecrequest_mode) {
1497 			case IPSEC_MODE_TRANSPORT:
1498 			case IPSEC_MODE_TUNNEL:
1499 				break;
1500 			case IPSEC_MODE_ANY:
1501 			default:
1502 				ipseclog((LOG_DEBUG,
1503 				    "%s: invalid mode=%u\n", __func__,
1504 				    xisr->sadb_x_ipsecrequest_mode));
1505 				KEY_FREESP(&newsp);
1506 				*error = EINVAL;
1507 				return NULL;
1508 			}
1509 			(*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode;
1510 
1511 			switch (xisr->sadb_x_ipsecrequest_level) {
1512 			case IPSEC_LEVEL_DEFAULT:
1513 			case IPSEC_LEVEL_USE:
1514 			case IPSEC_LEVEL_REQUIRE:
1515 				break;
1516 			case IPSEC_LEVEL_UNIQUE:
1517 				/* validity check */
1518 				/*
1519 				 * If range violation of reqid, kernel will
1520 				 * update it, don't refuse it.
1521 				 */
1522 				if (xisr->sadb_x_ipsecrequest_reqid
1523 						> IPSEC_MANUAL_REQID_MAX) {
1524 					ipseclog((LOG_DEBUG,
1525 					    "%s: reqid=%d range "
1526 					    "violation, updated by kernel.\n",
1527 					    __func__,
1528 					    xisr->sadb_x_ipsecrequest_reqid));
1529 					xisr->sadb_x_ipsecrequest_reqid = 0;
1530 				}
1531 
1532 				/* allocate new reqid id if reqid is zero. */
1533 				if (xisr->sadb_x_ipsecrequest_reqid == 0) {
1534 					u_int32_t reqid;
1535 					if ((reqid = key_newreqid()) == 0) {
1536 						KEY_FREESP(&newsp);
1537 						*error = ENOBUFS;
1538 						return NULL;
1539 					}
1540 					(*p_isr)->saidx.reqid = reqid;
1541 					xisr->sadb_x_ipsecrequest_reqid = reqid;
1542 				} else {
1543 				/* set it for manual keying. */
1544 					(*p_isr)->saidx.reqid =
1545 						xisr->sadb_x_ipsecrequest_reqid;
1546 				}
1547 				break;
1548 
1549 			default:
1550 				ipseclog((LOG_DEBUG, "%s: invalid level=%u\n",
1551 					__func__,
1552 					xisr->sadb_x_ipsecrequest_level));
1553 				KEY_FREESP(&newsp);
1554 				*error = EINVAL;
1555 				return NULL;
1556 			}
1557 			(*p_isr)->level = xisr->sadb_x_ipsecrequest_level;
1558 
1559 			/* set IP addresses if there */
1560 			if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) {
1561 				struct sockaddr *paddr;
1562 
1563 				paddr = (struct sockaddr *)(xisr + 1);
1564 
1565 				/* validity check */
1566 				if (paddr->sa_len
1567 				    > sizeof((*p_isr)->saidx.src)) {
1568 					ipseclog((LOG_DEBUG, "%s: invalid "
1569 						"request address length.\n",
1570 						__func__));
1571 					KEY_FREESP(&newsp);
1572 					*error = EINVAL;
1573 					return NULL;
1574 				}
1575 				bcopy(paddr, &(*p_isr)->saidx.src,
1576 					paddr->sa_len);
1577 
1578 				paddr = (struct sockaddr *)((caddr_t)paddr
1579 							+ paddr->sa_len);
1580 
1581 				/* validity check */
1582 				if (paddr->sa_len
1583 				    > sizeof((*p_isr)->saidx.dst)) {
1584 					ipseclog((LOG_DEBUG, "%s: invalid "
1585 						"request address length.\n",
1586 						__func__));
1587 					KEY_FREESP(&newsp);
1588 					*error = EINVAL;
1589 					return NULL;
1590 				}
1591 				bcopy(paddr, &(*p_isr)->saidx.dst,
1592 					paddr->sa_len);
1593 			}
1594 
1595 			(*p_isr)->sp = newsp;
1596 
1597 			/* initialization for the next. */
1598 			p_isr = &(*p_isr)->next;
1599 			tlen -= xisr->sadb_x_ipsecrequest_len;
1600 
1601 			/* validity check */
1602 			if (tlen < 0) {
1603 				ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n",
1604 					__func__));
1605 				KEY_FREESP(&newsp);
1606 				*error = EINVAL;
1607 				return NULL;
1608 			}
1609 
1610 			xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr
1611 			                 + xisr->sadb_x_ipsecrequest_len);
1612 		}
1613 	    }
1614 		break;
1615 	default:
1616 		ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__));
1617 		KEY_FREESP(&newsp);
1618 		*error = EINVAL;
1619 		return NULL;
1620 	}
1621 
1622 	*error = 0;
1623 	return newsp;
1624 }
1625 
1626 static u_int32_t
1627 key_newreqid()
1628 {
1629 	static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1;
1630 
1631 	auto_reqid = (auto_reqid == ~0
1632 			? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1);
1633 
1634 	/* XXX should be unique check */
1635 
1636 	return auto_reqid;
1637 }
1638 
1639 /*
1640  * copy secpolicy struct to sadb_x_policy structure indicated.
1641  */
1642 struct mbuf *
1643 key_sp2msg(sp)
1644 	struct secpolicy *sp;
1645 {
1646 	struct sadb_x_policy *xpl;
1647 	int tlen;
1648 	caddr_t p;
1649 	struct mbuf *m;
1650 
1651 	IPSEC_ASSERT(sp != NULL, ("null policy"));
1652 
1653 	tlen = key_getspreqmsglen(sp);
1654 
1655 	m = m_get2(tlen, M_NOWAIT, MT_DATA, 0);
1656 	if (m == NULL)
1657 		return (NULL);
1658 	m_align(m, tlen);
1659 	m->m_len = tlen;
1660 	xpl = mtod(m, struct sadb_x_policy *);
1661 	bzero(xpl, tlen);
1662 
1663 	xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen);
1664 	xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
1665 	xpl->sadb_x_policy_type = sp->policy;
1666 	xpl->sadb_x_policy_dir = sp->spidx.dir;
1667 	xpl->sadb_x_policy_id = sp->id;
1668 	p = (caddr_t)xpl + sizeof(*xpl);
1669 
1670 	/* if is the policy for ipsec ? */
1671 	if (sp->policy == IPSEC_POLICY_IPSEC) {
1672 		struct sadb_x_ipsecrequest *xisr;
1673 		struct ipsecrequest *isr;
1674 
1675 		for (isr = sp->req; isr != NULL; isr = isr->next) {
1676 
1677 			xisr = (struct sadb_x_ipsecrequest *)p;
1678 
1679 			xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto;
1680 			xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode;
1681 			xisr->sadb_x_ipsecrequest_level = isr->level;
1682 			xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid;
1683 
1684 			p += sizeof(*xisr);
1685 			bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len);
1686 			p += isr->saidx.src.sa.sa_len;
1687 			bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len);
1688 			p += isr->saidx.src.sa.sa_len;
1689 
1690 			xisr->sadb_x_ipsecrequest_len =
1691 				PFKEY_ALIGN8(sizeof(*xisr)
1692 					+ isr->saidx.src.sa.sa_len
1693 					+ isr->saidx.dst.sa.sa_len);
1694 		}
1695 	}
1696 
1697 	return m;
1698 }
1699 
1700 /* m will not be freed nor modified */
1701 static struct mbuf *
1702 #ifdef __STDC__
1703 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp,
1704 	int ndeep, int nitem, ...)
1705 #else
1706 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist)
1707 	struct mbuf *m;
1708 	const struct sadb_msghdr *mhp;
1709 	int ndeep;
1710 	int nitem;
1711 	va_dcl
1712 #endif
1713 {
1714 	va_list ap;
1715 	int idx;
1716 	int i;
1717 	struct mbuf *result = NULL, *n;
1718 	int len;
1719 
1720 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1721 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1722 
1723 	va_start(ap, nitem);
1724 	for (i = 0; i < nitem; i++) {
1725 		idx = va_arg(ap, int);
1726 		if (idx < 0 || idx > SADB_EXT_MAX)
1727 			goto fail;
1728 		/* don't attempt to pull empty extension */
1729 		if (idx == SADB_EXT_RESERVED && mhp->msg == NULL)
1730 			continue;
1731 		if (idx != SADB_EXT_RESERVED  &&
1732 		    (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0))
1733 			continue;
1734 
1735 		if (idx == SADB_EXT_RESERVED) {
1736 			len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
1737 
1738 			IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len));
1739 
1740 			MGETHDR(n, M_NOWAIT, MT_DATA);
1741 			if (!n)
1742 				goto fail;
1743 			n->m_len = len;
1744 			n->m_next = NULL;
1745 			m_copydata(m, 0, sizeof(struct sadb_msg),
1746 			    mtod(n, caddr_t));
1747 		} else if (i < ndeep) {
1748 			len = mhp->extlen[idx];
1749 			n = m_get2(len, M_NOWAIT, MT_DATA, 0);
1750 			if (n == NULL)
1751 				goto fail;
1752 			m_align(n, len);
1753 			n->m_len = len;
1754 			m_copydata(m, mhp->extoff[idx], mhp->extlen[idx],
1755 			    mtod(n, caddr_t));
1756 		} else {
1757 			n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx],
1758 			    M_NOWAIT);
1759 		}
1760 		if (n == NULL)
1761 			goto fail;
1762 
1763 		if (result)
1764 			m_cat(result, n);
1765 		else
1766 			result = n;
1767 	}
1768 	va_end(ap);
1769 
1770 	if ((result->m_flags & M_PKTHDR) != 0) {
1771 		result->m_pkthdr.len = 0;
1772 		for (n = result; n; n = n->m_next)
1773 			result->m_pkthdr.len += n->m_len;
1774 	}
1775 
1776 	return result;
1777 
1778 fail:
1779 	m_freem(result);
1780 	va_end(ap);
1781 	return NULL;
1782 }
1783 
1784 /*
1785  * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing
1786  * add an entry to SP database, when received
1787  *   <base, address(SD), (lifetime(H),) policy>
1788  * from the user(?).
1789  * Adding to SP database,
1790  * and send
1791  *   <base, address(SD), (lifetime(H),) policy>
1792  * to the socket which was send.
1793  *
1794  * SPDADD set a unique policy entry.
1795  * SPDSETIDX like SPDADD without a part of policy requests.
1796  * SPDUPDATE replace a unique policy entry.
1797  *
1798  * m will always be freed.
1799  */
1800 static int
1801 key_spdadd(so, m, mhp)
1802 	struct socket *so;
1803 	struct mbuf *m;
1804 	const struct sadb_msghdr *mhp;
1805 {
1806 	struct sadb_address *src0, *dst0;
1807 	struct sadb_x_policy *xpl0, *xpl;
1808 	struct sadb_lifetime *lft = NULL;
1809 	struct secpolicyindex spidx;
1810 	struct secpolicy *newsp;
1811 	int error;
1812 
1813 	IPSEC_ASSERT(so != NULL, ("null socket"));
1814 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
1815 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
1816 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
1817 
1818 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
1819 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
1820 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
1821 		ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n"));
1822 		return key_senderror(so, m, EINVAL);
1823 	}
1824 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
1825 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
1826 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
1827 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1828 			__func__));
1829 		return key_senderror(so, m, EINVAL);
1830 	}
1831 	if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) {
1832 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD]
1833 			< sizeof(struct sadb_lifetime)) {
1834 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
1835 				__func__));
1836 			return key_senderror(so, m, EINVAL);
1837 		}
1838 		lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
1839 	}
1840 
1841 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
1842 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
1843 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
1844 
1845 	/*
1846 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
1847 	 * we are processing traffic endpoints.
1848 	 */
1849 
1850 	/* make secindex */
1851 	/* XXX boundary check against sa_len */
1852 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1853 	                src0 + 1,
1854 	                dst0 + 1,
1855 	                src0->sadb_address_prefixlen,
1856 	                dst0->sadb_address_prefixlen,
1857 	                src0->sadb_address_proto,
1858 	                &spidx);
1859 
1860 	/* checking the direciton. */
1861 	switch (xpl0->sadb_x_policy_dir) {
1862 	case IPSEC_DIR_INBOUND:
1863 	case IPSEC_DIR_OUTBOUND:
1864 		break;
1865 	default:
1866 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
1867 		mhp->msg->sadb_msg_errno = EINVAL;
1868 		return 0;
1869 	}
1870 
1871 	/* check policy */
1872 	/* key_spdadd() accepts DISCARD, NONE and IPSEC. */
1873 	if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST
1874 	 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) {
1875 		ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__));
1876 		return key_senderror(so, m, EINVAL);
1877 	}
1878 
1879 	/* policy requests are mandatory when action is ipsec. */
1880         if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX
1881 	 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC
1882 	 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) {
1883 		ipseclog((LOG_DEBUG, "%s: some policy requests part required\n",
1884 			__func__));
1885 		return key_senderror(so, m, EINVAL);
1886 	}
1887 
1888 	/*
1889 	 * checking there is SP already or not.
1890 	 * SPDUPDATE doesn't depend on whether there is a SP or not.
1891 	 * If the type is either SPDADD or SPDSETIDX AND a SP is found,
1892 	 * then error.
1893 	 */
1894 	newsp = key_getsp(&spidx);
1895 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1896 		if (newsp) {
1897 			SPTREE_LOCK();
1898 			newsp->state = IPSEC_SPSTATE_DEAD;
1899 			SPTREE_UNLOCK();
1900 			KEY_FREESP(&newsp);
1901 		}
1902 	} else {
1903 		if (newsp != NULL) {
1904 			KEY_FREESP(&newsp);
1905 			ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n",
1906 				__func__));
1907 			return key_senderror(so, m, EEXIST);
1908 		}
1909 	}
1910 
1911 	/* allocation new SP entry */
1912 	if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) {
1913 		return key_senderror(so, m, error);
1914 	}
1915 
1916 	if ((newsp->id = key_getnewspid()) == 0) {
1917 		_key_delsp(newsp);
1918 		return key_senderror(so, m, ENOBUFS);
1919 	}
1920 
1921 	/* XXX boundary check against sa_len */
1922 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
1923 	                src0 + 1,
1924 	                dst0 + 1,
1925 	                src0->sadb_address_prefixlen,
1926 	                dst0->sadb_address_prefixlen,
1927 	                src0->sadb_address_proto,
1928 	                &newsp->spidx);
1929 
1930 	/* sanity check on addr pair */
1931 	if (((struct sockaddr *)(src0 + 1))->sa_family !=
1932 			((struct sockaddr *)(dst0+ 1))->sa_family) {
1933 		_key_delsp(newsp);
1934 		return key_senderror(so, m, EINVAL);
1935 	}
1936 	if (((struct sockaddr *)(src0 + 1))->sa_len !=
1937 			((struct sockaddr *)(dst0+ 1))->sa_len) {
1938 		_key_delsp(newsp);
1939 		return key_senderror(so, m, EINVAL);
1940 	}
1941 #if 1
1942 	if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) {
1943 		if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) {
1944 			_key_delsp(newsp);
1945 			return key_senderror(so, m, EINVAL);
1946 		}
1947 	}
1948 #endif
1949 
1950 	newsp->created = time_second;
1951 	newsp->lastused = newsp->created;
1952 	newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0;
1953 	newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0;
1954 
1955 	newsp->refcnt = 1;	/* do not reclaim until I say I do */
1956 	newsp->state = IPSEC_SPSTATE_ALIVE;
1957 	LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain);
1958 
1959 	/* delete the entry in spacqtree */
1960 	if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) {
1961 		struct secspacq *spacq = key_getspacq(&spidx);
1962 		if (spacq != NULL) {
1963 			/* reset counter in order to deletion by timehandler. */
1964 			spacq->created = time_second;
1965 			spacq->count = 0;
1966 			SPACQ_UNLOCK();
1967 		}
1968     	}
1969 
1970     {
1971 	struct mbuf *n, *mpolicy;
1972 	struct sadb_msg *newmsg;
1973 	int off;
1974 
1975 	/*
1976 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
1977 	 * we are sending traffic endpoints.
1978 	 */
1979 
1980 	/* create new sadb_msg to reply. */
1981 	if (lft) {
1982 		n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED,
1983 		    SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD,
1984 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1985 	} else {
1986 		n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED,
1987 		    SADB_X_EXT_POLICY,
1988 		    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
1989 	}
1990 	if (!n)
1991 		return key_senderror(so, m, ENOBUFS);
1992 
1993 	if (n->m_len < sizeof(*newmsg)) {
1994 		n = m_pullup(n, sizeof(*newmsg));
1995 		if (!n)
1996 			return key_senderror(so, m, ENOBUFS);
1997 	}
1998 	newmsg = mtod(n, struct sadb_msg *);
1999 	newmsg->sadb_msg_errno = 0;
2000 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2001 
2002 	off = 0;
2003 	mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)),
2004 	    sizeof(*xpl), &off);
2005 	if (mpolicy == NULL) {
2006 		/* n is already freed */
2007 		return key_senderror(so, m, ENOBUFS);
2008 	}
2009 	xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off);
2010 	if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) {
2011 		m_freem(n);
2012 		return key_senderror(so, m, EINVAL);
2013 	}
2014 	xpl->sadb_x_policy_id = newsp->id;
2015 
2016 	m_freem(m);
2017 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2018     }
2019 }
2020 
2021 /*
2022  * get new policy id.
2023  * OUT:
2024  *	0:	failure.
2025  *	others: success.
2026  */
2027 static u_int32_t
2028 key_getnewspid()
2029 {
2030 	u_int32_t newid = 0;
2031 	int count = V_key_spi_trycnt;	/* XXX */
2032 	struct secpolicy *sp;
2033 
2034 	/* when requesting to allocate spi ranged */
2035 	while (count--) {
2036 		newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1));
2037 
2038 		if ((sp = key_getspbyid(newid)) == NULL)
2039 			break;
2040 
2041 		KEY_FREESP(&sp);
2042 	}
2043 
2044 	if (count == 0 || newid == 0) {
2045 		ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n",
2046 			__func__));
2047 		return 0;
2048 	}
2049 
2050 	return newid;
2051 }
2052 
2053 /*
2054  * SADB_SPDDELETE processing
2055  * receive
2056  *   <base, address(SD), policy(*)>
2057  * from the user(?), and set SADB_SASTATE_DEAD,
2058  * and send,
2059  *   <base, address(SD), policy(*)>
2060  * to the ikmpd.
2061  * policy(*) including direction of policy.
2062  *
2063  * m will always be freed.
2064  */
2065 static int
2066 key_spddelete(so, m, mhp)
2067 	struct socket *so;
2068 	struct mbuf *m;
2069 	const struct sadb_msghdr *mhp;
2070 {
2071 	struct sadb_address *src0, *dst0;
2072 	struct sadb_x_policy *xpl0;
2073 	struct secpolicyindex spidx;
2074 	struct secpolicy *sp;
2075 
2076 	IPSEC_ASSERT(so != NULL, ("null so"));
2077 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2078 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2079 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2080 
2081 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
2082 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
2083 	    mhp->ext[SADB_X_EXT_POLICY] == NULL) {
2084 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2085 			__func__));
2086 		return key_senderror(so, m, EINVAL);
2087 	}
2088 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
2089 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
2090 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2091 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2092 			__func__));
2093 		return key_senderror(so, m, EINVAL);
2094 	}
2095 
2096 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
2097 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
2098 	xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY];
2099 
2100 	/*
2101 	 * Note: do not parse SADB_X_EXT_NAT_T_* here:
2102 	 * we are processing traffic endpoints.
2103 	 */
2104 
2105 	/* make secindex */
2106 	/* XXX boundary check against sa_len */
2107 	KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir,
2108 	                src0 + 1,
2109 	                dst0 + 1,
2110 	                src0->sadb_address_prefixlen,
2111 	                dst0->sadb_address_prefixlen,
2112 	                src0->sadb_address_proto,
2113 	                &spidx);
2114 
2115 	/* checking the direciton. */
2116 	switch (xpl0->sadb_x_policy_dir) {
2117 	case IPSEC_DIR_INBOUND:
2118 	case IPSEC_DIR_OUTBOUND:
2119 		break;
2120 	default:
2121 		ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__));
2122 		return key_senderror(so, m, EINVAL);
2123 	}
2124 
2125 	/* Is there SP in SPD ? */
2126 	if ((sp = key_getsp(&spidx)) == NULL) {
2127 		ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__));
2128 		return key_senderror(so, m, EINVAL);
2129 	}
2130 
2131 	/* save policy id to buffer to be returned. */
2132 	xpl0->sadb_x_policy_id = sp->id;
2133 
2134 	SPTREE_LOCK();
2135 	sp->state = IPSEC_SPSTATE_DEAD;
2136 	SPTREE_UNLOCK();
2137 	KEY_FREESP(&sp);
2138 
2139     {
2140 	struct mbuf *n;
2141 	struct sadb_msg *newmsg;
2142 
2143 	/*
2144 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2145 	 * we are sending traffic endpoints.
2146 	 */
2147 
2148 	/* create new sadb_msg to reply. */
2149 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
2150 	    SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
2151 	if (!n)
2152 		return key_senderror(so, m, ENOBUFS);
2153 
2154 	newmsg = mtod(n, struct sadb_msg *);
2155 	newmsg->sadb_msg_errno = 0;
2156 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2157 
2158 	m_freem(m);
2159 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2160     }
2161 }
2162 
2163 /*
2164  * SADB_SPDDELETE2 processing
2165  * receive
2166  *   <base, policy(*)>
2167  * from the user(?), and set SADB_SASTATE_DEAD,
2168  * and send,
2169  *   <base, policy(*)>
2170  * to the ikmpd.
2171  * policy(*) including direction of policy.
2172  *
2173  * m will always be freed.
2174  */
2175 static int
2176 key_spddelete2(so, m, mhp)
2177 	struct socket *so;
2178 	struct mbuf *m;
2179 	const struct sadb_msghdr *mhp;
2180 {
2181 	u_int32_t id;
2182 	struct secpolicy *sp;
2183 
2184 	IPSEC_ASSERT(so != NULL, ("null socket"));
2185 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2186 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2187 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2188 
2189 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2190 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2191 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__));
2192 		return key_senderror(so, m, EINVAL);
2193 	}
2194 
2195 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2196 
2197 	/* Is there SP in SPD ? */
2198 	if ((sp = key_getspbyid(id)) == NULL) {
2199 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2200 		return key_senderror(so, m, EINVAL);
2201 	}
2202 
2203 	SPTREE_LOCK();
2204 	sp->state = IPSEC_SPSTATE_DEAD;
2205 	SPTREE_UNLOCK();
2206 	KEY_FREESP(&sp);
2207 
2208     {
2209 	struct mbuf *n, *nn;
2210 	struct sadb_msg *newmsg;
2211 	int off, len;
2212 
2213 	/* create new sadb_msg to reply. */
2214 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2215 
2216 	MGETHDR(n, M_NOWAIT, MT_DATA);
2217 	if (n && len > MHLEN) {
2218 		MCLGET(n, M_NOWAIT);
2219 		if ((n->m_flags & M_EXT) == 0) {
2220 			m_freem(n);
2221 			n = NULL;
2222 		}
2223 	}
2224 	if (!n)
2225 		return key_senderror(so, m, ENOBUFS);
2226 
2227 	n->m_len = len;
2228 	n->m_next = NULL;
2229 	off = 0;
2230 
2231 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
2232 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
2233 
2234 	IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)",
2235 		off, len));
2236 
2237 	n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY],
2238 	    mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT);
2239 	if (!n->m_next) {
2240 		m_freem(n);
2241 		return key_senderror(so, m, ENOBUFS);
2242 	}
2243 
2244 	n->m_pkthdr.len = 0;
2245 	for (nn = n; nn; nn = nn->m_next)
2246 		n->m_pkthdr.len += nn->m_len;
2247 
2248 	newmsg = mtod(n, struct sadb_msg *);
2249 	newmsg->sadb_msg_errno = 0;
2250 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
2251 
2252 	m_freem(m);
2253 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
2254     }
2255 }
2256 
2257 /*
2258  * SADB_X_GET processing
2259  * receive
2260  *   <base, policy(*)>
2261  * from the user(?),
2262  * and send,
2263  *   <base, address(SD), policy>
2264  * to the ikmpd.
2265  * policy(*) including direction of policy.
2266  *
2267  * m will always be freed.
2268  */
2269 static int
2270 key_spdget(so, m, mhp)
2271 	struct socket *so;
2272 	struct mbuf *m;
2273 	const struct sadb_msghdr *mhp;
2274 {
2275 	u_int32_t id;
2276 	struct secpolicy *sp;
2277 	struct mbuf *n;
2278 
2279 	IPSEC_ASSERT(so != NULL, ("null socket"));
2280 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2281 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2282 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2283 
2284 	if (mhp->ext[SADB_X_EXT_POLICY] == NULL ||
2285 	    mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) {
2286 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2287 			__func__));
2288 		return key_senderror(so, m, EINVAL);
2289 	}
2290 
2291 	id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id;
2292 
2293 	/* Is there SP in SPD ? */
2294 	if ((sp = key_getspbyid(id)) == NULL) {
2295 		ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id));
2296 		return key_senderror(so, m, ENOENT);
2297 	}
2298 
2299 	n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid);
2300 	KEY_FREESP(&sp);
2301 	if (n != NULL) {
2302 		m_freem(m);
2303 		return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2304 	} else
2305 		return key_senderror(so, m, ENOBUFS);
2306 }
2307 
2308 /*
2309  * SADB_X_SPDACQUIRE processing.
2310  * Acquire policy and SA(s) for a *OUTBOUND* packet.
2311  * send
2312  *   <base, policy(*)>
2313  * to KMD, and expect to receive
2314  *   <base> with SADB_X_SPDACQUIRE if error occured,
2315  * or
2316  *   <base, policy>
2317  * with SADB_X_SPDUPDATE from KMD by PF_KEY.
2318  * policy(*) is without policy requests.
