1 /* $FreeBSD$ */ 2 /* $KAME: key.c,v 1.191 2001/06/27 10:46:49 sakane Exp $ */ 3 4 /*- 5 * SPDX-License-Identifier: BSD-3-Clause 6 * 7 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 3. Neither the name of the project nor the names of its contributors 19 * may be used to endorse or promote products derived from this software 20 * without specific prior written permission. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 /* 36 * This code is referd to RFC 2367 37 */ 38 39 #include "opt_inet.h" 40 #include "opt_inet6.h" 41 #include "opt_ipsec.h" 42 43 #include <sys/types.h> 44 #include <sys/param.h> 45 #include <sys/systm.h> 46 #include <sys/kernel.h> 47 #include <sys/fnv_hash.h> 48 #include <sys/lock.h> 49 #include <sys/mutex.h> 50 #include <sys/mbuf.h> 51 #include <sys/domain.h> 52 #include <sys/protosw.h> 53 #include <sys/malloc.h> 54 #include <sys/rmlock.h> 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 #include <sys/sysctl.h> 58 #include <sys/errno.h> 59 #include <sys/proc.h> 60 #include <sys/queue.h> 61 #include <sys/refcount.h> 62 #include <sys/syslog.h> 63 64 #include <vm/uma.h> 65 66 #include <net/if.h> 67 #include <net/if_var.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_systm.h> 72 #include <netinet/ip.h> 73 #include <netinet/in_var.h> 74 #include <netinet/udp.h> 75 76 #ifdef INET6 77 #include <netinet/ip6.h> 78 #include <netinet6/in6_var.h> 79 #include <netinet6/ip6_var.h> 80 #endif /* INET6 */ 81 82 #include <net/pfkeyv2.h> 83 #include <netipsec/keydb.h> 84 #include <netipsec/key.h> 85 #include <netipsec/keysock.h> 86 #include <netipsec/key_debug.h> 87 88 #include <netipsec/ipsec.h> 89 #ifdef INET6 90 #include <netipsec/ipsec6.h> 91 #endif 92 93 #include <netipsec/xform.h> 94 #include <machine/in_cksum.h> 95 #include <machine/stdarg.h> 96 97 /* randomness */ 98 #include <sys/random.h> 99 100 #define FULLMASK 0xff 101 #define _BITS(bytes) ((bytes) << 3) 102 103 #define UINT32_80PCT 0xcccccccc 104 /* 105 * Note on SA reference counting: 106 * - SAs that are not in DEAD state will have (total external reference + 1) 107 * following value in reference count field. they cannot be freed and are 108 * referenced from SA header. 109 * - SAs that are in DEAD state will have (total external reference) 110 * in reference count field. they are ready to be freed. reference from 111 * SA header will be removed in key_delsav(), when the reference count 112 * field hits 0 (= no external reference other than from SA header. 113 */ 114 115 VNET_DEFINE(u_int32_t, key_debug_level) = 0; 116 VNET_DEFINE_STATIC(u_int, key_spi_trycnt) = 1000; 117 VNET_DEFINE_STATIC(u_int32_t, key_spi_minval) = 0x100; 118 VNET_DEFINE_STATIC(u_int32_t, key_spi_maxval) = 0x0fffffff; /* XXX */ 119 VNET_DEFINE_STATIC(u_int32_t, policy_id) = 0; 120 /*interval to initialize randseed,1(m)*/ 121 VNET_DEFINE_STATIC(u_int, key_int_random) = 60; 122 /* interval to expire acquiring, 30(s)*/ 123 VNET_DEFINE_STATIC(u_int, key_larval_lifetime) = 30; 124 /* counter for blocking SADB_ACQUIRE.*/ 125 VNET_DEFINE_STATIC(int, key_blockacq_count) = 10; 126 /* lifetime for blocking SADB_ACQUIRE.*/ 127 VNET_DEFINE_STATIC(int, key_blockacq_lifetime) = 20; 128 /* preferred old sa rather than new sa.*/ 129 VNET_DEFINE_STATIC(int, key_preferred_oldsa) = 1; 130 #define V_key_spi_trycnt VNET(key_spi_trycnt) 131 #define V_key_spi_minval VNET(key_spi_minval) 132 #define V_key_spi_maxval VNET(key_spi_maxval) 133 #define V_policy_id VNET(policy_id) 134 #define V_key_int_random VNET(key_int_random) 135 #define V_key_larval_lifetime VNET(key_larval_lifetime) 136 #define V_key_blockacq_count VNET(key_blockacq_count) 137 #define V_key_blockacq_lifetime VNET(key_blockacq_lifetime) 138 #define V_key_preferred_oldsa VNET(key_preferred_oldsa) 139 140 VNET_DEFINE_STATIC(u_int32_t, acq_seq) = 0; 141 #define V_acq_seq VNET(acq_seq) 142 143 VNET_DEFINE_STATIC(uint32_t, sp_genid) = 0; 144 #define V_sp_genid VNET(sp_genid) 145 146 /* SPD */ 147 TAILQ_HEAD(secpolicy_queue, secpolicy); 148 LIST_HEAD(secpolicy_list, secpolicy); 149 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree[IPSEC_DIR_MAX]); 150 VNET_DEFINE_STATIC(struct secpolicy_queue, sptree_ifnet[IPSEC_DIR_MAX]); 151 static struct rmlock sptree_lock; 152 #define V_sptree VNET(sptree) 153 #define V_sptree_ifnet VNET(sptree_ifnet) 154 #define SPTREE_LOCK_INIT() rm_init(&sptree_lock, "sptree") 155 #define SPTREE_LOCK_DESTROY() rm_destroy(&sptree_lock) 156 #define SPTREE_RLOCK_TRACKER struct rm_priotracker sptree_tracker 157 #define SPTREE_RLOCK() rm_rlock(&sptree_lock, &sptree_tracker) 158 #define SPTREE_RUNLOCK() rm_runlock(&sptree_lock, &sptree_tracker) 159 #define SPTREE_RLOCK_ASSERT() rm_assert(&sptree_lock, RA_RLOCKED) 160 #define SPTREE_WLOCK() rm_wlock(&sptree_lock) 161 #define SPTREE_WUNLOCK() rm_wunlock(&sptree_lock) 162 #define SPTREE_WLOCK_ASSERT() rm_assert(&sptree_lock, RA_WLOCKED) 163 #define SPTREE_UNLOCK_ASSERT() rm_assert(&sptree_lock, RA_UNLOCKED) 164 165 /* Hash table for lookup SP using unique id */ 166 VNET_DEFINE_STATIC(struct secpolicy_list *, sphashtbl); 167 VNET_DEFINE_STATIC(u_long, sphash_mask); 168 #define V_sphashtbl VNET(sphashtbl) 169 #define V_sphash_mask VNET(sphash_mask) 170 171 #define SPHASH_NHASH_LOG2 7 172 #define SPHASH_NHASH (1 << SPHASH_NHASH_LOG2) 173 #define SPHASH_HASHVAL(id) (key_u32hash(id) & V_sphash_mask) 174 #define SPHASH_HASH(id) &V_sphashtbl[SPHASH_HASHVAL(id)] 175 176 /* SPD cache */ 177 struct spdcache_entry { 178 struct secpolicyindex spidx; /* secpolicyindex */ 179 struct secpolicy *sp; /* cached policy to be used */ 180 181 LIST_ENTRY(spdcache_entry) chain; 182 }; 183 LIST_HEAD(spdcache_entry_list, spdcache_entry); 184 185 #define SPDCACHE_MAX_ENTRIES_PER_HASH 8 186 187 VNET_DEFINE_STATIC(u_int, key_spdcache_maxentries) = 0; 188 #define V_key_spdcache_maxentries VNET(key_spdcache_maxentries) 189 VNET_DEFINE_STATIC(u_int, key_spdcache_threshold) = 32; 190 #define V_key_spdcache_threshold VNET(key_spdcache_threshold) 191 VNET_DEFINE_STATIC(unsigned long, spd_size) = 0; 192 #define V_spd_size VNET(spd_size) 193 194 #define SPDCACHE_ENABLED() (V_key_spdcache_maxentries != 0) 195 #define SPDCACHE_ACTIVE() \ 196 (SPDCACHE_ENABLED() && V_spd_size >= V_key_spdcache_threshold) 197 198 VNET_DEFINE_STATIC(struct spdcache_entry_list *, spdcachehashtbl); 199 VNET_DEFINE_STATIC(u_long, spdcachehash_mask); 200 #define V_spdcachehashtbl VNET(spdcachehashtbl) 201 #define V_spdcachehash_mask VNET(spdcachehash_mask) 202 203 #define SPDCACHE_HASHVAL(idx) \ 204 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->ul_proto) & \ 205 V_spdcachehash_mask) 206 207 /* Each cache line is protected by a mutex */ 208 VNET_DEFINE_STATIC(struct mtx *, spdcache_lock); 209 #define V_spdcache_lock VNET(spdcache_lock) 210 211 #define SPDCACHE_LOCK_INIT(a) \ 212 mtx_init(&V_spdcache_lock[a], "spdcache", \ 213 "fast ipsec SPD cache", MTX_DEF|MTX_DUPOK) 214 #define SPDCACHE_LOCK_DESTROY(a) mtx_destroy(&V_spdcache_lock[a]) 215 #define SPDCACHE_LOCK(a) mtx_lock(&V_spdcache_lock[a]); 216 #define SPDCACHE_UNLOCK(a) mtx_unlock(&V_spdcache_lock[a]); 217 218 static struct sx spi_alloc_lock; 219 #define SPI_ALLOC_LOCK_INIT() sx_init(&spi_alloc_lock, "spialloc") 220 #define SPI_ALLOC_LOCK_DESTROY() sx_destroy(&spi_alloc_lock) 221 #define SPI_ALLOC_LOCK() sx_xlock(&spi_alloc_lock) 222 #define SPI_ALLOC_UNLOCK() sx_unlock(&spi_alloc_lock) 223 #define SPI_ALLOC_LOCK_ASSERT() sx_assert(&spi_alloc_lock, SA_XLOCKED) 224 225 /* SAD */ 226 TAILQ_HEAD(secashead_queue, secashead); 227 LIST_HEAD(secashead_list, secashead); 228 VNET_DEFINE_STATIC(struct secashead_queue, sahtree); 229 static struct rmlock sahtree_lock; 230 #define V_sahtree VNET(sahtree) 231 #define SAHTREE_LOCK_INIT() rm_init(&sahtree_lock, "sahtree") 232 #define SAHTREE_LOCK_DESTROY() rm_destroy(&sahtree_lock) 233 #define SAHTREE_RLOCK_TRACKER struct rm_priotracker sahtree_tracker 234 #define SAHTREE_RLOCK() rm_rlock(&sahtree_lock, &sahtree_tracker) 235 #define SAHTREE_RUNLOCK() rm_runlock(&sahtree_lock, &sahtree_tracker) 236 #define SAHTREE_RLOCK_ASSERT() rm_assert(&sahtree_lock, RA_RLOCKED) 237 #define SAHTREE_WLOCK() rm_wlock(&sahtree_lock) 238 #define SAHTREE_WUNLOCK() rm_wunlock(&sahtree_lock) 239 #define SAHTREE_WLOCK_ASSERT() rm_assert(&sahtree_lock, RA_WLOCKED) 240 #define SAHTREE_UNLOCK_ASSERT() rm_assert(&sahtree_lock, RA_UNLOCKED) 241 242 /* Hash table for lookup in SAD using SA addresses */ 243 VNET_DEFINE_STATIC(struct secashead_list *, sahaddrhashtbl); 244 VNET_DEFINE_STATIC(u_long, sahaddrhash_mask); 245 #define V_sahaddrhashtbl VNET(sahaddrhashtbl) 246 #define V_sahaddrhash_mask VNET(sahaddrhash_mask) 247 248 #define SAHHASH_NHASH_LOG2 7 249 #define SAHHASH_NHASH (1 << SAHHASH_NHASH_LOG2) 250 #define SAHADDRHASH_HASHVAL(idx) \ 251 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 252 V_sahaddrhash_mask) 253 #define SAHADDRHASH_HASH(saidx) \ 254 &V_sahaddrhashtbl[SAHADDRHASH_HASHVAL(saidx)] 255 256 /* Hash table for lookup in SAD using SPI */ 257 LIST_HEAD(secasvar_list, secasvar); 258 VNET_DEFINE_STATIC(struct secasvar_list *, savhashtbl); 259 VNET_DEFINE_STATIC(u_long, savhash_mask); 260 #define V_savhashtbl VNET(savhashtbl) 261 #define V_savhash_mask VNET(savhash_mask) 262 #define SAVHASH_NHASH_LOG2 7 263 #define SAVHASH_NHASH (1 << SAVHASH_NHASH_LOG2) 264 #define SAVHASH_HASHVAL(spi) (key_u32hash(spi) & V_savhash_mask) 265 #define SAVHASH_HASH(spi) &V_savhashtbl[SAVHASH_HASHVAL(spi)] 266 267 static uint32_t 268 key_addrprotohash(const union sockaddr_union *src, 269 const union sockaddr_union *dst, const uint8_t *proto) 270 { 271 uint32_t hval; 272 273 hval = fnv_32_buf(proto, sizeof(*proto), 274 FNV1_32_INIT); 275 switch (dst->sa.sa_family) { 276 #ifdef INET 277 case AF_INET: 278 hval = fnv_32_buf(&src->sin.sin_addr, 279 sizeof(in_addr_t), hval); 280 hval = fnv_32_buf(&dst->sin.sin_addr, 281 sizeof(in_addr_t), hval); 282 break; 283 #endif 284 #ifdef INET6 285 case AF_INET6: 286 hval = fnv_32_buf(&src->sin6.sin6_addr, 287 sizeof(struct in6_addr), hval); 288 hval = fnv_32_buf(&dst->sin6.sin6_addr, 289 sizeof(struct in6_addr), hval); 290 break; 291 #endif 292 default: 293 hval = 0; 294 ipseclog((LOG_DEBUG, "%s: unknown address family %d\n", 295 __func__, dst->sa.sa_family)); 296 } 297 return (hval); 298 } 299 300 static uint32_t 301 key_u32hash(uint32_t val) 302 { 303 304 return (fnv_32_buf(&val, sizeof(val), FNV1_32_INIT)); 305 } 306 307 /* registed list */ 308 VNET_DEFINE_STATIC(LIST_HEAD(_regtree, secreg), regtree[SADB_SATYPE_MAX + 1]); 309 #define V_regtree VNET(regtree) 310 static struct mtx regtree_lock; 311 #define REGTREE_LOCK_INIT() \ 312 mtx_init(®tree_lock, "regtree", "fast ipsec regtree", MTX_DEF) 313 #define REGTREE_LOCK_DESTROY() mtx_destroy(®tree_lock) 314 #define REGTREE_LOCK() mtx_lock(®tree_lock) 315 #define REGTREE_UNLOCK() mtx_unlock(®tree_lock) 316 #define REGTREE_LOCK_ASSERT() mtx_assert(®tree_lock, MA_OWNED) 317 318 /* Acquiring list */ 319 LIST_HEAD(secacq_list, secacq); 320 VNET_DEFINE_STATIC(struct secacq_list, acqtree); 321 #define V_acqtree VNET(acqtree) 322 static struct mtx acq_lock; 323 #define ACQ_LOCK_INIT() \ 324 mtx_init(&acq_lock, "acqtree", "ipsec SA acquiring list", MTX_DEF) 325 #define ACQ_LOCK_DESTROY() mtx_destroy(&acq_lock) 326 #define ACQ_LOCK() mtx_lock(&acq_lock) 327 #define ACQ_UNLOCK() mtx_unlock(&acq_lock) 328 #define ACQ_LOCK_ASSERT() mtx_assert(&acq_lock, MA_OWNED) 329 330 /* Hash table for lookup in ACQ list using SA addresses */ 331 VNET_DEFINE_STATIC(struct secacq_list *, acqaddrhashtbl); 332 VNET_DEFINE_STATIC(u_long, acqaddrhash_mask); 333 #define V_acqaddrhashtbl VNET(acqaddrhashtbl) 334 #define V_acqaddrhash_mask VNET(acqaddrhash_mask) 335 336 /* Hash table for lookup in ACQ list using SEQ number */ 337 VNET_DEFINE_STATIC(struct secacq_list *, acqseqhashtbl); 338 VNET_DEFINE_STATIC(u_long, acqseqhash_mask); 339 #define V_acqseqhashtbl VNET(acqseqhashtbl) 340 #define V_acqseqhash_mask VNET(acqseqhash_mask) 341 342 #define ACQHASH_NHASH_LOG2 7 343 #define ACQHASH_NHASH (1 << ACQHASH_NHASH_LOG2) 344 #define ACQADDRHASH_HASHVAL(idx) \ 345 (key_addrprotohash(&(idx)->src, &(idx)->dst, &(idx)->proto) & \ 346 V_acqaddrhash_mask) 347 #define ACQSEQHASH_HASHVAL(seq) \ 348 (key_u32hash(seq) & V_acqseqhash_mask) 349 #define ACQADDRHASH_HASH(saidx) \ 350 &V_acqaddrhashtbl[ACQADDRHASH_HASHVAL(saidx)] 351 #define ACQSEQHASH_HASH(seq) \ 352 &V_acqseqhashtbl[ACQSEQHASH_HASHVAL(seq)] 353 /* SP acquiring list */ 354 VNET_DEFINE_STATIC(LIST_HEAD(_spacqtree, secspacq), spacqtree); 355 #define V_spacqtree VNET(spacqtree) 356 static struct mtx spacq_lock; 357 #define SPACQ_LOCK_INIT() \ 358 mtx_init(&spacq_lock, "spacqtree", \ 359 "fast ipsec security policy acquire list", MTX_DEF) 360 #define SPACQ_LOCK_DESTROY() mtx_destroy(&spacq_lock) 361 #define SPACQ_LOCK() mtx_lock(&spacq_lock) 362 #define SPACQ_UNLOCK() mtx_unlock(&spacq_lock) 363 #define SPACQ_LOCK_ASSERT() mtx_assert(&spacq_lock, MA_OWNED) 364 365 static const int minsize[] = { 366 [SADB_EXT_RESERVED] = sizeof(struct sadb_msg), 367 [SADB_EXT_SA] = sizeof(struct sadb_sa), 368 [SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime), 369 [SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime), 370 [SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime), 371 [SADB_EXT_ADDRESS_SRC] = sizeof(struct sadb_address), 372 [SADB_EXT_ADDRESS_DST] = sizeof(struct sadb_address), 373 [SADB_EXT_ADDRESS_PROXY] = sizeof(struct sadb_address), 374 [SADB_EXT_KEY_AUTH] = sizeof(struct sadb_key), 375 [SADB_EXT_KEY_ENCRYPT] = sizeof(struct sadb_key), 376 [SADB_EXT_IDENTITY_SRC] = sizeof(struct sadb_ident), 377 [SADB_EXT_IDENTITY_DST] = sizeof(struct sadb_ident), 378 [SADB_EXT_SENSITIVITY] = sizeof(struct sadb_sens), 379 [SADB_EXT_PROPOSAL] = sizeof(struct sadb_prop), 380 [SADB_EXT_SUPPORTED_AUTH] = sizeof(struct sadb_supported), 381 [SADB_EXT_SUPPORTED_ENCRYPT] = sizeof(struct sadb_supported), 382 [SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange), 383 [SADB_X_EXT_KMPRIVATE] = 0, 384 [SADB_X_EXT_POLICY] = sizeof(struct sadb_x_policy), 385 [SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2), 386 [SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type), 387 [SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port), 388 [SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port), 389 [SADB_X_EXT_NAT_T_OAI] = sizeof(struct sadb_address), 390 [SADB_X_EXT_NAT_T_OAR] = sizeof(struct sadb_address), 391 [SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag), 392 [SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay), 393 [SADB_X_EXT_NEW_ADDRESS_SRC] = sizeof(struct sadb_address), 394 [SADB_X_EXT_NEW_ADDRESS_DST] = sizeof(struct sadb_address), 395 }; 396 _Static_assert(nitems(minsize) == SADB_EXT_MAX + 1, "minsize size mismatch"); 397 398 static const int maxsize[] = { 399 [SADB_EXT_RESERVED] = sizeof(struct sadb_msg), 400 [SADB_EXT_SA] = sizeof(struct sadb_sa), 401 [SADB_EXT_LIFETIME_CURRENT] = sizeof(struct sadb_lifetime), 402 [SADB_EXT_LIFETIME_HARD] = sizeof(struct sadb_lifetime), 403 [SADB_EXT_LIFETIME_SOFT] = sizeof(struct sadb_lifetime), 404 [SADB_EXT_ADDRESS_SRC] = 0, 405 [SADB_EXT_ADDRESS_DST] = 0, 406 [SADB_EXT_ADDRESS_PROXY] = 0, 407 [SADB_EXT_KEY_AUTH] = 0, 408 [SADB_EXT_KEY_ENCRYPT] = 0, 409 [SADB_EXT_IDENTITY_SRC] = 0, 410 [SADB_EXT_IDENTITY_DST] = 0, 411 [SADB_EXT_SENSITIVITY] = 0, 412 [SADB_EXT_PROPOSAL] = 0, 413 [SADB_EXT_SUPPORTED_AUTH] = 0, 414 [SADB_EXT_SUPPORTED_ENCRYPT] = 0, 415 [SADB_EXT_SPIRANGE] = sizeof(struct sadb_spirange), 416 [SADB_X_EXT_KMPRIVATE] = 0, 417 [SADB_X_EXT_POLICY] = 0, 418 [SADB_X_EXT_SA2] = sizeof(struct sadb_x_sa2), 419 [SADB_X_EXT_NAT_T_TYPE] = sizeof(struct sadb_x_nat_t_type), 420 [SADB_X_EXT_NAT_T_SPORT] = sizeof(struct sadb_x_nat_t_port), 421 [SADB_X_EXT_NAT_T_DPORT] = sizeof(struct sadb_x_nat_t_port), 422 [SADB_X_EXT_NAT_T_OAI] = 0, 423 [SADB_X_EXT_NAT_T_OAR] = 0, 424 [SADB_X_EXT_NAT_T_FRAG] = sizeof(struct sadb_x_nat_t_frag), 425 [SADB_X_EXT_SA_REPLAY] = sizeof(struct sadb_x_sa_replay), 426 [SADB_X_EXT_NEW_ADDRESS_SRC] = 0, 427 [SADB_X_EXT_NEW_ADDRESS_DST] = 0, 428 }; 429 _Static_assert(nitems(maxsize) == SADB_EXT_MAX + 1, "maxsize size mismatch"); 430 431 /* 432 * Internal values for SA flags: 433 * SADB_X_EXT_F_CLONED means that SA was cloned by key_updateaddresses, 434 * thus we will not free the most of SA content in key_delsav(). 435 */ 436 #define SADB_X_EXT_F_CLONED 0x80000000 437 438 #define SADB_CHECKLEN(_mhp, _ext) \ 439 ((_mhp)->extlen[(_ext)] < minsize[(_ext)] || (maxsize[(_ext)] != 0 && \ 440 ((_mhp)->extlen[(_ext)] > maxsize[(_ext)]))) 441 #define SADB_CHECKHDR(_mhp, _ext) ((_mhp)->ext[(_ext)] == NULL) 442 443 VNET_DEFINE_STATIC(int, ipsec_esp_keymin) = 256; 444 VNET_DEFINE_STATIC(int, ipsec_esp_auth) = 0; 445 VNET_DEFINE_STATIC(int, ipsec_ah_keymin) = 128; 446 447 #define V_ipsec_esp_keymin VNET(ipsec_esp_keymin) 448 #define V_ipsec_esp_auth VNET(ipsec_esp_auth) 449 #define V_ipsec_ah_keymin VNET(ipsec_ah_keymin) 450 451 #ifdef IPSEC_DEBUG 452 VNET_DEFINE(int, ipsec_debug) = 1; 453 #else 454 VNET_DEFINE(int, ipsec_debug) = 0; 455 #endif 456 457 #ifdef INET 458 SYSCTL_DECL(_net_inet_ipsec); 459 SYSCTL_INT(_net_inet_ipsec, IPSECCTL_DEBUG, debug, 460 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 461 "Enable IPsec debugging output when set."); 462 #endif 463 #ifdef INET6 464 SYSCTL_DECL(_net_inet6_ipsec6); 465 SYSCTL_INT(_net_inet6_ipsec6, IPSECCTL_DEBUG, debug, 466 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_debug), 0, 467 "Enable IPsec debugging output when set."); 468 #endif 469 470 SYSCTL_INT(_net_key, KEYCTL_DEBUG_LEVEL, debug, 471 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_debug_level), 0, ""); 472 473 /* max count of trial for the decision of spi value */ 474 SYSCTL_INT(_net_key, KEYCTL_SPI_TRY, spi_trycnt, 475 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_trycnt), 0, ""); 476 477 /* minimum spi value to allocate automatically. */ 478 SYSCTL_INT(_net_key, KEYCTL_SPI_MIN_VALUE, spi_minval, 479 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_minval), 0, ""); 480 481 /* maximun spi value to allocate automatically. */ 482 SYSCTL_INT(_net_key, KEYCTL_SPI_MAX_VALUE, spi_maxval, 483 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_spi_maxval), 0, ""); 484 485 /* interval to initialize randseed */ 486 SYSCTL_INT(_net_key, KEYCTL_RANDOM_INT, int_random, 487 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_int_random), 0, ""); 488 489 /* lifetime for larval SA */ 490 SYSCTL_INT(_net_key, KEYCTL_LARVAL_LIFETIME, larval_lifetime, 491 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_larval_lifetime), 0, ""); 492 493 /* counter for blocking to send SADB_ACQUIRE to IKEd */ 494 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_COUNT, blockacq_count, 495 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_count), 0, ""); 496 497 /* lifetime for blocking to send SADB_ACQUIRE to IKEd */ 498 SYSCTL_INT(_net_key, KEYCTL_BLOCKACQ_LIFETIME, blockacq_lifetime, 499 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_blockacq_lifetime), 0, ""); 500 501 /* ESP auth */ 502 SYSCTL_INT(_net_key, KEYCTL_ESP_AUTH, esp_auth, 503 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_auth), 0, ""); 504 505 /* minimum ESP key length */ 506 SYSCTL_INT(_net_key, KEYCTL_ESP_KEYMIN, esp_keymin, 507 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_esp_keymin), 0, ""); 508 509 /* minimum AH key length */ 510 SYSCTL_INT(_net_key, KEYCTL_AH_KEYMIN, ah_keymin, 511 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(ipsec_ah_keymin), 0, ""); 512 513 /* perfered old SA rather than new SA */ 514 SYSCTL_INT(_net_key, KEYCTL_PREFERED_OLDSA, preferred_oldsa, 515 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(key_preferred_oldsa), 0, ""); 516 517 SYSCTL_NODE(_net_key, OID_AUTO, spdcache, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 518 "SPD cache"); 519 520 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, maxentries, 521 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_maxentries), 0, 522 "Maximum number of entries in the SPD cache" 523 " (power of 2, 0 to disable)"); 524 525 SYSCTL_UINT(_net_key_spdcache, OID_AUTO, threshold, 526 CTLFLAG_VNET | CTLFLAG_RDTUN, &VNET_NAME(key_spdcache_threshold), 0, 527 "Number of SPs that make the SPD cache active"); 528 529 #define __LIST_CHAINED(elm) \ 530 (!((elm)->chain.le_next == NULL && (elm)->chain.le_prev == NULL)) 531 532 MALLOC_DEFINE(M_IPSEC_SA, "secasvar", "ipsec security association"); 533 MALLOC_DEFINE(M_IPSEC_SAH, "sahead", "ipsec sa head"); 534 MALLOC_DEFINE(M_IPSEC_SP, "ipsecpolicy", "ipsec security policy"); 535 MALLOC_DEFINE(M_IPSEC_SR, "ipsecrequest", "ipsec security request"); 536 MALLOC_DEFINE(M_IPSEC_MISC, "ipsec-misc", "ipsec miscellaneous"); 537 MALLOC_DEFINE(M_IPSEC_SAQ, "ipsec-saq", "ipsec sa acquire"); 538 MALLOC_DEFINE(M_IPSEC_SAR, "ipsec-reg", "ipsec sa acquire"); 539 MALLOC_DEFINE(M_IPSEC_SPDCACHE, "ipsec-spdcache", "ipsec SPD cache"); 540 541 static uma_zone_t __read_mostly ipsec_key_lft_zone; 542 543 /* 544 * set parameters into secpolicyindex buffer. 545 * Must allocate secpolicyindex buffer passed to this function. 546 */ 547 #define KEY_SETSECSPIDX(_dir, s, d, ps, pd, ulp, idx) \ 548 do { \ 549 bzero((idx), sizeof(struct secpolicyindex)); \ 550 (idx)->dir = (_dir); \ 551 (idx)->prefs = (ps); \ 552 (idx)->prefd = (pd); \ 553 (idx)->ul_proto = (ulp); \ 554 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 555 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 556 } while (0) 557 558 /* 559 * set parameters into secasindex buffer. 560 * Must allocate secasindex buffer before calling this function. 561 */ 562 #define KEY_SETSECASIDX(p, m, r, s, d, idx) \ 563 do { \ 564 bzero((idx), sizeof(struct secasindex)); \ 565 (idx)->proto = (p); \ 566 (idx)->mode = (m); \ 567 (idx)->reqid = (r); \ 568 bcopy((s), &(idx)->src, ((const struct sockaddr *)(s))->sa_len); \ 569 bcopy((d), &(idx)->dst, ((const struct sockaddr *)(d))->sa_len); \ 570 key_porttosaddr(&(idx)->src.sa, 0); \ 571 key_porttosaddr(&(idx)->dst.sa, 0); \ 572 } while (0) 573 574 /* key statistics */ 575 struct _keystat { 576 u_long getspi_count; /* the avarage of count to try to get new SPI */ 577 } keystat; 578 579 struct sadb_msghdr { 580 struct sadb_msg *msg; 581 struct sadb_ext *ext[SADB_EXT_MAX + 1]; 582 int extoff[SADB_EXT_MAX + 1]; 583 int extlen[SADB_EXT_MAX + 1]; 584 }; 585 586 static const struct supported_ealgs { 587 int sadb_alg; 588 const struct enc_xform *xform; 589 } supported_ealgs[] = { 590 { SADB_X_EALG_AES, &enc_xform_aes_cbc }, 591 { SADB_EALG_NULL, &enc_xform_null }, 592 { SADB_X_EALG_AESCTR, &enc_xform_aes_icm }, 593 { SADB_X_EALG_AESGCM16, &enc_xform_aes_nist_gcm }, 594 { SADB_X_EALG_AESGMAC, &enc_xform_aes_nist_gmac }, 595 { SADB_X_EALG_CHACHA20POLY1305, &enc_xform_chacha20_poly1305 }, 596 }; 597 598 static const struct supported_aalgs { 599 int sadb_alg; 600 const struct auth_hash *xform; 601 } supported_aalgs[] = { 602 { SADB_X_AALG_NULL, &auth_hash_null }, 603 { SADB_AALG_SHA1HMAC, &auth_hash_hmac_sha1 }, 604 { SADB_X_AALG_SHA2_256, &auth_hash_hmac_sha2_256 }, 605 { SADB_X_AALG_SHA2_384, &auth_hash_hmac_sha2_384 }, 606 { SADB_X_AALG_SHA2_512, &auth_hash_hmac_sha2_512 }, 607 { SADB_X_AALG_AES128GMAC, &auth_hash_nist_gmac_aes_128 }, 608 { SADB_X_AALG_AES192GMAC, &auth_hash_nist_gmac_aes_192 }, 609 { SADB_X_AALG_AES256GMAC, &auth_hash_nist_gmac_aes_256 }, 610 { SADB_X_AALG_CHACHA20POLY1305, &auth_hash_poly1305 }, 611 }; 612 613 static const struct supported_calgs { 614 int sadb_alg; 615 const struct comp_algo *xform; 616 } supported_calgs[] = { 617 { SADB_X_CALG_DEFLATE, &comp_algo_deflate }, 618 }; 619 620 #ifndef IPSEC_DEBUG2 621 static struct callout key_timer; 622 #endif 623 624 static void key_unlink(struct secpolicy *); 625 static void key_detach(struct secpolicy *); 626 static struct secpolicy *key_do_allocsp(struct secpolicyindex *spidx, u_int dir); 627 static struct secpolicy *key_getsp(struct secpolicyindex *); 628 static struct secpolicy *key_getspbyid(u_int32_t); 629 static struct mbuf *key_gather_mbuf(struct mbuf *, 630 const struct sadb_msghdr *, int, int, ...); 631 static int key_spdadd(struct socket *, struct mbuf *, 632 const struct sadb_msghdr *); 633 static uint32_t key_getnewspid(void); 634 static int key_spddelete(struct socket *, struct mbuf *, 635 const struct sadb_msghdr *); 636 static int key_spddelete2(struct socket *, struct mbuf *, 637 const struct sadb_msghdr *); 638 static int key_spdget(struct socket *, struct mbuf *, 639 const struct sadb_msghdr *); 640 static int key_spdflush(struct socket *, struct mbuf *, 641 const struct sadb_msghdr *); 642 static int key_spddump(struct socket *, struct mbuf *, 643 const struct sadb_msghdr *); 644 static struct mbuf *key_setdumpsp(struct secpolicy *, 645 u_int8_t, u_int32_t, u_int32_t); 646 static struct mbuf *key_sp2mbuf(struct secpolicy *); 647 static size_t key_getspreqmsglen(struct secpolicy *); 648 static int key_spdexpire(struct secpolicy *); 649 static struct secashead *key_newsah(struct secasindex *); 650 static void key_freesah(struct secashead **); 651 static void key_delsah(struct secashead *); 652 static struct secasvar *key_newsav(const struct sadb_msghdr *, 653 struct secasindex *, uint32_t, int *); 654 static void key_delsav(struct secasvar *); 655 static void key_unlinksav(struct secasvar *); 656 static struct secashead *key_getsah(struct secasindex *); 657 static int key_checkspidup(uint32_t); 