1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 6 * All rights reserved. 7 * 8 * Redistribution and use in source and binary forms, with or without 9 * modification, are permitted provided that the following conditions 10 * are met: 11 * 1. Redistributions of source code must retain the above copyright 12 * notice, this list of conditions and the following disclaimer. 13 * 2. Redistributions in binary form must reproduce the above copyright 14 * notice, this list of conditions and the following disclaimer in the 15 * documentation and/or other materials provided with the distribution. 16 * 3. Neither the name of the project nor the names of its contributors 17 * may be used to endorse or promote products derived from this software 18 * without specific prior written permission. 19 * 20 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 23 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 30 * SUCH DAMAGE. 31 */ 32 33 /* 34 * This code is referd to RFC 2367 35 */ 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_ipsec.h" 40 41 #include <sys/types.h> 42 #include <sys/param.h> 43 #include <sys/systm.h> 44 #include <sys/kernel.h> 45 #include <sys/lock.h> 46 #include <sys/mutex.h> 47 #include <sys/mbuf.h> 48 #include <sys/domain.h> 49 #include <sys/protosw.h> 50 #include <sys/malloc.h> 51 #include <sys/socket.h> 52 #include <sys/socketvar.h> 53 #include <sys/sysctl.h> 54 #include <sys/errno.h> 55 #include <sys/proc.h> 56 #include <sys/queue.h> 57 #include <sys/refcount.h> 58 #include <sys/syslog.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/route.h> 63 #include <net/vnet.h> 64 #include <net/raw_cb.h> 65 66 #include <netinet/in.h> 67 #include <netinet/in_systm.h> 68 #include <netinet/ip.h> 69 #include <netinet/in_var.h> 70 71 #ifdef INET6 72 #include <netinet/ip6.h> 73 #include <netinet6/in6_var.h> 74 #include <netinet6/ip6_var.h> 75 #endif /* INET6 */ 76 77 #if defined(INET) || defined(INET6) 78 #include <netinet/in_pcb.h> 79 #endif 80 #ifdef INET6 81 #include <netinet6/in6_pcb.h> 82 #endif /* INET6 */ 83 84 #include <net/pfkeyv2.h> 85 #include <netipsec/keydb.h> 86 #include <netipsec/key.h> 87 #include <netipsec/keysock.h> 88 #include <netipsec/key_debug.h> 89 90 #include <netipsec/ipsec.h> 91 #ifdef INET6 92 #include <netipsec/ipsec6.h> 93 #endif 94 95 #include <netipsec/xform.h> 96 97 #include <machine/stdarg.h> 98 99 /* randomness */ 100 #include <sys/random.h> 101 102 #define FULLMASK 0xff 103 #define _BITS(bytes) ((bytes) << 3) 104 105 /* 106 * Note on SA reference counting: 107 * - SAs that are not in DEAD state will have (total external reference + 1) 108 * following value in reference count field. they cannot be freed and are 109 * referenced from SA header. 110 * - SAs that are in DEAD state will have (total external reference) 111 * in reference count field. they are ready to be freed. reference from 112 * SA header will be removed in key_delsav(), when the reference count 113 * field hits 0 (= no external reference other than from SA header. 114 */ 115 116 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 117 static VNET_DEFINE(u_int, key_spi_trycnt) = 1000; 118 static VNET_DEFINE(u_int32_t, key_spi_minval) = 0x100; 119 static VNET_DEFINE(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 120 static VNET_DEFINE(u_int32_t, policy_id) = 0; 121 /*interval to initialize randseed,1(m)*/ 122 static VNET_DEFINE(u_int, key_int_random) = 60; 123 /* interval to expire acquiring, 30(s)*/ 124 static VNET_DEFINE(u_int, key_larval_lifetime) = 30; 125 /* counter for blocking SADB_ACQUIRE.*/ 126 static VNET_DEFINE(int, key_blockacq_count) = 10; 127 /* lifetime for blocking SADB_ACQUIRE.*/ 128 static VNET_DEFINE(int, key_blockacq_lifetime) = 20; 129 /* preferred old sa rather than new sa.*/ 130 static VNET_DEFINE(int, key_preferred_oldsa) = 1; 131 #define V_key_spi_trycnt VNET(key_spi_trycnt) 132 #define V_key_spi_minval VNET(key_spi_minval) 133 #define V_key_spi_maxval VNET(key_spi_maxval) 134 #define V_policy_id VNET(policy_id) 135 #define V_key_int_random VNET(key_int_random) 136 #define V_key_larval_lifetime VNET(key_larval_lifetime) 137 #define V_key_blockacq_count VNET(key_blockacq_count) 138 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 139 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 140 141 static VNET_DEFINE(u_int32_t, acq_seq) = 0; 142 #define V_acq_seq VNET(acq_seq) 143 144 /* SPD */ 145 static VNET_DEFINE(LIST_HEAD(_sptree, secpolicy), sptree[IPSEC_DIR_MAX]); 146 #define V_sptree VNET(sptree) 147 static struct mtx sptree_lock; 148 #define SPTREE_LOCK_INIT() \ 149 mtx_init(&sptree_lock, "sptree", \ 150 "fast ipsec security policy database", MTX_DEF) 151 #define SPTREE_LOCK_DESTROY() mtx_destroy(&sptree_lock) 152 #define SPTREE_LOCK() mtx_lock(&sptree_lock) 153 #define SPTREE_UNLOCK() mtx_unlock(&sptree_lock) 154 #define SPTREE_LOCK_ASSERT() mtx_assert(&sptree_lock, MA_OWNED) 155 156 static VNET_DEFINE(LIST_HEAD(_sahtree, secashead), sahtree); /* SAD */ 157 #define V_sahtree VNET(sahtree) 158 static struct mtx sahtree_lock; 159 #define SAHTREE_LOCK_INIT() \ 160 mtx_init(&sahtree_lock, "sahtree", \ 161 "fast ipsec security association database", MTX_DEF) 162 #define SAHTREE_LOCK_DESTROY() mtx_destroy(&sahtree_lock) 163 #define SAHTREE_LOCK() mtx_lock(&sahtree_lock) 164 #define SAHTREE_UNLOCK() mtx_unlock(&sahtree_lock) 165 #define SAHTREE_LOCK_ASSERT() mtx_assert(&sahtree_lock, MA_OWNED) 166 167 /* registed list */ 168 static VNET_DEFINE(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 169 #define V_regtree VNET(regtree) 170 static struct mtx regtree_lock; 171 #define REGTREE_LOCK_INIT() \ 172 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 173 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 174 #define REGTREE_LOCK() mtx_lock(®tree_lock) 175 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 176 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 177 178 static VNET_DEFINE(LIST_HEAD(_acqtree, secacq), acqtree); /* acquiring list */ 179 #define V_acqtree VNET(acqtree) 180 static struct mtx acq_lock; 181 #define ACQ_LOCK_INIT() \ 182 mtx_init(&acq_lock, "acqtree", "fast ipsec acquire list", MTX_DEF) 183 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 184 #define ACQ_LOCK() mtx_lock(&acq_lock) 185 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 186 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 187 188 /* SP acquiring list */ 189 static VNET_DEFINE(LIST_HEAD(_spacqtree, secspacq), spacqtree); 190 #define V_spacqtree VNET(spacqtree) 191 static struct mtx spacq_lock; 192 #define SPACQ_LOCK_INIT() \ 193 mtx_init(&spacq_lock, "spacqtree", \ 194 "fast ipsec security policy acquire list", MTX_DEF) 195 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 196 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 197 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 198 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 199 200 /* search order for SAs */ 201 static const u_int saorder_state_valid_prefer_old[] = { 202 SADB_SASTATE_DYING, SADB_SASTATE_MATURE, 203 }; 204 static const u_int saorder_state_valid_prefer_new[] = { 205 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 206 }; 207 static const u_int saorder_state_alive[] = { 208 /* except DEAD */ 209 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, SADB_SASTATE_LARVAL 210 }; 211 static const u_int saorder_state_any[] = { 212 SADB_SASTATE_MATURE, SADB_SASTATE_DYING, 213 SADB_SASTATE_LARVAL, SADB_SASTATE_DEAD 214 }; 215 216 static const int minsize[] = { 217 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 218 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 219 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 220 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 221 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 222 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_SRC */ 223 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_DST */ 224 sizeof(struct sadb_address), /* SADB_EXT_ADDRESS_PROXY */ 225 sizeof(struct sadb_key), /* SADB_EXT_KEY_AUTH */ 226 sizeof(struct sadb_key), /* SADB_EXT_KEY_ENCRYPT */ 227 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_SRC */ 228 sizeof(struct sadb_ident), /* SADB_EXT_IDENTITY_DST */ 229 sizeof(struct sadb_sens), /* SADB_EXT_SENSITIVITY */ 230 sizeof(struct sadb_prop), /* SADB_EXT_PROPOSAL */ 231 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_AUTH */ 232 sizeof(struct sadb_supported), /* SADB_EXT_SUPPORTED_ENCRYPT */ 233 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 234 0, /* SADB_X_EXT_KMPRIVATE */ 235 sizeof(struct sadb_x_policy), /* SADB_X_EXT_POLICY */ 236 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 237 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 238 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 239 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 240 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAI */ 241 sizeof(struct sadb_address), /* SADB_X_EXT_NAT_T_OAR */ 242 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 243 }; 244 static const int maxsize[] = { 245 sizeof(struct sadb_msg), /* SADB_EXT_RESERVED */ 246 sizeof(struct sadb_sa), /* SADB_EXT_SA */ 247 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_CURRENT */ 248 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_HARD */ 249 sizeof(struct sadb_lifetime), /* SADB_EXT_LIFETIME_SOFT */ 250 0, /* SADB_EXT_ADDRESS_SRC */ 251 0, /* SADB_EXT_ADDRESS_DST */ 252 0, /* SADB_EXT_ADDRESS_PROXY */ 253 0, /* SADB_EXT_KEY_AUTH */ 254 0, /* SADB_EXT_KEY_ENCRYPT */ 255 0, /* SADB_EXT_IDENTITY_SRC */ 256 0, /* SADB_EXT_IDENTITY_DST */ 257 0, /* SADB_EXT_SENSITIVITY */ 258 0, /* SADB_EXT_PROPOSAL */ 259 0, /* SADB_EXT_SUPPORTED_AUTH */ 260 0, /* SADB_EXT_SUPPORTED_ENCRYPT */ 261 sizeof(struct sadb_spirange), /* SADB_EXT_SPIRANGE */ 262 0, /* SADB_X_EXT_KMPRIVATE */ 263 0, /* SADB_X_EXT_POLICY */ 264 sizeof(struct sadb_x_sa2), /* SADB_X_SA2 */ 265 sizeof(struct sadb_x_nat_t_type),/* SADB_X_EXT_NAT_T_TYPE */ 266 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_SPORT */ 267 sizeof(struct sadb_x_nat_t_port),/* SADB_X_EXT_NAT_T_DPORT */ 268 0, /* SADB_X_EXT_NAT_T_OAI */ 269 0, /* SADB_X_EXT_NAT_T_OAR */ 270 sizeof(struct sadb_x_nat_t_frag),/* SADB_X_EXT_NAT_T_FRAG */ 271 }; 272 273 static VNET_DEFINE(int, ipsec_esp_keymin) = 256; 274 static VNET_DEFINE(int, ipsec_esp_auth) = 0; 275 static VNET_DEFINE(int, ipsec_ah_keymin) = 128; 276 277 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 278 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 279 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 280 281 #ifdef SYSCTL_DECL 282 SYSCTL_DECL(_net_key); 283 #endif 284 285 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 286 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 287 288 /* max count of trial for the decision of spi value */ 289 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 290 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 291 292 /* minimum spi value to allocate automatically. */ 293 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 294 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 295 296 /* maximun spi value to allocate automatically. */ 297 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 298 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 299 300 /* interval to initialize randseed */ 301 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 302 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 303 304 /* lifetime for larval SA */ 305 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 306 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 307 308 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 309 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 310 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 311 312 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 313 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 314 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 315 316 /* ESP auth */ 317 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 318 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 319 320 /* minimum ESP key length */ 321 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 322 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 323 324 /* minimum AH key length */ 325 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 326 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 327 328 /* perfered old SA rather than new SA */ 329 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 330 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 331 332 #define __LIST_CHAINED(elm) \ 333 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 334 #define LIST_INSERT_TAIL(head, elm, type, field) \ 335 do {\ 336 struct type *curelm = LIST_FIRST(head); \ 337 if (curelm == NULL) {\ 338 LIST_INSERT_HEAD(head, elm, field); \ 339 } else { \ 340 while (LIST_NEXT(curelm, field)) \ 341 curelm = LIST_NEXT(curelm, field);\ 342 LIST_INSERT_AFTER(curelm, elm, field);\ 343 }\ 344 } while (0) 345 346 #define KEY_CHKSASTATE(head, sav, name) \ 347 do { \ 348 if ((head) != (sav)) { \ 349 ipseclog((LOG_DEBUG, "%s: state mismatched (TREE=%d SA=%d)\n", \ 350 (name), (head), (sav))); \ 351 continue; \ 352 } \ 353 } while (0) 354 355 #define KEY_CHKSPDIR(head, sp, name) \ 356 do { \ 357 if ((head) != (sp)) { \ 358 ipseclog((LOG_DEBUG, "%s: direction mismatched (TREE=%d SP=%d), " \ 359 "anyway continue.\n", \ 360 (name), (head), (sp))); \ 361 } \ 362 } while (0) 363 364 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 365 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 366 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 367 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 368 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 369 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 370 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 371 372 /* 373 * set parameters into secpolicyindex buffer. 374 * Must allocate secpolicyindex buffer passed to this function. 375 */ 376 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 377 do { \ 378 bzero((idx), sizeof(struct secpolicyindex)); \ 379 (idx)->dir = (_dir); \ 380 (idx)->prefs = (ps); \ 381 (idx)->prefd = (pd); \ 382 (idx)->ul_proto = (ulp); \ 383 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 384 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 385 } while (0) 386 387 /* 388 * set parameters into secasindex buffer. 389 * Must allocate secasindex buffer before calling this function. 390 */ 391 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 392 do { \ 393 bzero((idx), sizeof(struct secasindex)); \ 394 (idx)->proto = (p); \ 395 (idx)->mode = (m); \ 396 (idx)->reqid = (r); \ 397 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 398 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 399 } while (0) 400 401 /* key statistics */ 402 struct _keystat { 403 u_long getspi_count; /* the avarage of count to try to get new SPI */ 404 } keystat; 405 406 struct sadb_msghdr { 407 struct sadb_msg *msg; 408 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 409 int extoff[SADB_EXT_MAX + 1]; 410 int extlen[SADB_EXT_MAX + 1]; 411 }; 412 413 #ifndef IPSEC_DEBUG2 414 static struct callout key_timer; 415 #endif 416 417 static struct secasvar *key_allocsa_policy __P((const struct secasindex *)); 418 static void key_freesp_so __P((struct secpolicy **)); 419 static struct secasvar *key_do_allocsa_policy __P((struct secashead *, u_int)); 420 static void key_delsp __P((struct secpolicy *)); 421 static struct secpolicy *key_getsp __P((struct secpolicyindex *)); 422 static void _key_delsp(struct secpolicy *sp); 423 static struct secpolicy *key_getspbyid __P((u_int32_t)); 424 static u_int32_t key_newreqid __P((void)); 425 static struct mbuf *key_gather_mbuf __P((struct mbuf *, 426 const struct sadb_msghdr *, int, int, ...)); 427 static int key_spdadd __P((struct socket *, struct mbuf *, 428 const struct sadb_msghdr *)); 429 static u_int32_t key_getnewspid __P((void)); 430 static int key_spddelete __P((struct socket *, struct mbuf *, 431 const struct sadb_msghdr *)); 432 static int key_spddelete2 __P((struct socket *, struct mbuf *, 433 const struct sadb_msghdr *)); 434 static int key_spdget __P((struct socket *, struct mbuf *, 435 const struct sadb_msghdr *)); 436 static int key_spdflush __P((struct socket *, struct mbuf *, 437 const struct sadb_msghdr *)); 438 static int key_spddump __P((struct socket *, struct mbuf *, 439 const struct sadb_msghdr *)); 440 static struct mbuf *key_setdumpsp __P((struct secpolicy *, 441 u_int8_t, u_int32_t, u_int32_t)); 442 static u_int key_getspreqmsglen __P((struct secpolicy *)); 443 static int key_spdexpire __P((struct secpolicy *)); 444 static struct secashead *key_newsah __P((struct secasindex *)); 445 static void key_delsah __P((struct secashead *)); 446 static struct secasvar *key_newsav __P((struct mbuf *, 447 const struct sadb_msghdr *, struct secashead *, int *, 448 const char*, int)); 449 #define KEY_NEWSAV(m, sadb, sah, e) \ 450 key_newsav(m, sadb, sah, e, __FILE__, __LINE__) 451 static void key_delsav __P((struct secasvar *)); 452 static struct secashead *key_getsah __P((struct secasindex *)); 453 static struct secasvar *key_checkspidup __P((struct secasindex *, u_int32_t)); 454 static struct secasvar *key_getsavbyspi __P((struct secashead *, u_int32_t)); 455 static int key_setsaval __P((struct secasvar *, struct mbuf *, 456 const struct sadb_msghdr *)); 457 static int key_mature __P((struct secasvar *)); 458 static struct mbuf *key_setdumpsa __P((struct secasvar *, u_int8_t, 459 u_int8_t, u_int32_t, u_int32_t)); 460 static struct mbuf *key_setsadbmsg __P((u_int8_t, u_int16_t, u_int8_t, 461 u_int32_t, pid_t, u_int16_t)); 462 static struct mbuf *key_setsadbsa __P((struct secasvar *)); 463 static struct mbuf *key_setsadbaddr __P((u_int16_t, 464 const struct sockaddr *, u_int8_t, u_int16_t)); 465 #ifdef IPSEC_NAT_T 466 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 467 static struct mbuf *key_setsadbxtype(u_int16_t); 468 #endif 469 static void key_porttosaddr(struct sockaddr *, u_int16_t); 470 #define KEY_PORTTOSADDR(saddr, port) \ 471 key_porttosaddr((struct sockaddr *)(saddr), (port)) 472 static struct mbuf *key_setsadbxsa2 __P((u_int8_t, u_int32_t, u_int32_t)); 473 static struct mbuf *key_setsadbxpolicy __P((u_int16_t, u_int8_t, 474 u_int32_t)); 475 static struct seckey *key_dup_keymsg(const struct sadb_key *, u_int, 476 struct malloc_type *); 477 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 478 struct malloc_type *type); 479 #ifdef INET6 480 static int key_ismyaddr6 __P((struct sockaddr_in6 *)); 481 #endif 482 483 /* flags for key_cmpsaidx() */ 484 #define CMP_HEAD 1 /* protocol, addresses. */ 485 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 486 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 487 #define CMP_EXACTLY 4 /* all elements. */ 488 static int key_cmpsaidx 489 __P((const struct secasindex *, const struct secasindex *, int)); 490 491 static int key_cmpspidx_exactly 492 __P((struct secpolicyindex *, struct secpolicyindex *)); 493 static int key_cmpspidx_withmask 494 __P((struct secpolicyindex *, struct secpolicyindex *)); 495 static int key_sockaddrcmp __P((const struct sockaddr *, const struct sockaddr *, int)); 496 static int key_bbcmp __P((const void *, const void *, u_int)); 497 static u_int16_t key_satype2proto __P((u_int8_t)); 498 static u_int8_t key_proto2satype __P((u_int16_t)); 499 500 static int key_getspi __P((struct socket *, struct mbuf *, 501 const struct sadb_msghdr *)); 502 static u_int32_t key_do_getnewspi __P((struct sadb_spirange *, 503 struct secasindex *)); 504 static int key_update __P((struct socket *, struct mbuf *, 505 const struct sadb_msghdr *)); 506 #ifdef IPSEC_DOSEQCHECK 507 static struct secasvar *key_getsavbyseq __P((struct secashead *, u_int32_t)); 508 #endif 509 static int key_add __P((struct socket *, struct mbuf *, 510 const struct sadb_msghdr *)); 511 static int key_setident __P((struct secashead *, struct mbuf *, 512 const struct sadb_msghdr *)); 513 static struct mbuf *key_getmsgbuf_x1 __P((struct mbuf *, 514 const struct sadb_msghdr *)); 515 static int key_delete __P((struct socket *, struct mbuf *, 516 const struct sadb_msghdr *)); 517 static int key_get __P((struct socket *, struct mbuf *, 518 const struct sadb_msghdr *)); 519 520 static void key_getcomb_setlifetime __P((struct sadb_comb *)); 521 static struct mbuf *key_getcomb_esp __P((void)); 522 static struct mbuf *key_getcomb_ah __P((void)); 523 static struct mbuf *key_getcomb_ipcomp __P((void)); 524 static struct mbuf *key_getprop __P((const struct secasindex *)); 525 526 static int key_acquire __P((const struct secasindex *, struct secpolicy *)); 527 static struct secacq *key_newacq __P((const struct secasindex *)); 528 static struct secacq *key_getacq __P((const struct secasindex *)); 529 static struct secacq *key_getacqbyseq __P((u_int32_t)); 530 static struct secspacq *key_newspacq __P((struct secpolicyindex *)); 531 static struct secspacq *key_getspacq __P((struct secpolicyindex *)); 532 static int key_acquire2 __P((struct socket *, struct mbuf *, 533 const struct sadb_msghdr *)); 534 static int key_register __P((struct socket *, struct mbuf *, 535 const struct sadb_msghdr *)); 536 static int key_expire __P((struct secasvar *)); 537 static int key_flush __P((struct socket *, struct mbuf *, 538 const struct sadb_msghdr *)); 539 static int key_dump __P((struct socket *, struct mbuf *, 540 const struct sadb_msghdr *)); 541 static int key_promisc __P((struct socket *, struct mbuf *, 542 const struct sadb_msghdr *)); 543 static int key_senderror __P((struct socket *, struct mbuf *, int)); 544 static int key_validate_ext __P((const struct sadb_ext *, int)); 545 static int key_align __P((struct mbuf *, struct sadb_msghdr *)); 546 static struct mbuf *key_setlifetime(struct seclifetime *src, 547 u_int16_t exttype); 548 static struct mbuf *key_setkey(struct seckey *src, u_int16_t exttype); 549 550 #if 0 551 static const char *key_getfqdn __P((void)); 552 static const char *key_getuserfqdn __P((void)); 553 #endif 554 static void key_sa_chgstate __P((struct secasvar *, u_int8_t)); 555 556 static __inline void 557 sa_initref(struct secasvar *sav) 558 { 559 560 refcount_init(&sav->refcnt, 1); 561 } 562 static __inline void 563 sa_addref(struct secasvar *sav) 564 { 565 566 refcount_acquire(&sav->refcnt); 567 IPSEC_ASSERT(sav->refcnt != 0, ("SA refcnt overflow")); 568 } 569 static __inline int 570 sa_delref(struct secasvar *sav) 571 { 572 573 IPSEC_ASSERT(sav->refcnt > 0, ("SA refcnt underflow")); 574 return (refcount_release(&sav->refcnt)); 575 } 576 577 #define SP_ADDREF(p) do { \ 578 (p)->refcnt++; \ 579 IPSEC_ASSERT((p)->refcnt != 0, ("SP refcnt overflow")); \ 580 } while (0) 581 #define SP_DELREF(p) do { \ 582 IPSEC_ASSERT((p)->refcnt > 0, ("SP refcnt underflow")); \ 583 (p)->refcnt--; \ 584 } while (0) 585 586 587 /* 588 * Update the refcnt while holding the SPTREE lock. 589 */ 590 void 591 key_addref(struct secpolicy *sp) 592 { 593 SPTREE_LOCK(); 594 SP_ADDREF(sp); 595 SPTREE_UNLOCK(); 596 } 597 598 /* 599 * Return 0 when there are known to be no SP's for the specified 600 * direction. Otherwise return 1. This is used by IPsec code 601 * to optimize performance. 602 */ 603 int 604 key_havesp(u_int dir) 605 { 606 607 return (dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND ? 608 LIST_FIRST(&V_sptree[dir]) != NULL : 1); 609 } 610 611 /* %%% IPsec policy management */ 612 /* 613 * allocating a SP for OUTBOUND or INBOUND packet. 614 * Must call key_freesp() later. 615 * OUT: NULL: not found 616 * others: found and return the pointer. 617 */ 618 struct secpolicy * 619 key_allocsp(struct secpolicyindex *spidx, u_int dir, const char* where, int tag) 620 { 621 struct secpolicy *sp; 622 623 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 624 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 625 ("invalid direction %u", dir)); 626 627 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 628 printf("DP %s from %s:%u\n", __func__, where, tag)); 629 630 /* get a SP entry */ 631 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 632 printf("*** objects\n"); 633 kdebug_secpolicyindex(spidx)); 634 635 SPTREE_LOCK(); 636 LIST_FOREACH(sp, &V_sptree[dir], chain) { 637 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 638 printf("*** in SPD\n"); 639 kdebug_secpolicyindex(&sp->spidx)); 640 641 if (sp->state == IPSEC_SPSTATE_DEAD) 642 continue; 643 if (key_cmpspidx_withmask(&sp->spidx, spidx)) 644 goto found; 645 } 646 sp = NULL; 647 found: 648 if (sp) { 649 /* sanity check */ 650 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 651 652 /* found a SPD entry */ 653 sp->lastused = time_second; 654 SP_ADDREF(sp); 655 } 656 SPTREE_UNLOCK(); 657 658 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 659 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 660 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 661 return sp; 662 } 663 664 /* 665 * allocating a SP for OUTBOUND or INBOUND packet. 666 * Must call key_freesp() later. 667 * OUT: NULL: not found 668 * others: found and return the pointer. 669 */ 670 struct secpolicy * 671 key_allocsp2(u_int32_t spi, 672 union sockaddr_union *dst, 673 u_int8_t proto, 674 u_int dir, 675 const char* where, int tag) 676 { 677 struct secpolicy *sp; 678 679 IPSEC_ASSERT(dst != NULL, ("null dst")); 680 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 681 ("invalid direction %u", dir)); 682 683 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 684 printf("DP %s from %s:%u\n", __func__, where, tag)); 685 686 /* get a SP entry */ 687 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 688 printf("*** objects\n"); 689 printf("spi %u proto %u dir %u\n", spi, proto, dir); 690 kdebug_sockaddr(&dst->sa)); 691 692 SPTREE_LOCK(); 693 LIST_FOREACH(sp, &V_sptree[dir], chain) { 694 KEYDEBUG(KEYDEBUG_IPSEC_DATA, 695 printf("*** in SPD\n"); 696 kdebug_secpolicyindex(&sp->spidx)); 697 698 if (sp->state == IPSEC_SPSTATE_DEAD) 699 continue; 700 /* compare simple values, then dst address */ 701 if (sp->spidx.ul_proto != proto) 702 continue; 703 /* NB: spi's must exist and match */ 704 if (!sp->req || !sp->req->sav || sp->req->sav->spi != spi) 705 continue; 706 if (key_sockaddrcmp(&sp->spidx.dst.sa, &dst->sa, 1) == 0) 707 goto found; 708 } 709 sp = NULL; 710 found: 711 if (sp) { 712 /* sanity check */ 713 KEY_CHKSPDIR(sp->spidx.dir, dir, __func__); 714 715 /* found a SPD entry */ 716 sp->lastused = time_second; 717 SP_ADDREF(sp); 718 } 719 SPTREE_UNLOCK(); 720 721 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 722 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 723 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 724 return sp; 725 } 726 727 #if 0 728 /* 729 * return a policy that matches this particular inbound packet. 730 * XXX slow 731 */ 732 struct secpolicy * 733 key_gettunnel(const struct sockaddr *osrc, 734 const struct sockaddr *odst, 735 const struct sockaddr *isrc, 736 const struct sockaddr *idst, 737 const char* where, int tag) 738 { 739 struct secpolicy *sp; 740 const int dir = IPSEC_DIR_INBOUND; 741 struct ipsecrequest *r1, *r2, *p; 742 struct secpolicyindex spidx; 743 744 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 745 printf("DP %s from %s:%u\n", __func__, where, tag)); 746 747 if (isrc->sa_family != idst->sa_family) { 748 ipseclog((LOG_ERR, "%s: protocol family mismatched %d != %d\n.", 749 __func__, isrc->sa_family, idst->sa_family)); 750 sp = NULL; 751 goto done; 752 } 753 754 SPTREE_LOCK(); 755 LIST_FOREACH(sp, &V_sptree[dir], chain) { 756 if (sp->state == IPSEC_SPSTATE_DEAD) 757 continue; 758 759 r1 = r2 = NULL; 760 for (p = sp->req; p; p = p->next) { 761 if (p->saidx.mode != IPSEC_MODE_TUNNEL) 762 continue; 763 764 r1 = r2; 765 r2 = p; 766 767 if (!r1) { 768 /* here we look at address matches only */ 769 spidx = sp->spidx; 770 if (isrc->sa_len > sizeof(spidx.src) || 771 idst->sa_len > sizeof(spidx.dst)) 772 continue; 773 bcopy(isrc, &spidx.src, isrc->sa_len); 774 bcopy(idst, &spidx.dst, idst->sa_len); 775 if (!key_cmpspidx_withmask(&sp->spidx, &spidx)) 776 continue; 777 } else { 778 if (key_sockaddrcmp(&r1->saidx.src.sa, isrc, 0) || 779 key_sockaddrcmp(&r1->saidx.dst.sa, idst, 0)) 780 continue; 781 } 782 783 if (key_sockaddrcmp(&r2->saidx.src.sa, osrc, 0) || 784 key_sockaddrcmp(&r2->saidx.dst.sa, odst, 0)) 785 continue; 786 787 goto found; 788 } 789 } 790 sp = NULL; 791 found: 792 if (sp) { 793 sp->lastused = time_second; 794 SP_ADDREF(sp); 795 } 796 SPTREE_UNLOCK(); 797 done: 798 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 799 printf("DP %s return SP:%p (ID=%u) refcnt %u\n", __func__, 800 sp, sp ? sp->id : 0, sp ? sp->refcnt : 0)); 801 return sp; 802 } 803 #endif 804 805 /* 806 * allocating an SA entry for an *OUTBOUND* packet. 