2319  *
2320  *    0     : succeed
2321  *    others: error number
2322  */
2323 int
2324 key_spdacquire(sp)
2325 	struct secpolicy *sp;
2326 {
2327 	struct mbuf *result = NULL, *m;
2328 	struct secspacq *newspacq;
2329 
2330 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2331 	IPSEC_ASSERT(sp->req == NULL, ("policy exists"));
2332 	IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC,
2333 		("policy not IPSEC %u", sp->policy));
2334 
2335 	/* Get an entry to check whether sent message or not. */
2336 	newspacq = key_getspacq(&sp->spidx);
2337 	if (newspacq != NULL) {
2338 		if (V_key_blockacq_count < newspacq->count) {
2339 			/* reset counter and do send message. */
2340 			newspacq->count = 0;
2341 		} else {
2342 			/* increment counter and do nothing. */
2343 			newspacq->count++;
2344 			return 0;
2345 		}
2346 		SPACQ_UNLOCK();
2347 	} else {
2348 		/* make new entry for blocking to send SADB_ACQUIRE. */
2349 		newspacq = key_newspacq(&sp->spidx);
2350 		if (newspacq == NULL)
2351 			return ENOBUFS;
2352 	}
2353 
2354 	/* create new sadb_msg to reply. */
2355 	m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0);
2356 	if (!m)
2357 		return ENOBUFS;
2358 
2359 	result = m;
2360 
2361 	result->m_pkthdr.len = 0;
2362 	for (m = result; m; m = m->m_next)
2363 		result->m_pkthdr.len += m->m_len;
2364 
2365 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2366 	    PFKEY_UNIT64(result->m_pkthdr.len);
2367 
2368 	return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED);
2369 }
2370 
2371 /*
2372  * SADB_SPDFLUSH processing
2373  * receive
2374  *   <base>
2375  * from the user, and free all entries in secpctree.
2376  * and send,
2377  *   <base>
2378  * to the user.
2379  * NOTE: what to do is only marking SADB_SASTATE_DEAD.
2380  *
2381  * m will always be freed.
2382  */
2383 static int
2384 key_spdflush(so, m, mhp)
2385 	struct socket *so;
2386 	struct mbuf *m;
2387 	const struct sadb_msghdr *mhp;
2388 {
2389 	struct sadb_msg *newmsg;
2390 	struct secpolicy *sp;
2391 	u_int dir;
2392 
2393 	IPSEC_ASSERT(so != NULL, ("null socket"));
2394 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2395 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2396 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2397 
2398 	if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg)))
2399 		return key_senderror(so, m, EINVAL);
2400 
2401 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2402 		SPTREE_LOCK();
2403 		LIST_FOREACH(sp, &V_sptree[dir], chain)
2404 			sp->state = IPSEC_SPSTATE_DEAD;
2405 		SPTREE_UNLOCK();
2406 	}
2407 
2408 	if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
2409 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2410 		return key_senderror(so, m, ENOBUFS);
2411 	}
2412 
2413 	if (m->m_next)
2414 		m_freem(m->m_next);
2415 	m->m_next = NULL;
2416 	m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
2417 	newmsg = mtod(m, struct sadb_msg *);
2418 	newmsg->sadb_msg_errno = 0;
2419 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
2420 
2421 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
2422 }
2423 
2424 /*
2425  * SADB_SPDDUMP processing
2426  * receive
2427  *   <base>
2428  * from the user, and dump all SP leaves
2429  * and send,
2430  *   <base> .....
2431  * to the ikmpd.
2432  *
2433  * m will always be freed.
2434  */
2435 static int
2436 key_spddump(so, m, mhp)
2437 	struct socket *so;
2438 	struct mbuf *m;
2439 	const struct sadb_msghdr *mhp;
2440 {
2441 	struct secpolicy *sp;
2442 	int cnt;
2443 	u_int dir;
2444 	struct mbuf *n;
2445 
2446 	IPSEC_ASSERT(so != NULL, ("null socket"));
2447 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2448 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2449 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2450 
2451 	/* search SPD entry and get buffer size. */
2452 	cnt = 0;
2453 	SPTREE_LOCK();
2454 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2455 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2456 			cnt++;
2457 		}
2458 	}
2459 
2460 	if (cnt == 0) {
2461 		SPTREE_UNLOCK();
2462 		return key_senderror(so, m, ENOENT);
2463 	}
2464 
2465 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
2466 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
2467 			--cnt;
2468 			n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt,
2469 			    mhp->msg->sadb_msg_pid);
2470 
2471 			if (n)
2472 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
2473 		}
2474 	}
2475 
2476 	SPTREE_UNLOCK();
2477 	m_freem(m);
2478 	return 0;
2479 }
2480 
2481 static struct mbuf *
2482 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid)
2483 {
2484 	struct mbuf *result = NULL, *m;
2485 	struct seclifetime lt;
2486 
2487 	m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt);
2488 	if (!m)
2489 		goto fail;
2490 	result = m;
2491 
2492 	/*
2493 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2494 	 * we are sending traffic endpoints.
2495 	 */
2496 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2497 	    &sp->spidx.src.sa, sp->spidx.prefs,
2498 	    sp->spidx.ul_proto);
2499 	if (!m)
2500 		goto fail;
2501 	m_cat(result, m);
2502 
2503 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2504 	    &sp->spidx.dst.sa, sp->spidx.prefd,
2505 	    sp->spidx.ul_proto);
2506 	if (!m)
2507 		goto fail;
2508 	m_cat(result, m);
2509 
2510 	m = key_sp2msg(sp);
2511 	if (!m)
2512 		goto fail;
2513 	m_cat(result, m);
2514 
2515 	if(sp->lifetime){
2516 		lt.addtime=sp->created;
2517 		lt.usetime= sp->lastused;
2518 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_CURRENT);
2519 		if (!m)
2520 			goto fail;
2521 		m_cat(result, m);
2522 
2523 		lt.addtime=sp->lifetime;
2524 		lt.usetime= sp->validtime;
2525 		m = key_setlifetime(&lt, SADB_EXT_LIFETIME_HARD);
2526 		if (!m)
2527 			goto fail;
2528 		m_cat(result, m);
2529 	}
2530 
2531 	if ((result->m_flags & M_PKTHDR) == 0)
2532 		goto fail;
2533 
2534 	if (result->m_len < sizeof(struct sadb_msg)) {
2535 		result = m_pullup(result, sizeof(struct sadb_msg));
2536 		if (result == NULL)
2537 			goto fail;
2538 	}
2539 
2540 	result->m_pkthdr.len = 0;
2541 	for (m = result; m; m = m->m_next)
2542 		result->m_pkthdr.len += m->m_len;
2543 
2544 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2545 	    PFKEY_UNIT64(result->m_pkthdr.len);
2546 
2547 	return result;
2548 
2549 fail:
2550 	m_freem(result);
2551 	return NULL;
2552 }
2553 
2554 /*
2555  * get PFKEY message length for security policy and request.
2556  */
2557 static u_int
2558 key_getspreqmsglen(sp)
2559 	struct secpolicy *sp;
2560 {
2561 	u_int tlen;
2562 
2563 	tlen = sizeof(struct sadb_x_policy);
2564 
2565 	/* if is the policy for ipsec ? */
2566 	if (sp->policy != IPSEC_POLICY_IPSEC)
2567 		return tlen;
2568 
2569 	/* get length of ipsec requests */
2570     {
2571 	struct ipsecrequest *isr;
2572 	int len;
2573 
2574 	for (isr = sp->req; isr != NULL; isr = isr->next) {
2575 		len = sizeof(struct sadb_x_ipsecrequest)
2576 			+ isr->saidx.src.sa.sa_len
2577 			+ isr->saidx.dst.sa.sa_len;
2578 
2579 		tlen += PFKEY_ALIGN8(len);
2580 	}
2581     }
2582 
2583 	return tlen;
2584 }
2585 
2586 /*
2587  * SADB_SPDEXPIRE processing
2588  * send
2589  *   <base, address(SD), lifetime(CH), policy>
2590  * to KMD by PF_KEY.
2591  *
2592  * OUT:	0	: succeed
2593  *	others	: error number
2594  */
2595 static int
2596 key_spdexpire(sp)
2597 	struct secpolicy *sp;
2598 {
2599 	struct mbuf *result = NULL, *m;
2600 	int len;
2601 	int error = -1;
2602 	struct sadb_lifetime *lt;
2603 
2604 	/* XXX: Why do we lock ? */
2605 
2606 	IPSEC_ASSERT(sp != NULL, ("null secpolicy"));
2607 
2608 	/* set msg header */
2609 	m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0);
2610 	if (!m) {
2611 		error = ENOBUFS;
2612 		goto fail;
2613 	}
2614 	result = m;
2615 
2616 	/* create lifetime extension (current and hard) */
2617 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
2618 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
2619 	if (m == NULL) {
2620 		error = ENOBUFS;
2621 		goto fail;
2622 	}
2623 	m_align(m, len);
2624 	m->m_len = len;
2625 	bzero(mtod(m, caddr_t), len);
2626 	lt = mtod(m, struct sadb_lifetime *);
2627 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2628 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
2629 	lt->sadb_lifetime_allocations = 0;
2630 	lt->sadb_lifetime_bytes = 0;
2631 	lt->sadb_lifetime_addtime = sp->created;
2632 	lt->sadb_lifetime_usetime = sp->lastused;
2633 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
2634 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
2635 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD;
2636 	lt->sadb_lifetime_allocations = 0;
2637 	lt->sadb_lifetime_bytes = 0;
2638 	lt->sadb_lifetime_addtime = sp->lifetime;
2639 	lt->sadb_lifetime_usetime = sp->validtime;
2640 	m_cat(result, m);
2641 
2642 	/*
2643 	 * Note: do not send SADB_X_EXT_NAT_T_* here:
2644 	 * we are sending traffic endpoints.
2645 	 */
2646 
2647 	/* set sadb_address for source */
2648 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
2649 	    &sp->spidx.src.sa,
2650 	    sp->spidx.prefs, sp->spidx.ul_proto);
2651 	if (!m) {
2652 		error = ENOBUFS;
2653 		goto fail;
2654 	}
2655 	m_cat(result, m);
2656 
2657 	/* set sadb_address for destination */
2658 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
2659 	    &sp->spidx.dst.sa,
2660 	    sp->spidx.prefd, sp->spidx.ul_proto);
2661 	if (!m) {
2662 		error = ENOBUFS;
2663 		goto fail;
2664 	}
2665 	m_cat(result, m);
2666 
2667 	/* set secpolicy */
2668 	m = key_sp2msg(sp);
2669 	if (!m) {
2670 		error = ENOBUFS;
2671 		goto fail;
2672 	}
2673 	m_cat(result, m);
2674 
2675 	if ((result->m_flags & M_PKTHDR) == 0) {
2676 		error = EINVAL;
2677 		goto fail;
2678 	}
2679 
2680 	if (result->m_len < sizeof(struct sadb_msg)) {
2681 		result = m_pullup(result, sizeof(struct sadb_msg));
2682 		if (result == NULL) {
2683 			error = ENOBUFS;
2684 			goto fail;
2685 		}
2686 	}
2687 
2688 	result->m_pkthdr.len = 0;
2689 	for (m = result; m; m = m->m_next)
2690 		result->m_pkthdr.len += m->m_len;
2691 
2692 	mtod(result, struct sadb_msg *)->sadb_msg_len =
2693 	    PFKEY_UNIT64(result->m_pkthdr.len);
2694 
2695 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
2696 
2697  fail:
2698 	if (result)
2699 		m_freem(result);
2700 	return error;
2701 }
2702 
2703 /* %%% SAD management */
2704 /*
2705  * allocating a memory for new SA head, and copy from the values of mhp.
2706  * OUT:	NULL	: failure due to the lack of memory.
2707  *	others	: pointer to new SA head.
2708  */
2709 static struct secashead *
2710 key_newsah(saidx)
2711 	struct secasindex *saidx;
2712 {
2713 	struct secashead *newsah;
2714 
2715 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
2716 
2717 	newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO);
2718 	if (newsah != NULL) {
2719 		int i;
2720 		for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++)
2721 			LIST_INIT(&newsah->savtree[i]);
2722 		newsah->saidx = *saidx;
2723 
2724 		/* add to saidxtree */
2725 		newsah->state = SADB_SASTATE_MATURE;
2726 
2727 		SAHTREE_LOCK();
2728 		LIST_INSERT_HEAD(&V_sahtree, newsah, chain);
2729 		SAHTREE_UNLOCK();
2730 	}
2731 	return(newsah);
2732 }
2733 
2734 /*
2735  * delete SA index and all SA registerd.
2736  */
2737 static void
2738 key_delsah(sah)
2739 	struct secashead *sah;
2740 {
2741 	struct secasvar *sav, *nextsav;
2742 	u_int stateidx;
2743 	int zombie = 0;
2744 
2745 	IPSEC_ASSERT(sah != NULL, ("NULL sah"));
2746 	SAHTREE_LOCK_ASSERT();
2747 
2748 	/* searching all SA registerd in the secindex. */
2749 	for (stateidx = 0;
2750 	     stateidx < _ARRAYLEN(saorder_state_any);
2751 	     stateidx++) {
2752 		u_int state = saorder_state_any[stateidx];
2753 		LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) {
2754 			if (sav->refcnt == 0) {
2755 				/* sanity check */
2756 				KEY_CHKSASTATE(state, sav->state, __func__);
2757 				/*
2758 				 * do NOT call KEY_FREESAV here:
2759 				 * it will only delete the sav if refcnt == 1,
2760 				 * where we already know that refcnt == 0
2761 				 */
2762 				key_delsav(sav);
2763 			} else {
2764 				/* give up to delete this sa */
2765 				zombie++;
2766 			}
2767 		}
2768 	}
2769 	if (!zombie) {		/* delete only if there are savs */
2770 		/* remove from tree of SA index */
2771 		if (__LIST_CHAINED(sah))
2772 			LIST_REMOVE(sah, chain);
2773 		if (sah->route_cache.sa_route.ro_rt) {
2774 			RTFREE(sah->route_cache.sa_route.ro_rt);
2775 			sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL;
2776 		}
2777 		free(sah, M_IPSEC_SAH);
2778 	}
2779 }
2780 
2781 /*
2782  * allocating a new SA with LARVAL state.  key_add() and key_getspi() call,
2783  * and copy the values of mhp into new buffer.
2784  * When SAD message type is GETSPI:
2785  *	to set sequence number from acq_seq++,
2786  *	to set zero to SPI.
2787  *	not to call key_setsava().
2788  * OUT:	NULL	: fail
2789  *	others	: pointer to new secasvar.
2790  *
2791  * does not modify mbuf.  does not free mbuf on error.
2792  */
2793 static struct secasvar *
2794 key_newsav(m, mhp, sah, errp, where, tag)
2795 	struct mbuf *m;
2796 	const struct sadb_msghdr *mhp;
2797 	struct secashead *sah;
2798 	int *errp;
2799 	const char* where;
2800 	int tag;
2801 {
2802 	struct secasvar *newsav;
2803 	const struct sadb_sa *xsa;
2804 
2805 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
2806 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
2807 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
2808 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
2809 
2810 	newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO);
2811 	if (newsav == NULL) {
2812 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
2813 		*errp = ENOBUFS;
2814 		goto done;
2815 	}
2816 
2817 	switch (mhp->msg->sadb_msg_type) {
2818 	case SADB_GETSPI:
2819 		newsav->spi = 0;
2820 
2821 #ifdef IPSEC_DOSEQCHECK
2822 		/* sync sequence number */
2823 		if (mhp->msg->sadb_msg_seq == 0)
2824 			newsav->seq =
2825 				(V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq));
2826 		else
2827 #endif
2828 			newsav->seq = mhp->msg->sadb_msg_seq;
2829 		break;
2830 
2831 	case SADB_ADD:
2832 		/* sanity check */
2833 		if (mhp->ext[SADB_EXT_SA] == NULL) {
2834 			free(newsav, M_IPSEC_SA);
2835 			newsav = NULL;
2836 			ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
2837 				__func__));
2838 			*errp = EINVAL;
2839 			goto done;
2840 		}
2841 		xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
2842 		newsav->spi = xsa->sadb_sa_spi;
2843 		newsav->seq = mhp->msg->sadb_msg_seq;
2844 		break;
2845 	default:
2846 		free(newsav, M_IPSEC_SA);
2847 		newsav = NULL;
2848 		*errp = EINVAL;
2849 		goto done;
2850 	}
2851 
2852 
2853 	/* copy sav values */
2854 	if (mhp->msg->sadb_msg_type != SADB_GETSPI) {
2855 		*errp = key_setsaval(newsav, m, mhp);
2856 		if (*errp) {
2857 			free(newsav, M_IPSEC_SA);
2858 			newsav = NULL;
2859 			goto done;
2860 		}
2861 	}
2862 
2863 	SECASVAR_LOCK_INIT(newsav);
2864 
2865 	/* reset created */
2866 	newsav->created = time_second;
2867 	newsav->pid = mhp->msg->sadb_msg_pid;
2868 
2869 	/* add to satree */
2870 	newsav->sah = sah;
2871 	sa_initref(newsav);
2872 	newsav->state = SADB_SASTATE_LARVAL;
2873 
2874 	SAHTREE_LOCK();
2875 	LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav,
2876 			secasvar, chain);
2877 	SAHTREE_UNLOCK();
2878 done:
2879 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
2880 		printf("DP %s from %s:%u return SP:%p\n", __func__,
2881 			where, tag, newsav));
2882 
2883 	return newsav;
2884 }
2885 
2886 /*
2887  * free() SA variable entry.
2888  */
2889 static void
2890 key_cleansav(struct secasvar *sav)
2891 {
2892 	/*
2893 	 * Cleanup xform state.  Note that zeroize'ing causes the
2894 	 * keys to be cleared; otherwise we must do it ourself.
2895 	 */
2896 	if (sav->tdb_xform != NULL) {
2897 		sav->tdb_xform->xf_zeroize(sav);
2898 		sav->tdb_xform = NULL;
2899 	} else {
2900 		KASSERT(sav->iv == NULL, ("iv but no xform"));
2901 		if (sav->key_auth != NULL)
2902 			bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth));
2903 		if (sav->key_enc != NULL)
2904 			bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc));
2905 	}
2906 	if (sav->key_auth != NULL) {
2907 		if (sav->key_auth->key_data != NULL)
2908 			free(sav->key_auth->key_data, M_IPSEC_MISC);
2909 		free(sav->key_auth, M_IPSEC_MISC);
2910 		sav->key_auth = NULL;
2911 	}
2912 	if (sav->key_enc != NULL) {
2913 		if (sav->key_enc->key_data != NULL)
2914 			free(sav->key_enc->key_data, M_IPSEC_MISC);
2915 		free(sav->key_enc, M_IPSEC_MISC);
2916 		sav->key_enc = NULL;
2917 	}
2918 	if (sav->sched) {
2919 		bzero(sav->sched, sav->schedlen);
2920 		free(sav->sched, M_IPSEC_MISC);
2921 		sav->sched = NULL;
2922 	}
2923 	if (sav->replay != NULL) {
2924 		free(sav->replay, M_IPSEC_MISC);
2925 		sav->replay = NULL;
2926 	}
2927 	if (sav->lft_c != NULL) {
2928 		free(sav->lft_c, M_IPSEC_MISC);
2929 		sav->lft_c = NULL;
2930 	}
2931 	if (sav->lft_h != NULL) {
2932 		free(sav->lft_h, M_IPSEC_MISC);
2933 		sav->lft_h = NULL;
2934 	}
2935 	if (sav->lft_s != NULL) {
2936 		free(sav->lft_s, M_IPSEC_MISC);
2937 		sav->lft_s = NULL;
2938 	}
2939 }
2940 
2941 /*
2942  * free() SA variable entry.
2943  */
2944 static void
2945 key_delsav(sav)
2946 	struct secasvar *sav;
2947 {
2948 	IPSEC_ASSERT(sav != NULL, ("null sav"));
2949 	IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt));
2950 
2951 	/* remove from SA header */
2952 	if (__LIST_CHAINED(sav))
2953 		LIST_REMOVE(sav, chain);
2954 	key_cleansav(sav);
2955 	SECASVAR_LOCK_DESTROY(sav);
2956 	free(sav, M_IPSEC_SA);
2957 }
2958 
2959 /*
2960  * search SAD.
2961  * OUT:
2962  *	NULL	: not found
2963  *	others	: found, pointer to a SA.
2964  */
2965 static struct secashead *
2966 key_getsah(saidx)
2967 	struct secasindex *saidx;
2968 {
2969 	struct secashead *sah;
2970 
2971 	SAHTREE_LOCK();
2972 	LIST_FOREACH(sah, &V_sahtree, chain) {
2973 		if (sah->state == SADB_SASTATE_DEAD)
2974 			continue;
2975 		if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID))
2976 			break;
2977 	}
2978 	SAHTREE_UNLOCK();
2979 
2980 	return sah;
2981 }
2982 
2983 /*
2984  * check not to be duplicated SPI.
2985  * NOTE: this function is too slow due to searching all SAD.
2986  * OUT:
2987  *	NULL	: not found
2988  *	others	: found, pointer to a SA.
2989  */
2990 static struct secasvar *
2991 key_checkspidup(saidx, spi)
2992 	struct secasindex *saidx;
2993 	u_int32_t spi;
2994 {
2995 	struct secashead *sah;
2996 	struct secasvar *sav;
2997 
2998 	/* check address family */
2999 	if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) {
3000 		ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
3001 			__func__));
3002 		return NULL;
3003 	}
3004 
3005 	sav = NULL;
3006 	/* check all SAD */
3007 	SAHTREE_LOCK();
3008 	LIST_FOREACH(sah, &V_sahtree, chain) {
3009 		if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst))
3010 			continue;
3011 		sav = key_getsavbyspi(sah, spi);
3012 		if (sav != NULL)
3013 			break;
3014 	}
3015 	SAHTREE_UNLOCK();
3016 
3017 	return sav;
3018 }
3019 
3020 /*
3021  * search SAD litmited alive SA, protocol, SPI.
3022  * OUT:
3023  *	NULL	: not found
3024  *	others	: found, pointer to a SA.
3025  */
3026 static struct secasvar *
3027 key_getsavbyspi(sah, spi)
3028 	struct secashead *sah;
3029 	u_int32_t spi;
3030 {
3031 	struct secasvar *sav;
3032 	u_int stateidx, state;
3033 
3034 	sav = NULL;
3035 	SAHTREE_LOCK_ASSERT();
3036 	/* search all status */
3037 	for (stateidx = 0;
3038 	     stateidx < _ARRAYLEN(saorder_state_alive);
3039 	     stateidx++) {
3040 
3041 		state = saorder_state_alive[stateidx];
3042 		LIST_FOREACH(sav, &sah->savtree[state], chain) {
3043 
3044 			/* sanity check */
3045 			if (sav->state != state) {
3046 				ipseclog((LOG_DEBUG, "%s: "
3047 				    "invalid sav->state (queue: %d SA: %d)\n",
3048 				    __func__, state, sav->state));
3049 				continue;
3050 			}
3051 
3052 			if (sav->spi == spi)
3053 				return sav;
3054 		}
3055 	}
3056 
3057 	return NULL;
3058 }
3059 
3060 /*
3061  * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*.
3062  * You must update these if need.
3063  * OUT:	0:	success.
3064  *	!0:	failure.
3065  *
3066  * does not modify mbuf.  does not free mbuf on error.
3067  */
3068 static int
3069 key_setsaval(sav, m, mhp)
3070 	struct secasvar *sav;
3071 	struct mbuf *m;
3072 	const struct sadb_msghdr *mhp;
3073 {
3074 	int error = 0;
3075 
3076 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
3077 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
3078 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
3079 
3080 	/* initialization */
3081 	sav->replay = NULL;
3082 	sav->key_auth = NULL;
3083 	sav->key_enc = NULL;
3084 	sav->sched = NULL;
3085 	sav->schedlen = 0;
3086 	sav->iv = NULL;
3087 	sav->lft_c = NULL;
3088 	sav->lft_h = NULL;
3089 	sav->lft_s = NULL;
3090 	sav->tdb_xform = NULL;		/* transform */
3091 	sav->tdb_encalgxform = NULL;	/* encoding algorithm */
3092 	sav->tdb_authalgxform = NULL;	/* authentication algorithm */
3093 	sav->tdb_compalgxform = NULL;	/* compression algorithm */
3094 	/*  Initialize even if NAT-T not compiled in: */
3095 	sav->natt_type = 0;
3096 	sav->natt_esp_frag_len = 0;
3097 
3098 	/* SA */
3099 	if (mhp->ext[SADB_EXT_SA] != NULL) {
3100 		const struct sadb_sa *sa0;
3101 
3102 		sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA];
3103 		if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) {
3104 			error = EINVAL;
3105 			goto fail;
3106 		}
3107 
3108 		sav->alg_auth = sa0->sadb_sa_auth;
3109 		sav->alg_enc = sa0->sadb_sa_encrypt;
3110 		sav->flags = sa0->sadb_sa_flags;
3111 
3112 		/* replay window */
3113 		if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) {
3114 			sav->replay = (struct secreplay *)
3115 				malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO);
3116 			if (sav->replay == NULL) {
3117 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3118 					__func__));
3119 				error = ENOBUFS;
3120 				goto fail;
3121 			}
3122 			if (sa0->sadb_sa_replay != 0)
3123 				sav->replay->bitmap = (caddr_t)(sav->replay+1);
3124 			sav->replay->wsize = sa0->sadb_sa_replay;
3125 		}
3126 	}
3127 
3128 	/* Authentication keys */
3129 	if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) {
3130 		const struct sadb_key *key0;
3131 		int len;
3132 
3133 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH];
3134 		len = mhp->extlen[SADB_EXT_KEY_AUTH];
3135 
3136 		error = 0;
3137 		if (len < sizeof(*key0)) {
3138 			error = EINVAL;
3139 			goto fail;
3140 		}
3141 		switch (mhp->msg->sadb_msg_satype) {
3142 		case SADB_SATYPE_AH:
3143 		case SADB_SATYPE_ESP:
3144 		case SADB_X_SATYPE_TCPSIGNATURE:
3145 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3146 			    sav->alg_auth != SADB_X_AALG_NULL)
3147 				error = EINVAL;
3148 			break;
3149 		case SADB_X_SATYPE_IPCOMP:
3150 		default:
3151 			error = EINVAL;
3152 			break;
3153 		}
3154 		if (error) {
3155 			ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n",
3156 				__func__));
3157 			goto fail;
3158 		}
3159 
3160 		sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len,
3161 								M_IPSEC_MISC);
3162 		if (sav->key_auth == NULL ) {
3163 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3164 				  __func__));
3165 			error = ENOBUFS;
3166 			goto fail;
3167 		}
3168 	}
3169 
3170 	/* Encryption key */
3171 	if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) {
3172 		const struct sadb_key *key0;
3173 		int len;
3174 
3175 		key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT];
3176 		len = mhp->extlen[SADB_EXT_KEY_ENCRYPT];
3177 
3178 		error = 0;
3179 		if (len < sizeof(*key0)) {
3180 			error = EINVAL;
3181 			goto fail;
3182 		}
3183 		switch (mhp->msg->sadb_msg_satype) {
3184 		case SADB_SATYPE_ESP:
3185 			if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) &&
3186 			    sav->alg_enc != SADB_EALG_NULL) {
3187 				error = EINVAL;
3188 				break;
3189 			}
3190 			sav->key_enc = (struct seckey *)key_dup_keymsg(key0,
3191 								       len,
3192 								       M_IPSEC_MISC);
3193 			if (sav->key_enc == NULL) {
3194 				ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3195 					__func__));
3196 				error = ENOBUFS;
3197 				goto fail;
3198 			}
3199 			break;
3200 		case SADB_X_SATYPE_IPCOMP:
3201 			if (len != PFKEY_ALIGN8(sizeof(struct sadb_key)))
3202 				error = EINVAL;
3203 			sav->key_enc = NULL;	/*just in case*/
3204 			break;
3205 		case SADB_SATYPE_AH:
3206 		case SADB_X_SATYPE_TCPSIGNATURE:
3207 		default:
3208 			error = EINVAL;
3209 			break;
3210 		}
3211 		if (error) {
3212 			ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n",
3213 				__func__));
3214 			goto fail;
3215 		}
3216 	}
3217 
3218 	/* set iv */
3219 	sav->ivlen = 0;
3220 
3221 	switch (mhp->msg->sadb_msg_satype) {
3222 	case SADB_SATYPE_AH:
3223 		error = xform_init(sav, XF_AH);
3224 		break;
3225 	case SADB_SATYPE_ESP:
3226 		error = xform_init(sav, XF_ESP);
3227 		break;
3228 	case SADB_X_SATYPE_IPCOMP:
3229 		error = xform_init(sav, XF_IPCOMP);
3230 		break;
3231 	case SADB_X_SATYPE_TCPSIGNATURE:
3232 		error = xform_init(sav, XF_TCPSIGNATURE);
3233 		break;
3234 	}
3235 	if (error) {
3236 		ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n",
3237 		        __func__, mhp->msg->sadb_msg_satype));
3238 		goto fail;
3239 	}
3240 
3241 	/* reset created */
3242 	sav->created = time_second;
3243 
3244 	/* make lifetime for CURRENT */
3245 	sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT);
3246 	if (sav->lft_c == NULL) {
3247 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3248 		error = ENOBUFS;
3249 		goto fail;
3250 	}
3251 
3252 	sav->lft_c->allocations = 0;
3253 	sav->lft_c->bytes = 0;
3254 	sav->lft_c->addtime = time_second;
3255 	sav->lft_c->usetime = 0;
3256 
3257 	/* lifetimes for HARD and SOFT */
3258     {
3259 	const struct sadb_lifetime *lft0;
3260 
3261 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD];
3262 	if (lft0 != NULL) {
3263 		if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) {
3264 			error = EINVAL;
3265 			goto fail;
3266 		}
3267 		sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3268 		if (sav->lft_h == NULL) {
3269 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3270 			error = ENOBUFS;
3271 			goto fail;
3272 		}
3273 		/* to be initialize ? */
3274 	}
3275 
3276 	lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT];
3277 	if (lft0 != NULL) {
3278 		if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) {
3279 			error = EINVAL;
3280 			goto fail;
3281 		}
3282 		sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC);
3283 		if (sav->lft_s == NULL) {
3284 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
3285 			error = ENOBUFS;
3286 			goto fail;
3287 		}
3288 		/* to be initialize ? */
3289 	}
3290     }
3291 
3292 	return 0;
3293 
3294  fail:
3295 	/* initialization */
3296 	key_cleansav(sav);
3297 
3298 	return error;
3299 }
3300 
3301 /*
3302  * validation with a secasvar entry, and set SADB_SATYPE_MATURE.