658 static struct secasvar *key_getsavbyspi(uint32_t); 659 static int key_setnatt(struct secasvar *, const struct sadb_msghdr *); 660 static int key_setsaval(struct secasvar *, const struct sadb_msghdr *); 661 static int key_updatelifetimes(struct secasvar *, const struct sadb_msghdr *); 662 static int key_updateaddresses(struct socket *, struct mbuf *, 663 const struct sadb_msghdr *, struct secasvar *, struct secasindex *); 664 665 static struct mbuf *key_setdumpsa(struct secasvar *, u_int8_t, 666 u_int8_t, u_int32_t, u_int32_t); 667 static struct mbuf *key_setsadbmsg(u_int8_t, u_int16_t, u_int8_t, 668 u_int32_t, pid_t, u_int16_t); 669 static struct mbuf *key_setsadbsa(struct secasvar *); 670 static struct mbuf *key_setsadbaddr(u_int16_t, 671 const struct sockaddr *, u_int8_t, u_int16_t); 672 static struct mbuf *key_setsadbxport(u_int16_t, u_int16_t); 673 static struct mbuf *key_setsadbxtype(u_int16_t); 674 static struct mbuf *key_setsadbxsa2(u_int8_t, u_int32_t, u_int32_t); 675 static struct mbuf *key_setsadbxsareplay(u_int32_t); 676 static struct mbuf *key_setsadbxpolicy(u_int16_t, u_int8_t, 677 u_int32_t, u_int32_t); 678 static struct seckey *key_dup_keymsg(const struct sadb_key *, size_t, 679 struct malloc_type *); 680 static struct seclifetime *key_dup_lifemsg(const struct sadb_lifetime *src, 681 struct malloc_type *); 682 683 /* flags for key_cmpsaidx() */ 684 #define CMP_HEAD 1 /* protocol, addresses. */ 685 #define CMP_MODE_REQID 2 /* additionally HEAD, reqid, mode. */ 686 #define CMP_REQID 3 /* additionally HEAD, reaid. */ 687 #define CMP_EXACTLY 4 /* all elements. */ 688 static int key_cmpsaidx(const struct secasindex *, 689 const struct secasindex *, int); 690 static int key_cmpspidx_exactly(struct secpolicyindex *, 691 struct secpolicyindex *); 692 static int key_cmpspidx_withmask(struct secpolicyindex *, 693 struct secpolicyindex *); 694 static int key_bbcmp(const void *, const void *, u_int); 695 static uint8_t key_satype2proto(uint8_t); 696 static uint8_t key_proto2satype(uint8_t); 697 698 static int key_getspi(struct socket *, struct mbuf *, 699 const struct sadb_msghdr *); 700 static uint32_t key_do_getnewspi(struct sadb_spirange *, struct secasindex *); 701 static int key_update(struct socket *, struct mbuf *, 702 const struct sadb_msghdr *); 703 static int key_add(struct socket *, struct mbuf *, 704 const struct sadb_msghdr *); 705 static int key_setident(struct secashead *, const struct sadb_msghdr *); 706 static struct mbuf *key_getmsgbuf_x1(struct mbuf *, 707 const struct sadb_msghdr *); 708 static int key_delete(struct socket *, struct mbuf *, 709 const struct sadb_msghdr *); 710 static int key_delete_all(struct socket *, struct mbuf *, 711 const struct sadb_msghdr *, struct secasindex *); 712 static int key_get(struct socket *, struct mbuf *, 713 const struct sadb_msghdr *); 714 715 static void key_getcomb_setlifetime(struct sadb_comb *); 716 static struct mbuf *key_getcomb_ealg(void); 717 static struct mbuf *key_getcomb_ah(void); 718 static struct mbuf *key_getcomb_ipcomp(void); 719 static struct mbuf *key_getprop(const struct secasindex *); 720 721 static int key_acquire(const struct secasindex *, struct secpolicy *); 722 static uint32_t key_newacq(const struct secasindex *, int *); 723 static uint32_t key_getacq(const struct secasindex *, int *); 724 static int key_acqdone(const struct secasindex *, uint32_t); 725 static int key_acqreset(uint32_t); 726 static struct secspacq *key_newspacq(struct secpolicyindex *); 727 static struct secspacq *key_getspacq(struct secpolicyindex *); 728 static int key_acquire2(struct socket *, struct mbuf *, 729 const struct sadb_msghdr *); 730 static int key_register(struct socket *, struct mbuf *, 731 const struct sadb_msghdr *); 732 static int key_expire(struct secasvar *, int); 733 static int key_flush(struct socket *, struct mbuf *, 734 const struct sadb_msghdr *); 735 static int key_dump(struct socket *, struct mbuf *, 736 const struct sadb_msghdr *); 737 static int key_promisc(struct socket *, struct mbuf *, 738 const struct sadb_msghdr *); 739 static int key_senderror(struct socket *, struct mbuf *, int); 740 static int key_validate_ext(const struct sadb_ext *, int); 741 static int key_align(struct mbuf *, struct sadb_msghdr *); 742 static struct mbuf *key_setlifetime(struct seclifetime *, uint16_t); 743 static struct mbuf *key_setkey(struct seckey *, uint16_t); 744 745 static void spdcache_init(void); 746 static void spdcache_clear(void); 747 static struct spdcache_entry *spdcache_entry_alloc( 748 const struct secpolicyindex *spidx, 749 struct secpolicy *policy); 750 static void spdcache_entry_free(struct spdcache_entry *entry); 751 #ifdef VIMAGE 752 static void spdcache_destroy(void); 753 #endif 754 755 #define DBG_IPSEC_INITREF(t, p) do { \ 756 refcount_init(&(p)->refcnt, 1); \ 757 KEYDBG(KEY_STAMP, \ 758 printf("%s: Initialize refcnt %s(%p) = %u\n", \ 759 __func__, #t, (p), (p)->refcnt)); \ 760 } while (0) 761 #define DBG_IPSEC_ADDREF(t, p) do { \ 762 refcount_acquire(&(p)->refcnt); \ 763 KEYDBG(KEY_STAMP, \ 764 printf("%s: Acquire refcnt %s(%p) -> %u\n", \ 765 __func__, #t, (p), (p)->refcnt)); \ 766 } while (0) 767 #define DBG_IPSEC_DELREF(t, p) do { \ 768 KEYDBG(KEY_STAMP, \ 769 printf("%s: Release refcnt %s(%p) -> %u\n", \ 770 __func__, #t, (p), (p)->refcnt - 1)); \ 771 refcount_release(&(p)->refcnt); \ 772 } while (0) 773 774 #define IPSEC_INITREF(t, p) refcount_init(&(p)->refcnt, 1) 775 #define IPSEC_ADDREF(t, p) refcount_acquire(&(p)->refcnt) 776 #define IPSEC_DELREF(t, p) refcount_release(&(p)->refcnt) 777 778 #define SP_INITREF(p) IPSEC_INITREF(SP, p) 779 #define SP_ADDREF(p) IPSEC_ADDREF(SP, p) 780 #define SP_DELREF(p) IPSEC_DELREF(SP, p) 781 782 #define SAH_INITREF(p) IPSEC_INITREF(SAH, p) 783 #define SAH_ADDREF(p) IPSEC_ADDREF(SAH, p) 784 #define SAH_DELREF(p) IPSEC_DELREF(SAH, p) 785 786 #define SAV_INITREF(p) IPSEC_INITREF(SAV, p) 787 #define SAV_ADDREF(p) IPSEC_ADDREF(SAV, p) 788 #define SAV_DELREF(p) IPSEC_DELREF(SAV, p) 789 790 /* 791 * Update the refcnt while holding the SPTREE lock. 792 */ 793 void 794 key_addref(struct secpolicy *sp) 795 { 796 797 SP_ADDREF(sp); 798 } 799 800 /* 801 * Return 0 when there are known to be no SP's for the specified 802 * direction. Otherwise return 1. This is used by IPsec code 803 * to optimize performance. 804 */ 805 int 806 key_havesp(u_int dir) 807 { 808 809 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 810 ("invalid direction %u", dir)); 811 return (TAILQ_FIRST(&V_sptree[dir]) != NULL); 812 } 813 814 int 815 key_havesp_any(void) 816 { 817 818 return (V_spd_size != 0); 819 } 820 821 /* 822 * Allocate a single mbuf with a buffer of the desired length. The buffer is 823 * pre-zeroed to help ensure that uninitialized pad bytes are not leaked. 824 */ 825 static struct mbuf * 826 key_mget(u_int len) 827 { 828 struct mbuf *m; 829 830 KASSERT(len <= MCLBYTES, 831 ("%s: invalid buffer length %u", __func__, len)); 832 833 m = m_get2(len, M_NOWAIT, MT_DATA, M_PKTHDR); 834 if (m == NULL) 835 return (NULL); 836 memset(mtod(m, void *), 0, len); 837 return (m); 838 } 839 840 /* %%% IPsec policy management */ 841 /* 842 * Return current SPDB generation. 843 */ 844 uint32_t 845 key_getspgen(void) 846 { 847 848 return (V_sp_genid); 849 } 850 851 void 852 key_bumpspgen(void) 853 { 854 855 V_sp_genid++; 856 } 857 858 static int 859 key_checksockaddrs(struct sockaddr *src, struct sockaddr *dst) 860 { 861 862 /* family match */ 863 if (src->sa_family != dst->sa_family) 864 return (EINVAL); 865 /* sa_len match */ 866 if (src->sa_len != dst->sa_len) 867 return (EINVAL); 868 switch (src->sa_family) { 869 #ifdef INET 870 case AF_INET: 871 if (src->sa_len != sizeof(struct sockaddr_in)) 872 return (EINVAL); 873 break; 874 #endif 875 #ifdef INET6 876 case AF_INET6: 877 if (src->sa_len != sizeof(struct sockaddr_in6)) 878 return (EINVAL); 879 break; 880 #endif 881 default: 882 return (EAFNOSUPPORT); 883 } 884 return (0); 885 } 886 887 struct secpolicy * 888 key_do_allocsp(struct secpolicyindex *spidx, u_int dir) 889 { 890 SPTREE_RLOCK_TRACKER; 891 struct secpolicy *sp; 892 893 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 894 IPSEC_ASSERT(dir == IPSEC_DIR_INBOUND || dir == IPSEC_DIR_OUTBOUND, 895 ("invalid direction %u", dir)); 896 897 SPTREE_RLOCK(); 898 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 899 if (key_cmpspidx_withmask(&sp->spidx, spidx)) { 900 SP_ADDREF(sp); 901 break; 902 } 903 } 904 SPTREE_RUNLOCK(); 905 return (sp); 906 } 907 908 /* 909 * allocating a SP for OUTBOUND or INBOUND packet. 910 * Must call key_freesp() later. 911 * OUT: NULL: not found 912 * others: found and return the pointer. 913 */ 914 struct secpolicy * 915 key_allocsp(struct secpolicyindex *spidx, u_int dir) 916 { 917 struct spdcache_entry *entry, *lastentry, *tmpentry; 918 struct secpolicy *sp; 919 uint32_t hashv; 920 time_t ts; 921 int nb_entries; 922 923 if (!SPDCACHE_ACTIVE()) { 924 sp = key_do_allocsp(spidx, dir); 925 goto out; 926 } 927 928 hashv = SPDCACHE_HASHVAL(spidx); 929 SPDCACHE_LOCK(hashv); 930 nb_entries = 0; 931 LIST_FOREACH_SAFE(entry, &V_spdcachehashtbl[hashv], chain, tmpentry) { 932 /* Removed outdated entries */ 933 if (entry->sp != NULL && 934 entry->sp->state == IPSEC_SPSTATE_DEAD) { 935 LIST_REMOVE(entry, chain); 936 spdcache_entry_free(entry); 937 continue; 938 } 939 940 nb_entries++; 941 if (!key_cmpspidx_exactly(&entry->spidx, spidx)) { 942 lastentry = entry; 943 continue; 944 } 945 946 sp = entry->sp; 947 if (entry->sp != NULL) 948 SP_ADDREF(sp); 949 950 /* IPSECSTAT_INC(ips_spdcache_hits); */ 951 952 SPDCACHE_UNLOCK(hashv); 953 goto out; 954 } 955 956 /* IPSECSTAT_INC(ips_spdcache_misses); */ 957 958 sp = key_do_allocsp(spidx, dir); 959 entry = spdcache_entry_alloc(spidx, sp); 960 if (entry != NULL) { 961 if (nb_entries >= SPDCACHE_MAX_ENTRIES_PER_HASH) { 962 LIST_REMOVE(lastentry, chain); 963 spdcache_entry_free(lastentry); 964 } 965 966 LIST_INSERT_HEAD(&V_spdcachehashtbl[hashv], entry, chain); 967 } 968 969 SPDCACHE_UNLOCK(hashv); 970 971 out: 972 if (sp != NULL) { /* found a SPD entry */ 973 ts = time_second; 974 if (__predict_false(sp->lastused != ts)) 975 sp->lastused = ts; 976 KEYDBG(IPSEC_STAMP, 977 printf("%s: return SP(%p)\n", __func__, sp)); 978 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 979 } else { 980 KEYDBG(IPSEC_DATA, 981 printf("%s: lookup failed for ", __func__); 982 kdebug_secpolicyindex(spidx, NULL)); 983 } 984 return (sp); 985 } 986 987 /* 988 * Allocating an SA entry for an *INBOUND* or *OUTBOUND* TCP packet, signed 989 * or should be signed by MD5 signature. 990 * We don't use key_allocsa() for such lookups, because we don't know SPI. 991 * Unlike ESP and AH protocols, SPI isn't transmitted in the TCP header with 992 * signed packet. We use SADB only as storage for password. 993 * OUT: positive: corresponding SA for given saidx found. 994 * NULL: SA not found 995 */ 996 struct secasvar * 997 key_allocsa_tcpmd5(struct secasindex *saidx) 998 { 999 SAHTREE_RLOCK_TRACKER; 1000 struct secashead *sah; 1001 struct secasvar *sav; 1002 1003 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, 1004 ("unexpected security protocol %u", saidx->proto)); 1005 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TCPMD5, 1006 ("unexpected mode %u", saidx->mode)); 1007 1008 SAHTREE_RLOCK(); 1009 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1010 KEYDBG(IPSEC_DUMP, 1011 printf("%s: checking SAH\n", __func__); 1012 kdebug_secash(sah, " ")); 1013 if (sah->saidx.proto != IPPROTO_TCP) 1014 continue; 1015 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 1016 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 1017 break; 1018 } 1019 if (sah != NULL) { 1020 if (V_key_preferred_oldsa) 1021 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1022 else 1023 sav = TAILQ_FIRST(&sah->savtree_alive); 1024 if (sav != NULL) 1025 SAV_ADDREF(sav); 1026 } else 1027 sav = NULL; 1028 SAHTREE_RUNLOCK(); 1029 1030 if (sav != NULL) { 1031 KEYDBG(IPSEC_STAMP, 1032 printf("%s: return SA(%p)\n", __func__, sav)); 1033 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1034 } else { 1035 KEYDBG(IPSEC_STAMP, 1036 printf("%s: SA not found\n", __func__)); 1037 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1038 } 1039 return (sav); 1040 } 1041 1042 /* 1043 * Allocating an SA entry for an *OUTBOUND* packet. 1044 * OUT: positive: corresponding SA for given saidx found. 1045 * NULL: SA not found, but will be acquired, check *error 1046 * for acquiring status. 1047 */ 1048 struct secasvar * 1049 key_allocsa_policy(struct secpolicy *sp, const struct secasindex *saidx, 1050 int *error) 1051 { 1052 SAHTREE_RLOCK_TRACKER; 1053 struct secashead *sah; 1054 struct secasvar *sav; 1055 1056 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 1057 IPSEC_ASSERT(saidx->mode == IPSEC_MODE_TRANSPORT || 1058 saidx->mode == IPSEC_MODE_TUNNEL, 1059 ("unexpected policy %u", saidx->mode)); 1060 1061 /* 1062 * We check new SA in the IPsec request because a different 1063 * SA may be involved each time this request is checked, either 1064 * because new SAs are being configured, or this request is 1065 * associated with an unconnected datagram socket, or this request 1066 * is associated with a system default policy. 1067 */ 1068 SAHTREE_RLOCK(); 1069 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 1070 KEYDBG(IPSEC_DUMP, 1071 printf("%s: checking SAH\n", __func__); 1072 kdebug_secash(sah, " ")); 1073 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID)) 1074 break; 1075 } 1076 if (sah != NULL) { 1077 /* 1078 * Allocate the oldest SA available according to 1079 * draft-jenkins-ipsec-rekeying-03. 1080 */ 1081 if (V_key_preferred_oldsa) 1082 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1083 else 1084 sav = TAILQ_FIRST(&sah->savtree_alive); 1085 if (sav != NULL) 1086 SAV_ADDREF(sav); 1087 } else 1088 sav = NULL; 1089 SAHTREE_RUNLOCK(); 1090 1091 if (sav != NULL) { 1092 *error = 0; 1093 KEYDBG(IPSEC_STAMP, 1094 printf("%s: chosen SA(%p) for SP(%p)\n", __func__, 1095 sav, sp)); 1096 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1097 return (sav); /* return referenced SA */ 1098 } 1099 1100 /* there is no SA */ 1101 *error = key_acquire(saidx, sp); 1102 if ((*error) != 0) 1103 ipseclog((LOG_DEBUG, 1104 "%s: error %d returned from key_acquire()\n", 1105 __func__, *error)); 1106 KEYDBG(IPSEC_STAMP, 1107 printf("%s: acquire SA for SP(%p), error %d\n", 1108 __func__, sp, *error)); 1109 KEYDBG(IPSEC_DATA, kdebug_secasindex(saidx, NULL)); 1110 return (NULL); 1111 } 1112 1113 /* 1114 * allocating a usable SA entry for a *INBOUND* packet. 1115 * Must call key_freesav() later. 1116 * OUT: positive: pointer to a usable sav (i.e. MATURE or DYING state). 1117 * NULL: not found, or error occurred. 1118 * 1119 * According to RFC 2401 SA is uniquely identified by a triple SPI, 1120 * destination address, and security protocol. But according to RFC 4301, 1121 * SPI by itself suffices to specify an SA. 1122 * 1123 * Note that, however, we do need to keep source address in IPsec SA. 1124 * IKE specification and PF_KEY specification do assume that we 1125 * keep source address in IPsec SA. We see a tricky situation here. 1126 */ 1127 struct secasvar * 1128 key_allocsa(union sockaddr_union *dst, uint8_t proto, uint32_t spi) 1129 { 1130 SAHTREE_RLOCK_TRACKER; 1131 struct secasvar *sav; 1132 1133 IPSEC_ASSERT(proto == IPPROTO_ESP || proto == IPPROTO_AH || 1134 proto == IPPROTO_IPCOMP, ("unexpected security protocol %u", 1135 proto)); 1136 1137 SAHTREE_RLOCK(); 1138 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 1139 if (sav->spi == spi) 1140 break; 1141 } 1142 /* 1143 * We use single SPI namespace for all protocols, so it is 1144 * impossible to have SPI duplicates in the SAVHASH. 1145 */ 1146 if (sav != NULL) { 1147 if (sav->state != SADB_SASTATE_LARVAL && 1148 sav->sah->saidx.proto == proto && 1149 key_sockaddrcmp(&dst->sa, 1150 &sav->sah->saidx.dst.sa, 0) == 0) 1151 SAV_ADDREF(sav); 1152 else 1153 sav = NULL; 1154 } 1155 SAHTREE_RUNLOCK(); 1156 1157 if (sav == NULL) { 1158 KEYDBG(IPSEC_STAMP, 1159 char buf[IPSEC_ADDRSTRLEN]; 1160 printf("%s: SA not found for spi %u proto %u dst %s\n", 1161 __func__, ntohl(spi), proto, ipsec_address(dst, buf, 1162 sizeof(buf)))); 1163 } else { 1164 KEYDBG(IPSEC_STAMP, 1165 printf("%s: return SA(%p)\n", __func__, sav)); 1166 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1167 } 1168 return (sav); 1169 } 1170 1171 struct secasvar * 1172 key_allocsa_tunnel(union sockaddr_union *src, union sockaddr_union *dst, 1173 uint8_t proto) 1174 { 1175 SAHTREE_RLOCK_TRACKER; 1176 struct secasindex saidx; 1177 struct secashead *sah; 1178 struct secasvar *sav; 1179 1180 IPSEC_ASSERT(src != NULL, ("null src address")); 1181 IPSEC_ASSERT(dst != NULL, ("null dst address")); 1182 1183 KEY_SETSECASIDX(proto, IPSEC_MODE_TUNNEL, 0, &src->sa, 1184 &dst->sa, &saidx); 1185 1186 sav = NULL; 1187 SAHTREE_RLOCK(); 1188 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 1189 if (IPSEC_MODE_TUNNEL != sah->saidx.mode) 1190 continue; 1191 if (proto != sah->saidx.proto) 1192 continue; 1193 if (key_sockaddrcmp(&src->sa, &sah->saidx.src.sa, 0) != 0) 1194 continue; 1195 if (key_sockaddrcmp(&dst->sa, &sah->saidx.dst.sa, 0) != 0) 1196 continue; 1197 /* XXXAE: is key_preferred_oldsa reasonably?*/ 1198 if (V_key_preferred_oldsa) 1199 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 1200 else 1201 sav = TAILQ_FIRST(&sah->savtree_alive); 1202 if (sav != NULL) { 1203 SAV_ADDREF(sav); 1204 break; 1205 } 1206 } 1207 SAHTREE_RUNLOCK(); 1208 KEYDBG(IPSEC_STAMP, 1209 printf("%s: return SA(%p)\n", __func__, sav)); 1210 if (sav != NULL) 1211 KEYDBG(IPSEC_DATA, kdebug_secasv(sav)); 1212 return (sav); 1213 } 1214 1215 /* 1216 * Must be called after calling key_allocsp(). 1217 */ 1218 void 1219 key_freesp(struct secpolicy **spp) 1220 { 1221 struct secpolicy *sp = *spp; 1222 1223 IPSEC_ASSERT(sp != NULL, ("null sp")); 1224 if (SP_DELREF(sp) == 0) 1225 return; 1226 1227 KEYDBG(IPSEC_STAMP, 1228 printf("%s: last reference to SP(%p)\n", __func__, sp)); 1229 KEYDBG(IPSEC_DATA, kdebug_secpolicy(sp)); 1230 1231 *spp = NULL; 1232 while (sp->tcount > 0) 1233 ipsec_delisr(sp->req[--sp->tcount]); 1234 free(sp, M_IPSEC_SP); 1235 } 1236 1237 static void 1238 key_unlink(struct secpolicy *sp) 1239 { 1240 SPTREE_WLOCK(); 1241 key_detach(sp); 1242 SPTREE_WUNLOCK(); 1243 if (SPDCACHE_ENABLED()) 1244 spdcache_clear(); 1245 key_freesp(&sp); 1246 } 1247 1248 static void 1249 key_detach(struct secpolicy *sp) 1250 { 1251 IPSEC_ASSERT(sp->spidx.dir == IPSEC_DIR_INBOUND || 1252 sp->spidx.dir == IPSEC_DIR_OUTBOUND, 1253 ("invalid direction %u", sp->spidx.dir)); 1254 SPTREE_WLOCK_ASSERT(); 1255 1256 KEYDBG(KEY_STAMP, 1257 printf("%s: SP(%p)\n", __func__, sp)); 1258 if (sp->state != IPSEC_SPSTATE_ALIVE) { 1259 /* SP is already unlinked */ 1260 return; 1261 } 1262 sp->state = IPSEC_SPSTATE_DEAD; 1263 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 1264 V_spd_size--; 1265 LIST_REMOVE(sp, idhash); 1266 V_sp_genid++; 1267 } 1268 1269 /* 1270 * insert a secpolicy into the SP database. Lower priorities first 1271 */ 1272 static void 1273 key_insertsp(struct secpolicy *newsp) 1274 { 1275 struct secpolicy *sp; 1276 1277 SPTREE_WLOCK_ASSERT(); 1278 TAILQ_FOREACH(sp, &V_sptree[newsp->spidx.dir], chain) { 1279 if (newsp->priority < sp->priority) { 1280 TAILQ_INSERT_BEFORE(sp, newsp, chain); 1281 goto done; 1282 } 1283 } 1284 TAILQ_INSERT_TAIL(&V_sptree[newsp->spidx.dir], newsp, chain); 1285 done: 1286 LIST_INSERT_HEAD(SPHASH_HASH(newsp->id), newsp, idhash); 1287 newsp->state = IPSEC_SPSTATE_ALIVE; 1288 V_spd_size++; 1289 V_sp_genid++; 1290 } 1291 1292 /* 1293 * Insert a bunch of VTI secpolicies into the SPDB. 1294 * We keep VTI policies in the separate list due to following reasons: 1295 * 1) they should be immutable to user's or some deamon's attempts to 1296 * delete. The only way delete such policies - destroy or unconfigure 1297 * corresponding virtual inteface. 1298 * 2) such policies have traffic selector that matches all traffic per 1299 * address family. 1300 * Since all VTI policies have the same priority, we don't care about 1301 * policies order. 1302 */ 1303 int 1304 key_register_ifnet(struct secpolicy **spp, u_int count) 1305 { 1306 struct mbuf *m; 1307 u_int i; 1308 1309 SPTREE_WLOCK(); 1310 /* 1311 * First of try to acquire id for each SP. 1312 */ 1313 for (i = 0; i < count; i++) { 1314 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1315 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1316 ("invalid direction %u", spp[i]->spidx.dir)); 1317 1318 if ((spp[i]->id = key_getnewspid()) == 0) { 1319 SPTREE_WUNLOCK(); 1320 return (EAGAIN); 1321 } 1322 } 1323 for (i = 0; i < count; i++) { 1324 TAILQ_INSERT_TAIL(&V_sptree_ifnet[spp[i]->spidx.dir], 1325 spp[i], chain); 1326 /* 1327 * NOTE: despite the fact that we keep VTI SP in the 1328 * separate list, SPHASH contains policies from both 1329 * sources. Thus SADB_X_SPDGET will correctly return 1330 * SP by id, because it uses SPHASH for lookups. 1331 */ 1332 LIST_INSERT_HEAD(SPHASH_HASH(spp[i]->id), spp[i], idhash); 1333 spp[i]->state = IPSEC_SPSTATE_IFNET; 1334 } 1335 SPTREE_WUNLOCK(); 1336 /* 1337 * Notify user processes about new SP. 1338 */ 1339 for (i = 0; i < count; i++) { 1340 m = key_setdumpsp(spp[i], SADB_X_SPDADD, 0, 0); 1341 if (m != NULL) 1342 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1343 } 1344 return (0); 1345 } 1346 1347 void 1348 key_unregister_ifnet(struct secpolicy **spp, u_int count) 1349 { 1350 struct mbuf *m; 1351 u_int i; 1352 1353 SPTREE_WLOCK(); 1354 for (i = 0; i < count; i++) { 1355 IPSEC_ASSERT(spp[i]->spidx.dir == IPSEC_DIR_INBOUND || 1356 spp[i]->spidx.dir == IPSEC_DIR_OUTBOUND, 1357 ("invalid direction %u", spp[i]->spidx.dir)); 1358 1359 if (spp[i]->state != IPSEC_SPSTATE_IFNET) 1360 continue; 1361 spp[i]->state = IPSEC_SPSTATE_DEAD; 1362 TAILQ_REMOVE(&V_sptree_ifnet[spp[i]->spidx.dir], 1363 spp[i], chain); 1364 V_spd_size--; 1365 LIST_REMOVE(spp[i], idhash); 1366 } 1367 SPTREE_WUNLOCK(); 1368 if (SPDCACHE_ENABLED()) 1369 spdcache_clear(); 1370 1371 for (i = 0; i < count; i++) { 1372 m = key_setdumpsp(spp[i], SADB_X_SPDDELETE, 0, 0); 1373 if (m != NULL) 1374 key_sendup_mbuf(NULL, m, KEY_SENDUP_ALL); 1375 } 1376 } 1377 1378 /* 1379 * Must be called after calling key_allocsa(). 1380 * This function is called by key_freesp() to free some SA allocated 1381 * for a policy. 1382 */ 1383 void 1384 key_freesav(struct secasvar **psav) 1385 { 1386 struct secasvar *sav = *psav; 1387 1388 IPSEC_ASSERT(sav != NULL, ("null sav")); 1389 CURVNET_ASSERT_SET(); 1390 if (SAV_DELREF(sav) == 0) 1391 return; 1392 1393 KEYDBG(IPSEC_STAMP, 1394 printf("%s: last reference to SA(%p)\n", __func__, sav)); 1395 1396 *psav = NULL; 1397 key_delsav(sav); 1398 } 1399 1400 /* 1401 * Unlink SA from SAH and SPI hash under SAHTREE_WLOCK. 1402 * Expect that SA has extra reference due to lookup. 1403 * Release this references, also release SAH reference after unlink. 1404 */ 1405 static void 1406 key_unlinksav(struct secasvar *sav) 1407 { 1408 struct secashead *sah; 1409 1410 KEYDBG(KEY_STAMP, 1411 printf("%s: SA(%p)\n", __func__, sav)); 1412 1413 CURVNET_ASSERT_SET(); 1414 SAHTREE_UNLOCK_ASSERT(); 1415 SAHTREE_WLOCK(); 1416 if (sav->state == SADB_SASTATE_DEAD) { 1417 /* SA is already unlinked */ 1418 SAHTREE_WUNLOCK(); 1419 return; 1420 } 1421 /* Unlink from SAH */ 1422 if (sav->state == SADB_SASTATE_LARVAL) 1423 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 1424 else 1425 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 1426 /* Unlink from SPI hash */ 1427 LIST_REMOVE(sav, spihash); 1428 sav->state = SADB_SASTATE_DEAD; 1429 sah = sav->sah; 1430 SAHTREE_WUNLOCK(); 1431 key_freesav(&sav); 1432 /* Since we are unlinked, release reference to SAH */ 1433 key_freesah(&sah); 1434 } 1435 1436 /* %%% SPD management */ 1437 /* 1438 * search SPD 1439 * OUT: NULL : not found 1440 * others : found, pointer to a SP. 1441 */ 1442 static struct secpolicy * 1443 key_getsp(struct secpolicyindex *spidx) 1444 { 1445 SPTREE_RLOCK_TRACKER; 1446 struct secpolicy *sp; 1447 1448 IPSEC_ASSERT(spidx != NULL, ("null spidx")); 1449 1450 SPTREE_RLOCK(); 1451 TAILQ_FOREACH(sp, &V_sptree[spidx->dir], chain) { 1452 if (key_cmpspidx_exactly(spidx, &sp->spidx)) { 1453 SP_ADDREF(sp); 1454 break; 1455 } 1456 } 1457 SPTREE_RUNLOCK(); 1458 1459 return sp; 1460 } 1461 1462 /* 1463 * get SP by index. 1464 * OUT: NULL : not found 1465 * others : found, pointer to referenced SP. 1466 */ 1467 static struct secpolicy * 1468 key_getspbyid(uint32_t id) 1469 { 1470 SPTREE_RLOCK_TRACKER; 1471 struct secpolicy *sp; 1472 1473 SPTREE_RLOCK(); 1474 LIST_FOREACH(sp, SPHASH_HASH(id), idhash) { 1475 if (sp->id == id) { 1476 SP_ADDREF(sp); 1477 break; 1478 } 1479 } 1480 SPTREE_RUNLOCK(); 1481 return (sp); 1482 } 1483 1484 struct secpolicy * 1485 key_newsp(void) 1486 { 1487 struct secpolicy *sp; 1488 1489 sp = malloc(sizeof(*sp), M_IPSEC_SP, M_NOWAIT | M_ZERO); 1490 if (sp != NULL) 1491 SP_INITREF(sp); 1492 return (sp); 1493 } 1494 1495 struct ipsecrequest * 1496 ipsec_newisr(void) 1497 { 1498 1499 return (malloc(sizeof(struct ipsecrequest), M_IPSEC_SR, 1500 M_NOWAIT | M_ZERO)); 1501 } 1502 1503 void 1504 ipsec_delisr(struct ipsecrequest *p) 1505 { 1506 1507 free(p, M_IPSEC_SR); 1508 } 1509 1510 /* 1511 * create secpolicy structure from sadb_x_policy structure. 1512 * NOTE: `state', `secpolicyindex' and 'id' in secpolicy structure 1513 * are not set, so must be set properly later. 