807 * checking each request entries in SP, and acquire an SA if need. 808 * OUT: 0: there are valid requests. 809 * ENOENT: policy may be valid, but SA with REQUIRE is on acquiring. 810 */ 811 int 812 key_checkrequest(struct ipsecrequest *isr, const struct secasindex *saidx) 813 { 814 u_int level; 815 int error; 816 struct secasvar *sav; 817 818 IPSEC_ASSERT(isr != NULL, ("null isr")); 819 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 820 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 821 saidx->mode == IPSEC_MODE_TUNNEL, 822 ("unexpected policy %u", saidx->mode)); 823 824 /* 825 * XXX guard against protocol callbacks from the crypto 826 * thread as they reference ipsecrequest.sav which we 827 * temporarily null out below. Need to rethink how we 828 * handle bundled SA's in the callback thread. 829 */ 830 IPSECREQUEST_LOCK_ASSERT(isr); 831 832 /* get current level */ 833 level = ipsec_get_reqlevel(isr); 834 835 /* 836 * We check new SA in the IPsec request because a different 837 * SA may be involved each time this request is checked, either 838 * because new SAs are being configured, or this request is 839 * associated with an unconnected datagram socket, or this request 840 * is associated with a system default policy. 841 * 842 * key_allocsa_policy should allocate the oldest SA available. 843 * See key_do_allocsa_policy(), and draft-jenkins-ipsec-rekeying-03.txt. 844 */ 845 sav = key_allocsa_policy(saidx); 846 if (sav != isr->sav) { 847 /* SA need to be updated. */ 848 if (!IPSECREQUEST_UPGRADE(isr)) { 849 /* Kick everyone off. */ 850 IPSECREQUEST_UNLOCK(isr); 851 IPSECREQUEST_WLOCK(isr); 852 } 853 if (isr->sav != NULL) 854 KEY_FREESAV(&isr->sav); 855 isr->sav = sav; 856 IPSECREQUEST_DOWNGRADE(isr); 857 } else if (sav != NULL) 858 KEY_FREESAV(&sav); 859 860 /* When there is SA. */ 861 if (isr->sav != NULL) { 862 if (isr->sav->state != SADB_SASTATE_MATURE && 863 isr->sav->state != SADB_SASTATE_DYING) 864 return EINVAL; 865 return 0; 866 } 867 868 /* there is no SA */ 869 error = key_acquire(saidx, isr->sp); 870 if (error != 0) { 871 /* XXX What should I do ? */ 872 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 873 __func__, error)); 874 return error; 875 } 876 877 if (level != IPSEC_LEVEL_REQUIRE) { 878 /* XXX sigh, the interface to this routine is botched */ 879 IPSEC_ASSERT(isr->sav == NULL, ("unexpected SA")); 880 return 0; 881 } else { 882 return ENOENT; 883 } 884 } 885 886 /* 887 * allocating a SA for policy entry from SAD. 888 * NOTE: searching SAD of aliving state. 889 * OUT: NULL: not found. 890 * others: found and return the pointer. 891 */ 892 static struct secasvar * 893 key_allocsa_policy(const struct secasindex *saidx) 894 { 895 #define N(a) _ARRAYLEN(a) 896 struct secashead *sah; 897 struct secasvar *sav; 898 u_int stateidx, arraysize; 899 const u_int *state_valid; 900 901 state_valid = NULL; /* silence gcc */ 902 arraysize = 0; /* silence gcc */ 903 904 SAHTREE_LOCK(); 905 LIST_FOREACH(sah, &V_sahtree, chain) { 906 if (sah->state == SADB_SASTATE_DEAD) 907 continue; 908 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) { 909 if (V_key_preferred_oldsa) { 910 state_valid = saorder_state_valid_prefer_old; 911 arraysize = N(saorder_state_valid_prefer_old); 912 } else { 913 state_valid = saorder_state_valid_prefer_new; 914 arraysize = N(saorder_state_valid_prefer_new); 915 } 916 break; 917 } 918 } 919 SAHTREE_UNLOCK(); 920 if (sah == NULL) 921 return NULL; 922 923 /* search valid state */ 924 for (stateidx = 0; stateidx < arraysize; stateidx++) { 925 sav = key_do_allocsa_policy(sah, state_valid[stateidx]); 926 if (sav != NULL) 927 return sav; 928 } 929 930 return NULL; 931 #undef N 932 } 933 934 /* 935 * searching SAD with direction, protocol, mode and state. 936 * called by key_allocsa_policy(). 937 * OUT: 938 * NULL : not found 939 * others : found, pointer to a SA. 940 */ 941 static struct secasvar * 942 key_do_allocsa_policy(struct secashead *sah, u_int state) 943 { 944 struct secasvar *sav, *nextsav, *candidate, *d; 945 946 /* initilize */ 947 candidate = NULL; 948 949 SAHTREE_LOCK(); 950 for (sav = LIST_FIRST(&sah->savtree[state]); 951 sav != NULL; 952 sav = nextsav) { 953 954 nextsav = LIST_NEXT(sav, chain); 955 956 /* sanity check */ 957 KEY_CHKSASTATE(sav->state, state, __func__); 958 959 /* initialize */ 960 if (candidate == NULL) { 961 candidate = sav; 962 continue; 963 } 964 965 /* Which SA is the better ? */ 966 967 IPSEC_ASSERT(candidate->lft_c != NULL, 968 ("null candidate lifetime")); 969 IPSEC_ASSERT(sav->lft_c != NULL, ("null sav lifetime")); 970 971 /* What the best method is to compare ? */ 972 if (V_key_preferred_oldsa) { 973 if (candidate->lft_c->addtime > 974 sav->lft_c->addtime) { 975 candidate = sav; 976 } 977 continue; 978 /*NOTREACHED*/ 979 } 980 981 /* preferred new sa rather than old sa */ 982 if (candidate->lft_c->addtime < 983 sav->lft_c->addtime) { 984 d = candidate; 985 candidate = sav; 986 } else 987 d = sav; 988 989 /* 990 * prepared to delete the SA when there is more 991 * suitable candidate and the lifetime of the SA is not 992 * permanent. 993 */ 994 if (d->lft_h->addtime != 0) { 995 struct mbuf *m, *result; 996 u_int8_t satype; 997 998 key_sa_chgstate(d, SADB_SASTATE_DEAD); 999 1000 IPSEC_ASSERT(d->refcnt > 0, ("bogus ref count")); 1001 1002 satype = key_proto2satype(d->sah->saidx.proto); 1003 if (satype == 0) 1004 goto msgfail; 1005 1006 m = key_setsadbmsg(SADB_DELETE, 0, 1007 satype, 0, 0, d->refcnt - 1); 1008 if (!m) 1009 goto msgfail; 1010 result = m; 1011 1012 /* set sadb_address for saidx's. */ 1013 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 1014 &d->sah->saidx.src.sa, 1015 d->sah->saidx.src.sa.sa_len << 3, 1016 IPSEC_ULPROTO_ANY); 1017 if (!m) 1018 goto msgfail; 1019 m_cat(result, m); 1020 1021 /* set sadb_address for saidx's. */ 1022 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 1023 &d->sah->saidx.dst.sa, 1024 d->sah->saidx.dst.sa.sa_len << 3, 1025 IPSEC_ULPROTO_ANY); 1026 if (!m) 1027 goto msgfail; 1028 m_cat(result, m); 1029 1030 /* create SA extension */ 1031 m = key_setsadbsa(d); 1032 if (!m) 1033 goto msgfail; 1034 m_cat(result, m); 1035 1036 if (result->m_len < sizeof(struct sadb_msg)) { 1037 result = m_pullup(result, 1038 sizeof(struct sadb_msg)); 1039 if (result == NULL) 1040 goto msgfail; 1041 } 1042 1043 result->m_pkthdr.len = 0; 1044 for (m = result; m; m = m->m_next) 1045 result->m_pkthdr.len += m->m_len; 1046 mtod(result, struct sadb_msg *)->sadb_msg_len = 1047 PFKEY_UNIT64(result->m_pkthdr.len); 1048 1049 if (key_sendup_mbuf(NULL, result, 1050 KEY_SENDUP_REGISTERED)) 1051 goto msgfail; 1052 msgfail: 1053 KEY_FREESAV(&d); 1054 } 1055 } 1056 if (candidate) { 1057 sa_addref(candidate); 1058 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1059 printf("DP %s cause refcnt++:%d SA:%p\n", 1060 __func__, candidate->refcnt, candidate)); 1061 } 1062 SAHTREE_UNLOCK(); 1063 1064 return candidate; 1065 } 1066 1067 /* 1068 * allocating a usable SA entry for a *INBOUND* packet. 1069 * Must call key_freesav() later. 1070 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1071 * NULL: not found, or error occured. 1072 * 1073 * In the comparison, no source address is used--for RFC2401 conformance. 1074 * To quote, from section 4.1: 1075 * A security association is uniquely identified by a triple consisting 1076 * of a Security Parameter Index (SPI), an IP Destination Address, and a 1077 * security protocol (AH or ESP) identifier. 1078 * Note that, however, we do need to keep source address in IPsec SA. 1079 * IKE specification and PF_KEY specification do assume that we 1080 * keep source address in IPsec SA. We see a tricky situation here. 1081 */ 1082 struct secasvar * 1083 key_allocsa( 1084 union sockaddr_union *dst, 1085 u_int proto, 1086 u_int32_t spi, 1087 const char* where, int tag) 1088 { 1089 struct secashead *sah; 1090 struct secasvar *sav; 1091 u_int stateidx, arraysize, state; 1092 const u_int *saorder_state_valid; 1093 #ifdef IPSEC_NAT_T 1094 int natt_chkport; 1095 #endif 1096 1097 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1098 1099 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1100 printf("DP %s from %s:%u\n", __func__, where, tag)); 1101 1102 #ifdef IPSEC_NAT_T 1103 natt_chkport = (dst->sa.sa_family == AF_INET && 1104 dst->sa.sa_len == sizeof(struct sockaddr_in) && 1105 dst->sin.sin_port != 0); 1106 #endif 1107 1108 /* 1109 * searching SAD. 1110 * XXX: to be checked internal IP header somewhere. Also when 1111 * IPsec tunnel packet is received. But ESP tunnel mode is 1112 * encrypted so we can't check internal IP header. 1113 */ 1114 SAHTREE_LOCK(); 1115 if (V_key_preferred_oldsa) { 1116 saorder_state_valid = saorder_state_valid_prefer_old; 1117 arraysize = _ARRAYLEN(saorder_state_valid_prefer_old); 1118 } else { 1119 saorder_state_valid = saorder_state_valid_prefer_new; 1120 arraysize = _ARRAYLEN(saorder_state_valid_prefer_new); 1121 } 1122 LIST_FOREACH(sah, &V_sahtree, chain) { 1123 int checkport; 1124 1125 /* search valid state */ 1126 for (stateidx = 0; stateidx < arraysize; stateidx++) { 1127 state = saorder_state_valid[stateidx]; 1128 LIST_FOREACH(sav, &sah->savtree[state], chain) { 1129 /* sanity check */ 1130 KEY_CHKSASTATE(sav->state, state, __func__); 1131 /* do not return entries w/ unusable state */ 1132 if (sav->state != SADB_SASTATE_MATURE && 1133 sav->state != SADB_SASTATE_DYING) 1134 continue; 1135 if (proto != sav->sah->saidx.proto) 1136 continue; 1137 if (spi != sav->spi) 1138 continue; 1139 checkport = 0; 1140 #ifdef IPSEC_NAT_T 1141 /* 1142 * Really only check ports when this is a NAT-T 1143 * SA. Otherwise other lookups providing ports 1144 * might suffer. 1145 */ 1146 if (sav->natt_type && natt_chkport) 1147 checkport = 1; 1148 #endif 1149 #if 0 /* don't check src */ 1150 /* check src address */ 1151 if (key_sockaddrcmp(&src->sa, 1152 &sav->sah->saidx.src.sa, checkport) != 0) 1153 continue; 1154 #endif 1155 /* check dst address */ 1156 if (key_sockaddrcmp(&dst->sa, 1157 &sav->sah->saidx.dst.sa, checkport) != 0) 1158 continue; 1159 sa_addref(sav); 1160 goto done; 1161 } 1162 } 1163 } 1164 sav = NULL; 1165 done: 1166 SAHTREE_UNLOCK(); 1167 1168 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1169 printf("DP %s return SA:%p; refcnt %u\n", __func__, 1170 sav, sav ? sav->refcnt : 0)); 1171 return sav; 1172 } 1173 1174 /* 1175 * Must be called after calling key_allocsp(). 1176 * For both the packet without socket and key_freeso(). 1177 */ 1178 void 1179 _key_freesp(struct secpolicy **spp, const char* where, int tag) 1180 { 1181 struct secpolicy *sp = *spp; 1182 1183 IPSEC_ASSERT(sp != NULL, ("null sp")); 1184 1185 SPTREE_LOCK(); 1186 SP_DELREF(sp); 1187 1188 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1189 printf("DP %s SP:%p (ID=%u) from %s:%u; refcnt now %u\n", 1190 __func__, sp, sp->id, where, tag, sp->refcnt)); 1191 1192 if (sp->refcnt == 0) { 1193 *spp = NULL; 1194 key_delsp(sp); 1195 } 1196 SPTREE_UNLOCK(); 1197 } 1198 1199 /* 1200 * Must be called after calling key_allocsp(). 1201 * For the packet with socket. 1202 */ 1203 void 1204 key_freeso(struct socket *so) 1205 { 1206 IPSEC_ASSERT(so != NULL, ("null so")); 1207 1208 switch (so->so_proto->pr_domain->dom_family) { 1209 #if defined(INET) || defined(INET6) 1210 #ifdef INET 1211 case PF_INET: 1212 #endif 1213 #ifdef INET6 1214 case PF_INET6: 1215 #endif 1216 { 1217 struct inpcb *pcb = sotoinpcb(so); 1218 1219 /* Does it have a PCB ? */ 1220 if (pcb == NULL) 1221 return; 1222 key_freesp_so(&pcb->inp_sp->sp_in); 1223 key_freesp_so(&pcb->inp_sp->sp_out); 1224 } 1225 break; 1226 #endif /* INET || INET6 */ 1227 default: 1228 ipseclog((LOG_DEBUG, "%s: unknown address family=%d.\n", 1229 __func__, so->so_proto->pr_domain->dom_family)); 1230 return; 1231 } 1232 } 1233 1234 static void 1235 key_freesp_so(struct secpolicy **sp) 1236 { 1237 IPSEC_ASSERT(sp != NULL && *sp != NULL, ("null sp")); 1238 1239 if ((*sp)->policy == IPSEC_POLICY_ENTRUST || 1240 (*sp)->policy == IPSEC_POLICY_BYPASS) 1241 return; 1242 1243 IPSEC_ASSERT((*sp)->policy == IPSEC_POLICY_IPSEC, 1244 ("invalid policy %u", (*sp)->policy)); 1245 KEY_FREESP(sp); 1246 } 1247 1248 void 1249 key_addrefsa(struct secasvar *sav, const char* where, int tag) 1250 { 1251 1252 IPSEC_ASSERT(sav != NULL, ("null sav")); 1253 IPSEC_ASSERT(sav->refcnt > 0, ("refcount must exist")); 1254 1255 sa_addref(sav); 1256 } 1257 1258 /* 1259 * Must be called after calling key_allocsa(). 1260 * This function is called by key_freesp() to free some SA allocated 1261 * for a policy. 1262 */ 1263 void 1264 key_freesav(struct secasvar **psav, const char* where, int tag) 1265 { 1266 struct secasvar *sav = *psav; 1267 1268 IPSEC_ASSERT(sav != NULL, ("null sav")); 1269 1270 if (sa_delref(sav)) { 1271 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1272 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1273 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1274 *psav = NULL; 1275 key_delsav(sav); 1276 } else { 1277 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1278 printf("DP %s SA:%p (SPI %u) from %s:%u; refcnt now %u\n", 1279 __func__, sav, ntohl(sav->spi), where, tag, sav->refcnt)); 1280 } 1281 } 1282 1283 /* %%% SPD management */ 1284 /* 1285 * free security policy entry. 1286 */ 1287 static void 1288 key_delsp(struct secpolicy *sp) 1289 { 1290 struct ipsecrequest *isr, *nextisr; 1291 1292 IPSEC_ASSERT(sp != NULL, ("null sp")); 1293 SPTREE_LOCK_ASSERT(); 1294 1295 sp->state = IPSEC_SPSTATE_DEAD; 1296 1297 IPSEC_ASSERT(sp->refcnt == 0, 1298 ("SP with references deleted (refcnt %u)", sp->refcnt)); 1299 1300 /* remove from SP index */ 1301 if (__LIST_CHAINED(sp)) 1302 LIST_REMOVE(sp, chain); 1303 1304 for (isr = sp->req; isr != NULL; isr = nextisr) { 1305 if (isr->sav != NULL) { 1306 KEY_FREESAV(&isr->sav); 1307 isr->sav = NULL; 1308 } 1309 1310 nextisr = isr->next; 1311 ipsec_delisr(isr); 1312 } 1313 _key_delsp(sp); 1314 } 1315 1316 /* 1317 * search SPD 1318 * OUT: NULL : not found 1319 * others : found, pointer to a SP. 1320 */ 1321 static struct secpolicy * 1322 key_getsp(struct secpolicyindex *spidx) 1323 { 1324 struct secpolicy *sp; 1325 1326 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1327 1328 SPTREE_LOCK(); 1329 LIST_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1330 if (sp->state == IPSEC_SPSTATE_DEAD) 1331 continue; 1332 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1333 SP_ADDREF(sp); 1334 break; 1335 } 1336 } 1337 SPTREE_UNLOCK(); 1338 1339 return sp; 1340 } 1341 1342 /* 1343 * get SP by index. 1344 * OUT: NULL : not found 1345 * others : found, pointer to a SP. 1346 */ 1347 static struct secpolicy * 1348 key_getspbyid(u_int32_t id) 1349 { 1350 struct secpolicy *sp; 1351 1352 SPTREE_LOCK(); 1353 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_INBOUND], chain) { 1354 if (sp->state == IPSEC_SPSTATE_DEAD) 1355 continue; 1356 if (sp->id == id) { 1357 SP_ADDREF(sp); 1358 goto done; 1359 } 1360 } 1361 1362 LIST_FOREACH(sp, &V_sptree[IPSEC_DIR_OUTBOUND], chain) { 1363 if (sp->state == IPSEC_SPSTATE_DEAD) 1364 continue; 1365 if (sp->id == id) { 1366 SP_ADDREF(sp); 1367 goto done; 1368 } 1369 } 1370 done: 1371 SPTREE_UNLOCK(); 1372 1373 return sp; 1374 } 1375 1376 struct secpolicy * 1377 key_newsp(const char* where, int tag) 1378 { 1379 struct secpolicy *newsp = NULL; 1380 1381 newsp = (struct secpolicy *) 1382 malloc(sizeof(struct secpolicy), M_IPSEC_SP, M_NOWAIT|M_ZERO); 1383 if (newsp) { 1384 SECPOLICY_LOCK_INIT(newsp); 1385 newsp->refcnt = 1; 1386 newsp->req = NULL; 1387 } 1388 1389 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 1390 printf("DP %s from %s:%u return SP:%p\n", __func__, 1391 where, tag, newsp)); 1392 return newsp; 1393 } 1394 1395 static void 1396 _key_delsp(struct secpolicy *sp) 1397 { 1398 SECPOLICY_LOCK_DESTROY(sp); 1399 free(sp, M_IPSEC_SP); 1400 } 1401 1402 /* 1403 * create secpolicy structure from sadb_x_policy structure. 1404 * NOTE: `state', `secpolicyindex' in secpolicy structure are not set, 1405 * so must be set properly later. 1406 */ 1407 struct secpolicy * 1408 key_msg2sp(xpl0, len, error) 1409 struct sadb_x_policy *xpl0; 1410 size_t len; 1411 int *error; 1412 { 1413 struct secpolicy *newsp; 1414 1415 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1416 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1417 1418 if (len != PFKEY_EXTLEN(xpl0)) { 1419 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1420 *error = EINVAL; 1421 return NULL; 1422 } 1423 1424 if ((newsp = KEY_NEWSP()) == NULL) { 1425 *error = ENOBUFS; 1426 return NULL; 1427 } 1428 1429 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1430 newsp->policy = xpl0->sadb_x_policy_type; 1431 1432 /* check policy */ 1433 switch (xpl0->sadb_x_policy_type) { 1434 case IPSEC_POLICY_DISCARD: 1435 case IPSEC_POLICY_NONE: 1436 case IPSEC_POLICY_ENTRUST: 1437 case IPSEC_POLICY_BYPASS: 1438 newsp->req = NULL; 1439 break; 1440 1441 case IPSEC_POLICY_IPSEC: 1442 { 1443 int tlen; 1444 struct sadb_x_ipsecrequest *xisr; 1445 struct ipsecrequest **p_isr = &newsp->req; 1446 1447 /* validity check */ 1448 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1449 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1450 __func__)); 1451 KEY_FREESP(&newsp); 1452 *error = EINVAL; 1453 return NULL; 1454 } 1455 1456 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1457 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1458 1459 while (tlen > 0) { 1460 /* length check */ 1461 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr)) { 1462 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1463 "length.\n", __func__)); 1464 KEY_FREESP(&newsp); 1465 *error = EINVAL; 1466 return NULL; 1467 } 1468 1469 /* allocate request buffer */ 1470 /* NB: data structure is zero'd */ 1471 *p_isr = ipsec_newisr(); 1472 if ((*p_isr) == NULL) { 1473 ipseclog((LOG_DEBUG, 1474 "%s: No more memory.\n", __func__)); 1475 KEY_FREESP(&newsp); 1476 *error = ENOBUFS; 1477 return NULL; 1478 } 1479 1480 /* set values */ 1481 switch (xisr->sadb_x_ipsecrequest_proto) { 1482 case IPPROTO_ESP: 1483 case IPPROTO_AH: 1484 case IPPROTO_IPCOMP: 1485 break; 1486 default: 1487 ipseclog((LOG_DEBUG, 1488 "%s: invalid proto type=%u\n", __func__, 1489 xisr->sadb_x_ipsecrequest_proto)); 1490 KEY_FREESP(&newsp); 1491 *error = EPROTONOSUPPORT; 1492 return NULL; 1493 } 1494 (*p_isr)->saidx.proto = xisr->sadb_x_ipsecrequest_proto; 1495 1496 switch (xisr->sadb_x_ipsecrequest_mode) { 1497 case IPSEC_MODE_TRANSPORT: 1498 case IPSEC_MODE_TUNNEL: 1499 break; 1500 case IPSEC_MODE_ANY: 1501 default: 1502 ipseclog((LOG_DEBUG, 1503 "%s: invalid mode=%u\n", __func__, 1504 xisr->sadb_x_ipsecrequest_mode)); 1505 KEY_FREESP(&newsp); 1506 *error = EINVAL; 1507 return NULL; 1508 } 1509 (*p_isr)->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1510 1511 switch (xisr->sadb_x_ipsecrequest_level) { 1512 case IPSEC_LEVEL_DEFAULT: 1513 case IPSEC_LEVEL_USE: 1514 case IPSEC_LEVEL_REQUIRE: 1515 break; 1516 case IPSEC_LEVEL_UNIQUE: 1517 /* validity check */ 1518 /* 1519 * If range violation of reqid, kernel will 1520 * update it, don't refuse it. 1521 */ 1522 if (xisr->sadb_x_ipsecrequest_reqid 1523 > IPSEC_MANUAL_REQID_MAX) { 1524 ipseclog((LOG_DEBUG, 1525 "%s: reqid=%d range " 1526 "violation, updated by kernel.\n", 1527 __func__, 1528 xisr->sadb_x_ipsecrequest_reqid)); 1529 xisr->sadb_x_ipsecrequest_reqid = 0; 1530 } 1531 1532 /* allocate new reqid id if reqid is zero. */ 1533 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1534 u_int32_t reqid; 1535 if ((reqid = key_newreqid()) == 0) { 1536 KEY_FREESP(&newsp); 1537 *error = ENOBUFS; 1538 return NULL; 1539 } 1540 (*p_isr)->saidx.reqid = reqid; 1541 xisr->sadb_x_ipsecrequest_reqid = reqid; 1542 } else { 1543 /* set it for manual keying. */ 1544 (*p_isr)->saidx.reqid = 1545 xisr->sadb_x_ipsecrequest_reqid; 1546 } 1547 break; 1548 1549 default: 1550 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1551 __func__, 1552 xisr->sadb_x_ipsecrequest_level)); 1553 KEY_FREESP(&newsp); 1554 *error = EINVAL; 1555 return NULL; 1556 } 1557 (*p_isr)->level = xisr->sadb_x_ipsecrequest_level; 1558 1559 /* set IP addresses if there */ 1560 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1561 struct sockaddr *paddr; 1562 1563 paddr = (struct sockaddr *)(xisr + 1); 1564 1565 /* validity check */ 1566 if (paddr->sa_len 1567 > sizeof((*p_isr)->saidx.src)) { 1568 ipseclog((LOG_DEBUG, "%s: invalid " 1569 "request address length.\n", 1570 __func__)); 1571 KEY_FREESP(&newsp); 1572 *error = EINVAL; 1573 return NULL; 1574 } 1575 bcopy(paddr, &(*p_isr)->saidx.src, 1576 paddr->sa_len); 1577 1578 paddr = (struct sockaddr *)((caddr_t)paddr 1579 + paddr->sa_len); 1580 1581 /* validity check */ 1582 if (paddr->sa_len 1583 > sizeof((*p_isr)->saidx.dst)) { 1584 ipseclog((LOG_DEBUG, "%s: invalid " 1585 "request address length.\n", 1586 __func__)); 1587 KEY_FREESP(&newsp); 1588 *error = EINVAL; 1589 return NULL; 1590 } 1591 bcopy(paddr, &(*p_isr)->saidx.dst, 1592 paddr->sa_len); 1593 } 1594 1595 (*p_isr)->sp = newsp; 1596 1597 /* initialization for the next. */ 1598 p_isr = &(*p_isr)->next; 1599 tlen -= xisr->sadb_x_ipsecrequest_len; 1600 1601 /* validity check */ 1602 if (tlen < 0) { 1603 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1604 __func__)); 1605 KEY_FREESP(&newsp); 1606 *error = EINVAL; 1607 return NULL; 1608 } 1609 1610 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1611 + xisr->sadb_x_ipsecrequest_len); 1612 } 1613 } 1614 break; 1615 default: 1616 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1617 KEY_FREESP(&newsp); 1618 *error = EINVAL; 1619 return NULL; 1620 } 1621 1622 *error = 0; 1623 return newsp; 1624 } 1625 1626 static u_int32_t 1627 key_newreqid() 1628 { 1629 static u_int32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1630 1631 auto_reqid = (auto_reqid == ~0 1632 ? IPSEC_MANUAL_REQID_MAX + 1 : auto_reqid + 1); 1633 1634 /* XXX should be unique check */ 1635 1636 return auto_reqid; 1637 } 1638 1639 /* 1640 * copy secpolicy struct to sadb_x_policy structure indicated. 1641 */ 1642 struct mbuf * 1643 key_sp2msg(sp) 1644 struct secpolicy *sp; 1645 { 1646 struct sadb_x_policy *xpl; 1647 int tlen; 1648 caddr_t p; 1649 struct mbuf *m; 1650 1651 IPSEC_ASSERT(sp != NULL, ("null policy")); 1652 1653 tlen = key_getspreqmsglen(sp); 1654 1655 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1656 if (m == NULL) 1657 return (NULL); 1658 m_align(m, tlen); 1659 m->m_len = tlen; 1660 xpl = mtod(m, struct sadb_x_policy *); 1661 bzero(xpl, tlen); 1662 1663 xpl->sadb_x_policy_len = PFKEY_UNIT64(tlen); 1664 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1665 xpl->sadb_x_policy_type = sp->policy; 1666 xpl->sadb_x_policy_dir = sp->spidx.dir; 1667 xpl->sadb_x_policy_id = sp->id; 1668 p = (caddr_t)xpl + sizeof(*xpl); 1669 1670 /* if is the policy for ipsec ? */ 1671 if (sp->policy == IPSEC_POLICY_IPSEC) { 1672 struct sadb_x_ipsecrequest *xisr; 1673 struct ipsecrequest *isr; 1674 1675 for (isr = sp->req; isr != NULL; isr = isr->next) { 1676 1677 xisr = (struct sadb_x_ipsecrequest *)p; 1678 1679 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1680 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1681 xisr->sadb_x_ipsecrequest_level = isr->level; 1682 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1683 1684 p += sizeof(*xisr); 1685 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1686 p += isr->saidx.src.sa.sa_len; 1687 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1688 p += isr->saidx.src.sa.sa_len; 1689 1690 xisr->sadb_x_ipsecrequest_len = 1691 PFKEY_ALIGN8(sizeof(*xisr) 1692 + isr->saidx.src.sa.sa_len 1693 + isr->saidx.dst.sa.sa_len); 1694 } 1695 } 1696 1697 return m; 1698 } 1699 1700 /* m will not be freed nor modified */ 1701 static struct mbuf * 1702 #ifdef __STDC__ 1703 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1704 int ndeep, int nitem, ...) 1705 #else 1706 key_gather_mbuf(m, mhp, ndeep, nitem, va_alist) 1707 struct mbuf *m; 1708 const struct sadb_msghdr *mhp; 1709 int ndeep; 1710 int nitem; 1711 va_dcl 1712 #endif 1713 { 1714 va_list ap; 1715 int idx; 1716 int i; 1717 struct mbuf *result = NULL, *n; 1718 int len; 1719 1720 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1721 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1722 1723 va_start(ap, nitem); 1724 for (i = 0; i < nitem; i++) { 1725 idx = va_arg(ap, int); 1726 if (idx < 0 || idx > SADB_EXT_MAX) 1727 goto fail; 1728 /* don't attempt to pull empty extension */ 1729 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1730 continue; 1731 if (idx != SADB_EXT_RESERVED && 1732 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1733 continue; 1734 1735 if (idx == SADB_EXT_RESERVED) { 1736 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1737 1738 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1739 1740 MGETHDR(n, M_NOWAIT, MT_DATA); 1741 if (!n) 1742 goto fail; 1743 n->m_len = len; 1744 n->m_next = NULL; 1745 m_copydata(m, 0, sizeof(struct sadb_msg), 1746 mtod(n, caddr_t)); 1747 } else if (i < ndeep) { 1748 len = mhp->extlen[idx]; 1749 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1750 if (n == NULL) 1751 goto fail; 1752 m_align(n, len); 1753 n->m_len = len; 1754 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1755 mtod(n, caddr_t)); 1756 } else { 1757 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1758 M_NOWAIT); 1759 } 1760 if (n == NULL) 1761 goto fail; 1762 1763 if (result) 1764 m_cat(result, n); 1765 else 1766 result = n; 1767 } 1768 va_end(ap); 1769 1770 if ((result->m_flags & M_PKTHDR) != 0) { 1771 result->m_pkthdr.len = 0; 1772 for (n = result; n; n = n->m_next) 1773 result->m_pkthdr.len += n->m_len; 1774 } 1775 1776 return result; 1777 1778 fail: 1779 m_freem(result); 1780 va_end(ap); 1781 return NULL; 1782 } 1783 1784 /* 1785 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1786 * add an entry to SP database, when received 1787 * <base, address(SD), (lifetime(H),) policy> 1788 * from the user(?). 1789 * Adding to SP database, 1790 * and send 1791 * <base, address(SD), (lifetime(H),) policy> 1792 * to the socket which was send. 1793 * 1794 * SPDADD set a unique policy entry. 1795 * SPDSETIDX like SPDADD without a part of policy requests. 1796 * SPDUPDATE replace a unique policy entry. 1797 * 1798 * m will always be freed. 1799 */ 1800 static int 1801 key_spdadd(so, m, mhp) 1802 struct socket *so; 1803 struct mbuf *m; 1804 const struct sadb_msghdr *mhp; 1805 { 1806 struct sadb_address *src0, *dst0; 1807 struct sadb_x_policy *xpl0, *xpl; 1808 struct sadb_lifetime *lft = NULL; 1809 struct secpolicyindex spidx; 1810 struct secpolicy *newsp; 1811 int error; 1812 1813 IPSEC_ASSERT(so != NULL, ("null socket")); 1814 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1815 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1816 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1817 1818 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 1819 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 1820 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 1821 ipseclog((LOG_DEBUG, "key_spdadd: invalid message is passed.\n")); 1822 return key_senderror(so, m, EINVAL); 1823 } 1824 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 1825 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 1826 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 1827 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1828 __func__)); 1829 return key_senderror(so, m, EINVAL); 1830 } 1831 if (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL) { 1832 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] 1833 < sizeof(struct sadb_lifetime)) { 1834 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 1835 __func__)); 1836 return key_senderror(so, m, EINVAL); 1837 } 1838 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 1839 } 1840 1841 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 1842 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 1843 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 1844 1845 /* 1846 * Note: do not parse SADB_X_EXT_NAT_T_* here: 1847 * we are processing traffic endpoints. 