3303  * OUT:	0:	valid
3304  *	other:	errno
3305  */
3306 static int
3307 key_mature(struct secasvar *sav)
3308 {
3309 	int error;
3310 
3311 	/* check SPI value */
3312 	switch (sav->sah->saidx.proto) {
3313 	case IPPROTO_ESP:
3314 	case IPPROTO_AH:
3315 		/*
3316 		 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values
3317 		 * 1-255 reserved by IANA for future use,
3318 		 * 0 for implementation specific, local use.
3319 		 */
3320 		if (ntohl(sav->spi) <= 255) {
3321 			ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n",
3322 			    __func__, (u_int32_t)ntohl(sav->spi)));
3323 			return EINVAL;
3324 		}
3325 		break;
3326 	}
3327 
3328 	/* check satype */
3329 	switch (sav->sah->saidx.proto) {
3330 	case IPPROTO_ESP:
3331 		/* check flags */
3332 		if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) ==
3333 		    (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) {
3334 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3335 				"given to old-esp.\n", __func__));
3336 			return EINVAL;
3337 		}
3338 		error = xform_init(sav, XF_ESP);
3339 		break;
3340 	case IPPROTO_AH:
3341 		/* check flags */
3342 		if (sav->flags & SADB_X_EXT_DERIV) {
3343 			ipseclog((LOG_DEBUG, "%s: invalid flag (derived) "
3344 				"given to AH SA.\n", __func__));
3345 			return EINVAL;
3346 		}
3347 		if (sav->alg_enc != SADB_EALG_NONE) {
3348 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3349 				"mismated.\n", __func__));
3350 			return(EINVAL);
3351 		}
3352 		error = xform_init(sav, XF_AH);
3353 		break;
3354 	case IPPROTO_IPCOMP:
3355 		if (sav->alg_auth != SADB_AALG_NONE) {
3356 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3357 				"mismated.\n", __func__));
3358 			return(EINVAL);
3359 		}
3360 		if ((sav->flags & SADB_X_EXT_RAWCPI) == 0
3361 		 && ntohl(sav->spi) >= 0x10000) {
3362 			ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n",
3363 				__func__));
3364 			return(EINVAL);
3365 		}
3366 		error = xform_init(sav, XF_IPCOMP);
3367 		break;
3368 	case IPPROTO_TCP:
3369 		if (sav->alg_enc != SADB_EALG_NONE) {
3370 			ipseclog((LOG_DEBUG, "%s: protocol and algorithm "
3371 				"mismated.\n", __func__));
3372 			return(EINVAL);
3373 		}
3374 		error = xform_init(sav, XF_TCPSIGNATURE);
3375 		break;
3376 	default:
3377 		ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__));
3378 		error = EPROTONOSUPPORT;
3379 		break;
3380 	}
3381 	if (error == 0) {
3382 		SAHTREE_LOCK();
3383 		key_sa_chgstate(sav, SADB_SASTATE_MATURE);
3384 		SAHTREE_UNLOCK();
3385 	}
3386 	return (error);
3387 }
3388 
3389 /*
3390  * subroutine for SADB_GET and SADB_DUMP.
3391  */
3392 static struct mbuf *
3393 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype,
3394     u_int32_t seq, u_int32_t pid)
3395 {
3396 	struct mbuf *result = NULL, *tres = NULL, *m;
3397 	int i;
3398 	int dumporder[] = {
3399 		SADB_EXT_SA, SADB_X_EXT_SA2,
3400 		SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
3401 		SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC,
3402 		SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH,
3403 		SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC,
3404 		SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY,
3405 #ifdef IPSEC_NAT_T
3406 		SADB_X_EXT_NAT_T_TYPE,
3407 		SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT,
3408 		SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR,
3409 		SADB_X_EXT_NAT_T_FRAG,
3410 #endif
3411 	};
3412 
3413 	m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt);
3414 	if (m == NULL)
3415 		goto fail;
3416 	result = m;
3417 
3418 	for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) {
3419 		m = NULL;
3420 		switch (dumporder[i]) {
3421 		case SADB_EXT_SA:
3422 			m = key_setsadbsa(sav);
3423 			if (!m)
3424 				goto fail;
3425 			break;
3426 
3427 		case SADB_X_EXT_SA2:
3428 			m = key_setsadbxsa2(sav->sah->saidx.mode,
3429 					sav->replay ? sav->replay->count : 0,
3430 					sav->sah->saidx.reqid);
3431 			if (!m)
3432 				goto fail;
3433 			break;
3434 
3435 		case SADB_EXT_ADDRESS_SRC:
3436 			m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
3437 			    &sav->sah->saidx.src.sa,
3438 			    FULLMASK, IPSEC_ULPROTO_ANY);
3439 			if (!m)
3440 				goto fail;
3441 			break;
3442 
3443 		case SADB_EXT_ADDRESS_DST:
3444 			m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
3445 			    &sav->sah->saidx.dst.sa,
3446 			    FULLMASK, IPSEC_ULPROTO_ANY);
3447 			if (!m)
3448 				goto fail;
3449 			break;
3450 
3451 		case SADB_EXT_KEY_AUTH:
3452 			if (!sav->key_auth)
3453 				continue;
3454 			m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH);
3455 			if (!m)
3456 				goto fail;
3457 			break;
3458 
3459 		case SADB_EXT_KEY_ENCRYPT:
3460 			if (!sav->key_enc)
3461 				continue;
3462 			m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT);
3463 			if (!m)
3464 				goto fail;
3465 			break;
3466 
3467 		case SADB_EXT_LIFETIME_CURRENT:
3468 			if (!sav->lft_c)
3469 				continue;
3470 			m = key_setlifetime(sav->lft_c,
3471 					    SADB_EXT_LIFETIME_CURRENT);
3472 			if (!m)
3473 				goto fail;
3474 			break;
3475 
3476 		case SADB_EXT_LIFETIME_HARD:
3477 			if (!sav->lft_h)
3478 				continue;
3479 			m = key_setlifetime(sav->lft_h,
3480 					    SADB_EXT_LIFETIME_HARD);
3481 			if (!m)
3482 				goto fail;
3483 			break;
3484 
3485 		case SADB_EXT_LIFETIME_SOFT:
3486 			if (!sav->lft_s)
3487 				continue;
3488 			m = key_setlifetime(sav->lft_s,
3489 					    SADB_EXT_LIFETIME_SOFT);
3490 
3491 			if (!m)
3492 				goto fail;
3493 			break;
3494 
3495 #ifdef IPSEC_NAT_T
3496 		case SADB_X_EXT_NAT_T_TYPE:
3497 			m = key_setsadbxtype(sav->natt_type);
3498 			if (!m)
3499 				goto fail;
3500 			break;
3501 
3502 		case SADB_X_EXT_NAT_T_DPORT:
3503 			m = key_setsadbxport(
3504 			    KEY_PORTFROMSADDR(&sav->sah->saidx.dst),
3505 			    SADB_X_EXT_NAT_T_DPORT);
3506 			if (!m)
3507 				goto fail;
3508 			break;
3509 
3510 		case SADB_X_EXT_NAT_T_SPORT:
3511 			m = key_setsadbxport(
3512 			    KEY_PORTFROMSADDR(&sav->sah->saidx.src),
3513 			    SADB_X_EXT_NAT_T_SPORT);
3514 			if (!m)
3515 				goto fail;
3516 			break;
3517 
3518 		case SADB_X_EXT_NAT_T_OAI:
3519 		case SADB_X_EXT_NAT_T_OAR:
3520 		case SADB_X_EXT_NAT_T_FRAG:
3521 			/* We do not (yet) support those. */
3522 			continue;
3523 #endif
3524 
3525 		case SADB_EXT_ADDRESS_PROXY:
3526 		case SADB_EXT_IDENTITY_SRC:
3527 		case SADB_EXT_IDENTITY_DST:
3528 			/* XXX: should we brought from SPD ? */
3529 		case SADB_EXT_SENSITIVITY:
3530 		default:
3531 			continue;
3532 		}
3533 
3534 		if (!m)
3535 			goto fail;
3536 		if (tres)
3537 			m_cat(m, tres);
3538 		tres = m;
3539 
3540 	}
3541 
3542 	m_cat(result, tres);
3543 	if (result->m_len < sizeof(struct sadb_msg)) {
3544 		result = m_pullup(result, sizeof(struct sadb_msg));
3545 		if (result == NULL)
3546 			goto fail;
3547 	}
3548 
3549 	result->m_pkthdr.len = 0;
3550 	for (m = result; m; m = m->m_next)
3551 		result->m_pkthdr.len += m->m_len;
3552 
3553 	mtod(result, struct sadb_msg *)->sadb_msg_len =
3554 	    PFKEY_UNIT64(result->m_pkthdr.len);
3555 
3556 	return result;
3557 
3558 fail:
3559 	m_freem(result);
3560 	m_freem(tres);
3561 	return NULL;
3562 }
3563 
3564 /*
3565  * set data into sadb_msg.
3566  */
3567 static struct mbuf *
3568 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq,
3569     pid_t pid, u_int16_t reserved)
3570 {
3571 	struct mbuf *m;
3572 	struct sadb_msg *p;
3573 	int len;
3574 
3575 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg));
3576 	if (len > MCLBYTES)
3577 		return NULL;
3578 	MGETHDR(m, M_NOWAIT, MT_DATA);
3579 	if (m && len > MHLEN) {
3580 		MCLGET(m, M_NOWAIT);
3581 		if ((m->m_flags & M_EXT) == 0) {
3582 			m_freem(m);
3583 			m = NULL;
3584 		}
3585 	}
3586 	if (!m)
3587 		return NULL;
3588 	m->m_pkthdr.len = m->m_len = len;
3589 	m->m_next = NULL;
3590 
3591 	p = mtod(m, struct sadb_msg *);
3592 
3593 	bzero(p, len);
3594 	p->sadb_msg_version = PF_KEY_V2;
3595 	p->sadb_msg_type = type;
3596 	p->sadb_msg_errno = 0;
3597 	p->sadb_msg_satype = satype;
3598 	p->sadb_msg_len = PFKEY_UNIT64(tlen);
3599 	p->sadb_msg_reserved = reserved;
3600 	p->sadb_msg_seq = seq;
3601 	p->sadb_msg_pid = (u_int32_t)pid;
3602 
3603 	return m;
3604 }
3605 
3606 /*
3607  * copy secasvar data into sadb_address.
3608  */
3609 static struct mbuf *
3610 key_setsadbsa(sav)
3611 	struct secasvar *sav;
3612 {
3613 	struct mbuf *m;
3614 	struct sadb_sa *p;
3615 	int len;
3616 
3617 	len = PFKEY_ALIGN8(sizeof(struct sadb_sa));
3618 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3619 	if (m == NULL)
3620 		return (NULL);
3621 	m_align(m, len);
3622 	m->m_len = len;
3623 	p = mtod(m, struct sadb_sa *);
3624 	bzero(p, len);
3625 	p->sadb_sa_len = PFKEY_UNIT64(len);
3626 	p->sadb_sa_exttype = SADB_EXT_SA;
3627 	p->sadb_sa_spi = sav->spi;
3628 	p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0);
3629 	p->sadb_sa_state = sav->state;
3630 	p->sadb_sa_auth = sav->alg_auth;
3631 	p->sadb_sa_encrypt = sav->alg_enc;
3632 	p->sadb_sa_flags = sav->flags;
3633 
3634 	return m;
3635 }
3636 
3637 /*
3638  * set data into sadb_address.
3639  */
3640 static struct mbuf *
3641 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto)
3642 {
3643 	struct mbuf *m;
3644 	struct sadb_address *p;
3645 	size_t len;
3646 
3647 	len = PFKEY_ALIGN8(sizeof(struct sadb_address)) +
3648 	    PFKEY_ALIGN8(saddr->sa_len);
3649 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3650 	if (m == NULL)
3651 		return (NULL);
3652 	m_align(m, len);
3653 	m->m_len = len;
3654 	p = mtod(m, struct sadb_address *);
3655 
3656 	bzero(p, len);
3657 	p->sadb_address_len = PFKEY_UNIT64(len);
3658 	p->sadb_address_exttype = exttype;
3659 	p->sadb_address_proto = ul_proto;
3660 	if (prefixlen == FULLMASK) {
3661 		switch (saddr->sa_family) {
3662 		case AF_INET:
3663 			prefixlen = sizeof(struct in_addr) << 3;
3664 			break;
3665 		case AF_INET6:
3666 			prefixlen = sizeof(struct in6_addr) << 3;
3667 			break;
3668 		default:
3669 			; /*XXX*/
3670 		}
3671 	}
3672 	p->sadb_address_prefixlen = prefixlen;
3673 	p->sadb_address_reserved = 0;
3674 
3675 	bcopy(saddr,
3676 	    mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)),
3677 	    saddr->sa_len);
3678 
3679 	return m;
3680 }
3681 
3682 /*
3683  * set data into sadb_x_sa2.
3684  */
3685 static struct mbuf *
3686 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid)
3687 {
3688 	struct mbuf *m;
3689 	struct sadb_x_sa2 *p;
3690 	size_t len;
3691 
3692 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2));
3693 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3694 	if (m == NULL)
3695 		return (NULL);
3696 	m_align(m, len);
3697 	m->m_len = len;
3698 	p = mtod(m, struct sadb_x_sa2 *);
3699 
3700 	bzero(p, len);
3701 	p->sadb_x_sa2_len = PFKEY_UNIT64(len);
3702 	p->sadb_x_sa2_exttype = SADB_X_EXT_SA2;
3703 	p->sadb_x_sa2_mode = mode;
3704 	p->sadb_x_sa2_reserved1 = 0;
3705 	p->sadb_x_sa2_reserved2 = 0;
3706 	p->sadb_x_sa2_sequence = seq;
3707 	p->sadb_x_sa2_reqid = reqid;
3708 
3709 	return m;
3710 }
3711 
3712 #ifdef IPSEC_NAT_T
3713 /*
3714  * Set a type in sadb_x_nat_t_type.
3715  */
3716 static struct mbuf *
3717 key_setsadbxtype(u_int16_t type)
3718 {
3719 	struct mbuf *m;
3720 	size_t len;
3721 	struct sadb_x_nat_t_type *p;
3722 
3723 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type));
3724 
3725 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3726 	if (m == NULL)
3727 		return (NULL);
3728 	m_align(m, len);
3729 	m->m_len = len;
3730 	p = mtod(m, struct sadb_x_nat_t_type *);
3731 
3732 	bzero(p, len);
3733 	p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len);
3734 	p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE;
3735 	p->sadb_x_nat_t_type_type = type;
3736 
3737 	return (m);
3738 }
3739 /*
3740  * Set a port in sadb_x_nat_t_port.
3741  * In contrast to default RFC 2367 behaviour, port is in network byte order.
3742  */
3743 static struct mbuf *
3744 key_setsadbxport(u_int16_t port, u_int16_t type)
3745 {
3746 	struct mbuf *m;
3747 	size_t len;
3748 	struct sadb_x_nat_t_port *p;
3749 
3750 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port));
3751 
3752 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3753 	if (m == NULL)
3754 		return (NULL);
3755 	m_align(m, len);
3756 	m->m_len = len;
3757 	p = mtod(m, struct sadb_x_nat_t_port *);
3758 
3759 	bzero(p, len);
3760 	p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len);
3761 	p->sadb_x_nat_t_port_exttype = type;
3762 	p->sadb_x_nat_t_port_port = port;
3763 
3764 	return (m);
3765 }
3766 
3767 /*
3768  * Get port from sockaddr. Port is in network byte order.
3769  */
3770 u_int16_t
3771 key_portfromsaddr(struct sockaddr *sa)
3772 {
3773 
3774 	switch (sa->sa_family) {
3775 #ifdef INET
3776 	case AF_INET:
3777 		return ((struct sockaddr_in *)sa)->sin_port;
3778 #endif
3779 #ifdef INET6
3780 	case AF_INET6:
3781 		return ((struct sockaddr_in6 *)sa)->sin6_port;
3782 #endif
3783 	}
3784 	KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
3785 		printf("DP %s unexpected address family %d\n",
3786 			__func__, sa->sa_family));
3787 	return (0);
3788 }
3789 #endif /* IPSEC_NAT_T */
3790 
3791 /*
3792  * Set port in struct sockaddr. Port is in network byte order.
3793  */
3794 static void
3795 key_porttosaddr(struct sockaddr *sa, u_int16_t port)
3796 {
3797 
3798 	switch (sa->sa_family) {
3799 #ifdef INET
3800 	case AF_INET:
3801 		((struct sockaddr_in *)sa)->sin_port = port;
3802 		break;
3803 #endif
3804 #ifdef INET6
3805 	case AF_INET6:
3806 		((struct sockaddr_in6 *)sa)->sin6_port = port;
3807 		break;
3808 #endif
3809 	default:
3810 		ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n",
3811 			__func__, sa->sa_family));
3812 		break;
3813 	}
3814 }
3815 
3816 /*
3817  * set data into sadb_x_policy
3818  */
3819 static struct mbuf *
3820 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id)
3821 {
3822 	struct mbuf *m;
3823 	struct sadb_x_policy *p;
3824 	size_t len;
3825 
3826 	len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy));
3827 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
3828 	if (m == NULL)
3829 		return (NULL);
3830 	m_align(m, len);
3831 	m->m_len = len;
3832 	p = mtod(m, struct sadb_x_policy *);
3833 
3834 	bzero(p, len);
3835 	p->sadb_x_policy_len = PFKEY_UNIT64(len);
3836 	p->sadb_x_policy_exttype = SADB_X_EXT_POLICY;
3837 	p->sadb_x_policy_type = type;
3838 	p->sadb_x_policy_dir = dir;
3839 	p->sadb_x_policy_id = id;
3840 
3841 	return m;
3842 }
3843 
3844 /* %%% utilities */
3845 /* Take a key message (sadb_key) from the socket and turn it into one
3846  * of the kernel's key structures (seckey).
3847  *
3848  * IN: pointer to the src
3849  * OUT: NULL no more memory
3850  */
3851 struct seckey *
3852 key_dup_keymsg(const struct sadb_key *src, u_int len,
3853 	       struct malloc_type *type)
3854 {
3855 	struct seckey *dst;
3856 	dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT);
3857 	if (dst != NULL) {
3858 		dst->bits = src->sadb_key_bits;
3859 		dst->key_data = (char *)malloc(len, type, M_NOWAIT);
3860 		if (dst->key_data != NULL) {
3861 			bcopy((const char *)src + sizeof(struct sadb_key),
3862 			      dst->key_data, len);
3863 		} else {
3864 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3865 				  __func__));
3866 			free(dst, type);
3867 			dst = NULL;
3868 		}
3869 	} else {
3870 		ipseclog((LOG_DEBUG, "%s: No more memory.\n",
3871 			  __func__));
3872 
3873 	}
3874 	return dst;
3875 }
3876 
3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and
3878  * turn it into one of the kernel's lifetime structures (seclifetime).
3879  *
3880  * IN: pointer to the destination, source and malloc type
3881  * OUT: NULL, no more memory
3882  */
3883 
3884 static struct seclifetime *
3885 key_dup_lifemsg(const struct sadb_lifetime *src,
3886 		 struct malloc_type *type)
3887 {
3888 	struct seclifetime *dst = NULL;
3889 
3890 	dst = (struct seclifetime *)malloc(sizeof(struct seclifetime),
3891 					   type, M_NOWAIT);
3892 	if (dst == NULL) {
3893 		/* XXX counter */
3894 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
3895 	} else {
3896 		dst->allocations = src->sadb_lifetime_allocations;
3897 		dst->bytes = src->sadb_lifetime_bytes;
3898 		dst->addtime = src->sadb_lifetime_addtime;
3899 		dst->usetime = src->sadb_lifetime_usetime;
3900 	}
3901 	return dst;
3902 }
3903 
3904 /* compare my own address
3905  * OUT:	1: true, i.e. my address.
3906  *	0: false
3907  */
3908 int
3909 key_ismyaddr(struct sockaddr *sa)
3910 {
3911 
3912 	IPSEC_ASSERT(sa != NULL, ("null sockaddr"));
3913 	switch (sa->sa_family) {
3914 #ifdef INET
3915 	case AF_INET:
3916 		return (in_localip(satosin(sa)->sin_addr));
3917 #endif
3918 #ifdef INET6
3919 	case AF_INET6:
3920 		return key_ismyaddr6((struct sockaddr_in6 *)sa);
3921 #endif
3922 	}
3923 
3924 	return 0;
3925 }
3926 
3927 #ifdef INET6
3928 /*
3929  * compare my own address for IPv6.
3930  * 1: ours
3931  * 0: other
3932  * NOTE: derived ip6_input() in KAME. This is necessary to modify more.
3933  */
3934 #include <netinet6/in6_var.h>
3935 
3936 static int
3937 key_ismyaddr6(sin6)
3938 	struct sockaddr_in6 *sin6;
3939 {
3940 	struct in6_ifaddr *ia;
3941 #if 0
3942 	struct in6_multi *in6m;
3943 #endif
3944 
3945 	IN6_IFADDR_RLOCK();
3946 	TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) {
3947 		if (key_sockaddrcmp((struct sockaddr *)&sin6,
3948 		    (struct sockaddr *)&ia->ia_addr, 0) == 0) {
3949 			IN6_IFADDR_RUNLOCK();
3950 			return 1;
3951 		}
3952 
3953 #if 0
3954 		/*
3955 		 * XXX Multicast
3956 		 * XXX why do we care about multlicast here while we don't care
3957 		 * about IPv4 multicast??
3958 		 * XXX scope
3959 		 */
3960 		in6m = NULL;
3961 		IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m);
3962 		if (in6m) {
3963 			IN6_IFADDR_RUNLOCK();
3964 			return 1;
3965 		}
3966 #endif
3967 	}
3968 	IN6_IFADDR_RUNLOCK();
3969 
3970 	/* loopback, just for safety */
3971 	if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr))
3972 		return 1;
3973 
3974 	return 0;
3975 }
3976 #endif /*INET6*/
3977 
3978 /*
3979  * compare two secasindex structure.
3980  * flag can specify to compare 2 saidxes.
3981  * compare two secasindex structure without both mode and reqid.
3982  * don't compare port.
3983  * IN:
3984  *      saidx0: source, it can be in SAD.
3985  *      saidx1: object.
3986  * OUT:
3987  *      1 : equal
3988  *      0 : not equal
3989  */
3990 static int
3991 key_cmpsaidx(
3992 	const struct secasindex *saidx0,
3993 	const struct secasindex *saidx1,
3994 	int flag)
3995 {
3996 	int chkport = 0;
3997 
3998 	/* sanity */
3999 	if (saidx0 == NULL && saidx1 == NULL)
4000 		return 1;
4001 
4002 	if (saidx0 == NULL || saidx1 == NULL)
4003 		return 0;
4004 
4005 	if (saidx0->proto != saidx1->proto)
4006 		return 0;
4007 
4008 	if (flag == CMP_EXACTLY) {
4009 		if (saidx0->mode != saidx1->mode)
4010 			return 0;
4011 		if (saidx0->reqid != saidx1->reqid)
4012 			return 0;
4013 		if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 ||
4014 		    bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0)
4015 			return 0;
4016 	} else {
4017 
4018 		/* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */
4019 		if (flag == CMP_MODE_REQID
4020 		  ||flag == CMP_REQID) {
4021 			/*
4022 			 * If reqid of SPD is non-zero, unique SA is required.