1514 */ 1515 struct secpolicy * 1516 key_msg2sp(struct sadb_x_policy *xpl0, size_t len, int *error) 1517 { 1518 struct secpolicy *newsp; 1519 1520 IPSEC_ASSERT(xpl0 != NULL, ("null xpl0")); 1521 IPSEC_ASSERT(len >= sizeof(*xpl0), ("policy too short: %zu", len)); 1522 1523 if (len != PFKEY_EXTLEN(xpl0)) { 1524 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", __func__)); 1525 *error = EINVAL; 1526 return NULL; 1527 } 1528 1529 if ((newsp = key_newsp()) == NULL) { 1530 *error = ENOBUFS; 1531 return NULL; 1532 } 1533 1534 newsp->spidx.dir = xpl0->sadb_x_policy_dir; 1535 newsp->policy = xpl0->sadb_x_policy_type; 1536 newsp->priority = xpl0->sadb_x_policy_priority; 1537 newsp->tcount = 0; 1538 1539 /* check policy */ 1540 switch (xpl0->sadb_x_policy_type) { 1541 case IPSEC_POLICY_DISCARD: 1542 case IPSEC_POLICY_NONE: 1543 case IPSEC_POLICY_ENTRUST: 1544 case IPSEC_POLICY_BYPASS: 1545 break; 1546 1547 case IPSEC_POLICY_IPSEC: 1548 { 1549 struct sadb_x_ipsecrequest *xisr; 1550 struct ipsecrequest *isr; 1551 int tlen; 1552 1553 /* validity check */ 1554 if (PFKEY_EXTLEN(xpl0) < sizeof(*xpl0)) { 1555 ipseclog((LOG_DEBUG, "%s: Invalid msg length.\n", 1556 __func__)); 1557 key_freesp(&newsp); 1558 *error = EINVAL; 1559 return NULL; 1560 } 1561 1562 tlen = PFKEY_EXTLEN(xpl0) - sizeof(*xpl0); 1563 xisr = (struct sadb_x_ipsecrequest *)(xpl0 + 1); 1564 1565 while (tlen > 0) { 1566 /* length check */ 1567 if (xisr->sadb_x_ipsecrequest_len < sizeof(*xisr) || 1568 xisr->sadb_x_ipsecrequest_len > tlen) { 1569 ipseclog((LOG_DEBUG, "%s: invalid ipsecrequest " 1570 "length.\n", __func__)); 1571 key_freesp(&newsp); 1572 *error = EINVAL; 1573 return NULL; 1574 } 1575 1576 if (newsp->tcount >= IPSEC_MAXREQ) { 1577 ipseclog((LOG_DEBUG, 1578 "%s: too many ipsecrequests.\n", 1579 __func__)); 1580 key_freesp(&newsp); 1581 *error = EINVAL; 1582 return (NULL); 1583 } 1584 1585 /* allocate request buffer */ 1586 /* NB: data structure is zero'd */ 1587 isr = ipsec_newisr(); 1588 if (isr == NULL) { 1589 ipseclog((LOG_DEBUG, 1590 "%s: No more memory.\n", __func__)); 1591 key_freesp(&newsp); 1592 *error = ENOBUFS; 1593 return NULL; 1594 } 1595 1596 newsp->req[newsp->tcount++] = isr; 1597 1598 /* set values */ 1599 switch (xisr->sadb_x_ipsecrequest_proto) { 1600 case IPPROTO_ESP: 1601 case IPPROTO_AH: 1602 case IPPROTO_IPCOMP: 1603 break; 1604 default: 1605 ipseclog((LOG_DEBUG, 1606 "%s: invalid proto type=%u\n", __func__, 1607 xisr->sadb_x_ipsecrequest_proto)); 1608 key_freesp(&newsp); 1609 *error = EPROTONOSUPPORT; 1610 return NULL; 1611 } 1612 isr->saidx.proto = 1613 (uint8_t)xisr->sadb_x_ipsecrequest_proto; 1614 1615 switch (xisr->sadb_x_ipsecrequest_mode) { 1616 case IPSEC_MODE_TRANSPORT: 1617 case IPSEC_MODE_TUNNEL: 1618 break; 1619 case IPSEC_MODE_ANY: 1620 default: 1621 ipseclog((LOG_DEBUG, 1622 "%s: invalid mode=%u\n", __func__, 1623 xisr->sadb_x_ipsecrequest_mode)); 1624 key_freesp(&newsp); 1625 *error = EINVAL; 1626 return NULL; 1627 } 1628 isr->saidx.mode = xisr->sadb_x_ipsecrequest_mode; 1629 1630 switch (xisr->sadb_x_ipsecrequest_level) { 1631 case IPSEC_LEVEL_DEFAULT: 1632 case IPSEC_LEVEL_USE: 1633 case IPSEC_LEVEL_REQUIRE: 1634 break; 1635 case IPSEC_LEVEL_UNIQUE: 1636 /* validity check */ 1637 /* 1638 * If range violation of reqid, kernel will 1639 * update it, don't refuse it. 1640 */ 1641 if (xisr->sadb_x_ipsecrequest_reqid 1642 > IPSEC_MANUAL_REQID_MAX) { 1643 ipseclog((LOG_DEBUG, 1644 "%s: reqid=%d range " 1645 "violation, updated by kernel.\n", 1646 __func__, 1647 xisr->sadb_x_ipsecrequest_reqid)); 1648 xisr->sadb_x_ipsecrequest_reqid = 0; 1649 } 1650 1651 /* allocate new reqid id if reqid is zero. */ 1652 if (xisr->sadb_x_ipsecrequest_reqid == 0) { 1653 u_int32_t reqid; 1654 if ((reqid = key_newreqid()) == 0) { 1655 key_freesp(&newsp); 1656 *error = ENOBUFS; 1657 return NULL; 1658 } 1659 isr->saidx.reqid = reqid; 1660 xisr->sadb_x_ipsecrequest_reqid = reqid; 1661 } else { 1662 /* set it for manual keying. */ 1663 isr->saidx.reqid = 1664 xisr->sadb_x_ipsecrequest_reqid; 1665 } 1666 break; 1667 1668 default: 1669 ipseclog((LOG_DEBUG, "%s: invalid level=%u\n", 1670 __func__, 1671 xisr->sadb_x_ipsecrequest_level)); 1672 key_freesp(&newsp); 1673 *error = EINVAL; 1674 return NULL; 1675 } 1676 isr->level = xisr->sadb_x_ipsecrequest_level; 1677 1678 /* set IP addresses if there */ 1679 if (xisr->sadb_x_ipsecrequest_len > sizeof(*xisr)) { 1680 struct sockaddr *paddr; 1681 1682 len = tlen - sizeof(*xisr); 1683 paddr = (struct sockaddr *)(xisr + 1); 1684 /* validity check */ 1685 if (len < sizeof(struct sockaddr) || 1686 len < 2 * paddr->sa_len || 1687 paddr->sa_len > sizeof(isr->saidx.src)) { 1688 ipseclog((LOG_DEBUG, "%s: invalid " 1689 "request address length.\n", 1690 __func__)); 1691 key_freesp(&newsp); 1692 *error = EINVAL; 1693 return NULL; 1694 } 1695 /* 1696 * Request length should be enough to keep 1697 * source and destination addresses. 1698 */ 1699 if (xisr->sadb_x_ipsecrequest_len < 1700 sizeof(*xisr) + 2 * paddr->sa_len) { 1701 ipseclog((LOG_DEBUG, "%s: invalid " 1702 "ipsecrequest length.\n", 1703 __func__)); 1704 key_freesp(&newsp); 1705 *error = EINVAL; 1706 return (NULL); 1707 } 1708 bcopy(paddr, &isr->saidx.src, paddr->sa_len); 1709 paddr = (struct sockaddr *)((caddr_t)paddr + 1710 paddr->sa_len); 1711 1712 /* validity check */ 1713 if (paddr->sa_len != 1714 isr->saidx.src.sa.sa_len) { 1715 ipseclog((LOG_DEBUG, "%s: invalid " 1716 "request address length.\n", 1717 __func__)); 1718 key_freesp(&newsp); 1719 *error = EINVAL; 1720 return NULL; 1721 } 1722 /* AF family should match */ 1723 if (paddr->sa_family != 1724 isr->saidx.src.sa.sa_family) { 1725 ipseclog((LOG_DEBUG, "%s: address " 1726 "family doesn't match.\n", 1727 __func__)); 1728 key_freesp(&newsp); 1729 *error = EINVAL; 1730 return (NULL); 1731 } 1732 bcopy(paddr, &isr->saidx.dst, paddr->sa_len); 1733 } else { 1734 /* 1735 * Addresses for TUNNEL mode requests are 1736 * mandatory. 1737 */ 1738 if (isr->saidx.mode == IPSEC_MODE_TUNNEL) { 1739 ipseclog((LOG_DEBUG, "%s: missing " 1740 "request addresses.\n", __func__)); 1741 key_freesp(&newsp); 1742 *error = EINVAL; 1743 return (NULL); 1744 } 1745 } 1746 tlen -= xisr->sadb_x_ipsecrequest_len; 1747 1748 /* validity check */ 1749 if (tlen < 0) { 1750 ipseclog((LOG_DEBUG, "%s: becoming tlen < 0.\n", 1751 __func__)); 1752 key_freesp(&newsp); 1753 *error = EINVAL; 1754 return NULL; 1755 } 1756 1757 xisr = (struct sadb_x_ipsecrequest *)((caddr_t)xisr 1758 + xisr->sadb_x_ipsecrequest_len); 1759 } 1760 /* XXXAE: LARVAL SP */ 1761 if (newsp->tcount < 1) { 1762 ipseclog((LOG_DEBUG, "%s: valid IPSEC transforms " 1763 "not found.\n", __func__)); 1764 key_freesp(&newsp); 1765 *error = EINVAL; 1766 return (NULL); 1767 } 1768 } 1769 break; 1770 default: 1771 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 1772 key_freesp(&newsp); 1773 *error = EINVAL; 1774 return NULL; 1775 } 1776 1777 *error = 0; 1778 return (newsp); 1779 } 1780 1781 uint32_t 1782 key_newreqid(void) 1783 { 1784 static uint32_t auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1785 1786 if (auto_reqid == ~0) 1787 auto_reqid = IPSEC_MANUAL_REQID_MAX + 1; 1788 else 1789 auto_reqid++; 1790 1791 /* XXX should be unique check */ 1792 return (auto_reqid); 1793 } 1794 1795 /* 1796 * copy secpolicy struct to sadb_x_policy structure indicated. 1797 */ 1798 static struct mbuf * 1799 key_sp2mbuf(struct secpolicy *sp) 1800 { 1801 struct mbuf *m; 1802 size_t tlen; 1803 1804 tlen = key_getspreqmsglen(sp); 1805 m = m_get2(tlen, M_NOWAIT, MT_DATA, 0); 1806 if (m == NULL) 1807 return (NULL); 1808 m_align(m, tlen); 1809 m->m_len = tlen; 1810 if (key_sp2msg(sp, m->m_data, &tlen) != 0) { 1811 m_freem(m); 1812 return (NULL); 1813 } 1814 return (m); 1815 } 1816 1817 int 1818 key_sp2msg(struct secpolicy *sp, void *request, size_t *len) 1819 { 1820 struct sadb_x_ipsecrequest *xisr; 1821 struct sadb_x_policy *xpl; 1822 struct ipsecrequest *isr; 1823 size_t xlen, ilen; 1824 caddr_t p; 1825 int error, i; 1826 1827 IPSEC_ASSERT(sp != NULL, ("null policy")); 1828 1829 xlen = sizeof(*xpl); 1830 if (*len < xlen) 1831 return (EINVAL); 1832 1833 error = 0; 1834 bzero(request, *len); 1835 xpl = (struct sadb_x_policy *)request; 1836 xpl->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 1837 xpl->sadb_x_policy_type = sp->policy; 1838 xpl->sadb_x_policy_dir = sp->spidx.dir; 1839 xpl->sadb_x_policy_id = sp->id; 1840 xpl->sadb_x_policy_priority = sp->priority; 1841 switch (sp->state) { 1842 case IPSEC_SPSTATE_IFNET: 1843 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_IFNET; 1844 break; 1845 case IPSEC_SPSTATE_PCB: 1846 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_PCB; 1847 break; 1848 default: 1849 xpl->sadb_x_policy_scope = IPSEC_POLICYSCOPE_GLOBAL; 1850 } 1851 1852 /* if is the policy for ipsec ? */ 1853 if (sp->policy == IPSEC_POLICY_IPSEC) { 1854 p = (caddr_t)xpl + sizeof(*xpl); 1855 for (i = 0; i < sp->tcount; i++) { 1856 isr = sp->req[i]; 1857 ilen = PFKEY_ALIGN8(sizeof(*xisr) + 1858 isr->saidx.src.sa.sa_len + 1859 isr->saidx.dst.sa.sa_len); 1860 xlen += ilen; 1861 if (xlen > *len) { 1862 error = ENOBUFS; 1863 /* Calculate needed size */ 1864 continue; 1865 } 1866 xisr = (struct sadb_x_ipsecrequest *)p; 1867 xisr->sadb_x_ipsecrequest_len = ilen; 1868 xisr->sadb_x_ipsecrequest_proto = isr->saidx.proto; 1869 xisr->sadb_x_ipsecrequest_mode = isr->saidx.mode; 1870 xisr->sadb_x_ipsecrequest_level = isr->level; 1871 xisr->sadb_x_ipsecrequest_reqid = isr->saidx.reqid; 1872 1873 p += sizeof(*xisr); 1874 bcopy(&isr->saidx.src, p, isr->saidx.src.sa.sa_len); 1875 p += isr->saidx.src.sa.sa_len; 1876 bcopy(&isr->saidx.dst, p, isr->saidx.dst.sa.sa_len); 1877 p += isr->saidx.dst.sa.sa_len; 1878 } 1879 } 1880 xpl->sadb_x_policy_len = PFKEY_UNIT64(xlen); 1881 if (error == 0) 1882 *len = xlen; 1883 else 1884 *len = sizeof(*xpl); 1885 return (error); 1886 } 1887 1888 /* m will not be freed nor modified */ 1889 static struct mbuf * 1890 key_gather_mbuf(struct mbuf *m, const struct sadb_msghdr *mhp, 1891 int ndeep, int nitem, ...) 1892 { 1893 va_list ap; 1894 int idx; 1895 int i; 1896 struct mbuf *result = NULL, *n; 1897 int len; 1898 1899 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1900 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1901 1902 va_start(ap, nitem); 1903 for (i = 0; i < nitem; i++) { 1904 idx = va_arg(ap, int); 1905 if (idx < 0 || idx > SADB_EXT_MAX) 1906 goto fail; 1907 /* don't attempt to pull empty extension */ 1908 if (idx == SADB_EXT_RESERVED && mhp->msg == NULL) 1909 continue; 1910 if (idx != SADB_EXT_RESERVED && 1911 (mhp->ext[idx] == NULL || mhp->extlen[idx] == 0)) 1912 continue; 1913 1914 if (idx == SADB_EXT_RESERVED) { 1915 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 1916 1917 IPSEC_ASSERT(len <= MHLEN, ("header too big %u", len)); 1918 1919 MGETHDR(n, M_NOWAIT, MT_DATA); 1920 if (!n) 1921 goto fail; 1922 n->m_len = len; 1923 n->m_next = NULL; 1924 m_copydata(m, 0, sizeof(struct sadb_msg), 1925 mtod(n, caddr_t)); 1926 } else if (i < ndeep) { 1927 len = mhp->extlen[idx]; 1928 n = m_get2(len, M_NOWAIT, MT_DATA, 0); 1929 if (n == NULL) 1930 goto fail; 1931 m_align(n, len); 1932 n->m_len = len; 1933 m_copydata(m, mhp->extoff[idx], mhp->extlen[idx], 1934 mtod(n, caddr_t)); 1935 } else { 1936 n = m_copym(m, mhp->extoff[idx], mhp->extlen[idx], 1937 M_NOWAIT); 1938 } 1939 if (n == NULL) 1940 goto fail; 1941 1942 if (result) 1943 m_cat(result, n); 1944 else 1945 result = n; 1946 } 1947 va_end(ap); 1948 1949 if ((result->m_flags & M_PKTHDR) != 0) { 1950 result->m_pkthdr.len = 0; 1951 for (n = result; n; n = n->m_next) 1952 result->m_pkthdr.len += n->m_len; 1953 } 1954 1955 return result; 1956 1957 fail: 1958 m_freem(result); 1959 va_end(ap); 1960 return NULL; 1961 } 1962 1963 /* 1964 * SADB_X_SPDADD, SADB_X_SPDSETIDX or SADB_X_SPDUPDATE processing 1965 * add an entry to SP database, when received 1966 * <base, address(SD), (lifetime(H),) policy> 1967 * from the user(?). 1968 * Adding to SP database, 1969 * and send 1970 * <base, address(SD), (lifetime(H),) policy> 1971 * to the socket which was send. 1972 * 1973 * SPDADD set a unique policy entry. 1974 * SPDSETIDX like SPDADD without a part of policy requests. 1975 * SPDUPDATE replace a unique policy entry. 1976 * 1977 * XXXAE: serialize this in PF_KEY to avoid races. 1978 * m will always be freed. 1979 */ 1980 static int 1981 key_spdadd(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 1982 { 1983 struct secpolicyindex spidx; 1984 struct sadb_address *src0, *dst0; 1985 struct sadb_x_policy *xpl0, *xpl; 1986 struct sadb_lifetime *lft = NULL; 1987 struct secpolicy *newsp, *oldsp; 1988 int error; 1989 1990 IPSEC_ASSERT(so != NULL, ("null socket")); 1991 IPSEC_ASSERT(m != NULL, ("null mbuf")); 1992 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 1993 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 1994 1995 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 1996 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 1997 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 1998 ipseclog((LOG_DEBUG, 1999 "%s: invalid message: missing required header.\n", 2000 __func__)); 2001 return key_senderror(so, m, EINVAL); 2002 } 2003 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2004 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2005 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2006 ipseclog((LOG_DEBUG, 2007 "%s: invalid message: wrong header size.\n", __func__)); 2008 return key_senderror(so, m, EINVAL); 2009 } 2010 if (!SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD)) { 2011 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD)) { 2012 ipseclog((LOG_DEBUG, 2013 "%s: invalid message: wrong header size.\n", 2014 __func__)); 2015 return key_senderror(so, m, EINVAL); 2016 } 2017 lft = (struct sadb_lifetime *)mhp->ext[SADB_EXT_LIFETIME_HARD]; 2018 } 2019 2020 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2021 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2022 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2023 2024 /* check the direciton */ 2025 switch (xpl0->sadb_x_policy_dir) { 2026 case IPSEC_DIR_INBOUND: 2027 case IPSEC_DIR_OUTBOUND: 2028 break; 2029 default: 2030 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2031 return key_senderror(so, m, EINVAL); 2032 } 2033 /* key_spdadd() accepts DISCARD, NONE and IPSEC. */ 2034 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2035 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2036 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2037 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2038 return key_senderror(so, m, EINVAL); 2039 } 2040 2041 /* policy requests are mandatory when action is ipsec. */ 2042 if (xpl0->sadb_x_policy_type == IPSEC_POLICY_IPSEC && 2043 mhp->extlen[SADB_X_EXT_POLICY] <= sizeof(*xpl0)) { 2044 ipseclog((LOG_DEBUG, 2045 "%s: policy requests required.\n", __func__)); 2046 return key_senderror(so, m, EINVAL); 2047 } 2048 2049 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 2050 (struct sockaddr *)(dst0 + 1)); 2051 if (error != 0 || 2052 src0->sadb_address_proto != dst0->sadb_address_proto) { 2053 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2054 return key_senderror(so, m, error); 2055 } 2056 /* make secindex */ 2057 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2058 src0 + 1, 2059 dst0 + 1, 2060 src0->sadb_address_prefixlen, 2061 dst0->sadb_address_prefixlen, 2062 src0->sadb_address_proto, 2063 &spidx); 2064 /* Checking there is SP already or not. */ 2065 oldsp = key_getsp(&spidx); 2066 if (oldsp != NULL) { 2067 if (mhp->msg->sadb_msg_type == SADB_X_SPDUPDATE) { 2068 KEYDBG(KEY_STAMP, 2069 printf("%s: unlink SP(%p) for SPDUPDATE\n", 2070 __func__, oldsp)); 2071 KEYDBG(KEY_DATA, kdebug_secpolicy(oldsp)); 2072 } else { 2073 key_freesp(&oldsp); 2074 ipseclog((LOG_DEBUG, 2075 "%s: a SP entry exists already.\n", __func__)); 2076 return (key_senderror(so, m, EEXIST)); 2077 } 2078 } 2079 2080 /* allocate new SP entry */ 2081 if ((newsp = key_msg2sp(xpl0, PFKEY_EXTLEN(xpl0), &error)) == NULL) { 2082 if (oldsp != NULL) { 2083 key_unlink(oldsp); 2084 key_freesp(&oldsp); /* second for our reference */ 2085 } 2086 return key_senderror(so, m, error); 2087 } 2088 2089 newsp->lastused = newsp->created = time_second; 2090 newsp->lifetime = lft ? lft->sadb_lifetime_addtime : 0; 2091 newsp->validtime = lft ? lft->sadb_lifetime_usetime : 0; 2092 bcopy(&spidx, &newsp->spidx, sizeof(spidx)); 2093 2094 SPTREE_WLOCK(); 2095 if ((newsp->id = key_getnewspid()) == 0) { 2096 if (oldsp != NULL) 2097 key_detach(oldsp); 2098 SPTREE_WUNLOCK(); 2099 if (oldsp != NULL) { 2100 key_freesp(&oldsp); /* first for key_detach */ 2101 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2102 key_freesp(&oldsp); /* second for our reference */ 2103 if (SPDCACHE_ENABLED()) /* refresh cache because of key_detach */ 2104 spdcache_clear(); 2105 } 2106 key_freesp(&newsp); 2107 return key_senderror(so, m, ENOBUFS); 2108 } 2109 if (oldsp != NULL) 2110 key_detach(oldsp); 2111 key_insertsp(newsp); 2112 SPTREE_WUNLOCK(); 2113 if (oldsp != NULL) { 2114 key_freesp(&oldsp); /* first for key_detach */ 2115 IPSEC_ASSERT(oldsp != NULL, ("null oldsp: refcount bug")); 2116 key_freesp(&oldsp); /* second for our reference */ 2117 } 2118 if (SPDCACHE_ENABLED()) 2119 spdcache_clear(); 2120 KEYDBG(KEY_STAMP, 2121 printf("%s: SP(%p)\n", __func__, newsp)); 2122 KEYDBG(KEY_DATA, kdebug_secpolicy(newsp)); 2123 2124 { 2125 struct mbuf *n, *mpolicy; 2126 struct sadb_msg *newmsg; 2127 int off; 2128 2129 /* create new sadb_msg to reply. */ 2130 if (lft) { 2131 n = key_gather_mbuf(m, mhp, 2, 5, SADB_EXT_RESERVED, 2132 SADB_X_EXT_POLICY, SADB_EXT_LIFETIME_HARD, 2133 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2134 } else { 2135 n = key_gather_mbuf(m, mhp, 2, 4, SADB_EXT_RESERVED, 2136 SADB_X_EXT_POLICY, 2137 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2138 } 2139 if (!n) 2140 return key_senderror(so, m, ENOBUFS); 2141 2142 if (n->m_len < sizeof(*newmsg)) { 2143 n = m_pullup(n, sizeof(*newmsg)); 2144 if (!n) 2145 return key_senderror(so, m, ENOBUFS); 2146 } 2147 newmsg = mtod(n, struct sadb_msg *); 2148 newmsg->sadb_msg_errno = 0; 2149 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2150 2151 off = 0; 2152 mpolicy = m_pulldown(n, PFKEY_ALIGN8(sizeof(struct sadb_msg)), 2153 sizeof(*xpl), &off); 2154 if (mpolicy == NULL) { 2155 /* n is already freed */ 2156 return key_senderror(so, m, ENOBUFS); 2157 } 2158 xpl = (struct sadb_x_policy *)(mtod(mpolicy, caddr_t) + off); 2159 if (xpl->sadb_x_policy_exttype != SADB_X_EXT_POLICY) { 2160 m_freem(n); 2161 return key_senderror(so, m, EINVAL); 2162 } 2163 xpl->sadb_x_policy_id = newsp->id; 2164 2165 m_freem(m); 2166 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2167 } 2168 } 2169 2170 /* 2171 * get new policy id. 2172 * OUT: 2173 * 0: failure. 2174 * others: success. 2175 */ 2176 static uint32_t 2177 key_getnewspid(void) 2178 { 2179 struct secpolicy *sp; 2180 uint32_t newid = 0; 2181 int tries, limit; 2182 2183 SPTREE_WLOCK_ASSERT(); 2184 2185 limit = atomic_load_int(&V_key_spi_trycnt); 2186 for (tries = 0; tries < limit; tries++) { 2187 if (V_policy_id == ~0) /* overflowed */ 2188 newid = V_policy_id = 1; 2189 else 2190 newid = ++V_policy_id; 2191 LIST_FOREACH(sp, SPHASH_HASH(newid), idhash) { 2192 if (sp->id == newid) 2193 break; 2194 } 2195 if (sp == NULL) 2196 break; 2197 } 2198 if (tries == limit || newid == 0) { 2199 ipseclog((LOG_DEBUG, "%s: failed to allocate policy id.\n", 2200 __func__)); 2201 return (0); 2202 } 2203 return (newid); 2204 } 2205 2206 /* 2207 * SADB_SPDDELETE processing 2208 * receive 2209 * <base, address(SD), policy(*)> 2210 * from the user(?), and set SADB_SASTATE_DEAD, 2211 * and send, 2212 * <base, address(SD), policy(*)> 2213 * to the ikmpd. 2214 * policy(*) including direction of policy. 2215 * 2216 * m will always be freed. 2217 */ 2218 static int 2219 key_spddelete(struct socket *so, struct mbuf *m, 2220 const struct sadb_msghdr *mhp) 2221 { 2222 struct secpolicyindex spidx; 2223 struct sadb_address *src0, *dst0; 2224 struct sadb_x_policy *xpl0; 2225 struct secpolicy *sp; 2226 2227 IPSEC_ASSERT(so != NULL, ("null so")); 2228 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2229 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2230 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2231 2232 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 2233 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 2234 SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY)) { 2235 ipseclog((LOG_DEBUG, 2236 "%s: invalid message: missing required header.\n", 2237 __func__)); 2238 return key_senderror(so, m, EINVAL); 2239 } 2240 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 2241 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 2242 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2243 ipseclog((LOG_DEBUG, 2244 "%s: invalid message: wrong header size.\n", __func__)); 2245 return key_senderror(so, m, EINVAL); 2246 } 2247 2248 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 2249 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 2250 xpl0 = (struct sadb_x_policy *)mhp->ext[SADB_X_EXT_POLICY]; 2251 2252 /* check the direciton */ 2253 switch (xpl0->sadb_x_policy_dir) { 2254 case IPSEC_DIR_INBOUND: 2255 case IPSEC_DIR_OUTBOUND: 2256 break; 2257 default: 2258 ipseclog((LOG_DEBUG, "%s: invalid SP direction.\n", __func__)); 2259 return key_senderror(so, m, EINVAL); 2260 } 2261 /* Only DISCARD, NONE and IPSEC are allowed */ 2262 if (xpl0->sadb_x_policy_type != IPSEC_POLICY_DISCARD && 2263 xpl0->sadb_x_policy_type != IPSEC_POLICY_NONE && 2264 xpl0->sadb_x_policy_type != IPSEC_POLICY_IPSEC) { 2265 ipseclog((LOG_DEBUG, "%s: invalid policy type.\n", __func__)); 2266 return key_senderror(so, m, EINVAL); 2267 } 2268 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 2269 (struct sockaddr *)(dst0 + 1)) != 0 || 2270 src0->sadb_address_proto != dst0->sadb_address_proto) { 2271 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 2272 return key_senderror(so, m, EINVAL); 2273 } 2274 /* make secindex */ 2275 KEY_SETSECSPIDX(xpl0->sadb_x_policy_dir, 2276 src0 + 1, 2277 dst0 + 1, 2278 src0->sadb_address_prefixlen, 2279 dst0->sadb_address_prefixlen, 2280 src0->sadb_address_proto, 2281 &spidx); 2282 2283 /* Is there SP in SPD ? */ 2284 if ((sp = key_getsp(&spidx)) == NULL) { 2285 ipseclog((LOG_DEBUG, "%s: no SP found.\n", __func__)); 2286 return key_senderror(so, m, EINVAL); 2287 } 2288 2289 /* save policy id to buffer to be returned. */ 2290 xpl0->sadb_x_policy_id = sp->id; 2291 2292 KEYDBG(KEY_STAMP, 2293 printf("%s: SP(%p)\n", __func__, sp)); 2294 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2295 key_unlink(sp); 2296 key_freesp(&sp); 2297 2298 { 2299 struct mbuf *n; 2300 struct sadb_msg *newmsg; 2301 2302 /* create new sadb_msg to reply. */ 2303 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 2304 SADB_X_EXT_POLICY, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 2305 if (!n) 2306 return key_senderror(so, m, ENOBUFS); 2307 2308 newmsg = mtod(n, struct sadb_msg *); 2309 newmsg->sadb_msg_errno = 0; 2310 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2311 2312 m_freem(m); 2313 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2314 } 2315 } 2316 2317 /* 2318 * SADB_SPDDELETE2 processing 2319 * receive 2320 * <base, policy(*)> 2321 * from the user(?), and set SADB_SASTATE_DEAD, 2322 * and send, 2323 * <base, policy(*)> 2324 * to the ikmpd. 2325 * policy(*) including direction of policy. 2326 * 2327 * m will always be freed. 2328 */ 2329 static int 2330 key_spddelete2(struct socket *so, struct mbuf *m, 2331 const struct sadb_msghdr *mhp) 2332 { 2333 struct secpolicy *sp; 2334 uint32_t id; 2335 2336 IPSEC_ASSERT(so != NULL, ("null socket")); 2337 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2338 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2339 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2340 2341 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2342 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2343 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2344 __func__)); 2345 return key_senderror(so, m, EINVAL); 2346 } 2347 2348 id = ((struct sadb_x_policy *) 2349 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2350 2351 /* Is there SP in SPD ? */ 2352 if ((sp = key_getspbyid(id)) == NULL) { 2353 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2354 __func__, id)); 2355 return key_senderror(so, m, EINVAL); 2356 } 2357 2358 KEYDBG(KEY_STAMP, 2359 printf("%s: SP(%p)\n", __func__, sp)); 2360 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2361 key_unlink(sp); 2362 if (sp->state != IPSEC_SPSTATE_DEAD) { 2363 ipseclog((LOG_DEBUG, "%s: failed to delete SP with id %u.