1848 */ 1849 1850 /* make secindex */ 1851 /* XXX boundary check against sa_len */ 1852 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1853 src0 + 1, 1854 dst0 + 1, 1855 src0->sadb_address_prefixlen, 1856 dst0->sadb_address_prefixlen, 1857 src0->sadb_address_proto, 1858 &spidx); 1859 1860 /* checking the direciton. */ 1861 switch (xpl0->sadb_x_policy_dir) { 1862 case IPSEC_DIR_INBOUND: 1863 case IPSEC_DIR_OUTBOUND: 1864 break; 1865 default: 1866 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 1867 mhp->msg->sadb_msg_errno = EINVAL; 1868 return 0; 1869 } 1870 1871 /* check policy */ 1872 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 1873 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_ENTRUST 1874 || xpl0->sadb_x_policy_type == IPSEC_POLICY_BYPASS) { 1875 ipseclog((LOG_DEBUG, "%s: Invalid policy type.\n", __func__)); 1876 return key_senderror(so, m, EINVAL); 1877 } 1878 1879 /* policy requests are mandatory when action is ipsec. */ 1880 if (mhp->msg->sadb_msg_type != SADB_X_SPDSETIDX 1881 && xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC 1882 && mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 1883 ipseclog((LOG_DEBUG, "%s: some policy requests part required\n", 1884 __func__)); 1885 return key_senderror(so, m, EINVAL); 1886 } 1887 1888 /* 1889 * checking there is SP already or not. 1890 * SPDUPDATE doesn't depend on whether there is a SP or not. 1891 * If the type is either SPDADD or SPDSETIDX AND a SP is found, 1892 * then error. 1893 */ 1894 newsp = key_getsp(&spidx); 1895 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1896 if (newsp) { 1897 SPTREE_LOCK(); 1898 newsp->state = IPSEC_SPSTATE_DEAD; 1899 SPTREE_UNLOCK(); 1900 KEY_FREESP(&newsp); 1901 } 1902 } else { 1903 if (newsp != NULL) { 1904 KEY_FREESP(&newsp); 1905 ipseclog((LOG_DEBUG, "%s: a SP entry exists already.\n", 1906 __func__)); 1907 return key_senderror(so, m, EEXIST); 1908 } 1909 } 1910 1911 /* allocation new SP entry */ 1912 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 1913 return key_senderror(so, m, error); 1914 } 1915 1916 if ((newsp->id = key_getnewspid()) == 0) { 1917 _key_delsp(newsp); 1918 return key_senderror(so, m, ENOBUFS); 1919 } 1920 1921 /* XXX boundary check against sa_len */ 1922 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 1923 src0 + 1, 1924 dst0 + 1, 1925 src0->sadb_address_prefixlen, 1926 dst0->sadb_address_prefixlen, 1927 src0->sadb_address_proto, 1928 &newsp->spidx); 1929 1930 /* sanity check on addr pair */ 1931 if (((struct sockaddr *)(src0 + 1))->sa_family != 1932 ((struct sockaddr *)(dst0+ 1))->sa_family) { 1933 _key_delsp(newsp); 1934 return key_senderror(so, m, EINVAL); 1935 } 1936 if (((struct sockaddr *)(src0 + 1))->sa_len != 1937 ((struct sockaddr *)(dst0+ 1))->sa_len) { 1938 _key_delsp(newsp); 1939 return key_senderror(so, m, EINVAL); 1940 } 1941 #if 1 1942 if (newsp->req && newsp->req->saidx.src.sa.sa_family && newsp->req->saidx.dst.sa.sa_family) { 1943 if (newsp->req->saidx.src.sa.sa_family != newsp->req->saidx.dst.sa.sa_family) { 1944 _key_delsp(newsp); 1945 return key_senderror(so, m, EINVAL); 1946 } 1947 } 1948 #endif 1949 1950 newsp->created = time_second; 1951 newsp->lastused = newsp->created; 1952 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 1953 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 1954 1955 newsp->refcnt = 1; /* do not reclaim until I say I do */ 1956 newsp->state = IPSEC_SPSTATE_ALIVE; 1957 LIST_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, secpolicy, chain); 1958 1959 /* delete the entry in spacqtree */ 1960 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 1961 struct secspacq *spacq = key_getspacq(&spidx); 1962 if (spacq != NULL) { 1963 /* reset counter in order to deletion by timehandler. */ 1964 spacq->created = time_second; 1965 spacq->count = 0; 1966 SPACQ_UNLOCK(); 1967 } 1968 } 1969 1970 { 1971 struct mbuf *n, *mpolicy; 1972 struct sadb_msg *newmsg; 1973 int off; 1974 1975 /* 1976 * Note: do not send SADB_X_EXT_NAT_T_* here: 1977 * we are sending traffic endpoints. 1978 */ 1979 1980 /* create new sadb_msg to reply. */ 1981 if (lft) { 1982 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 1983 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 1984 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1985 } else { 1986 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 1987 SADB_X_EXT_POLICY, 1988 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 1989 } 1990 if (!n) 1991 return key_senderror(so, m, ENOBUFS); 1992 1993 if (n->m_len < sizeof(*newmsg)) { 1994 n = m_pullup(n, sizeof(*newmsg)); 1995 if (!n) 1996 return key_senderror(so, m, ENOBUFS); 1997 } 1998 newmsg = mtod(n, struct sadb_msg *); 1999 newmsg->sadb_msg_errno = 0; 2000 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2001 2002 off = 0; 2003 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2004 sizeof(*xpl), &off); 2005 if (mpolicy == NULL) { 2006 /* n is already freed */ 2007 return key_senderror(so, m, ENOBUFS); 2008 } 2009 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2010 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2011 m_freem(n); 2012 return key_senderror(so, m, EINVAL); 2013 } 2014 xpl->sadb_x_policy_id = newsp->id; 2015 2016 m_freem(m); 2017 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2018 } 2019 } 2020 2021 /* 2022 * get new policy id. 2023 * OUT: 2024 * 0: failure. 2025 * others: success. 2026 */ 2027 static u_int32_t 2028 key_getnewspid() 2029 { 2030 u_int32_t newid = 0; 2031 int count = V_key_spi_trycnt; /* XXX */ 2032 struct secpolicy *sp; 2033 2034 /* when requesting to allocate spi ranged */ 2035 while (count--) { 2036 newid = (V_policy_id = (V_policy_id == ~0 ? 1 : V_policy_id + 1)); 2037 2038 if ((sp = key_getspbyid(newid)) == NULL) 2039 break; 2040 2041 KEY_FREESP(&sp); 2042 } 2043 2044 if (count == 0 || newid == 0) { 2045 ipseclog((LOG_DEBUG, "%s: to allocate policy id is failed.\n", 2046 __func__)); 2047 return 0; 2048 } 2049 2050 return newid; 2051 } 2052 2053 /* 2054 * SADB_SPDDELETE processing 2055 * receive 2056 * <base, address(SD), policy(*)> 2057 * from the user(?), and set SADB_SASTATE_DEAD, 2058 * and send, 2059 * <base, address(SD), policy(*)> 2060 * to the ikmpd. 2061 * policy(*) including direction of policy. 2062 * 2063 * m will always be freed. 2064 */ 2065 static int 2066 key_spddelete(so, m, mhp) 2067 struct socket *so; 2068 struct mbuf *m; 2069 const struct sadb_msghdr *mhp; 2070 { 2071 struct sadb_address *src0, *dst0; 2072 struct sadb_x_policy *xpl0; 2073 struct secpolicyindex spidx; 2074 struct secpolicy *sp; 2075 2076 IPSEC_ASSERT(so != NULL, ("null so")); 2077 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2078 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2079 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2080 2081 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 2082 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 2083 mhp->ext[SADB_X_EXT_POLICY] == NULL) { 2084 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2085 __func__)); 2086 return key_senderror(so, m, EINVAL); 2087 } 2088 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 2089 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 2090 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2091 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2092 __func__)); 2093 return key_senderror(so, m, EINVAL); 2094 } 2095 2096 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2097 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2098 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2099 2100 /* 2101 * Note: do not parse SADB_X_EXT_NAT_T_* here: 2102 * we are processing traffic endpoints. 2103 */ 2104 2105 /* make secindex */ 2106 /* XXX boundary check against sa_len */ 2107 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2108 src0 + 1, 2109 dst0 + 1, 2110 src0->sadb_address_prefixlen, 2111 dst0->sadb_address_prefixlen, 2112 src0->sadb_address_proto, 2113 &spidx); 2114 2115 /* checking the direciton. */ 2116 switch (xpl0->sadb_x_policy_dir) { 2117 case IPSEC_DIR_INBOUND: 2118 case IPSEC_DIR_OUTBOUND: 2119 break; 2120 default: 2121 ipseclog((LOG_DEBUG, "%s: Invalid SP direction.\n", __func__)); 2122 return key_senderror(so, m, EINVAL); 2123 } 2124 2125 /* Is there SP in SPD ? */ 2126 if ((sp = key_getsp(&spidx)) == NULL) { 2127 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2128 return key_senderror(so, m, EINVAL); 2129 } 2130 2131 /* save policy id to buffer to be returned. */ 2132 xpl0->sadb_x_policy_id = sp->id; 2133 2134 SPTREE_LOCK(); 2135 sp->state = IPSEC_SPSTATE_DEAD; 2136 SPTREE_UNLOCK(); 2137 KEY_FREESP(&sp); 2138 2139 { 2140 struct mbuf *n; 2141 struct sadb_msg *newmsg; 2142 2143 /* 2144 * Note: do not send SADB_X_EXT_NAT_T_* here: 2145 * we are sending traffic endpoints. 2146 */ 2147 2148 /* create new sadb_msg to reply. */ 2149 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2150 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2151 if (!n) 2152 return key_senderror(so, m, ENOBUFS); 2153 2154 newmsg = mtod(n, struct sadb_msg *); 2155 newmsg->sadb_msg_errno = 0; 2156 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2157 2158 m_freem(m); 2159 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2160 } 2161 } 2162 2163 /* 2164 * SADB_SPDDELETE2 processing 2165 * receive 2166 * <base, policy(*)> 2167 * from the user(?), and set SADB_SASTATE_DEAD, 2168 * and send, 2169 * <base, policy(*)> 2170 * to the ikmpd. 2171 * policy(*) including direction of policy. 2172 * 2173 * m will always be freed. 2174 */ 2175 static int 2176 key_spddelete2(so, m, mhp) 2177 struct socket *so; 2178 struct mbuf *m; 2179 const struct sadb_msghdr *mhp; 2180 { 2181 u_int32_t id; 2182 struct secpolicy *sp; 2183 2184 IPSEC_ASSERT(so != NULL, ("null socket")); 2185 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2186 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2187 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2188 2189 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2190 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2191 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", __func__)); 2192 return key_senderror(so, m, EINVAL); 2193 } 2194 2195 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2196 2197 /* Is there SP in SPD ? */ 2198 if ((sp = key_getspbyid(id)) == NULL) { 2199 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2200 return key_senderror(so, m, EINVAL); 2201 } 2202 2203 SPTREE_LOCK(); 2204 sp->state = IPSEC_SPSTATE_DEAD; 2205 SPTREE_UNLOCK(); 2206 KEY_FREESP(&sp); 2207 2208 { 2209 struct mbuf *n, *nn; 2210 struct sadb_msg *newmsg; 2211 int off, len; 2212 2213 /* create new sadb_msg to reply. */ 2214 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2215 2216 MGETHDR(n, M_NOWAIT, MT_DATA); 2217 if (n && len > MHLEN) { 2218 MCLGET(n, M_NOWAIT); 2219 if ((n->m_flags & M_EXT) == 0) { 2220 m_freem(n); 2221 n = NULL; 2222 } 2223 } 2224 if (!n) 2225 return key_senderror(so, m, ENOBUFS); 2226 2227 n->m_len = len; 2228 n->m_next = NULL; 2229 off = 0; 2230 2231 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2232 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2233 2234 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2235 off, len)); 2236 2237 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2238 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2239 if (!n->m_next) { 2240 m_freem(n); 2241 return key_senderror(so, m, ENOBUFS); 2242 } 2243 2244 n->m_pkthdr.len = 0; 2245 for (nn = n; nn; nn = nn->m_next) 2246 n->m_pkthdr.len += nn->m_len; 2247 2248 newmsg = mtod(n, struct sadb_msg *); 2249 newmsg->sadb_msg_errno = 0; 2250 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2251 2252 m_freem(m); 2253 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2254 } 2255 } 2256 2257 /* 2258 * SADB_X_GET processing 2259 * receive 2260 * <base, policy(*)> 2261 * from the user(?), 2262 * and send, 2263 * <base, address(SD), policy> 2264 * to the ikmpd. 2265 * policy(*) including direction of policy. 2266 * 2267 * m will always be freed. 2268 */ 2269 static int 2270 key_spdget(so, m, mhp) 2271 struct socket *so; 2272 struct mbuf *m; 2273 const struct sadb_msghdr *mhp; 2274 { 2275 u_int32_t id; 2276 struct secpolicy *sp; 2277 struct mbuf *n; 2278 2279 IPSEC_ASSERT(so != NULL, ("null socket")); 2280 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2281 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2282 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2283 2284 if (mhp->ext[SADB_X_EXT_POLICY] == NULL || 2285 mhp->extlen[SADB_X_EXT_POLICY] < sizeof(struct sadb_x_policy)) { 2286 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2287 __func__)); 2288 return key_senderror(so, m, EINVAL); 2289 } 2290 2291 id = ((struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2292 2293 /* Is there SP in SPD ? */ 2294 if ((sp = key_getspbyid(id)) == NULL) { 2295 ipseclog((LOG_DEBUG, "%s: no SP found id:%u.\n", __func__, id)); 2296 return key_senderror(so, m, ENOENT); 2297 } 2298 2299 n = key_setdumpsp(sp, SADB_X_SPDGET, 0, mhp->msg->sadb_msg_pid); 2300 KEY_FREESP(&sp); 2301 if (n != NULL) { 2302 m_freem(m); 2303 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2304 } else 2305 return key_senderror(so, m, ENOBUFS); 2306 } 2307 2308 /* 2309 * SADB_X_SPDACQUIRE processing. 2310 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2311 * send 2312 * <base, policy(*)> 2313 * to KMD, and expect to receive 2314 * <base> with SADB_X_SPDACQUIRE if error occured, 2315 * or 2316 * <base, policy> 2317 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2318 * policy(*) is without policy requests. 2319 * 2320 * 0 : succeed 2321 * others: error number 2322 */ 2323 int 2324 key_spdacquire(sp) 2325 struct secpolicy *sp; 2326 { 2327 struct mbuf *result = NULL, *m; 2328 struct secspacq *newspacq; 2329 2330 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2331 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2332 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2333 ("policy not IPSEC %u", sp->policy)); 2334 2335 /* Get an entry to check whether sent message or not. */ 2336 newspacq = key_getspacq(&sp->spidx); 2337 if (newspacq != NULL) { 2338 if (V_key_blockacq_count < newspacq->count) { 2339 /* reset counter and do send message. */ 2340 newspacq->count = 0; 2341 } else { 2342 /* increment counter and do nothing. */ 2343 newspacq->count++; 2344 return 0; 2345 } 2346 SPACQ_UNLOCK(); 2347 } else { 2348 /* make new entry for blocking to send SADB_ACQUIRE. */ 2349 newspacq = key_newspacq(&sp->spidx); 2350 if (newspacq == NULL) 2351 return ENOBUFS; 2352 } 2353 2354 /* create new sadb_msg to reply. */ 2355 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2356 if (!m) 2357 return ENOBUFS; 2358 2359 result = m; 2360 2361 result->m_pkthdr.len = 0; 2362 for (m = result; m; m = m->m_next) 2363 result->m_pkthdr.len += m->m_len; 2364 2365 mtod(result, struct sadb_msg *)->sadb_msg_len = 2366 PFKEY_UNIT64(result->m_pkthdr.len); 2367 2368 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2369 } 2370 2371 /* 2372 * SADB_SPDFLUSH processing 2373 * receive 2374 * <base> 2375 * from the user, and free all entries in secpctree. 2376 * and send, 2377 * <base> 2378 * to the user. 2379 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2380 * 2381 * m will always be freed. 2382 */ 2383 static int 2384 key_spdflush(so, m, mhp) 2385 struct socket *so; 2386 struct mbuf *m; 2387 const struct sadb_msghdr *mhp; 2388 { 2389 struct sadb_msg *newmsg; 2390 struct secpolicy *sp; 2391 u_int dir; 2392 2393 IPSEC_ASSERT(so != NULL, ("null socket")); 2394 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2395 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2396 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2397 2398 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2399 return key_senderror(so, m, EINVAL); 2400 2401 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2402 SPTREE_LOCK(); 2403 LIST_FOREACH(sp, &V_sptree[dir], chain) 2404 sp->state = IPSEC_SPSTATE_DEAD; 2405 SPTREE_UNLOCK(); 2406 } 2407 2408 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2409 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2410 return key_senderror(so, m, ENOBUFS); 2411 } 2412 2413 if (m->m_next) 2414 m_freem(m->m_next); 2415 m->m_next = NULL; 2416 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2417 newmsg = mtod(m, struct sadb_msg *); 2418 newmsg->sadb_msg_errno = 0; 2419 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2420 2421 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2422 } 2423 2424 /* 2425 * SADB_SPDDUMP processing 2426 * receive 2427 * <base> 2428 * from the user, and dump all SP leaves 2429 * and send, 2430 * <base> ..... 2431 * to the ikmpd. 2432 * 2433 * m will always be freed. 2434 */ 2435 static int 2436 key_spddump(so, m, mhp) 2437 struct socket *so; 2438 struct mbuf *m; 2439 const struct sadb_msghdr *mhp; 2440 { 2441 struct secpolicy *sp; 2442 int cnt; 2443 u_int dir; 2444 struct mbuf *n; 2445 2446 IPSEC_ASSERT(so != NULL, ("null socket")); 2447 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2448 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2449 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2450 2451 /* search SPD entry and get buffer size. */ 2452 cnt = 0; 2453 SPTREE_LOCK(); 2454 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2455 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2456 cnt++; 2457 } 2458 } 2459 2460 if (cnt == 0) { 2461 SPTREE_UNLOCK(); 2462 return key_senderror(so, m, ENOENT); 2463 } 2464 2465 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2466 LIST_FOREACH(sp, &V_sptree[dir], chain) { 2467 --cnt; 2468 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2469 mhp->msg->sadb_msg_pid); 2470 2471 if (n) 2472 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2473 } 2474 } 2475 2476 SPTREE_UNLOCK(); 2477 m_freem(m); 2478 return 0; 2479 } 2480 2481 static struct mbuf * 2482 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, u_int32_t pid) 2483 { 2484 struct mbuf *result = NULL, *m; 2485 struct seclifetime lt; 2486 2487 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2488 if (!m) 2489 goto fail; 2490 result = m; 2491 2492 /* 2493 * Note: do not send SADB_X_EXT_NAT_T_* here: 2494 * we are sending traffic endpoints. 2495 */ 2496 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2497 &sp->spidx.src.sa, sp->spidx.prefs, 2498 sp->spidx.ul_proto); 2499 if (!m) 2500 goto fail; 2501 m_cat(result, m); 2502 2503 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2504 &sp->spidx.dst.sa, sp->spidx.prefd, 2505 sp->spidx.ul_proto); 2506 if (!m) 2507 goto fail; 2508 m_cat(result, m); 2509 2510 m = key_sp2msg(sp); 2511 if (!m) 2512 goto fail; 2513 m_cat(result, m); 2514 2515 if(sp->lifetime){ 2516 lt.addtime=sp->created; 2517 lt.usetime= sp->lastused; 2518 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2519 if (!m) 2520 goto fail; 2521 m_cat(result, m); 2522 2523 lt.addtime=sp->lifetime; 2524 lt.usetime= sp->validtime; 2525 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2526 if (!m) 2527 goto fail; 2528 m_cat(result, m); 2529 } 2530 2531 if ((result->m_flags & M_PKTHDR) == 0) 2532 goto fail; 2533 2534 if (result->m_len < sizeof(struct sadb_msg)) { 2535 result = m_pullup(result, sizeof(struct sadb_msg)); 2536 if (result == NULL) 2537 goto fail; 2538 } 2539 2540 result->m_pkthdr.len = 0; 2541 for (m = result; m; m = m->m_next) 2542 result->m_pkthdr.len += m->m_len; 2543 2544 mtod(result, struct sadb_msg *)->sadb_msg_len = 2545 PFKEY_UNIT64(result->m_pkthdr.len); 2546 2547 return result; 2548 2549 fail: 2550 m_freem(result); 2551 return NULL; 2552 } 2553 2554 /* 2555 * get PFKEY message length for security policy and request. 2556 */ 2557 static u_int 2558 key_getspreqmsglen(sp) 2559 struct secpolicy *sp; 2560 { 2561 u_int tlen; 2562 2563 tlen = sizeof(struct sadb_x_policy); 2564 2565 /* if is the policy for ipsec ? */ 2566 if (sp->policy != IPSEC_POLICY_IPSEC) 2567 return tlen; 2568 2569 /* get length of ipsec requests */ 2570 { 2571 struct ipsecrequest *isr; 2572 int len; 2573 2574 for (isr = sp->req; isr != NULL; isr = isr->next) { 2575 len = sizeof(struct sadb_x_ipsecrequest) 2576 + isr->saidx.src.sa.sa_len 2577 + isr->saidx.dst.sa.sa_len; 2578 2579 tlen += PFKEY_ALIGN8(len); 2580 } 2581 } 2582 2583 return tlen; 2584 } 2585 2586 /* 2587 * SADB_SPDEXPIRE processing 2588 * send 2589 * <base, address(SD), lifetime(CH), policy> 2590 * to KMD by PF_KEY. 2591 * 2592 * OUT: 0 : succeed 2593 * others : error number 2594 */ 2595 static int 2596 key_spdexpire(sp) 2597 struct secpolicy *sp; 2598 { 2599 struct mbuf *result = NULL, *m; 2600 int len; 2601 int error = -1; 2602 struct sadb_lifetime *lt; 2603 2604 /* XXX: Why do we lock ? */ 2605 2606 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2607 2608 /* set msg header */ 2609 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2610 if (!m) { 2611 error = ENOBUFS; 2612 goto fail; 2613 } 2614 result = m; 2615 2616 /* create lifetime extension (current and hard) */ 2617 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2618 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2619 if (m == NULL) { 2620 error = ENOBUFS; 2621 goto fail; 2622 } 2623 m_align(m, len); 2624 m->m_len = len; 2625 bzero(mtod(m, caddr_t), len); 2626 lt = mtod(m, struct sadb_lifetime *); 2627 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2628 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2629 lt->sadb_lifetime_allocations = 0; 2630 lt->sadb_lifetime_bytes = 0; 2631 lt->sadb_lifetime_addtime = sp->created; 2632 lt->sadb_lifetime_usetime = sp->lastused; 2633 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2634 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2635 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2636 lt->sadb_lifetime_allocations = 0; 2637 lt->sadb_lifetime_bytes = 0; 2638 lt->sadb_lifetime_addtime = sp->lifetime; 2639 lt->sadb_lifetime_usetime = sp->validtime; 2640 m_cat(result, m); 2641 2642 /* 2643 * Note: do not send SADB_X_EXT_NAT_T_* here: 2644 * we are sending traffic endpoints. 2645 */ 2646 2647 /* set sadb_address for source */ 2648 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2649 &sp->spidx.src.sa, 2650 sp->spidx.prefs, sp->spidx.ul_proto); 2651 if (!m) { 2652 error = ENOBUFS; 2653 goto fail; 2654 } 2655 m_cat(result, m); 2656 2657 /* set sadb_address for destination */ 2658 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2659 &sp->spidx.dst.sa, 2660 sp->spidx.prefd, sp->spidx.ul_proto); 2661 if (!m) { 2662 error = ENOBUFS; 2663 goto fail; 2664 } 2665 m_cat(result, m); 2666 2667 /* set secpolicy */ 2668 m = key_sp2msg(sp); 2669 if (!m) { 2670 error = ENOBUFS; 2671 goto fail; 2672 } 2673 m_cat(result, m); 2674 2675 if ((result->m_flags & M_PKTHDR) == 0) { 2676 error = EINVAL; 2677 goto fail; 2678 } 2679 2680 if (result->m_len < sizeof(struct sadb_msg)) { 2681 result = m_pullup(result, sizeof(struct sadb_msg)); 2682 if (result == NULL) { 2683 error = ENOBUFS; 2684 goto fail; 2685 } 2686 } 2687 2688 result->m_pkthdr.len = 0; 2689 for (m = result; m; m = m->m_next) 2690 result->m_pkthdr.len += m->m_len; 2691 2692 mtod(result, struct sadb_msg *)->sadb_msg_len = 2693 PFKEY_UNIT64(result->m_pkthdr.len); 2694 2695 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2696 2697 fail: 2698 if (result) 2699 m_freem(result); 2700 return error; 2701 } 2702 2703 /* %%% SAD management */ 2704 /* 2705 * allocating a memory for new SA head, and copy from the values of mhp. 2706 * OUT: NULL : failure due to the lack of memory. 2707 * others : pointer to new SA head. 2708 */ 2709 static struct secashead * 2710 key_newsah(saidx) 2711 struct secasindex *saidx; 2712 { 2713 struct secashead *newsah; 2714 2715 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 2716 2717 newsah = malloc(sizeof(struct secashead), M_IPSEC_SAH, M_NOWAIT|M_ZERO); 2718 if (newsah != NULL) { 2719 int i; 2720 for (i = 0; i < sizeof(newsah->savtree)/sizeof(newsah->savtree[0]); i++) 2721 LIST_INIT(&newsah->savtree[i]); 2722 newsah->saidx = *saidx; 2723 2724 /* add to saidxtree */ 2725 newsah->state = SADB_SASTATE_MATURE; 2726 2727 SAHTREE_LOCK(); 2728 LIST_INSERT_HEAD(&V_sahtree, newsah, chain); 2729 SAHTREE_UNLOCK(); 2730 } 2731 return(newsah); 2732 } 2733 2734 /* 2735 * delete SA index and all SA registerd. 2736 */ 2737 static void 2738 key_delsah(sah) 2739 struct secashead *sah; 2740 { 2741 struct secasvar *sav, *nextsav; 2742 u_int stateidx; 2743 int zombie = 0; 2744 2745 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2746 SAHTREE_LOCK_ASSERT(); 2747 2748 /* searching all SA registerd in the secindex. */ 2749 for (stateidx = 0; 2750 stateidx < _ARRAYLEN(saorder_state_any); 2751 stateidx++) { 2752 u_int state = saorder_state_any[stateidx]; 2753 LIST_FOREACH_SAFE(sav, &sah->savtree[state], chain, nextsav) { 2754 if (sav->refcnt == 0) { 2755 /* sanity check */ 2756 KEY_CHKSASTATE(state, sav->state, __func__); 2757 /* 2758 * do NOT call KEY_FREESAV here: 2759 * it will only delete the sav if refcnt == 1, 2760 * where we already know that refcnt == 0 2761 */ 2762 key_delsav(sav); 2763 } else { 2764 /* give up to delete this sa */ 2765 zombie++; 2766 } 2767 } 2768 } 2769 if (!zombie) { /* delete only if there are savs */ 2770 /* remove from tree of SA index */ 2771 if (__LIST_CHAINED(sah)) 2772 LIST_REMOVE(sah, chain); 2773 if (sah->route_cache.sa_route.ro_rt) { 2774 RTFREE(sah->route_cache.sa_route.ro_rt); 2775 sah->route_cache.sa_route.ro_rt = (struct rtentry *)NULL; 2776 } 2777 free(sah, M_IPSEC_SAH); 2778 } 2779 } 2780 2781 /* 2782 * allocating a new SA with LARVAL state. key_add() and key_getspi() call, 2783 * and copy the values of mhp into new buffer. 2784 * When SAD message type is GETSPI: 2785 * to set sequence number from acq_seq++, 2786 * to set zero to SPI. 2787 * not to call key_setsava(). 2788 * OUT: NULL : fail 2789 * others : pointer to new secasvar. 2790 * 2791 * does not modify mbuf. does not free mbuf on error. 2792 */ 2793 static struct secasvar * 2794 key_newsav(m, mhp, sah, errp, where, tag) 2795 struct mbuf *m; 2796 const struct sadb_msghdr *mhp; 2797 struct secashead *sah; 2798 int *errp; 2799 const char* where; 2800 int tag; 2801 { 2802 struct secasvar *newsav; 2803 const struct sadb_sa *xsa; 2804 2805 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2806 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2807 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2808 IPSEC_ASSERT(sah != NULL, ("null secashead")); 2809 2810 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT|M_ZERO); 2811 if (newsav == NULL) { 2812 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2813 *errp = ENOBUFS; 2814 goto done; 2815 } 2816 2817 switch (mhp->msg->sadb_msg_type) { 2818 case SADB_GETSPI: 2819 newsav->spi = 0; 2820 2821 #ifdef IPSEC_DOSEQCHECK 2822 /* sync sequence number */ 2823 if (mhp->msg->sadb_msg_seq == 0) 2824 newsav->seq = 2825 (V_acq_seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq)); 2826 else 2827 #endif 2828 newsav->seq = mhp->msg->sadb_msg_seq; 2829 break; 2830 2831 case SADB_ADD: 2832 /* sanity check */ 2833 if (mhp->ext[SADB_EXT_SA] == NULL) { 2834 free(newsav, M_IPSEC_SA); 2835 newsav = NULL; 2836 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2837 __func__)); 2838 *errp = EINVAL; 2839 goto done; 2840 } 2841 xsa = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 2842 newsav->spi = xsa->sadb_sa_spi; 2843 newsav->seq = mhp->msg->sadb_msg_seq; 2844 break; 2845 default: 2846 free(newsav, M_IPSEC_SA); 2847 newsav = NULL; 2848 *errp = EINVAL; 2849 goto done; 2850 } 2851 2852 2853 /* copy sav values */ 2854 if (mhp->msg->sadb_msg_type != SADB_GETSPI) { 2855 *errp = key_setsaval(newsav, m, mhp); 2856 if (*errp) { 2857 free(newsav, M_IPSEC_SA); 2858 newsav = NULL; 2859 goto done; 2860 } 2861 } 2862 2863 SECASVAR_LOCK_INIT(newsav); 2864 2865 /* reset created */ 2866 newsav->created = time_second; 2867 newsav->pid = mhp->msg->sadb_msg_pid; 2868 2869 /* add to satree */ 2870 newsav->sah = sah; 2871 sa_initref(newsav); 2872 newsav->state = SADB_SASTATE_LARVAL; 2873 2874 SAHTREE_LOCK(); 2875 LIST_INSERT_TAIL(&sah->savtree[SADB_SASTATE_LARVAL], newsav, 2876 secasvar, chain); 2877 SAHTREE_UNLOCK(); 2878 done: 2879 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 2880 printf("DP %s from %s:%u return SP:%p\n", __func__, 2881 where, tag, newsav)); 2882 2883 return newsav; 2884 } 2885 2886 /* 2887 * free() SA variable entry. 