4023 			 * The result must be of same reqid in this case.
4024 			 */
4025 			if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid)
4026 				return 0;
4027 		}
4028 
4029 		if (flag == CMP_MODE_REQID) {
4030 			if (saidx0->mode != IPSEC_MODE_ANY
4031 			 && saidx0->mode != saidx1->mode)
4032 				return 0;
4033 		}
4034 
4035 #ifdef IPSEC_NAT_T
4036 		/*
4037 		 * If NAT-T is enabled, check ports for tunnel mode.
4038 		 * Do not check ports if they are set to zero in the SPD.
4039 		 * Also do not do it for native transport mode, as there
4040 		 * is no port information available in the SP.
4041 		 */
4042 		if ((saidx1->mode == IPSEC_MODE_TUNNEL ||
4043 		     (saidx1->mode == IPSEC_MODE_TRANSPORT &&
4044 		      saidx1->proto == IPPROTO_ESP)) &&
4045 		    saidx1->src.sa.sa_family == AF_INET &&
4046 		    saidx1->dst.sa.sa_family == AF_INET &&
4047 		    ((const struct sockaddr_in *)(&saidx1->src))->sin_port &&
4048 		    ((const struct sockaddr_in *)(&saidx1->dst))->sin_port)
4049 			chkport = 1;
4050 #endif /* IPSEC_NAT_T */
4051 
4052 		if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) {
4053 			return 0;
4054 		}
4055 		if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) {
4056 			return 0;
4057 		}
4058 	}
4059 
4060 	return 1;
4061 }
4062 
4063 /*
4064  * compare two secindex structure exactly.
4065  * IN:
4066  *	spidx0: source, it is often in SPD.
4067  *	spidx1: object, it is often from PFKEY message.
4068  * OUT:
4069  *	1 : equal
4070  *	0 : not equal
4071  */
4072 static int
4073 key_cmpspidx_exactly(
4074 	struct secpolicyindex *spidx0,
4075 	struct secpolicyindex *spidx1)
4076 {
4077 	/* sanity */
4078 	if (spidx0 == NULL && spidx1 == NULL)
4079 		return 1;
4080 
4081 	if (spidx0 == NULL || spidx1 == NULL)
4082 		return 0;
4083 
4084 	if (spidx0->prefs != spidx1->prefs
4085 	 || spidx0->prefd != spidx1->prefd
4086 	 || spidx0->ul_proto != spidx1->ul_proto)
4087 		return 0;
4088 
4089 	return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 &&
4090 	       key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0;
4091 }
4092 
4093 /*
4094  * compare two secindex structure with mask.
4095  * IN:
4096  *	spidx0: source, it is often in SPD.
4097  *	spidx1: object, it is often from IP header.
4098  * OUT:
4099  *	1 : equal
4100  *	0 : not equal
4101  */
4102 static int
4103 key_cmpspidx_withmask(
4104 	struct secpolicyindex *spidx0,
4105 	struct secpolicyindex *spidx1)
4106 {
4107 	/* sanity */
4108 	if (spidx0 == NULL && spidx1 == NULL)
4109 		return 1;
4110 
4111 	if (spidx0 == NULL || spidx1 == NULL)
4112 		return 0;
4113 
4114 	if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family ||
4115 	    spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family ||
4116 	    spidx0->src.sa.sa_len != spidx1->src.sa.sa_len ||
4117 	    spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len)
4118 		return 0;
4119 
4120 	/* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */
4121 	if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY
4122 	 && spidx0->ul_proto != spidx1->ul_proto)
4123 		return 0;
4124 
4125 	switch (spidx0->src.sa.sa_family) {
4126 	case AF_INET:
4127 		if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY
4128 		 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port)
4129 			return 0;
4130 		if (!key_bbcmp(&spidx0->src.sin.sin_addr,
4131 		    &spidx1->src.sin.sin_addr, spidx0->prefs))
4132 			return 0;
4133 		break;
4134 	case AF_INET6:
4135 		if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY
4136 		 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port)
4137 			return 0;
4138 		/*
4139 		 * scope_id check. if sin6_scope_id is 0, we regard it
4140 		 * as a wildcard scope, which matches any scope zone ID.
4141 		 */
4142 		if (spidx0->src.sin6.sin6_scope_id &&
4143 		    spidx1->src.sin6.sin6_scope_id &&
4144 		    spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id)
4145 			return 0;
4146 		if (!key_bbcmp(&spidx0->src.sin6.sin6_addr,
4147 		    &spidx1->src.sin6.sin6_addr, spidx0->prefs))
4148 			return 0;
4149 		break;
4150 	default:
4151 		/* XXX */
4152 		if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0)
4153 			return 0;
4154 		break;
4155 	}
4156 
4157 	switch (spidx0->dst.sa.sa_family) {
4158 	case AF_INET:
4159 		if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY
4160 		 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port)
4161 			return 0;
4162 		if (!key_bbcmp(&spidx0->dst.sin.sin_addr,
4163 		    &spidx1->dst.sin.sin_addr, spidx0->prefd))
4164 			return 0;
4165 		break;
4166 	case AF_INET6:
4167 		if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY
4168 		 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port)
4169 			return 0;
4170 		/*
4171 		 * scope_id check. if sin6_scope_id is 0, we regard it
4172 		 * as a wildcard scope, which matches any scope zone ID.
4173 		 */
4174 		if (spidx0->dst.sin6.sin6_scope_id &&
4175 		    spidx1->dst.sin6.sin6_scope_id &&
4176 		    spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id)
4177 			return 0;
4178 		if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr,
4179 		    &spidx1->dst.sin6.sin6_addr, spidx0->prefd))
4180 			return 0;
4181 		break;
4182 	default:
4183 		/* XXX */
4184 		if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0)
4185 			return 0;
4186 		break;
4187 	}
4188 
4189 	/* XXX Do we check other field ?  e.g. flowinfo */
4190 
4191 	return 1;
4192 }
4193 
4194 /* returns 0 on match */
4195 static int
4196 key_sockaddrcmp(
4197 	const struct sockaddr *sa1,
4198 	const struct sockaddr *sa2,
4199 	int port)
4200 {
4201 #ifdef satosin
4202 #undef satosin
4203 #endif
4204 #define satosin(s) ((const struct sockaddr_in *)s)
4205 #ifdef satosin6
4206 #undef satosin6
4207 #endif
4208 #define satosin6(s) ((const struct sockaddr_in6 *)s)
4209 	if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len)
4210 		return 1;
4211 
4212 	switch (sa1->sa_family) {
4213 	case AF_INET:
4214 		if (sa1->sa_len != sizeof(struct sockaddr_in))
4215 			return 1;
4216 		if (satosin(sa1)->sin_addr.s_addr !=
4217 		    satosin(sa2)->sin_addr.s_addr) {
4218 			return 1;
4219 		}
4220 		if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port)
4221 			return 1;
4222 		break;
4223 	case AF_INET6:
4224 		if (sa1->sa_len != sizeof(struct sockaddr_in6))
4225 			return 1;	/*EINVAL*/
4226 		if (satosin6(sa1)->sin6_scope_id !=
4227 		    satosin6(sa2)->sin6_scope_id) {
4228 			return 1;
4229 		}
4230 		if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr,
4231 		    &satosin6(sa2)->sin6_addr)) {
4232 			return 1;
4233 		}
4234 		if (port &&
4235 		    satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) {
4236 			return 1;
4237 		}
4238 		break;
4239 	default:
4240 		if (bcmp(sa1, sa2, sa1->sa_len) != 0)
4241 			return 1;
4242 		break;
4243 	}
4244 
4245 	return 0;
4246 #undef satosin
4247 #undef satosin6
4248 }
4249 
4250 /*
4251  * compare two buffers with mask.
4252  * IN:
4253  *	addr1: source
4254  *	addr2: object
4255  *	bits:  Number of bits to compare
4256  * OUT:
4257  *	1 : equal
4258  *	0 : not equal
4259  */
4260 static int
4261 key_bbcmp(const void *a1, const void *a2, u_int bits)
4262 {
4263 	const unsigned char *p1 = a1;
4264 	const unsigned char *p2 = a2;
4265 
4266 	/* XXX: This could be considerably faster if we compare a word
4267 	 * at a time, but it is complicated on LSB Endian machines */
4268 
4269 	/* Handle null pointers */
4270 	if (p1 == NULL || p2 == NULL)
4271 		return (p1 == p2);
4272 
4273 	while (bits >= 8) {
4274 		if (*p1++ != *p2++)
4275 			return 0;
4276 		bits -= 8;
4277 	}
4278 
4279 	if (bits > 0) {
4280 		u_int8_t mask = ~((1<<(8-bits))-1);
4281 		if ((*p1 & mask) != (*p2 & mask))
4282 			return 0;
4283 	}
4284 	return 1;	/* Match! */
4285 }
4286 
4287 static void
4288 key_flush_spd(time_t now)
4289 {
4290 	static u_int16_t sptree_scangen = 0;
4291 	u_int16_t gen = sptree_scangen++;
4292 	struct secpolicy *sp;
4293 	u_int dir;
4294 
4295 	/* SPD */
4296 	for (dir = 0; dir < IPSEC_DIR_MAX; dir++) {
4297 restart:
4298 		SPTREE_LOCK();
4299 		LIST_FOREACH(sp, &V_sptree[dir], chain) {
4300 			if (sp->scangen == gen)		/* previously handled */
4301 				continue;
4302 			sp->scangen = gen;
4303 			if (sp->state == IPSEC_SPSTATE_DEAD &&
4304 			    sp->refcnt == 1) {
4305 				/*
4306 				 * Ensure that we only decrease refcnt once,
4307 				 * when we're the last consumer.
4308 				 * Directly call SP_DELREF/key_delsp instead
4309 				 * of KEY_FREESP to avoid unlocking/relocking
4310 				 * SPTREE_LOCK before key_delsp: may refcnt
4311 				 * be increased again during that time ?
4312 				 * NB: also clean entries created by
4313 				 * key_spdflush
4314 				 */
4315 				SP_DELREF(sp);
4316 				key_delsp(sp);
4317 				SPTREE_UNLOCK();
4318 				goto restart;
4319 			}
4320 			if (sp->lifetime == 0 && sp->validtime == 0)
4321 				continue;
4322 			if ((sp->lifetime && now - sp->created > sp->lifetime)
4323 			 || (sp->validtime && now - sp->lastused > sp->validtime)) {
4324 				sp->state = IPSEC_SPSTATE_DEAD;
4325 				SPTREE_UNLOCK();
4326 				key_spdexpire(sp);
4327 				goto restart;
4328 			}
4329 		}
4330 		SPTREE_UNLOCK();
4331 	}
4332 }
4333 
4334 static void
4335 key_flush_sad(time_t now)
4336 {
4337 	struct secashead *sah, *nextsah;
4338 	struct secasvar *sav, *nextsav;
4339 
4340 	/* SAD */
4341 	SAHTREE_LOCK();
4342 	LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) {
4343 		/* if sah has been dead, then delete it and process next sah. */
4344 		if (sah->state == SADB_SASTATE_DEAD) {
4345 			key_delsah(sah);
4346 			continue;
4347 		}
4348 
4349 		/* if LARVAL entry doesn't become MATURE, delete it. */
4350 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) {
4351 			/* Need to also check refcnt for a larval SA ??? */
4352 			if (now - sav->created > V_key_larval_lifetime)
4353 				KEY_FREESAV(&sav);
4354 		}
4355 
4356 		/*
4357 		 * check MATURE entry to start to send expire message
4358 		 * whether or not.
4359 		 */
4360 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) {
4361 			/* we don't need to check. */
4362 			if (sav->lft_s == NULL)
4363 				continue;
4364 
4365 			/* sanity check */
4366 			if (sav->lft_c == NULL) {
4367 				ipseclog((LOG_DEBUG,"%s: there is no CURRENT "
4368 					"time, why?\n", __func__));
4369 				continue;
4370 			}
4371 
4372 			/* check SOFT lifetime */
4373 			if (sav->lft_s->addtime != 0 &&
4374 			    now - sav->created > sav->lft_s->addtime) {
4375 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4376 				/*
4377 				 * Actually, only send expire message if
4378 				 * SA has been used, as it was done before,
4379 				 * but should we always send such message,
4380 				 * and let IKE daemon decide if it should be
4381 				 * renegotiated or not ?
4382 				 * XXX expire message will actually NOT be
4383 				 * sent if SA is only used after soft
4384 				 * lifetime has been reached, see below
4385 				 * (DYING state)
4386 				 */
4387 				if (sav->lft_c->usetime != 0)
4388 					key_expire(sav);
4389 			}
4390 			/* check SOFT lifetime by bytes */
4391 			/*
4392 			 * XXX I don't know the way to delete this SA
4393 			 * when new SA is installed.  Caution when it's
4394 			 * installed too big lifetime by time.
4395 			 */
4396 			else if (sav->lft_s->bytes != 0 &&
4397 			    sav->lft_s->bytes < sav->lft_c->bytes) {
4398 
4399 				key_sa_chgstate(sav, SADB_SASTATE_DYING);
4400 				/*
4401 				 * XXX If we keep to send expire
4402 				 * message in the status of
4403 				 * DYING. Do remove below code.
4404 				 */
4405 				key_expire(sav);
4406 			}
4407 		}
4408 
4409 		/* check DYING entry to change status to DEAD. */
4410 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) {
4411 			/* we don't need to check. */
4412 			if (sav->lft_h == NULL)
4413 				continue;
4414 
4415 			/* sanity check */
4416 			if (sav->lft_c == NULL) {
4417 				ipseclog((LOG_DEBUG, "%s: there is no CURRENT "
4418 					"time, why?\n", __func__));
4419 				continue;
4420 			}
4421 
4422 			if (sav->lft_h->addtime != 0 &&
4423 			    now - sav->created > sav->lft_h->addtime) {
4424 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4425 				KEY_FREESAV(&sav);
4426 			}
4427 #if 0	/* XXX Should we keep to send expire message until HARD lifetime ? */
4428 			else if (sav->lft_s != NULL
4429 			      && sav->lft_s->addtime != 0
4430 			      && now - sav->created > sav->lft_s->addtime) {
4431 				/*
4432 				 * XXX: should be checked to be
4433 				 * installed the valid SA.
4434 				 */
4435 
4436 				/*
4437 				 * If there is no SA then sending
4438 				 * expire message.
4439 				 */
4440 				key_expire(sav);
4441 			}
4442 #endif
4443 			/* check HARD lifetime by bytes */
4444 			else if (sav->lft_h->bytes != 0 &&
4445 			    sav->lft_h->bytes < sav->lft_c->bytes) {
4446 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
4447 				KEY_FREESAV(&sav);
4448 			}
4449 		}
4450 
4451 		/* delete entry in DEAD */
4452 		LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) {
4453 			/* sanity check */
4454 			if (sav->state != SADB_SASTATE_DEAD) {
4455 				ipseclog((LOG_DEBUG, "%s: invalid sav->state "
4456 					"(queue: %d SA: %d): kill it anyway\n",
4457 					__func__,
4458 					SADB_SASTATE_DEAD, sav->state));
4459 			}
4460 			/*
4461 			 * do not call key_freesav() here.
4462 			 * sav should already be freed, and sav->refcnt
4463 			 * shows other references to sav
4464 			 * (such as from SPD).
4465 			 */
4466 		}
4467 	}
4468 	SAHTREE_UNLOCK();
4469 }
4470 
4471 static void
4472 key_flush_acq(time_t now)
4473 {
4474 	struct secacq *acq, *nextacq;
4475 
4476 	/* ACQ tree */
4477 	ACQ_LOCK();
4478 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
4479 		nextacq = LIST_NEXT(acq, chain);
4480 		if (now - acq->created > V_key_blockacq_lifetime
4481 		 && __LIST_CHAINED(acq)) {
4482 			LIST_REMOVE(acq, chain);
4483 			free(acq, M_IPSEC_SAQ);
4484 		}
4485 	}
4486 	ACQ_UNLOCK();
4487 }
4488 
4489 static void
4490 key_flush_spacq(time_t now)
4491 {
4492 	struct secspacq *acq, *nextacq;
4493 
4494 	/* SP ACQ tree */
4495 	SPACQ_LOCK();
4496 	for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) {
4497 		nextacq = LIST_NEXT(acq, chain);
4498 		if (now - acq->created > V_key_blockacq_lifetime
4499 		 && __LIST_CHAINED(acq)) {
4500 			LIST_REMOVE(acq, chain);
4501 			free(acq, M_IPSEC_SAQ);
4502 		}
4503 	}
4504 	SPACQ_UNLOCK();
4505 }
4506 
4507 /*
4508  * time handler.
4509  * scanning SPD and SAD to check status for each entries,
4510  * and do to remove or to expire.
4511  * XXX: year 2038 problem may remain.
4512  */
4513 static void
4514 key_timehandler(void *arg)
4515 {
4516 	VNET_ITERATOR_DECL(vnet_iter);
4517 	time_t now = time_second;
4518 
4519 	VNET_LIST_RLOCK_NOSLEEP();
4520 	VNET_FOREACH(vnet_iter) {
4521 		CURVNET_SET(vnet_iter);
4522 		key_flush_spd(now);
4523 		key_flush_sad(now);
4524 		key_flush_acq(now);
4525 		key_flush_spacq(now);
4526 		CURVNET_RESTORE();
4527 	}
4528 	VNET_LIST_RUNLOCK_NOSLEEP();
4529 
4530 #ifndef IPSEC_DEBUG2
4531 	/* do exchange to tick time !! */
4532 	callout_schedule(&key_timer, hz);
4533 #endif /* IPSEC_DEBUG2 */
4534 }
4535 
4536 u_long
4537 key_random()
4538 {
4539 	u_long value;
4540 
4541 	key_randomfill(&value, sizeof(value));
4542 	return value;
4543 }
4544 
4545 void
4546 key_randomfill(p, l)
4547 	void *p;
4548 	size_t l;
4549 {
4550 	size_t n;
4551 	u_long v;
4552 	static int warn = 1;
4553 
4554 	n = 0;
4555 	n = (size_t)read_random(p, (u_int)l);
4556 	/* last resort */
4557 	while (n < l) {
4558 		v = random();
4559 		bcopy(&v, (u_int8_t *)p + n,
4560 		    l - n < sizeof(v) ? l - n : sizeof(v));
4561 		n += sizeof(v);
4562 
4563 		if (warn) {
4564 			printf("WARNING: pseudo-random number generator "
4565 			    "used for IPsec processing\n");
4566 			warn = 0;
4567 		}
4568 	}
4569 }
4570 
4571 /*
4572  * map SADB_SATYPE_* to IPPROTO_*.
4573  * if satype == SADB_SATYPE then satype is mapped to ~0.
4574  * OUT:
4575  *	0: invalid satype.
4576  */
4577 static u_int16_t
4578 key_satype2proto(u_int8_t satype)
4579 {
4580 	switch (satype) {
4581 	case SADB_SATYPE_UNSPEC:
4582 		return IPSEC_PROTO_ANY;
4583 	case SADB_SATYPE_AH:
4584 		return IPPROTO_AH;
4585 	case SADB_SATYPE_ESP:
4586 		return IPPROTO_ESP;
4587 	case SADB_X_SATYPE_IPCOMP:
4588 		return IPPROTO_IPCOMP;
4589 	case SADB_X_SATYPE_TCPSIGNATURE:
4590 		return IPPROTO_TCP;
4591 	default:
4592 		return 0;
4593 	}
4594 	/* NOTREACHED */
4595 }
4596 
4597 /*
4598  * map IPPROTO_* to SADB_SATYPE_*
4599  * OUT:
4600  *	0: invalid protocol type.
4601  */
4602 static u_int8_t
4603 key_proto2satype(u_int16_t proto)
4604 {
4605 	switch (proto) {
4606 	case IPPROTO_AH:
4607 		return SADB_SATYPE_AH;
4608 	case IPPROTO_ESP:
4609 		return SADB_SATYPE_ESP;
4610 	case IPPROTO_IPCOMP:
4611 		return SADB_X_SATYPE_IPCOMP;
4612 	case IPPROTO_TCP:
4613 		return SADB_X_SATYPE_TCPSIGNATURE;
4614 	default:
4615 		return 0;
4616 	}
4617 	/* NOTREACHED */
4618 }
4619 
4620 /* %%% PF_KEY */
4621 /*
4622  * SADB_GETSPI processing is to receive
4623  *	<base, (SA2), src address, dst address, (SPI range)>
4624  * from the IKMPd, to assign a unique spi value, to hang on the INBOUND
4625  * tree with the status of LARVAL, and send
4626  *	<base, SA(*), address(SD)>
4627  * to the IKMPd.
4628  *
4629  * IN:	mhp: pointer to the pointer to each header.
4630  * OUT:	NULL if fail.
4631  *	other if success, return pointer to the message to send.
4632  */
4633 static int
4634 key_getspi(so, m, mhp)
4635 	struct socket *so;
4636 	struct mbuf *m;
4637 	const struct sadb_msghdr *mhp;
4638 {
4639 	struct sadb_address *src0, *dst0;
4640 	struct secasindex saidx;
4641 	struct secashead *newsah;
4642 	struct secasvar *newsav;
4643 	u_int8_t proto;
4644 	u_int32_t spi;
4645 	u_int8_t mode;
4646 	u_int32_t reqid;
4647 	int error;
4648 
4649 	IPSEC_ASSERT(so != NULL, ("null socket"));
4650 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4651 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4652 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4653 
4654 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4655 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
4656 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4657 			__func__));
4658 		return key_senderror(so, m, EINVAL);
4659 	}
4660 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4661 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
4662 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4663 			__func__));
4664 		return key_senderror(so, m, EINVAL);
4665 	}
4666 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
4667 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
4668 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
4669 	} else {
4670 		mode = IPSEC_MODE_ANY;
4671 		reqid = 0;
4672 	}
4673 
4674 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
4675 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
4676 
4677 	/* map satype to proto */
4678 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4679 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4680 			__func__));
4681 		return key_senderror(so, m, EINVAL);
4682 	}
4683 
4684 	/*
4685 	 * Make sure the port numbers are zero.
4686 	 * In case of NAT-T we will update them later if needed.
4687 	 */
4688 	switch (((struct sockaddr *)(src0 + 1))->sa_family) {
4689 	case AF_INET:
4690 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4691 		    sizeof(struct sockaddr_in))
4692 			return key_senderror(so, m, EINVAL);
4693 		((struct sockaddr_in *)(src0 + 1))->sin_port = 0;
4694 		break;
4695 	case AF_INET6:
4696 		if (((struct sockaddr *)(src0 + 1))->sa_len !=
4697 		    sizeof(struct sockaddr_in6))
4698 			return key_senderror(so, m, EINVAL);
4699 		((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0;
4700 		break;
4701 	default:
4702 		; /*???*/
4703 	}
4704 	switch (((struct sockaddr *)(dst0 + 1))->sa_family) {
4705 	case AF_INET:
4706 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4707 		    sizeof(struct sockaddr_in))
4708 			return key_senderror(so, m, EINVAL);
4709 		((struct sockaddr_in *)(dst0 + 1))->sin_port = 0;
4710 		break;
4711 	case AF_INET6:
4712 		if (((struct sockaddr *)(dst0 + 1))->sa_len !=
4713 		    sizeof(struct sockaddr_in6))
4714 			return key_senderror(so, m, EINVAL);
4715 		((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0;
4716 		break;
4717 	default:
4718 		; /*???*/
4719 	}
4720 
4721 	/* XXX boundary check against sa_len */
4722 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
4723 
4724 #ifdef IPSEC_NAT_T
4725 	/*
4726 	 * Handle NAT-T info if present.
4727 	 * We made sure the port numbers are zero above, so we do
4728 	 * not have to worry in case we do not update them.
4729 	 */
4730 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL)
4731 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__));
4732 	if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL)
4733 		ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__));
4734 
4735 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
4736 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
4737 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
4738 		struct sadb_x_nat_t_type *type;
4739 		struct sadb_x_nat_t_port *sport, *dport;
4740 
4741 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
4742 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
4743 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
4744 			ipseclog((LOG_DEBUG, "%s: invalid nat-t message "
4745 			    "passed.\n", __func__));
4746 			return key_senderror(so, m, EINVAL);
4747 		}
4748 
4749 		sport = (struct sadb_x_nat_t_port *)
4750 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
4751 		dport = (struct sadb_x_nat_t_port *)
4752 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
4753 
4754 		if (sport)
4755 			KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port);
4756 		if (dport)
4757 			KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port);
4758 	}
4759 #endif
4760 
4761 	/* SPI allocation */
4762 	spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE],
4763 	                       &saidx);
4764 	if (spi == 0)
4765 		return key_senderror(so, m, EINVAL);
4766 
4767 	/* get a SA index */
4768 	if ((newsah = key_getsah(&saidx)) == NULL) {
4769 		/* create a new SA index */
4770 		if ((newsah = key_newsah(&saidx)) == NULL) {
4771 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
4772 			return key_senderror(so, m, ENOBUFS);
4773 		}
4774 	}
4775 
4776 	/* get a new SA */
4777 	/* XXX rewrite */
4778 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
4779 	if (newsav == NULL) {
4780 		/* XXX don't free new SA index allocated in above. */
4781 		return key_senderror(so, m, error);
4782 	}
4783 
4784 	/* set spi */
4785 	newsav->spi = htonl(spi);
4786 
4787 	/* delete the entry in acqtree */
4788 	if (mhp->msg->sadb_msg_seq != 0) {
4789 		struct secacq *acq;
4790 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) {
4791 			/* reset counter in order to deletion by timehandler. */
4792 			acq->created = time_second;
4793 			acq->count = 0;
4794 		}
4795     	}
4796 
4797     {
4798 	struct mbuf *n, *nn;
4799 	struct sadb_sa *m_sa;
4800 	struct sadb_msg *newmsg;
4801 	int off, len;
4802 
4803 	/* create new sadb_msg to reply. */
4804 	len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) +
4805 	    PFKEY_ALIGN8(sizeof(struct sadb_sa));
4806 
4807 	MGETHDR(n, M_NOWAIT, MT_DATA);
4808 	if (len > MHLEN) {
4809 		MCLGET(n, M_NOWAIT);
4810 		if ((n->m_flags & M_EXT) == 0) {
4811 			m_freem(n);
4812 			n = NULL;
4813 		}
4814 	}
4815 	if (!n)
4816 		return key_senderror(so, m, ENOBUFS);
4817 
4818 	n->m_len = len;
4819 	n->m_next = NULL;
4820 	off = 0;
4821 
4822 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
4823 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
4824 
4825 	m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off);
4826 	m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa));
4827 	m_sa->sadb_sa_exttype = SADB_EXT_SA;
4828 	m_sa->sadb_sa_spi = htonl(spi);
4829 	off += PFKEY_ALIGN8(sizeof(struct sadb_sa));
4830 
4831 	IPSEC_ASSERT(off == len,
4832 		("length inconsistency (off %u len %u)", off, len));
4833 
4834 	n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC,
4835 	    SADB_EXT_ADDRESS_DST);
4836 	if (!n->m_next) {
4837 		m_freem(n);
4838 		return key_senderror(so, m, ENOBUFS);
4839 	}
4840 
4841 	if (n->m_len < sizeof(struct sadb_msg)) {
4842 		n = m_pullup(n, sizeof(struct sadb_msg));
4843 		if (n == NULL)
4844 			return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
4845 	}
4846 
4847 	n->m_pkthdr.len = 0;
4848 	for (nn = n; nn; nn = nn->m_next)
4849 		n->m_pkthdr.len += nn->m_len;
4850 
4851 	newmsg = mtod(n, struct sadb_msg *);
4852 	newmsg->sadb_msg_seq = newsav->seq;
4853 	newmsg->sadb_msg_errno = 0;
4854 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
4855 
4856 	m_freem(m);
4857 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
4858     }
4859 }
4860 
4861 /*
4862  * allocating new SPI
4863  * called by key_getspi().