\n", 2364 __func__, id)); 2365 key_freesp(&sp); 2366 return (key_senderror(so, m, EACCES)); 2367 } 2368 key_freesp(&sp); 2369 2370 { 2371 struct mbuf *n, *nn; 2372 struct sadb_msg *newmsg; 2373 int off, len; 2374 2375 /* create new sadb_msg to reply. */ 2376 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2377 2378 n = key_mget(len); 2379 if (n == NULL) 2380 return key_senderror(so, m, ENOBUFS); 2381 2382 n->m_len = len; 2383 n->m_next = NULL; 2384 off = 0; 2385 2386 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 2387 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2388 2389 IPSEC_ASSERT(off == len, ("length inconsistency (off %u len %u)", 2390 off, len)); 2391 2392 n->m_next = m_copym(m, mhp->extoff[SADB_X_EXT_POLICY], 2393 mhp->extlen[SADB_X_EXT_POLICY], M_NOWAIT); 2394 if (!n->m_next) { 2395 m_freem(n); 2396 return key_senderror(so, m, ENOBUFS); 2397 } 2398 2399 n->m_pkthdr.len = 0; 2400 for (nn = n; nn; nn = nn->m_next) 2401 n->m_pkthdr.len += nn->m_len; 2402 2403 newmsg = mtod(n, struct sadb_msg *); 2404 newmsg->sadb_msg_errno = 0; 2405 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 2406 2407 m_freem(m); 2408 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 2409 } 2410 } 2411 2412 /* 2413 * SADB_X_SPDGET processing 2414 * receive 2415 * <base, policy(*)> 2416 * from the user(?), 2417 * and send, 2418 * <base, address(SD), policy> 2419 * to the ikmpd. 2420 * policy(*) including direction of policy. 2421 * 2422 * m will always be freed. 2423 */ 2424 static int 2425 key_spdget(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2426 { 2427 struct secpolicy *sp; 2428 struct mbuf *n; 2429 uint32_t id; 2430 2431 IPSEC_ASSERT(so != NULL, ("null socket")); 2432 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2433 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2434 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2435 2436 if (SADB_CHECKHDR(mhp, SADB_X_EXT_POLICY) || 2437 SADB_CHECKLEN(mhp, SADB_X_EXT_POLICY)) { 2438 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 2439 __func__)); 2440 return key_senderror(so, m, EINVAL); 2441 } 2442 2443 id = ((struct sadb_x_policy *) 2444 mhp->ext[SADB_X_EXT_POLICY])->sadb_x_policy_id; 2445 2446 /* Is there SP in SPD ? */ 2447 if ((sp = key_getspbyid(id)) == NULL) { 2448 ipseclog((LOG_DEBUG, "%s: no SP found for id %u.\n", 2449 __func__, id)); 2450 return key_senderror(so, m, ENOENT); 2451 } 2452 2453 n = key_setdumpsp(sp, SADB_X_SPDGET, mhp->msg->sadb_msg_seq, 2454 mhp->msg->sadb_msg_pid); 2455 key_freesp(&sp); 2456 if (n != NULL) { 2457 m_freem(m); 2458 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2459 } else 2460 return key_senderror(so, m, ENOBUFS); 2461 } 2462 2463 /* 2464 * SADB_X_SPDACQUIRE processing. 2465 * Acquire policy and SA(s) for a *OUTBOUND* packet. 2466 * send 2467 * <base, policy(*)> 2468 * to KMD, and expect to receive 2469 * <base> with SADB_X_SPDACQUIRE if error occurred, 2470 * or 2471 * <base, policy> 2472 * with SADB_X_SPDUPDATE from KMD by PF_KEY. 2473 * policy(*) is without policy requests. 2474 * 2475 * 0 : succeed 2476 * others: error number 2477 */ 2478 int 2479 key_spdacquire(struct secpolicy *sp) 2480 { 2481 struct mbuf *result = NULL, *m; 2482 struct secspacq *newspacq; 2483 2484 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2485 IPSEC_ASSERT(sp->req == NULL, ("policy exists")); 2486 IPSEC_ASSERT(sp->policy == IPSEC_POLICY_IPSEC, 2487 ("policy not IPSEC %u", sp->policy)); 2488 2489 /* Get an entry to check whether sent message or not. */ 2490 newspacq = key_getspacq(&sp->spidx); 2491 if (newspacq != NULL) { 2492 if (V_key_blockacq_count < newspacq->count) { 2493 /* reset counter and do send message. */ 2494 newspacq->count = 0; 2495 } else { 2496 /* increment counter and do nothing. */ 2497 newspacq->count++; 2498 SPACQ_UNLOCK(); 2499 return (0); 2500 } 2501 SPACQ_UNLOCK(); 2502 } else { 2503 /* make new entry for blocking to send SADB_ACQUIRE. */ 2504 newspacq = key_newspacq(&sp->spidx); 2505 if (newspacq == NULL) 2506 return ENOBUFS; 2507 } 2508 2509 /* create new sadb_msg to reply. */ 2510 m = key_setsadbmsg(SADB_X_SPDACQUIRE, 0, 0, 0, 0, 0); 2511 if (!m) 2512 return ENOBUFS; 2513 2514 result = m; 2515 2516 result->m_pkthdr.len = 0; 2517 for (m = result; m; m = m->m_next) 2518 result->m_pkthdr.len += m->m_len; 2519 2520 mtod(result, struct sadb_msg *)->sadb_msg_len = 2521 PFKEY_UNIT64(result->m_pkthdr.len); 2522 2523 return key_sendup_mbuf(NULL, m, KEY_SENDUP_REGISTERED); 2524 } 2525 2526 /* 2527 * SADB_SPDFLUSH processing 2528 * receive 2529 * <base> 2530 * from the user, and free all entries in secpctree. 2531 * and send, 2532 * <base> 2533 * to the user. 2534 * NOTE: what to do is only marking SADB_SASTATE_DEAD. 2535 * 2536 * m will always be freed. 2537 */ 2538 static int 2539 key_spdflush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2540 { 2541 struct secpolicy_queue drainq; 2542 struct sadb_msg *newmsg; 2543 struct secpolicy *sp, *nextsp; 2544 u_int dir; 2545 2546 IPSEC_ASSERT(so != NULL, ("null socket")); 2547 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2548 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2549 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2550 2551 if (m->m_len != PFKEY_ALIGN8(sizeof(struct sadb_msg))) 2552 return key_senderror(so, m, EINVAL); 2553 2554 TAILQ_INIT(&drainq); 2555 SPTREE_WLOCK(); 2556 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2557 TAILQ_CONCAT(&drainq, &V_sptree[dir], chain); 2558 } 2559 /* 2560 * We need to set state to DEAD for each policy to be sure, 2561 * that another thread won't try to unlink it. 2562 * Also remove SP from sphash. 2563 */ 2564 TAILQ_FOREACH(sp, &drainq, chain) { 2565 sp->state = IPSEC_SPSTATE_DEAD; 2566 LIST_REMOVE(sp, idhash); 2567 } 2568 V_sp_genid++; 2569 V_spd_size = 0; 2570 SPTREE_WUNLOCK(); 2571 if (SPDCACHE_ENABLED()) 2572 spdcache_clear(); 2573 sp = TAILQ_FIRST(&drainq); 2574 while (sp != NULL) { 2575 nextsp = TAILQ_NEXT(sp, chain); 2576 key_freesp(&sp); 2577 sp = nextsp; 2578 } 2579 2580 if (sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 2581 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 2582 return key_senderror(so, m, ENOBUFS); 2583 } 2584 2585 if (m->m_next) 2586 m_freem(m->m_next); 2587 m->m_next = NULL; 2588 m->m_pkthdr.len = m->m_len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 2589 newmsg = mtod(m, struct sadb_msg *); 2590 newmsg->sadb_msg_errno = 0; 2591 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 2592 2593 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 2594 } 2595 2596 static uint8_t 2597 key_satype2scopemask(uint8_t satype) 2598 { 2599 2600 if (satype == IPSEC_POLICYSCOPE_ANY) 2601 return (0xff); 2602 return (satype); 2603 } 2604 /* 2605 * SADB_SPDDUMP processing 2606 * receive 2607 * <base> 2608 * from the user, and dump all SP leaves and send, 2609 * <base> ..... 2610 * to the ikmpd. 2611 * 2612 * NOTE: 2613 * sadb_msg_satype is considered as mask of policy scopes. 2614 * m will always be freed. 2615 */ 2616 static int 2617 key_spddump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 2618 { 2619 SPTREE_RLOCK_TRACKER; 2620 struct secpolicy *sp; 2621 struct mbuf *n; 2622 int cnt; 2623 u_int dir, scope; 2624 2625 IPSEC_ASSERT(so != NULL, ("null socket")); 2626 IPSEC_ASSERT(m != NULL, ("null mbuf")); 2627 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2628 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2629 2630 /* search SPD entry and get buffer size. */ 2631 cnt = 0; 2632 scope = key_satype2scopemask(mhp->msg->sadb_msg_satype); 2633 SPTREE_RLOCK(); 2634 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2635 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2636 TAILQ_FOREACH(sp, &V_sptree[dir], chain) 2637 cnt++; 2638 } 2639 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2640 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) 2641 cnt++; 2642 } 2643 } 2644 2645 if (cnt == 0) { 2646 SPTREE_RUNLOCK(); 2647 return key_senderror(so, m, ENOENT); 2648 } 2649 2650 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 2651 if (scope & IPSEC_POLICYSCOPE_GLOBAL) { 2652 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 2653 --cnt; 2654 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2655 mhp->msg->sadb_msg_pid); 2656 2657 if (n != NULL) 2658 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2659 } 2660 } 2661 if (scope & IPSEC_POLICYSCOPE_IFNET) { 2662 TAILQ_FOREACH(sp, &V_sptree_ifnet[dir], chain) { 2663 --cnt; 2664 n = key_setdumpsp(sp, SADB_X_SPDDUMP, cnt, 2665 mhp->msg->sadb_msg_pid); 2666 2667 if (n != NULL) 2668 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 2669 } 2670 } 2671 } 2672 2673 SPTREE_RUNLOCK(); 2674 m_freem(m); 2675 return (0); 2676 } 2677 2678 static struct mbuf * 2679 key_setdumpsp(struct secpolicy *sp, u_int8_t type, u_int32_t seq, 2680 u_int32_t pid) 2681 { 2682 struct mbuf *result = NULL, *m; 2683 struct seclifetime lt; 2684 2685 m = key_setsadbmsg(type, 0, SADB_SATYPE_UNSPEC, seq, pid, sp->refcnt); 2686 if (!m) 2687 goto fail; 2688 result = m; 2689 2690 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2691 &sp->spidx.src.sa, sp->spidx.prefs, 2692 sp->spidx.ul_proto); 2693 if (!m) 2694 goto fail; 2695 m_cat(result, m); 2696 2697 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2698 &sp->spidx.dst.sa, sp->spidx.prefd, 2699 sp->spidx.ul_proto); 2700 if (!m) 2701 goto fail; 2702 m_cat(result, m); 2703 2704 m = key_sp2mbuf(sp); 2705 if (!m) 2706 goto fail; 2707 m_cat(result, m); 2708 2709 if(sp->lifetime){ 2710 lt.addtime=sp->created; 2711 lt.usetime= sp->lastused; 2712 m = key_setlifetime(<, SADB_EXT_LIFETIME_CURRENT); 2713 if (!m) 2714 goto fail; 2715 m_cat(result, m); 2716 2717 lt.addtime=sp->lifetime; 2718 lt.usetime= sp->validtime; 2719 m = key_setlifetime(<, SADB_EXT_LIFETIME_HARD); 2720 if (!m) 2721 goto fail; 2722 m_cat(result, m); 2723 } 2724 2725 if ((result->m_flags & M_PKTHDR) == 0) 2726 goto fail; 2727 2728 if (result->m_len < sizeof(struct sadb_msg)) { 2729 result = m_pullup(result, sizeof(struct sadb_msg)); 2730 if (result == NULL) 2731 goto fail; 2732 } 2733 2734 result->m_pkthdr.len = 0; 2735 for (m = result; m; m = m->m_next) 2736 result->m_pkthdr.len += m->m_len; 2737 2738 mtod(result, struct sadb_msg *)->sadb_msg_len = 2739 PFKEY_UNIT64(result->m_pkthdr.len); 2740 2741 return result; 2742 2743 fail: 2744 m_freem(result); 2745 return NULL; 2746 } 2747 /* 2748 * get PFKEY message length for security policy and request. 2749 */ 2750 static size_t 2751 key_getspreqmsglen(struct secpolicy *sp) 2752 { 2753 size_t tlen, len; 2754 int i; 2755 2756 tlen = sizeof(struct sadb_x_policy); 2757 /* if is the policy for ipsec ? */ 2758 if (sp->policy != IPSEC_POLICY_IPSEC) 2759 return (tlen); 2760 2761 /* get length of ipsec requests */ 2762 for (i = 0; i < sp->tcount; i++) { 2763 len = sizeof(struct sadb_x_ipsecrequest) 2764 + sp->req[i]->saidx.src.sa.sa_len 2765 + sp->req[i]->saidx.dst.sa.sa_len; 2766 2767 tlen += PFKEY_ALIGN8(len); 2768 } 2769 return (tlen); 2770 } 2771 2772 /* 2773 * SADB_SPDEXPIRE processing 2774 * send 2775 * <base, address(SD), lifetime(CH), policy> 2776 * to KMD by PF_KEY. 2777 * 2778 * OUT: 0 : succeed 2779 * others : error number 2780 */ 2781 static int 2782 key_spdexpire(struct secpolicy *sp) 2783 { 2784 struct sadb_lifetime *lt; 2785 struct mbuf *result = NULL, *m; 2786 int len, error = -1; 2787 2788 IPSEC_ASSERT(sp != NULL, ("null secpolicy")); 2789 2790 KEYDBG(KEY_STAMP, 2791 printf("%s: SP(%p)\n", __func__, sp)); 2792 KEYDBG(KEY_DATA, kdebug_secpolicy(sp)); 2793 2794 /* set msg header */ 2795 m = key_setsadbmsg(SADB_X_SPDEXPIRE, 0, 0, 0, 0, 0); 2796 if (!m) { 2797 error = ENOBUFS; 2798 goto fail; 2799 } 2800 result = m; 2801 2802 /* create lifetime extension (current and hard) */ 2803 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 2804 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 2805 if (m == NULL) { 2806 error = ENOBUFS; 2807 goto fail; 2808 } 2809 m_align(m, len); 2810 m->m_len = len; 2811 bzero(mtod(m, caddr_t), len); 2812 lt = mtod(m, struct sadb_lifetime *); 2813 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2814 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 2815 lt->sadb_lifetime_allocations = 0; 2816 lt->sadb_lifetime_bytes = 0; 2817 lt->sadb_lifetime_addtime = sp->created; 2818 lt->sadb_lifetime_usetime = sp->lastused; 2819 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 2820 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 2821 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 2822 lt->sadb_lifetime_allocations = 0; 2823 lt->sadb_lifetime_bytes = 0; 2824 lt->sadb_lifetime_addtime = sp->lifetime; 2825 lt->sadb_lifetime_usetime = sp->validtime; 2826 m_cat(result, m); 2827 2828 /* set sadb_address for source */ 2829 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 2830 &sp->spidx.src.sa, 2831 sp->spidx.prefs, sp->spidx.ul_proto); 2832 if (!m) { 2833 error = ENOBUFS; 2834 goto fail; 2835 } 2836 m_cat(result, m); 2837 2838 /* set sadb_address for destination */ 2839 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 2840 &sp->spidx.dst.sa, 2841 sp->spidx.prefd, sp->spidx.ul_proto); 2842 if (!m) { 2843 error = ENOBUFS; 2844 goto fail; 2845 } 2846 m_cat(result, m); 2847 2848 /* set secpolicy */ 2849 m = key_sp2mbuf(sp); 2850 if (!m) { 2851 error = ENOBUFS; 2852 goto fail; 2853 } 2854 m_cat(result, m); 2855 2856 if ((result->m_flags & M_PKTHDR) == 0) { 2857 error = EINVAL; 2858 goto fail; 2859 } 2860 2861 if (result->m_len < sizeof(struct sadb_msg)) { 2862 result = m_pullup(result, sizeof(struct sadb_msg)); 2863 if (result == NULL) { 2864 error = ENOBUFS; 2865 goto fail; 2866 } 2867 } 2868 2869 result->m_pkthdr.len = 0; 2870 for (m = result; m; m = m->m_next) 2871 result->m_pkthdr.len += m->m_len; 2872 2873 mtod(result, struct sadb_msg *)->sadb_msg_len = 2874 PFKEY_UNIT64(result->m_pkthdr.len); 2875 2876 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 2877 2878 fail: 2879 if (result) 2880 m_freem(result); 2881 return error; 2882 } 2883 2884 /* %%% SAD management */ 2885 /* 2886 * allocating and initialize new SA head. 2887 * OUT: NULL : failure due to the lack of memory. 2888 * others : pointer to new SA head. 2889 */ 2890 static struct secashead * 2891 key_newsah(struct secasindex *saidx) 2892 { 2893 struct secashead *sah; 2894 2895 sah = malloc(sizeof(struct secashead), M_IPSEC_SAH, 2896 M_NOWAIT | M_ZERO); 2897 if (sah == NULL) { 2898 PFKEYSTAT_INC(in_nomem); 2899 return (NULL); 2900 } 2901 TAILQ_INIT(&sah->savtree_larval); 2902 TAILQ_INIT(&sah->savtree_alive); 2903 sah->saidx = *saidx; 2904 sah->state = SADB_SASTATE_DEAD; 2905 SAH_INITREF(sah); 2906 2907 KEYDBG(KEY_STAMP, 2908 printf("%s: SAH(%p)\n", __func__, sah)); 2909 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2910 return (sah); 2911 } 2912 2913 static void 2914 key_freesah(struct secashead **psah) 2915 { 2916 struct secashead *sah = *psah; 2917 2918 CURVNET_ASSERT_SET(); 2919 2920 if (SAH_DELREF(sah) == 0) 2921 return; 2922 2923 KEYDBG(KEY_STAMP, 2924 printf("%s: last reference to SAH(%p)\n", __func__, sah)); 2925 KEYDBG(KEY_DATA, kdebug_secash(sah, NULL)); 2926 2927 *psah = NULL; 2928 key_delsah(sah); 2929 } 2930 2931 static void 2932 key_delsah(struct secashead *sah) 2933 { 2934 IPSEC_ASSERT(sah != NULL, ("NULL sah")); 2935 IPSEC_ASSERT(sah->state == SADB_SASTATE_DEAD, 2936 ("Attempt to free non DEAD SAH %p", sah)); 2937 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_larval), 2938 ("Attempt to free SAH %p with LARVAL SA", sah)); 2939 IPSEC_ASSERT(TAILQ_EMPTY(&sah->savtree_alive), 2940 ("Attempt to free SAH %p with ALIVE SA", sah)); 2941 2942 free(sah, M_IPSEC_SAH); 2943 } 2944 2945 /* 2946 * allocating a new SA for key_add() and key_getspi() call, 2947 * and copy the values of mhp into new buffer. 2948 * When SAD message type is SADB_GETSPI set SA state to LARVAL. 2949 * For SADB_ADD create and initialize SA with MATURE state. 2950 * OUT: NULL : fail 2951 * others : pointer to new secasvar. 2952 */ 2953 static struct secasvar * 2954 key_newsav(const struct sadb_msghdr *mhp, struct secasindex *saidx, 2955 uint32_t spi, int *errp) 2956 { 2957 struct secashead *sah; 2958 struct secasvar *sav; 2959 int isnew; 2960 2961 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 2962 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 2963 IPSEC_ASSERT(mhp->msg->sadb_msg_type == SADB_GETSPI || 2964 mhp->msg->sadb_msg_type == SADB_ADD, ("wrong message type")); 2965 2966 sav = NULL; 2967 sah = NULL; 2968 /* check SPI value */ 2969 switch (saidx->proto) { 2970 case IPPROTO_ESP: 2971 case IPPROTO_AH: 2972 /* 2973 * RFC 4302, 2.4. Security Parameters Index (SPI), SPI values 2974 * 1-255 reserved by IANA for future use, 2975 * 0 for implementation specific, local use. 2976 */ 2977 if (ntohl(spi) <= 255) { 2978 ipseclog((LOG_DEBUG, "%s: illegal range of SPI %u.\n", 2979 __func__, ntohl(spi))); 2980 *errp = EINVAL; 2981 goto done; 2982 } 2983 break; 2984 } 2985 2986 sav = malloc(sizeof(struct secasvar), M_IPSEC_SA, M_NOWAIT | M_ZERO); 2987 if (sav == NULL) { 2988 *errp = ENOBUFS; 2989 goto done; 2990 } 2991 sav->lock = malloc_aligned(max(sizeof(struct rmlock), 2992 CACHE_LINE_SIZE), CACHE_LINE_SIZE, M_IPSEC_MISC, 2993 M_NOWAIT | M_ZERO); 2994 if (sav->lock == NULL) { 2995 *errp = ENOBUFS; 2996 goto done; 2997 } 2998 rm_init(sav->lock, "ipsec association"); 2999 sav->lft_c = uma_zalloc_pcpu(ipsec_key_lft_zone, M_NOWAIT | M_ZERO); 3000 if (sav->lft_c == NULL) { 3001 *errp = ENOBUFS; 3002 goto done; 3003 } 3004 3005 sav->spi = spi; 3006 sav->seq = mhp->msg->sadb_msg_seq; 3007 sav->state = SADB_SASTATE_LARVAL; 3008 sav->pid = (pid_t)mhp->msg->sadb_msg_pid; 3009 SAV_INITREF(sav); 3010 again: 3011 sah = key_getsah(saidx); 3012 if (sah == NULL) { 3013 /* create a new SA index */ 3014 sah = key_newsah(saidx); 3015 if (sah == NULL) { 3016 ipseclog((LOG_DEBUG, 3017 "%s: No more memory.\n", __func__)); 3018 *errp = ENOBUFS; 3019 goto done; 3020 } 3021 isnew = 1; 3022 } else 3023 isnew = 0; 3024 3025 sav->sah = sah; 3026 if (mhp->msg->sadb_msg_type == SADB_GETSPI) { 3027 sav->created = time_second; 3028 } else if (sav->state == SADB_SASTATE_LARVAL) { 3029 /* 3030 * Do not call key_setsaval() second time in case 3031 * of `goto again`. We will have MATURE state. 3032 */ 3033 *errp = key_setsaval(sav, mhp); 3034 if (*errp != 0) 3035 goto done; 3036 sav->state = SADB_SASTATE_MATURE; 3037 } 3038 3039 SAHTREE_WLOCK(); 3040 /* 3041 * Check that existing SAH wasn't unlinked. 3042 * Since we didn't hold the SAHTREE lock, it is possible, 3043 * that callout handler or key_flush() or key_delete() could 3044 * unlink this SAH. 3045 */ 3046 if (isnew == 0 && sah->state == SADB_SASTATE_DEAD) { 3047 SAHTREE_WUNLOCK(); 3048 key_freesah(&sah); /* reference from key_getsah() */ 3049 goto again; 3050 } 3051 if (isnew != 0) { 3052 /* 3053 * Add new SAH into SADB. 3054 * 3055 * XXXAE: we can serialize key_add and key_getspi calls, so 3056 * several threads will not fight in the race. 3057 * Otherwise we should check under SAHTREE lock, that this 3058 * SAH would not added twice. 3059 */ 3060 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 3061 /* Add new SAH into hash by addresses */ 3062 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 3063 /* Now we are linked in the chain */ 3064 sah->state = SADB_SASTATE_MATURE; 3065 /* 3066 * SAV references this new SAH. 3067 * In case of existing SAH we reuse reference 3068 * from key_getsah(). 3069 */ 3070 SAH_ADDREF(sah); 3071 } 3072 /* Link SAV with SAH */ 3073 if (sav->state == SADB_SASTATE_MATURE) 3074 TAILQ_INSERT_HEAD(&sah->savtree_alive, sav, chain); 3075 else 3076 TAILQ_INSERT_HEAD(&sah->savtree_larval, sav, chain); 3077 /* Add SAV into SPI hash */ 3078 LIST_INSERT_HEAD(SAVHASH_HASH(sav->spi), sav, spihash); 3079 SAHTREE_WUNLOCK(); 3080 *errp = 0; /* success */ 3081 done: 3082 if (*errp != 0) { 3083 if (sav != NULL) { 3084 if (sav->lock != NULL) { 3085 rm_destroy(sav->lock); 3086 free(sav->lock, M_IPSEC_MISC); 3087 } 3088 if (sav->lft_c != NULL) 3089 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3090 free(sav, M_IPSEC_SA), sav = NULL; 3091 } 3092 if (sah != NULL) 3093 key_freesah(&sah); 3094 if (*errp == ENOBUFS) { 3095 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3096 __func__)); 3097 PFKEYSTAT_INC(in_nomem); 3098 } 3099 } 3100 return (sav); 3101 } 3102 3103 /* 3104 * free() SA variable entry. 3105 */ 3106 static void 3107 key_cleansav(struct secasvar *sav) 3108 { 3109 3110 if (sav->natt != NULL) { 3111 free(sav->natt, M_IPSEC_MISC); 3112 sav->natt = NULL; 3113 } 3114 if (sav->flags & SADB_X_EXT_F_CLONED) 3115 return; 3116 if (sav->tdb_xform != NULL) { 3117 sav->tdb_xform->xf_cleanup(sav); 3118 sav->tdb_xform = NULL; 3119 } 3120 if (sav->key_auth != NULL) { 3121 zfree(sav->key_auth->key_data, M_IPSEC_MISC); 3122 free(sav->key_auth, M_IPSEC_MISC); 3123 sav->key_auth = NULL; 3124 } 3125 if (sav->key_enc != NULL) { 3126 zfree(sav->key_enc->key_data, M_IPSEC_MISC); 3127 free(sav->key_enc, M_IPSEC_MISC); 3128 sav->key_enc = NULL; 3129 } 3130 if (sav->replay != NULL) { 3131 mtx_destroy(&sav->replay->lock); 3132 if (sav->replay->bitmap != NULL) 3133 free(sav->replay->bitmap, M_IPSEC_MISC); 3134 free(sav->replay, M_IPSEC_MISC); 3135 sav->replay = NULL; 3136 } 3137 if (sav->lft_h != NULL) { 3138 free(sav->lft_h, M_IPSEC_MISC); 3139 sav->lft_h = NULL; 3140 } 3141 if (sav->lft_s != NULL) { 3142 free(sav->lft_s, M_IPSEC_MISC); 3143 sav->lft_s = NULL; 3144 } 3145 } 3146 3147 /* 3148 * free() SA variable entry. 3149 */ 3150 static void 3151 key_delsav(struct secasvar *sav) 3152 { 3153 IPSEC_ASSERT(sav != NULL, ("null sav")); 3154 IPSEC_ASSERT(sav->state == SADB_SASTATE_DEAD, 3155 ("attempt to free non DEAD SA %p", sav)); 3156 IPSEC_ASSERT(sav->refcnt == 0, ("reference count %u > 0", 3157 sav->refcnt)); 3158 3159 /* 3160 * SA must be unlinked from the chain and hashtbl. 3161 * If SA was cloned, we leave all fields untouched, 3162 * except NAT-T config. 3163 */ 3164 key_cleansav(sav); 3165 if ((sav->flags & SADB_X_EXT_F_CLONED) == 0) { 3166 rm_destroy(sav->lock); 3167 free(sav->lock, M_IPSEC_MISC); 3168 uma_zfree_pcpu(ipsec_key_lft_zone, sav->lft_c); 3169 } 3170 free(sav, M_IPSEC_SA); 3171 } 3172 3173 /* 3174 * search SAH. 3175 * OUT: 3176 * NULL : not found 3177 * others : found, referenced pointer to a SAH. 3178 */ 3179 static struct secashead * 3180 key_getsah(struct secasindex *saidx) 3181 { 3182 SAHTREE_RLOCK_TRACKER; 3183 struct secashead *sah; 3184 3185 SAHTREE_RLOCK(); 3186 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 3187 if (key_cmpsaidx(&sah->saidx, saidx, CMP_MODE_REQID) != 0) { 3188 SAH_ADDREF(sah); 3189 break; 3190 } 3191 } 3192 SAHTREE_RUNLOCK(); 3193 return (sah); 3194 } 3195 3196 /* 3197 * Check not to be duplicated SPI. 3198 * OUT: 3199 * 0 : not found 3200 * 1 : found SA with given SPI. 3201 */ 3202 static int 3203 key_checkspidup(uint32_t spi) 3204 { 3205 SAHTREE_RLOCK_TRACKER; 3206 struct secasvar *sav; 3207 3208 /* Assume SPI is in network byte order */ 3209 SAHTREE_RLOCK(); 3210 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3211 if (sav->spi == spi) 3212 break; 3213 } 3214 SAHTREE_RUNLOCK(); 3215 return (sav != NULL); 3216 } 3217 3218 /* 3219 * Search SA by SPI. 3220 * OUT: 3221 * NULL : not found 3222 * others : found, referenced pointer to a SA. 3223 */ 3224 static struct secasvar * 3225 key_getsavbyspi(uint32_t spi) 3226 { 3227 SAHTREE_RLOCK_TRACKER; 3228 struct secasvar *sav; 3229 3230 /* Assume SPI is in network byte order */ 3231 SAHTREE_RLOCK(); 3232 LIST_FOREACH(sav, SAVHASH_HASH(spi), spihash) { 3233 if (sav->spi != spi) 3234 continue; 3235 SAV_ADDREF(sav); 3236 break; 3237 } 3238 SAHTREE_RUNLOCK(); 3239 return (sav); 3240 } 3241 3242 static int 3243 key_updatelifetimes(struct secasvar *sav, const struct sadb_msghdr *mhp) 3244 { 3245 struct seclifetime *lft_h, *lft_s, *tmp; 3246 3247 /* Lifetime extension is optional, check that it is present. */ 3248 if (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3249 SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) { 3250 /* 3251 * In case of SADB_UPDATE we may need to change 3252 * existing lifetimes. 3253 */ 3254 if (sav->state == SADB_SASTATE_MATURE) { 3255 lft_h = lft_s = NULL; 3256 goto reset; 3257 } 3258 return (0); 3259 } 3260 /* Both HARD and SOFT extensions must present */ 3261 if ((SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 3262 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 3263 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 3264 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 3265 ipseclog((LOG_DEBUG, 3266 "%s: invalid message: missing required header.\n", 3267 __func__)); 3268 return (EINVAL); 3269 } 3270 if (SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_HARD) || 3271 SADB_CHECKLEN(mhp, SADB_EXT_LIFETIME_SOFT)) { 3272 ipseclog((LOG_DEBUG, 3273 "%s: invalid message: wrong header size.\n", __func__)); 3274 return (EINVAL); 3275 } 3276 lft_h = key_dup_lifemsg((const struct sadb_lifetime *) 3277 mhp->ext[SADB_EXT_LIFETIME_HARD], M_IPSEC_MISC); 3278 if (lft_h == NULL) { 3279 PFKEYSTAT_INC(in_nomem); 3280 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3281 return (ENOBUFS); 3282 } 3283 lft_s = key_dup_lifemsg((const struct sadb_lifetime *) 3284 mhp->ext[SADB_EXT_LIFETIME_SOFT], M_IPSEC_MISC); 3285 if (lft_s == NULL) { 3286 PFKEYSTAT_INC(in_nomem); 3287 free(lft_h, M_IPSEC_MISC); 3288 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 3289 return (ENOBUFS); 3290 } 3291 reset: 3292 if (sav->state != SADB_SASTATE_LARVAL) { 3293 /* 3294 * key_update() holds reference to this SA, 3295 * so it won't be deleted in meanwhile. 3296 */ 3297 SECASVAR_WLOCK(sav); 3298 tmp = sav->lft_h; 3299 sav->lft_h = lft_h; 3300 lft_h = tmp; 3301 3302 tmp = sav->lft_s; 3303 sav->lft_s = lft_s; 3304 lft_s = tmp; 3305 SECASVAR_WUNLOCK(sav); 3306 if (lft_h != NULL) 3307 free(lft_h, M_IPSEC_MISC); 3308 if (lft_s != NULL) 3309 free(lft_s, M_IPSEC_MISC); 3310 return (0); 3311 } 3312 /* We can update lifetime without holding a lock */ 3313 IPSEC_ASSERT(sav->lft_h == NULL, ("lft_h is already initialized\n")); 3314 IPSEC_ASSERT(sav->lft_s == NULL, ("lft_s is already initialized\n")); 3315 sav->lft_h = lft_h; 3316 sav->lft_s = lft_s; 3317 return (0); 3318 } 3319 3320 /* 3321 * copy SA values from PF_KEY message except *SPI, SEQ, PID and TYPE*. 