2888 */ 2889 static void 2890 key_cleansav(struct secasvar *sav) 2891 { 2892 /* 2893 * Cleanup xform state. Note that zeroize'ing causes the 2894 * keys to be cleared; otherwise we must do it ourself. 2895 */ 2896 if (sav->tdb_xform != NULL) { 2897 sav->tdb_xform->xf_zeroize(sav); 2898 sav->tdb_xform = NULL; 2899 } else { 2900 KASSERT(sav->iv == NULL, ("iv but no xform")); 2901 if (sav->key_auth != NULL) 2902 bzero(sav->key_auth->key_data, _KEYLEN(sav->key_auth)); 2903 if (sav->key_enc != NULL) 2904 bzero(sav->key_enc->key_data, _KEYLEN(sav->key_enc)); 2905 } 2906 if (sav->key_auth != NULL) { 2907 if (sav->key_auth->key_data != NULL) 2908 free(sav->key_auth->key_data, M_IPSEC_MISC); 2909 free(sav->key_auth, M_IPSEC_MISC); 2910 sav->key_auth = NULL; 2911 } 2912 if (sav->key_enc != NULL) { 2913 if (sav->key_enc->key_data != NULL) 2914 free(sav->key_enc->key_data, M_IPSEC_MISC); 2915 free(sav->key_enc, M_IPSEC_MISC); 2916 sav->key_enc = NULL; 2917 } 2918 if (sav->sched) { 2919 bzero(sav->sched, sav->schedlen); 2920 free(sav->sched, M_IPSEC_MISC); 2921 sav->sched = NULL; 2922 } 2923 if (sav->replay != NULL) { 2924 free(sav->replay, M_IPSEC_MISC); 2925 sav->replay = NULL; 2926 } 2927 if (sav->lft_c != NULL) { 2928 free(sav->lft_c, M_IPSEC_MISC); 2929 sav->lft_c = NULL; 2930 } 2931 if (sav->lft_h != NULL) { 2932 free(sav->lft_h, M_IPSEC_MISC); 2933 sav->lft_h = NULL; 2934 } 2935 if (sav->lft_s != NULL) { 2936 free(sav->lft_s, M_IPSEC_MISC); 2937 sav->lft_s = NULL; 2938 } 2939 } 2940 2941 /* 2942 * free() SA variable entry. 2943 */ 2944 static void 2945 key_delsav(sav) 2946 struct secasvar *sav; 2947 { 2948 IPSEC_ASSERT(sav != NULL, ("null sav")); 2949 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", sav->refcnt)); 2950 2951 /* remove from SA header */ 2952 if (__LIST_CHAINED(sav)) 2953 LIST_REMOVE(sav, chain); 2954 key_cleansav(sav); 2955 SECASVAR_LOCK_DESTROY(sav); 2956 free(sav, M_IPSEC_SA); 2957 } 2958 2959 /* 2960 * search SAD. 2961 * OUT: 2962 * NULL : not found 2963 * others : found, pointer to a SA. 2964 */ 2965 static struct secashead * 2966 key_getsah(saidx) 2967 struct secasindex *saidx; 2968 { 2969 struct secashead *sah; 2970 2971 SAHTREE_LOCK(); 2972 LIST_FOREACH(sah, &V_sahtree, chain) { 2973 if (sah->state == SADB_SASTATE_DEAD) 2974 continue; 2975 if (key_cmpsaidx(&sah->saidx, saidx, CMP_REQID)) 2976 break; 2977 } 2978 SAHTREE_UNLOCK(); 2979 2980 return sah; 2981 } 2982 2983 /* 2984 * check not to be duplicated SPI. 2985 * NOTE: this function is too slow due to searching all SAD. 2986 * OUT: 2987 * NULL : not found 2988 * others : found, pointer to a SA. 2989 */ 2990 static struct secasvar * 2991 key_checkspidup(saidx, spi) 2992 struct secasindex *saidx; 2993 u_int32_t spi; 2994 { 2995 struct secashead *sah; 2996 struct secasvar *sav; 2997 2998 /* check address family */ 2999 if (saidx->src.sa.sa_family != saidx->dst.sa.sa_family) { 3000 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 3001 __func__)); 3002 return NULL; 3003 } 3004 3005 sav = NULL; 3006 /* check all SAD */ 3007 SAHTREE_LOCK(); 3008 LIST_FOREACH(sah, &V_sahtree, chain) { 3009 if (!key_ismyaddr((struct sockaddr *)&sah->saidx.dst)) 3010 continue; 3011 sav = key_getsavbyspi(sah, spi); 3012 if (sav != NULL) 3013 break; 3014 } 3015 SAHTREE_UNLOCK(); 3016 3017 return sav; 3018 } 3019 3020 /* 3021 * search SAD litmited alive SA, protocol, SPI. 3022 * OUT: 3023 * NULL : not found 3024 * others : found, pointer to a SA. 3025 */ 3026 static struct secasvar * 3027 key_getsavbyspi(sah, spi) 3028 struct secashead *sah; 3029 u_int32_t spi; 3030 { 3031 struct secasvar *sav; 3032 u_int stateidx, state; 3033 3034 sav = NULL; 3035 SAHTREE_LOCK_ASSERT(); 3036 /* search all status */ 3037 for (stateidx = 0; 3038 stateidx < _ARRAYLEN(saorder_state_alive); 3039 stateidx++) { 3040 3041 state = saorder_state_alive[stateidx]; 3042 LIST_FOREACH(sav, &sah->savtree[state], chain) { 3043 3044 /* sanity check */ 3045 if (sav->state != state) { 3046 ipseclog((LOG_DEBUG, "%s: " 3047 "invalid sav->state (queue: %d SA: %d)\n", 3048 __func__, state, sav->state)); 3049 continue; 3050 } 3051 3052 if (sav->spi == spi) 3053 return sav; 3054 } 3055 } 3056 3057 return NULL; 3058 } 3059 3060 /* 3061 * copy SA values from PF_KEY message except *SPI, SEQ, PID, STATE and TYPE*. 3062 * You must update these if need. 3063 * OUT: 0: success. 3064 * !0: failure. 3065 * 3066 * does not modify mbuf. does not free mbuf on error. 3067 */ 3068 static int 3069 key_setsaval(sav, m, mhp) 3070 struct secasvar *sav; 3071 struct mbuf *m; 3072 const struct sadb_msghdr *mhp; 3073 { 3074 int error = 0; 3075 3076 IPSEC_ASSERT(m != NULL, ("null mbuf")); 3077 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3078 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3079 3080 /* initialization */ 3081 sav->replay = NULL; 3082 sav->key_auth = NULL; 3083 sav->key_enc = NULL; 3084 sav->sched = NULL; 3085 sav->schedlen = 0; 3086 sav->iv = NULL; 3087 sav->lft_c = NULL; 3088 sav->lft_h = NULL; 3089 sav->lft_s = NULL; 3090 sav->tdb_xform = NULL; /* transform */ 3091 sav->tdb_encalgxform = NULL; /* encoding algorithm */ 3092 sav->tdb_authalgxform = NULL; /* authentication algorithm */ 3093 sav->tdb_compalgxform = NULL; /* compression algorithm */ 3094 /* Initialize even if NAT-T not compiled in: */ 3095 sav->natt_type = 0; 3096 sav->natt_esp_frag_len = 0; 3097 3098 /* SA */ 3099 if (mhp->ext[SADB_EXT_SA] != NULL) { 3100 const struct sadb_sa *sa0; 3101 3102 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3103 if (mhp->extlen[SADB_EXT_SA] < sizeof(*sa0)) { 3104 error = EINVAL; 3105 goto fail; 3106 } 3107 3108 sav->alg_auth = sa0->sadb_sa_auth; 3109 sav->alg_enc = sa0->sadb_sa_encrypt; 3110 sav->flags = sa0->sadb_sa_flags; 3111 3112 /* replay window */ 3113 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) { 3114 sav->replay = (struct secreplay *) 3115 malloc(sizeof(struct secreplay)+sa0->sadb_sa_replay, M_IPSEC_MISC, M_NOWAIT|M_ZERO); 3116 if (sav->replay == NULL) { 3117 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3118 __func__)); 3119 error = ENOBUFS; 3120 goto fail; 3121 } 3122 if (sa0->sadb_sa_replay != 0) 3123 sav->replay->bitmap = (caddr_t)(sav->replay+1); 3124 sav->replay->wsize = sa0->sadb_sa_replay; 3125 } 3126 } 3127 3128 /* Authentication keys */ 3129 if (mhp->ext[SADB_EXT_KEY_AUTH] != NULL) { 3130 const struct sadb_key *key0; 3131 int len; 3132 3133 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3134 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3135 3136 error = 0; 3137 if (len < sizeof(*key0)) { 3138 error = EINVAL; 3139 goto fail; 3140 } 3141 switch (mhp->msg->sadb_msg_satype) { 3142 case SADB_SATYPE_AH: 3143 case SADB_SATYPE_ESP: 3144 case SADB_X_SATYPE_TCPSIGNATURE: 3145 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3146 sav->alg_auth != SADB_X_AALG_NULL) 3147 error = EINVAL; 3148 break; 3149 case SADB_X_SATYPE_IPCOMP: 3150 default: 3151 error = EINVAL; 3152 break; 3153 } 3154 if (error) { 3155 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3156 __func__)); 3157 goto fail; 3158 } 3159 3160 sav->key_auth = (struct seckey *)key_dup_keymsg(key0, len, 3161 M_IPSEC_MISC); 3162 if (sav->key_auth == NULL ) { 3163 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3164 __func__)); 3165 error = ENOBUFS; 3166 goto fail; 3167 } 3168 } 3169 3170 /* Encryption key */ 3171 if (mhp->ext[SADB_EXT_KEY_ENCRYPT] != NULL) { 3172 const struct sadb_key *key0; 3173 int len; 3174 3175 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3176 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3177 3178 error = 0; 3179 if (len < sizeof(*key0)) { 3180 error = EINVAL; 3181 goto fail; 3182 } 3183 switch (mhp->msg->sadb_msg_satype) { 3184 case SADB_SATYPE_ESP: 3185 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3186 sav->alg_enc != SADB_EALG_NULL) { 3187 error = EINVAL; 3188 break; 3189 } 3190 sav->key_enc = (struct seckey *)key_dup_keymsg(key0, 3191 len, 3192 M_IPSEC_MISC); 3193 if (sav->key_enc == NULL) { 3194 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3195 __func__)); 3196 error = ENOBUFS; 3197 goto fail; 3198 } 3199 break; 3200 case SADB_X_SATYPE_IPCOMP: 3201 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3202 error = EINVAL; 3203 sav->key_enc = NULL; /*just in case*/ 3204 break; 3205 case SADB_SATYPE_AH: 3206 case SADB_X_SATYPE_TCPSIGNATURE: 3207 default: 3208 error = EINVAL; 3209 break; 3210 } 3211 if (error) { 3212 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3213 __func__)); 3214 goto fail; 3215 } 3216 } 3217 3218 /* set iv */ 3219 sav->ivlen = 0; 3220 3221 switch (mhp->msg->sadb_msg_satype) { 3222 case SADB_SATYPE_AH: 3223 error = xform_init(sav, XF_AH); 3224 break; 3225 case SADB_SATYPE_ESP: 3226 error = xform_init(sav, XF_ESP); 3227 break; 3228 case SADB_X_SATYPE_IPCOMP: 3229 error = xform_init(sav, XF_IPCOMP); 3230 break; 3231 case SADB_X_SATYPE_TCPSIGNATURE: 3232 error = xform_init(sav, XF_TCPSIGNATURE); 3233 break; 3234 } 3235 if (error) { 3236 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3237 __func__, mhp->msg->sadb_msg_satype)); 3238 goto fail; 3239 } 3240 3241 /* reset created */ 3242 sav->created = time_second; 3243 3244 /* make lifetime for CURRENT */ 3245 sav->lft_c = malloc(sizeof(struct seclifetime), M_IPSEC_MISC, M_NOWAIT); 3246 if (sav->lft_c == NULL) { 3247 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3248 error = ENOBUFS; 3249 goto fail; 3250 } 3251 3252 sav->lft_c->allocations = 0; 3253 sav->lft_c->bytes = 0; 3254 sav->lft_c->addtime = time_second; 3255 sav->lft_c->usetime = 0; 3256 3257 /* lifetimes for HARD and SOFT */ 3258 { 3259 const struct sadb_lifetime *lft0; 3260 3261 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 3262 if (lft0 != NULL) { 3263 if (mhp->extlen[SADB_EXT_LIFETIME_HARD] < sizeof(*lft0)) { 3264 error = EINVAL; 3265 goto fail; 3266 } 3267 sav->lft_h = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3268 if (sav->lft_h == NULL) { 3269 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3270 error = ENOBUFS; 3271 goto fail; 3272 } 3273 /* to be initialize ? */ 3274 } 3275 3276 lft0 = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_SOFT]; 3277 if (lft0 != NULL) { 3278 if (mhp->extlen[SADB_EXT_LIFETIME_SOFT] < sizeof(*lft0)) { 3279 error = EINVAL; 3280 goto fail; 3281 } 3282 sav->lft_s = key_dup_lifemsg(lft0, M_IPSEC_MISC); 3283 if (sav->lft_s == NULL) { 3284 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 3285 error = ENOBUFS; 3286 goto fail; 3287 } 3288 /* to be initialize ? */ 3289 } 3290 } 3291 3292 return 0; 3293 3294 fail: 3295 /* initialization */ 3296 key_cleansav(sav); 3297 3298 return error; 3299 } 3300 3301 /* 3302 * validation with a secasvar entry, and set SADB_SATYPE_MATURE. 3303 * OUT: 0: valid 3304 * other: errno 3305 */ 3306 static int 3307 key_mature(struct secasvar *sav) 3308 { 3309 int error; 3310 3311 /* check SPI value */ 3312 switch (sav->sah->saidx.proto) { 3313 case IPPROTO_ESP: 3314 case IPPROTO_AH: 3315 /* 3316 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 3317 * 1-255 reserved by IANA for future use, 3318 * 0 for implementation specific, local use. 3319 */ 3320 if (ntohl(sav->spi) <= 255) { 3321 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 3322 __func__, (u_int32_t)ntohl(sav->spi))); 3323 return EINVAL; 3324 } 3325 break; 3326 } 3327 3328 /* check satype */ 3329 switch (sav->sah->saidx.proto) { 3330 case IPPROTO_ESP: 3331 /* check flags */ 3332 if ((sav->flags & (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) == 3333 (SADB_X_EXT_OLD|SADB_X_EXT_DERIV)) { 3334 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3335 "given to old-esp.\n", __func__)); 3336 return EINVAL; 3337 } 3338 error = xform_init(sav, XF_ESP); 3339 break; 3340 case IPPROTO_AH: 3341 /* check flags */ 3342 if (sav->flags & SADB_X_EXT_DERIV) { 3343 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3344 "given to AH SA.\n", __func__)); 3345 return EINVAL; 3346 } 3347 if (sav->alg_enc != SADB_EALG_NONE) { 3348 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3349 "mismated.\n", __func__)); 3350 return(EINVAL); 3351 } 3352 error = xform_init(sav, XF_AH); 3353 break; 3354 case IPPROTO_IPCOMP: 3355 if (sav->alg_auth != SADB_AALG_NONE) { 3356 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3357 "mismated.\n", __func__)); 3358 return(EINVAL); 3359 } 3360 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 3361 && ntohl(sav->spi) >= 0x10000) { 3362 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3363 __func__)); 3364 return(EINVAL); 3365 } 3366 error = xform_init(sav, XF_IPCOMP); 3367 break; 3368 case IPPROTO_TCP: 3369 if (sav->alg_enc != SADB_EALG_NONE) { 3370 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3371 "mismated.\n", __func__)); 3372 return(EINVAL); 3373 } 3374 error = xform_init(sav, XF_TCPSIGNATURE); 3375 break; 3376 default: 3377 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3378 error = EPROTONOSUPPORT; 3379 break; 3380 } 3381 if (error == 0) { 3382 SAHTREE_LOCK(); 3383 key_sa_chgstate(sav, SADB_SASTATE_MATURE); 3384 SAHTREE_UNLOCK(); 3385 } 3386 return (error); 3387 } 3388 3389 /* 3390 * subroutine for SADB_GET and SADB_DUMP. 3391 */ 3392 static struct mbuf * 3393 key_setdumpsa(struct secasvar *sav, u_int8_t type, u_int8_t satype, 3394 u_int32_t seq, u_int32_t pid) 3395 { 3396 struct mbuf *result = NULL, *tres = NULL, *m; 3397 int i; 3398 int dumporder[] = { 3399 SADB_EXT_SA, SADB_X_EXT_SA2, 3400 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3401 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3402 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, SADB_EXT_KEY_AUTH, 3403 SADB_EXT_KEY_ENCRYPT, SADB_EXT_IDENTITY_SRC, 3404 SADB_EXT_IDENTITY_DST, SADB_EXT_SENSITIVITY, 3405 #ifdef IPSEC_NAT_T 3406 SADB_X_EXT_NAT_T_TYPE, 3407 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3408 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3409 SADB_X_EXT_NAT_T_FRAG, 3410 #endif 3411 }; 3412 3413 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3414 if (m == NULL) 3415 goto fail; 3416 result = m; 3417 3418 for (i = sizeof(dumporder)/sizeof(dumporder[0]) - 1; i >= 0; i--) { 3419 m = NULL; 3420 switch (dumporder[i]) { 3421 case SADB_EXT_SA: 3422 m = key_setsadbsa(sav); 3423 if (!m) 3424 goto fail; 3425 break; 3426 3427 case SADB_X_EXT_SA2: 3428 m = key_setsadbxsa2(sav->sah->saidx.mode, 3429 sav->replay ? sav->replay->count : 0, 3430 sav->sah->saidx.reqid); 3431 if (!m) 3432 goto fail; 3433 break; 3434 3435 case SADB_EXT_ADDRESS_SRC: 3436 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3437 &sav->sah->saidx.src.sa, 3438 FULLMASK, IPSEC_ULPROTO_ANY); 3439 if (!m) 3440 goto fail; 3441 break; 3442 3443 case SADB_EXT_ADDRESS_DST: 3444 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3445 &sav->sah->saidx.dst.sa, 3446 FULLMASK, IPSEC_ULPROTO_ANY); 3447 if (!m) 3448 goto fail; 3449 break; 3450 3451 case SADB_EXT_KEY_AUTH: 3452 if (!sav->key_auth) 3453 continue; 3454 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3455 if (!m) 3456 goto fail; 3457 break; 3458 3459 case SADB_EXT_KEY_ENCRYPT: 3460 if (!sav->key_enc) 3461 continue; 3462 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3463 if (!m) 3464 goto fail; 3465 break; 3466 3467 case SADB_EXT_LIFETIME_CURRENT: 3468 if (!sav->lft_c) 3469 continue; 3470 m = key_setlifetime(sav->lft_c, 3471 SADB_EXT_LIFETIME_CURRENT); 3472 if (!m) 3473 goto fail; 3474 break; 3475 3476 case SADB_EXT_LIFETIME_HARD: 3477 if (!sav->lft_h) 3478 continue; 3479 m = key_setlifetime(sav->lft_h, 3480 SADB_EXT_LIFETIME_HARD); 3481 if (!m) 3482 goto fail; 3483 break; 3484 3485 case SADB_EXT_LIFETIME_SOFT: 3486 if (!sav->lft_s) 3487 continue; 3488 m = key_setlifetime(sav->lft_s, 3489 SADB_EXT_LIFETIME_SOFT); 3490 3491 if (!m) 3492 goto fail; 3493 break; 3494 3495 #ifdef IPSEC_NAT_T 3496 case SADB_X_EXT_NAT_T_TYPE: 3497 m = key_setsadbxtype(sav->natt_type); 3498 if (!m) 3499 goto fail; 3500 break; 3501 3502 case SADB_X_EXT_NAT_T_DPORT: 3503 m = key_setsadbxport( 3504 KEY_PORTFROMSADDR(&sav->sah->saidx.dst), 3505 SADB_X_EXT_NAT_T_DPORT); 3506 if (!m) 3507 goto fail; 3508 break; 3509 3510 case SADB_X_EXT_NAT_T_SPORT: 3511 m = key_setsadbxport( 3512 KEY_PORTFROMSADDR(&sav->sah->saidx.src), 3513 SADB_X_EXT_NAT_T_SPORT); 3514 if (!m) 3515 goto fail; 3516 break; 3517 3518 case SADB_X_EXT_NAT_T_OAI: 3519 case SADB_X_EXT_NAT_T_OAR: 3520 case SADB_X_EXT_NAT_T_FRAG: 3521 /* We do not (yet) support those. */ 3522 continue; 3523 #endif 3524 3525 case SADB_EXT_ADDRESS_PROXY: 3526 case SADB_EXT_IDENTITY_SRC: 3527 case SADB_EXT_IDENTITY_DST: 3528 /* XXX: should we brought from SPD ? */ 3529 case SADB_EXT_SENSITIVITY: 3530 default: 3531 continue; 3532 } 3533 3534 if (!m) 3535 goto fail; 3536 if (tres) 3537 m_cat(m, tres); 3538 tres = m; 3539 3540 } 3541 3542 m_cat(result, tres); 3543 if (result->m_len < sizeof(struct sadb_msg)) { 3544 result = m_pullup(result, sizeof(struct sadb_msg)); 3545 if (result == NULL) 3546 goto fail; 3547 } 3548 3549 result->m_pkthdr.len = 0; 3550 for (m = result; m; m = m->m_next) 3551 result->m_pkthdr.len += m->m_len; 3552 3553 mtod(result, struct sadb_msg *)->sadb_msg_len = 3554 PFKEY_UNIT64(result->m_pkthdr.len); 3555 3556 return result; 3557 3558 fail: 3559 m_freem(result); 3560 m_freem(tres); 3561 return NULL; 3562 } 3563 3564 /* 3565 * set data into sadb_msg. 3566 */ 3567 static struct mbuf * 3568 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3569 pid_t pid, u_int16_t reserved) 3570 { 3571 struct mbuf *m; 3572 struct sadb_msg *p; 3573 int len; 3574 3575 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3576 if (len > MCLBYTES) 3577 return NULL; 3578 MGETHDR(m, M_NOWAIT, MT_DATA); 3579 if (m && len > MHLEN) { 3580 MCLGET(m, M_NOWAIT); 3581 if ((m->m_flags & M_EXT) == 0) { 3582 m_freem(m); 3583 m = NULL; 3584 } 3585 } 3586 if (!m) 3587 return NULL; 3588 m->m_pkthdr.len = m->m_len = len; 3589 m->m_next = NULL; 3590 3591 p = mtod(m, struct sadb_msg *); 3592 3593 bzero(p, len); 3594 p->sadb_msg_version = PF_KEY_V2; 3595 p->sadb_msg_type = type; 3596 p->sadb_msg_errno = 0; 3597 p->sadb_msg_satype = satype; 3598 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3599 p->sadb_msg_reserved = reserved; 3600 p->sadb_msg_seq = seq; 3601 p->sadb_msg_pid = (u_int32_t)pid; 3602 3603 return m; 3604 } 3605 3606 /* 3607 * copy secasvar data into sadb_address. 3608 */ 3609 static struct mbuf * 3610 key_setsadbsa(sav) 3611 struct secasvar *sav; 3612 { 3613 struct mbuf *m; 3614 struct sadb_sa *p; 3615 int len; 3616 3617 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3618 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3619 if (m == NULL) 3620 return (NULL); 3621 m_align(m, len); 3622 m->m_len = len; 3623 p = mtod(m, struct sadb_sa *); 3624 bzero(p, len); 3625 p->sadb_sa_len = PFKEY_UNIT64(len); 3626 p->sadb_sa_exttype = SADB_EXT_SA; 3627 p->sadb_sa_spi = sav->spi; 3628 p->sadb_sa_replay = (sav->replay != NULL ? sav->replay->wsize : 0); 3629 p->sadb_sa_state = sav->state; 3630 p->sadb_sa_auth = sav->alg_auth; 3631 p->sadb_sa_encrypt = sav->alg_enc; 3632 p->sadb_sa_flags = sav->flags; 3633 3634 return m; 3635 } 3636 3637 /* 3638 * set data into sadb_address. 3639 */ 3640 static struct mbuf * 3641 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, u_int8_t prefixlen, u_int16_t ul_proto) 3642 { 3643 struct mbuf *m; 3644 struct sadb_address *p; 3645 size_t len; 3646 3647 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3648 PFKEY_ALIGN8(saddr->sa_len); 3649 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3650 if (m == NULL) 3651 return (NULL); 3652 m_align(m, len); 3653 m->m_len = len; 3654 p = mtod(m, struct sadb_address *); 3655 3656 bzero(p, len); 3657 p->sadb_address_len = PFKEY_UNIT64(len); 3658 p->sadb_address_exttype = exttype; 3659 p->sadb_address_proto = ul_proto; 3660 if (prefixlen == FULLMASK) { 3661 switch (saddr->sa_family) { 3662 case AF_INET: 3663 prefixlen = sizeof(struct in_addr) << 3; 3664 break; 3665 case AF_INET6: 3666 prefixlen = sizeof(struct in6_addr) << 3; 3667 break; 3668 default: 3669 ; /*XXX*/ 3670 } 3671 } 3672 p->sadb_address_prefixlen = prefixlen; 3673 p->sadb_address_reserved = 0; 3674 3675 bcopy(saddr, 3676 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3677 saddr->sa_len); 3678 3679 return m; 3680 } 3681 3682 /* 3683 * set data into sadb_x_sa2. 3684 */ 3685 static struct mbuf * 3686 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3687 { 3688 struct mbuf *m; 3689 struct sadb_x_sa2 *p; 3690 size_t len; 3691 3692 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3693 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3694 if (m == NULL) 3695 return (NULL); 3696 m_align(m, len); 3697 m->m_len = len; 3698 p = mtod(m, struct sadb_x_sa2 *); 3699 3700 bzero(p, len); 3701 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3702 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3703 p->sadb_x_sa2_mode = mode; 3704 p->sadb_x_sa2_reserved1 = 0; 3705 p->sadb_x_sa2_reserved2 = 0; 3706 p->sadb_x_sa2_sequence = seq; 3707 p->sadb_x_sa2_reqid = reqid; 3708 3709 return m; 3710 } 3711 3712 #ifdef IPSEC_NAT_T 3713 /* 3714 * Set a type in sadb_x_nat_t_type. 3715 */ 3716 static struct mbuf * 3717 key_setsadbxtype(u_int16_t type) 3718 { 3719 struct mbuf *m; 3720 size_t len; 3721 struct sadb_x_nat_t_type *p; 3722 3723 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3724 3725 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3726 if (m == NULL) 3727 return (NULL); 3728 m_align(m, len); 3729 m->m_len = len; 3730 p = mtod(m, struct sadb_x_nat_t_type *); 3731 3732 bzero(p, len); 3733 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3734 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3735 p->sadb_x_nat_t_type_type = type; 3736 3737 return (m); 3738 } 3739 /* 3740 * Set a port in sadb_x_nat_t_port. 3741 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3742 */ 3743 static struct mbuf * 3744 key_setsadbxport(u_int16_t port, u_int16_t type) 3745 { 3746 struct mbuf *m; 3747 size_t len; 3748 struct sadb_x_nat_t_port *p; 3749 3750 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 3751 3752 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3753 if (m == NULL) 3754 return (NULL); 3755 m_align(m, len); 3756 m->m_len = len; 3757 p = mtod(m, struct sadb_x_nat_t_port *); 3758 3759 bzero(p, len); 3760 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 3761 p->sadb_x_nat_t_port_exttype = type; 3762 p->sadb_x_nat_t_port_port = port; 3763 3764 return (m); 3765 } 3766 3767 /* 3768 * Get port from sockaddr. Port is in network byte order. 3769 */ 3770 u_int16_t 3771 key_portfromsaddr(struct sockaddr *sa) 3772 { 3773 3774 switch (sa->sa_family) { 3775 #ifdef INET 3776 case AF_INET: 3777 return ((struct sockaddr_in *)sa)->sin_port; 3778 #endif 3779 #ifdef INET6 3780 case AF_INET6: 3781 return ((struct sockaddr_in6 *)sa)->sin6_port; 3782 #endif 3783 } 3784 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 3785 printf("DP %s unexpected address family %d\n", 3786 __func__, sa->sa_family)); 3787 return (0); 3788 } 3789 #endif /* IPSEC_NAT_T */ 3790 3791 /* 3792 * Set port in struct sockaddr. Port is in network byte order. 3793 */ 3794 static void 3795 key_porttosaddr(struct sockaddr *sa, u_int16_t port) 3796 { 3797 3798 switch (sa->sa_family) { 3799 #ifdef INET 3800 case AF_INET: 3801 ((struct sockaddr_in *)sa)->sin_port = port; 3802 break; 3803 #endif 3804 #ifdef INET6 3805 case AF_INET6: 3806 ((struct sockaddr_in6 *)sa)->sin6_port = port; 3807 break; 3808 #endif 3809 default: 3810 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 3811 __func__, sa->sa_family)); 3812 break; 3813 } 3814 } 3815 3816 /* 3817 * set data into sadb_x_policy 3818 */ 3819 static struct mbuf * 3820 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id) 3821 { 3822 struct mbuf *m; 3823 struct sadb_x_policy *p; 3824 size_t len; 3825 3826 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 3827 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3828 if (m == NULL) 3829 return (NULL); 3830 m_align(m, len); 3831 m->m_len = len; 3832 p = mtod(m, struct sadb_x_policy *); 3833 3834 bzero(p, len); 3835 p->sadb_x_policy_len = PFKEY_UNIT64(len); 3836 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 3837 p->sadb_x_policy_type = type; 3838 p->sadb_x_policy_dir = dir; 3839 p->sadb_x_policy_id = id; 3840 3841 return m; 3842 } 3843 3844 /* %%% utilities */ 3845 /* Take a key message (sadb_key) from the socket and turn it into one 3846 * of the kernel's key structures (seckey). 3847 * 3848 * IN: pointer to the src 3849 * OUT: NULL no more memory 3850 */ 3851 struct seckey * 3852 key_dup_keymsg(const struct sadb_key *src, u_int len, 3853 struct malloc_type *type) 3854 { 3855 struct seckey *dst; 3856 dst = (struct seckey *)malloc(sizeof(struct seckey), type, M_NOWAIT); 3857 if (dst != NULL) { 3858 dst->bits = src->sadb_key_bits; 3859 dst->key_data = (char *)malloc(len, type, M_NOWAIT); 3860 if (dst->key_data != NULL) { 3861 bcopy((const char *)src + sizeof(struct sadb_key), 3862 dst->key_data, len); 3863 } else { 3864 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3865 __func__)); 3866 free(dst, type); 3867 dst = NULL; 3868 } 3869 } else { 3870 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3871 __func__)); 3872 3873 } 3874 return dst; 3875 } 3876 3877 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 3878 * turn it into one of the kernel's lifetime structures (seclifetime). 3879 * 3880 * IN: pointer to the destination, source and malloc type 3881 * OUT: NULL, no more memory 3882 */ 3883 3884 static struct seclifetime * 3885 key_dup_lifemsg(const struct sadb_lifetime *src, 3886 struct malloc_type *type) 3887 { 3888 struct seclifetime *dst = NULL; 3889 3890 dst = (struct seclifetime *)malloc(sizeof(struct seclifetime), 3891 type, M_NOWAIT); 3892 if (dst == NULL) { 3893 /* XXX counter */ 3894 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3895 } else { 3896 dst->allocations = src->sadb_lifetime_allocations; 3897 dst->bytes = src->sadb_lifetime_bytes; 3898 dst->addtime = src->sadb_lifetime_addtime; 3899 dst->usetime = src->sadb_lifetime_usetime; 3900 } 3901 return dst; 3902 } 3903 3904 /* compare my own address 3905 * OUT: 1: true, i.e. my address. 3906 * 0: false 3907 */ 3908 int 3909 key_ismyaddr(struct sockaddr *sa) 3910 { 3911 3912 IPSEC_ASSERT(sa != NULL, ("null sockaddr")); 3913 switch (sa->sa_family) { 3914 #ifdef INET 3915 case AF_INET: 3916 return (in_localip(satosin(sa)->sin_addr)); 3917 #endif 3918 #ifdef INET6 3919 case AF_INET6: 3920 return key_ismyaddr6((struct sockaddr_in6 *)sa); 3921 #endif 3922 } 3923 3924 return 0; 3925 } 3926 3927 #ifdef INET6 3928 /* 3929 * compare my own address for IPv6. 3930 * 1: ours 3931 * 0: other 3932 * NOTE: derived ip6_input() in KAME. This is necessary to modify more. 3933 */ 3934 #include <netinet6/in6_var.h> 3935 3936 static int 3937 key_ismyaddr6(sin6) 3938 struct sockaddr_in6 *sin6; 3939 { 3940 struct in6_ifaddr *ia; 3941 #if 0 3942 struct in6_multi *in6m; 3943 #endif 3944 3945 IN6_IFADDR_RLOCK(); 3946 TAILQ_FOREACH(ia, &V_in6_ifaddrhead, ia_link) { 3947 if (key_sockaddrcmp((struct sockaddr *)&sin6, 3948 (struct sockaddr *)&ia->ia_addr, 0) == 0) { 3949 IN6_IFADDR_RUNLOCK(); 3950 return 1; 3951 } 3952 3953 #if 0 3954 /* 3955 * XXX Multicast 3956 * XXX why do we care about multlicast here while we don't care 3957 * about IPv4 multicast?? 3958 * XXX scope 3959 */ 3960 in6m = NULL; 3961 IN6_LOOKUP_MULTI(sin6->sin6_addr, ia->ia_ifp, in6m); 3962 if (in6m) { 3963 IN6_IFADDR_RUNLOCK(); 3964 return 1; 3965 } 3966 #endif 3967 } 3968 IN6_IFADDR_RUNLOCK(); 3969 3970 /* loopback, just for safety */ 3971 if (IN6_IS_ADDR_LOOPBACK(&sin6->sin6_addr)) 3972 return 1; 3973 3974 return 0; 3975 } 3976 #endif /*INET6*/ 3977 3978 /* 3979 * compare two secasindex structure. 3980 * flag can specify to compare 2 saidxes. 3981 * compare two secasindex structure without both mode and reqid. 3982 * don't compare port. 3983 * IN: 3984 * saidx0: source, it can be in SAD. 3985 * saidx1: object. 