4864  * OUT:
4865  *	0:	failure.
4866  *	others: success.
4867  */
4868 static u_int32_t
4869 key_do_getnewspi(spirange, saidx)
4870 	struct sadb_spirange *spirange;
4871 	struct secasindex *saidx;
4872 {
4873 	u_int32_t newspi;
4874 	u_int32_t min, max;
4875 	int count = V_key_spi_trycnt;
4876 
4877 	/* set spi range to allocate */
4878 	if (spirange != NULL) {
4879 		min = spirange->sadb_spirange_min;
4880 		max = spirange->sadb_spirange_max;
4881 	} else {
4882 		min = V_key_spi_minval;
4883 		max = V_key_spi_maxval;
4884 	}
4885 	/* IPCOMP needs 2-byte SPI */
4886 	if (saidx->proto == IPPROTO_IPCOMP) {
4887 		u_int32_t t;
4888 		if (min >= 0x10000)
4889 			min = 0xffff;
4890 		if (max >= 0x10000)
4891 			max = 0xffff;
4892 		if (min > max) {
4893 			t = min; min = max; max = t;
4894 		}
4895 	}
4896 
4897 	if (min == max) {
4898 		if (key_checkspidup(saidx, min) != NULL) {
4899 			ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n",
4900 				__func__, min));
4901 			return 0;
4902 		}
4903 
4904 		count--; /* taking one cost. */
4905 		newspi = min;
4906 
4907 	} else {
4908 
4909 		/* init SPI */
4910 		newspi = 0;
4911 
4912 		/* when requesting to allocate spi ranged */
4913 		while (count--) {
4914 			/* generate pseudo-random SPI value ranged. */
4915 			newspi = min + (key_random() % (max - min + 1));
4916 
4917 			if (key_checkspidup(saidx, newspi) == NULL)
4918 				break;
4919 		}
4920 
4921 		if (count == 0 || newspi == 0) {
4922 			ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n",
4923 				__func__));
4924 			return 0;
4925 		}
4926 	}
4927 
4928 	/* statistics */
4929 	keystat.getspi_count =
4930 		(keystat.getspi_count + V_key_spi_trycnt - count) / 2;
4931 
4932 	return newspi;
4933 }
4934 
4935 /*
4936  * SADB_UPDATE processing
4937  * receive
4938  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4939  *       key(AE), (identity(SD),) (sensitivity)>
4940  * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL.
4941  * and send
4942  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
4943  *       (identity(SD),) (sensitivity)>
4944  * to the ikmpd.
4945  *
4946  * m will always be freed.
4947  */
4948 static int
4949 key_update(so, m, mhp)
4950 	struct socket *so;
4951 	struct mbuf *m;
4952 	const struct sadb_msghdr *mhp;
4953 {
4954 	struct sadb_sa *sa0;
4955 	struct sadb_address *src0, *dst0;
4956 #ifdef IPSEC_NAT_T
4957 	struct sadb_x_nat_t_type *type;
4958 	struct sadb_x_nat_t_port *sport, *dport;
4959 	struct sadb_address *iaddr, *raddr;
4960 	struct sadb_x_nat_t_frag *frag;
4961 #endif
4962 	struct secasindex saidx;
4963 	struct secashead *sah;
4964 	struct secasvar *sav;
4965 	u_int16_t proto;
4966 	u_int8_t mode;
4967 	u_int32_t reqid;
4968 	int error;
4969 
4970 	IPSEC_ASSERT(so != NULL, ("null socket"));
4971 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
4972 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
4973 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
4974 
4975 	/* map satype to proto */
4976 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
4977 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
4978 			__func__));
4979 		return key_senderror(so, m, EINVAL);
4980 	}
4981 
4982 	if (mhp->ext[SADB_EXT_SA] == NULL ||
4983 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
4984 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
4985 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
4986 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
4987 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
4988 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
4989 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
4990 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
4991 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
4992 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
4993 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
4994 			__func__));
4995 		return key_senderror(so, m, EINVAL);
4996 	}
4997 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
4998 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
4999 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5000 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5001 			__func__));
5002 		return key_senderror(so, m, EINVAL);
5003 	}
5004 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5005 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5006 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5007 	} else {
5008 		mode = IPSEC_MODE_ANY;
5009 		reqid = 0;
5010 	}
5011 	/* XXX boundary checking for other extensions */
5012 
5013 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5014 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5015 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5016 
5017 	/* XXX boundary check against sa_len */
5018 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5019 
5020 	/*
5021 	 * Make sure the port numbers are zero.
5022 	 * In case of NAT-T we will update them later if needed.
5023 	 */
5024 	KEY_PORTTOSADDR(&saidx.src, 0);
5025 	KEY_PORTTOSADDR(&saidx.dst, 0);
5026 
5027 #ifdef IPSEC_NAT_T
5028 	/*
5029 	 * Handle NAT-T info if present.
5030 	 */
5031 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5032 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5033 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5034 
5035 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5036 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5037 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5038 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5039 			    __func__));
5040 			return key_senderror(so, m, EINVAL);
5041 		}
5042 
5043 		type = (struct sadb_x_nat_t_type *)
5044 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5045 		sport = (struct sadb_x_nat_t_port *)
5046 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5047 		dport = (struct sadb_x_nat_t_port *)
5048 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5049 	} else {
5050 		type = 0;
5051 		sport = dport = 0;
5052 	}
5053 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5054 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5055 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5056 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5057 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5058 			    __func__));
5059 			return key_senderror(so, m, EINVAL);
5060 		}
5061 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5062 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5063 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5064 	} else {
5065 		iaddr = raddr = NULL;
5066 	}
5067 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5068 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5069 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5070 			    __func__));
5071 			return key_senderror(so, m, EINVAL);
5072 		}
5073 		frag = (struct sadb_x_nat_t_frag *)
5074 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5075 	} else {
5076 		frag = 0;
5077 	}
5078 #endif
5079 
5080 	/* get a SA header */
5081 	if ((sah = key_getsah(&saidx)) == NULL) {
5082 		ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__));
5083 		return key_senderror(so, m, ENOENT);
5084 	}
5085 
5086 	/* set spidx if there */
5087 	/* XXX rewrite */
5088 	error = key_setident(sah, m, mhp);
5089 	if (error)
5090 		return key_senderror(so, m, error);
5091 
5092 	/* find a SA with sequence number. */
5093 #ifdef IPSEC_DOSEQCHECK
5094 	if (mhp->msg->sadb_msg_seq != 0
5095 	 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) {
5096 		ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u "
5097 			"exists.\n", __func__, mhp->msg->sadb_msg_seq));
5098 		return key_senderror(so, m, ENOENT);
5099 	}
5100 #else
5101 	SAHTREE_LOCK();
5102 	sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5103 	SAHTREE_UNLOCK();
5104 	if (sav == NULL) {
5105 		ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n",
5106 			__func__, (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5107 		return key_senderror(so, m, EINVAL);
5108 	}
5109 #endif
5110 
5111 	/* validity check */
5112 	if (sav->sah->saidx.proto != proto) {
5113 		ipseclog((LOG_DEBUG, "%s: protocol mismatched "
5114 			"(DB=%u param=%u)\n", __func__,
5115 			sav->sah->saidx.proto, proto));
5116 		return key_senderror(so, m, EINVAL);
5117 	}
5118 #ifdef IPSEC_DOSEQCHECK
5119 	if (sav->spi != sa0->sadb_sa_spi) {
5120 		ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n",
5121 		    __func__,
5122 		    (u_int32_t)ntohl(sav->spi),
5123 		    (u_int32_t)ntohl(sa0->sadb_sa_spi)));
5124 		return key_senderror(so, m, EINVAL);
5125 	}
5126 #endif
5127 	if (sav->pid != mhp->msg->sadb_msg_pid) {
5128 		ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n",
5129 		    __func__, sav->pid, mhp->msg->sadb_msg_pid));
5130 		return key_senderror(so, m, EINVAL);
5131 	}
5132 
5133 	/* copy sav values */
5134 	error = key_setsaval(sav, m, mhp);
5135 	if (error) {
5136 		KEY_FREESAV(&sav);
5137 		return key_senderror(so, m, error);
5138 	}
5139 
5140 #ifdef IPSEC_NAT_T
5141 	/*
5142 	 * Handle more NAT-T info if present,
5143 	 * now that we have a sav to fill.
5144 	 */
5145 	if (type)
5146 		sav->natt_type = type->sadb_x_nat_t_type_type;
5147 
5148 	if (sport)
5149 		KEY_PORTTOSADDR(&sav->sah->saidx.src,
5150 		    sport->sadb_x_nat_t_port_port);
5151 	if (dport)
5152 		KEY_PORTTOSADDR(&sav->sah->saidx.dst,
5153 		    dport->sadb_x_nat_t_port_port);
5154 
5155 #if 0
5156 	/*
5157 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5158 	 * We should actually check for a minimum MTU here, if we
5159 	 * want to support it in ip_output.
5160 	 */
5161 	if (frag)
5162 		sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5163 #endif
5164 #endif
5165 
5166 	/* check SA values to be mature. */
5167 	if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) {
5168 		KEY_FREESAV(&sav);
5169 		return key_senderror(so, m, 0);
5170 	}
5171 
5172     {
5173 	struct mbuf *n;
5174 
5175 	/* set msg buf from mhp */
5176 	n = key_getmsgbuf_x1(m, mhp);
5177 	if (n == NULL) {
5178 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5179 		return key_senderror(so, m, ENOBUFS);
5180 	}
5181 
5182 	m_freem(m);
5183 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5184     }
5185 }
5186 
5187 /*
5188  * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL.
5189  * only called by key_update().
5190  * OUT:
5191  *	NULL	: not found
5192  *	others	: found, pointer to a SA.
5193  */
5194 #ifdef IPSEC_DOSEQCHECK
5195 static struct secasvar *
5196 key_getsavbyseq(sah, seq)
5197 	struct secashead *sah;
5198 	u_int32_t seq;
5199 {
5200 	struct secasvar *sav;
5201 	u_int state;
5202 
5203 	state = SADB_SASTATE_LARVAL;
5204 
5205 	/* search SAD with sequence number ? */
5206 	LIST_FOREACH(sav, &sah->savtree[state], chain) {
5207 
5208 		KEY_CHKSASTATE(state, sav->state, __func__);
5209 
5210 		if (sav->seq == seq) {
5211 			sa_addref(sav);
5212 			KEYDEBUG(KEYDEBUG_IPSEC_STAMP,
5213 				printf("DP %s cause refcnt++:%d SA:%p\n",
5214 					__func__, sav->refcnt, sav));
5215 			return sav;
5216 		}
5217 	}
5218 
5219 	return NULL;
5220 }
5221 #endif
5222 
5223 /*
5224  * SADB_ADD processing
5225  * add an entry to SA database, when received
5226  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5227  *       key(AE), (identity(SD),) (sensitivity)>
5228  * from the ikmpd,
5229  * and send
5230  *   <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),)
5231  *       (identity(SD),) (sensitivity)>
5232  * to the ikmpd.
5233  *
5234  * IGNORE identity and sensitivity messages.
5235  *
5236  * m will always be freed.
5237  */
5238 static int
5239 key_add(so, m, mhp)
5240 	struct socket *so;
5241 	struct mbuf *m;
5242 	const struct sadb_msghdr *mhp;
5243 {
5244 	struct sadb_sa *sa0;
5245 	struct sadb_address *src0, *dst0;
5246 #ifdef IPSEC_NAT_T
5247 	struct sadb_x_nat_t_type *type;
5248 	struct sadb_address *iaddr, *raddr;
5249 	struct sadb_x_nat_t_frag *frag;
5250 #endif
5251 	struct secasindex saidx;
5252 	struct secashead *newsah;
5253 	struct secasvar *newsav;
5254 	u_int16_t proto;
5255 	u_int8_t mode;
5256 	u_int32_t reqid;
5257 	int error;
5258 
5259 	IPSEC_ASSERT(so != NULL, ("null socket"));
5260 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5261 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5262 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5263 
5264 	/* map satype to proto */
5265 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5266 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5267 			__func__));
5268 		return key_senderror(so, m, EINVAL);
5269 	}
5270 
5271 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5272 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5273 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
5274 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP &&
5275 	     mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) ||
5276 	    (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH &&
5277 	     mhp->ext[SADB_EXT_KEY_AUTH] == NULL) ||
5278 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL &&
5279 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) ||
5280 	    (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL &&
5281 	     mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) {
5282 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5283 			__func__));
5284 		return key_senderror(so, m, EINVAL);
5285 	}
5286 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5287 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5288 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5289 		/* XXX need more */
5290 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5291 			__func__));
5292 		return key_senderror(so, m, EINVAL);
5293 	}
5294 	if (mhp->ext[SADB_X_EXT_SA2] != NULL) {
5295 		mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode;
5296 		reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid;
5297 	} else {
5298 		mode = IPSEC_MODE_ANY;
5299 		reqid = 0;
5300 	}
5301 
5302 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5303 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5304 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5305 
5306 	/* XXX boundary check against sa_len */
5307 	KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx);
5308 
5309 	/*
5310 	 * Make sure the port numbers are zero.
5311 	 * In case of NAT-T we will update them later if needed.
5312 	 */
5313 	KEY_PORTTOSADDR(&saidx.src, 0);
5314 	KEY_PORTTOSADDR(&saidx.dst, 0);
5315 
5316 #ifdef IPSEC_NAT_T
5317 	/*
5318 	 * Handle NAT-T info if present.
5319 	 */
5320 	if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL &&
5321 	    mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5322 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5323 		struct sadb_x_nat_t_port *sport, *dport;
5324 
5325 		if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) ||
5326 		    mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5327 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5328 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5329 			    __func__));
5330 			return key_senderror(so, m, EINVAL);
5331 		}
5332 
5333 		type = (struct sadb_x_nat_t_type *)
5334 		    mhp->ext[SADB_X_EXT_NAT_T_TYPE];
5335 		sport = (struct sadb_x_nat_t_port *)
5336 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5337 		dport = (struct sadb_x_nat_t_port *)
5338 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5339 
5340 		if (sport)
5341 			KEY_PORTTOSADDR(&saidx.src,
5342 			    sport->sadb_x_nat_t_port_port);
5343 		if (dport)
5344 			KEY_PORTTOSADDR(&saidx.dst,
5345 			    dport->sadb_x_nat_t_port_port);
5346 	} else {
5347 		type = 0;
5348 	}
5349 	if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL &&
5350 	    mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) {
5351 		if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) ||
5352 		    mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) {
5353 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5354 			    __func__));
5355 			return key_senderror(so, m, EINVAL);
5356 		}
5357 		iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI];
5358 		raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR];
5359 		ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__));
5360 	} else {
5361 		iaddr = raddr = NULL;
5362 	}
5363 	if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) {
5364 		if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) {
5365 			ipseclog((LOG_DEBUG, "%s: invalid message\n",
5366 			    __func__));
5367 			return key_senderror(so, m, EINVAL);
5368 		}
5369 		frag = (struct sadb_x_nat_t_frag *)
5370 		    mhp->ext[SADB_X_EXT_NAT_T_FRAG];
5371 	} else {
5372 		frag = 0;
5373 	}
5374 #endif
5375 
5376 	/* get a SA header */
5377 	if ((newsah = key_getsah(&saidx)) == NULL) {
5378 		/* create a new SA header */
5379 		if ((newsah = key_newsah(&saidx)) == NULL) {
5380 			ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__));
5381 			return key_senderror(so, m, ENOBUFS);
5382 		}
5383 	}
5384 
5385 	/* set spidx if there */
5386 	/* XXX rewrite */
5387 	error = key_setident(newsah, m, mhp);
5388 	if (error) {
5389 		return key_senderror(so, m, error);
5390 	}
5391 
5392 	/* create new SA entry. */
5393 	/* We can create new SA only if SPI is differenct. */
5394 	SAHTREE_LOCK();
5395 	newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi);
5396 	SAHTREE_UNLOCK();
5397 	if (newsav != NULL) {
5398 		ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__));
5399 		return key_senderror(so, m, EEXIST);
5400 	}
5401 	newsav = KEY_NEWSAV(m, mhp, newsah, &error);
5402 	if (newsav == NULL) {
5403 		return key_senderror(so, m, error);
5404 	}
5405 
5406 #ifdef IPSEC_NAT_T
5407 	/*
5408 	 * Handle more NAT-T info if present,
5409 	 * now that we have a sav to fill.
5410 	 */
5411 	if (type)
5412 		newsav->natt_type = type->sadb_x_nat_t_type_type;
5413 
5414 #if 0
5415 	/*
5416 	 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0.
5417 	 * We should actually check for a minimum MTU here, if we
5418 	 * want to support it in ip_output.
5419 	 */
5420 	if (frag)
5421 		newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen;
5422 #endif
5423 #endif
5424 
5425 	/* check SA values to be mature. */
5426 	if ((error = key_mature(newsav)) != 0) {
5427 		KEY_FREESAV(&newsav);
5428 		return key_senderror(so, m, error);
5429 	}
5430 
5431 	/*
5432 	 * don't call key_freesav() here, as we would like to keep the SA
5433 	 * in the database on success.
5434 	 */
5435 
5436     {
5437 	struct mbuf *n;
5438 
5439 	/* set msg buf from mhp */
5440 	n = key_getmsgbuf_x1(m, mhp);
5441 	if (n == NULL) {
5442 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5443 		return key_senderror(so, m, ENOBUFS);
5444 	}
5445 
5446 	m_freem(m);
5447 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5448     }
5449 }
5450 
5451 /* m is retained */
5452 static int
5453 key_setident(sah, m, mhp)
5454 	struct secashead *sah;
5455 	struct mbuf *m;
5456 	const struct sadb_msghdr *mhp;
5457 {
5458 	const struct sadb_ident *idsrc, *iddst;
5459 	int idsrclen, iddstlen;
5460 
5461 	IPSEC_ASSERT(sah != NULL, ("null secashead"));
5462 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5463 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5464 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5465 
5466 	/* don't make buffer if not there */
5467 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL &&
5468 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5469 		sah->idents = NULL;
5470 		sah->identd = NULL;
5471 		return 0;
5472 	}
5473 
5474 	if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL ||
5475 	    mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) {
5476 		ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__));
5477 		return EINVAL;
5478 	}
5479 
5480 	idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC];
5481 	iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST];
5482 	idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC];
5483 	iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST];
5484 
5485 	/* validity check */
5486 	if (idsrc->sadb_ident_type != iddst->sadb_ident_type) {
5487 		ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__));
5488 		return EINVAL;
5489 	}
5490 
5491 	switch (idsrc->sadb_ident_type) {
5492 	case SADB_IDENTTYPE_PREFIX:
5493 	case SADB_IDENTTYPE_FQDN:
5494 	case SADB_IDENTTYPE_USERFQDN:
5495 	default:
5496 		/* XXX do nothing */
5497 		sah->idents = NULL;
5498 		sah->identd = NULL;
5499 	 	return 0;
5500 	}
5501 
5502 	/* make structure */
5503 	sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5504 	if (sah->idents == NULL) {
5505 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5506 		return ENOBUFS;
5507 	}
5508 	sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT);
5509 	if (sah->identd == NULL) {
5510 		free(sah->idents, M_IPSEC_MISC);
5511 		sah->idents = NULL;
5512 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
5513 		return ENOBUFS;
5514 	}
5515 	sah->idents->type = idsrc->sadb_ident_type;
5516 	sah->idents->id = idsrc->sadb_ident_id;
5517 
5518 	sah->identd->type = iddst->sadb_ident_type;
5519 	sah->identd->id = iddst->sadb_ident_id;
5520 
5521 	return 0;
5522 }
5523 
5524 /*
5525  * m will not be freed on return.
5526  * it is caller's responsibility to free the result.
5527  */
5528 static struct mbuf *
5529 key_getmsgbuf_x1(m, mhp)
5530 	struct mbuf *m;
5531 	const struct sadb_msghdr *mhp;
5532 {
5533 	struct mbuf *n;
5534 
5535 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5536 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5537 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5538 
5539 	/* create new sadb_msg to reply. */
5540 	n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED,
5541 	    SADB_EXT_SA, SADB_X_EXT_SA2,
5542 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST,
5543 	    SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT,
5544 	    SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST);
5545 	if (!n)
5546 		return NULL;
5547 
5548 	if (n->m_len < sizeof(struct sadb_msg)) {
5549 		n = m_pullup(n, sizeof(struct sadb_msg));
5550 		if (n == NULL)
5551 			return NULL;
5552 	}
5553 	mtod(n, struct sadb_msg *)->sadb_msg_errno = 0;
5554 	mtod(n, struct sadb_msg *)->sadb_msg_len =
5555 	    PFKEY_UNIT64(n->m_pkthdr.len);
5556 
5557 	return n;
5558 }
5559 
5560 static int key_delete_all __P((struct socket *, struct mbuf *,
5561 	const struct sadb_msghdr *, u_int16_t));
5562 
5563 /*
5564  * SADB_DELETE processing
5565  * receive
5566  *   <base, SA(*), address(SD)>
5567  * from the ikmpd, and set SADB_SASTATE_DEAD,
5568  * and send,
5569  *   <base, SA(*), address(SD)>
5570  * to the ikmpd.
5571  *
5572  * m will always be freed.
5573  */
5574 static int
5575 key_delete(so, m, mhp)
5576 	struct socket *so;
5577 	struct mbuf *m;
5578 	const struct sadb_msghdr *mhp;
5579 {
5580 	struct sadb_sa *sa0;
5581 	struct sadb_address *src0, *dst0;
5582 	struct secasindex saidx;
5583 	struct secashead *sah;
5584 	struct secasvar *sav = NULL;
5585 	u_int16_t proto;
5586 
5587 	IPSEC_ASSERT(so != NULL, ("null socket"));
5588 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5589 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5590 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5591 
5592 	/* map satype to proto */
5593 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5594 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5595 			__func__));
5596 		return key_senderror(so, m, EINVAL);
5597 	}
5598 
5599 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5600 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5601 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5602 			__func__));
5603 		return key_senderror(so, m, EINVAL);
5604 	}
5605 
5606 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5607 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5608 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5609 			__func__));
5610 		return key_senderror(so, m, EINVAL);
5611 	}
5612 
5613 	if (mhp->ext[SADB_EXT_SA] == NULL) {
5614 		/*
5615 		 * Caller wants us to delete all non-LARVAL SAs
5616 		 * that match the src/dst.  This is used during
5617 		 * IKE INITIAL-CONTACT.
5618 		 */
5619 		ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__));
5620 		return key_delete_all(so, m, mhp, proto);
5621 	} else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) {
5622 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5623 			__func__));
5624 		return key_senderror(so, m, EINVAL);
5625 	}
5626 
5627 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5628 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5629 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5630 
5631 	/* XXX boundary check against sa_len */
5632 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5633 
5634 	/*
5635 	 * Make sure the port numbers are zero.
5636 	 * In case of NAT-T we will update them later if needed.
5637 	 */
5638 	KEY_PORTTOSADDR(&saidx.src, 0);
5639 	KEY_PORTTOSADDR(&saidx.dst, 0);
5640 
5641 #ifdef IPSEC_NAT_T
5642 	/*
5643 	 * Handle NAT-T info if present.
5644 	 */
5645 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5646 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5647 		struct sadb_x_nat_t_port *sport, *dport;
5648 
5649 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5650 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5651 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5652 			    __func__));
5653 			return key_senderror(so, m, EINVAL);
5654 		}
5655 
5656 		sport = (struct sadb_x_nat_t_port *)
5657 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5658 		dport = (struct sadb_x_nat_t_port *)
5659 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5660 
5661 		if (sport)
5662 			KEY_PORTTOSADDR(&saidx.src,
5663 			    sport->sadb_x_nat_t_port_port);
5664 		if (dport)
5665 			KEY_PORTTOSADDR(&saidx.dst,
5666 			    dport->sadb_x_nat_t_port_port);
5667 	}
5668 #endif
5669 
5670 	/* get a SA header */
5671 	SAHTREE_LOCK();
5672 	LIST_FOREACH(sah, &V_sahtree, chain) {
5673 		if (sah->state == SADB_SASTATE_DEAD)
5674 			continue;
5675 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5676 			continue;
5677 
5678 		/* get a SA with SPI. */
5679 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5680 		if (sav)
5681 			break;
5682 	}
5683 	if (sah == NULL) {
5684 		SAHTREE_UNLOCK();
5685 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5686 		return key_senderror(so, m, ENOENT);
5687 	}
5688 
5689 	key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5690 	KEY_FREESAV(&sav);
5691 	SAHTREE_UNLOCK();
5692 
5693     {
5694 	struct mbuf *n;
5695 	struct sadb_msg *newmsg;
5696 
5697 	/* create new sadb_msg to reply. */
5698 	/* XXX-BZ NAT-T extensions? */
5699 	n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED,
5700 	    SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5701 	if (!n)
5702 		return key_senderror(so, m, ENOBUFS);
5703 
5704 	if (n->m_len < sizeof(struct sadb_msg)) {
5705 		n = m_pullup(n, sizeof(struct sadb_msg));
5706 		if (n == NULL)
5707 			return key_senderror(so, m, ENOBUFS);
5708 	}
5709 	newmsg = mtod(n, struct sadb_msg *);
5710 	newmsg->sadb_msg_errno = 0;
5711 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5712 
5713 	m_freem(m);
5714 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5715     }
5716 }
5717 
5718 /*
5719  * delete all SAs for src/dst.  Called from key_delete().