3322 * You must update these if need. Expects only LARVAL SAs. 3323 * OUT: 0: success. 3324 * !0: failure. 3325 */ 3326 static int 3327 key_setsaval(struct secasvar *sav, const struct sadb_msghdr *mhp) 3328 { 3329 const struct sadb_sa *sa0; 3330 const struct sadb_key *key0; 3331 uint32_t replay; 3332 size_t len; 3333 int error; 3334 3335 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 3336 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 3337 IPSEC_ASSERT(sav->state == SADB_SASTATE_LARVAL, 3338 ("Attempt to update non LARVAL SA")); 3339 3340 /* XXX rewrite */ 3341 error = key_setident(sav->sah, mhp); 3342 if (error != 0) 3343 goto fail; 3344 3345 /* SA */ 3346 if (!SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 3347 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 3348 error = EINVAL; 3349 goto fail; 3350 } 3351 sa0 = (const struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 3352 sav->alg_auth = sa0->sadb_sa_auth; 3353 sav->alg_enc = sa0->sadb_sa_encrypt; 3354 sav->flags = sa0->sadb_sa_flags; 3355 if ((sav->flags & SADB_KEY_FLAGS_MAX) != sav->flags) { 3356 ipseclog((LOG_DEBUG, 3357 "%s: invalid sa_flags 0x%08x.\n", __func__, 3358 sav->flags)); 3359 error = EINVAL; 3360 goto fail; 3361 } 3362 3363 /* Optional replay window */ 3364 replay = 0; 3365 if ((sa0->sadb_sa_flags & SADB_X_EXT_OLD) == 0) 3366 replay = sa0->sadb_sa_replay; 3367 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_SA_REPLAY)) { 3368 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA_REPLAY)) { 3369 error = EINVAL; 3370 goto fail; 3371 } 3372 replay = ((const struct sadb_x_sa_replay *) 3373 mhp->ext[SADB_X_EXT_SA_REPLAY])->sadb_x_sa_replay_replay; 3374 3375 if (replay > UINT32_MAX - 32) { 3376 ipseclog((LOG_DEBUG, 3377 "%s: replay window too big.\n", __func__)); 3378 error = EINVAL; 3379 goto fail; 3380 } 3381 3382 replay = (replay + 7) >> 3; 3383 } 3384 3385 sav->replay = malloc(sizeof(struct secreplay), M_IPSEC_MISC, 3386 M_NOWAIT | M_ZERO); 3387 if (sav->replay == NULL) { 3388 PFKEYSTAT_INC(in_nomem); 3389 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3390 __func__)); 3391 error = ENOBUFS; 3392 goto fail; 3393 } 3394 mtx_init(&sav->replay->lock, "ipsec replay", NULL, MTX_DEF); 3395 3396 if (replay != 0) { 3397 /* number of 32b blocks to be allocated */ 3398 uint32_t bitmap_size; 3399 3400 /* RFC 6479: 3401 * - the allocated replay window size must be 3402 * a power of two. 3403 * - use an extra 32b block as a redundant window. 3404 */ 3405 bitmap_size = 1; 3406 while (replay + 4 > bitmap_size) 3407 bitmap_size <<= 1; 3408 bitmap_size = bitmap_size / 4; 3409 3410 sav->replay->bitmap = malloc( 3411 bitmap_size * sizeof(uint32_t), M_IPSEC_MISC, 3412 M_NOWAIT | M_ZERO); 3413 if (sav->replay->bitmap == NULL) { 3414 PFKEYSTAT_INC(in_nomem); 3415 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3416 __func__)); 3417 error = ENOBUFS; 3418 goto fail; 3419 } 3420 sav->replay->bitmap_size = bitmap_size; 3421 sav->replay->wsize = replay; 3422 } 3423 } 3424 3425 /* Authentication keys */ 3426 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 3427 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH)) { 3428 error = EINVAL; 3429 goto fail; 3430 } 3431 error = 0; 3432 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_AUTH]; 3433 len = mhp->extlen[SADB_EXT_KEY_AUTH]; 3434 switch (mhp->msg->sadb_msg_satype) { 3435 case SADB_SATYPE_AH: 3436 case SADB_SATYPE_ESP: 3437 case SADB_X_SATYPE_TCPSIGNATURE: 3438 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3439 sav->alg_auth != SADB_X_AALG_NULL) 3440 error = EINVAL; 3441 break; 3442 case SADB_X_SATYPE_IPCOMP: 3443 default: 3444 error = EINVAL; 3445 break; 3446 } 3447 if (error) { 3448 ipseclog((LOG_DEBUG, "%s: invalid key_auth values.\n", 3449 __func__)); 3450 goto fail; 3451 } 3452 3453 sav->key_auth = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3454 if (sav->key_auth == NULL ) { 3455 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3456 __func__)); 3457 PFKEYSTAT_INC(in_nomem); 3458 error = ENOBUFS; 3459 goto fail; 3460 } 3461 } 3462 3463 /* Encryption key */ 3464 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) { 3465 if (SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT)) { 3466 error = EINVAL; 3467 goto fail; 3468 } 3469 error = 0; 3470 key0 = (const struct sadb_key *)mhp->ext[SADB_EXT_KEY_ENCRYPT]; 3471 len = mhp->extlen[SADB_EXT_KEY_ENCRYPT]; 3472 switch (mhp->msg->sadb_msg_satype) { 3473 case SADB_SATYPE_ESP: 3474 if (len == PFKEY_ALIGN8(sizeof(struct sadb_key)) && 3475 sav->alg_enc != SADB_EALG_NULL) { 3476 error = EINVAL; 3477 break; 3478 } 3479 sav->key_enc = key_dup_keymsg(key0, len, M_IPSEC_MISC); 3480 if (sav->key_enc == NULL) { 3481 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 3482 __func__)); 3483 PFKEYSTAT_INC(in_nomem); 3484 error = ENOBUFS; 3485 goto fail; 3486 } 3487 break; 3488 case SADB_X_SATYPE_IPCOMP: 3489 if (len != PFKEY_ALIGN8(sizeof(struct sadb_key))) 3490 error = EINVAL; 3491 sav->key_enc = NULL; /*just in case*/ 3492 break; 3493 case SADB_SATYPE_AH: 3494 case SADB_X_SATYPE_TCPSIGNATURE: 3495 default: 3496 error = EINVAL; 3497 break; 3498 } 3499 if (error) { 3500 ipseclog((LOG_DEBUG, "%s: invalid key_enc value.\n", 3501 __func__)); 3502 goto fail; 3503 } 3504 } 3505 3506 /* set iv */ 3507 sav->ivlen = 0; 3508 switch (mhp->msg->sadb_msg_satype) { 3509 case SADB_SATYPE_AH: 3510 if (sav->flags & SADB_X_EXT_DERIV) { 3511 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3512 "given to AH SA.\n", __func__)); 3513 error = EINVAL; 3514 goto fail; 3515 } 3516 if (sav->alg_enc != SADB_EALG_NONE) { 3517 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3518 "mismated.\n", __func__)); 3519 error = EINVAL; 3520 goto fail; 3521 } 3522 error = xform_init(sav, XF_AH); 3523 break; 3524 case SADB_SATYPE_ESP: 3525 if ((sav->flags & (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) == 3526 (SADB_X_EXT_OLD | SADB_X_EXT_DERIV)) { 3527 ipseclog((LOG_DEBUG, "%s: invalid flag (derived) " 3528 "given to old-esp.\n", __func__)); 3529 error = EINVAL; 3530 goto fail; 3531 } 3532 error = xform_init(sav, XF_ESP); 3533 break; 3534 case SADB_X_SATYPE_IPCOMP: 3535 if (sav->alg_auth != SADB_AALG_NONE) { 3536 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3537 "mismated.\n", __func__)); 3538 error = EINVAL; 3539 goto fail; 3540 } 3541 if ((sav->flags & SADB_X_EXT_RAWCPI) == 0 && 3542 ntohl(sav->spi) >= 0x10000) { 3543 ipseclog((LOG_DEBUG, "%s: invalid cpi for IPComp.\n", 3544 __func__)); 3545 error = EINVAL; 3546 goto fail; 3547 } 3548 error = xform_init(sav, XF_IPCOMP); 3549 break; 3550 case SADB_X_SATYPE_TCPSIGNATURE: 3551 if (sav->alg_enc != SADB_EALG_NONE) { 3552 ipseclog((LOG_DEBUG, "%s: protocol and algorithm " 3553 "mismated.\n", __func__)); 3554 error = EINVAL; 3555 goto fail; 3556 } 3557 error = xform_init(sav, XF_TCPSIGNATURE); 3558 break; 3559 default: 3560 ipseclog((LOG_DEBUG, "%s: Invalid satype.\n", __func__)); 3561 error = EPROTONOSUPPORT; 3562 goto fail; 3563 } 3564 if (error) { 3565 ipseclog((LOG_DEBUG, "%s: unable to initialize SA type %u.\n", 3566 __func__, mhp->msg->sadb_msg_satype)); 3567 goto fail; 3568 } 3569 3570 /* Handle NAT-T headers */ 3571 error = key_setnatt(sav, mhp); 3572 if (error != 0) 3573 goto fail; 3574 3575 /* Initialize lifetime for CURRENT */ 3576 sav->firstused = 0; 3577 sav->created = time_second; 3578 3579 /* lifetimes for HARD and SOFT */ 3580 error = key_updatelifetimes(sav, mhp); 3581 if (error == 0) 3582 return (0); 3583 fail: 3584 key_cleansav(sav); 3585 return (error); 3586 } 3587 3588 /* 3589 * subroutine for SADB_GET and SADB_DUMP. 3590 */ 3591 static struct mbuf * 3592 key_setdumpsa(struct secasvar *sav, uint8_t type, uint8_t satype, 3593 uint32_t seq, uint32_t pid) 3594 { 3595 struct seclifetime lft_c; 3596 struct mbuf *result = NULL, *tres = NULL, *m; 3597 int i, dumporder[] = { 3598 SADB_EXT_SA, SADB_X_EXT_SA2, SADB_X_EXT_SA_REPLAY, 3599 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 3600 SADB_EXT_LIFETIME_CURRENT, SADB_EXT_ADDRESS_SRC, 3601 SADB_EXT_ADDRESS_DST, SADB_EXT_ADDRESS_PROXY, 3602 SADB_EXT_KEY_AUTH, SADB_EXT_KEY_ENCRYPT, 3603 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 3604 SADB_EXT_SENSITIVITY, 3605 SADB_X_EXT_NAT_T_TYPE, 3606 SADB_X_EXT_NAT_T_SPORT, SADB_X_EXT_NAT_T_DPORT, 3607 SADB_X_EXT_NAT_T_OAI, SADB_X_EXT_NAT_T_OAR, 3608 SADB_X_EXT_NAT_T_FRAG, 3609 }; 3610 uint32_t replay_count; 3611 3612 SECASVAR_RLOCK_TRACKER; 3613 3614 m = key_setsadbmsg(type, 0, satype, seq, pid, sav->refcnt); 3615 if (m == NULL) 3616 goto fail; 3617 result = m; 3618 3619 for (i = nitems(dumporder) - 1; i >= 0; i--) { 3620 m = NULL; 3621 switch (dumporder[i]) { 3622 case SADB_EXT_SA: 3623 m = key_setsadbsa(sav); 3624 if (!m) 3625 goto fail; 3626 break; 3627 3628 case SADB_X_EXT_SA2: { 3629 SECASVAR_RLOCK(sav); 3630 replay_count = sav->replay ? sav->replay->count : 0; 3631 SECASVAR_RUNLOCK(sav); 3632 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 3633 sav->sah->saidx.reqid); 3634 if (!m) 3635 goto fail; 3636 break; 3637 } 3638 case SADB_X_EXT_SA_REPLAY: 3639 if (sav->replay == NULL || 3640 sav->replay->wsize <= UINT8_MAX) 3641 continue; 3642 3643 m = key_setsadbxsareplay(sav->replay->wsize); 3644 if (!m) 3645 goto fail; 3646 break; 3647 3648 case SADB_EXT_ADDRESS_SRC: 3649 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 3650 &sav->sah->saidx.src.sa, 3651 FULLMASK, IPSEC_ULPROTO_ANY); 3652 if (!m) 3653 goto fail; 3654 break; 3655 3656 case SADB_EXT_ADDRESS_DST: 3657 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 3658 &sav->sah->saidx.dst.sa, 3659 FULLMASK, IPSEC_ULPROTO_ANY); 3660 if (!m) 3661 goto fail; 3662 break; 3663 3664 case SADB_EXT_KEY_AUTH: 3665 if (!sav->key_auth) 3666 continue; 3667 m = key_setkey(sav->key_auth, SADB_EXT_KEY_AUTH); 3668 if (!m) 3669 goto fail; 3670 break; 3671 3672 case SADB_EXT_KEY_ENCRYPT: 3673 if (!sav->key_enc) 3674 continue; 3675 m = key_setkey(sav->key_enc, SADB_EXT_KEY_ENCRYPT); 3676 if (!m) 3677 goto fail; 3678 break; 3679 3680 case SADB_EXT_LIFETIME_CURRENT: 3681 lft_c.addtime = sav->created; 3682 lft_c.allocations = (uint32_t)counter_u64_fetch( 3683 sav->lft_c_allocations); 3684 lft_c.bytes = counter_u64_fetch(sav->lft_c_bytes); 3685 lft_c.usetime = sav->firstused; 3686 m = key_setlifetime(&lft_c, SADB_EXT_LIFETIME_CURRENT); 3687 if (!m) 3688 goto fail; 3689 break; 3690 3691 case SADB_EXT_LIFETIME_HARD: 3692 if (!sav->lft_h) 3693 continue; 3694 m = key_setlifetime(sav->lft_h, 3695 SADB_EXT_LIFETIME_HARD); 3696 if (!m) 3697 goto fail; 3698 break; 3699 3700 case SADB_EXT_LIFETIME_SOFT: 3701 if (!sav->lft_s) 3702 continue; 3703 m = key_setlifetime(sav->lft_s, 3704 SADB_EXT_LIFETIME_SOFT); 3705 3706 if (!m) 3707 goto fail; 3708 break; 3709 3710 case SADB_X_EXT_NAT_T_TYPE: 3711 if (sav->natt == NULL) 3712 continue; 3713 m = key_setsadbxtype(UDP_ENCAP_ESPINUDP); 3714 if (!m) 3715 goto fail; 3716 break; 3717 3718 case SADB_X_EXT_NAT_T_DPORT: 3719 if (sav->natt == NULL) 3720 continue; 3721 m = key_setsadbxport(sav->natt->dport, 3722 SADB_X_EXT_NAT_T_DPORT); 3723 if (!m) 3724 goto fail; 3725 break; 3726 3727 case SADB_X_EXT_NAT_T_SPORT: 3728 if (sav->natt == NULL) 3729 continue; 3730 m = key_setsadbxport(sav->natt->sport, 3731 SADB_X_EXT_NAT_T_SPORT); 3732 if (!m) 3733 goto fail; 3734 break; 3735 3736 case SADB_X_EXT_NAT_T_OAI: 3737 if (sav->natt == NULL || 3738 (sav->natt->flags & IPSEC_NATT_F_OAI) == 0) 3739 continue; 3740 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAI, 3741 &sav->natt->oai.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3742 if (!m) 3743 goto fail; 3744 break; 3745 case SADB_X_EXT_NAT_T_OAR: 3746 if (sav->natt == NULL || 3747 (sav->natt->flags & IPSEC_NATT_F_OAR) == 0) 3748 continue; 3749 m = key_setsadbaddr(SADB_X_EXT_NAT_T_OAR, 3750 &sav->natt->oar.sa, FULLMASK, IPSEC_ULPROTO_ANY); 3751 if (!m) 3752 goto fail; 3753 break; 3754 case SADB_X_EXT_NAT_T_FRAG: 3755 /* We do not (yet) support those. */ 3756 continue; 3757 3758 case SADB_EXT_ADDRESS_PROXY: 3759 case SADB_EXT_IDENTITY_SRC: 3760 case SADB_EXT_IDENTITY_DST: 3761 /* XXX: should we brought from SPD ? */ 3762 case SADB_EXT_SENSITIVITY: 3763 default: 3764 continue; 3765 } 3766 3767 if (!m) 3768 goto fail; 3769 if (tres) 3770 m_cat(m, tres); 3771 tres = m; 3772 } 3773 3774 m_cat(result, tres); 3775 tres = NULL; 3776 if (result->m_len < sizeof(struct sadb_msg)) { 3777 result = m_pullup(result, sizeof(struct sadb_msg)); 3778 if (result == NULL) 3779 goto fail; 3780 } 3781 3782 result->m_pkthdr.len = 0; 3783 for (m = result; m; m = m->m_next) 3784 result->m_pkthdr.len += m->m_len; 3785 3786 mtod(result, struct sadb_msg *)->sadb_msg_len = 3787 PFKEY_UNIT64(result->m_pkthdr.len); 3788 3789 return result; 3790 3791 fail: 3792 m_freem(result); 3793 m_freem(tres); 3794 return NULL; 3795 } 3796 3797 /* 3798 * set data into sadb_msg. 3799 */ 3800 static struct mbuf * 3801 key_setsadbmsg(u_int8_t type, u_int16_t tlen, u_int8_t satype, u_int32_t seq, 3802 pid_t pid, u_int16_t reserved) 3803 { 3804 struct mbuf *m; 3805 struct sadb_msg *p; 3806 int len; 3807 3808 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)); 3809 if (len > MCLBYTES) 3810 return NULL; 3811 m = key_mget(len); 3812 if (m == NULL) 3813 return NULL; 3814 m->m_pkthdr.len = m->m_len = len; 3815 m->m_next = NULL; 3816 3817 p = mtod(m, struct sadb_msg *); 3818 3819 bzero(p, len); 3820 p->sadb_msg_version = PF_KEY_V2; 3821 p->sadb_msg_type = type; 3822 p->sadb_msg_errno = 0; 3823 p->sadb_msg_satype = satype; 3824 p->sadb_msg_len = PFKEY_UNIT64(tlen); 3825 p->sadb_msg_reserved = reserved; 3826 p->sadb_msg_seq = seq; 3827 p->sadb_msg_pid = (u_int32_t)pid; 3828 3829 return m; 3830 } 3831 3832 /* 3833 * copy secasvar data into sadb_address. 3834 */ 3835 static struct mbuf * 3836 key_setsadbsa(struct secasvar *sav) 3837 { 3838 struct mbuf *m; 3839 struct sadb_sa *p; 3840 int len; 3841 3842 len = PFKEY_ALIGN8(sizeof(struct sadb_sa)); 3843 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3844 if (m == NULL) 3845 return (NULL); 3846 m_align(m, len); 3847 m->m_len = len; 3848 p = mtod(m, struct sadb_sa *); 3849 bzero(p, len); 3850 p->sadb_sa_len = PFKEY_UNIT64(len); 3851 p->sadb_sa_exttype = SADB_EXT_SA; 3852 p->sadb_sa_spi = sav->spi; 3853 p->sadb_sa_replay = sav->replay ? 3854 (sav->replay->wsize > UINT8_MAX ? UINT8_MAX : 3855 sav->replay->wsize): 0; 3856 p->sadb_sa_state = sav->state; 3857 p->sadb_sa_auth = sav->alg_auth; 3858 p->sadb_sa_encrypt = sav->alg_enc; 3859 p->sadb_sa_flags = sav->flags & SADB_KEY_FLAGS_MAX; 3860 return (m); 3861 } 3862 3863 /* 3864 * set data into sadb_address. 3865 */ 3866 static struct mbuf * 3867 key_setsadbaddr(u_int16_t exttype, const struct sockaddr *saddr, 3868 u_int8_t prefixlen, u_int16_t ul_proto) 3869 { 3870 struct mbuf *m; 3871 struct sadb_address *p; 3872 size_t len; 3873 3874 len = PFKEY_ALIGN8(sizeof(struct sadb_address)) + 3875 PFKEY_ALIGN8(saddr->sa_len); 3876 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3877 if (m == NULL) 3878 return (NULL); 3879 m_align(m, len); 3880 m->m_len = len; 3881 p = mtod(m, struct sadb_address *); 3882 3883 bzero(p, len); 3884 p->sadb_address_len = PFKEY_UNIT64(len); 3885 p->sadb_address_exttype = exttype; 3886 p->sadb_address_proto = ul_proto; 3887 if (prefixlen == FULLMASK) { 3888 switch (saddr->sa_family) { 3889 case AF_INET: 3890 prefixlen = sizeof(struct in_addr) << 3; 3891 break; 3892 case AF_INET6: 3893 prefixlen = sizeof(struct in6_addr) << 3; 3894 break; 3895 default: 3896 ; /*XXX*/ 3897 } 3898 } 3899 p->sadb_address_prefixlen = prefixlen; 3900 p->sadb_address_reserved = 0; 3901 3902 bcopy(saddr, 3903 mtod(m, caddr_t) + PFKEY_ALIGN8(sizeof(struct sadb_address)), 3904 saddr->sa_len); 3905 3906 return m; 3907 } 3908 3909 /* 3910 * set data into sadb_x_sa2. 3911 */ 3912 static struct mbuf * 3913 key_setsadbxsa2(u_int8_t mode, u_int32_t seq, u_int32_t reqid) 3914 { 3915 struct mbuf *m; 3916 struct sadb_x_sa2 *p; 3917 size_t len; 3918 3919 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa2)); 3920 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3921 if (m == NULL) 3922 return (NULL); 3923 m_align(m, len); 3924 m->m_len = len; 3925 p = mtod(m, struct sadb_x_sa2 *); 3926 3927 bzero(p, len); 3928 p->sadb_x_sa2_len = PFKEY_UNIT64(len); 3929 p->sadb_x_sa2_exttype = SADB_X_EXT_SA2; 3930 p->sadb_x_sa2_mode = mode; 3931 p->sadb_x_sa2_reserved1 = 0; 3932 p->sadb_x_sa2_reserved2 = 0; 3933 p->sadb_x_sa2_sequence = seq; 3934 p->sadb_x_sa2_reqid = reqid; 3935 3936 return m; 3937 } 3938 3939 /* 3940 * Set data into sadb_x_sa_replay. 3941 */ 3942 static struct mbuf * 3943 key_setsadbxsareplay(u_int32_t replay) 3944 { 3945 struct mbuf *m; 3946 struct sadb_x_sa_replay *p; 3947 size_t len; 3948 3949 len = PFKEY_ALIGN8(sizeof(struct sadb_x_sa_replay)); 3950 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3951 if (m == NULL) 3952 return (NULL); 3953 m_align(m, len); 3954 m->m_len = len; 3955 p = mtod(m, struct sadb_x_sa_replay *); 3956 3957 bzero(p, len); 3958 p->sadb_x_sa_replay_len = PFKEY_UNIT64(len); 3959 p->sadb_x_sa_replay_exttype = SADB_X_EXT_SA_REPLAY; 3960 p->sadb_x_sa_replay_replay = (replay << 3); 3961 3962 return m; 3963 } 3964 3965 /* 3966 * Set a type in sadb_x_nat_t_type. 3967 */ 3968 static struct mbuf * 3969 key_setsadbxtype(u_int16_t type) 3970 { 3971 struct mbuf *m; 3972 size_t len; 3973 struct sadb_x_nat_t_type *p; 3974 3975 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_type)); 3976 3977 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 3978 if (m == NULL) 3979 return (NULL); 3980 m_align(m, len); 3981 m->m_len = len; 3982 p = mtod(m, struct sadb_x_nat_t_type *); 3983 3984 bzero(p, len); 3985 p->sadb_x_nat_t_type_len = PFKEY_UNIT64(len); 3986 p->sadb_x_nat_t_type_exttype = SADB_X_EXT_NAT_T_TYPE; 3987 p->sadb_x_nat_t_type_type = type; 3988 3989 return (m); 3990 } 3991 /* 3992 * Set a port in sadb_x_nat_t_port. 3993 * In contrast to default RFC 2367 behaviour, port is in network byte order. 3994 */ 3995 static struct mbuf * 3996 key_setsadbxport(u_int16_t port, u_int16_t type) 3997 { 3998 struct mbuf *m; 3999 size_t len; 4000 struct sadb_x_nat_t_port *p; 4001 4002 len = PFKEY_ALIGN8(sizeof(struct sadb_x_nat_t_port)); 4003 4004 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4005 if (m == NULL) 4006 return (NULL); 4007 m_align(m, len); 4008 m->m_len = len; 4009 p = mtod(m, struct sadb_x_nat_t_port *); 4010 4011 bzero(p, len); 4012 p->sadb_x_nat_t_port_len = PFKEY_UNIT64(len); 4013 p->sadb_x_nat_t_port_exttype = type; 4014 p->sadb_x_nat_t_port_port = port; 4015 4016 return (m); 4017 } 4018 4019 /* 4020 * Get port from sockaddr. Port is in network byte order. 4021 */ 4022 uint16_t 4023 key_portfromsaddr(struct sockaddr *sa) 4024 { 4025 4026 switch (sa->sa_family) { 4027 #ifdef INET 4028 case AF_INET: 4029 return ((struct sockaddr_in *)sa)->sin_port; 4030 #endif 4031 #ifdef INET6 4032 case AF_INET6: 4033 return ((struct sockaddr_in6 *)sa)->sin6_port; 4034 #endif 4035 } 4036 return (0); 4037 } 4038 4039 /* 4040 * Set port in struct sockaddr. Port is in network byte order. 4041 */ 4042 void 4043 key_porttosaddr(struct sockaddr *sa, uint16_t port) 4044 { 4045 4046 switch (sa->sa_family) { 4047 #ifdef INET 4048 case AF_INET: 4049 ((struct sockaddr_in *)sa)->sin_port = port; 4050 break; 4051 #endif 4052 #ifdef INET6 4053 case AF_INET6: 4054 ((struct sockaddr_in6 *)sa)->sin6_port = port; 4055 break; 4056 #endif 4057 default: 4058 ipseclog((LOG_DEBUG, "%s: unexpected address family %d.\n", 4059 __func__, sa->sa_family)); 4060 break; 4061 } 4062 } 4063 4064 /* 4065 * set data into sadb_x_policy 4066 */ 4067 static struct mbuf * 4068 key_setsadbxpolicy(u_int16_t type, u_int8_t dir, u_int32_t id, u_int32_t priority) 4069 { 4070 struct mbuf *m; 4071 struct sadb_x_policy *p; 4072 size_t len; 4073 4074 len = PFKEY_ALIGN8(sizeof(struct sadb_x_policy)); 4075 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 4076 if (m == NULL) 4077 return (NULL); 4078 m_align(m, len); 4079 m->m_len = len; 4080 p = mtod(m, struct sadb_x_policy *); 4081 4082 bzero(p, len); 4083 p->sadb_x_policy_len = PFKEY_UNIT64(len); 4084 p->sadb_x_policy_exttype = SADB_X_EXT_POLICY; 4085 p->sadb_x_policy_type = type; 4086 p->sadb_x_policy_dir = dir; 4087 p->sadb_x_policy_id = id; 4088 p->sadb_x_policy_priority = priority; 4089 4090 return m; 4091 } 4092 4093 /* %%% utilities */ 4094 /* Take a key message (sadb_key) from the socket and turn it into one 4095 * of the kernel's key structures (seckey). 4096 * 4097 * IN: pointer to the src 4098 * OUT: NULL no more memory 4099 */ 4100 struct seckey * 4101 key_dup_keymsg(const struct sadb_key *src, size_t len, 4102 struct malloc_type *type) 4103 { 4104 struct seckey *dst; 4105 4106 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4107 if (dst != NULL) { 4108 dst->bits = src->sadb_key_bits; 4109 dst->key_data = malloc(len, type, M_NOWAIT); 4110 if (dst->key_data != NULL) { 4111 bcopy((const char *)(src + 1), dst->key_data, len); 4112 } else { 4113 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4114 __func__)); 4115 free(dst, type); 4116 dst = NULL; 4117 } 4118 } else { 4119 ipseclog((LOG_DEBUG, "%s: No more memory.\n", 4120 __func__)); 4121 } 4122 return (dst); 4123 } 4124 4125 /* Take a lifetime message (sadb_lifetime) passed in on a socket and 4126 * turn it into one of the kernel's lifetime structures (seclifetime). 4127 * 4128 * IN: pointer to the destination, source and malloc type 4129 * OUT: NULL, no more memory 4130 */ 4131 4132 static struct seclifetime * 4133 key_dup_lifemsg(const struct sadb_lifetime *src, struct malloc_type *type) 4134 { 4135 struct seclifetime *dst; 4136 4137 dst = malloc(sizeof(*dst), type, M_NOWAIT); 4138 if (dst == NULL) { 4139 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 4140 return (NULL); 4141 } 4142 dst->allocations = src->sadb_lifetime_allocations; 4143 dst->bytes = src->sadb_lifetime_bytes; 4144 dst->addtime = src->sadb_lifetime_addtime; 4145 dst->usetime = src->sadb_lifetime_usetime; 4146 return (dst); 4147 } 4148 4149 /* 4150 * compare two secasindex structure. 4151 * flag can specify to compare 2 saidxes. 4152 * compare two secasindex structure without both mode and reqid. 4153 * don't compare port. 4154 * IN: 4155 * saidx0: source, it can be in SAD. 4156 * saidx1: object. 4157 * OUT: 4158 * 1 : equal 4159 * 0 : not equal 4160 */ 4161 static int 4162 key_cmpsaidx(const struct secasindex *saidx0, const struct secasindex *saidx1, 4163 int flag) 4164 { 4165 4166 /* sanity */ 4167 if (saidx0 == NULL && saidx1 == NULL) 4168 return 1; 4169 4170 if (saidx0 == NULL || saidx1 == NULL) 4171 return 0; 4172 4173 if (saidx0->proto != saidx1->proto) 4174 return 0; 4175 4176 if (flag == CMP_EXACTLY) { 4177 if (saidx0->mode != saidx1->mode) 4178 return 0; 4179 if (saidx0->reqid != saidx1->reqid) 4180 return 0; 4181 if (bcmp(&saidx0->src, &saidx1->src, 4182 saidx0->src.sa.sa_len) != 0 || 4183 bcmp(&saidx0->dst, &saidx1->dst, 4184 saidx0->dst.sa.sa_len) != 0) 4185 return 0; 4186 } else { 4187 /* CMP_MODE_REQID, CMP_REQID, CMP_HEAD */ 4188 if (flag == CMP_MODE_REQID || flag == CMP_REQID) { 4189 /* 4190 * If reqid of SPD is non-zero, unique SA is required. 4191 * The result must be of same reqid in this case. 4192 */ 4193 if (saidx1->reqid != 0 && 4194 saidx0->reqid != saidx1->reqid) 4195 return 0; 4196 } 4197 4198 if (flag == CMP_MODE_REQID) { 4199 if (saidx0->mode != IPSEC_MODE_ANY 4200 && saidx0->mode != saidx1->mode) 4201 return 0; 4202 } 4203 4204 if (key_sockaddrcmp(&saidx0->src.sa, &saidx1->src.sa, 0) != 0) 4205 return 0; 4206 if (key_sockaddrcmp(&saidx0->dst.sa, &saidx1->dst.sa, 0) != 0) 4207 return 0; 4208 } 4209 4210 return 1; 4211 } 4212 4213 /* 4214 * compare two secindex structure exactly. 4215 * IN: 4216 * spidx0: source, it is often in SPD. 4217 * spidx1: object, it is often from PFKEY message. 4218 * OUT: 4219 * 1 : equal 4220 * 0 : not equal 4221 */ 4222 static int 4223 key_cmpspidx_exactly(struct secpolicyindex *spidx0, 4224 struct secpolicyindex *spidx1) 4225 { 4226 /* sanity */ 4227 if (spidx0 == NULL && spidx1 == NULL) 4228 return 1; 4229 4230 if (spidx0 == NULL || spidx1 == NULL) 4231 return 0; 4232 4233 if (spidx0->prefs != spidx1->prefs 4234 || spidx0->prefd != spidx1->prefd 4235 || spidx0->ul_proto != spidx1->ul_proto 4236 || spidx0->dir != spidx1->dir) 4237 return 0; 4238 4239 return key_sockaddrcmp(&spidx0->src.sa, &spidx1->src.sa, 1) == 0 && 4240 key_sockaddrcmp(&spidx0->dst.sa, &spidx1->dst.sa, 1) == 0; 4241 } 4242 4243 /* 4244 * compare two secindex structure with mask. 4245 * IN: 4246 * spidx0: source, it is often in SPD. 4247 * spidx1: object, it is often from IP header. 