3986 * OUT: 3987 * 1 : equal 3988 * 0 : not equal 3989 */ 3990 static int 3991 key_cmpsaidx( 3992 const struct secasindex *saidx0, 3993 const struct secasindex *saidx1, 3994 int flag) 3995 { 3996 int chkport = 0; 3997 3998 /* sanity */ 3999 if (saidx0 == NULL && saidx1 == NULL) 4000 return 1; 4001 4002 if (saidx0 == NULL || saidx1 == NULL) 4003 return 0; 4004 4005 if (saidx0->proto != saidx1->proto) 4006 return 0; 4007 4008 if (flag == CMP_EXACTLY) { 4009 if (saidx0->mode != saidx1->mode) 4010 return 0; 4011 if (saidx0->reqid != saidx1->reqid) 4012 return 0; 4013 if (bcmp(&saidx0->src, &saidx1->src, saidx0->src.sa.sa_len) != 0 || 4014 bcmp(&saidx0->dst, &saidx1->dst, saidx0->dst.sa.sa_len) != 0) 4015 return 0; 4016 } else { 4017 4018 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4019 if (flag == CMP_MODE_REQID 4020 ||flag == CMP_REQID) { 4021 /* 4022 * If reqid of SPD is non-zero, unique SA is required. 4023 * The result must be of same reqid in this case. 4024 */ 4025 if (saidx1->reqid != 0 && saidx0->reqid != saidx1->reqid) 4026 return 0; 4027 } 4028 4029 if (flag == CMP_MODE_REQID) { 4030 if (saidx0->mode != IPSEC_MODE_ANY 4031 && saidx0->mode != saidx1->mode) 4032 return 0; 4033 } 4034 4035 #ifdef IPSEC_NAT_T 4036 /* 4037 * If NAT-T is enabled, check ports for tunnel mode. 4038 * Do not check ports if they are set to zero in the SPD. 4039 * Also do not do it for native transport mode, as there 4040 * is no port information available in the SP. 4041 */ 4042 if ((saidx1->mode == IPSEC_MODE_TUNNEL || 4043 (saidx1->mode == IPSEC_MODE_TRANSPORT && 4044 saidx1->proto == IPPROTO_ESP)) && 4045 saidx1->src.sa.sa_family == AF_INET && 4046 saidx1->dst.sa.sa_family == AF_INET && 4047 ((const struct sockaddr_in *)(&saidx1->src))->sin_port && 4048 ((const struct sockaddr_in *)(&saidx1->dst))->sin_port) 4049 chkport = 1; 4050 #endif /* IPSEC_NAT_T */ 4051 4052 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, chkport) != 0) { 4053 return 0; 4054 } 4055 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, chkport) != 0) { 4056 return 0; 4057 } 4058 } 4059 4060 return 1; 4061 } 4062 4063 /* 4064 * compare two secindex structure exactly. 4065 * IN: 4066 * spidx0: source, it is often in SPD. 4067 * spidx1: object, it is often from PFKEY message. 4068 * OUT: 4069 * 1 : equal 4070 * 0 : not equal 4071 */ 4072 static int 4073 key_cmpspidx_exactly( 4074 struct secpolicyindex *spidx0, 4075 struct secpolicyindex *spidx1) 4076 { 4077 /* sanity */ 4078 if (spidx0 == NULL && spidx1 == NULL) 4079 return 1; 4080 4081 if (spidx0 == NULL || spidx1 == NULL) 4082 return 0; 4083 4084 if (spidx0->prefs != spidx1->prefs 4085 || spidx0->prefd != spidx1->prefd 4086 || spidx0->ul_proto != spidx1->ul_proto) 4087 return 0; 4088 4089 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4090 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4091 } 4092 4093 /* 4094 * compare two secindex structure with mask. 4095 * IN: 4096 * spidx0: source, it is often in SPD. 4097 * spidx1: object, it is often from IP header. 4098 * OUT: 4099 * 1 : equal 4100 * 0 : not equal 4101 */ 4102 static int 4103 key_cmpspidx_withmask( 4104 struct secpolicyindex *spidx0, 4105 struct secpolicyindex *spidx1) 4106 { 4107 /* sanity */ 4108 if (spidx0 == NULL && spidx1 == NULL) 4109 return 1; 4110 4111 if (spidx0 == NULL || spidx1 == NULL) 4112 return 0; 4113 4114 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4115 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4116 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4117 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4118 return 0; 4119 4120 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4121 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4122 && spidx0->ul_proto != spidx1->ul_proto) 4123 return 0; 4124 4125 switch (spidx0->src.sa.sa_family) { 4126 case AF_INET: 4127 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4128 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4129 return 0; 4130 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4131 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4132 return 0; 4133 break; 4134 case AF_INET6: 4135 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4136 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4137 return 0; 4138 /* 4139 * scope_id check. if sin6_scope_id is 0, we regard it 4140 * as a wildcard scope, which matches any scope zone ID. 4141 */ 4142 if (spidx0->src.sin6.sin6_scope_id && 4143 spidx1->src.sin6.sin6_scope_id && 4144 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4145 return 0; 4146 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4147 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4148 return 0; 4149 break; 4150 default: 4151 /* XXX */ 4152 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4153 return 0; 4154 break; 4155 } 4156 4157 switch (spidx0->dst.sa.sa_family) { 4158 case AF_INET: 4159 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4160 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4161 return 0; 4162 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4163 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4164 return 0; 4165 break; 4166 case AF_INET6: 4167 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4168 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4169 return 0; 4170 /* 4171 * scope_id check. if sin6_scope_id is 0, we regard it 4172 * as a wildcard scope, which matches any scope zone ID. 4173 */ 4174 if (spidx0->dst.sin6.sin6_scope_id && 4175 spidx1->dst.sin6.sin6_scope_id && 4176 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4177 return 0; 4178 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4179 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4180 return 0; 4181 break; 4182 default: 4183 /* XXX */ 4184 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4185 return 0; 4186 break; 4187 } 4188 4189 /* XXX Do we check other field ? e.g. flowinfo */ 4190 4191 return 1; 4192 } 4193 4194 /* returns 0 on match */ 4195 static int 4196 key_sockaddrcmp( 4197 const struct sockaddr *sa1, 4198 const struct sockaddr *sa2, 4199 int port) 4200 { 4201 #ifdef satosin 4202 #undef satosin 4203 #endif 4204 #define satosin(s) ((const struct sockaddr_in *)s) 4205 #ifdef satosin6 4206 #undef satosin6 4207 #endif 4208 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4209 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4210 return 1; 4211 4212 switch (sa1->sa_family) { 4213 case AF_INET: 4214 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4215 return 1; 4216 if (satosin(sa1)->sin_addr.s_addr != 4217 satosin(sa2)->sin_addr.s_addr) { 4218 return 1; 4219 } 4220 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4221 return 1; 4222 break; 4223 case AF_INET6: 4224 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4225 return 1; /*EINVAL*/ 4226 if (satosin6(sa1)->sin6_scope_id != 4227 satosin6(sa2)->sin6_scope_id) { 4228 return 1; 4229 } 4230 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4231 &satosin6(sa2)->sin6_addr)) { 4232 return 1; 4233 } 4234 if (port && 4235 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4236 return 1; 4237 } 4238 break; 4239 default: 4240 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4241 return 1; 4242 break; 4243 } 4244 4245 return 0; 4246 #undef satosin 4247 #undef satosin6 4248 } 4249 4250 /* 4251 * compare two buffers with mask. 4252 * IN: 4253 * addr1: source 4254 * addr2: object 4255 * bits: Number of bits to compare 4256 * OUT: 4257 * 1 : equal 4258 * 0 : not equal 4259 */ 4260 static int 4261 key_bbcmp(const void *a1, const void *a2, u_int bits) 4262 { 4263 const unsigned char *p1 = a1; 4264 const unsigned char *p2 = a2; 4265 4266 /* XXX: This could be considerably faster if we compare a word 4267 * at a time, but it is complicated on LSB Endian machines */ 4268 4269 /* Handle null pointers */ 4270 if (p1 == NULL || p2 == NULL) 4271 return (p1 == p2); 4272 4273 while (bits >= 8) { 4274 if (*p1++ != *p2++) 4275 return 0; 4276 bits -= 8; 4277 } 4278 4279 if (bits > 0) { 4280 u_int8_t mask = ~((1<<(8-bits))-1); 4281 if ((*p1 & mask) != (*p2 & mask)) 4282 return 0; 4283 } 4284 return 1; /* Match! */ 4285 } 4286 4287 static void 4288 key_flush_spd(time_t now) 4289 { 4290 static u_int16_t sptree_scangen = 0; 4291 u_int16_t gen = sptree_scangen++; 4292 struct secpolicy *sp; 4293 u_int dir; 4294 4295 /* SPD */ 4296 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4297 restart: 4298 SPTREE_LOCK(); 4299 LIST_FOREACH(sp, &V_sptree[dir], chain) { 4300 if (sp->scangen == gen) /* previously handled */ 4301 continue; 4302 sp->scangen = gen; 4303 if (sp->state == IPSEC_SPSTATE_DEAD && 4304 sp->refcnt == 1) { 4305 /* 4306 * Ensure that we only decrease refcnt once, 4307 * when we're the last consumer. 4308 * Directly call SP_DELREF/key_delsp instead 4309 * of KEY_FREESP to avoid unlocking/relocking 4310 * SPTREE_LOCK before key_delsp: may refcnt 4311 * be increased again during that time ? 4312 * NB: also clean entries created by 4313 * key_spdflush 4314 */ 4315 SP_DELREF(sp); 4316 key_delsp(sp); 4317 SPTREE_UNLOCK(); 4318 goto restart; 4319 } 4320 if (sp->lifetime == 0 && sp->validtime == 0) 4321 continue; 4322 if ((sp->lifetime && now - sp->created > sp->lifetime) 4323 || (sp->validtime && now - sp->lastused > sp->validtime)) { 4324 sp->state = IPSEC_SPSTATE_DEAD; 4325 SPTREE_UNLOCK(); 4326 key_spdexpire(sp); 4327 goto restart; 4328 } 4329 } 4330 SPTREE_UNLOCK(); 4331 } 4332 } 4333 4334 static void 4335 key_flush_sad(time_t now) 4336 { 4337 struct secashead *sah, *nextsah; 4338 struct secasvar *sav, *nextsav; 4339 4340 /* SAD */ 4341 SAHTREE_LOCK(); 4342 LIST_FOREACH_SAFE(sah, &V_sahtree, chain, nextsah) { 4343 /* if sah has been dead, then delete it and process next sah. */ 4344 if (sah->state == SADB_SASTATE_DEAD) { 4345 key_delsah(sah); 4346 continue; 4347 } 4348 4349 /* if LARVAL entry doesn't become MATURE, delete it. */ 4350 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_LARVAL], chain, nextsav) { 4351 /* Need to also check refcnt for a larval SA ??? */ 4352 if (now - sav->created > V_key_larval_lifetime) 4353 KEY_FREESAV(&sav); 4354 } 4355 4356 /* 4357 * check MATURE entry to start to send expire message 4358 * whether or not. 4359 */ 4360 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_MATURE], chain, nextsav) { 4361 /* we don't need to check. */ 4362 if (sav->lft_s == NULL) 4363 continue; 4364 4365 /* sanity check */ 4366 if (sav->lft_c == NULL) { 4367 ipseclog((LOG_DEBUG,"%s: there is no CURRENT " 4368 "time, why?\n", __func__)); 4369 continue; 4370 } 4371 4372 /* check SOFT lifetime */ 4373 if (sav->lft_s->addtime != 0 && 4374 now - sav->created > sav->lft_s->addtime) { 4375 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4376 /* 4377 * Actually, only send expire message if 4378 * SA has been used, as it was done before, 4379 * but should we always send such message, 4380 * and let IKE daemon decide if it should be 4381 * renegotiated or not ? 4382 * XXX expire message will actually NOT be 4383 * sent if SA is only used after soft 4384 * lifetime has been reached, see below 4385 * (DYING state) 4386 */ 4387 if (sav->lft_c->usetime != 0) 4388 key_expire(sav); 4389 } 4390 /* check SOFT lifetime by bytes */ 4391 /* 4392 * XXX I don't know the way to delete this SA 4393 * when new SA is installed. Caution when it's 4394 * installed too big lifetime by time. 4395 */ 4396 else if (sav->lft_s->bytes != 0 && 4397 sav->lft_s->bytes < sav->lft_c->bytes) { 4398 4399 key_sa_chgstate(sav, SADB_SASTATE_DYING); 4400 /* 4401 * XXX If we keep to send expire 4402 * message in the status of 4403 * DYING. Do remove below code. 4404 */ 4405 key_expire(sav); 4406 } 4407 } 4408 4409 /* check DYING entry to change status to DEAD. */ 4410 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DYING], chain, nextsav) { 4411 /* we don't need to check. */ 4412 if (sav->lft_h == NULL) 4413 continue; 4414 4415 /* sanity check */ 4416 if (sav->lft_c == NULL) { 4417 ipseclog((LOG_DEBUG, "%s: there is no CURRENT " 4418 "time, why?\n", __func__)); 4419 continue; 4420 } 4421 4422 if (sav->lft_h->addtime != 0 && 4423 now - sav->created > sav->lft_h->addtime) { 4424 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4425 KEY_FREESAV(&sav); 4426 } 4427 #if 0 /* XXX Should we keep to send expire message until HARD lifetime ? */ 4428 else if (sav->lft_s != NULL 4429 && sav->lft_s->addtime != 0 4430 && now - sav->created > sav->lft_s->addtime) { 4431 /* 4432 * XXX: should be checked to be 4433 * installed the valid SA. 4434 */ 4435 4436 /* 4437 * If there is no SA then sending 4438 * expire message. 4439 */ 4440 key_expire(sav); 4441 } 4442 #endif 4443 /* check HARD lifetime by bytes */ 4444 else if (sav->lft_h->bytes != 0 && 4445 sav->lft_h->bytes < sav->lft_c->bytes) { 4446 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 4447 KEY_FREESAV(&sav); 4448 } 4449 } 4450 4451 /* delete entry in DEAD */ 4452 LIST_FOREACH_SAFE(sav, &sah->savtree[SADB_SASTATE_DEAD], chain, nextsav) { 4453 /* sanity check */ 4454 if (sav->state != SADB_SASTATE_DEAD) { 4455 ipseclog((LOG_DEBUG, "%s: invalid sav->state " 4456 "(queue: %d SA: %d): kill it anyway\n", 4457 __func__, 4458 SADB_SASTATE_DEAD, sav->state)); 4459 } 4460 /* 4461 * do not call key_freesav() here. 4462 * sav should already be freed, and sav->refcnt 4463 * shows other references to sav 4464 * (such as from SPD). 4465 */ 4466 } 4467 } 4468 SAHTREE_UNLOCK(); 4469 } 4470 4471 static void 4472 key_flush_acq(time_t now) 4473 { 4474 struct secacq *acq, *nextacq; 4475 4476 /* ACQ tree */ 4477 ACQ_LOCK(); 4478 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 4479 nextacq = LIST_NEXT(acq, chain); 4480 if (now - acq->created > V_key_blockacq_lifetime 4481 && __LIST_CHAINED(acq)) { 4482 LIST_REMOVE(acq, chain); 4483 free(acq, M_IPSEC_SAQ); 4484 } 4485 } 4486 ACQ_UNLOCK(); 4487 } 4488 4489 static void 4490 key_flush_spacq(time_t now) 4491 { 4492 struct secspacq *acq, *nextacq; 4493 4494 /* SP ACQ tree */ 4495 SPACQ_LOCK(); 4496 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4497 nextacq = LIST_NEXT(acq, chain); 4498 if (now - acq->created > V_key_blockacq_lifetime 4499 && __LIST_CHAINED(acq)) { 4500 LIST_REMOVE(acq, chain); 4501 free(acq, M_IPSEC_SAQ); 4502 } 4503 } 4504 SPACQ_UNLOCK(); 4505 } 4506 4507 /* 4508 * time handler. 4509 * scanning SPD and SAD to check status for each entries, 4510 * and do to remove or to expire. 4511 * XXX: year 2038 problem may remain. 4512 */ 4513 static void 4514 key_timehandler(void *arg) 4515 { 4516 VNET_ITERATOR_DECL(vnet_iter); 4517 time_t now = time_second; 4518 4519 VNET_LIST_RLOCK_NOSLEEP(); 4520 VNET_FOREACH(vnet_iter) { 4521 CURVNET_SET(vnet_iter); 4522 key_flush_spd(now); 4523 key_flush_sad(now); 4524 key_flush_acq(now); 4525 key_flush_spacq(now); 4526 CURVNET_RESTORE(); 4527 } 4528 VNET_LIST_RUNLOCK_NOSLEEP(); 4529 4530 #ifndef IPSEC_DEBUG2 4531 /* do exchange to tick time !! */ 4532 callout_schedule(&key_timer, hz); 4533 #endif /* IPSEC_DEBUG2 */ 4534 } 4535 4536 u_long 4537 key_random() 4538 { 4539 u_long value; 4540 4541 key_randomfill(&value, sizeof(value)); 4542 return value; 4543 } 4544 4545 void 4546 key_randomfill(p, l) 4547 void *p; 4548 size_t l; 4549 { 4550 size_t n; 4551 u_long v; 4552 static int warn = 1; 4553 4554 n = 0; 4555 n = (size_t)read_random(p, (u_int)l); 4556 /* last resort */ 4557 while (n < l) { 4558 v = random(); 4559 bcopy(&v, (u_int8_t *)p + n, 4560 l - n < sizeof(v) ? l - n : sizeof(v)); 4561 n += sizeof(v); 4562 4563 if (warn) { 4564 printf("WARNING: pseudo-random number generator " 4565 "used for IPsec processing\n"); 4566 warn = 0; 4567 } 4568 } 4569 } 4570 4571 /* 4572 * map SADB_SATYPE_* to IPPROTO_*. 4573 * if satype == SADB_SATYPE then satype is mapped to ~0. 4574 * OUT: 4575 * 0: invalid satype. 4576 */ 4577 static u_int16_t 4578 key_satype2proto(u_int8_t satype) 4579 { 4580 switch (satype) { 4581 case SADB_SATYPE_UNSPEC: 4582 return IPSEC_PROTO_ANY; 4583 case SADB_SATYPE_AH: 4584 return IPPROTO_AH; 4585 case SADB_SATYPE_ESP: 4586 return IPPROTO_ESP; 4587 case SADB_X_SATYPE_IPCOMP: 4588 return IPPROTO_IPCOMP; 4589 case SADB_X_SATYPE_TCPSIGNATURE: 4590 return IPPROTO_TCP; 4591 default: 4592 return 0; 4593 } 4594 /* NOTREACHED */ 4595 } 4596 4597 /* 4598 * map IPPROTO_* to SADB_SATYPE_* 4599 * OUT: 4600 * 0: invalid protocol type. 4601 */ 4602 static u_int8_t 4603 key_proto2satype(u_int16_t proto) 4604 { 4605 switch (proto) { 4606 case IPPROTO_AH: 4607 return SADB_SATYPE_AH; 4608 case IPPROTO_ESP: 4609 return SADB_SATYPE_ESP; 4610 case IPPROTO_IPCOMP: 4611 return SADB_X_SATYPE_IPCOMP; 4612 case IPPROTO_TCP: 4613 return SADB_X_SATYPE_TCPSIGNATURE; 4614 default: 4615 return 0; 4616 } 4617 /* NOTREACHED */ 4618 } 4619 4620 /* %%% PF_KEY */ 4621 /* 4622 * SADB_GETSPI processing is to receive 4623 * <base, (SA2), src address, dst address, (SPI range)> 4624 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4625 * tree with the status of LARVAL, and send 4626 * <base, SA(*), address(SD)> 4627 * to the IKMPd. 4628 * 4629 * IN: mhp: pointer to the pointer to each header. 4630 * OUT: NULL if fail. 4631 * other if success, return pointer to the message to send. 4632 */ 4633 static int 4634 key_getspi(so, m, mhp) 4635 struct socket *so; 4636 struct mbuf *m; 4637 const struct sadb_msghdr *mhp; 4638 { 4639 struct sadb_address *src0, *dst0; 4640 struct secasindex saidx; 4641 struct secashead *newsah; 4642 struct secasvar *newsav; 4643 u_int8_t proto; 4644 u_int32_t spi; 4645 u_int8_t mode; 4646 u_int32_t reqid; 4647 int error; 4648 4649 IPSEC_ASSERT(so != NULL, ("null socket")); 4650 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4651 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4652 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4653 4654 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4655 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 4656 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4657 __func__)); 4658 return key_senderror(so, m, EINVAL); 4659 } 4660 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4661 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 4662 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4663 __func__)); 4664 return key_senderror(so, m, EINVAL); 4665 } 4666 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 4667 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4668 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4669 } else { 4670 mode = IPSEC_MODE_ANY; 4671 reqid = 0; 4672 } 4673 4674 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4675 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4676 4677 /* map satype to proto */ 4678 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4679 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4680 __func__)); 4681 return key_senderror(so, m, EINVAL); 4682 } 4683 4684 /* 4685 * Make sure the port numbers are zero. 4686 * In case of NAT-T we will update them later if needed. 4687 */ 4688 switch (((struct sockaddr *)(src0 + 1))->sa_family) { 4689 case AF_INET: 4690 if (((struct sockaddr *)(src0 + 1))->sa_len != 4691 sizeof(struct sockaddr_in)) 4692 return key_senderror(so, m, EINVAL); 4693 ((struct sockaddr_in *)(src0 + 1))->sin_port = 0; 4694 break; 4695 case AF_INET6: 4696 if (((struct sockaddr *)(src0 + 1))->sa_len != 4697 sizeof(struct sockaddr_in6)) 4698 return key_senderror(so, m, EINVAL); 4699 ((struct sockaddr_in6 *)(src0 + 1))->sin6_port = 0; 4700 break; 4701 default: 4702 ; /*???*/ 4703 } 4704 switch (((struct sockaddr *)(dst0 + 1))->sa_family) { 4705 case AF_INET: 4706 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4707 sizeof(struct sockaddr_in)) 4708 return key_senderror(so, m, EINVAL); 4709 ((struct sockaddr_in *)(dst0 + 1))->sin_port = 0; 4710 break; 4711 case AF_INET6: 4712 if (((struct sockaddr *)(dst0 + 1))->sa_len != 4713 sizeof(struct sockaddr_in6)) 4714 return key_senderror(so, m, EINVAL); 4715 ((struct sockaddr_in6 *)(dst0 + 1))->sin6_port = 0; 4716 break; 4717 default: 4718 ; /*???*/ 4719 } 4720 4721 /* XXX boundary check against sa_len */ 4722 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4723 4724 #ifdef IPSEC_NAT_T 4725 /* 4726 * Handle NAT-T info if present. 4727 * We made sure the port numbers are zero above, so we do 4728 * not have to worry in case we do not update them. 4729 */ 4730 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL) 4731 ipseclog((LOG_DEBUG, "%s: NAT-T OAi present\n", __func__)); 4732 if (mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) 4733 ipseclog((LOG_DEBUG, "%s: NAT-T OAr present\n", __func__)); 4734 4735 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 4736 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 4737 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 4738 struct sadb_x_nat_t_type *type; 4739 struct sadb_x_nat_t_port *sport, *dport; 4740 4741 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 4742 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 4743 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 4744 ipseclog((LOG_DEBUG, "%s: invalid nat-t message " 4745 "passed.\n", __func__)); 4746 return key_senderror(so, m, EINVAL); 4747 } 4748 4749 sport = (struct sadb_x_nat_t_port *) 4750 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 4751 dport = (struct sadb_x_nat_t_port *) 4752 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 4753 4754 if (sport) 4755 KEY_PORTTOSADDR(&saidx.src, sport->sadb_x_nat_t_port_port); 4756 if (dport) 4757 KEY_PORTTOSADDR(&saidx.dst, dport->sadb_x_nat_t_port_port); 4758 } 4759 #endif 4760 4761 /* SPI allocation */ 4762 spi = key_do_getnewspi((struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], 4763 &saidx); 4764 if (spi == 0) 4765 return key_senderror(so, m, EINVAL); 4766 4767 /* get a SA index */ 4768 if ((newsah = key_getsah(&saidx)) == NULL) { 4769 /* create a new SA index */ 4770 if ((newsah = key_newsah(&saidx)) == NULL) { 4771 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 4772 return key_senderror(so, m, ENOBUFS); 4773 } 4774 } 4775 4776 /* get a new SA */ 4777 /* XXX rewrite */ 4778 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 4779 if (newsav == NULL) { 4780 /* XXX don't free new SA index allocated in above. */ 4781 return key_senderror(so, m, error); 4782 } 4783 4784 /* set spi */ 4785 newsav->spi = htonl(spi); 4786 4787 /* delete the entry in acqtree */ 4788 if (mhp->msg->sadb_msg_seq != 0) { 4789 struct secacq *acq; 4790 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) != NULL) { 4791 /* reset counter in order to deletion by timehandler. */ 4792 acq->created = time_second; 4793 acq->count = 0; 4794 } 4795 } 4796 4797 { 4798 struct mbuf *n, *nn; 4799 struct sadb_sa *m_sa; 4800 struct sadb_msg *newmsg; 4801 int off, len; 4802 4803 /* create new sadb_msg to reply. */ 4804 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4805 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4806 4807 MGETHDR(n, M_NOWAIT, MT_DATA); 4808 if (len > MHLEN) { 4809 MCLGET(n, M_NOWAIT); 4810 if ((n->m_flags & M_EXT) == 0) { 4811 m_freem(n); 4812 n = NULL; 4813 } 4814 } 4815 if (!n) 4816 return key_senderror(so, m, ENOBUFS); 4817 4818 n->m_len = len; 4819 n->m_next = NULL; 4820 off = 0; 4821 4822 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 4823 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 4824 4825 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 4826 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 4827 m_sa->sadb_sa_exttype = SADB_EXT_SA; 4828 m_sa->sadb_sa_spi = htonl(spi); 4829 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4830 4831 IPSEC_ASSERT(off == len, 4832 ("length inconsistency (off %u len %u)", off, len)); 4833 4834 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 4835 SADB_EXT_ADDRESS_DST); 4836 if (!n->m_next) { 4837 m_freem(n); 4838 return key_senderror(so, m, ENOBUFS); 4839 } 4840 4841 if (n->m_len < sizeof(struct sadb_msg)) { 4842 n = m_pullup(n, sizeof(struct sadb_msg)); 4843 if (n == NULL) 4844 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 4845 } 4846 4847 n->m_pkthdr.len = 0; 4848 for (nn = n; nn; nn = nn->m_next) 4849 n->m_pkthdr.len += nn->m_len; 4850 4851 newmsg = mtod(n, struct sadb_msg *); 4852 newmsg->sadb_msg_seq = newsav->seq; 4853 newmsg->sadb_msg_errno = 0; 4854 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 4855 4856 m_freem(m); 4857 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 4858 } 4859 } 4860 4861 /* 4862 * allocating new SPI 4863 * called by key_getspi(). 4864 * OUT: 4865 * 0: failure. 4866 * others: success. 4867 */ 4868 static u_int32_t 4869 key_do_getnewspi(spirange, saidx) 4870 struct sadb_spirange *spirange; 4871 struct secasindex *saidx; 4872 { 4873 u_int32_t newspi; 4874 u_int32_t min, max; 4875 int count = V_key_spi_trycnt; 4876 4877 /* set spi range to allocate */ 4878 if (spirange != NULL) { 4879 min = spirange->sadb_spirange_min; 4880 max = spirange->sadb_spirange_max; 4881 } else { 4882 min = V_key_spi_minval; 4883 max = V_key_spi_maxval; 4884 } 4885 /* IPCOMP needs 2-byte SPI */ 4886 if (saidx->proto == IPPROTO_IPCOMP) { 4887 u_int32_t t; 4888 if (min >= 0x10000) 4889 min = 0xffff; 4890 if (max >= 0x10000) 4891 max = 0xffff; 4892 if (min > max) { 4893 t = min; min = max; max = t; 4894 } 4895 } 4896 4897 if (min == max) { 4898 if (key_checkspidup(saidx, min) != NULL) { 4899 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 4900 __func__, min)); 4901 return 0; 4902 } 4903 4904 count--; /* taking one cost. */ 4905 newspi = min; 4906 4907 } else { 4908 4909 /* init SPI */ 4910 newspi = 0; 4911 4912 /* when requesting to allocate spi ranged */ 4913 while (count--) { 4914 /* generate pseudo-random SPI value ranged. */ 4915 newspi = min + (key_random() % (max - min + 1)); 4916 4917 if (key_checkspidup(saidx, newspi) == NULL) 4918 break; 4919 } 4920 4921 if (count == 0 || newspi == 0) { 4922 ipseclog((LOG_DEBUG, "%s: to allocate spi is failed.\n", 4923 __func__)); 4924 return 0; 4925 } 4926 } 4927 4928 /* statistics */ 4929 keystat.getspi_count = 4930 (keystat.getspi_count + V_key_spi_trycnt - count) / 2; 4931 4932 return newspi; 4933 } 4934 4935 /* 4936 * SADB_UPDATE processing 4937 * receive 4938 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4939 * key(AE), (identity(SD),) (sensitivity)> 4940 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 4941 * and send 4942 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 4943 * (identity(SD),) (sensitivity)> 4944 * to the ikmpd. 4945 * 4946 * m will always be freed. 4947 */ 4948 static int 4949 key_update(so, m, mhp) 4950 struct socket *so; 4951 struct mbuf *m; 4952 const struct sadb_msghdr *mhp; 4953 { 4954 struct sadb_sa *sa0; 4955 struct sadb_address *src0, *dst0; 4956 #ifdef IPSEC_NAT_T 4957 struct sadb_x_nat_t_type *type; 4958 struct sadb_x_nat_t_port *sport, *dport; 4959 struct sadb_address *iaddr, *raddr; 4960 struct sadb_x_nat_t_frag *frag; 4961 #endif 4962 struct secasindex saidx; 4963 struct secashead *sah; 4964 struct secasvar *sav; 4965 u_int16_t proto; 4966 u_int8_t mode; 4967 u_int32_t reqid; 4968 int error; 4969 4970 IPSEC_ASSERT(so != NULL, ("null socket")); 4971 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4972 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4973 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4974 4975 /* map satype to proto */ 4976 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4977 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4978 __func__)); 4979 return key_senderror(so, m, EINVAL); 4980 } 4981 4982 if (mhp->ext[SADB_EXT_SA] == NULL || 4983 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 4984 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 4985 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 4986 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 4987 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 4988 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 4989 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 4990 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 4991 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 4992 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 4993 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 4994 __func__)); 4995 return key_senderror(so, m, EINVAL); 4996 } 4997 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 4998 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 4999 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5000 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5001 __func__)); 5002 return key_senderror(so, m, EINVAL); 5003 } 5004 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5005 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5006 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5007 } else { 5008 mode = IPSEC_MODE_ANY; 5009 reqid = 0; 5010 } 5011 /* XXX boundary checking for other extensions */ 5012 5013 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5014 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5015 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5016 5017 /* XXX boundary check against sa_len */ 5018 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5019 5020 /* 5021 * Make sure the port numbers are zero. 5022 * In case of NAT-T we will update them later if needed. 