5720  */
5721 static int
5722 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp,
5723     u_int16_t proto)
5724 {
5725 	struct sadb_address *src0, *dst0;
5726 	struct secasindex saidx;
5727 	struct secashead *sah;
5728 	struct secasvar *sav, *nextsav;
5729 	u_int stateidx, state;
5730 
5731 	src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]);
5732 	dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]);
5733 
5734 	/* XXX boundary check against sa_len */
5735 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5736 
5737 	/*
5738 	 * Make sure the port numbers are zero.
5739 	 * In case of NAT-T we will update them later if needed.
5740 	 */
5741 	KEY_PORTTOSADDR(&saidx.src, 0);
5742 	KEY_PORTTOSADDR(&saidx.dst, 0);
5743 
5744 #ifdef IPSEC_NAT_T
5745 	/*
5746 	 * Handle NAT-T info if present.
5747 	 */
5748 
5749 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5750 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5751 		struct sadb_x_nat_t_port *sport, *dport;
5752 
5753 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5754 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5755 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5756 			    __func__));
5757 			return key_senderror(so, m, EINVAL);
5758 		}
5759 
5760 		sport = (struct sadb_x_nat_t_port *)
5761 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5762 		dport = (struct sadb_x_nat_t_port *)
5763 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5764 
5765 		if (sport)
5766 			KEY_PORTTOSADDR(&saidx.src,
5767 			    sport->sadb_x_nat_t_port_port);
5768 		if (dport)
5769 			KEY_PORTTOSADDR(&saidx.dst,
5770 			    dport->sadb_x_nat_t_port_port);
5771 	}
5772 #endif
5773 
5774 	SAHTREE_LOCK();
5775 	LIST_FOREACH(sah, &V_sahtree, chain) {
5776 		if (sah->state == SADB_SASTATE_DEAD)
5777 			continue;
5778 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5779 			continue;
5780 
5781 		/* Delete all non-LARVAL SAs. */
5782 		for (stateidx = 0;
5783 		     stateidx < _ARRAYLEN(saorder_state_alive);
5784 		     stateidx++) {
5785 			state = saorder_state_alive[stateidx];
5786 			if (state == SADB_SASTATE_LARVAL)
5787 				continue;
5788 			for (sav = LIST_FIRST(&sah->savtree[state]);
5789 			     sav != NULL; sav = nextsav) {
5790 				nextsav = LIST_NEXT(sav, chain);
5791 				/* sanity check */
5792 				if (sav->state != state) {
5793 					ipseclog((LOG_DEBUG, "%s: invalid "
5794 						"sav->state (queue %d SA %d)\n",
5795 						__func__, state, sav->state));
5796 					continue;
5797 				}
5798 
5799 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
5800 				KEY_FREESAV(&sav);
5801 			}
5802 		}
5803 	}
5804 	SAHTREE_UNLOCK();
5805     {
5806 	struct mbuf *n;
5807 	struct sadb_msg *newmsg;
5808 
5809 	/* create new sadb_msg to reply. */
5810 	/* XXX-BZ NAT-T extensions? */
5811 	n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED,
5812 	    SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST);
5813 	if (!n)
5814 		return key_senderror(so, m, ENOBUFS);
5815 
5816 	if (n->m_len < sizeof(struct sadb_msg)) {
5817 		n = m_pullup(n, sizeof(struct sadb_msg));
5818 		if (n == NULL)
5819 			return key_senderror(so, m, ENOBUFS);
5820 	}
5821 	newmsg = mtod(n, struct sadb_msg *);
5822 	newmsg->sadb_msg_errno = 0;
5823 	newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len);
5824 
5825 	m_freem(m);
5826 	return key_sendup_mbuf(so, n, KEY_SENDUP_ALL);
5827     }
5828 }
5829 
5830 /*
5831  * SADB_GET processing
5832  * receive
5833  *   <base, SA(*), address(SD)>
5834  * from the ikmpd, and get a SP and a SA to respond,
5835  * and send,
5836  *   <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE),
5837  *       (identity(SD),) (sensitivity)>
5838  * to the ikmpd.
5839  *
5840  * m will always be freed.
5841  */
5842 static int
5843 key_get(so, m, mhp)
5844 	struct socket *so;
5845 	struct mbuf *m;
5846 	const struct sadb_msghdr *mhp;
5847 {
5848 	struct sadb_sa *sa0;
5849 	struct sadb_address *src0, *dst0;
5850 	struct secasindex saidx;
5851 	struct secashead *sah;
5852 	struct secasvar *sav = NULL;
5853 	u_int16_t proto;
5854 
5855 	IPSEC_ASSERT(so != NULL, ("null socket"));
5856 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
5857 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
5858 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
5859 
5860 	/* map satype to proto */
5861 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
5862 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
5863 			__func__));
5864 		return key_senderror(so, m, EINVAL);
5865 	}
5866 
5867 	if (mhp->ext[SADB_EXT_SA] == NULL ||
5868 	    mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
5869 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) {
5870 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5871 			__func__));
5872 		return key_senderror(so, m, EINVAL);
5873 	}
5874 	if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) ||
5875 	    mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
5876 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) {
5877 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
5878 			__func__));
5879 		return key_senderror(so, m, EINVAL);
5880 	}
5881 
5882 	sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA];
5883 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
5884 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
5885 
5886 	/* XXX boundary check against sa_len */
5887 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
5888 
5889 	/*
5890 	 * Make sure the port numbers are zero.
5891 	 * In case of NAT-T we will update them later if needed.
5892 	 */
5893 	KEY_PORTTOSADDR(&saidx.src, 0);
5894 	KEY_PORTTOSADDR(&saidx.dst, 0);
5895 
5896 #ifdef IPSEC_NAT_T
5897 	/*
5898 	 * Handle NAT-T info if present.
5899 	 */
5900 
5901 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
5902 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
5903 		struct sadb_x_nat_t_port *sport, *dport;
5904 
5905 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
5906 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
5907 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
5908 			    __func__));
5909 			return key_senderror(so, m, EINVAL);
5910 		}
5911 
5912 		sport = (struct sadb_x_nat_t_port *)
5913 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
5914 		dport = (struct sadb_x_nat_t_port *)
5915 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
5916 
5917 		if (sport)
5918 			KEY_PORTTOSADDR(&saidx.src,
5919 			    sport->sadb_x_nat_t_port_port);
5920 		if (dport)
5921 			KEY_PORTTOSADDR(&saidx.dst,
5922 			    dport->sadb_x_nat_t_port_port);
5923 	}
5924 #endif
5925 
5926 	/* get a SA header */
5927 	SAHTREE_LOCK();
5928 	LIST_FOREACH(sah, &V_sahtree, chain) {
5929 		if (sah->state == SADB_SASTATE_DEAD)
5930 			continue;
5931 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0)
5932 			continue;
5933 
5934 		/* get a SA with SPI. */
5935 		sav = key_getsavbyspi(sah, sa0->sadb_sa_spi);
5936 		if (sav)
5937 			break;
5938 	}
5939 	SAHTREE_UNLOCK();
5940 	if (sah == NULL) {
5941 		ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__));
5942 		return key_senderror(so, m, ENOENT);
5943 	}
5944 
5945     {
5946 	struct mbuf *n;
5947 	u_int8_t satype;
5948 
5949 	/* map proto to satype */
5950 	if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
5951 		ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n",
5952 			__func__));
5953 		return key_senderror(so, m, EINVAL);
5954 	}
5955 
5956 	/* create new sadb_msg to reply. */
5957 	n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq,
5958 	    mhp->msg->sadb_msg_pid);
5959 	if (!n)
5960 		return key_senderror(so, m, ENOBUFS);
5961 
5962 	m_freem(m);
5963 	return key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
5964     }
5965 }
5966 
5967 /* XXX make it sysctl-configurable? */
5968 static void
5969 key_getcomb_setlifetime(comb)
5970 	struct sadb_comb *comb;
5971 {
5972 
5973 	comb->sadb_comb_soft_allocations = 1;
5974 	comb->sadb_comb_hard_allocations = 1;
5975 	comb->sadb_comb_soft_bytes = 0;
5976 	comb->sadb_comb_hard_bytes = 0;
5977 	comb->sadb_comb_hard_addtime = 86400;	/* 1 day */
5978 	comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100;
5979 	comb->sadb_comb_soft_usetime = 28800;	/* 8 hours */
5980 	comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100;
5981 }
5982 
5983 /*
5984  * XXX reorder combinations by preference
5985  * XXX no idea if the user wants ESP authentication or not
5986  */
5987 static struct mbuf *
5988 key_getcomb_esp()
5989 {
5990 	struct sadb_comb *comb;
5991 	struct enc_xform *algo;
5992 	struct mbuf *result = NULL, *m, *n;
5993 	int encmin;
5994 	int i, off, o;
5995 	int totlen;
5996 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
5997 
5998 	m = NULL;
5999 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6000 		algo = esp_algorithm_lookup(i);
6001 		if (algo == NULL)
6002 			continue;
6003 
6004 		/* discard algorithms with key size smaller than system min */
6005 		if (_BITS(algo->maxkey) < V_ipsec_esp_keymin)
6006 			continue;
6007 		if (_BITS(algo->minkey) < V_ipsec_esp_keymin)
6008 			encmin = V_ipsec_esp_keymin;
6009 		else
6010 			encmin = _BITS(algo->minkey);
6011 
6012 		if (V_ipsec_esp_auth)
6013 			m = key_getcomb_ah();
6014 		else {
6015 			IPSEC_ASSERT(l <= MLEN,
6016 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6017 			MGET(m, M_NOWAIT, MT_DATA);
6018 			if (m) {
6019 				M_ALIGN(m, l);
6020 				m->m_len = l;
6021 				m->m_next = NULL;
6022 				bzero(mtod(m, caddr_t), m->m_len);
6023 			}
6024 		}
6025 		if (!m)
6026 			goto fail;
6027 
6028 		totlen = 0;
6029 		for (n = m; n; n = n->m_next)
6030 			totlen += n->m_len;
6031 		IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l));
6032 
6033 		for (off = 0; off < totlen; off += l) {
6034 			n = m_pulldown(m, off, l, &o);
6035 			if (!n) {
6036 				/* m is already freed */
6037 				goto fail;
6038 			}
6039 			comb = (struct sadb_comb *)(mtod(n, caddr_t) + o);
6040 			bzero(comb, sizeof(*comb));
6041 			key_getcomb_setlifetime(comb);
6042 			comb->sadb_comb_encrypt = i;
6043 			comb->sadb_comb_encrypt_minbits = encmin;
6044 			comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey);
6045 		}
6046 
6047 		if (!result)
6048 			result = m;
6049 		else
6050 			m_cat(result, m);
6051 	}
6052 
6053 	return result;
6054 
6055  fail:
6056 	if (result)
6057 		m_freem(result);
6058 	return NULL;
6059 }
6060 
6061 static void
6062 key_getsizes_ah(
6063 	const struct auth_hash *ah,
6064 	int alg,
6065 	u_int16_t* min,
6066 	u_int16_t* max)
6067 {
6068 
6069 	*min = *max = ah->keysize;
6070 	if (ah->keysize == 0) {
6071 		/*
6072 		 * Transform takes arbitrary key size but algorithm
6073 		 * key size is restricted.  Enforce this here.
6074 		 */
6075 		switch (alg) {
6076 		case SADB_X_AALG_MD5:	*min = *max = 16; break;
6077 		case SADB_X_AALG_SHA:	*min = *max = 20; break;
6078 		case SADB_X_AALG_NULL:	*min = 1; *max = 256; break;
6079 		case SADB_X_AALG_SHA2_256: *min = *max = 32; break;
6080 		case SADB_X_AALG_SHA2_384: *min = *max = 48; break;
6081 		case SADB_X_AALG_SHA2_512: *min = *max = 64; break;
6082 		default:
6083 			DPRINTF(("%s: unknown AH algorithm %u\n",
6084 				__func__, alg));
6085 			break;
6086 		}
6087 	}
6088 }
6089 
6090 /*
6091  * XXX reorder combinations by preference
6092  */
6093 static struct mbuf *
6094 key_getcomb_ah()
6095 {
6096 	struct sadb_comb *comb;
6097 	struct auth_hash *algo;
6098 	struct mbuf *m;
6099 	u_int16_t minkeysize, maxkeysize;
6100 	int i;
6101 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6102 
6103 	m = NULL;
6104 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6105 #if 1
6106 		/* we prefer HMAC algorithms, not old algorithms */
6107 		if (i != SADB_AALG_SHA1HMAC &&
6108 		    i != SADB_AALG_MD5HMAC  &&
6109 		    i != SADB_X_AALG_SHA2_256 &&
6110 		    i != SADB_X_AALG_SHA2_384 &&
6111 		    i != SADB_X_AALG_SHA2_512)
6112 			continue;
6113 #endif
6114 		algo = ah_algorithm_lookup(i);
6115 		if (!algo)
6116 			continue;
6117 		key_getsizes_ah(algo, i, &minkeysize, &maxkeysize);
6118 		/* discard algorithms with key size smaller than system min */
6119 		if (_BITS(minkeysize) < V_ipsec_ah_keymin)
6120 			continue;
6121 
6122 		if (!m) {
6123 			IPSEC_ASSERT(l <= MLEN,
6124 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6125 			MGET(m, M_NOWAIT, MT_DATA);
6126 			if (m) {
6127 				M_ALIGN(m, l);
6128 				m->m_len = l;
6129 				m->m_next = NULL;
6130 			}
6131 		} else
6132 			M_PREPEND(m, l, M_NOWAIT);
6133 		if (!m)
6134 			return NULL;
6135 
6136 		comb = mtod(m, struct sadb_comb *);
6137 		bzero(comb, sizeof(*comb));
6138 		key_getcomb_setlifetime(comb);
6139 		comb->sadb_comb_auth = i;
6140 		comb->sadb_comb_auth_minbits = _BITS(minkeysize);
6141 		comb->sadb_comb_auth_maxbits = _BITS(maxkeysize);
6142 	}
6143 
6144 	return m;
6145 }
6146 
6147 /*
6148  * not really an official behavior.  discussed in pf_key@inner.net in Sep2000.
6149  * XXX reorder combinations by preference
6150  */
6151 static struct mbuf *
6152 key_getcomb_ipcomp()
6153 {
6154 	struct sadb_comb *comb;
6155 	struct comp_algo *algo;
6156 	struct mbuf *m;
6157 	int i;
6158 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb));
6159 
6160 	m = NULL;
6161 	for (i = 1; i <= SADB_X_CALG_MAX; i++) {
6162 		algo = ipcomp_algorithm_lookup(i);
6163 		if (!algo)
6164 			continue;
6165 
6166 		if (!m) {
6167 			IPSEC_ASSERT(l <= MLEN,
6168 				("l=%u > MLEN=%lu", l, (u_long) MLEN));
6169 			MGET(m, M_NOWAIT, MT_DATA);
6170 			if (m) {
6171 				M_ALIGN(m, l);
6172 				m->m_len = l;
6173 				m->m_next = NULL;
6174 			}
6175 		} else
6176 			M_PREPEND(m, l, M_NOWAIT);
6177 		if (!m)
6178 			return NULL;
6179 
6180 		comb = mtod(m, struct sadb_comb *);
6181 		bzero(comb, sizeof(*comb));
6182 		key_getcomb_setlifetime(comb);
6183 		comb->sadb_comb_encrypt = i;
6184 		/* what should we set into sadb_comb_*_{min,max}bits? */
6185 	}
6186 
6187 	return m;
6188 }
6189 
6190 /*
6191  * XXX no way to pass mode (transport/tunnel) to userland
6192  * XXX replay checking?
6193  * XXX sysctl interface to ipsec_{ah,esp}_keymin
6194  */
6195 static struct mbuf *
6196 key_getprop(saidx)
6197 	const struct secasindex *saidx;
6198 {
6199 	struct sadb_prop *prop;
6200 	struct mbuf *m, *n;
6201 	const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop));
6202 	int totlen;
6203 
6204 	switch (saidx->proto)  {
6205 	case IPPROTO_ESP:
6206 		m = key_getcomb_esp();
6207 		break;
6208 	case IPPROTO_AH:
6209 		m = key_getcomb_ah();
6210 		break;
6211 	case IPPROTO_IPCOMP:
6212 		m = key_getcomb_ipcomp();
6213 		break;
6214 	default:
6215 		return NULL;
6216 	}
6217 
6218 	if (!m)
6219 		return NULL;
6220 	M_PREPEND(m, l, M_NOWAIT);
6221 	if (!m)
6222 		return NULL;
6223 
6224 	totlen = 0;
6225 	for (n = m; n; n = n->m_next)
6226 		totlen += n->m_len;
6227 
6228 	prop = mtod(m, struct sadb_prop *);
6229 	bzero(prop, sizeof(*prop));
6230 	prop->sadb_prop_len = PFKEY_UNIT64(totlen);
6231 	prop->sadb_prop_exttype = SADB_EXT_PROPOSAL;
6232 	prop->sadb_prop_replay = 32;	/* XXX */
6233 
6234 	return m;
6235 }
6236 
6237 /*
6238  * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2().
6239  * send
6240  *   <base, SA, address(SD), (address(P)), x_policy,
6241  *       (identity(SD),) (sensitivity,) proposal>
6242  * to KMD, and expect to receive
6243  *   <base> with SADB_ACQUIRE if error occured,
6244  * or
6245  *   <base, src address, dst address, (SPI range)> with SADB_GETSPI
6246  * from KMD by PF_KEY.
6247  *
6248  * XXX x_policy is outside of RFC2367 (KAME extension).
6249  * XXX sensitivity is not supported.
6250  * XXX for ipcomp, RFC2367 does not define how to fill in proposal.
6251  * see comment for key_getcomb_ipcomp().
6252  *
6253  * OUT:
6254  *    0     : succeed
6255  *    others: error number
6256  */
6257 static int
6258 key_acquire(const struct secasindex *saidx, struct secpolicy *sp)
6259 {
6260 	struct mbuf *result = NULL, *m;
6261 	struct secacq *newacq;
6262 	u_int8_t satype;
6263 	int error = -1;
6264 	u_int32_t seq;
6265 
6266 	IPSEC_ASSERT(saidx != NULL, ("null saidx"));
6267 	satype = key_proto2satype(saidx->proto);
6268 	IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto));
6269 
6270 	/*
6271 	 * We never do anything about acquirng SA.  There is anather
6272 	 * solution that kernel blocks to send SADB_ACQUIRE message until
6273 	 * getting something message from IKEd.  In later case, to be
6274 	 * managed with ACQUIRING list.
6275 	 */
6276 	/* Get an entry to check whether sending message or not. */
6277 	if ((newacq = key_getacq(saidx)) != NULL) {
6278 		if (V_key_blockacq_count < newacq->count) {
6279 			/* reset counter and do send message. */
6280 			newacq->count = 0;
6281 		} else {
6282 			/* increment counter and do nothing. */
6283 			newacq->count++;
6284 			return 0;
6285 		}
6286 	} else {
6287 		/* make new entry for blocking to send SADB_ACQUIRE. */
6288 		if ((newacq = key_newacq(saidx)) == NULL)
6289 			return ENOBUFS;
6290 	}
6291 
6292 
6293 	seq = newacq->seq;
6294 	m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0);
6295 	if (!m) {
6296 		error = ENOBUFS;
6297 		goto fail;
6298 	}
6299 	result = m;
6300 
6301 	/*
6302 	 * No SADB_X_EXT_NAT_T_* here: we do not know
6303 	 * anything related to NAT-T at this time.
6304 	 */
6305 
6306 	/* set sadb_address for saidx's. */
6307 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6308 	    &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6309 	if (!m) {
6310 		error = ENOBUFS;
6311 		goto fail;
6312 	}
6313 	m_cat(result, m);
6314 
6315 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6316 	    &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY);
6317 	if (!m) {
6318 		error = ENOBUFS;
6319 		goto fail;
6320 	}
6321 	m_cat(result, m);
6322 
6323 	/* XXX proxy address (optional) */
6324 
6325 	/* set sadb_x_policy */
6326 	if (sp) {
6327 		m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id);
6328 		if (!m) {
6329 			error = ENOBUFS;
6330 			goto fail;
6331 		}
6332 		m_cat(result, m);
6333 	}
6334 
6335 	/* XXX identity (optional) */
6336 #if 0
6337 	if (idexttype && fqdn) {
6338 		/* create identity extension (FQDN) */
6339 		struct sadb_ident *id;
6340 		int fqdnlen;
6341 
6342 		fqdnlen = strlen(fqdn) + 1;	/* +1 for terminating-NUL */
6343 		id = (struct sadb_ident *)p;
6344 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6345 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen));
6346 		id->sadb_ident_exttype = idexttype;
6347 		id->sadb_ident_type = SADB_IDENTTYPE_FQDN;
6348 		bcopy(fqdn, id + 1, fqdnlen);
6349 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen);
6350 	}
6351 
6352 	if (idexttype) {
6353 		/* create identity extension (USERFQDN) */
6354 		struct sadb_ident *id;
6355 		int userfqdnlen;
6356 
6357 		if (userfqdn) {
6358 			/* +1 for terminating-NUL */
6359 			userfqdnlen = strlen(userfqdn) + 1;
6360 		} else
6361 			userfqdnlen = 0;
6362 		id = (struct sadb_ident *)p;
6363 		bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6364 		id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen));
6365 		id->sadb_ident_exttype = idexttype;
6366 		id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN;
6367 		/* XXX is it correct? */
6368 		if (curproc && curproc->p_cred)
6369 			id->sadb_ident_id = curproc->p_cred->p_ruid;
6370 		if (userfqdn && userfqdnlen)
6371 			bcopy(userfqdn, id + 1, userfqdnlen);
6372 		p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen);
6373 	}
6374 #endif
6375 
6376 	/* XXX sensitivity (optional) */
6377 
6378 	/* create proposal/combination extension */
6379 	m = key_getprop(saidx);
6380 #if 0
6381 	/*
6382 	 * spec conformant: always attach proposal/combination extension,
6383 	 * the problem is that we have no way to attach it for ipcomp,
6384 	 * due to the way sadb_comb is declared in RFC2367.
6385 	 */
6386 	if (!m) {
6387 		error = ENOBUFS;
6388 		goto fail;
6389 	}
6390 	m_cat(result, m);
6391 #else
6392 	/*
6393 	 * outside of spec; make proposal/combination extension optional.
6394 	 */
6395 	if (m)
6396 		m_cat(result, m);
6397 #endif
6398 
6399 	if ((result->m_flags & M_PKTHDR) == 0) {
6400 		error = EINVAL;
6401 		goto fail;
6402 	}
6403 
6404 	if (result->m_len < sizeof(struct sadb_msg)) {
6405 		result = m_pullup(result, sizeof(struct sadb_msg));
6406 		if (result == NULL) {
6407 			error = ENOBUFS;
6408 			goto fail;
6409 		}
6410 	}
6411 
6412 	result->m_pkthdr.len = 0;
6413 	for (m = result; m; m = m->m_next)
6414 		result->m_pkthdr.len += m->m_len;
6415 
6416 	mtod(result, struct sadb_msg *)->sadb_msg_len =
6417 	    PFKEY_UNIT64(result->m_pkthdr.len);
6418 
6419 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
6420 
6421  fail:
6422 	if (result)
6423 		m_freem(result);
6424 	return error;
6425 }
6426 
6427 static struct secacq *
6428 key_newacq(const struct secasindex *saidx)
6429 {
6430 	struct secacq *newacq;
6431 
6432 	/* get new entry */
6433 	newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6434 	if (newacq == NULL) {
6435 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6436 		return NULL;
6437 	}
6438 
6439 	/* copy secindex */
6440 	bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx));
6441 	newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq);
6442 	newacq->created = time_second;
6443 	newacq->count = 0;
6444 
6445 	/* add to acqtree */
6446 	ACQ_LOCK();
6447 	LIST_INSERT_HEAD(&V_acqtree, newacq, chain);
6448 	ACQ_UNLOCK();
6449 
6450 	return newacq;
6451 }
6452 
6453 static struct secacq *
6454 key_getacq(const struct secasindex *saidx)
6455 {
6456 	struct secacq *acq;
6457 
6458 	ACQ_LOCK();
6459 	LIST_FOREACH(acq, &V_acqtree, chain) {
6460 		if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY))
6461 			break;
6462 	}
6463 	ACQ_UNLOCK();
6464 
6465 	return acq;
6466 }
6467 
6468 static struct secacq *
6469 key_getacqbyseq(seq)
6470 	u_int32_t seq;
6471 {
6472 	struct secacq *acq;
6473 
6474 	ACQ_LOCK();
6475 	LIST_FOREACH(acq, &V_acqtree, chain) {
6476 		if (acq->seq == seq)
6477 			break;
6478 	}
6479 	ACQ_UNLOCK();
6480 
6481 	return acq;
6482 }
6483 
6484 static struct secspacq *
6485 key_newspacq(spidx)
6486 	struct secpolicyindex *spidx;
6487 {
6488 	struct secspacq *acq;
6489 
6490 	/* get new entry */
6491 	acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO);
6492 	if (acq == NULL) {
6493 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6494 		return NULL;
6495 	}
6496 
6497 	/* copy secindex */
6498 	bcopy(spidx, &acq->spidx, sizeof(acq->spidx));
6499 	acq->created = time_second;
6500 	acq->count = 0;
6501 
6502 	/* add to spacqtree */
6503 	SPACQ_LOCK();
6504 	LIST_INSERT_HEAD(&V_spacqtree, acq, chain);
6505 	SPACQ_UNLOCK();
6506 
6507 	return acq;
6508 }
6509 
6510 static struct secspacq *
6511 key_getspacq(spidx)
6512 	struct secpolicyindex *spidx;
6513 {
6514 	struct secspacq *acq;
6515 
6516 	SPACQ_LOCK();
6517 	LIST_FOREACH(acq, &V_spacqtree, chain) {
6518 		if (key_cmpspidx_exactly(spidx, &acq->spidx)) {
6519 			/* NB: return holding spacq_lock */
6520 			return acq;
6521 		}
6522 	}
6523 	SPACQ_UNLOCK();
6524 
6525 	return NULL;
6526 }
6527 
6528 /*
6529  * SADB_ACQUIRE processing,
6530  * in first situation, is receiving
6531  *   <base>
6532  * from the ikmpd, and clear sequence of its secasvar entry.