4248 * OUT: 4249 * 1 : equal 4250 * 0 : not equal 4251 */ 4252 static int 4253 key_cmpspidx_withmask(struct secpolicyindex *spidx0, 4254 struct secpolicyindex *spidx1) 4255 { 4256 /* sanity */ 4257 if (spidx0 == NULL && spidx1 == NULL) 4258 return 1; 4259 4260 if (spidx0 == NULL || spidx1 == NULL) 4261 return 0; 4262 4263 if (spidx0->src.sa.sa_family != spidx1->src.sa.sa_family || 4264 spidx0->dst.sa.sa_family != spidx1->dst.sa.sa_family || 4265 spidx0->src.sa.sa_len != spidx1->src.sa.sa_len || 4266 spidx0->dst.sa.sa_len != spidx1->dst.sa.sa_len) 4267 return 0; 4268 4269 /* if spidx.ul_proto == IPSEC_ULPROTO_ANY, ignore. */ 4270 if (spidx0->ul_proto != (u_int16_t)IPSEC_ULPROTO_ANY 4271 && spidx0->ul_proto != spidx1->ul_proto) 4272 return 0; 4273 4274 switch (spidx0->src.sa.sa_family) { 4275 case AF_INET: 4276 if (spidx0->src.sin.sin_port != IPSEC_PORT_ANY 4277 && spidx0->src.sin.sin_port != spidx1->src.sin.sin_port) 4278 return 0; 4279 if (!key_bbcmp(&spidx0->src.sin.sin_addr, 4280 &spidx1->src.sin.sin_addr, spidx0->prefs)) 4281 return 0; 4282 break; 4283 case AF_INET6: 4284 if (spidx0->src.sin6.sin6_port != IPSEC_PORT_ANY 4285 && spidx0->src.sin6.sin6_port != spidx1->src.sin6.sin6_port) 4286 return 0; 4287 /* 4288 * scope_id check. if sin6_scope_id is 0, we regard it 4289 * as a wildcard scope, which matches any scope zone ID. 4290 */ 4291 if (spidx0->src.sin6.sin6_scope_id && 4292 spidx1->src.sin6.sin6_scope_id && 4293 spidx0->src.sin6.sin6_scope_id != spidx1->src.sin6.sin6_scope_id) 4294 return 0; 4295 if (!key_bbcmp(&spidx0->src.sin6.sin6_addr, 4296 &spidx1->src.sin6.sin6_addr, spidx0->prefs)) 4297 return 0; 4298 break; 4299 default: 4300 /* XXX */ 4301 if (bcmp(&spidx0->src, &spidx1->src, spidx0->src.sa.sa_len) != 0) 4302 return 0; 4303 break; 4304 } 4305 4306 switch (spidx0->dst.sa.sa_family) { 4307 case AF_INET: 4308 if (spidx0->dst.sin.sin_port != IPSEC_PORT_ANY 4309 && spidx0->dst.sin.sin_port != spidx1->dst.sin.sin_port) 4310 return 0; 4311 if (!key_bbcmp(&spidx0->dst.sin.sin_addr, 4312 &spidx1->dst.sin.sin_addr, spidx0->prefd)) 4313 return 0; 4314 break; 4315 case AF_INET6: 4316 if (spidx0->dst.sin6.sin6_port != IPSEC_PORT_ANY 4317 && spidx0->dst.sin6.sin6_port != spidx1->dst.sin6.sin6_port) 4318 return 0; 4319 /* 4320 * scope_id check. if sin6_scope_id is 0, we regard it 4321 * as a wildcard scope, which matches any scope zone ID. 4322 */ 4323 if (spidx0->dst.sin6.sin6_scope_id && 4324 spidx1->dst.sin6.sin6_scope_id && 4325 spidx0->dst.sin6.sin6_scope_id != spidx1->dst.sin6.sin6_scope_id) 4326 return 0; 4327 if (!key_bbcmp(&spidx0->dst.sin6.sin6_addr, 4328 &spidx1->dst.sin6.sin6_addr, spidx0->prefd)) 4329 return 0; 4330 break; 4331 default: 4332 /* XXX */ 4333 if (bcmp(&spidx0->dst, &spidx1->dst, spidx0->dst.sa.sa_len) != 0) 4334 return 0; 4335 break; 4336 } 4337 4338 /* XXX Do we check other field ? e.g. flowinfo */ 4339 4340 return 1; 4341 } 4342 4343 #ifdef satosin 4344 #undef satosin 4345 #endif 4346 #define satosin(s) ((const struct sockaddr_in *)s) 4347 #ifdef satosin6 4348 #undef satosin6 4349 #endif 4350 #define satosin6(s) ((const struct sockaddr_in6 *)s) 4351 /* returns 0 on match */ 4352 int 4353 key_sockaddrcmp(const struct sockaddr *sa1, const struct sockaddr *sa2, 4354 int port) 4355 { 4356 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4357 return 1; 4358 4359 switch (sa1->sa_family) { 4360 #ifdef INET 4361 case AF_INET: 4362 if (sa1->sa_len != sizeof(struct sockaddr_in)) 4363 return 1; 4364 if (satosin(sa1)->sin_addr.s_addr != 4365 satosin(sa2)->sin_addr.s_addr) { 4366 return 1; 4367 } 4368 if (port && satosin(sa1)->sin_port != satosin(sa2)->sin_port) 4369 return 1; 4370 break; 4371 #endif 4372 #ifdef INET6 4373 case AF_INET6: 4374 if (sa1->sa_len != sizeof(struct sockaddr_in6)) 4375 return 1; /*EINVAL*/ 4376 if (satosin6(sa1)->sin6_scope_id != 4377 satosin6(sa2)->sin6_scope_id) { 4378 return 1; 4379 } 4380 if (!IN6_ARE_ADDR_EQUAL(&satosin6(sa1)->sin6_addr, 4381 &satosin6(sa2)->sin6_addr)) { 4382 return 1; 4383 } 4384 if (port && 4385 satosin6(sa1)->sin6_port != satosin6(sa2)->sin6_port) { 4386 return 1; 4387 } 4388 break; 4389 #endif 4390 default: 4391 if (bcmp(sa1, sa2, sa1->sa_len) != 0) 4392 return 1; 4393 break; 4394 } 4395 4396 return 0; 4397 } 4398 4399 /* returns 0 on match */ 4400 int 4401 key_sockaddrcmp_withmask(const struct sockaddr *sa1, 4402 const struct sockaddr *sa2, size_t mask) 4403 { 4404 if (sa1->sa_family != sa2->sa_family || sa1->sa_len != sa2->sa_len) 4405 return (1); 4406 4407 switch (sa1->sa_family) { 4408 #ifdef INET 4409 case AF_INET: 4410 return (!key_bbcmp(&satosin(sa1)->sin_addr, 4411 &satosin(sa2)->sin_addr, mask)); 4412 #endif 4413 #ifdef INET6 4414 case AF_INET6: 4415 if (satosin6(sa1)->sin6_scope_id != 4416 satosin6(sa2)->sin6_scope_id) 4417 return (1); 4418 return (!key_bbcmp(&satosin6(sa1)->sin6_addr, 4419 &satosin6(sa2)->sin6_addr, mask)); 4420 #endif 4421 } 4422 return (1); 4423 } 4424 #undef satosin 4425 #undef satosin6 4426 4427 /* 4428 * compare two buffers with mask. 4429 * IN: 4430 * addr1: source 4431 * addr2: object 4432 * bits: Number of bits to compare 4433 * OUT: 4434 * 1 : equal 4435 * 0 : not equal 4436 */ 4437 static int 4438 key_bbcmp(const void *a1, const void *a2, u_int bits) 4439 { 4440 const unsigned char *p1 = a1; 4441 const unsigned char *p2 = a2; 4442 4443 /* XXX: This could be considerably faster if we compare a word 4444 * at a time, but it is complicated on LSB Endian machines */ 4445 4446 /* Handle null pointers */ 4447 if (p1 == NULL || p2 == NULL) 4448 return (p1 == p2); 4449 4450 while (bits >= 8) { 4451 if (*p1++ != *p2++) 4452 return 0; 4453 bits -= 8; 4454 } 4455 4456 if (bits > 0) { 4457 u_int8_t mask = ~((1<<(8-bits))-1); 4458 if ((*p1 & mask) != (*p2 & mask)) 4459 return 0; 4460 } 4461 return 1; /* Match! */ 4462 } 4463 4464 static void 4465 key_flush_spd(time_t now) 4466 { 4467 SPTREE_RLOCK_TRACKER; 4468 struct secpolicy_list drainq; 4469 struct secpolicy *sp, *nextsp; 4470 u_int dir; 4471 4472 LIST_INIT(&drainq); 4473 SPTREE_RLOCK(); 4474 for (dir = 0; dir < IPSEC_DIR_MAX; dir++) { 4475 TAILQ_FOREACH(sp, &V_sptree[dir], chain) { 4476 if (sp->lifetime == 0 && sp->validtime == 0) 4477 continue; 4478 if ((sp->lifetime && 4479 now - sp->created > sp->lifetime) || 4480 (sp->validtime && 4481 now - sp->lastused > sp->validtime)) { 4482 /* Hold extra reference to send SPDEXPIRE */ 4483 SP_ADDREF(sp); 4484 LIST_INSERT_HEAD(&drainq, sp, drainq); 4485 } 4486 } 4487 } 4488 SPTREE_RUNLOCK(); 4489 if (LIST_EMPTY(&drainq)) 4490 return; 4491 4492 SPTREE_WLOCK(); 4493 sp = LIST_FIRST(&drainq); 4494 while (sp != NULL) { 4495 nextsp = LIST_NEXT(sp, drainq); 4496 /* Check that SP is still linked */ 4497 if (sp->state != IPSEC_SPSTATE_ALIVE) { 4498 LIST_REMOVE(sp, drainq); 4499 key_freesp(&sp); /* release extra reference */ 4500 sp = nextsp; 4501 continue; 4502 } 4503 TAILQ_REMOVE(&V_sptree[sp->spidx.dir], sp, chain); 4504 V_spd_size--; 4505 LIST_REMOVE(sp, idhash); 4506 sp->state = IPSEC_SPSTATE_DEAD; 4507 sp = nextsp; 4508 } 4509 V_sp_genid++; 4510 SPTREE_WUNLOCK(); 4511 if (SPDCACHE_ENABLED()) 4512 spdcache_clear(); 4513 4514 sp = LIST_FIRST(&drainq); 4515 while (sp != NULL) { 4516 nextsp = LIST_NEXT(sp, drainq); 4517 key_spdexpire(sp); 4518 key_freesp(&sp); /* release extra reference */ 4519 key_freesp(&sp); /* release last reference */ 4520 sp = nextsp; 4521 } 4522 } 4523 4524 static void 4525 key_flush_sad(time_t now) 4526 { 4527 SAHTREE_RLOCK_TRACKER; 4528 struct secashead_list emptyq; 4529 struct secasvar_list drainq, hexpireq, sexpireq, freeq; 4530 struct secashead *sah, *nextsah; 4531 struct secasvar *sav, *nextsav; 4532 4533 SECASVAR_RLOCK_TRACKER; 4534 4535 LIST_INIT(&drainq); 4536 LIST_INIT(&hexpireq); 4537 LIST_INIT(&sexpireq); 4538 LIST_INIT(&emptyq); 4539 4540 SAHTREE_RLOCK(); 4541 TAILQ_FOREACH(sah, &V_sahtree, chain) { 4542 /* Check for empty SAH */ 4543 if (TAILQ_EMPTY(&sah->savtree_larval) && 4544 TAILQ_EMPTY(&sah->savtree_alive)) { 4545 SAH_ADDREF(sah); 4546 LIST_INSERT_HEAD(&emptyq, sah, drainq); 4547 continue; 4548 } 4549 /* Add all stale LARVAL SAs into drainq */ 4550 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 4551 if (now - sav->created < V_key_larval_lifetime) 4552 continue; 4553 SAV_ADDREF(sav); 4554 LIST_INSERT_HEAD(&drainq, sav, drainq); 4555 } 4556 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 4557 /* lifetimes aren't specified */ 4558 if (sav->lft_h == NULL) 4559 continue; 4560 SECASVAR_RLOCK(sav); 4561 /* 4562 * Check again with lock held, because it may 4563 * be updated by SADB_UPDATE. 4564 */ 4565 if (sav->lft_h == NULL) { 4566 SECASVAR_RUNLOCK(sav); 4567 continue; 4568 } 4569 /* 4570 * RFC 2367: 4571 * HARD lifetimes MUST take precedence over SOFT 4572 * lifetimes, meaning if the HARD and SOFT lifetimes 4573 * are the same, the HARD lifetime will appear on the 4574 * EXPIRE message. 4575 */ 4576 /* check HARD lifetime */ 4577 if ((sav->lft_h->addtime != 0 && 4578 now - sav->created > sav->lft_h->addtime) || 4579 (sav->lft_h->usetime != 0 && sav->firstused && 4580 now - sav->firstused > sav->lft_h->usetime) || 4581 (sav->lft_h->bytes != 0 && counter_u64_fetch( 4582 sav->lft_c_bytes) > sav->lft_h->bytes)) { 4583 SECASVAR_RUNLOCK(sav); 4584 SAV_ADDREF(sav); 4585 LIST_INSERT_HEAD(&hexpireq, sav, drainq); 4586 continue; 4587 } 4588 /* check SOFT lifetime (only for MATURE SAs) */ 4589 if (sav->state == SADB_SASTATE_MATURE && ( 4590 (sav->lft_s->addtime != 0 && 4591 now - sav->created > sav->lft_s->addtime) || 4592 (sav->lft_s->usetime != 0 && sav->firstused && 4593 now - sav->firstused > sav->lft_s->usetime) || 4594 (sav->lft_s->bytes != 0 && counter_u64_fetch( 4595 sav->lft_c_bytes) > sav->lft_s->bytes) || 4596 (!(sav->flags & SADB_X_SAFLAGS_ESN) && 4597 (sav->replay != NULL) && ( 4598 (sav->replay->count > UINT32_80PCT) || 4599 (sav->replay->last > UINT32_80PCT))))) { 4600 SECASVAR_RUNLOCK(sav); 4601 SAV_ADDREF(sav); 4602 LIST_INSERT_HEAD(&sexpireq, sav, drainq); 4603 continue; 4604 } 4605 SECASVAR_RUNLOCK(sav); 4606 } 4607 } 4608 SAHTREE_RUNLOCK(); 4609 4610 if (LIST_EMPTY(&emptyq) && LIST_EMPTY(&drainq) && 4611 LIST_EMPTY(&hexpireq) && LIST_EMPTY(&sexpireq)) 4612 return; 4613 4614 LIST_INIT(&freeq); 4615 SAHTREE_WLOCK(); 4616 /* Unlink stale LARVAL SAs */ 4617 sav = LIST_FIRST(&drainq); 4618 while (sav != NULL) { 4619 nextsav = LIST_NEXT(sav, drainq); 4620 /* Check that SA is still LARVAL */ 4621 if (sav->state != SADB_SASTATE_LARVAL) { 4622 LIST_REMOVE(sav, drainq); 4623 LIST_INSERT_HEAD(&freeq, sav, drainq); 4624 sav = nextsav; 4625 continue; 4626 } 4627 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 4628 LIST_REMOVE(sav, spihash); 4629 sav->state = SADB_SASTATE_DEAD; 4630 sav = nextsav; 4631 } 4632 /* Unlink all SAs with expired HARD lifetime */ 4633 sav = LIST_FIRST(&hexpireq); 4634 while (sav != NULL) { 4635 nextsav = LIST_NEXT(sav, drainq); 4636 /* Check that SA is not unlinked */ 4637 if (sav->state == SADB_SASTATE_DEAD) { 4638 LIST_REMOVE(sav, drainq); 4639 LIST_INSERT_HEAD(&freeq, sav, drainq); 4640 sav = nextsav; 4641 continue; 4642 } 4643 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 4644 LIST_REMOVE(sav, spihash); 4645 sav->state = SADB_SASTATE_DEAD; 4646 sav = nextsav; 4647 } 4648 /* Mark all SAs with expired SOFT lifetime as DYING */ 4649 sav = LIST_FIRST(&sexpireq); 4650 while (sav != NULL) { 4651 nextsav = LIST_NEXT(sav, drainq); 4652 /* Check that SA is not unlinked */ 4653 if (sav->state == SADB_SASTATE_DEAD) { 4654 LIST_REMOVE(sav, drainq); 4655 LIST_INSERT_HEAD(&freeq, sav, drainq); 4656 sav = nextsav; 4657 continue; 4658 } 4659 /* 4660 * NOTE: this doesn't change SA order in the chain. 4661 */ 4662 sav->state = SADB_SASTATE_DYING; 4663 sav = nextsav; 4664 } 4665 /* Unlink empty SAHs */ 4666 sah = LIST_FIRST(&emptyq); 4667 while (sah != NULL) { 4668 nextsah = LIST_NEXT(sah, drainq); 4669 /* Check that SAH is still empty and not unlinked */ 4670 if (sah->state == SADB_SASTATE_DEAD || 4671 !TAILQ_EMPTY(&sah->savtree_larval) || 4672 !TAILQ_EMPTY(&sah->savtree_alive)) { 4673 LIST_REMOVE(sah, drainq); 4674 key_freesah(&sah); /* release extra reference */ 4675 sah = nextsah; 4676 continue; 4677 } 4678 TAILQ_REMOVE(&V_sahtree, sah, chain); 4679 LIST_REMOVE(sah, addrhash); 4680 sah->state = SADB_SASTATE_DEAD; 4681 sah = nextsah; 4682 } 4683 SAHTREE_WUNLOCK(); 4684 4685 /* Send SPDEXPIRE messages */ 4686 sav = LIST_FIRST(&hexpireq); 4687 while (sav != NULL) { 4688 nextsav = LIST_NEXT(sav, drainq); 4689 key_expire(sav, 1); 4690 key_freesah(&sav->sah); /* release reference from SAV */ 4691 key_freesav(&sav); /* release extra reference */ 4692 key_freesav(&sav); /* release last reference */ 4693 sav = nextsav; 4694 } 4695 sav = LIST_FIRST(&sexpireq); 4696 while (sav != NULL) { 4697 nextsav = LIST_NEXT(sav, drainq); 4698 key_expire(sav, 0); 4699 key_freesav(&sav); /* release extra reference */ 4700 sav = nextsav; 4701 } 4702 /* Free stale LARVAL SAs */ 4703 sav = LIST_FIRST(&drainq); 4704 while (sav != NULL) { 4705 nextsav = LIST_NEXT(sav, drainq); 4706 key_freesah(&sav->sah); /* release reference from SAV */ 4707 key_freesav(&sav); /* release extra reference */ 4708 key_freesav(&sav); /* release last reference */ 4709 sav = nextsav; 4710 } 4711 /* Free SAs that were unlinked/changed by someone else */ 4712 sav = LIST_FIRST(&freeq); 4713 while (sav != NULL) { 4714 nextsav = LIST_NEXT(sav, drainq); 4715 key_freesav(&sav); /* release extra reference */ 4716 sav = nextsav; 4717 } 4718 /* Free empty SAH */ 4719 sah = LIST_FIRST(&emptyq); 4720 while (sah != NULL) { 4721 nextsah = LIST_NEXT(sah, drainq); 4722 key_freesah(&sah); /* release extra reference */ 4723 key_freesah(&sah); /* release last reference */ 4724 sah = nextsah; 4725 } 4726 } 4727 4728 static void 4729 key_flush_acq(time_t now) 4730 { 4731 struct secacq *acq, *nextacq; 4732 4733 /* ACQ tree */ 4734 ACQ_LOCK(); 4735 acq = LIST_FIRST(&V_acqtree); 4736 while (acq != NULL) { 4737 nextacq = LIST_NEXT(acq, chain); 4738 if (now - acq->created > V_key_blockacq_lifetime) { 4739 LIST_REMOVE(acq, chain); 4740 LIST_REMOVE(acq, addrhash); 4741 LIST_REMOVE(acq, seqhash); 4742 free(acq, M_IPSEC_SAQ); 4743 } 4744 acq = nextacq; 4745 } 4746 ACQ_UNLOCK(); 4747 } 4748 4749 static void 4750 key_flush_spacq(time_t now) 4751 { 4752 struct secspacq *acq, *nextacq; 4753 4754 /* SP ACQ tree */ 4755 SPACQ_LOCK(); 4756 for (acq = LIST_FIRST(&V_spacqtree); acq != NULL; acq = nextacq) { 4757 nextacq = LIST_NEXT(acq, chain); 4758 if (now - acq->created > V_key_blockacq_lifetime 4759 && __LIST_CHAINED(acq)) { 4760 LIST_REMOVE(acq, chain); 4761 free(acq, M_IPSEC_SAQ); 4762 } 4763 } 4764 SPACQ_UNLOCK(); 4765 } 4766 4767 /* 4768 * time handler. 4769 * scanning SPD and SAD to check status for each entries, 4770 * and do to remove or to expire. 4771 * XXX: year 2038 problem may remain. 4772 */ 4773 static void 4774 key_timehandler(void *arg) 4775 { 4776 VNET_ITERATOR_DECL(vnet_iter); 4777 time_t now = time_second; 4778 4779 VNET_LIST_RLOCK_NOSLEEP(); 4780 VNET_FOREACH(vnet_iter) { 4781 CURVNET_SET(vnet_iter); 4782 key_flush_spd(now); 4783 key_flush_sad(now); 4784 key_flush_acq(now); 4785 key_flush_spacq(now); 4786 CURVNET_RESTORE(); 4787 } 4788 VNET_LIST_RUNLOCK_NOSLEEP(); 4789 4790 #ifndef IPSEC_DEBUG2 4791 /* do exchange to tick time !! */ 4792 callout_schedule(&key_timer, hz); 4793 #endif /* IPSEC_DEBUG2 */ 4794 } 4795 4796 u_long 4797 key_random(void) 4798 { 4799 u_long value; 4800 4801 arc4random_buf(&value, sizeof(value)); 4802 return value; 4803 } 4804 4805 /* 4806 * map SADB_SATYPE_* to IPPROTO_*. 4807 * if satype == SADB_SATYPE then satype is mapped to ~0. 4808 * OUT: 4809 * 0: invalid satype. 4810 */ 4811 static uint8_t 4812 key_satype2proto(uint8_t satype) 4813 { 4814 switch (satype) { 4815 case SADB_SATYPE_UNSPEC: 4816 return IPSEC_PROTO_ANY; 4817 case SADB_SATYPE_AH: 4818 return IPPROTO_AH; 4819 case SADB_SATYPE_ESP: 4820 return IPPROTO_ESP; 4821 case SADB_X_SATYPE_IPCOMP: 4822 return IPPROTO_IPCOMP; 4823 case SADB_X_SATYPE_TCPSIGNATURE: 4824 return IPPROTO_TCP; 4825 default: 4826 return 0; 4827 } 4828 /* NOTREACHED */ 4829 } 4830 4831 /* 4832 * map IPPROTO_* to SADB_SATYPE_* 4833 * OUT: 4834 * 0: invalid protocol type. 4835 */ 4836 static uint8_t 4837 key_proto2satype(uint8_t proto) 4838 { 4839 switch (proto) { 4840 case IPPROTO_AH: 4841 return SADB_SATYPE_AH; 4842 case IPPROTO_ESP: 4843 return SADB_SATYPE_ESP; 4844 case IPPROTO_IPCOMP: 4845 return SADB_X_SATYPE_IPCOMP; 4846 case IPPROTO_TCP: 4847 return SADB_X_SATYPE_TCPSIGNATURE; 4848 default: 4849 return 0; 4850 } 4851 /* NOTREACHED */ 4852 } 4853 4854 /* %%% PF_KEY */ 4855 /* 4856 * SADB_GETSPI processing is to receive 4857 * <base, (SA2), src address, dst address, (SPI range)> 4858 * from the IKMPd, to assign a unique spi value, to hang on the INBOUND 4859 * tree with the status of LARVAL, and send 4860 * <base, SA(*), address(SD)> 4861 * to the IKMPd. 4862 * 4863 * IN: mhp: pointer to the pointer to each header. 4864 * OUT: NULL if fail. 4865 * other if success, return pointer to the message to send. 4866 */ 4867 static int 4868 key_getspi(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 4869 { 4870 struct secasindex saidx; 4871 struct sadb_address *src0, *dst0; 4872 struct secasvar *sav; 4873 uint32_t reqid, spi; 4874 int error; 4875 uint8_t mode, proto; 4876 4877 IPSEC_ASSERT(so != NULL, ("null socket")); 4878 IPSEC_ASSERT(m != NULL, ("null mbuf")); 4879 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 4880 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 4881 4882 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 4883 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) 4884 #ifdef PFKEY_STRICT_CHECKS 4885 || SADB_CHECKHDR(mhp, SADB_EXT_SPIRANGE) 4886 #endif 4887 ) { 4888 ipseclog((LOG_DEBUG, 4889 "%s: invalid message: missing required header.\n", 4890 __func__)); 4891 error = EINVAL; 4892 goto fail; 4893 } 4894 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 4895 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) 4896 #ifdef PFKEY_STRICT_CHECKS 4897 || SADB_CHECKLEN(mhp, SADB_EXT_SPIRANGE) 4898 #endif 4899 ) { 4900 ipseclog((LOG_DEBUG, 4901 "%s: invalid message: wrong header size.\n", __func__)); 4902 error = EINVAL; 4903 goto fail; 4904 } 4905 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 4906 mode = IPSEC_MODE_ANY; 4907 reqid = 0; 4908 } else { 4909 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 4910 ipseclog((LOG_DEBUG, 4911 "%s: invalid message: wrong header size.\n", 4912 __func__)); 4913 error = EINVAL; 4914 goto fail; 4915 } 4916 mode = ((struct sadb_x_sa2 *) 4917 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 4918 reqid = ((struct sadb_x_sa2 *) 4919 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 4920 } 4921 4922 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 4923 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 4924 4925 /* map satype to proto */ 4926 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 4927 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 4928 __func__)); 4929 error = EINVAL; 4930 goto fail; 4931 } 4932 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 4933 (struct sockaddr *)(dst0 + 1)); 4934 if (error != 0) { 4935 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 4936 error = EINVAL; 4937 goto fail; 4938 } 4939 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 4940 4941 /* SPI allocation */ 4942 SPI_ALLOC_LOCK(); 4943 spi = key_do_getnewspi( 4944 (struct sadb_spirange *)mhp->ext[SADB_EXT_SPIRANGE], &saidx); 4945 if (spi == 0) { 4946 /* 4947 * Requested SPI or SPI range is not available or 4948 * already used. 4949 */ 4950 SPI_ALLOC_UNLOCK(); 4951 error = EEXIST; 4952 goto fail; 4953 } 4954 sav = key_newsav(mhp, &saidx, spi, &error); 4955 SPI_ALLOC_UNLOCK(); 4956 if (sav == NULL) 4957 goto fail; 4958 4959 if (sav->seq != 0) { 4960 /* 4961 * RFC2367: 4962 * If the SADB_GETSPI message is in response to a 4963 * kernel-generated SADB_ACQUIRE, the sadb_msg_seq 4964 * MUST be the same as the SADB_ACQUIRE message. 4965 * 4966 * XXXAE: However it doesn't definethe behaviour how to 4967 * check this and what to do if it doesn't match. 4968 * Also what we should do if it matches? 4969 * 4970 * We can compare saidx used in SADB_ACQUIRE with saidx 4971 * used in SADB_GETSPI, but this probably can break 4972 * existing software. For now just warn if it doesn't match. 4973 * 4974 * XXXAE: anyway it looks useless. 4975 */ 4976 key_acqdone(&saidx, sav->seq); 4977 } 4978 KEYDBG(KEY_STAMP, 4979 printf("%s: SA(%p)\n", __func__, sav)); 4980 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 4981 4982 { 4983 struct mbuf *n, *nn; 4984 struct sadb_sa *m_sa; 4985 struct sadb_msg *newmsg; 4986 int off, len; 4987 4988 /* create new sadb_msg to reply. */ 4989 len = PFKEY_ALIGN8(sizeof(struct sadb_msg)) + 4990 PFKEY_ALIGN8(sizeof(struct sadb_sa)); 4991 4992 n = key_mget(len); 4993 if (n == NULL) { 4994 error = ENOBUFS; 4995 goto fail; 4996 } 4997 4998 n->m_len = len; 4999 n->m_next = NULL; 5000 off = 0; 5001 5002 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 5003 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 5004 5005 m_sa = (struct sadb_sa *)(mtod(n, caddr_t) + off); 5006 m_sa->sadb_sa_len = PFKEY_UNIT64(sizeof(struct sadb_sa)); 5007 m_sa->sadb_sa_exttype = SADB_EXT_SA; 5008 m_sa->sadb_sa_spi = spi; /* SPI is already in network byte order */ 5009 off += PFKEY_ALIGN8(sizeof(struct sadb_sa)); 5010 5011 IPSEC_ASSERT(off == len, 5012 ("length inconsistency (off %u len %u)", off, len)); 5013 5014 n->m_next = key_gather_mbuf(m, mhp, 0, 2, SADB_EXT_ADDRESS_SRC, 5015 SADB_EXT_ADDRESS_DST); 5016 if (!n->m_next) { 5017 m_freem(n); 5018 error = ENOBUFS; 5019 goto fail; 5020 } 5021 5022 if (n->m_len < sizeof(struct sadb_msg)) { 5023 n = m_pullup(n, sizeof(struct sadb_msg)); 5024 if (n == NULL) 5025 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 5026 } 5027 5028 n->m_pkthdr.len = 0; 5029 for (nn = n; nn; nn = nn->m_next) 5030 n->m_pkthdr.len += nn->m_len; 5031 5032 newmsg = mtod(n, struct sadb_msg *); 5033 newmsg->sadb_msg_seq = sav->seq; 5034 newmsg->sadb_msg_errno = 0; 5035 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 5036 5037 m_freem(m); 5038 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 5039 } 5040 5041 fail: 5042 return (key_senderror(so, m, error)); 5043 } 5044 5045 /* 5046 * allocating new SPI 5047 * called by key_getspi(). 5048 * OUT: 5049 * 0: failure. 5050 * others: success, SPI in network byte order. 5051 */ 5052 static uint32_t 5053 key_do_getnewspi(struct sadb_spirange *spirange, struct secasindex *saidx) 5054 { 5055 uint32_t min, max, newspi, t; 5056 int tries, limit; 5057 5058 SPI_ALLOC_LOCK_ASSERT(); 5059 5060 /* set spi range to allocate */ 5061 if (spirange != NULL) { 5062 min = spirange->sadb_spirange_min; 5063 max = spirange->sadb_spirange_max; 5064 } else { 5065 min = V_key_spi_minval; 5066 max = V_key_spi_maxval; 5067 } 5068 /* IPCOMP needs 2-byte SPI */ 5069 if (saidx->proto == IPPROTO_IPCOMP) { 5070 if (min >= 0x10000) 5071 min = 0xffff; 5072 if (max >= 0x10000) 5073 max = 0xffff; 5074 if (min > max) { 5075 t = min; min = max; max = t; 5076 } 5077 } 5078 5079 if (min == max) { 5080 if (key_checkspidup(htonl(min))) { 5081 ipseclog((LOG_DEBUG, "%s: SPI %u exists already.\n", 5082 __func__, min)); 5083 return 0; 5084 } 5085 5086 tries = 1; 5087 newspi = min; 5088 } else { 5089 /* init SPI */ 5090 newspi = 0; 5091 5092 limit = atomic_load_int(&V_key_spi_trycnt); 5093 /* when requesting to allocate spi ranged */ 5094 for (tries = 0; tries < limit; tries++) { 5095 /* generate pseudo-random SPI value ranged. */ 5096 newspi = min + (key_random() % (max - min + 1)); 5097 if (!key_checkspidup(htonl(newspi))) 5098 break; 5099 } 5100 5101 if (tries == limit || newspi == 0) { 5102 ipseclog((LOG_DEBUG, 5103 "%s: failed to allocate SPI.\n", __func__)); 5104 return 0; 5105 } 5106 } 5107 5108 /* statistics */ 5109 keystat.getspi_count = 5110 (keystat.getspi_count + tries) / 2; 5111 5112 return (htonl(newspi)); 5113 } 5114 5115 /* 5116 * Find TCP-MD5 SA with corresponding secasindex. 5117 * If not found, return NULL and fill SPI with usable value if needed. 5118 */ 5119 static struct secasvar * 5120 key_getsav_tcpmd5(struct secasindex *saidx, uint32_t *spi) 5121 { 5122 SAHTREE_RLOCK_TRACKER; 5123 struct secashead *sah; 5124 struct secasvar *sav; 5125 5126 IPSEC_ASSERT(saidx->proto == IPPROTO_TCP, ("wrong proto")); 5127 SAHTREE_RLOCK(); 5128 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 5129 if (sah->saidx.proto != IPPROTO_TCP) 5130 continue; 5131 if (!key_sockaddrcmp(&saidx->dst.sa, &sah->saidx.dst.sa, 0) && 5132 !key_sockaddrcmp(&saidx->src.sa, &sah->saidx.src.sa, 0)) 5133 break; 5134 } 5135 if (sah != NULL) { 5136 if (V_key_preferred_oldsa) 5137 sav = TAILQ_LAST(&sah->savtree_alive, secasvar_queue); 5138 else 5139 sav = TAILQ_FIRST(&sah->savtree_alive); 5140 if (sav != NULL) { 5141 SAV_ADDREF(sav); 5142 SAHTREE_RUNLOCK(); 5143 return (sav); 5144 } 5145 } 5146 if (spi == NULL) { 5147 /* No SPI required */ 5148 SAHTREE_RUNLOCK(); 5149 return (NULL); 5150 } 5151 /* Check that SPI is unique */ 5152 LIST_FOREACH(sav, SAVHASH_HASH(*spi), spihash) { 5153 if (sav->spi == *spi) 5154 break; 5155 } 5156 if (sav == NULL) { 5157 SAHTREE_RUNLOCK(); 5158 /* SPI is already unique */ 5159 return (NULL); 5160 } 5161 SAHTREE_RUNLOCK(); 5162 /* XXX: not optimal */ 5163 *spi = key_do_getnewspi(NULL, saidx); 5164 return (NULL); 5165 } 5166 5167 static int 5168 key_updateaddresses(struct socket *so, struct mbuf *m, 5169 const struct sadb_msghdr *mhp, struct secasvar *sav, 5170 struct secasindex *saidx) 5171 { 5172 struct sockaddr *newaddr; 5173 struct secashead *sah; 5174 struct secasvar *newsav, *tmp; 5175 struct mbuf *n; 5176 int error, isnew; 5177 5178 /* Check that we need to change SAH */ 5179 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC)) { 5180 newaddr = (struct sockaddr *)( 5181 ((struct sadb_address *) 5182 mhp->ext[SADB_X_EXT_NEW_ADDRESS_SRC]) + 1); 5183 bcopy(newaddr, &saidx->src, newaddr->sa_len); 5184 key_porttosaddr(&saidx->src.sa, 0); 5185 } 5186 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5187 newaddr = (struct sockaddr *)( 5188 ((struct sadb_address *) 5189 mhp->ext[SADB_X_EXT_NEW_ADDRESS_DST]) + 1); 5190 bcopy(newaddr, &saidx->dst, newaddr->sa_len); 5191 key_porttosaddr(&saidx->dst.sa, 0); 5192 } 5193 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5194 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST)) { 5195 error = key_checksockaddrs(&saidx->src.sa, &saidx->dst.sa); 5196 if (error != 0) { 5197 ipseclog((LOG_DEBUG, "%s: invalid new sockaddr.