5023 */ 5024 KEY_PORTTOSADDR(&saidx.src, 0); 5025 KEY_PORTTOSADDR(&saidx.dst, 0); 5026 5027 #ifdef IPSEC_NAT_T 5028 /* 5029 * Handle NAT-T info if present. 5030 */ 5031 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5032 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5033 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5034 5035 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5036 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5037 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5038 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5039 __func__)); 5040 return key_senderror(so, m, EINVAL); 5041 } 5042 5043 type = (struct sadb_x_nat_t_type *) 5044 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5045 sport = (struct sadb_x_nat_t_port *) 5046 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5047 dport = (struct sadb_x_nat_t_port *) 5048 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5049 } else { 5050 type = 0; 5051 sport = dport = 0; 5052 } 5053 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5054 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5055 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5056 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5057 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5058 __func__)); 5059 return key_senderror(so, m, EINVAL); 5060 } 5061 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5062 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5063 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5064 } else { 5065 iaddr = raddr = NULL; 5066 } 5067 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5068 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5069 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5070 __func__)); 5071 return key_senderror(so, m, EINVAL); 5072 } 5073 frag = (struct sadb_x_nat_t_frag *) 5074 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5075 } else { 5076 frag = 0; 5077 } 5078 #endif 5079 5080 /* get a SA header */ 5081 if ((sah = key_getsah(&saidx)) == NULL) { 5082 ipseclog((LOG_DEBUG, "%s: no SA index found.\n", __func__)); 5083 return key_senderror(so, m, ENOENT); 5084 } 5085 5086 /* set spidx if there */ 5087 /* XXX rewrite */ 5088 error = key_setident(sah, m, mhp); 5089 if (error) 5090 return key_senderror(so, m, error); 5091 5092 /* find a SA with sequence number. */ 5093 #ifdef IPSEC_DOSEQCHECK 5094 if (mhp->msg->sadb_msg_seq != 0 5095 && (sav = key_getsavbyseq(sah, mhp->msg->sadb_msg_seq)) == NULL) { 5096 ipseclog((LOG_DEBUG, "%s: no larval SA with sequence %u " 5097 "exists.\n", __func__, mhp->msg->sadb_msg_seq)); 5098 return key_senderror(so, m, ENOENT); 5099 } 5100 #else 5101 SAHTREE_LOCK(); 5102 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5103 SAHTREE_UNLOCK(); 5104 if (sav == NULL) { 5105 ipseclog((LOG_DEBUG, "%s: no such a SA found (spi:%u)\n", 5106 __func__, (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5107 return key_senderror(so, m, EINVAL); 5108 } 5109 #endif 5110 5111 /* validity check */ 5112 if (sav->sah->saidx.proto != proto) { 5113 ipseclog((LOG_DEBUG, "%s: protocol mismatched " 5114 "(DB=%u param=%u)\n", __func__, 5115 sav->sah->saidx.proto, proto)); 5116 return key_senderror(so, m, EINVAL); 5117 } 5118 #ifdef IPSEC_DOSEQCHECK 5119 if (sav->spi != sa0->sadb_sa_spi) { 5120 ipseclog((LOG_DEBUG, "%s: SPI mismatched (DB:%u param:%u)\n", 5121 __func__, 5122 (u_int32_t)ntohl(sav->spi), 5123 (u_int32_t)ntohl(sa0->sadb_sa_spi))); 5124 return key_senderror(so, m, EINVAL); 5125 } 5126 #endif 5127 if (sav->pid != mhp->msg->sadb_msg_pid) { 5128 ipseclog((LOG_DEBUG, "%s: pid mismatched (DB:%u param:%u)\n", 5129 __func__, sav->pid, mhp->msg->sadb_msg_pid)); 5130 return key_senderror(so, m, EINVAL); 5131 } 5132 5133 /* copy sav values */ 5134 error = key_setsaval(sav, m, mhp); 5135 if (error) { 5136 KEY_FREESAV(&sav); 5137 return key_senderror(so, m, error); 5138 } 5139 5140 #ifdef IPSEC_NAT_T 5141 /* 5142 * Handle more NAT-T info if present, 5143 * now that we have a sav to fill. 5144 */ 5145 if (type) 5146 sav->natt_type = type->sadb_x_nat_t_type_type; 5147 5148 if (sport) 5149 KEY_PORTTOSADDR(&sav->sah->saidx.src, 5150 sport->sadb_x_nat_t_port_port); 5151 if (dport) 5152 KEY_PORTTOSADDR(&sav->sah->saidx.dst, 5153 dport->sadb_x_nat_t_port_port); 5154 5155 #if 0 5156 /* 5157 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5158 * We should actually check for a minimum MTU here, if we 5159 * want to support it in ip_output. 5160 */ 5161 if (frag) 5162 sav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5163 #endif 5164 #endif 5165 5166 /* check SA values to be mature. */ 5167 if ((mhp->msg->sadb_msg_errno = key_mature(sav)) != 0) { 5168 KEY_FREESAV(&sav); 5169 return key_senderror(so, m, 0); 5170 } 5171 5172 { 5173 struct mbuf *n; 5174 5175 /* set msg buf from mhp */ 5176 n = key_getmsgbuf_x1(m, mhp); 5177 if (n == NULL) { 5178 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5179 return key_senderror(so, m, ENOBUFS); 5180 } 5181 5182 m_freem(m); 5183 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5184 } 5185 } 5186 5187 /* 5188 * search SAD with sequence for a SA which state is SADB_SASTATE_LARVAL. 5189 * only called by key_update(). 5190 * OUT: 5191 * NULL : not found 5192 * others : found, pointer to a SA. 5193 */ 5194 #ifdef IPSEC_DOSEQCHECK 5195 static struct secasvar * 5196 key_getsavbyseq(sah, seq) 5197 struct secashead *sah; 5198 u_int32_t seq; 5199 { 5200 struct secasvar *sav; 5201 u_int state; 5202 5203 state = SADB_SASTATE_LARVAL; 5204 5205 /* search SAD with sequence number ? */ 5206 LIST_FOREACH(sav, &sah->savtree[state], chain) { 5207 5208 KEY_CHKSASTATE(state, sav->state, __func__); 5209 5210 if (sav->seq == seq) { 5211 sa_addref(sav); 5212 KEYDEBUG(KEYDEBUG_IPSEC_STAMP, 5213 printf("DP %s cause refcnt++:%d SA:%p\n", 5214 __func__, sav->refcnt, sav)); 5215 return sav; 5216 } 5217 } 5218 5219 return NULL; 5220 } 5221 #endif 5222 5223 /* 5224 * SADB_ADD processing 5225 * add an entry to SA database, when received 5226 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5227 * key(AE), (identity(SD),) (sensitivity)> 5228 * from the ikmpd, 5229 * and send 5230 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5231 * (identity(SD),) (sensitivity)> 5232 * to the ikmpd. 5233 * 5234 * IGNORE identity and sensitivity messages. 5235 * 5236 * m will always be freed. 5237 */ 5238 static int 5239 key_add(so, m, mhp) 5240 struct socket *so; 5241 struct mbuf *m; 5242 const struct sadb_msghdr *mhp; 5243 { 5244 struct sadb_sa *sa0; 5245 struct sadb_address *src0, *dst0; 5246 #ifdef IPSEC_NAT_T 5247 struct sadb_x_nat_t_type *type; 5248 struct sadb_address *iaddr, *raddr; 5249 struct sadb_x_nat_t_frag *frag; 5250 #endif 5251 struct secasindex saidx; 5252 struct secashead *newsah; 5253 struct secasvar *newsav; 5254 u_int16_t proto; 5255 u_int8_t mode; 5256 u_int32_t reqid; 5257 int error; 5258 5259 IPSEC_ASSERT(so != NULL, ("null socket")); 5260 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5261 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5262 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5263 5264 /* map satype to proto */ 5265 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5266 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5267 __func__)); 5268 return key_senderror(so, m, EINVAL); 5269 } 5270 5271 if (mhp->ext[SADB_EXT_SA] == NULL || 5272 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5273 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 5274 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5275 mhp->ext[SADB_EXT_KEY_ENCRYPT] == NULL) || 5276 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5277 mhp->ext[SADB_EXT_KEY_AUTH] == NULL) || 5278 (mhp->ext[SADB_EXT_LIFETIME_HARD] != NULL && 5279 mhp->ext[SADB_EXT_LIFETIME_SOFT] == NULL) || 5280 (mhp->ext[SADB_EXT_LIFETIME_HARD] == NULL && 5281 mhp->ext[SADB_EXT_LIFETIME_SOFT] != NULL)) { 5282 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5283 __func__)); 5284 return key_senderror(so, m, EINVAL); 5285 } 5286 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5287 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5288 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5289 /* XXX need more */ 5290 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5291 __func__)); 5292 return key_senderror(so, m, EINVAL); 5293 } 5294 if (mhp->ext[SADB_X_EXT_SA2] != NULL) { 5295 mode = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5296 reqid = ((struct sadb_x_sa2 *)mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5297 } else { 5298 mode = IPSEC_MODE_ANY; 5299 reqid = 0; 5300 } 5301 5302 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5303 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5304 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5305 5306 /* XXX boundary check against sa_len */ 5307 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5308 5309 /* 5310 * Make sure the port numbers are zero. 5311 * In case of NAT-T we will update them later if needed. 5312 */ 5313 KEY_PORTTOSADDR(&saidx.src, 0); 5314 KEY_PORTTOSADDR(&saidx.dst, 0); 5315 5316 #ifdef IPSEC_NAT_T 5317 /* 5318 * Handle NAT-T info if present. 5319 */ 5320 if (mhp->ext[SADB_X_EXT_NAT_T_TYPE] != NULL && 5321 mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5322 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5323 struct sadb_x_nat_t_port *sport, *dport; 5324 5325 if (mhp->extlen[SADB_X_EXT_NAT_T_TYPE] < sizeof(*type) || 5326 mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5327 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5328 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5329 __func__)); 5330 return key_senderror(so, m, EINVAL); 5331 } 5332 5333 type = (struct sadb_x_nat_t_type *) 5334 mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5335 sport = (struct sadb_x_nat_t_port *) 5336 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5337 dport = (struct sadb_x_nat_t_port *) 5338 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5339 5340 if (sport) 5341 KEY_PORTTOSADDR(&saidx.src, 5342 sport->sadb_x_nat_t_port_port); 5343 if (dport) 5344 KEY_PORTTOSADDR(&saidx.dst, 5345 dport->sadb_x_nat_t_port_port); 5346 } else { 5347 type = 0; 5348 } 5349 if (mhp->ext[SADB_X_EXT_NAT_T_OAI] != NULL && 5350 mhp->ext[SADB_X_EXT_NAT_T_OAR] != NULL) { 5351 if (mhp->extlen[SADB_X_EXT_NAT_T_OAI] < sizeof(*iaddr) || 5352 mhp->extlen[SADB_X_EXT_NAT_T_OAR] < sizeof(*raddr)) { 5353 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5354 __func__)); 5355 return key_senderror(so, m, EINVAL); 5356 } 5357 iaddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5358 raddr = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5359 ipseclog((LOG_DEBUG, "%s: NAT-T OAi/r present\n", __func__)); 5360 } else { 5361 iaddr = raddr = NULL; 5362 } 5363 if (mhp->ext[SADB_X_EXT_NAT_T_FRAG] != NULL) { 5364 if (mhp->extlen[SADB_X_EXT_NAT_T_FRAG] < sizeof(*frag)) { 5365 ipseclog((LOG_DEBUG, "%s: invalid message\n", 5366 __func__)); 5367 return key_senderror(so, m, EINVAL); 5368 } 5369 frag = (struct sadb_x_nat_t_frag *) 5370 mhp->ext[SADB_X_EXT_NAT_T_FRAG]; 5371 } else { 5372 frag = 0; 5373 } 5374 #endif 5375 5376 /* get a SA header */ 5377 if ((newsah = key_getsah(&saidx)) == NULL) { 5378 /* create a new SA header */ 5379 if ((newsah = key_newsah(&saidx)) == NULL) { 5380 ipseclog((LOG_DEBUG, "%s: No more memory.\n",__func__)); 5381 return key_senderror(so, m, ENOBUFS); 5382 } 5383 } 5384 5385 /* set spidx if there */ 5386 /* XXX rewrite */ 5387 error = key_setident(newsah, m, mhp); 5388 if (error) { 5389 return key_senderror(so, m, error); 5390 } 5391 5392 /* create new SA entry. */ 5393 /* We can create new SA only if SPI is differenct. */ 5394 SAHTREE_LOCK(); 5395 newsav = key_getsavbyspi(newsah, sa0->sadb_sa_spi); 5396 SAHTREE_UNLOCK(); 5397 if (newsav != NULL) { 5398 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5399 return key_senderror(so, m, EEXIST); 5400 } 5401 newsav = KEY_NEWSAV(m, mhp, newsah, &error); 5402 if (newsav == NULL) { 5403 return key_senderror(so, m, error); 5404 } 5405 5406 #ifdef IPSEC_NAT_T 5407 /* 5408 * Handle more NAT-T info if present, 5409 * now that we have a sav to fill. 5410 */ 5411 if (type) 5412 newsav->natt_type = type->sadb_x_nat_t_type_type; 5413 5414 #if 0 5415 /* 5416 * In case SADB_X_EXT_NAT_T_FRAG was not given, leave it at 0. 5417 * We should actually check for a minimum MTU here, if we 5418 * want to support it in ip_output. 5419 */ 5420 if (frag) 5421 newsav->natt_esp_frag_len = frag->sadb_x_nat_t_frag_fraglen; 5422 #endif 5423 #endif 5424 5425 /* check SA values to be mature. */ 5426 if ((error = key_mature(newsav)) != 0) { 5427 KEY_FREESAV(&newsav); 5428 return key_senderror(so, m, error); 5429 } 5430 5431 /* 5432 * don't call key_freesav() here, as we would like to keep the SA 5433 * in the database on success. 5434 */ 5435 5436 { 5437 struct mbuf *n; 5438 5439 /* set msg buf from mhp */ 5440 n = key_getmsgbuf_x1(m, mhp); 5441 if (n == NULL) { 5442 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5443 return key_senderror(so, m, ENOBUFS); 5444 } 5445 5446 m_freem(m); 5447 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5448 } 5449 } 5450 5451 /* m is retained */ 5452 static int 5453 key_setident(sah, m, mhp) 5454 struct secashead *sah; 5455 struct mbuf *m; 5456 const struct sadb_msghdr *mhp; 5457 { 5458 const struct sadb_ident *idsrc, *iddst; 5459 int idsrclen, iddstlen; 5460 5461 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5462 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5463 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5464 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5465 5466 /* don't make buffer if not there */ 5467 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL && 5468 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5469 sah->idents = NULL; 5470 sah->identd = NULL; 5471 return 0; 5472 } 5473 5474 if (mhp->ext[SADB_EXT_IDENTITY_SRC] == NULL || 5475 mhp->ext[SADB_EXT_IDENTITY_DST] == NULL) { 5476 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5477 return EINVAL; 5478 } 5479 5480 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5481 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5482 idsrclen = mhp->extlen[SADB_EXT_IDENTITY_SRC]; 5483 iddstlen = mhp->extlen[SADB_EXT_IDENTITY_DST]; 5484 5485 /* validity check */ 5486 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5487 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5488 return EINVAL; 5489 } 5490 5491 switch (idsrc->sadb_ident_type) { 5492 case SADB_IDENTTYPE_PREFIX: 5493 case SADB_IDENTTYPE_FQDN: 5494 case SADB_IDENTTYPE_USERFQDN: 5495 default: 5496 /* XXX do nothing */ 5497 sah->idents = NULL; 5498 sah->identd = NULL; 5499 return 0; 5500 } 5501 5502 /* make structure */ 5503 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5504 if (sah->idents == NULL) { 5505 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5506 return ENOBUFS; 5507 } 5508 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5509 if (sah->identd == NULL) { 5510 free(sah->idents, M_IPSEC_MISC); 5511 sah->idents = NULL; 5512 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5513 return ENOBUFS; 5514 } 5515 sah->idents->type = idsrc->sadb_ident_type; 5516 sah->idents->id = idsrc->sadb_ident_id; 5517 5518 sah->identd->type = iddst->sadb_ident_type; 5519 sah->identd->id = iddst->sadb_ident_id; 5520 5521 return 0; 5522 } 5523 5524 /* 5525 * m will not be freed on return. 5526 * it is caller's responsibility to free the result. 5527 */ 5528 static struct mbuf * 5529 key_getmsgbuf_x1(m, mhp) 5530 struct mbuf *m; 5531 const struct sadb_msghdr *mhp; 5532 { 5533 struct mbuf *n; 5534 5535 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5536 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5537 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5538 5539 /* create new sadb_msg to reply. */ 5540 n = key_gather_mbuf(m, mhp, 1, 9, SADB_EXT_RESERVED, 5541 SADB_EXT_SA, SADB_X_EXT_SA2, 5542 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5543 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5544 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST); 5545 if (!n) 5546 return NULL; 5547 5548 if (n->m_len < sizeof(struct sadb_msg)) { 5549 n = m_pullup(n, sizeof(struct sadb_msg)); 5550 if (n == NULL) 5551 return NULL; 5552 } 5553 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5554 mtod(n, struct sadb_msg *)->sadb_msg_len = 5555 PFKEY_UNIT64(n->m_pkthdr.len); 5556 5557 return n; 5558 } 5559 5560 static int key_delete_all __P((struct socket *, struct mbuf *, 5561 const struct sadb_msghdr *, u_int16_t)); 5562 5563 /* 5564 * SADB_DELETE processing 5565 * receive 5566 * <base, SA(*), address(SD)> 5567 * from the ikmpd, and set SADB_SASTATE_DEAD, 5568 * and send, 5569 * <base, SA(*), address(SD)> 5570 * to the ikmpd. 5571 * 5572 * m will always be freed. 5573 */ 5574 static int 5575 key_delete(so, m, mhp) 5576 struct socket *so; 5577 struct mbuf *m; 5578 const struct sadb_msghdr *mhp; 5579 { 5580 struct sadb_sa *sa0; 5581 struct sadb_address *src0, *dst0; 5582 struct secasindex saidx; 5583 struct secashead *sah; 5584 struct secasvar *sav = NULL; 5585 u_int16_t proto; 5586 5587 IPSEC_ASSERT(so != NULL, ("null socket")); 5588 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5589 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5590 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5591 5592 /* map satype to proto */ 5593 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5594 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5595 __func__)); 5596 return key_senderror(so, m, EINVAL); 5597 } 5598 5599 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5600 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5601 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5602 __func__)); 5603 return key_senderror(so, m, EINVAL); 5604 } 5605 5606 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5607 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5608 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5609 __func__)); 5610 return key_senderror(so, m, EINVAL); 5611 } 5612 5613 if (mhp->ext[SADB_EXT_SA] == NULL) { 5614 /* 5615 * Caller wants us to delete all non-LARVAL SAs 5616 * that match the src/dst. This is used during 5617 * IKE INITIAL-CONTACT. 5618 */ 5619 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 5620 return key_delete_all(so, m, mhp, proto); 5621 } else if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa)) { 5622 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5623 __func__)); 5624 return key_senderror(so, m, EINVAL); 5625 } 5626 5627 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5628 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5629 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5630 5631 /* XXX boundary check against sa_len */ 5632 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5633 5634 /* 5635 * Make sure the port numbers are zero. 5636 * In case of NAT-T we will update them later if needed. 5637 */ 5638 KEY_PORTTOSADDR(&saidx.src, 0); 5639 KEY_PORTTOSADDR(&saidx.dst, 0); 5640 5641 #ifdef IPSEC_NAT_T 5642 /* 5643 * Handle NAT-T info if present. 5644 */ 5645 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5646 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5647 struct sadb_x_nat_t_port *sport, *dport; 5648 5649 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5650 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5651 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5652 __func__)); 5653 return key_senderror(so, m, EINVAL); 5654 } 5655 5656 sport = (struct sadb_x_nat_t_port *) 5657 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5658 dport = (struct sadb_x_nat_t_port *) 5659 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5660 5661 if (sport) 5662 KEY_PORTTOSADDR(&saidx.src, 5663 sport->sadb_x_nat_t_port_port); 5664 if (dport) 5665 KEY_PORTTOSADDR(&saidx.dst, 5666 dport->sadb_x_nat_t_port_port); 5667 } 5668 #endif 5669 5670 /* get a SA header */ 5671 SAHTREE_LOCK(); 5672 LIST_FOREACH(sah, &V_sahtree, chain) { 5673 if (sah->state == SADB_SASTATE_DEAD) 5674 continue; 5675 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5676 continue; 5677 5678 /* get a SA with SPI. */ 5679 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5680 if (sav) 5681 break; 5682 } 5683 if (sah == NULL) { 5684 SAHTREE_UNLOCK(); 5685 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5686 return key_senderror(so, m, ENOENT); 5687 } 5688 5689 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5690 KEY_FREESAV(&sav); 5691 SAHTREE_UNLOCK(); 5692 5693 { 5694 struct mbuf *n; 5695 struct sadb_msg *newmsg; 5696 5697 /* create new sadb_msg to reply. */ 5698 /* XXX-BZ NAT-T extensions? */ 5699 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 5700 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5701 if (!n) 5702 return key_senderror(so, m, ENOBUFS); 5703 5704 if (n->m_len < sizeof(struct sadb_msg)) { 5705 n = m_pullup(n, sizeof(struct sadb_msg)); 5706 if (n == NULL) 5707 return key_senderror(so, m, ENOBUFS); 5708 } 5709 newmsg = mtod(n, struct sadb_msg *); 5710 newmsg->sadb_msg_errno = 0; 5711 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5712 5713 m_freem(m); 5714 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5715 } 5716 } 5717 5718 /* 5719 * delete all SAs for src/dst. Called from key_delete(). 5720 */ 5721 static int 5722 key_delete_all(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp, 5723 u_int16_t proto) 5724 { 5725 struct sadb_address *src0, *dst0; 5726 struct secasindex saidx; 5727 struct secashead *sah; 5728 struct secasvar *sav, *nextsav; 5729 u_int stateidx, state; 5730 5731 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5732 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5733 5734 /* XXX boundary check against sa_len */ 5735 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5736 5737 /* 5738 * Make sure the port numbers are zero. 5739 * In case of NAT-T we will update them later if needed. 5740 */ 5741 KEY_PORTTOSADDR(&saidx.src, 0); 5742 KEY_PORTTOSADDR(&saidx.dst, 0); 5743 5744 #ifdef IPSEC_NAT_T 5745 /* 5746 * Handle NAT-T info if present. 5747 */ 5748 5749 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5750 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5751 struct sadb_x_nat_t_port *sport, *dport; 5752 5753 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5754 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5755 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5756 __func__)); 5757 return key_senderror(so, m, EINVAL); 5758 } 5759 5760 sport = (struct sadb_x_nat_t_port *) 5761 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5762 dport = (struct sadb_x_nat_t_port *) 5763 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5764 5765 if (sport) 5766 KEY_PORTTOSADDR(&saidx.src, 5767 sport->sadb_x_nat_t_port_port); 5768 if (dport) 5769 KEY_PORTTOSADDR(&saidx.dst, 5770 dport->sadb_x_nat_t_port_port); 5771 } 5772 #endif 5773 5774 SAHTREE_LOCK(); 5775 LIST_FOREACH(sah, &V_sahtree, chain) { 5776 if (sah->state == SADB_SASTATE_DEAD) 5777 continue; 5778 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5779 continue; 5780 5781 /* Delete all non-LARVAL SAs. */ 5782 for (stateidx = 0; 5783 stateidx < _ARRAYLEN(saorder_state_alive); 5784 stateidx++) { 5785 state = saorder_state_alive[stateidx]; 5786 if (state == SADB_SASTATE_LARVAL) 5787 continue; 5788 for (sav = LIST_FIRST(&sah->savtree[state]); 5789 sav != NULL; sav = nextsav) { 5790 nextsav = LIST_NEXT(sav, chain); 5791 /* sanity check */ 5792 if (sav->state != state) { 5793 ipseclog((LOG_DEBUG, "%s: invalid " 5794 "sav->state (queue %d SA %d)\n", 5795 __func__, state, sav->state)); 5796 continue; 5797 } 5798 5799 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 5800 KEY_FREESAV(&sav); 5801 } 5802 } 5803 } 5804 SAHTREE_UNLOCK(); 5805 { 5806 struct mbuf *n; 5807 struct sadb_msg *newmsg; 5808 5809 /* create new sadb_msg to reply. */ 5810 /* XXX-BZ NAT-T extensions? */ 5811 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 5812 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 5813 if (!n) 5814 return key_senderror(so, m, ENOBUFS); 5815 5816 if (n->m_len < sizeof(struct sadb_msg)) { 5817 n = m_pullup(n, sizeof(struct sadb_msg)); 5818 if (n == NULL) 5819 return key_senderror(so, m, ENOBUFS); 5820 } 5821 newmsg = mtod(n, struct sadb_msg *); 5822 newmsg->sadb_msg_errno = 0; 5823 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5824 5825 m_freem(m); 5826 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5827 } 5828 } 5829 5830 /* 5831 * SADB_GET processing 5832 * receive 5833 * <base, SA(*), address(SD)> 5834 * from the ikmpd, and get a SP and a SA to respond, 5835 * and send, 5836 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 5837 * (identity(SD),) (sensitivity)> 5838 * to the ikmpd. 5839 * 5840 * m will always be freed. 5841 */ 5842 static int 5843 key_get(so, m, mhp) 5844 struct socket *so; 5845 struct mbuf *m; 5846 const struct sadb_msghdr *mhp; 5847 { 5848 struct sadb_sa *sa0; 5849 struct sadb_address *src0, *dst0; 5850 struct secasindex saidx; 5851 struct secashead *sah; 5852 struct secasvar *sav = NULL; 5853 u_int16_t proto; 5854 5855 IPSEC_ASSERT(so != NULL, ("null socket")); 5856 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5857 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5858 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5859 5860 /* map satype to proto */ 5861 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5862 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5863 __func__)); 5864 return key_senderror(so, m, EINVAL); 5865 } 5866 5867 if (mhp->ext[SADB_EXT_SA] == NULL || 5868 mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 5869 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL) { 5870 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5871 __func__)); 5872 return key_senderror(so, m, EINVAL); 5873 } 5874 if (mhp->extlen[SADB_EXT_SA] < sizeof(struct sadb_sa) || 5875 mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 5876 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address)) { 5877 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 5878 __func__)); 5879 return key_senderror(so, m, EINVAL); 5880 } 5881 5882 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5883 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5884 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5885 5886 /* XXX boundary check against sa_len */ 5887 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 5888 5889 /* 5890 * Make sure the port numbers are zero. 5891 * In case of NAT-T we will update them later if needed. 5892 */ 5893 KEY_PORTTOSADDR(&saidx.src, 0); 5894 KEY_PORTTOSADDR(&saidx.dst, 0); 5895 5896 #ifdef IPSEC_NAT_T 5897 /* 5898 * Handle NAT-T info if present. 