6533  *
6534  * In second situation, is receiving
6535  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6536  * from a user land process, and return
6537  *   <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal>
6538  * to the socket.
6539  *
6540  * m will always be freed.
6541  */
6542 static int
6543 key_acquire2(so, m, mhp)
6544 	struct socket *so;
6545 	struct mbuf *m;
6546 	const struct sadb_msghdr *mhp;
6547 {
6548 	const struct sadb_address *src0, *dst0;
6549 	struct secasindex saidx;
6550 	struct secashead *sah;
6551 	u_int16_t proto;
6552 	int error;
6553 
6554 	IPSEC_ASSERT(so != NULL, ("null socket"));
6555 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6556 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6557 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6558 
6559 	/*
6560 	 * Error message from KMd.
6561 	 * We assume that if error was occured in IKEd, the length of PFKEY
6562 	 * message is equal to the size of sadb_msg structure.
6563 	 * We do not raise error even if error occured in this function.
6564 	 */
6565 	if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) {
6566 		struct secacq *acq;
6567 
6568 		/* check sequence number */
6569 		if (mhp->msg->sadb_msg_seq == 0) {
6570 			ipseclog((LOG_DEBUG, "%s: must specify sequence "
6571 				"number.\n", __func__));
6572 			m_freem(m);
6573 			return 0;
6574 		}
6575 
6576 		if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) {
6577 			/*
6578 			 * the specified larval SA is already gone, or we got
6579 			 * a bogus sequence number.  we can silently ignore it.
6580 			 */
6581 			m_freem(m);
6582 			return 0;
6583 		}
6584 
6585 		/* reset acq counter in order to deletion by timehander. */
6586 		acq->created = time_second;
6587 		acq->count = 0;
6588 		m_freem(m);
6589 		return 0;
6590 	}
6591 
6592 	/*
6593 	 * This message is from user land.
6594 	 */
6595 
6596 	/* map satype to proto */
6597 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
6598 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
6599 			__func__));
6600 		return key_senderror(so, m, EINVAL);
6601 	}
6602 
6603 	if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL ||
6604 	    mhp->ext[SADB_EXT_ADDRESS_DST] == NULL ||
6605 	    mhp->ext[SADB_EXT_PROPOSAL] == NULL) {
6606 		/* error */
6607 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6608 			__func__));
6609 		return key_senderror(so, m, EINVAL);
6610 	}
6611 	if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) ||
6612 	    mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) ||
6613 	    mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) {
6614 		/* error */
6615 		ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n",
6616 			__func__));
6617 		return key_senderror(so, m, EINVAL);
6618 	}
6619 
6620 	src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC];
6621 	dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST];
6622 
6623 	/* XXX boundary check against sa_len */
6624 	KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx);
6625 
6626 	/*
6627 	 * Make sure the port numbers are zero.
6628 	 * In case of NAT-T we will update them later if needed.
6629 	 */
6630 	KEY_PORTTOSADDR(&saidx.src, 0);
6631 	KEY_PORTTOSADDR(&saidx.dst, 0);
6632 
6633 #ifndef IPSEC_NAT_T
6634 	/*
6635 	 * Handle NAT-T info if present.
6636 	 */
6637 
6638 	if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL &&
6639 	    mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) {
6640 		struct sadb_x_nat_t_port *sport, *dport;
6641 
6642 		if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) ||
6643 		    mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) {
6644 			ipseclog((LOG_DEBUG, "%s: invalid message.\n",
6645 			    __func__));
6646 			return key_senderror(so, m, EINVAL);
6647 		}
6648 
6649 		sport = (struct sadb_x_nat_t_port *)
6650 		    mhp->ext[SADB_X_EXT_NAT_T_SPORT];
6651 		dport = (struct sadb_x_nat_t_port *)
6652 		    mhp->ext[SADB_X_EXT_NAT_T_DPORT];
6653 
6654 		if (sport)
6655 			KEY_PORTTOSADDR(&saidx.src,
6656 			    sport->sadb_x_nat_t_port_port);
6657 		if (dport)
6658 			KEY_PORTTOSADDR(&saidx.dst,
6659 			    dport->sadb_x_nat_t_port_port);
6660 	}
6661 #endif
6662 
6663 	/* get a SA index */
6664 	SAHTREE_LOCK();
6665 	LIST_FOREACH(sah, &V_sahtree, chain) {
6666 		if (sah->state == SADB_SASTATE_DEAD)
6667 			continue;
6668 		if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID))
6669 			break;
6670 	}
6671 	SAHTREE_UNLOCK();
6672 	if (sah != NULL) {
6673 		ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__));
6674 		return key_senderror(so, m, EEXIST);
6675 	}
6676 
6677 	error = key_acquire(&saidx, NULL);
6678 	if (error != 0) {
6679 		ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n",
6680 			__func__, mhp->msg->sadb_msg_errno));
6681 		return key_senderror(so, m, error);
6682 	}
6683 
6684 	return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED);
6685 }
6686 
6687 /*
6688  * SADB_REGISTER processing.
6689  * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported.
6690  * receive
6691  *   <base>
6692  * from the ikmpd, and register a socket to send PF_KEY messages,
6693  * and send
6694  *   <base, supported>
6695  * to KMD by PF_KEY.
6696  * If socket is detached, must free from regnode.
6697  *
6698  * m will always be freed.
6699  */
6700 static int
6701 key_register(so, m, mhp)
6702 	struct socket *so;
6703 	struct mbuf *m;
6704 	const struct sadb_msghdr *mhp;
6705 {
6706 	struct secreg *reg, *newreg = 0;
6707 
6708 	IPSEC_ASSERT(so != NULL, ("null socket"));
6709 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
6710 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
6711 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
6712 
6713 	/* check for invalid register message */
6714 	if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0]))
6715 		return key_senderror(so, m, EINVAL);
6716 
6717 	/* When SATYPE_UNSPEC is specified, only return sabd_supported. */
6718 	if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC)
6719 		goto setmsg;
6720 
6721 	/* check whether existing or not */
6722 	REGTREE_LOCK();
6723 	LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) {
6724 		if (reg->so == so) {
6725 			REGTREE_UNLOCK();
6726 			ipseclog((LOG_DEBUG, "%s: socket exists already.\n",
6727 				__func__));
6728 			return key_senderror(so, m, EEXIST);
6729 		}
6730 	}
6731 
6732 	/* create regnode */
6733 	newreg =  malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO);
6734 	if (newreg == NULL) {
6735 		REGTREE_UNLOCK();
6736 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
6737 		return key_senderror(so, m, ENOBUFS);
6738 	}
6739 
6740 	newreg->so = so;
6741 	((struct keycb *)sotorawcb(so))->kp_registered++;
6742 
6743 	/* add regnode to regtree. */
6744 	LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain);
6745 	REGTREE_UNLOCK();
6746 
6747   setmsg:
6748     {
6749 	struct mbuf *n;
6750 	struct sadb_msg *newmsg;
6751 	struct sadb_supported *sup;
6752 	u_int len, alen, elen;
6753 	int off;
6754 	int i;
6755 	struct sadb_alg *alg;
6756 
6757 	/* create new sadb_msg to reply. */
6758 	alen = 0;
6759 	for (i = 1; i <= SADB_AALG_MAX; i++) {
6760 		if (ah_algorithm_lookup(i))
6761 			alen += sizeof(struct sadb_alg);
6762 	}
6763 	if (alen)
6764 		alen += sizeof(struct sadb_supported);
6765 	elen = 0;
6766 	for (i = 1; i <= SADB_EALG_MAX; i++) {
6767 		if (esp_algorithm_lookup(i))
6768 			elen += sizeof(struct sadb_alg);
6769 	}
6770 	if (elen)
6771 		elen += sizeof(struct sadb_supported);
6772 
6773 	len = sizeof(struct sadb_msg) + alen + elen;
6774 
6775 	if (len > MCLBYTES)
6776 		return key_senderror(so, m, ENOBUFS);
6777 
6778 	MGETHDR(n, M_NOWAIT, MT_DATA);
6779 	if (len > MHLEN) {
6780 		MCLGET(n, M_NOWAIT);
6781 		if ((n->m_flags & M_EXT) == 0) {
6782 			m_freem(n);
6783 			n = NULL;
6784 		}
6785 	}
6786 	if (!n)
6787 		return key_senderror(so, m, ENOBUFS);
6788 
6789 	n->m_pkthdr.len = n->m_len = len;
6790 	n->m_next = NULL;
6791 	off = 0;
6792 
6793 	m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off);
6794 	newmsg = mtod(n, struct sadb_msg *);
6795 	newmsg->sadb_msg_errno = 0;
6796 	newmsg->sadb_msg_len = PFKEY_UNIT64(len);
6797 	off += PFKEY_ALIGN8(sizeof(struct sadb_msg));
6798 
6799 	/* for authentication algorithm */
6800 	if (alen) {
6801 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6802 		sup->sadb_supported_len = PFKEY_UNIT64(alen);
6803 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH;
6804 		off += PFKEY_ALIGN8(sizeof(*sup));
6805 
6806 		for (i = 1; i <= SADB_AALG_MAX; i++) {
6807 			struct auth_hash *aalgo;
6808 			u_int16_t minkeysize, maxkeysize;
6809 
6810 			aalgo = ah_algorithm_lookup(i);
6811 			if (!aalgo)
6812 				continue;
6813 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6814 			alg->sadb_alg_id = i;
6815 			alg->sadb_alg_ivlen = 0;
6816 			key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize);
6817 			alg->sadb_alg_minbits = _BITS(minkeysize);
6818 			alg->sadb_alg_maxbits = _BITS(maxkeysize);
6819 			off += PFKEY_ALIGN8(sizeof(*alg));
6820 		}
6821 	}
6822 
6823 	/* for encryption algorithm */
6824 	if (elen) {
6825 		sup = (struct sadb_supported *)(mtod(n, caddr_t) + off);
6826 		sup->sadb_supported_len = PFKEY_UNIT64(elen);
6827 		sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT;
6828 		off += PFKEY_ALIGN8(sizeof(*sup));
6829 
6830 		for (i = 1; i <= SADB_EALG_MAX; i++) {
6831 			struct enc_xform *ealgo;
6832 
6833 			ealgo = esp_algorithm_lookup(i);
6834 			if (!ealgo)
6835 				continue;
6836 			alg = (struct sadb_alg *)(mtod(n, caddr_t) + off);
6837 			alg->sadb_alg_id = i;
6838 			alg->sadb_alg_ivlen = ealgo->blocksize;
6839 			alg->sadb_alg_minbits = _BITS(ealgo->minkey);
6840 			alg->sadb_alg_maxbits = _BITS(ealgo->maxkey);
6841 			off += PFKEY_ALIGN8(sizeof(struct sadb_alg));
6842 		}
6843 	}
6844 
6845 	IPSEC_ASSERT(off == len,
6846 		("length assumption failed (off %u len %u)", off, len));
6847 
6848 	m_freem(m);
6849 	return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED);
6850     }
6851 }
6852 
6853 /*
6854  * free secreg entry registered.
6855  * XXX: I want to do free a socket marked done SADB_RESIGER to socket.
6856  */
6857 void
6858 key_freereg(struct socket *so)
6859 {
6860 	struct secreg *reg;
6861 	int i;
6862 
6863 	IPSEC_ASSERT(so != NULL, ("NULL so"));
6864 
6865 	/*
6866 	 * check whether existing or not.
6867 	 * check all type of SA, because there is a potential that
6868 	 * one socket is registered to multiple type of SA.
6869 	 */
6870 	REGTREE_LOCK();
6871 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
6872 		LIST_FOREACH(reg, &V_regtree[i], chain) {
6873 			if (reg->so == so && __LIST_CHAINED(reg)) {
6874 				LIST_REMOVE(reg, chain);
6875 				free(reg, M_IPSEC_SAR);
6876 				break;
6877 			}
6878 		}
6879 	}
6880 	REGTREE_UNLOCK();
6881 }
6882 
6883 /*
6884  * SADB_EXPIRE processing
6885  * send
6886  *   <base, SA, SA2, lifetime(C and one of HS), address(SD)>
6887  * to KMD by PF_KEY.
6888  * NOTE: We send only soft lifetime extension.
6889  *
6890  * OUT:	0	: succeed
6891  *	others	: error number
6892  */
6893 static int
6894 key_expire(struct secasvar *sav)
6895 {
6896 	int satype;
6897 	struct mbuf *result = NULL, *m;
6898 	int len;
6899 	int error = -1;
6900 	struct sadb_lifetime *lt;
6901 
6902 	IPSEC_ASSERT (sav != NULL, ("null sav"));
6903 	IPSEC_ASSERT (sav->sah != NULL, ("null sa header"));
6904 
6905 	/* set msg header */
6906 	satype = key_proto2satype(sav->sah->saidx.proto);
6907 	IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype));
6908 	m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt);
6909 	if (!m) {
6910 		error = ENOBUFS;
6911 		goto fail;
6912 	}
6913 	result = m;
6914 
6915 	/* create SA extension */
6916 	m = key_setsadbsa(sav);
6917 	if (!m) {
6918 		error = ENOBUFS;
6919 		goto fail;
6920 	}
6921 	m_cat(result, m);
6922 
6923 	/* create SA extension */
6924 	m = key_setsadbxsa2(sav->sah->saidx.mode,
6925 			sav->replay ? sav->replay->count : 0,
6926 			sav->sah->saidx.reqid);
6927 	if (!m) {
6928 		error = ENOBUFS;
6929 		goto fail;
6930 	}
6931 	m_cat(result, m);
6932 
6933 	/* create lifetime extension (current and soft) */
6934 	len = PFKEY_ALIGN8(sizeof(*lt)) * 2;
6935 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
6936 	if (m == NULL) {
6937 		error = ENOBUFS;
6938 		goto fail;
6939 	}
6940 	m_align(m, len);
6941 	m->m_len = len;
6942 	bzero(mtod(m, caddr_t), len);
6943 	lt = mtod(m, struct sadb_lifetime *);
6944 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6945 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT;
6946 	lt->sadb_lifetime_allocations = sav->lft_c->allocations;
6947 	lt->sadb_lifetime_bytes = sav->lft_c->bytes;
6948 	lt->sadb_lifetime_addtime = sav->lft_c->addtime;
6949 	lt->sadb_lifetime_usetime = sav->lft_c->usetime;
6950 	lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2);
6951 	lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime));
6952 	lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT;
6953 	lt->sadb_lifetime_allocations = sav->lft_s->allocations;
6954 	lt->sadb_lifetime_bytes = sav->lft_s->bytes;
6955 	lt->sadb_lifetime_addtime = sav->lft_s->addtime;
6956 	lt->sadb_lifetime_usetime = sav->lft_s->usetime;
6957 	m_cat(result, m);
6958 
6959 	/* set sadb_address for source */
6960 	m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC,
6961 	    &sav->sah->saidx.src.sa,
6962 	    FULLMASK, IPSEC_ULPROTO_ANY);
6963 	if (!m) {
6964 		error = ENOBUFS;
6965 		goto fail;
6966 	}
6967 	m_cat(result, m);
6968 
6969 	/* set sadb_address for destination */
6970 	m = key_setsadbaddr(SADB_EXT_ADDRESS_DST,
6971 	    &sav->sah->saidx.dst.sa,
6972 	    FULLMASK, IPSEC_ULPROTO_ANY);
6973 	if (!m) {
6974 		error = ENOBUFS;
6975 		goto fail;
6976 	}
6977 	m_cat(result, m);
6978 
6979 	/*
6980 	 * XXX-BZ Handle NAT-T extensions here.
6981 	 */
6982 
6983 	if ((result->m_flags & M_PKTHDR) == 0) {
6984 		error = EINVAL;
6985 		goto fail;
6986 	}
6987 
6988 	if (result->m_len < sizeof(struct sadb_msg)) {
6989 		result = m_pullup(result, sizeof(struct sadb_msg));
6990 		if (result == NULL) {
6991 			error = ENOBUFS;
6992 			goto fail;
6993 		}
6994 	}
6995 
6996 	result->m_pkthdr.len = 0;
6997 	for (m = result; m; m = m->m_next)
6998 		result->m_pkthdr.len += m->m_len;
6999 
7000 	mtod(result, struct sadb_msg *)->sadb_msg_len =
7001 	    PFKEY_UNIT64(result->m_pkthdr.len);
7002 
7003 	return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED);
7004 
7005  fail:
7006 	if (result)
7007 		m_freem(result);
7008 	return error;
7009 }
7010 
7011 /*
7012  * SADB_FLUSH processing
7013  * receive
7014  *   <base>
7015  * from the ikmpd, and free all entries in secastree.
7016  * and send,
7017  *   <base>
7018  * to the ikmpd.
7019  * NOTE: to do is only marking SADB_SASTATE_DEAD.
7020  *
7021  * m will always be freed.
7022  */
7023 static int
7024 key_flush(so, m, mhp)
7025 	struct socket *so;
7026 	struct mbuf *m;
7027 	const struct sadb_msghdr *mhp;
7028 {
7029 	struct sadb_msg *newmsg;
7030 	struct secashead *sah, *nextsah;
7031 	struct secasvar *sav, *nextsav;
7032 	u_int16_t proto;
7033 	u_int8_t state;
7034 	u_int stateidx;
7035 
7036 	IPSEC_ASSERT(so != NULL, ("null socket"));
7037 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7038 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7039 
7040 	/* map satype to proto */
7041 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7042 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7043 			__func__));
7044 		return key_senderror(so, m, EINVAL);
7045 	}
7046 
7047 	/* no SATYPE specified, i.e. flushing all SA. */
7048 	SAHTREE_LOCK();
7049 	for (sah = LIST_FIRST(&V_sahtree);
7050 	     sah != NULL;
7051 	     sah = nextsah) {
7052 		nextsah = LIST_NEXT(sah, chain);
7053 
7054 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7055 		 && proto != sah->saidx.proto)
7056 			continue;
7057 
7058 		for (stateidx = 0;
7059 		     stateidx < _ARRAYLEN(saorder_state_alive);
7060 		     stateidx++) {
7061 			state = saorder_state_any[stateidx];
7062 			for (sav = LIST_FIRST(&sah->savtree[state]);
7063 			     sav != NULL;
7064 			     sav = nextsav) {
7065 
7066 				nextsav = LIST_NEXT(sav, chain);
7067 
7068 				key_sa_chgstate(sav, SADB_SASTATE_DEAD);
7069 				KEY_FREESAV(&sav);
7070 			}
7071 		}
7072 
7073 		sah->state = SADB_SASTATE_DEAD;
7074 	}
7075 	SAHTREE_UNLOCK();
7076 
7077 	if (m->m_len < sizeof(struct sadb_msg) ||
7078 	    sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) {
7079 		ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__));
7080 		return key_senderror(so, m, ENOBUFS);
7081 	}
7082 
7083 	if (m->m_next)
7084 		m_freem(m->m_next);
7085 	m->m_next = NULL;
7086 	m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg);
7087 	newmsg = mtod(m, struct sadb_msg *);
7088 	newmsg->sadb_msg_errno = 0;
7089 	newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len);
7090 
7091 	return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7092 }
7093 
7094 /*
7095  * SADB_DUMP processing
7096  * dump all entries including status of DEAD in SAD.
7097  * receive
7098  *   <base>
7099  * from the ikmpd, and dump all secasvar leaves
7100  * and send,
7101  *   <base> .....
7102  * to the ikmpd.
7103  *
7104  * m will always be freed.
7105  */
7106 static int
7107 key_dump(so, m, mhp)
7108 	struct socket *so;
7109 	struct mbuf *m;
7110 	const struct sadb_msghdr *mhp;
7111 {
7112 	struct secashead *sah;
7113 	struct secasvar *sav;
7114 	u_int16_t proto;
7115 	u_int stateidx;
7116 	u_int8_t satype;
7117 	u_int8_t state;
7118 	int cnt;
7119 	struct sadb_msg *newmsg;
7120 	struct mbuf *n;
7121 
7122 	IPSEC_ASSERT(so != NULL, ("null socket"));
7123 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7124 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7125 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7126 
7127 	/* map satype to proto */
7128 	if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) {
7129 		ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n",
7130 			__func__));
7131 		return key_senderror(so, m, EINVAL);
7132 	}
7133 
7134 	/* count sav entries to be sent to the userland. */
7135 	cnt = 0;
7136 	SAHTREE_LOCK();
7137 	LIST_FOREACH(sah, &V_sahtree, chain) {
7138 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7139 		 && proto != sah->saidx.proto)
7140 			continue;
7141 
7142 		for (stateidx = 0;
7143 		     stateidx < _ARRAYLEN(saorder_state_any);
7144 		     stateidx++) {
7145 			state = saorder_state_any[stateidx];
7146 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7147 				cnt++;
7148 			}
7149 		}
7150 	}
7151 
7152 	if (cnt == 0) {
7153 		SAHTREE_UNLOCK();
7154 		return key_senderror(so, m, ENOENT);
7155 	}
7156 
7157 	/* send this to the userland, one at a time. */
7158 	newmsg = NULL;
7159 	LIST_FOREACH(sah, &V_sahtree, chain) {
7160 		if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC
7161 		 && proto != sah->saidx.proto)
7162 			continue;
7163 
7164 		/* map proto to satype */
7165 		if ((satype = key_proto2satype(sah->saidx.proto)) == 0) {
7166 			SAHTREE_UNLOCK();
7167 			ipseclog((LOG_DEBUG, "%s: there was invalid proto in "
7168 				"SAD.\n", __func__));
7169 			return key_senderror(so, m, EINVAL);
7170 		}
7171 
7172 		for (stateidx = 0;
7173 		     stateidx < _ARRAYLEN(saorder_state_any);
7174 		     stateidx++) {
7175 			state = saorder_state_any[stateidx];
7176 			LIST_FOREACH(sav, &sah->savtree[state], chain) {
7177 				n = key_setdumpsa(sav, SADB_DUMP, satype,
7178 				    --cnt, mhp->msg->sadb_msg_pid);
7179 				if (!n) {
7180 					SAHTREE_UNLOCK();
7181 					return key_senderror(so, m, ENOBUFS);
7182 				}
7183 				key_sendup_mbuf(so, n, KEY_SENDUP_ONE);
7184 			}
7185 		}
7186 	}
7187 	SAHTREE_UNLOCK();
7188 
7189 	m_freem(m);
7190 	return 0;
7191 }
7192 
7193 /*
7194  * SADB_X_PROMISC processing
7195  *
7196  * m will always be freed.
7197  */
7198 static int
7199 key_promisc(so, m, mhp)
7200 	struct socket *so;
7201 	struct mbuf *m;
7202 	const struct sadb_msghdr *mhp;
7203 {
7204 	int olen;
7205 
7206 	IPSEC_ASSERT(so != NULL, ("null socket"));
7207 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7208 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7209 	IPSEC_ASSERT(mhp->msg != NULL, ("null msg"));
7210 
7211 	olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7212 
7213 	if (olen < sizeof(struct sadb_msg)) {
7214 #if 1
7215 		return key_senderror(so, m, EINVAL);
7216 #else
7217 		m_freem(m);
7218 		return 0;
7219 #endif
7220 	} else if (olen == sizeof(struct sadb_msg)) {
7221 		/* enable/disable promisc mode */
7222 		struct keycb *kp;
7223 
7224 		if ((kp = (struct keycb *)sotorawcb(so)) == NULL)
7225 			return key_senderror(so, m, EINVAL);
7226 		mhp->msg->sadb_msg_errno = 0;
7227 		switch (mhp->msg->sadb_msg_satype) {
7228 		case 0:
7229 		case 1:
7230 			kp->kp_promisc = mhp->msg->sadb_msg_satype;
7231 			break;
7232 		default:
7233 			return key_senderror(so, m, EINVAL);
7234 		}
7235 
7236 		/* send the original message back to everyone */
7237 		mhp->msg->sadb_msg_errno = 0;
7238 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7239 	} else {
7240 		/* send packet as is */
7241 
7242 		m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg)));
7243 
7244 		/* TODO: if sadb_msg_seq is specified, send to specific pid */
7245 		return key_sendup_mbuf(so, m, KEY_SENDUP_ALL);
7246 	}
7247 }
7248 
7249 static int (*key_typesw[]) __P((struct socket *, struct mbuf *,
7250 		const struct sadb_msghdr *)) = {
7251 	NULL,		/* SADB_RESERVED */
7252 	key_getspi,	/* SADB_GETSPI */
7253 	key_update,	/* SADB_UPDATE */
7254 	key_add,	/* SADB_ADD */
7255 	key_delete,	/* SADB_DELETE */
7256 	key_get,	/* SADB_GET */
7257 	key_acquire2,	/* SADB_ACQUIRE */
7258 	key_register,	/* SADB_REGISTER */
7259 	NULL,		/* SADB_EXPIRE */
7260 	key_flush,	/* SADB_FLUSH */
7261 	key_dump,	/* SADB_DUMP */
7262 	key_promisc,	/* SADB_X_PROMISC */
7263 	NULL,		/* SADB_X_PCHANGE */
7264 	key_spdadd,	/* SADB_X_SPDUPDATE */
7265 	key_spdadd,	/* SADB_X_SPDADD */
7266 	key_spddelete,	/* SADB_X_SPDDELETE */
7267 	key_spdget,	/* SADB_X_SPDGET */
7268 	NULL,		/* SADB_X_SPDACQUIRE */
7269 	key_spddump,	/* SADB_X_SPDDUMP */
7270 	key_spdflush,	/* SADB_X_SPDFLUSH */
7271 	key_spdadd,	/* SADB_X_SPDSETIDX */
7272 	NULL,		/* SADB_X_SPDEXPIRE */
7273 	key_spddelete2,	/* SADB_X_SPDDELETE2 */
7274 };
7275 
7276 /*
7277  * parse sadb_msg buffer to process PFKEYv2,
7278  * and create a data to response if needed.
7279  * I think to be dealed with mbuf directly.
7280  * IN:
7281  *     msgp  : pointer to pointer to a received buffer pulluped.
7282  *             This is rewrited to response.
7283  *     so    : pointer to socket.
7284  * OUT:
7285  *    length for buffer to send to user process.