\n", 5198 __func__)); 5199 return (error); 5200 } 5201 5202 sah = key_getsah(saidx); 5203 if (sah == NULL) { 5204 /* create a new SA index */ 5205 sah = key_newsah(saidx); 5206 if (sah == NULL) { 5207 ipseclog((LOG_DEBUG, 5208 "%s: No more memory.\n", __func__)); 5209 return (ENOBUFS); 5210 } 5211 isnew = 2; /* SAH is new */ 5212 } else 5213 isnew = 1; /* existing SAH is referenced */ 5214 } else { 5215 /* 5216 * src and dst addresses are still the same. 5217 * Do we want to change NAT-T config? 5218 */ 5219 if (sav->sah->saidx.proto != IPPROTO_ESP || 5220 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5221 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) || 5222 SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5223 ipseclog((LOG_DEBUG, 5224 "%s: invalid message: missing required header.\n", 5225 __func__)); 5226 return (EINVAL); 5227 } 5228 /* We hold reference to SA, thus SAH will be referenced too. */ 5229 sah = sav->sah; 5230 isnew = 0; 5231 } 5232 5233 newsav = malloc(sizeof(struct secasvar), M_IPSEC_SA, 5234 M_NOWAIT | M_ZERO); 5235 if (newsav == NULL) { 5236 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5237 error = ENOBUFS; 5238 goto fail; 5239 } 5240 5241 /* Clone SA's content into newsav */ 5242 SAV_INITREF(newsav); 5243 bcopy(sav, newsav, offsetof(struct secasvar, chain)); 5244 /* 5245 * We create new NAT-T config if it is needed. 5246 * Old NAT-T config will be freed by key_cleansav() when 5247 * last reference to SA will be released. 5248 */ 5249 newsav->natt = NULL; 5250 newsav->sah = sah; 5251 newsav->state = SADB_SASTATE_MATURE; 5252 error = key_setnatt(newsav, mhp); 5253 if (error != 0) 5254 goto fail; 5255 5256 SAHTREE_WLOCK(); 5257 /* Check that SA is still alive */ 5258 if (sav->state == SADB_SASTATE_DEAD) { 5259 /* SA was unlinked */ 5260 SAHTREE_WUNLOCK(); 5261 error = ESRCH; 5262 goto fail; 5263 } 5264 5265 /* Unlink SA from SAH and SPI hash */ 5266 IPSEC_ASSERT((sav->flags & SADB_X_EXT_F_CLONED) == 0, 5267 ("SA is already cloned")); 5268 IPSEC_ASSERT(sav->state == SADB_SASTATE_MATURE || 5269 sav->state == SADB_SASTATE_DYING, 5270 ("Wrong SA state %u\n", sav->state)); 5271 TAILQ_REMOVE(&sav->sah->savtree_alive, sav, chain); 5272 LIST_REMOVE(sav, spihash); 5273 sav->state = SADB_SASTATE_DEAD; 5274 5275 /* 5276 * Link new SA with SAH. Keep SAs ordered by 5277 * create time (newer are first). 5278 */ 5279 TAILQ_FOREACH(tmp, &sah->savtree_alive, chain) { 5280 if (newsav->created > tmp->created) { 5281 TAILQ_INSERT_BEFORE(tmp, newsav, chain); 5282 break; 5283 } 5284 } 5285 if (tmp == NULL) 5286 TAILQ_INSERT_TAIL(&sah->savtree_alive, newsav, chain); 5287 5288 /* Add new SA into SPI hash. */ 5289 LIST_INSERT_HEAD(SAVHASH_HASH(newsav->spi), newsav, spihash); 5290 5291 /* Add new SAH into SADB. */ 5292 if (isnew == 2) { 5293 TAILQ_INSERT_HEAD(&V_sahtree, sah, chain); 5294 LIST_INSERT_HEAD(SAHADDRHASH_HASH(saidx), sah, addrhash); 5295 sah->state = SADB_SASTATE_MATURE; 5296 SAH_ADDREF(sah); /* newsav references new SAH */ 5297 } 5298 /* 5299 * isnew == 1 -> @sah was referenced by key_getsah(). 5300 * isnew == 0 -> we use the same @sah, that was used by @sav, 5301 * and we use its reference for @newsav. 5302 */ 5303 SECASVAR_WLOCK(sav); 5304 /* XXX: replace cntr with pointer? */ 5305 newsav->cntr = sav->cntr; 5306 sav->flags |= SADB_X_EXT_F_CLONED; 5307 SECASVAR_WUNLOCK(sav); 5308 5309 SAHTREE_WUNLOCK(); 5310 5311 KEYDBG(KEY_STAMP, 5312 printf("%s: SA(%p) cloned into SA(%p)\n", 5313 __func__, sav, newsav)); 5314 KEYDBG(KEY_DATA, kdebug_secasv(newsav)); 5315 5316 key_freesav(&sav); /* release last reference */ 5317 5318 /* set msg buf from mhp */ 5319 n = key_getmsgbuf_x1(m, mhp); 5320 if (n == NULL) { 5321 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5322 return (ENOBUFS); 5323 } 5324 m_freem(m); 5325 key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5326 return (0); 5327 fail: 5328 if (isnew != 0) 5329 key_freesah(&sah); 5330 if (newsav != NULL) { 5331 if (newsav->natt != NULL) 5332 free(newsav->natt, M_IPSEC_MISC); 5333 free(newsav, M_IPSEC_SA); 5334 } 5335 return (error); 5336 } 5337 5338 /* 5339 * SADB_UPDATE processing 5340 * receive 5341 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5342 * key(AE), (identity(SD),) (sensitivity)> 5343 * from the ikmpd, and update a secasvar entry whose status is SADB_SASTATE_LARVAL. 5344 * and send 5345 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5346 * (identity(SD),) (sensitivity)> 5347 * to the ikmpd. 5348 * 5349 * m will always be freed. 5350 */ 5351 static int 5352 key_update(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5353 { 5354 struct secasindex saidx; 5355 struct sadb_address *src0, *dst0; 5356 struct sadb_sa *sa0; 5357 struct secasvar *sav; 5358 uint32_t reqid; 5359 int error; 5360 uint8_t mode, proto; 5361 5362 IPSEC_ASSERT(so != NULL, ("null socket")); 5363 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5364 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5365 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5366 5367 /* map satype to proto */ 5368 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5369 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5370 __func__)); 5371 return key_senderror(so, m, EINVAL); 5372 } 5373 5374 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5375 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5376 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5377 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5378 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5379 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5380 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5381 ipseclog((LOG_DEBUG, 5382 "%s: invalid message: missing required header.\n", 5383 __func__)); 5384 return key_senderror(so, m, EINVAL); 5385 } 5386 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5387 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5388 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5389 ipseclog((LOG_DEBUG, 5390 "%s: invalid message: wrong header size.\n", __func__)); 5391 return key_senderror(so, m, EINVAL); 5392 } 5393 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5394 mode = IPSEC_MODE_ANY; 5395 reqid = 0; 5396 } else { 5397 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5398 ipseclog((LOG_DEBUG, 5399 "%s: invalid message: wrong header size.\n", 5400 __func__)); 5401 return key_senderror(so, m, EINVAL); 5402 } 5403 mode = ((struct sadb_x_sa2 *) 5404 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5405 reqid = ((struct sadb_x_sa2 *) 5406 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5407 } 5408 5409 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5410 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 5411 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 5412 5413 /* 5414 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5415 * SADB_UPDATE message. 5416 */ 5417 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5418 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5419 #ifdef PFKEY_STRICT_CHECKS 5420 return key_senderror(so, m, EINVAL); 5421 #endif 5422 } 5423 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5424 (struct sockaddr *)(dst0 + 1)); 5425 if (error != 0) { 5426 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5427 return key_senderror(so, m, error); 5428 } 5429 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5430 sav = key_getsavbyspi(sa0->sadb_sa_spi); 5431 if (sav == NULL) { 5432 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u\n", 5433 __func__, ntohl(sa0->sadb_sa_spi))); 5434 return key_senderror(so, m, EINVAL); 5435 } 5436 /* 5437 * Check that SADB_UPDATE issued by the same process that did 5438 * SADB_GETSPI or SADB_ADD. 5439 */ 5440 if (sav->pid != mhp->msg->sadb_msg_pid) { 5441 ipseclog((LOG_DEBUG, 5442 "%s: pid mismatched (SPI %u, pid %u vs. %u)\n", __func__, 5443 ntohl(sav->spi), sav->pid, mhp->msg->sadb_msg_pid)); 5444 key_freesav(&sav); 5445 return key_senderror(so, m, EINVAL); 5446 } 5447 /* saidx should match with SA. */ 5448 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_MODE_REQID) == 0) { 5449 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u\n", 5450 __func__, ntohl(sav->spi))); 5451 key_freesav(&sav); 5452 return key_senderror(so, m, ESRCH); 5453 } 5454 5455 if (sav->state == SADB_SASTATE_LARVAL) { 5456 if ((mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && 5457 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT)) || 5458 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && 5459 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH))) { 5460 ipseclog((LOG_DEBUG, 5461 "%s: invalid message: missing required header.\n", 5462 __func__)); 5463 key_freesav(&sav); 5464 return key_senderror(so, m, EINVAL); 5465 } 5466 /* 5467 * We can set any values except src, dst and SPI. 5468 */ 5469 error = key_setsaval(sav, mhp); 5470 if (error != 0) { 5471 key_freesav(&sav); 5472 return (key_senderror(so, m, error)); 5473 } 5474 /* Change SA state to MATURE */ 5475 SAHTREE_WLOCK(); 5476 if (sav->state != SADB_SASTATE_LARVAL) { 5477 /* SA was deleted or another thread made it MATURE. */ 5478 SAHTREE_WUNLOCK(); 5479 key_freesav(&sav); 5480 return (key_senderror(so, m, ESRCH)); 5481 } 5482 /* 5483 * NOTE: we keep SAs in savtree_alive ordered by created 5484 * time. When SA's state changed from LARVAL to MATURE, 5485 * we update its created time in key_setsaval() and move 5486 * it into head of savtree_alive. 5487 */ 5488 TAILQ_REMOVE(&sav->sah->savtree_larval, sav, chain); 5489 TAILQ_INSERT_HEAD(&sav->sah->savtree_alive, sav, chain); 5490 sav->state = SADB_SASTATE_MATURE; 5491 SAHTREE_WUNLOCK(); 5492 } else { 5493 /* 5494 * For DYING and MATURE SA we can change only state 5495 * and lifetimes. Report EINVAL if something else attempted 5496 * to change. 5497 */ 5498 if (!SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5499 !SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH)) { 5500 key_freesav(&sav); 5501 return (key_senderror(so, m, EINVAL)); 5502 } 5503 error = key_updatelifetimes(sav, mhp); 5504 if (error != 0) { 5505 key_freesav(&sav); 5506 return (key_senderror(so, m, error)); 5507 } 5508 /* 5509 * This is FreeBSD extension to RFC2367. 5510 * IKEd can specify SADB_X_EXT_NEW_ADDRESS_SRC and/or 5511 * SADB_X_EXT_NEW_ADDRESS_DST when it wants to change 5512 * SA addresses (for example to implement MOBIKE protocol 5513 * as described in RFC4555). Also we allow to change 5514 * NAT-T config. 5515 */ 5516 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_SRC) || 5517 !SADB_CHECKHDR(mhp, SADB_X_EXT_NEW_ADDRESS_DST) || 5518 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) || 5519 sav->natt != NULL) { 5520 error = key_updateaddresses(so, m, mhp, sav, &saidx); 5521 key_freesav(&sav); 5522 if (error != 0) 5523 return (key_senderror(so, m, error)); 5524 return (0); 5525 } 5526 /* Check that SA is still alive */ 5527 SAHTREE_WLOCK(); 5528 if (sav->state == SADB_SASTATE_DEAD) { 5529 /* SA was unlinked */ 5530 SAHTREE_WUNLOCK(); 5531 key_freesav(&sav); 5532 return (key_senderror(so, m, ESRCH)); 5533 } 5534 /* 5535 * NOTE: there is possible state moving from DYING to MATURE, 5536 * but this doesn't change created time, so we won't reorder 5537 * this SA. 5538 */ 5539 sav->state = SADB_SASTATE_MATURE; 5540 SAHTREE_WUNLOCK(); 5541 } 5542 KEYDBG(KEY_STAMP, 5543 printf("%s: SA(%p)\n", __func__, sav)); 5544 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5545 key_freesav(&sav); 5546 5547 { 5548 struct mbuf *n; 5549 5550 /* set msg buf from mhp */ 5551 n = key_getmsgbuf_x1(m, mhp); 5552 if (n == NULL) { 5553 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5554 return key_senderror(so, m, ENOBUFS); 5555 } 5556 5557 m_freem(m); 5558 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5559 } 5560 } 5561 5562 /* 5563 * SADB_ADD processing 5564 * add an entry to SA database, when received 5565 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5566 * key(AE), (identity(SD),) (sensitivity)> 5567 * from the ikmpd, 5568 * and send 5569 * <base, SA, (SA2), (lifetime(HSC),) address(SD), (address(P),) 5570 * (identity(SD),) (sensitivity)> 5571 * to the ikmpd. 5572 * 5573 * IGNORE identity and sensitivity messages. 5574 * 5575 * m will always be freed. 5576 */ 5577 static int 5578 key_add(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 5579 { 5580 struct secasindex saidx; 5581 struct sadb_address *src0, *dst0; 5582 struct sadb_sa *sa0; 5583 struct secasvar *sav; 5584 uint32_t reqid, spi; 5585 uint8_t mode, proto; 5586 int error; 5587 5588 IPSEC_ASSERT(so != NULL, ("null socket")); 5589 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5590 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5591 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5592 5593 /* map satype to proto */ 5594 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 5595 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 5596 __func__)); 5597 return key_senderror(so, m, EINVAL); 5598 } 5599 5600 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 5601 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 5602 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 5603 (mhp->msg->sadb_msg_satype == SADB_SATYPE_ESP && ( 5604 SADB_CHECKHDR(mhp, SADB_EXT_KEY_ENCRYPT) || 5605 SADB_CHECKLEN(mhp, SADB_EXT_KEY_ENCRYPT))) || 5606 (mhp->msg->sadb_msg_satype == SADB_SATYPE_AH && ( 5607 SADB_CHECKHDR(mhp, SADB_EXT_KEY_AUTH) || 5608 SADB_CHECKLEN(mhp, SADB_EXT_KEY_AUTH))) || 5609 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD) && 5610 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT)) || 5611 (SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_SOFT) && 5612 !SADB_CHECKHDR(mhp, SADB_EXT_LIFETIME_HARD))) { 5613 ipseclog((LOG_DEBUG, 5614 "%s: invalid message: missing required header.\n", 5615 __func__)); 5616 return key_senderror(so, m, EINVAL); 5617 } 5618 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 5619 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 5620 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 5621 ipseclog((LOG_DEBUG, 5622 "%s: invalid message: wrong header size.\n", __func__)); 5623 return key_senderror(so, m, EINVAL); 5624 } 5625 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 5626 mode = IPSEC_MODE_ANY; 5627 reqid = 0; 5628 } else { 5629 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 5630 ipseclog((LOG_DEBUG, 5631 "%s: invalid message: wrong header size.\n", 5632 __func__)); 5633 return key_senderror(so, m, EINVAL); 5634 } 5635 mode = ((struct sadb_x_sa2 *) 5636 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 5637 reqid = ((struct sadb_x_sa2 *) 5638 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 5639 } 5640 5641 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 5642 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 5643 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 5644 5645 /* 5646 * Only SADB_SASTATE_MATURE SAs may be submitted in an 5647 * SADB_ADD message. 5648 */ 5649 if (sa0->sadb_sa_state != SADB_SASTATE_MATURE) { 5650 ipseclog((LOG_DEBUG, "%s: invalid state.\n", __func__)); 5651 #ifdef PFKEY_STRICT_CHECKS 5652 return key_senderror(so, m, EINVAL); 5653 #endif 5654 } 5655 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 5656 (struct sockaddr *)(dst0 + 1)); 5657 if (error != 0) { 5658 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 5659 return key_senderror(so, m, error); 5660 } 5661 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 5662 spi = sa0->sadb_sa_spi; 5663 /* 5664 * For TCP-MD5 SAs we don't use SPI. Check the uniqueness using 5665 * secasindex. 5666 * XXXAE: IPComp seems also doesn't use SPI. 5667 */ 5668 SPI_ALLOC_LOCK(); 5669 if (proto == IPPROTO_TCP) { 5670 sav = key_getsav_tcpmd5(&saidx, &spi); 5671 if (sav == NULL && spi == 0) { 5672 SPI_ALLOC_UNLOCK(); 5673 /* Failed to allocate SPI */ 5674 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", 5675 __func__)); 5676 return key_senderror(so, m, EEXIST); 5677 } 5678 /* XXX: SPI that we report back can have another value */ 5679 } else { 5680 /* We can create new SA only if SPI is different. */ 5681 sav = key_getsavbyspi(spi); 5682 } 5683 if (sav != NULL) { 5684 SPI_ALLOC_UNLOCK(); 5685 key_freesav(&sav); 5686 ipseclog((LOG_DEBUG, "%s: SA already exists.\n", __func__)); 5687 return key_senderror(so, m, EEXIST); 5688 } 5689 5690 sav = key_newsav(mhp, &saidx, spi, &error); 5691 SPI_ALLOC_UNLOCK(); 5692 if (sav == NULL) 5693 return key_senderror(so, m, error); 5694 KEYDBG(KEY_STAMP, 5695 printf("%s: return SA(%p)\n", __func__, sav)); 5696 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 5697 /* 5698 * If SADB_ADD was in response to SADB_ACQUIRE, we need to schedule 5699 * ACQ for deletion. 5700 */ 5701 if (sav->seq != 0) 5702 key_acqdone(&saidx, sav->seq); 5703 5704 { 5705 /* 5706 * Don't call key_freesav() on error here, as we would like to 5707 * keep the SA in the database. 5708 */ 5709 struct mbuf *n; 5710 5711 /* set msg buf from mhp */ 5712 n = key_getmsgbuf_x1(m, mhp); 5713 if (n == NULL) { 5714 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5715 return key_senderror(so, m, ENOBUFS); 5716 } 5717 5718 m_freem(m); 5719 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 5720 } 5721 } 5722 5723 /* 5724 * NAT-T support. 5725 * IKEd may request the use ESP in UDP encapsulation when it detects the 5726 * presence of NAT. It uses NAT-T extension headers for such SAs to specify 5727 * parameters needed for encapsulation and decapsulation. These PF_KEY 5728 * extension headers are not standardized, so this comment addresses our 5729 * implementation. 5730 * SADB_X_EXT_NAT_T_TYPE specifies type of encapsulation, we support only 5731 * UDP_ENCAP_ESPINUDP as described in RFC3948. 5732 * SADB_X_EXT_NAT_T_SPORT/DPORT specifies source and destination ports for 5733 * UDP header. We use these ports in UDP encapsulation procedure, also we 5734 * can check them in UDP decapsulation procedure. 5735 * SADB_X_EXT_NAT_T_OA[IR] specifies original address of initiator or 5736 * responder. These addresses can be used for transport mode to adjust 5737 * checksum after decapsulation and decryption. Since original IP addresses 5738 * used by peer usually different (we detected presence of NAT), TCP/UDP 5739 * pseudo header checksum and IP header checksum was calculated using original 5740 * addresses. After decapsulation and decryption we need to adjust checksum 5741 * to have correct datagram. 5742 * 5743 * We expect presence of NAT-T extension headers only in SADB_ADD and 5744 * SADB_UPDATE messages. We report NAT-T extension headers in replies 5745 * to SADB_ADD, SADB_UPDATE, SADB_GET, and SADB_DUMP messages. 5746 */ 5747 static int 5748 key_setnatt(struct secasvar *sav, const struct sadb_msghdr *mhp) 5749 { 5750 struct sadb_x_nat_t_port *port; 5751 struct sadb_x_nat_t_type *type; 5752 struct sadb_address *oai, *oar; 5753 struct sockaddr *sa; 5754 uint32_t addr; 5755 uint16_t cksum; 5756 5757 IPSEC_ASSERT(sav->natt == NULL, ("natt is already initialized")); 5758 /* 5759 * Ignore NAT-T headers if sproto isn't ESP. 5760 */ 5761 if (sav->sah->saidx.proto != IPPROTO_ESP) 5762 return (0); 5763 5764 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_TYPE) && 5765 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_SPORT) && 5766 !SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5767 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_TYPE) || 5768 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_SPORT) || 5769 SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_DPORT)) { 5770 ipseclog((LOG_DEBUG, 5771 "%s: invalid message: wrong header size.\n", 5772 __func__)); 5773 return (EINVAL); 5774 } 5775 } else 5776 return (0); 5777 5778 type = (struct sadb_x_nat_t_type *)mhp->ext[SADB_X_EXT_NAT_T_TYPE]; 5779 if (type->sadb_x_nat_t_type_type != UDP_ENCAP_ESPINUDP) { 5780 ipseclog((LOG_DEBUG, "%s: unsupported NAT-T type %u.\n", 5781 __func__, type->sadb_x_nat_t_type_type)); 5782 return (EINVAL); 5783 } 5784 /* 5785 * Allocate storage for NAT-T config. 5786 * On error it will be released by key_cleansav(). 5787 */ 5788 sav->natt = malloc(sizeof(struct secnatt), M_IPSEC_MISC, 5789 M_NOWAIT | M_ZERO); 5790 if (sav->natt == NULL) { 5791 PFKEYSTAT_INC(in_nomem); 5792 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5793 return (ENOBUFS); 5794 } 5795 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_SPORT]; 5796 if (port->sadb_x_nat_t_port_port == 0) { 5797 ipseclog((LOG_DEBUG, "%s: invalid NAT-T sport specified.\n", 5798 __func__)); 5799 return (EINVAL); 5800 } 5801 sav->natt->sport = port->sadb_x_nat_t_port_port; 5802 port = (struct sadb_x_nat_t_port *)mhp->ext[SADB_X_EXT_NAT_T_DPORT]; 5803 if (port->sadb_x_nat_t_port_port == 0) { 5804 ipseclog((LOG_DEBUG, "%s: invalid NAT-T dport specified.\n", 5805 __func__)); 5806 return (EINVAL); 5807 } 5808 sav->natt->dport = port->sadb_x_nat_t_port_port; 5809 5810 /* 5811 * SADB_X_EXT_NAT_T_OAI and SADB_X_EXT_NAT_T_OAR are optional 5812 * and needed only for transport mode IPsec. 5813 * Usually NAT translates only one address, but it is possible, 5814 * that both addresses could be translated. 5815 * NOTE: Value of SADB_X_EXT_NAT_T_OAI is equal to SADB_X_EXT_NAT_T_OA. 5816 */ 5817 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAI)) { 5818 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAI)) { 5819 ipseclog((LOG_DEBUG, 5820 "%s: invalid message: wrong header size.\n", 5821 __func__)); 5822 return (EINVAL); 5823 } 5824 oai = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAI]; 5825 } else 5826 oai = NULL; 5827 if (!SADB_CHECKHDR(mhp, SADB_X_EXT_NAT_T_OAR)) { 5828 if (SADB_CHECKLEN(mhp, SADB_X_EXT_NAT_T_OAR)) { 5829 ipseclog((LOG_DEBUG, 5830 "%s: invalid message: wrong header size.\n", 5831 __func__)); 5832 return (EINVAL); 5833 } 5834 oar = (struct sadb_address *)mhp->ext[SADB_X_EXT_NAT_T_OAR]; 5835 } else 5836 oar = NULL; 5837 5838 /* Initialize addresses only for transport mode */ 5839 if (sav->sah->saidx.mode != IPSEC_MODE_TUNNEL) { 5840 cksum = 0; 5841 if (oai != NULL) { 5842 /* Currently we support only AF_INET */ 5843 sa = (struct sockaddr *)(oai + 1); 5844 if (sa->sa_family != AF_INET || 5845 sa->sa_len != sizeof(struct sockaddr_in)) { 5846 ipseclog((LOG_DEBUG, 5847 "%s: wrong NAT-OAi header.\n", 5848 __func__)); 5849 return (EINVAL); 5850 } 5851 /* Ignore address if it the same */ 5852 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5853 sav->sah->saidx.src.sin.sin_addr.s_addr) { 5854 bcopy(sa, &sav->natt->oai.sa, sa->sa_len); 5855 sav->natt->flags |= IPSEC_NATT_F_OAI; 5856 /* Calculate checksum delta */ 5857 addr = sav->sah->saidx.src.sin.sin_addr.s_addr; 5858 cksum = in_addword(cksum, ~addr >> 16); 5859 cksum = in_addword(cksum, ~addr & 0xffff); 5860 addr = sav->natt->oai.sin.sin_addr.s_addr; 5861 cksum = in_addword(cksum, addr >> 16); 5862 cksum = in_addword(cksum, addr & 0xffff); 5863 } 5864 } 5865 if (oar != NULL) { 5866 /* Currently we support only AF_INET */ 5867 sa = (struct sockaddr *)(oar + 1); 5868 if (sa->sa_family != AF_INET || 5869 sa->sa_len != sizeof(struct sockaddr_in)) { 5870 ipseclog((LOG_DEBUG, 5871 "%s: wrong NAT-OAr header.\n", 5872 __func__)); 5873 return (EINVAL); 5874 } 5875 /* Ignore address if it the same */ 5876 if (((struct sockaddr_in *)sa)->sin_addr.s_addr != 5877 sav->sah->saidx.dst.sin.sin_addr.s_addr) { 5878 bcopy(sa, &sav->natt->oar.sa, sa->sa_len); 5879 sav->natt->flags |= IPSEC_NATT_F_OAR; 5880 /* Calculate checksum delta */ 5881 addr = sav->sah->saidx.dst.sin.sin_addr.s_addr; 5882 cksum = in_addword(cksum, ~addr >> 16); 5883 cksum = in_addword(cksum, ~addr & 0xffff); 5884 addr = sav->natt->oar.sin.sin_addr.s_addr; 5885 cksum = in_addword(cksum, addr >> 16); 5886 cksum = in_addword(cksum, addr & 0xffff); 5887 } 5888 } 5889 sav->natt->cksum = cksum; 5890 } 5891 return (0); 5892 } 5893 5894 static int 5895 key_setident(struct secashead *sah, const struct sadb_msghdr *mhp) 5896 { 5897 const struct sadb_ident *idsrc, *iddst; 5898 5899 IPSEC_ASSERT(sah != NULL, ("null secashead")); 5900 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5901 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5902 5903 /* don't make buffer if not there */ 5904 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) && 5905 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5906 sah->idents = NULL; 5907 sah->identd = NULL; 5908 return (0); 5909 } 5910 5911 if (SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_SRC) || 5912 SADB_CHECKHDR(mhp, SADB_EXT_IDENTITY_DST)) { 5913 ipseclog((LOG_DEBUG, "%s: invalid identity.\n", __func__)); 5914 return (EINVAL); 5915 } 5916 5917 idsrc = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_SRC]; 5918 iddst = (const struct sadb_ident *)mhp->ext[SADB_EXT_IDENTITY_DST]; 5919 5920 /* validity check */ 5921 if (idsrc->sadb_ident_type != iddst->sadb_ident_type) { 5922 ipseclog((LOG_DEBUG, "%s: ident type mismatch.