5899 */ 5900 5901 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 5902 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 5903 struct sadb_x_nat_t_port *sport, *dport; 5904 5905 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 5906 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 5907 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 5908 __func__)); 5909 return key_senderror(so, m, EINVAL); 5910 } 5911 5912 sport = (struct sadb_x_nat_t_port *) 5913 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5914 dport = (struct sadb_x_nat_t_port *) 5915 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5916 5917 if (sport) 5918 KEY_PORTTOSADDR(&saidx.src, 5919 sport->sadb_x_nat_t_port_port); 5920 if (dport) 5921 KEY_PORTTOSADDR(&saidx.dst, 5922 dport->sadb_x_nat_t_port_port); 5923 } 5924 #endif 5925 5926 /* get a SA header */ 5927 SAHTREE_LOCK(); 5928 LIST_FOREACH(sah, &V_sahtree, chain) { 5929 if (sah->state == SADB_SASTATE_DEAD) 5930 continue; 5931 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_HEAD) == 0) 5932 continue; 5933 5934 /* get a SA with SPI. */ 5935 sav = key_getsavbyspi(sah, sa0->sadb_sa_spi); 5936 if (sav) 5937 break; 5938 } 5939 SAHTREE_UNLOCK(); 5940 if (sah == NULL) { 5941 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 5942 return key_senderror(so, m, ENOENT); 5943 } 5944 5945 { 5946 struct mbuf *n; 5947 u_int8_t satype; 5948 5949 /* map proto to satype */ 5950 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 5951 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 5952 __func__)); 5953 return key_senderror(so, m, EINVAL); 5954 } 5955 5956 /* create new sadb_msg to reply. */ 5957 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 5958 mhp->msg->sadb_msg_pid); 5959 if (!n) 5960 return key_senderror(so, m, ENOBUFS); 5961 5962 m_freem(m); 5963 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5964 } 5965 } 5966 5967 /* XXX make it sysctl-configurable? */ 5968 static void 5969 key_getcomb_setlifetime(comb) 5970 struct sadb_comb *comb; 5971 { 5972 5973 comb->sadb_comb_soft_allocations = 1; 5974 comb->sadb_comb_hard_allocations = 1; 5975 comb->sadb_comb_soft_bytes = 0; 5976 comb->sadb_comb_hard_bytes = 0; 5977 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 5978 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 5979 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 5980 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 5981 } 5982 5983 /* 5984 * XXX reorder combinations by preference 5985 * XXX no idea if the user wants ESP authentication or not 5986 */ 5987 static struct mbuf * 5988 key_getcomb_esp() 5989 { 5990 struct sadb_comb *comb; 5991 struct enc_xform *algo; 5992 struct mbuf *result = NULL, *m, *n; 5993 int encmin; 5994 int i, off, o; 5995 int totlen; 5996 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 5997 5998 m = NULL; 5999 for (i = 1; i <= SADB_EALG_MAX; i++) { 6000 algo = esp_algorithm_lookup(i); 6001 if (algo == NULL) 6002 continue; 6003 6004 /* discard algorithms with key size smaller than system min */ 6005 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6006 continue; 6007 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6008 encmin = V_ipsec_esp_keymin; 6009 else 6010 encmin = _BITS(algo->minkey); 6011 6012 if (V_ipsec_esp_auth) 6013 m = key_getcomb_ah(); 6014 else { 6015 IPSEC_ASSERT(l <= MLEN, 6016 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6017 MGET(m, M_NOWAIT, MT_DATA); 6018 if (m) { 6019 M_ALIGN(m, l); 6020 m->m_len = l; 6021 m->m_next = NULL; 6022 bzero(mtod(m, caddr_t), m->m_len); 6023 } 6024 } 6025 if (!m) 6026 goto fail; 6027 6028 totlen = 0; 6029 for (n = m; n; n = n->m_next) 6030 totlen += n->m_len; 6031 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6032 6033 for (off = 0; off < totlen; off += l) { 6034 n = m_pulldown(m, off, l, &o); 6035 if (!n) { 6036 /* m is already freed */ 6037 goto fail; 6038 } 6039 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6040 bzero(comb, sizeof(*comb)); 6041 key_getcomb_setlifetime(comb); 6042 comb->sadb_comb_encrypt = i; 6043 comb->sadb_comb_encrypt_minbits = encmin; 6044 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6045 } 6046 6047 if (!result) 6048 result = m; 6049 else 6050 m_cat(result, m); 6051 } 6052 6053 return result; 6054 6055 fail: 6056 if (result) 6057 m_freem(result); 6058 return NULL; 6059 } 6060 6061 static void 6062 key_getsizes_ah( 6063 const struct auth_hash *ah, 6064 int alg, 6065 u_int16_t* min, 6066 u_int16_t* max) 6067 { 6068 6069 *min = *max = ah->keysize; 6070 if (ah->keysize == 0) { 6071 /* 6072 * Transform takes arbitrary key size but algorithm 6073 * key size is restricted. Enforce this here. 6074 */ 6075 switch (alg) { 6076 case SADB_X_AALG_MD5: *min = *max = 16; break; 6077 case SADB_X_AALG_SHA: *min = *max = 20; break; 6078 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6079 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6080 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6081 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6082 default: 6083 DPRINTF(("%s: unknown AH algorithm %u\n", 6084 __func__, alg)); 6085 break; 6086 } 6087 } 6088 } 6089 6090 /* 6091 * XXX reorder combinations by preference 6092 */ 6093 static struct mbuf * 6094 key_getcomb_ah() 6095 { 6096 struct sadb_comb *comb; 6097 struct auth_hash *algo; 6098 struct mbuf *m; 6099 u_int16_t minkeysize, maxkeysize; 6100 int i; 6101 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6102 6103 m = NULL; 6104 for (i = 1; i <= SADB_AALG_MAX; i++) { 6105 #if 1 6106 /* we prefer HMAC algorithms, not old algorithms */ 6107 if (i != SADB_AALG_SHA1HMAC && 6108 i != SADB_AALG_MD5HMAC && 6109 i != SADB_X_AALG_SHA2_256 && 6110 i != SADB_X_AALG_SHA2_384 && 6111 i != SADB_X_AALG_SHA2_512) 6112 continue; 6113 #endif 6114 algo = ah_algorithm_lookup(i); 6115 if (!algo) 6116 continue; 6117 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6118 /* discard algorithms with key size smaller than system min */ 6119 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6120 continue; 6121 6122 if (!m) { 6123 IPSEC_ASSERT(l <= MLEN, 6124 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6125 MGET(m, M_NOWAIT, MT_DATA); 6126 if (m) { 6127 M_ALIGN(m, l); 6128 m->m_len = l; 6129 m->m_next = NULL; 6130 } 6131 } else 6132 M_PREPEND(m, l, M_NOWAIT); 6133 if (!m) 6134 return NULL; 6135 6136 comb = mtod(m, struct sadb_comb *); 6137 bzero(comb, sizeof(*comb)); 6138 key_getcomb_setlifetime(comb); 6139 comb->sadb_comb_auth = i; 6140 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6141 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6142 } 6143 6144 return m; 6145 } 6146 6147 /* 6148 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6149 * XXX reorder combinations by preference 6150 */ 6151 static struct mbuf * 6152 key_getcomb_ipcomp() 6153 { 6154 struct sadb_comb *comb; 6155 struct comp_algo *algo; 6156 struct mbuf *m; 6157 int i; 6158 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6159 6160 m = NULL; 6161 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6162 algo = ipcomp_algorithm_lookup(i); 6163 if (!algo) 6164 continue; 6165 6166 if (!m) { 6167 IPSEC_ASSERT(l <= MLEN, 6168 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6169 MGET(m, M_NOWAIT, MT_DATA); 6170 if (m) { 6171 M_ALIGN(m, l); 6172 m->m_len = l; 6173 m->m_next = NULL; 6174 } 6175 } else 6176 M_PREPEND(m, l, M_NOWAIT); 6177 if (!m) 6178 return NULL; 6179 6180 comb = mtod(m, struct sadb_comb *); 6181 bzero(comb, sizeof(*comb)); 6182 key_getcomb_setlifetime(comb); 6183 comb->sadb_comb_encrypt = i; 6184 /* what should we set into sadb_comb_*_{min,max}bits? */ 6185 } 6186 6187 return m; 6188 } 6189 6190 /* 6191 * XXX no way to pass mode (transport/tunnel) to userland 6192 * XXX replay checking? 6193 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6194 */ 6195 static struct mbuf * 6196 key_getprop(saidx) 6197 const struct secasindex *saidx; 6198 { 6199 struct sadb_prop *prop; 6200 struct mbuf *m, *n; 6201 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6202 int totlen; 6203 6204 switch (saidx->proto) { 6205 case IPPROTO_ESP: 6206 m = key_getcomb_esp(); 6207 break; 6208 case IPPROTO_AH: 6209 m = key_getcomb_ah(); 6210 break; 6211 case IPPROTO_IPCOMP: 6212 m = key_getcomb_ipcomp(); 6213 break; 6214 default: 6215 return NULL; 6216 } 6217 6218 if (!m) 6219 return NULL; 6220 M_PREPEND(m, l, M_NOWAIT); 6221 if (!m) 6222 return NULL; 6223 6224 totlen = 0; 6225 for (n = m; n; n = n->m_next) 6226 totlen += n->m_len; 6227 6228 prop = mtod(m, struct sadb_prop *); 6229 bzero(prop, sizeof(*prop)); 6230 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6231 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6232 prop->sadb_prop_replay = 32; /* XXX */ 6233 6234 return m; 6235 } 6236 6237 /* 6238 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6239 * send 6240 * <base, SA, address(SD), (address(P)), x_policy, 6241 * (identity(SD),) (sensitivity,) proposal> 6242 * to KMD, and expect to receive 6243 * <base> with SADB_ACQUIRE if error occured, 6244 * or 6245 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6246 * from KMD by PF_KEY. 6247 * 6248 * XXX x_policy is outside of RFC2367 (KAME extension). 6249 * XXX sensitivity is not supported. 6250 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6251 * see comment for key_getcomb_ipcomp(). 6252 * 6253 * OUT: 6254 * 0 : succeed 6255 * others: error number 6256 */ 6257 static int 6258 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6259 { 6260 struct mbuf *result = NULL, *m; 6261 struct secacq *newacq; 6262 u_int8_t satype; 6263 int error = -1; 6264 u_int32_t seq; 6265 6266 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6267 satype = key_proto2satype(saidx->proto); 6268 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6269 6270 /* 6271 * We never do anything about acquirng SA. There is anather 6272 * solution that kernel blocks to send SADB_ACQUIRE message until 6273 * getting something message from IKEd. In later case, to be 6274 * managed with ACQUIRING list. 6275 */ 6276 /* Get an entry to check whether sending message or not. */ 6277 if ((newacq = key_getacq(saidx)) != NULL) { 6278 if (V_key_blockacq_count < newacq->count) { 6279 /* reset counter and do send message. */ 6280 newacq->count = 0; 6281 } else { 6282 /* increment counter and do nothing. */ 6283 newacq->count++; 6284 return 0; 6285 } 6286 } else { 6287 /* make new entry for blocking to send SADB_ACQUIRE. */ 6288 if ((newacq = key_newacq(saidx)) == NULL) 6289 return ENOBUFS; 6290 } 6291 6292 6293 seq = newacq->seq; 6294 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6295 if (!m) { 6296 error = ENOBUFS; 6297 goto fail; 6298 } 6299 result = m; 6300 6301 /* 6302 * No SADB_X_EXT_NAT_T_* here: we do not know 6303 * anything related to NAT-T at this time. 6304 */ 6305 6306 /* set sadb_address for saidx's. */ 6307 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6308 &saidx->src.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6309 if (!m) { 6310 error = ENOBUFS; 6311 goto fail; 6312 } 6313 m_cat(result, m); 6314 6315 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6316 &saidx->dst.sa, FULLMASK, IPSEC_ULPROTO_ANY); 6317 if (!m) { 6318 error = ENOBUFS; 6319 goto fail; 6320 } 6321 m_cat(result, m); 6322 6323 /* XXX proxy address (optional) */ 6324 6325 /* set sadb_x_policy */ 6326 if (sp) { 6327 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id); 6328 if (!m) { 6329 error = ENOBUFS; 6330 goto fail; 6331 } 6332 m_cat(result, m); 6333 } 6334 6335 /* XXX identity (optional) */ 6336 #if 0 6337 if (idexttype && fqdn) { 6338 /* create identity extension (FQDN) */ 6339 struct sadb_ident *id; 6340 int fqdnlen; 6341 6342 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6343 id = (struct sadb_ident *)p; 6344 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6345 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6346 id->sadb_ident_exttype = idexttype; 6347 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6348 bcopy(fqdn, id + 1, fqdnlen); 6349 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6350 } 6351 6352 if (idexttype) { 6353 /* create identity extension (USERFQDN) */ 6354 struct sadb_ident *id; 6355 int userfqdnlen; 6356 6357 if (userfqdn) { 6358 /* +1 for terminating-NUL */ 6359 userfqdnlen = strlen(userfqdn) + 1; 6360 } else 6361 userfqdnlen = 0; 6362 id = (struct sadb_ident *)p; 6363 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6364 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6365 id->sadb_ident_exttype = idexttype; 6366 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6367 /* XXX is it correct? */ 6368 if (curproc && curproc->p_cred) 6369 id->sadb_ident_id = curproc->p_cred->p_ruid; 6370 if (userfqdn && userfqdnlen) 6371 bcopy(userfqdn, id + 1, userfqdnlen); 6372 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6373 } 6374 #endif 6375 6376 /* XXX sensitivity (optional) */ 6377 6378 /* create proposal/combination extension */ 6379 m = key_getprop(saidx); 6380 #if 0 6381 /* 6382 * spec conformant: always attach proposal/combination extension, 6383 * the problem is that we have no way to attach it for ipcomp, 6384 * due to the way sadb_comb is declared in RFC2367. 6385 */ 6386 if (!m) { 6387 error = ENOBUFS; 6388 goto fail; 6389 } 6390 m_cat(result, m); 6391 #else 6392 /* 6393 * outside of spec; make proposal/combination extension optional. 6394 */ 6395 if (m) 6396 m_cat(result, m); 6397 #endif 6398 6399 if ((result->m_flags & M_PKTHDR) == 0) { 6400 error = EINVAL; 6401 goto fail; 6402 } 6403 6404 if (result->m_len < sizeof(struct sadb_msg)) { 6405 result = m_pullup(result, sizeof(struct sadb_msg)); 6406 if (result == NULL) { 6407 error = ENOBUFS; 6408 goto fail; 6409 } 6410 } 6411 6412 result->m_pkthdr.len = 0; 6413 for (m = result; m; m = m->m_next) 6414 result->m_pkthdr.len += m->m_len; 6415 6416 mtod(result, struct sadb_msg *)->sadb_msg_len = 6417 PFKEY_UNIT64(result->m_pkthdr.len); 6418 6419 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6420 6421 fail: 6422 if (result) 6423 m_freem(result); 6424 return error; 6425 } 6426 6427 static struct secacq * 6428 key_newacq(const struct secasindex *saidx) 6429 { 6430 struct secacq *newacq; 6431 6432 /* get new entry */ 6433 newacq = malloc(sizeof(struct secacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6434 if (newacq == NULL) { 6435 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6436 return NULL; 6437 } 6438 6439 /* copy secindex */ 6440 bcopy(saidx, &newacq->saidx, sizeof(newacq->saidx)); 6441 newacq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6442 newacq->created = time_second; 6443 newacq->count = 0; 6444 6445 /* add to acqtree */ 6446 ACQ_LOCK(); 6447 LIST_INSERT_HEAD(&V_acqtree, newacq, chain); 6448 ACQ_UNLOCK(); 6449 6450 return newacq; 6451 } 6452 6453 static struct secacq * 6454 key_getacq(const struct secasindex *saidx) 6455 { 6456 struct secacq *acq; 6457 6458 ACQ_LOCK(); 6459 LIST_FOREACH(acq, &V_acqtree, chain) { 6460 if (key_cmpsaidx(saidx, &acq->saidx, CMP_EXACTLY)) 6461 break; 6462 } 6463 ACQ_UNLOCK(); 6464 6465 return acq; 6466 } 6467 6468 static struct secacq * 6469 key_getacqbyseq(seq) 6470 u_int32_t seq; 6471 { 6472 struct secacq *acq; 6473 6474 ACQ_LOCK(); 6475 LIST_FOREACH(acq, &V_acqtree, chain) { 6476 if (acq->seq == seq) 6477 break; 6478 } 6479 ACQ_UNLOCK(); 6480 6481 return acq; 6482 } 6483 6484 static struct secspacq * 6485 key_newspacq(spidx) 6486 struct secpolicyindex *spidx; 6487 { 6488 struct secspacq *acq; 6489 6490 /* get new entry */ 6491 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6492 if (acq == NULL) { 6493 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6494 return NULL; 6495 } 6496 6497 /* copy secindex */ 6498 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6499 acq->created = time_second; 6500 acq->count = 0; 6501 6502 /* add to spacqtree */ 6503 SPACQ_LOCK(); 6504 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6505 SPACQ_UNLOCK(); 6506 6507 return acq; 6508 } 6509 6510 static struct secspacq * 6511 key_getspacq(spidx) 6512 struct secpolicyindex *spidx; 6513 { 6514 struct secspacq *acq; 6515 6516 SPACQ_LOCK(); 6517 LIST_FOREACH(acq, &V_spacqtree, chain) { 6518 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6519 /* NB: return holding spacq_lock */ 6520 return acq; 6521 } 6522 } 6523 SPACQ_UNLOCK(); 6524 6525 return NULL; 6526 } 6527 6528 /* 6529 * SADB_ACQUIRE processing, 6530 * in first situation, is receiving 6531 * <base> 6532 * from the ikmpd, and clear sequence of its secasvar entry. 6533 * 6534 * In second situation, is receiving 6535 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6536 * from a user land process, and return 6537 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6538 * to the socket. 6539 * 6540 * m will always be freed. 6541 */ 6542 static int 6543 key_acquire2(so, m, mhp) 6544 struct socket *so; 6545 struct mbuf *m; 6546 const struct sadb_msghdr *mhp; 6547 { 6548 const struct sadb_address *src0, *dst0; 6549 struct secasindex saidx; 6550 struct secashead *sah; 6551 u_int16_t proto; 6552 int error; 6553 6554 IPSEC_ASSERT(so != NULL, ("null socket")); 6555 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6556 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6557 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6558 6559 /* 6560 * Error message from KMd. 6561 * We assume that if error was occured in IKEd, the length of PFKEY 6562 * message is equal to the size of sadb_msg structure. 6563 * We do not raise error even if error occured in this function. 6564 */ 6565 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 6566 struct secacq *acq; 6567 6568 /* check sequence number */ 6569 if (mhp->msg->sadb_msg_seq == 0) { 6570 ipseclog((LOG_DEBUG, "%s: must specify sequence " 6571 "number.\n", __func__)); 6572 m_freem(m); 6573 return 0; 6574 } 6575 6576 if ((acq = key_getacqbyseq(mhp->msg->sadb_msg_seq)) == NULL) { 6577 /* 6578 * the specified larval SA is already gone, or we got 6579 * a bogus sequence number. we can silently ignore it. 6580 */ 6581 m_freem(m); 6582 return 0; 6583 } 6584 6585 /* reset acq counter in order to deletion by timehander. */ 6586 acq->created = time_second; 6587 acq->count = 0; 6588 m_freem(m); 6589 return 0; 6590 } 6591 6592 /* 6593 * This message is from user land. 6594 */ 6595 6596 /* map satype to proto */ 6597 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6598 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6599 __func__)); 6600 return key_senderror(so, m, EINVAL); 6601 } 6602 6603 if (mhp->ext[SADB_EXT_ADDRESS_SRC] == NULL || 6604 mhp->ext[SADB_EXT_ADDRESS_DST] == NULL || 6605 mhp->ext[SADB_EXT_PROPOSAL] == NULL) { 6606 /* error */ 6607 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6608 __func__)); 6609 return key_senderror(so, m, EINVAL); 6610 } 6611 if (mhp->extlen[SADB_EXT_ADDRESS_SRC] < sizeof(struct sadb_address) || 6612 mhp->extlen[SADB_EXT_ADDRESS_DST] < sizeof(struct sadb_address) || 6613 mhp->extlen[SADB_EXT_PROPOSAL] < sizeof(struct sadb_prop)) { 6614 /* error */ 6615 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6616 __func__)); 6617 return key_senderror(so, m, EINVAL); 6618 } 6619 6620 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6621 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6622 6623 /* XXX boundary check against sa_len */ 6624 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6625 6626 /* 6627 * Make sure the port numbers are zero. 6628 * In case of NAT-T we will update them later if needed. 6629 */ 6630 KEY_PORTTOSADDR(&saidx.src, 0); 6631 KEY_PORTTOSADDR(&saidx.dst, 0); 6632 6633 #ifndef IPSEC_NAT_T 6634 /* 6635 * Handle NAT-T info if present. 6636 */ 6637 6638 if (mhp->ext[SADB_X_EXT_NAT_T_SPORT] != NULL && 6639 mhp->ext[SADB_X_EXT_NAT_T_DPORT] != NULL) { 6640 struct sadb_x_nat_t_port *sport, *dport; 6641 6642 if (mhp->extlen[SADB_X_EXT_NAT_T_SPORT] < sizeof(*sport) || 6643 mhp->extlen[SADB_X_EXT_NAT_T_DPORT] < sizeof(*dport)) { 6644 ipseclog((LOG_DEBUG, "%s: invalid message.\n", 6645 __func__)); 6646 return key_senderror(so, m, EINVAL); 6647 } 6648 6649 sport = (struct sadb_x_nat_t_port *) 6650 mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 6651 dport = (struct sadb_x_nat_t_port *) 6652 mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 6653 6654 if (sport) 6655 KEY_PORTTOSADDR(&saidx.src, 6656 sport->sadb_x_nat_t_port_port); 6657 if (dport) 6658 KEY_PORTTOSADDR(&saidx.dst, 6659 dport->sadb_x_nat_t_port_port); 6660 } 6661 #endif 6662 6663 /* get a SA index */ 6664 SAHTREE_LOCK(); 6665 LIST_FOREACH(sah, &V_sahtree, chain) { 6666 if (sah->state == SADB_SASTATE_DEAD) 6667 continue; 6668 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 6669 break; 6670 } 6671 SAHTREE_UNLOCK(); 6672 if (sah != NULL) { 6673 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 6674 return key_senderror(so, m, EEXIST); 6675 } 6676 6677 error = key_acquire(&saidx, NULL); 6678 if (error != 0) { 6679 ipseclog((LOG_DEBUG, "%s: error %d returned from key_acquire\n", 6680 __func__, mhp->msg->sadb_msg_errno)); 6681 return key_senderror(so, m, error); 6682 } 6683 6684 return key_sendup_mbuf(so, m, KEY_SENDUP_REGISTERED); 6685 } 6686 6687 /* 6688 * SADB_REGISTER processing. 6689 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 6690 * receive 6691 * <base> 6692 * from the ikmpd, and register a socket to send PF_KEY messages, 6693 * and send 6694 * <base, supported> 6695 * to KMD by PF_KEY. 6696 * If socket is detached, must free from regnode. 6697 * 6698 * m will always be freed. 6699 */ 6700 static int 6701 key_register(so, m, mhp) 6702 struct socket *so; 6703 struct mbuf *m; 6704 const struct sadb_msghdr *mhp; 6705 { 6706 struct secreg *reg, *newreg = 0; 6707 6708 IPSEC_ASSERT(so != NULL, ("null socket")); 6709 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6710 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6711 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6712 6713 /* check for invalid register message */ 6714 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 6715 return key_senderror(so, m, EINVAL); 6716 6717 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 6718 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 6719 goto setmsg; 6720 6721 /* check whether existing or not */ 6722 REGTREE_LOCK(); 6723 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 6724 if (reg->so == so) { 6725 REGTREE_UNLOCK(); 6726 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 6727 __func__)); 6728 return key_senderror(so, m, EEXIST); 6729 } 6730 } 6731 6732 /* create regnode */ 6733 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 6734 if (newreg == NULL) { 6735 REGTREE_UNLOCK(); 6736 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6737 return key_senderror(so, m, ENOBUFS); 6738 } 6739 6740 newreg->so = so; 6741 ((struct keycb *)sotorawcb(so))->kp_registered++; 6742 6743 /* add regnode to regtree. */ 6744 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 6745 REGTREE_UNLOCK(); 6746 6747 setmsg: 6748 { 6749 struct mbuf *n; 6750 struct sadb_msg *newmsg; 6751 struct sadb_supported *sup; 6752 u_int len, alen, elen; 6753 int off; 6754 int i; 6755 struct sadb_alg *alg; 6756 6757 /* create new sadb_msg to reply. */ 6758 alen = 0; 6759 for (i = 1; i <= SADB_AALG_MAX; i++) { 6760 if (ah_algorithm_lookup(i)) 6761 alen += sizeof(struct sadb_alg); 6762 } 6763 if (alen) 6764 alen += sizeof(struct sadb_supported); 6765 elen = 0; 6766 for (i = 1; i <= SADB_EALG_MAX; i++) { 6767 if (esp_algorithm_lookup(i)) 6768 elen += sizeof(struct sadb_alg); 6769 } 6770 if (elen) 6771 elen += sizeof(struct sadb_supported); 6772 6773 len = sizeof(struct sadb_msg) + alen + elen; 6774 6775 if (len > MCLBYTES) 6776 return key_senderror(so, m, ENOBUFS); 6777 6778 MGETHDR(n, M_NOWAIT, MT_DATA); 6779 if (len > MHLEN) { 6780 MCLGET(n, M_NOWAIT); 6781 if ((n->m_flags & M_EXT) == 0) { 6782 m_freem(n); 6783 n = NULL; 6784 } 6785 } 6786 if (!n) 6787 return key_senderror(so, m, ENOBUFS); 6788 6789 n->m_pkthdr.len = n->m_len = len; 6790 n->m_next = NULL; 6791 off = 0; 6792 6793 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 6794 newmsg = mtod(n, struct sadb_msg *); 6795 newmsg->sadb_msg_errno = 0; 6796 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 6797 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 6798 6799 /* for authentication algorithm */ 6800 if (alen) { 6801 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6802 sup->sadb_supported_len = PFKEY_UNIT64(alen); 6803 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 6804 off += PFKEY_ALIGN8(sizeof(*sup)); 6805 6806 for (i = 1; i <= SADB_AALG_MAX; i++) { 6807 struct auth_hash *aalgo; 6808 u_int16_t minkeysize, maxkeysize; 6809 6810 aalgo = ah_algorithm_lookup(i); 6811 if (!aalgo) 6812 continue; 6813 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6814 alg->sadb_alg_id = i; 6815 alg->sadb_alg_ivlen = 0; 6816 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 6817 alg->sadb_alg_minbits = _BITS(minkeysize); 6818 alg->sadb_alg_maxbits = _BITS(maxkeysize); 6819 off += PFKEY_ALIGN8(sizeof(*alg)); 6820 } 6821 } 6822 6823 /* for encryption algorithm */ 6824 if (elen) { 6825 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 6826 sup->sadb_supported_len = PFKEY_UNIT64(elen); 6827 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 6828 off += PFKEY_ALIGN8(sizeof(*sup)); 6829 6830 for (i = 1; i <= SADB_EALG_MAX; i++) { 6831 struct enc_xform *ealgo; 6832 6833 ealgo = esp_algorithm_lookup(i); 6834 if (!ealgo) 6835 continue; 6836 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 6837 alg->sadb_alg_id = i; 6838 alg->sadb_alg_ivlen = ealgo->blocksize; 6839 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 6840 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 6841 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 6842 } 6843 } 6844 6845 IPSEC_ASSERT(off == len, 6846 ("length assumption failed (off %u len %u)", off, len)); 6847 6848 m_freem(m); 6849 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 6850 } 6851 } 6852 6853 /* 6854 * free secreg entry registered. 6855 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 6856 */ 6857 void 6858 key_freereg(struct socket *so) 6859 { 6860 struct secreg *reg; 6861 int i; 6862 6863 IPSEC_ASSERT(so != NULL, ("NULL so")); 6864 6865 /* 6866 * check whether existing or not. 6867 * check all type of SA, because there is a potential that 6868 * one socket is registered to multiple type of SA. 6869 */ 6870 REGTREE_LOCK(); 6871 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 6872 LIST_FOREACH(reg, &V_regtree[i], chain) { 6873 if (reg->so == so && __LIST_CHAINED(reg)) { 6874 LIST_REMOVE(reg, chain); 6875 free(reg, M_IPSEC_SAR); 6876 break; 6877 } 6878 } 6879 } 6880 REGTREE_UNLOCK(); 6881 } 6882 6883 /* 6884 * SADB_EXPIRE processing 6885 * send 6886 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 6887 * to KMD by PF_KEY. 6888 * NOTE: We send only soft lifetime extension. 6889 * 6890 * OUT: 0 : succeed 6891 * others : error number 6892 */ 6893 static int 6894 key_expire(struct secasvar *sav) 6895 { 6896 int satype; 6897 struct mbuf *result = NULL, *m; 6898 int len; 6899 int error = -1; 6900 struct sadb_lifetime *lt; 6901 6902 IPSEC_ASSERT (sav != NULL, ("null sav")); 6903 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 6904 6905 /* set msg header */ 6906 satype = key_proto2satype(sav->sah->saidx.proto); 6907 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 6908 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 6909 if (!m) { 6910 error = ENOBUFS; 6911 goto fail; 6912 } 6913 result = m; 6914 6915 /* create SA extension */ 6916 m = key_setsadbsa(sav); 6917 if (!m) { 6918 error = ENOBUFS; 6919 goto fail; 6920 } 6921 m_cat(result, m); 6922 6923 /* create SA extension */ 6924 m = key_setsadbxsa2(sav->sah->saidx.mode, 6925 sav->replay ? sav->replay->count : 0, 6926 sav->sah->saidx.reqid); 6927 if (!m) { 6928 error = ENOBUFS; 6929 goto fail; 6930 } 6931 m_cat(result, m); 6932 6933 /* create lifetime extension (current and soft) */ 6934 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 6935 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 6936 if (m == NULL) { 6937 error = ENOBUFS; 6938 goto fail; 6939 } 6940 m_align(m, len); 6941 m->m_len = len; 6942 bzero(mtod(m, caddr_t), len); 6943 lt = mtod(m, struct sadb_lifetime *); 6944 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6945 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 6946 lt->sadb_lifetime_allocations = sav->lft_c->allocations; 6947 lt->sadb_lifetime_bytes = sav->lft_c->bytes; 6948 lt->sadb_lifetime_addtime = sav->lft_c->addtime; 6949 lt->sadb_lifetime_usetime = sav->lft_c->usetime; 6950 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 6951 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 6952 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 6953 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 6954 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 6955 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 6956 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 6957 m_cat(result, m); 6958 6959 /* set sadb_address for source */ 6960 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 6961 &sav->sah->saidx.src.sa, 6962 FULLMASK, IPSEC_ULPROTO_ANY); 6963 if (!m) { 6964 error = ENOBUFS; 6965 goto fail; 6966 } 6967 m_cat(result, m); 6968 6969 /* set sadb_address for destination */ 6970 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 6971 &sav->sah->saidx.dst.sa, 6972 FULLMASK, IPSEC_ULPROTO_ANY); 6973 if (!m) { 6974 error = ENOBUFS; 6975 goto fail; 6976 } 6977 m_cat(result, m); 6978 6979 /* 6980 * XXX-BZ Handle NAT-T extensions here. 6981 */ 6982 6983 if ((result->m_flags & M_PKTHDR) == 0) { 6984 error = EINVAL; 6985 goto fail; 6986 } 6987 6988 if (result->m_len < sizeof(struct sadb_msg)) { 6989 result = m_pullup(result, sizeof(struct sadb_msg)); 6990 if (result == NULL) { 6991 error = ENOBUFS; 6992 goto fail; 6993 } 6994 } 6995 6996 result->m_pkthdr.len = 0; 6997 for (m = result; m; m = m->m_next) 6998 result->m_pkthdr.len += m->m_len; 6999 7000 mtod(result, struct sadb_msg *)->sadb_msg_len = 7001 PFKEY_UNIT64(result->m_pkthdr.len); 7002 7003 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7004 7005 fail: 7006 if (result) 7007 m_freem(result); 7008 return error; 7009 } 7010 7011 /* 7012 * SADB_FLUSH processing 7013 * receive 7014 * <base> 7015 * from the ikmpd, and free all entries in secastree. 