7286  */
7287 int
7288 key_parse(m, so)
7289 	struct mbuf *m;
7290 	struct socket *so;
7291 {
7292 	struct sadb_msg *msg;
7293 	struct sadb_msghdr mh;
7294 	u_int orglen;
7295 	int error;
7296 	int target;
7297 
7298 	IPSEC_ASSERT(so != NULL, ("null socket"));
7299 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7300 
7301 #if 0	/*kdebug_sadb assumes msg in linear buffer*/
7302 	KEYDEBUG(KEYDEBUG_KEY_DUMP,
7303 		ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__));
7304 		kdebug_sadb(msg));
7305 #endif
7306 
7307 	if (m->m_len < sizeof(struct sadb_msg)) {
7308 		m = m_pullup(m, sizeof(struct sadb_msg));
7309 		if (!m)
7310 			return ENOBUFS;
7311 	}
7312 	msg = mtod(m, struct sadb_msg *);
7313 	orglen = PFKEY_UNUNIT64(msg->sadb_msg_len);
7314 	target = KEY_SENDUP_ONE;
7315 
7316 	if ((m->m_flags & M_PKTHDR) == 0 ||
7317 	    m->m_pkthdr.len != m->m_pkthdr.len) {
7318 		ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__));
7319 		PFKEYSTAT_INC(out_invlen);
7320 		error = EINVAL;
7321 		goto senderror;
7322 	}
7323 
7324 	if (msg->sadb_msg_version != PF_KEY_V2) {
7325 		ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n",
7326 		    __func__, msg->sadb_msg_version));
7327 		PFKEYSTAT_INC(out_invver);
7328 		error = EINVAL;
7329 		goto senderror;
7330 	}
7331 
7332 	if (msg->sadb_msg_type > SADB_MAX) {
7333 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7334 		    __func__, msg->sadb_msg_type));
7335 		PFKEYSTAT_INC(out_invmsgtype);
7336 		error = EINVAL;
7337 		goto senderror;
7338 	}
7339 
7340 	/* for old-fashioned code - should be nuked */
7341 	if (m->m_pkthdr.len > MCLBYTES) {
7342 		m_freem(m);
7343 		return ENOBUFS;
7344 	}
7345 	if (m->m_next) {
7346 		struct mbuf *n;
7347 
7348 		MGETHDR(n, M_NOWAIT, MT_DATA);
7349 		if (n && m->m_pkthdr.len > MHLEN) {
7350 			MCLGET(n, M_NOWAIT);
7351 			if ((n->m_flags & M_EXT) == 0) {
7352 				m_free(n);
7353 				n = NULL;
7354 			}
7355 		}
7356 		if (!n) {
7357 			m_freem(m);
7358 			return ENOBUFS;
7359 		}
7360 		m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t));
7361 		n->m_pkthdr.len = n->m_len = m->m_pkthdr.len;
7362 		n->m_next = NULL;
7363 		m_freem(m);
7364 		m = n;
7365 	}
7366 
7367 	/* align the mbuf chain so that extensions are in contiguous region. */
7368 	error = key_align(m, &mh);
7369 	if (error)
7370 		return error;
7371 
7372 	msg = mh.msg;
7373 
7374 	/* check SA type */
7375 	switch (msg->sadb_msg_satype) {
7376 	case SADB_SATYPE_UNSPEC:
7377 		switch (msg->sadb_msg_type) {
7378 		case SADB_GETSPI:
7379 		case SADB_UPDATE:
7380 		case SADB_ADD:
7381 		case SADB_DELETE:
7382 		case SADB_GET:
7383 		case SADB_ACQUIRE:
7384 		case SADB_EXPIRE:
7385 			ipseclog((LOG_DEBUG, "%s: must specify satype "
7386 			    "when msg type=%u.\n", __func__,
7387 			    msg->sadb_msg_type));
7388 			PFKEYSTAT_INC(out_invsatype);
7389 			error = EINVAL;
7390 			goto senderror;
7391 		}
7392 		break;
7393 	case SADB_SATYPE_AH:
7394 	case SADB_SATYPE_ESP:
7395 	case SADB_X_SATYPE_IPCOMP:
7396 	case SADB_X_SATYPE_TCPSIGNATURE:
7397 		switch (msg->sadb_msg_type) {
7398 		case SADB_X_SPDADD:
7399 		case SADB_X_SPDDELETE:
7400 		case SADB_X_SPDGET:
7401 		case SADB_X_SPDDUMP:
7402 		case SADB_X_SPDFLUSH:
7403 		case SADB_X_SPDSETIDX:
7404 		case SADB_X_SPDUPDATE:
7405 		case SADB_X_SPDDELETE2:
7406 			ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n",
7407 				__func__, msg->sadb_msg_type));
7408 			PFKEYSTAT_INC(out_invsatype);
7409 			error = EINVAL;
7410 			goto senderror;
7411 		}
7412 		break;
7413 	case SADB_SATYPE_RSVP:
7414 	case SADB_SATYPE_OSPFV2:
7415 	case SADB_SATYPE_RIPV2:
7416 	case SADB_SATYPE_MIP:
7417 		ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n",
7418 			__func__, msg->sadb_msg_satype));
7419 		PFKEYSTAT_INC(out_invsatype);
7420 		error = EOPNOTSUPP;
7421 		goto senderror;
7422 	case 1:	/* XXX: What does it do? */
7423 		if (msg->sadb_msg_type == SADB_X_PROMISC)
7424 			break;
7425 		/*FALLTHROUGH*/
7426 	default:
7427 		ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n",
7428 			__func__, msg->sadb_msg_satype));
7429 		PFKEYSTAT_INC(out_invsatype);
7430 		error = EINVAL;
7431 		goto senderror;
7432 	}
7433 
7434 	/* check field of upper layer protocol and address family */
7435 	if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL
7436 	 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) {
7437 		struct sadb_address *src0, *dst0;
7438 		u_int plen;
7439 
7440 		src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]);
7441 		dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]);
7442 
7443 		/* check upper layer protocol */
7444 		if (src0->sadb_address_proto != dst0->sadb_address_proto) {
7445 			ipseclog((LOG_DEBUG, "%s: upper layer protocol "
7446 				"mismatched.\n", __func__));
7447 			PFKEYSTAT_INC(out_invaddr);
7448 			error = EINVAL;
7449 			goto senderror;
7450 		}
7451 
7452 		/* check family */
7453 		if (PFKEY_ADDR_SADDR(src0)->sa_family !=
7454 		    PFKEY_ADDR_SADDR(dst0)->sa_family) {
7455 			ipseclog((LOG_DEBUG, "%s: address family mismatched.\n",
7456 				__func__));
7457 			PFKEYSTAT_INC(out_invaddr);
7458 			error = EINVAL;
7459 			goto senderror;
7460 		}
7461 		if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7462 		    PFKEY_ADDR_SADDR(dst0)->sa_len) {
7463 			ipseclog((LOG_DEBUG, "%s: address struct size "
7464 				"mismatched.\n", __func__));
7465 			PFKEYSTAT_INC(out_invaddr);
7466 			error = EINVAL;
7467 			goto senderror;
7468 		}
7469 
7470 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7471 		case AF_INET:
7472 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7473 			    sizeof(struct sockaddr_in)) {
7474 				PFKEYSTAT_INC(out_invaddr);
7475 				error = EINVAL;
7476 				goto senderror;
7477 			}
7478 			break;
7479 		case AF_INET6:
7480 			if (PFKEY_ADDR_SADDR(src0)->sa_len !=
7481 			    sizeof(struct sockaddr_in6)) {
7482 				PFKEYSTAT_INC(out_invaddr);
7483 				error = EINVAL;
7484 				goto senderror;
7485 			}
7486 			break;
7487 		default:
7488 			ipseclog((LOG_DEBUG, "%s: unsupported address family\n",
7489 				__func__));
7490 			PFKEYSTAT_INC(out_invaddr);
7491 			error = EAFNOSUPPORT;
7492 			goto senderror;
7493 		}
7494 
7495 		switch (PFKEY_ADDR_SADDR(src0)->sa_family) {
7496 		case AF_INET:
7497 			plen = sizeof(struct in_addr) << 3;
7498 			break;
7499 		case AF_INET6:
7500 			plen = sizeof(struct in6_addr) << 3;
7501 			break;
7502 		default:
7503 			plen = 0;	/*fool gcc*/
7504 			break;
7505 		}
7506 
7507 		/* check max prefix length */
7508 		if (src0->sadb_address_prefixlen > plen ||
7509 		    dst0->sadb_address_prefixlen > plen) {
7510 			ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n",
7511 				__func__));
7512 			PFKEYSTAT_INC(out_invaddr);
7513 			error = EINVAL;
7514 			goto senderror;
7515 		}
7516 
7517 		/*
7518 		 * prefixlen == 0 is valid because there can be a case when
7519 		 * all addresses are matched.
7520 		 */
7521 	}
7522 
7523 	if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) ||
7524 	    key_typesw[msg->sadb_msg_type] == NULL) {
7525 		PFKEYSTAT_INC(out_invmsgtype);
7526 		error = EINVAL;
7527 		goto senderror;
7528 	}
7529 
7530 	return (*key_typesw[msg->sadb_msg_type])(so, m, &mh);
7531 
7532 senderror:
7533 	msg->sadb_msg_errno = error;
7534 	return key_sendup_mbuf(so, m, target);
7535 }
7536 
7537 static int
7538 key_senderror(so, m, code)
7539 	struct socket *so;
7540 	struct mbuf *m;
7541 	int code;
7542 {
7543 	struct sadb_msg *msg;
7544 
7545 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7546 		("mbuf too small, len %u", m->m_len));
7547 
7548 	msg = mtod(m, struct sadb_msg *);
7549 	msg->sadb_msg_errno = code;
7550 	return key_sendup_mbuf(so, m, KEY_SENDUP_ONE);
7551 }
7552 
7553 /*
7554  * set the pointer to each header into message buffer.
7555  * m will be freed on error.
7556  * XXX larger-than-MCLBYTES extension?
7557  */
7558 static int
7559 key_align(m, mhp)
7560 	struct mbuf *m;
7561 	struct sadb_msghdr *mhp;
7562 {
7563 	struct mbuf *n;
7564 	struct sadb_ext *ext;
7565 	size_t off, end;
7566 	int extlen;
7567 	int toff;
7568 
7569 	IPSEC_ASSERT(m != NULL, ("null mbuf"));
7570 	IPSEC_ASSERT(mhp != NULL, ("null msghdr"));
7571 	IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg),
7572 		("mbuf too small, len %u", m->m_len));
7573 
7574 	/* initialize */
7575 	bzero(mhp, sizeof(*mhp));
7576 
7577 	mhp->msg = mtod(m, struct sadb_msg *);
7578 	mhp->ext[0] = (struct sadb_ext *)mhp->msg;	/*XXX backward compat */
7579 
7580 	end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len);
7581 	extlen = end;	/*just in case extlen is not updated*/
7582 	for (off = sizeof(struct sadb_msg); off < end; off += extlen) {
7583 		n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff);
7584 		if (!n) {
7585 			/* m is already freed */
7586 			return ENOBUFS;
7587 		}
7588 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7589 
7590 		/* set pointer */
7591 		switch (ext->sadb_ext_type) {
7592 		case SADB_EXT_SA:
7593 		case SADB_EXT_ADDRESS_SRC:
7594 		case SADB_EXT_ADDRESS_DST:
7595 		case SADB_EXT_ADDRESS_PROXY:
7596 		case SADB_EXT_LIFETIME_CURRENT:
7597 		case SADB_EXT_LIFETIME_HARD:
7598 		case SADB_EXT_LIFETIME_SOFT:
7599 		case SADB_EXT_KEY_AUTH:
7600 		case SADB_EXT_KEY_ENCRYPT:
7601 		case SADB_EXT_IDENTITY_SRC:
7602 		case SADB_EXT_IDENTITY_DST:
7603 		case SADB_EXT_SENSITIVITY:
7604 		case SADB_EXT_PROPOSAL:
7605 		case SADB_EXT_SUPPORTED_AUTH:
7606 		case SADB_EXT_SUPPORTED_ENCRYPT:
7607 		case SADB_EXT_SPIRANGE:
7608 		case SADB_X_EXT_POLICY:
7609 		case SADB_X_EXT_SA2:
7610 #ifdef IPSEC_NAT_T
7611 		case SADB_X_EXT_NAT_T_TYPE:
7612 		case SADB_X_EXT_NAT_T_SPORT:
7613 		case SADB_X_EXT_NAT_T_DPORT:
7614 		case SADB_X_EXT_NAT_T_OAI:
7615 		case SADB_X_EXT_NAT_T_OAR:
7616 		case SADB_X_EXT_NAT_T_FRAG:
7617 #endif
7618 			/* duplicate check */
7619 			/*
7620 			 * XXX Are there duplication payloads of either
7621 			 * KEY_AUTH or KEY_ENCRYPT ?
7622 			 */
7623 			if (mhp->ext[ext->sadb_ext_type] != NULL) {
7624 				ipseclog((LOG_DEBUG, "%s: duplicate ext_type "
7625 					"%u\n", __func__, ext->sadb_ext_type));
7626 				m_freem(m);
7627 				PFKEYSTAT_INC(out_dupext);
7628 				return EINVAL;
7629 			}
7630 			break;
7631 		default:
7632 			ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n",
7633 				__func__, ext->sadb_ext_type));
7634 			m_freem(m);
7635 			PFKEYSTAT_INC(out_invexttype);
7636 			return EINVAL;
7637 		}
7638 
7639 		extlen = PFKEY_UNUNIT64(ext->sadb_ext_len);
7640 
7641 		if (key_validate_ext(ext, extlen)) {
7642 			m_freem(m);
7643 			PFKEYSTAT_INC(out_invlen);
7644 			return EINVAL;
7645 		}
7646 
7647 		n = m_pulldown(m, off, extlen, &toff);
7648 		if (!n) {
7649 			/* m is already freed */
7650 			return ENOBUFS;
7651 		}
7652 		ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff);
7653 
7654 		mhp->ext[ext->sadb_ext_type] = ext;
7655 		mhp->extoff[ext->sadb_ext_type] = off;
7656 		mhp->extlen[ext->sadb_ext_type] = extlen;
7657 	}
7658 
7659 	if (off != end) {
7660 		m_freem(m);
7661 		PFKEYSTAT_INC(out_invlen);
7662 		return EINVAL;
7663 	}
7664 
7665 	return 0;
7666 }
7667 
7668 static int
7669 key_validate_ext(ext, len)
7670 	const struct sadb_ext *ext;
7671 	int len;
7672 {
7673 	const struct sockaddr *sa;
7674 	enum { NONE, ADDR } checktype = NONE;
7675 	int baselen = 0;
7676 	const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len);
7677 
7678 	if (len != PFKEY_UNUNIT64(ext->sadb_ext_len))
7679 		return EINVAL;
7680 
7681 	/* if it does not match minimum/maximum length, bail */
7682 	if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) ||
7683 	    ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0]))
7684 		return EINVAL;
7685 	if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type])
7686 		return EINVAL;
7687 	if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type])
7688 		return EINVAL;
7689 
7690 	/* more checks based on sadb_ext_type XXX need more */
7691 	switch (ext->sadb_ext_type) {
7692 	case SADB_EXT_ADDRESS_SRC:
7693 	case SADB_EXT_ADDRESS_DST:
7694 	case SADB_EXT_ADDRESS_PROXY:
7695 		baselen = PFKEY_ALIGN8(sizeof(struct sadb_address));
7696 		checktype = ADDR;
7697 		break;
7698 	case SADB_EXT_IDENTITY_SRC:
7699 	case SADB_EXT_IDENTITY_DST:
7700 		if (((const struct sadb_ident *)ext)->sadb_ident_type ==
7701 		    SADB_X_IDENTTYPE_ADDR) {
7702 			baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident));
7703 			checktype = ADDR;
7704 		} else
7705 			checktype = NONE;
7706 		break;
7707 	default:
7708 		checktype = NONE;
7709 		break;
7710 	}
7711 
7712 	switch (checktype) {
7713 	case NONE:
7714 		break;
7715 	case ADDR:
7716 		sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen);
7717 		if (len < baselen + sal)
7718 			return EINVAL;
7719 		if (baselen + PFKEY_ALIGN8(sa->sa_len) != len)
7720 			return EINVAL;
7721 		break;
7722 	}
7723 
7724 	return 0;
7725 }
7726 
7727 void
7728 key_init(void)
7729 {
7730 	int i;
7731 
7732 	for (i = 0; i < IPSEC_DIR_MAX; i++)
7733 		LIST_INIT(&V_sptree[i]);
7734 
7735 	LIST_INIT(&V_sahtree);
7736 
7737 	for (i = 0; i <= SADB_SATYPE_MAX; i++)
7738 		LIST_INIT(&V_regtree[i]);
7739 
7740 	LIST_INIT(&V_acqtree);
7741 	LIST_INIT(&V_spacqtree);
7742 
7743 	/* system default */
7744 	V_ip4_def_policy.policy = IPSEC_POLICY_NONE;
7745 	V_ip4_def_policy.refcnt++;	/*never reclaim this*/
7746 
7747 	if (!IS_DEFAULT_VNET(curvnet))
7748 		return;
7749 
7750 	SPTREE_LOCK_INIT();
7751 	REGTREE_LOCK_INIT();
7752 	SAHTREE_LOCK_INIT();
7753 	ACQ_LOCK_INIT();
7754 	SPACQ_LOCK_INIT();
7755 
7756 #ifndef IPSEC_DEBUG2
7757 	callout_init(&key_timer, CALLOUT_MPSAFE);
7758 	callout_reset(&key_timer, hz, key_timehandler, NULL);
7759 #endif /*IPSEC_DEBUG2*/
7760 
7761 	/* initialize key statistics */
7762 	keystat.getspi_count = 1;
7763 
7764 	printf("IPsec: Initialized Security Association Processing.\n");
7765 }
7766 
7767 #ifdef VIMAGE
7768 void
7769 key_destroy(void)
7770 {
7771 	struct secpolicy *sp, *nextsp;
7772 	struct secacq *acq, *nextacq;
7773 	struct secspacq *spacq, *nextspacq;
7774 	struct secashead *sah, *nextsah;
7775 	struct secreg *reg;
7776 	int i;
7777 
7778 	SPTREE_LOCK();
7779 	for (i = 0; i < IPSEC_DIR_MAX; i++) {
7780 		for (sp = LIST_FIRST(&V_sptree[i]);
7781 		    sp != NULL; sp = nextsp) {
7782 			nextsp = LIST_NEXT(sp, chain);
7783 			if (__LIST_CHAINED(sp)) {
7784 				LIST_REMOVE(sp, chain);
7785 				free(sp, M_IPSEC_SP);
7786 			}
7787 		}
7788 	}
7789 	SPTREE_UNLOCK();
7790 
7791 	SAHTREE_LOCK();
7792 	for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) {
7793 		nextsah = LIST_NEXT(sah, chain);
7794 		if (__LIST_CHAINED(sah)) {
7795 			LIST_REMOVE(sah, chain);
7796 			free(sah, M_IPSEC_SAH);
7797 		}
7798 	}
7799 	SAHTREE_UNLOCK();
7800 
7801 	REGTREE_LOCK();
7802 	for (i = 0; i <= SADB_SATYPE_MAX; i++) {
7803 		LIST_FOREACH(reg, &V_regtree[i], chain) {
7804 			if (__LIST_CHAINED(reg)) {
7805 				LIST_REMOVE(reg, chain);
7806 				free(reg, M_IPSEC_SAR);
7807 				break;
7808 			}
7809 		}
7810 	}
7811 	REGTREE_UNLOCK();
7812 
7813 	ACQ_LOCK();
7814 	for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) {
7815 		nextacq = LIST_NEXT(acq, chain);
7816 		if (__LIST_CHAINED(acq)) {
7817 			LIST_REMOVE(acq, chain);
7818 			free(acq, M_IPSEC_SAQ);
7819 		}
7820 	}
7821 	ACQ_UNLOCK();
7822 
7823 	SPACQ_LOCK();
7824 	for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL;
7825 	    spacq = nextspacq) {
7826 		nextspacq = LIST_NEXT(spacq, chain);
7827 		if (__LIST_CHAINED(spacq)) {
7828 			LIST_REMOVE(spacq, chain);
7829 			free(spacq, M_IPSEC_SAQ);
7830 		}
7831 	}
7832 	SPACQ_UNLOCK();
7833 }
7834 #endif
7835 
7836 /*
7837  * XXX: maybe This function is called after INBOUND IPsec processing.
7838  *
7839  * Special check for tunnel-mode packets.
7840  * We must make some checks for consistency between inner and outer IP header.
7841  *
7842  * xxx more checks to be provided
7843  */
7844 int
7845 key_checktunnelsanity(sav, family, src, dst)
7846 	struct secasvar *sav;
7847 	u_int family;
7848 	caddr_t src;
7849 	caddr_t dst;
7850 {
7851 	IPSEC_ASSERT(sav->sah != NULL, ("null SA header"));
7852 
7853 	/* XXX: check inner IP header */
7854 
7855 	return 1;
7856 }
7857 
7858 /* record data transfer on SA, and update timestamps */
7859 void
7860 key_sa_recordxfer(sav, m)
7861 	struct secasvar *sav;
7862 	struct mbuf *m;
7863 {
7864 	IPSEC_ASSERT(sav != NULL, ("Null secasvar"));
7865 	IPSEC_ASSERT(m != NULL, ("Null mbuf"));
7866 	if (!sav->lft_c)
7867 		return;
7868 
7869 	/*
7870 	 * XXX Currently, there is a difference of bytes size
7871 	 * between inbound and outbound processing.
7872 	 */
7873 	sav->lft_c->bytes += m->m_pkthdr.len;
7874 	/* to check bytes lifetime is done in key_timehandler(). */
7875 
7876 	/*
7877 	 * We use the number of packets as the unit of
7878 	 * allocations.  We increment the variable
7879 	 * whenever {esp,ah}_{in,out}put is called.
7880 	 */
7881 	sav->lft_c->allocations++;
7882 	/* XXX check for expires? */
7883 
7884 	/*
7885 	 * NOTE: We record CURRENT usetime by using wall clock,
7886 	 * in seconds.  HARD and SOFT lifetime are measured by the time
7887 	 * difference (again in seconds) from usetime.
7888 	 *
7889 	 *	usetime
7890 	 *	v     expire   expire
7891 	 * -----+-----+--------+---> t
7892 	 *	<--------------> HARD
7893 	 *	<-----> SOFT
7894 	 */
7895 	sav->lft_c->usetime = time_second;
7896 	/* XXX check for expires? */
7897 
7898 	return;
7899 }
7900 
7901 /* dumb version */
7902 void
7903 key_sa_routechange(dst)
7904 	struct sockaddr *dst;
7905 {
7906 	struct secashead *sah;
7907 	struct route *ro;
7908 
7909 	SAHTREE_LOCK();
7910 	LIST_FOREACH(sah, &V_sahtree, chain) {
7911 		ro = &sah->route_cache.sa_route;
7912 		if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len
7913 		 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) {
7914 			RTFREE(ro->ro_rt);
7915 			ro->ro_rt = (struct rtentry *)NULL;
7916 		}
7917 	}
7918 	SAHTREE_UNLOCK();
7919 }
7920 
7921 static void
7922 key_sa_chgstate(struct secasvar *sav, u_int8_t state)
7923 {
7924 	IPSEC_ASSERT(sav != NULL, ("NULL sav"));
7925 	SAHTREE_LOCK_ASSERT();
7926 
7927 	if (sav->state != state) {
7928 		if (__LIST_CHAINED(sav))
7929 			LIST_REMOVE(sav, chain);
7930 		sav->state = state;
7931 		LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain);
7932 	}
7933 }
7934 
7935 void
7936 key_sa_stir_iv(sav)
7937 	struct secasvar *sav;
7938 {
7939 
7940 	IPSEC_ASSERT(sav->iv != NULL, ("null IV"));
7941 	key_randomfill(sav->iv, sav->ivlen);
7942 }
7943 
7944 /*
7945  * Take one of the kernel's security keys and convert it into a PF_KEY
7946  * structure within an mbuf, suitable for sending up to a waiting
7947  * application in user land.
7948  *
7949  * IN:
7950  *    src: A pointer to a kernel security key.
7951  *    exttype: Which type of key this is. Refer to the PF_KEY data structures.
7952  * OUT:
7953  *    a valid mbuf or NULL indicating an error
7954  *
7955  */
7956 
7957 static struct mbuf *
7958 key_setkey(struct seckey *src, u_int16_t exttype)
7959 {
7960 	struct mbuf *m;
7961 	struct sadb_key *p;
7962 	int len;
7963 
7964 	if (src == NULL)
7965 		return NULL;
7966 
7967 	len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src));
7968 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
7969 	if (m == NULL)
7970 		return NULL;
7971 	m_align(m, len);
7972 	m->m_len = len;
7973 	p = mtod(m, struct sadb_key *);
7974 	bzero(p, len);
7975 	p->sadb_key_len = PFKEY_UNIT64(len);
7976 	p->sadb_key_exttype = exttype;
7977 	p->sadb_key_bits = src->bits;
7978 	bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src));
7979 
7980 	return m;
7981 }
7982 
7983 /*
7984  * Take one of the kernel's lifetime data structures and convert it
7985  * into a PF_KEY structure within an mbuf, suitable for sending up to
7986  * a waiting application in user land.
7987  *
7988  * IN:
7989  *    src: A pointer to a kernel lifetime structure.
7990  *    exttype: Which type of lifetime this is. Refer to the PF_KEY
7991  *             data structures for more information.
7992  * OUT:
7993  *    a valid mbuf or NULL indicating an error
7994  *
7995  */
7996 
7997 static struct mbuf *
7998 key_setlifetime(struct seclifetime *src, u_int16_t exttype)
7999 {
8000 	struct mbuf *m = NULL;
8001 	struct sadb_lifetime *p;
8002 	int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime));
8003 
8004 	if (src == NULL)
8005 		return NULL;
8006 
8007 	m = m_get2(len, M_NOWAIT, MT_DATA, 0);
8008 	if (m == NULL)
8009 		return m;
8010 	m_align(m, len);
8011 	m->m_len = len;
8012 	p = mtod(m, struct sadb_lifetime *);
8013 
8014 	bzero(p, len);
8015 	p->sadb_lifetime_len = PFKEY_UNIT64(len);
8016 	p->sadb_lifetime_exttype = exttype;
8017 	p->sadb_lifetime_allocations = src->allocations;
8018 	p->sadb_lifetime_bytes = src->bytes;
8019 	p->sadb_lifetime_addtime = src->addtime;
8020 	p->sadb_lifetime_usetime = src->usetime;
8021 
8022 	return m;
8023 
8024 }
8025