7016 * and send, 7017 * <base> 7018 * to the ikmpd. 7019 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7020 * 7021 * m will always be freed. 7022 */ 7023 static int 7024 key_flush(so, m, mhp) 7025 struct socket *so; 7026 struct mbuf *m; 7027 const struct sadb_msghdr *mhp; 7028 { 7029 struct sadb_msg *newmsg; 7030 struct secashead *sah, *nextsah; 7031 struct secasvar *sav, *nextsav; 7032 u_int16_t proto; 7033 u_int8_t state; 7034 u_int stateidx; 7035 7036 IPSEC_ASSERT(so != NULL, ("null socket")); 7037 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7038 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7039 7040 /* map satype to proto */ 7041 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7042 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7043 __func__)); 7044 return key_senderror(so, m, EINVAL); 7045 } 7046 7047 /* no SATYPE specified, i.e. flushing all SA. */ 7048 SAHTREE_LOCK(); 7049 for (sah = LIST_FIRST(&V_sahtree); 7050 sah != NULL; 7051 sah = nextsah) { 7052 nextsah = LIST_NEXT(sah, chain); 7053 7054 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7055 && proto != sah->saidx.proto) 7056 continue; 7057 7058 for (stateidx = 0; 7059 stateidx < _ARRAYLEN(saorder_state_alive); 7060 stateidx++) { 7061 state = saorder_state_any[stateidx]; 7062 for (sav = LIST_FIRST(&sah->savtree[state]); 7063 sav != NULL; 7064 sav = nextsav) { 7065 7066 nextsav = LIST_NEXT(sav, chain); 7067 7068 key_sa_chgstate(sav, SADB_SASTATE_DEAD); 7069 KEY_FREESAV(&sav); 7070 } 7071 } 7072 7073 sah->state = SADB_SASTATE_DEAD; 7074 } 7075 SAHTREE_UNLOCK(); 7076 7077 if (m->m_len < sizeof(struct sadb_msg) || 7078 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7079 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7080 return key_senderror(so, m, ENOBUFS); 7081 } 7082 7083 if (m->m_next) 7084 m_freem(m->m_next); 7085 m->m_next = NULL; 7086 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7087 newmsg = mtod(m, struct sadb_msg *); 7088 newmsg->sadb_msg_errno = 0; 7089 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7090 7091 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7092 } 7093 7094 /* 7095 * SADB_DUMP processing 7096 * dump all entries including status of DEAD in SAD. 7097 * receive 7098 * <base> 7099 * from the ikmpd, and dump all secasvar leaves 7100 * and send, 7101 * <base> ..... 7102 * to the ikmpd. 7103 * 7104 * m will always be freed. 7105 */ 7106 static int 7107 key_dump(so, m, mhp) 7108 struct socket *so; 7109 struct mbuf *m; 7110 const struct sadb_msghdr *mhp; 7111 { 7112 struct secashead *sah; 7113 struct secasvar *sav; 7114 u_int16_t proto; 7115 u_int stateidx; 7116 u_int8_t satype; 7117 u_int8_t state; 7118 int cnt; 7119 struct sadb_msg *newmsg; 7120 struct mbuf *n; 7121 7122 IPSEC_ASSERT(so != NULL, ("null socket")); 7123 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7124 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7125 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7126 7127 /* map satype to proto */ 7128 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7129 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7130 __func__)); 7131 return key_senderror(so, m, EINVAL); 7132 } 7133 7134 /* count sav entries to be sent to the userland. */ 7135 cnt = 0; 7136 SAHTREE_LOCK(); 7137 LIST_FOREACH(sah, &V_sahtree, chain) { 7138 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7139 && proto != sah->saidx.proto) 7140 continue; 7141 7142 for (stateidx = 0; 7143 stateidx < _ARRAYLEN(saorder_state_any); 7144 stateidx++) { 7145 state = saorder_state_any[stateidx]; 7146 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7147 cnt++; 7148 } 7149 } 7150 } 7151 7152 if (cnt == 0) { 7153 SAHTREE_UNLOCK(); 7154 return key_senderror(so, m, ENOENT); 7155 } 7156 7157 /* send this to the userland, one at a time. */ 7158 newmsg = NULL; 7159 LIST_FOREACH(sah, &V_sahtree, chain) { 7160 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC 7161 && proto != sah->saidx.proto) 7162 continue; 7163 7164 /* map proto to satype */ 7165 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7166 SAHTREE_UNLOCK(); 7167 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7168 "SAD.\n", __func__)); 7169 return key_senderror(so, m, EINVAL); 7170 } 7171 7172 for (stateidx = 0; 7173 stateidx < _ARRAYLEN(saorder_state_any); 7174 stateidx++) { 7175 state = saorder_state_any[stateidx]; 7176 LIST_FOREACH(sav, &sah->savtree[state], chain) { 7177 n = key_setdumpsa(sav, SADB_DUMP, satype, 7178 --cnt, mhp->msg->sadb_msg_pid); 7179 if (!n) { 7180 SAHTREE_UNLOCK(); 7181 return key_senderror(so, m, ENOBUFS); 7182 } 7183 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7184 } 7185 } 7186 } 7187 SAHTREE_UNLOCK(); 7188 7189 m_freem(m); 7190 return 0; 7191 } 7192 7193 /* 7194 * SADB_X_PROMISC processing 7195 * 7196 * m will always be freed. 7197 */ 7198 static int 7199 key_promisc(so, m, mhp) 7200 struct socket *so; 7201 struct mbuf *m; 7202 const struct sadb_msghdr *mhp; 7203 { 7204 int olen; 7205 7206 IPSEC_ASSERT(so != NULL, ("null socket")); 7207 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7208 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7209 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7210 7211 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7212 7213 if (olen < sizeof(struct sadb_msg)) { 7214 #if 1 7215 return key_senderror(so, m, EINVAL); 7216 #else 7217 m_freem(m); 7218 return 0; 7219 #endif 7220 } else if (olen == sizeof(struct sadb_msg)) { 7221 /* enable/disable promisc mode */ 7222 struct keycb *kp; 7223 7224 if ((kp = (struct keycb *)sotorawcb(so)) == NULL) 7225 return key_senderror(so, m, EINVAL); 7226 mhp->msg->sadb_msg_errno = 0; 7227 switch (mhp->msg->sadb_msg_satype) { 7228 case 0: 7229 case 1: 7230 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7231 break; 7232 default: 7233 return key_senderror(so, m, EINVAL); 7234 } 7235 7236 /* send the original message back to everyone */ 7237 mhp->msg->sadb_msg_errno = 0; 7238 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7239 } else { 7240 /* send packet as is */ 7241 7242 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7243 7244 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7245 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7246 } 7247 } 7248 7249 static int (*key_typesw[]) __P((struct socket *, struct mbuf *, 7250 const struct sadb_msghdr *)) = { 7251 NULL, /* SADB_RESERVED */ 7252 key_getspi, /* SADB_GETSPI */ 7253 key_update, /* SADB_UPDATE */ 7254 key_add, /* SADB_ADD */ 7255 key_delete, /* SADB_DELETE */ 7256 key_get, /* SADB_GET */ 7257 key_acquire2, /* SADB_ACQUIRE */ 7258 key_register, /* SADB_REGISTER */ 7259 NULL, /* SADB_EXPIRE */ 7260 key_flush, /* SADB_FLUSH */ 7261 key_dump, /* SADB_DUMP */ 7262 key_promisc, /* SADB_X_PROMISC */ 7263 NULL, /* SADB_X_PCHANGE */ 7264 key_spdadd, /* SADB_X_SPDUPDATE */ 7265 key_spdadd, /* SADB_X_SPDADD */ 7266 key_spddelete, /* SADB_X_SPDDELETE */ 7267 key_spdget, /* SADB_X_SPDGET */ 7268 NULL, /* SADB_X_SPDACQUIRE */ 7269 key_spddump, /* SADB_X_SPDDUMP */ 7270 key_spdflush, /* SADB_X_SPDFLUSH */ 7271 key_spdadd, /* SADB_X_SPDSETIDX */ 7272 NULL, /* SADB_X_SPDEXPIRE */ 7273 key_spddelete2, /* SADB_X_SPDDELETE2 */ 7274 }; 7275 7276 /* 7277 * parse sadb_msg buffer to process PFKEYv2, 7278 * and create a data to response if needed. 7279 * I think to be dealed with mbuf directly. 7280 * IN: 7281 * msgp : pointer to pointer to a received buffer pulluped. 7282 * This is rewrited to response. 7283 * so : pointer to socket. 7284 * OUT: 7285 * length for buffer to send to user process. 7286 */ 7287 int 7288 key_parse(m, so) 7289 struct mbuf *m; 7290 struct socket *so; 7291 { 7292 struct sadb_msg *msg; 7293 struct sadb_msghdr mh; 7294 u_int orglen; 7295 int error; 7296 int target; 7297 7298 IPSEC_ASSERT(so != NULL, ("null socket")); 7299 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7300 7301 #if 0 /*kdebug_sadb assumes msg in linear buffer*/ 7302 KEYDEBUG(KEYDEBUG_KEY_DUMP, 7303 ipseclog((LOG_DEBUG, "%s: passed sadb_msg\n", __func__)); 7304 kdebug_sadb(msg)); 7305 #endif 7306 7307 if (m->m_len < sizeof(struct sadb_msg)) { 7308 m = m_pullup(m, sizeof(struct sadb_msg)); 7309 if (!m) 7310 return ENOBUFS; 7311 } 7312 msg = mtod(m, struct sadb_msg *); 7313 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7314 target = KEY_SENDUP_ONE; 7315 7316 if ((m->m_flags & M_PKTHDR) == 0 || 7317 m->m_pkthdr.len != m->m_pkthdr.len) { 7318 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7319 PFKEYSTAT_INC(out_invlen); 7320 error = EINVAL; 7321 goto senderror; 7322 } 7323 7324 if (msg->sadb_msg_version != PF_KEY_V2) { 7325 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7326 __func__, msg->sadb_msg_version)); 7327 PFKEYSTAT_INC(out_invver); 7328 error = EINVAL; 7329 goto senderror; 7330 } 7331 7332 if (msg->sadb_msg_type > SADB_MAX) { 7333 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7334 __func__, msg->sadb_msg_type)); 7335 PFKEYSTAT_INC(out_invmsgtype); 7336 error = EINVAL; 7337 goto senderror; 7338 } 7339 7340 /* for old-fashioned code - should be nuked */ 7341 if (m->m_pkthdr.len > MCLBYTES) { 7342 m_freem(m); 7343 return ENOBUFS; 7344 } 7345 if (m->m_next) { 7346 struct mbuf *n; 7347 7348 MGETHDR(n, M_NOWAIT, MT_DATA); 7349 if (n && m->m_pkthdr.len > MHLEN) { 7350 MCLGET(n, M_NOWAIT); 7351 if ((n->m_flags & M_EXT) == 0) { 7352 m_free(n); 7353 n = NULL; 7354 } 7355 } 7356 if (!n) { 7357 m_freem(m); 7358 return ENOBUFS; 7359 } 7360 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7361 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7362 n->m_next = NULL; 7363 m_freem(m); 7364 m = n; 7365 } 7366 7367 /* align the mbuf chain so that extensions are in contiguous region. */ 7368 error = key_align(m, &mh); 7369 if (error) 7370 return error; 7371 7372 msg = mh.msg; 7373 7374 /* check SA type */ 7375 switch (msg->sadb_msg_satype) { 7376 case SADB_SATYPE_UNSPEC: 7377 switch (msg->sadb_msg_type) { 7378 case SADB_GETSPI: 7379 case SADB_UPDATE: 7380 case SADB_ADD: 7381 case SADB_DELETE: 7382 case SADB_GET: 7383 case SADB_ACQUIRE: 7384 case SADB_EXPIRE: 7385 ipseclog((LOG_DEBUG, "%s: must specify satype " 7386 "when msg type=%u.\n", __func__, 7387 msg->sadb_msg_type)); 7388 PFKEYSTAT_INC(out_invsatype); 7389 error = EINVAL; 7390 goto senderror; 7391 } 7392 break; 7393 case SADB_SATYPE_AH: 7394 case SADB_SATYPE_ESP: 7395 case SADB_X_SATYPE_IPCOMP: 7396 case SADB_X_SATYPE_TCPSIGNATURE: 7397 switch (msg->sadb_msg_type) { 7398 case SADB_X_SPDADD: 7399 case SADB_X_SPDDELETE: 7400 case SADB_X_SPDGET: 7401 case SADB_X_SPDDUMP: 7402 case SADB_X_SPDFLUSH: 7403 case SADB_X_SPDSETIDX: 7404 case SADB_X_SPDUPDATE: 7405 case SADB_X_SPDDELETE2: 7406 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7407 __func__, msg->sadb_msg_type)); 7408 PFKEYSTAT_INC(out_invsatype); 7409 error = EINVAL; 7410 goto senderror; 7411 } 7412 break; 7413 case SADB_SATYPE_RSVP: 7414 case SADB_SATYPE_OSPFV2: 7415 case SADB_SATYPE_RIPV2: 7416 case SADB_SATYPE_MIP: 7417 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7418 __func__, msg->sadb_msg_satype)); 7419 PFKEYSTAT_INC(out_invsatype); 7420 error = EOPNOTSUPP; 7421 goto senderror; 7422 case 1: /* XXX: What does it do? */ 7423 if (msg->sadb_msg_type == SADB_X_PROMISC) 7424 break; 7425 /*FALLTHROUGH*/ 7426 default: 7427 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7428 __func__, msg->sadb_msg_satype)); 7429 PFKEYSTAT_INC(out_invsatype); 7430 error = EINVAL; 7431 goto senderror; 7432 } 7433 7434 /* check field of upper layer protocol and address family */ 7435 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7436 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7437 struct sadb_address *src0, *dst0; 7438 u_int plen; 7439 7440 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7441 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7442 7443 /* check upper layer protocol */ 7444 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7445 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7446 "mismatched.\n", __func__)); 7447 PFKEYSTAT_INC(out_invaddr); 7448 error = EINVAL; 7449 goto senderror; 7450 } 7451 7452 /* check family */ 7453 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7454 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7455 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7456 __func__)); 7457 PFKEYSTAT_INC(out_invaddr); 7458 error = EINVAL; 7459 goto senderror; 7460 } 7461 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7462 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7463 ipseclog((LOG_DEBUG, "%s: address struct size " 7464 "mismatched.\n", __func__)); 7465 PFKEYSTAT_INC(out_invaddr); 7466 error = EINVAL; 7467 goto senderror; 7468 } 7469 7470 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7471 case AF_INET: 7472 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7473 sizeof(struct sockaddr_in)) { 7474 PFKEYSTAT_INC(out_invaddr); 7475 error = EINVAL; 7476 goto senderror; 7477 } 7478 break; 7479 case AF_INET6: 7480 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7481 sizeof(struct sockaddr_in6)) { 7482 PFKEYSTAT_INC(out_invaddr); 7483 error = EINVAL; 7484 goto senderror; 7485 } 7486 break; 7487 default: 7488 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7489 __func__)); 7490 PFKEYSTAT_INC(out_invaddr); 7491 error = EAFNOSUPPORT; 7492 goto senderror; 7493 } 7494 7495 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7496 case AF_INET: 7497 plen = sizeof(struct in_addr) << 3; 7498 break; 7499 case AF_INET6: 7500 plen = sizeof(struct in6_addr) << 3; 7501 break; 7502 default: 7503 plen = 0; /*fool gcc*/ 7504 break; 7505 } 7506 7507 /* check max prefix length */ 7508 if (src0->sadb_address_prefixlen > plen || 7509 dst0->sadb_address_prefixlen > plen) { 7510 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 7511 __func__)); 7512 PFKEYSTAT_INC(out_invaddr); 7513 error = EINVAL; 7514 goto senderror; 7515 } 7516 7517 /* 7518 * prefixlen == 0 is valid because there can be a case when 7519 * all addresses are matched. 7520 */ 7521 } 7522 7523 if (msg->sadb_msg_type >= sizeof(key_typesw)/sizeof(key_typesw[0]) || 7524 key_typesw[msg->sadb_msg_type] == NULL) { 7525 PFKEYSTAT_INC(out_invmsgtype); 7526 error = EINVAL; 7527 goto senderror; 7528 } 7529 7530 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 7531 7532 senderror: 7533 msg->sadb_msg_errno = error; 7534 return key_sendup_mbuf(so, m, target); 7535 } 7536 7537 static int 7538 key_senderror(so, m, code) 7539 struct socket *so; 7540 struct mbuf *m; 7541 int code; 7542 { 7543 struct sadb_msg *msg; 7544 7545 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7546 ("mbuf too small, len %u", m->m_len)); 7547 7548 msg = mtod(m, struct sadb_msg *); 7549 msg->sadb_msg_errno = code; 7550 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 7551 } 7552 7553 /* 7554 * set the pointer to each header into message buffer. 7555 * m will be freed on error. 7556 * XXX larger-than-MCLBYTES extension? 7557 */ 7558 static int 7559 key_align(m, mhp) 7560 struct mbuf *m; 7561 struct sadb_msghdr *mhp; 7562 { 7563 struct mbuf *n; 7564 struct sadb_ext *ext; 7565 size_t off, end; 7566 int extlen; 7567 int toff; 7568 7569 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7570 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7571 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 7572 ("mbuf too small, len %u", m->m_len)); 7573 7574 /* initialize */ 7575 bzero(mhp, sizeof(*mhp)); 7576 7577 mhp->msg = mtod(m, struct sadb_msg *); 7578 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 7579 7580 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7581 extlen = end; /*just in case extlen is not updated*/ 7582 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 7583 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 7584 if (!n) { 7585 /* m is already freed */ 7586 return ENOBUFS; 7587 } 7588 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7589 7590 /* set pointer */ 7591 switch (ext->sadb_ext_type) { 7592 case SADB_EXT_SA: 7593 case SADB_EXT_ADDRESS_SRC: 7594 case SADB_EXT_ADDRESS_DST: 7595 case SADB_EXT_ADDRESS_PROXY: 7596 case SADB_EXT_LIFETIME_CURRENT: 7597 case SADB_EXT_LIFETIME_HARD: 7598 case SADB_EXT_LIFETIME_SOFT: 7599 case SADB_EXT_KEY_AUTH: 7600 case SADB_EXT_KEY_ENCRYPT: 7601 case SADB_EXT_IDENTITY_SRC: 7602 case SADB_EXT_IDENTITY_DST: 7603 case SADB_EXT_SENSITIVITY: 7604 case SADB_EXT_PROPOSAL: 7605 case SADB_EXT_SUPPORTED_AUTH: 7606 case SADB_EXT_SUPPORTED_ENCRYPT: 7607 case SADB_EXT_SPIRANGE: 7608 case SADB_X_EXT_POLICY: 7609 case SADB_X_EXT_SA2: 7610 #ifdef IPSEC_NAT_T 7611 case SADB_X_EXT_NAT_T_TYPE: 7612 case SADB_X_EXT_NAT_T_SPORT: 7613 case SADB_X_EXT_NAT_T_DPORT: 7614 case SADB_X_EXT_NAT_T_OAI: 7615 case SADB_X_EXT_NAT_T_OAR: 7616 case SADB_X_EXT_NAT_T_FRAG: 7617 #endif 7618 /* duplicate check */ 7619 /* 7620 * XXX Are there duplication payloads of either 7621 * KEY_AUTH or KEY_ENCRYPT ? 7622 */ 7623 if (mhp->ext[ext->sadb_ext_type] != NULL) { 7624 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 7625 "%u\n", __func__, ext->sadb_ext_type)); 7626 m_freem(m); 7627 PFKEYSTAT_INC(out_dupext); 7628 return EINVAL; 7629 } 7630 break; 7631 default: 7632 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 7633 __func__, ext->sadb_ext_type)); 7634 m_freem(m); 7635 PFKEYSTAT_INC(out_invexttype); 7636 return EINVAL; 7637 } 7638 7639 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 7640 7641 if (key_validate_ext(ext, extlen)) { 7642 m_freem(m); 7643 PFKEYSTAT_INC(out_invlen); 7644 return EINVAL; 7645 } 7646 7647 n = m_pulldown(m, off, extlen, &toff); 7648 if (!n) { 7649 /* m is already freed */ 7650 return ENOBUFS; 7651 } 7652 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 7653 7654 mhp->ext[ext->sadb_ext_type] = ext; 7655 mhp->extoff[ext->sadb_ext_type] = off; 7656 mhp->extlen[ext->sadb_ext_type] = extlen; 7657 } 7658 7659 if (off != end) { 7660 m_freem(m); 7661 PFKEYSTAT_INC(out_invlen); 7662 return EINVAL; 7663 } 7664 7665 return 0; 7666 } 7667 7668 static int 7669 key_validate_ext(ext, len) 7670 const struct sadb_ext *ext; 7671 int len; 7672 { 7673 const struct sockaddr *sa; 7674 enum { NONE, ADDR } checktype = NONE; 7675 int baselen = 0; 7676 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 7677 7678 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 7679 return EINVAL; 7680 7681 /* if it does not match minimum/maximum length, bail */ 7682 if (ext->sadb_ext_type >= sizeof(minsize) / sizeof(minsize[0]) || 7683 ext->sadb_ext_type >= sizeof(maxsize) / sizeof(maxsize[0])) 7684 return EINVAL; 7685 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 7686 return EINVAL; 7687 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 7688 return EINVAL; 7689 7690 /* more checks based on sadb_ext_type XXX need more */ 7691 switch (ext->sadb_ext_type) { 7692 case SADB_EXT_ADDRESS_SRC: 7693 case SADB_EXT_ADDRESS_DST: 7694 case SADB_EXT_ADDRESS_PROXY: 7695 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 7696 checktype = ADDR; 7697 break; 7698 case SADB_EXT_IDENTITY_SRC: 7699 case SADB_EXT_IDENTITY_DST: 7700 if (((const struct sadb_ident *)ext)->sadb_ident_type == 7701 SADB_X_IDENTTYPE_ADDR) { 7702 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 7703 checktype = ADDR; 7704 } else 7705 checktype = NONE; 7706 break; 7707 default: 7708 checktype = NONE; 7709 break; 7710 } 7711 7712 switch (checktype) { 7713 case NONE: 7714 break; 7715 case ADDR: 7716 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 7717 if (len < baselen + sal) 7718 return EINVAL; 7719 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 7720 return EINVAL; 7721 break; 7722 } 7723 7724 return 0; 7725 } 7726 7727 void 7728 key_init(void) 7729 { 7730 int i; 7731 7732 for (i = 0; i < IPSEC_DIR_MAX; i++) 7733 LIST_INIT(&V_sptree[i]); 7734 7735 LIST_INIT(&V_sahtree); 7736 7737 for (i = 0; i <= SADB_SATYPE_MAX; i++) 7738 LIST_INIT(&V_regtree[i]); 7739 7740 LIST_INIT(&V_acqtree); 7741 LIST_INIT(&V_spacqtree); 7742 7743 /* system default */ 7744 V_ip4_def_policy.policy = IPSEC_POLICY_NONE; 7745 V_ip4_def_policy.refcnt++; /*never reclaim this*/ 7746 7747 if (!IS_DEFAULT_VNET(curvnet)) 7748 return; 7749 7750 SPTREE_LOCK_INIT(); 7751 REGTREE_LOCK_INIT(); 7752 SAHTREE_LOCK_INIT(); 7753 ACQ_LOCK_INIT(); 7754 SPACQ_LOCK_INIT(); 7755 7756 #ifndef IPSEC_DEBUG2 7757 callout_init(&key_timer, CALLOUT_MPSAFE); 7758 callout_reset(&key_timer, hz, key_timehandler, NULL); 7759 #endif /*IPSEC_DEBUG2*/ 7760 7761 /* initialize key statistics */ 7762 keystat.getspi_count = 1; 7763 7764 printf("IPsec: Initialized Security Association Processing.\n"); 7765 } 7766 7767 #ifdef VIMAGE 7768 void 7769 key_destroy(void) 7770 { 7771 struct secpolicy *sp, *nextsp; 7772 struct secacq *acq, *nextacq; 7773 struct secspacq *spacq, *nextspacq; 7774 struct secashead *sah, *nextsah; 7775 struct secreg *reg; 7776 int i; 7777 7778 SPTREE_LOCK(); 7779 for (i = 0; i < IPSEC_DIR_MAX; i++) { 7780 for (sp = LIST_FIRST(&V_sptree[i]); 7781 sp != NULL; sp = nextsp) { 7782 nextsp = LIST_NEXT(sp, chain); 7783 if (__LIST_CHAINED(sp)) { 7784 LIST_REMOVE(sp, chain); 7785 free(sp, M_IPSEC_SP); 7786 } 7787 } 7788 } 7789 SPTREE_UNLOCK(); 7790 7791 SAHTREE_LOCK(); 7792 for (sah = LIST_FIRST(&V_sahtree); sah != NULL; sah = nextsah) { 7793 nextsah = LIST_NEXT(sah, chain); 7794 if (__LIST_CHAINED(sah)) { 7795 LIST_REMOVE(sah, chain); 7796 free(sah, M_IPSEC_SAH); 7797 } 7798 } 7799 SAHTREE_UNLOCK(); 7800 7801 REGTREE_LOCK(); 7802 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7803 LIST_FOREACH(reg, &V_regtree[i], chain) { 7804 if (__LIST_CHAINED(reg)) { 7805 LIST_REMOVE(reg, chain); 7806 free(reg, M_IPSEC_SAR); 7807 break; 7808 } 7809 } 7810 } 7811 REGTREE_UNLOCK(); 7812 7813 ACQ_LOCK(); 7814 for (acq = LIST_FIRST(&V_acqtree); acq != NULL; acq = nextacq) { 7815 nextacq = LIST_NEXT(acq, chain); 7816 if (__LIST_CHAINED(acq)) { 7817 LIST_REMOVE(acq, chain); 7818 free(acq, M_IPSEC_SAQ); 7819 } 7820 } 7821 ACQ_UNLOCK(); 7822 7823 SPACQ_LOCK(); 7824 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 7825 spacq = nextspacq) { 7826 nextspacq = LIST_NEXT(spacq, chain); 7827 if (__LIST_CHAINED(spacq)) { 7828 LIST_REMOVE(spacq, chain); 7829 free(spacq, M_IPSEC_SAQ); 7830 } 7831 } 7832 SPACQ_UNLOCK(); 7833 } 7834 #endif 7835 7836 /* 7837 * XXX: maybe This function is called after INBOUND IPsec processing. 7838 * 7839 * Special check for tunnel-mode packets. 7840 * We must make some checks for consistency between inner and outer IP header. 7841 * 7842 * xxx more checks to be provided 7843 */ 7844 int 7845 key_checktunnelsanity(sav, family, src, dst) 7846 struct secasvar *sav; 7847 u_int family; 7848 caddr_t src; 7849 caddr_t dst; 7850 { 7851 IPSEC_ASSERT(sav->sah != NULL, ("null SA header")); 7852 7853 /* XXX: check inner IP header */ 7854 7855 return 1; 7856 } 7857 7858 /* record data transfer on SA, and update timestamps */ 7859 void 7860 key_sa_recordxfer(sav, m) 7861 struct secasvar *sav; 7862 struct mbuf *m; 7863 { 7864 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 7865 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 7866 if (!sav->lft_c) 7867 return; 7868 7869 /* 7870 * XXX Currently, there is a difference of bytes size 7871 * between inbound and outbound processing. 7872 */ 7873 sav->lft_c->bytes += m->m_pkthdr.len; 7874 /* to check bytes lifetime is done in key_timehandler(). */ 7875 7876 /* 7877 * We use the number of packets as the unit of 7878 * allocations. We increment the variable 7879 * whenever {esp,ah}_{in,out}put is called. 7880 */ 7881 sav->lft_c->allocations++; 7882 /* XXX check for expires? */ 7883 7884 /* 7885 * NOTE: We record CURRENT usetime by using wall clock, 7886 * in seconds. HARD and SOFT lifetime are measured by the time 7887 * difference (again in seconds) from usetime. 7888 * 7889 * usetime 7890 * v expire expire 7891 * -----+-----+--------+---> t 7892 * <--------------> HARD 7893 * <-----> SOFT 7894 */ 7895 sav->lft_c->usetime = time_second; 7896 /* XXX check for expires? */ 7897 7898 return; 7899 } 7900 7901 /* dumb version */ 7902 void 7903 key_sa_routechange(dst) 7904 struct sockaddr *dst; 7905 { 7906 struct secashead *sah; 7907 struct route *ro; 7908 7909 SAHTREE_LOCK(); 7910 LIST_FOREACH(sah, &V_sahtree, chain) { 7911 ro = &sah->route_cache.sa_route; 7912 if (ro->ro_rt && dst->sa_len == ro->ro_dst.sa_len 7913 && bcmp(dst, &ro->ro_dst, dst->sa_len) == 0) { 7914 RTFREE(ro->ro_rt); 7915 ro->ro_rt = (struct rtentry *)NULL; 7916 } 7917 } 7918 SAHTREE_UNLOCK(); 7919 } 7920 7921 static void 7922 key_sa_chgstate(struct secasvar *sav, u_int8_t state) 7923 { 7924 IPSEC_ASSERT(sav != NULL, ("NULL sav")); 7925 SAHTREE_LOCK_ASSERT(); 7926 7927 if (sav->state != state) { 7928 if (__LIST_CHAINED(sav)) 7929 LIST_REMOVE(sav, chain); 7930 sav->state = state; 7931 LIST_INSERT_HEAD(&sav->sah->savtree[state], sav, chain); 7932 } 7933 } 7934 7935 void 7936 key_sa_stir_iv(sav) 7937 struct secasvar *sav; 7938 { 7939 7940 IPSEC_ASSERT(sav->iv != NULL, ("null IV")); 7941 key_randomfill(sav->iv, sav->ivlen); 7942 } 7943 7944 /* 7945 * Take one of the kernel's security keys and convert it into a PF_KEY 7946 * structure within an mbuf, suitable for sending up to a waiting 7947 * application in user land. 7948 * 7949 * IN: 7950 * src: A pointer to a kernel security key. 7951 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 7952 * OUT: 7953 * a valid mbuf or NULL indicating an error 7954 * 7955 */ 7956 7957 static struct mbuf * 7958 key_setkey(struct seckey *src, u_int16_t exttype) 7959 { 7960 struct mbuf *m; 7961 struct sadb_key *p; 7962 int len; 7963 7964 if (src == NULL) 7965 return NULL; 7966 7967 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 7968 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7969 if (m == NULL) 7970 return NULL; 7971 m_align(m, len); 7972 m->m_len = len; 7973 p = mtod(m, struct sadb_key *); 7974 bzero(p, len); 7975 p->sadb_key_len = PFKEY_UNIT64(len); 7976 p->sadb_key_exttype = exttype; 7977 p->sadb_key_bits = src->bits; 7978 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 7979 7980 return m; 7981 } 7982 7983 /* 7984 * Take one of the kernel's lifetime data structures and convert it 7985 * into a PF_KEY structure within an mbuf, suitable for sending up to 7986 * a waiting application in user land. 7987 * 7988 * IN: 7989 * src: A pointer to a kernel lifetime structure. 7990 * exttype: Which type of lifetime this is. Refer to the PF_KEY 7991 * data structures for more information. 7992 * OUT: 7993 * a valid mbuf or NULL indicating an error 7994 * 7995 */ 7996 7997 static struct mbuf * 7998 key_setlifetime(struct seclifetime *src, u_int16_t exttype) 7999 { 8000 struct mbuf *m = NULL; 8001 struct sadb_lifetime *p; 8002 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8003 8004 if (src == NULL) 8005 return NULL; 8006 8007 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8008 if (m == NULL) 8009 return m; 8010 m_align(m, len); 8011 m->m_len = len; 8012 p = mtod(m, struct sadb_lifetime *); 8013 8014 bzero(p, len); 8015 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8016 p->sadb_lifetime_exttype = exttype; 8017 p->sadb_lifetime_allocations = src->allocations; 8018 p->sadb_lifetime_bytes = src->bytes; 8019 p->sadb_lifetime_addtime = src->addtime; 8020 p->sadb_lifetime_usetime = src->usetime; 8021 8022 return m; 8023 8024 } 8025