\n", __func__)); 5923 return EINVAL; 5924 } 5925 5926 switch (idsrc->sadb_ident_type) { 5927 case SADB_IDENTTYPE_PREFIX: 5928 case SADB_IDENTTYPE_FQDN: 5929 case SADB_IDENTTYPE_USERFQDN: 5930 default: 5931 /* XXX do nothing */ 5932 sah->idents = NULL; 5933 sah->identd = NULL; 5934 return 0; 5935 } 5936 5937 /* make structure */ 5938 sah->idents = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5939 if (sah->idents == NULL) { 5940 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5941 return ENOBUFS; 5942 } 5943 sah->identd = malloc(sizeof(struct secident), M_IPSEC_MISC, M_NOWAIT); 5944 if (sah->identd == NULL) { 5945 free(sah->idents, M_IPSEC_MISC); 5946 sah->idents = NULL; 5947 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 5948 return ENOBUFS; 5949 } 5950 sah->idents->type = idsrc->sadb_ident_type; 5951 sah->idents->id = idsrc->sadb_ident_id; 5952 5953 sah->identd->type = iddst->sadb_ident_type; 5954 sah->identd->id = iddst->sadb_ident_id; 5955 5956 return 0; 5957 } 5958 5959 /* 5960 * m will not be freed on return. 5961 * it is caller's responsibility to free the result. 5962 * 5963 * Called from SADB_ADD and SADB_UPDATE. Reply will contain headers 5964 * from the request in defined order. 5965 */ 5966 static struct mbuf * 5967 key_getmsgbuf_x1(struct mbuf *m, const struct sadb_msghdr *mhp) 5968 { 5969 struct mbuf *n; 5970 5971 IPSEC_ASSERT(m != NULL, ("null mbuf")); 5972 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 5973 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 5974 5975 /* create new sadb_msg to reply. */ 5976 n = key_gather_mbuf(m, mhp, 1, 16, SADB_EXT_RESERVED, 5977 SADB_EXT_SA, SADB_X_EXT_SA2, 5978 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST, 5979 SADB_EXT_LIFETIME_HARD, SADB_EXT_LIFETIME_SOFT, 5980 SADB_EXT_IDENTITY_SRC, SADB_EXT_IDENTITY_DST, 5981 SADB_X_EXT_NAT_T_TYPE, SADB_X_EXT_NAT_T_SPORT, 5982 SADB_X_EXT_NAT_T_DPORT, SADB_X_EXT_NAT_T_OAI, 5983 SADB_X_EXT_NAT_T_OAR, SADB_X_EXT_NEW_ADDRESS_SRC, 5984 SADB_X_EXT_NEW_ADDRESS_DST); 5985 if (!n) 5986 return NULL; 5987 5988 if (n->m_len < sizeof(struct sadb_msg)) { 5989 n = m_pullup(n, sizeof(struct sadb_msg)); 5990 if (n == NULL) 5991 return NULL; 5992 } 5993 mtod(n, struct sadb_msg *)->sadb_msg_errno = 0; 5994 mtod(n, struct sadb_msg *)->sadb_msg_len = 5995 PFKEY_UNIT64(n->m_pkthdr.len); 5996 5997 return n; 5998 } 5999 6000 /* 6001 * SADB_DELETE processing 6002 * receive 6003 * <base, SA(*), address(SD)> 6004 * from the ikmpd, and set SADB_SASTATE_DEAD, 6005 * and send, 6006 * <base, SA(*), address(SD)> 6007 * to the ikmpd. 6008 * 6009 * m will always be freed. 6010 */ 6011 static int 6012 key_delete(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6013 { 6014 struct secasindex saidx; 6015 struct sadb_address *src0, *dst0; 6016 struct secasvar *sav; 6017 struct sadb_sa *sa0; 6018 uint8_t proto; 6019 6020 IPSEC_ASSERT(so != NULL, ("null socket")); 6021 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6022 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6023 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6024 6025 /* map satype to proto */ 6026 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6027 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6028 __func__)); 6029 return key_senderror(so, m, EINVAL); 6030 } 6031 6032 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6033 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 6034 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6035 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6036 ipseclog((LOG_DEBUG, "%s: invalid message is passed.\n", 6037 __func__)); 6038 return key_senderror(so, m, EINVAL); 6039 } 6040 6041 src0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_SRC]); 6042 dst0 = (struct sadb_address *)(mhp->ext[SADB_EXT_ADDRESS_DST]); 6043 6044 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6045 (struct sockaddr *)(dst0 + 1)) != 0) { 6046 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6047 return (key_senderror(so, m, EINVAL)); 6048 } 6049 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6050 if (SADB_CHECKHDR(mhp, SADB_EXT_SA)) { 6051 /* 6052 * Caller wants us to delete all non-LARVAL SAs 6053 * that match the src/dst. This is used during 6054 * IKE INITIAL-CONTACT. 6055 * XXXAE: this looks like some extension to RFC2367. 6056 */ 6057 ipseclog((LOG_DEBUG, "%s: doing delete all.\n", __func__)); 6058 return (key_delete_all(so, m, mhp, &saidx)); 6059 } 6060 if (SADB_CHECKLEN(mhp, SADB_EXT_SA)) { 6061 ipseclog((LOG_DEBUG, 6062 "%s: invalid message: wrong header size.\n", __func__)); 6063 return (key_senderror(so, m, EINVAL)); 6064 } 6065 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6066 SPI_ALLOC_LOCK(); 6067 if (proto == IPPROTO_TCP) 6068 sav = key_getsav_tcpmd5(&saidx, NULL); 6069 else 6070 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6071 SPI_ALLOC_UNLOCK(); 6072 if (sav == NULL) { 6073 ipseclog((LOG_DEBUG, "%s: no SA found for SPI %u.\n", 6074 __func__, ntohl(sa0->sadb_sa_spi))); 6075 return (key_senderror(so, m, ESRCH)); 6076 } 6077 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6078 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6079 __func__, ntohl(sav->spi))); 6080 key_freesav(&sav); 6081 return (key_senderror(so, m, ESRCH)); 6082 } 6083 KEYDBG(KEY_STAMP, 6084 printf("%s: SA(%p)\n", __func__, sav)); 6085 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6086 key_unlinksav(sav); 6087 key_freesav(&sav); 6088 6089 { 6090 struct mbuf *n; 6091 struct sadb_msg *newmsg; 6092 6093 /* create new sadb_msg to reply. */ 6094 n = key_gather_mbuf(m, mhp, 1, 4, SADB_EXT_RESERVED, 6095 SADB_EXT_SA, SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6096 if (!n) 6097 return key_senderror(so, m, ENOBUFS); 6098 6099 if (n->m_len < sizeof(struct sadb_msg)) { 6100 n = m_pullup(n, sizeof(struct sadb_msg)); 6101 if (n == NULL) 6102 return key_senderror(so, m, ENOBUFS); 6103 } 6104 newmsg = mtod(n, struct sadb_msg *); 6105 newmsg->sadb_msg_errno = 0; 6106 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6107 6108 m_freem(m); 6109 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6110 } 6111 } 6112 6113 /* 6114 * delete all SAs for src/dst. Called from key_delete(). 6115 */ 6116 static int 6117 key_delete_all(struct socket *so, struct mbuf *m, 6118 const struct sadb_msghdr *mhp, struct secasindex *saidx) 6119 { 6120 struct secasvar_queue drainq; 6121 struct secashead *sah; 6122 struct secasvar *sav, *nextsav; 6123 6124 TAILQ_INIT(&drainq); 6125 SAHTREE_WLOCK(); 6126 LIST_FOREACH(sah, SAHADDRHASH_HASH(saidx), addrhash) { 6127 if (key_cmpsaidx(&sah->saidx, saidx, CMP_HEAD) == 0) 6128 continue; 6129 /* Move all ALIVE SAs into drainq */ 6130 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6131 } 6132 /* Unlink all queued SAs from SPI hash */ 6133 TAILQ_FOREACH(sav, &drainq, chain) { 6134 sav->state = SADB_SASTATE_DEAD; 6135 LIST_REMOVE(sav, spihash); 6136 } 6137 SAHTREE_WUNLOCK(); 6138 /* Now we can release reference for all SAs in drainq */ 6139 sav = TAILQ_FIRST(&drainq); 6140 while (sav != NULL) { 6141 KEYDBG(KEY_STAMP, 6142 printf("%s: SA(%p)\n", __func__, sav)); 6143 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6144 nextsav = TAILQ_NEXT(sav, chain); 6145 key_freesah(&sav->sah); /* release reference from SAV */ 6146 key_freesav(&sav); /* release last reference */ 6147 sav = nextsav; 6148 } 6149 6150 { 6151 struct mbuf *n; 6152 struct sadb_msg *newmsg; 6153 6154 /* create new sadb_msg to reply. */ 6155 n = key_gather_mbuf(m, mhp, 1, 3, SADB_EXT_RESERVED, 6156 SADB_EXT_ADDRESS_SRC, SADB_EXT_ADDRESS_DST); 6157 if (!n) 6158 return key_senderror(so, m, ENOBUFS); 6159 6160 if (n->m_len < sizeof(struct sadb_msg)) { 6161 n = m_pullup(n, sizeof(struct sadb_msg)); 6162 if (n == NULL) 6163 return key_senderror(so, m, ENOBUFS); 6164 } 6165 newmsg = mtod(n, struct sadb_msg *); 6166 newmsg->sadb_msg_errno = 0; 6167 newmsg->sadb_msg_len = PFKEY_UNIT64(n->m_pkthdr.len); 6168 6169 m_freem(m); 6170 return key_sendup_mbuf(so, n, KEY_SENDUP_ALL); 6171 } 6172 } 6173 6174 /* 6175 * Delete all alive SAs for corresponding xform. 6176 * Larval SAs have not initialized tdb_xform, so it is safe to leave them 6177 * here when xform disappears. 6178 */ 6179 void 6180 key_delete_xform(const struct xformsw *xsp) 6181 { 6182 struct secasvar_queue drainq; 6183 struct secashead *sah; 6184 struct secasvar *sav, *nextsav; 6185 6186 TAILQ_INIT(&drainq); 6187 SAHTREE_WLOCK(); 6188 TAILQ_FOREACH(sah, &V_sahtree, chain) { 6189 sav = TAILQ_FIRST(&sah->savtree_alive); 6190 if (sav == NULL) 6191 continue; 6192 if (sav->tdb_xform != xsp) 6193 continue; 6194 /* 6195 * It is supposed that all SAs in the chain are related to 6196 * one xform. 6197 */ 6198 TAILQ_CONCAT(&drainq, &sah->savtree_alive, chain); 6199 } 6200 /* Unlink all queued SAs from SPI hash */ 6201 TAILQ_FOREACH(sav, &drainq, chain) { 6202 sav->state = SADB_SASTATE_DEAD; 6203 LIST_REMOVE(sav, spihash); 6204 } 6205 SAHTREE_WUNLOCK(); 6206 6207 /* Now we can release reference for all SAs in drainq */ 6208 sav = TAILQ_FIRST(&drainq); 6209 while (sav != NULL) { 6210 KEYDBG(KEY_STAMP, 6211 printf("%s: SA(%p)\n", __func__, sav)); 6212 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 6213 nextsav = TAILQ_NEXT(sav, chain); 6214 key_freesah(&sav->sah); /* release reference from SAV */ 6215 key_freesav(&sav); /* release last reference */ 6216 sav = nextsav; 6217 } 6218 } 6219 6220 /* 6221 * SADB_GET processing 6222 * receive 6223 * <base, SA(*), address(SD)> 6224 * from the ikmpd, and get a SP and a SA to respond, 6225 * and send, 6226 * <base, SA, (lifetime(HSC),) address(SD), (address(P),) key(AE), 6227 * (identity(SD),) (sensitivity)> 6228 * to the ikmpd. 6229 * 6230 * m will always be freed. 6231 */ 6232 static int 6233 key_get(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 6234 { 6235 struct secasindex saidx; 6236 struct sadb_address *src0, *dst0; 6237 struct sadb_sa *sa0; 6238 struct secasvar *sav; 6239 uint8_t proto; 6240 6241 IPSEC_ASSERT(so != NULL, ("null socket")); 6242 IPSEC_ASSERT(m != NULL, ("null mbuf")); 6243 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 6244 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 6245 6246 /* map satype to proto */ 6247 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 6248 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 6249 __func__)); 6250 return key_senderror(so, m, EINVAL); 6251 } 6252 6253 if (SADB_CHECKHDR(mhp, SADB_EXT_SA) || 6254 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 6255 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST)) { 6256 ipseclog((LOG_DEBUG, 6257 "%s: invalid message: missing required header.\n", 6258 __func__)); 6259 return key_senderror(so, m, EINVAL); 6260 } 6261 if (SADB_CHECKLEN(mhp, SADB_EXT_SA) || 6262 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 6263 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST)) { 6264 ipseclog((LOG_DEBUG, 6265 "%s: invalid message: wrong header size.\n", __func__)); 6266 return key_senderror(so, m, EINVAL); 6267 } 6268 6269 sa0 = (struct sadb_sa *)mhp->ext[SADB_EXT_SA]; 6270 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 6271 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 6272 6273 if (key_checksockaddrs((struct sockaddr *)(src0 + 1), 6274 (struct sockaddr *)(dst0 + 1)) != 0) { 6275 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 6276 return key_senderror(so, m, EINVAL); 6277 } 6278 KEY_SETSECASIDX(proto, IPSEC_MODE_ANY, 0, src0 + 1, dst0 + 1, &saidx); 6279 6280 SPI_ALLOC_LOCK(); 6281 if (proto == IPPROTO_TCP) 6282 sav = key_getsav_tcpmd5(&saidx, NULL); 6283 else 6284 sav = key_getsavbyspi(sa0->sadb_sa_spi); 6285 SPI_ALLOC_UNLOCK(); 6286 if (sav == NULL) { 6287 ipseclog((LOG_DEBUG, "%s: no SA found.\n", __func__)); 6288 return key_senderror(so, m, ESRCH); 6289 } 6290 if (key_cmpsaidx(&sav->sah->saidx, &saidx, CMP_HEAD) == 0) { 6291 ipseclog((LOG_DEBUG, "%s: saidx mismatched for SPI %u.\n", 6292 __func__, ntohl(sa0->sadb_sa_spi))); 6293 key_freesav(&sav); 6294 return (key_senderror(so, m, ESRCH)); 6295 } 6296 6297 { 6298 struct mbuf *n; 6299 uint8_t satype; 6300 6301 /* map proto to satype */ 6302 if ((satype = key_proto2satype(sav->sah->saidx.proto)) == 0) { 6303 ipseclog((LOG_DEBUG, "%s: there was invalid proto in SAD.\n", 6304 __func__)); 6305 key_freesav(&sav); 6306 return key_senderror(so, m, EINVAL); 6307 } 6308 6309 /* create new sadb_msg to reply. */ 6310 n = key_setdumpsa(sav, SADB_GET, satype, mhp->msg->sadb_msg_seq, 6311 mhp->msg->sadb_msg_pid); 6312 6313 key_freesav(&sav); 6314 if (!n) 6315 return key_senderror(so, m, ENOBUFS); 6316 6317 m_freem(m); 6318 return key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 6319 } 6320 } 6321 6322 /* XXX make it sysctl-configurable? */ 6323 static void 6324 key_getcomb_setlifetime(struct sadb_comb *comb) 6325 { 6326 6327 comb->sadb_comb_soft_allocations = 1; 6328 comb->sadb_comb_hard_allocations = 1; 6329 comb->sadb_comb_soft_bytes = 0; 6330 comb->sadb_comb_hard_bytes = 0; 6331 comb->sadb_comb_hard_addtime = 86400; /* 1 day */ 6332 comb->sadb_comb_soft_addtime = comb->sadb_comb_soft_addtime * 80 / 100; 6333 comb->sadb_comb_soft_usetime = 28800; /* 8 hours */ 6334 comb->sadb_comb_hard_usetime = comb->sadb_comb_hard_usetime * 80 / 100; 6335 } 6336 6337 /* 6338 * XXX reorder combinations by preference 6339 * XXX no idea if the user wants ESP authentication or not 6340 */ 6341 static struct mbuf * 6342 key_getcomb_ealg(void) 6343 { 6344 struct sadb_comb *comb; 6345 const struct enc_xform *algo; 6346 struct mbuf *result = NULL, *m, *n; 6347 int encmin; 6348 int i, off, o; 6349 int totlen; 6350 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6351 6352 m = NULL; 6353 for (i = 1; i <= SADB_EALG_MAX; i++) { 6354 algo = enc_algorithm_lookup(i); 6355 if (algo == NULL) 6356 continue; 6357 6358 /* discard algorithms with key size smaller than system min */ 6359 if (_BITS(algo->maxkey) < V_ipsec_esp_keymin) 6360 continue; 6361 if (_BITS(algo->minkey) < V_ipsec_esp_keymin) 6362 encmin = V_ipsec_esp_keymin; 6363 else 6364 encmin = _BITS(algo->minkey); 6365 6366 if (V_ipsec_esp_auth) 6367 m = key_getcomb_ah(); 6368 else { 6369 IPSEC_ASSERT(l <= MLEN, 6370 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6371 MGET(m, M_NOWAIT, MT_DATA); 6372 if (m) { 6373 M_ALIGN(m, l); 6374 m->m_len = l; 6375 m->m_next = NULL; 6376 bzero(mtod(m, caddr_t), m->m_len); 6377 } 6378 } 6379 if (!m) 6380 goto fail; 6381 6382 totlen = 0; 6383 for (n = m; n; n = n->m_next) 6384 totlen += n->m_len; 6385 IPSEC_ASSERT((totlen % l) == 0, ("totlen=%u, l=%u", totlen, l)); 6386 6387 for (off = 0; off < totlen; off += l) { 6388 n = m_pulldown(m, off, l, &o); 6389 if (!n) { 6390 /* m is already freed */ 6391 goto fail; 6392 } 6393 comb = (struct sadb_comb *)(mtod(n, caddr_t) + o); 6394 bzero(comb, sizeof(*comb)); 6395 key_getcomb_setlifetime(comb); 6396 comb->sadb_comb_encrypt = i; 6397 comb->sadb_comb_encrypt_minbits = encmin; 6398 comb->sadb_comb_encrypt_maxbits = _BITS(algo->maxkey); 6399 } 6400 6401 if (!result) 6402 result = m; 6403 else 6404 m_cat(result, m); 6405 } 6406 6407 return result; 6408 6409 fail: 6410 if (result) 6411 m_freem(result); 6412 return NULL; 6413 } 6414 6415 static void 6416 key_getsizes_ah(const struct auth_hash *ah, int alg, u_int16_t* min, 6417 u_int16_t* max) 6418 { 6419 6420 *min = *max = ah->hashsize; 6421 if (ah->keysize == 0) { 6422 /* 6423 * Transform takes arbitrary key size but algorithm 6424 * key size is restricted. Enforce this here. 6425 */ 6426 switch (alg) { 6427 case SADB_X_AALG_NULL: *min = 1; *max = 256; break; 6428 case SADB_X_AALG_SHA2_256: *min = *max = 32; break; 6429 case SADB_X_AALG_SHA2_384: *min = *max = 48; break; 6430 case SADB_X_AALG_SHA2_512: *min = *max = 64; break; 6431 default: 6432 DPRINTF(("%s: unknown AH algorithm %u\n", 6433 __func__, alg)); 6434 break; 6435 } 6436 } 6437 } 6438 6439 /* 6440 * XXX reorder combinations by preference 6441 */ 6442 static struct mbuf * 6443 key_getcomb_ah(void) 6444 { 6445 const struct auth_hash *algo; 6446 struct sadb_comb *comb; 6447 struct mbuf *m; 6448 u_int16_t minkeysize, maxkeysize; 6449 int i; 6450 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6451 6452 m = NULL; 6453 for (i = 1; i <= SADB_AALG_MAX; i++) { 6454 #if 1 6455 /* we prefer HMAC algorithms, not old algorithms */ 6456 if (i != SADB_AALG_SHA1HMAC && 6457 i != SADB_X_AALG_SHA2_256 && 6458 i != SADB_X_AALG_SHA2_384 && 6459 i != SADB_X_AALG_SHA2_512) 6460 continue; 6461 #endif 6462 algo = auth_algorithm_lookup(i); 6463 if (!algo) 6464 continue; 6465 key_getsizes_ah(algo, i, &minkeysize, &maxkeysize); 6466 /* discard algorithms with key size smaller than system min */ 6467 if (_BITS(minkeysize) < V_ipsec_ah_keymin) 6468 continue; 6469 6470 if (!m) { 6471 IPSEC_ASSERT(l <= MLEN, 6472 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6473 MGET(m, M_NOWAIT, MT_DATA); 6474 if (m) { 6475 M_ALIGN(m, l); 6476 m->m_len = l; 6477 m->m_next = NULL; 6478 } 6479 } else 6480 M_PREPEND(m, l, M_NOWAIT); 6481 if (!m) 6482 return NULL; 6483 6484 comb = mtod(m, struct sadb_comb *); 6485 bzero(comb, sizeof(*comb)); 6486 key_getcomb_setlifetime(comb); 6487 comb->sadb_comb_auth = i; 6488 comb->sadb_comb_auth_minbits = _BITS(minkeysize); 6489 comb->sadb_comb_auth_maxbits = _BITS(maxkeysize); 6490 } 6491 6492 return m; 6493 } 6494 6495 /* 6496 * not really an official behavior. discussed in pf_key@inner.net in Sep2000. 6497 * XXX reorder combinations by preference 6498 */ 6499 static struct mbuf * 6500 key_getcomb_ipcomp(void) 6501 { 6502 const struct comp_algo *algo; 6503 struct sadb_comb *comb; 6504 struct mbuf *m; 6505 int i; 6506 const int l = PFKEY_ALIGN8(sizeof(struct sadb_comb)); 6507 6508 m = NULL; 6509 for (i = 1; i <= SADB_X_CALG_MAX; i++) { 6510 algo = comp_algorithm_lookup(i); 6511 if (!algo) 6512 continue; 6513 6514 if (!m) { 6515 IPSEC_ASSERT(l <= MLEN, 6516 ("l=%u > MLEN=%lu", l, (u_long) MLEN)); 6517 MGET(m, M_NOWAIT, MT_DATA); 6518 if (m) { 6519 M_ALIGN(m, l); 6520 m->m_len = l; 6521 m->m_next = NULL; 6522 } 6523 } else 6524 M_PREPEND(m, l, M_NOWAIT); 6525 if (!m) 6526 return NULL; 6527 6528 comb = mtod(m, struct sadb_comb *); 6529 bzero(comb, sizeof(*comb)); 6530 key_getcomb_setlifetime(comb); 6531 comb->sadb_comb_encrypt = i; 6532 /* what should we set into sadb_comb_*_{min,max}bits? */ 6533 } 6534 6535 return m; 6536 } 6537 6538 /* 6539 * XXX no way to pass mode (transport/tunnel) to userland 6540 * XXX replay checking? 6541 * XXX sysctl interface to ipsec_{ah,esp}_keymin 6542 */ 6543 static struct mbuf * 6544 key_getprop(const struct secasindex *saidx) 6545 { 6546 struct sadb_prop *prop; 6547 struct mbuf *m, *n; 6548 const int l = PFKEY_ALIGN8(sizeof(struct sadb_prop)); 6549 int totlen; 6550 6551 switch (saidx->proto) { 6552 case IPPROTO_ESP: 6553 m = key_getcomb_ealg(); 6554 break; 6555 case IPPROTO_AH: 6556 m = key_getcomb_ah(); 6557 break; 6558 case IPPROTO_IPCOMP: 6559 m = key_getcomb_ipcomp(); 6560 break; 6561 default: 6562 return NULL; 6563 } 6564 6565 if (!m) 6566 return NULL; 6567 M_PREPEND(m, l, M_NOWAIT); 6568 if (!m) 6569 return NULL; 6570 6571 totlen = 0; 6572 for (n = m; n; n = n->m_next) 6573 totlen += n->m_len; 6574 6575 prop = mtod(m, struct sadb_prop *); 6576 bzero(prop, sizeof(*prop)); 6577 prop->sadb_prop_len = PFKEY_UNIT64(totlen); 6578 prop->sadb_prop_exttype = SADB_EXT_PROPOSAL; 6579 prop->sadb_prop_replay = 32; /* XXX */ 6580 6581 return m; 6582 } 6583 6584 /* 6585 * SADB_ACQUIRE processing called by key_checkrequest() and key_acquire2(). 6586 * send 6587 * <base, SA, address(SD), (address(P)), x_policy, 6588 * (identity(SD),) (sensitivity,) proposal> 6589 * to KMD, and expect to receive 6590 * <base> with SADB_ACQUIRE if error occurred, 6591 * or 6592 * <base, src address, dst address, (SPI range)> with SADB_GETSPI 6593 * from KMD by PF_KEY. 6594 * 6595 * XXX x_policy is outside of RFC2367 (KAME extension). 6596 * XXX sensitivity is not supported. 6597 * XXX for ipcomp, RFC2367 does not define how to fill in proposal. 6598 * see comment for key_getcomb_ipcomp(). 6599 * 6600 * OUT: 6601 * 0 : succeed 6602 * others: error number 6603 */ 6604 static int 6605 key_acquire(const struct secasindex *saidx, struct secpolicy *sp) 6606 { 6607 union sockaddr_union addr; 6608 struct mbuf *result, *m; 6609 uint32_t seq; 6610 int error; 6611 uint16_t ul_proto; 6612 uint8_t mask, satype; 6613 6614 IPSEC_ASSERT(saidx != NULL, ("null saidx")); 6615 satype = key_proto2satype(saidx->proto); 6616 IPSEC_ASSERT(satype != 0, ("null satype, protocol %u", saidx->proto)); 6617 6618 error = -1; 6619 result = NULL; 6620 ul_proto = IPSEC_ULPROTO_ANY; 6621 6622 /* Get seq number to check whether sending message or not. */ 6623 seq = key_getacq(saidx, &error); 6624 if (seq == 0) 6625 return (error); 6626 6627 m = key_setsadbmsg(SADB_ACQUIRE, 0, satype, seq, 0, 0); 6628 if (!m) { 6629 error = ENOBUFS; 6630 goto fail; 6631 } 6632 result = m; 6633 6634 /* 6635 * set sadb_address for saidx's. 6636 * 6637 * Note that if sp is supplied, then we're being called from 6638 * key_allocsa_policy() and should supply port and protocol 6639 * information. 6640 * XXXAE: why only TCP and UDP? ICMP and SCTP looks applicable too. 6641 * XXXAE: probably we can handle this in the ipsec[46]_allocsa(). 6642 * XXXAE: it looks like we should save this info in the ACQ entry. 6643 */ 6644 if (sp != NULL && (sp->spidx.ul_proto == IPPROTO_TCP || 6645 sp->spidx.ul_proto == IPPROTO_UDP)) 6646 ul_proto = sp->spidx.ul_proto; 6647 6648 addr = saidx->src; 6649 mask = FULLMASK; 6650 if (ul_proto != IPSEC_ULPROTO_ANY) { 6651 switch (sp->spidx.src.sa.sa_family) { 6652 case AF_INET: 6653 if (sp->spidx.src.sin.sin_port != IPSEC_PORT_ANY) { 6654 addr.sin.sin_port = sp->spidx.src.sin.sin_port; 6655 mask = sp->spidx.prefs; 6656 } 6657 break; 6658 case AF_INET6: 6659 if (sp->spidx.src.sin6.sin6_port != IPSEC_PORT_ANY) { 6660 addr.sin6.sin6_port = 6661 sp->spidx.src.sin6.sin6_port; 6662 mask = sp->spidx.prefs; 6663 } 6664 break; 6665 default: 6666 break; 6667 } 6668 } 6669 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, &addr.sa, mask, ul_proto); 6670 if (!m) { 6671 error = ENOBUFS; 6672 goto fail; 6673 } 6674 m_cat(result, m); 6675 6676 addr = saidx->dst; 6677 mask = FULLMASK; 6678 if (ul_proto != IPSEC_ULPROTO_ANY) { 6679 switch (sp->spidx.dst.sa.sa_family) { 6680 case AF_INET: 6681 if (sp->spidx.dst.sin.sin_port != IPSEC_PORT_ANY) { 6682 addr.sin.sin_port = sp->spidx.dst.sin.sin_port; 6683 mask = sp->spidx.prefd; 6684 } 6685 break; 6686 case AF_INET6: 6687 if (sp->spidx.dst.sin6.sin6_port != IPSEC_PORT_ANY) { 6688 addr.sin6.sin6_port = 6689 sp->spidx.dst.sin6.sin6_port; 6690 mask = sp->spidx.prefd; 6691 } 6692 break; 6693 default: 6694 break; 6695 } 6696 } 6697 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, &addr.sa, mask, ul_proto); 6698 if (!m) { 6699 error = ENOBUFS; 6700 goto fail; 6701 } 6702 m_cat(result, m); 6703 6704 /* XXX proxy address (optional) */ 6705 6706 /* 6707 * Set sadb_x_policy. This is KAME extension to RFC2367. 6708 */ 6709 if (sp != NULL) { 6710 m = key_setsadbxpolicy(sp->policy, sp->spidx.dir, sp->id, 6711 sp->priority); 6712 if (!m) { 6713 error = ENOBUFS; 6714 goto fail; 6715 } 6716 m_cat(result, m); 6717 } 6718 6719 /* 6720 * Set sadb_x_sa2 extension if saidx->reqid is not zero. 6721 * This is FreeBSD extension to RFC2367. 6722 */ 6723 if (saidx->reqid != 0) { 6724 m = key_setsadbxsa2(saidx->mode, 0, saidx->reqid); 6725 if (m == NULL) { 6726 error = ENOBUFS; 6727 goto fail; 6728 } 6729 m_cat(result, m); 6730 } 6731 /* XXX identity (optional) */ 6732 #if 0 6733 if (idexttype && fqdn) { 6734 /* create identity extension (FQDN) */ 6735 struct sadb_ident *id; 6736 int fqdnlen; 6737 6738 fqdnlen = strlen(fqdn) + 1; /* +1 for terminating-NUL */ 6739 id = (struct sadb_ident *)p; 6740 bzero(id, sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6741 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(fqdnlen)); 6742 id->sadb_ident_exttype = idexttype; 6743 id->sadb_ident_type = SADB_IDENTTYPE_FQDN; 6744 bcopy(fqdn, id + 1, fqdnlen); 6745 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(fqdnlen); 6746 } 6747 6748 if (idexttype) { 6749 /* create identity extension (USERFQDN) */ 6750 struct sadb_ident *id; 6751 int userfqdnlen; 6752 6753 if (userfqdn) { 6754 /* +1 for terminating-NUL */ 6755 userfqdnlen = strlen(userfqdn) + 1; 6756 } else 6757 userfqdnlen = 0; 6758 id = (struct sadb_ident *)p; 6759 bzero(id, sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6760 id->sadb_ident_len = PFKEY_UNIT64(sizeof(*id) + PFKEY_ALIGN8(userfqdnlen)); 6761 id->sadb_ident_exttype = idexttype; 6762 id->sadb_ident_type = SADB_IDENTTYPE_USERFQDN; 6763 /* XXX is it correct? */ 6764 if (curproc && curproc->p_cred) 6765 id->sadb_ident_id = curproc->p_cred->p_ruid; 6766 if (userfqdn && userfqdnlen) 6767 bcopy(userfqdn, id + 1, userfqdnlen); 6768 p += sizeof(struct sadb_ident) + PFKEY_ALIGN8(userfqdnlen); 6769 } 6770 #endif 6771 6772 /* XXX sensitivity (optional) */ 6773 6774 /* create proposal/combination extension */ 6775 m = key_getprop(saidx); 6776 #if 0 6777 /* 6778 * spec conformant: always attach proposal/combination extension, 6779 * the problem is that we have no way to attach it for ipcomp, 6780 * due to the way sadb_comb is declared in RFC2367. 6781 */ 6782 if (!m) { 6783 error = ENOBUFS; 6784 goto fail; 6785 } 6786 m_cat(result, m); 6787 #else 6788 /* 6789 * outside of spec; make proposal/combination extension optional. 6790 */ 6791 if (m) 6792 m_cat(result, m); 6793 #endif 6794 6795 if ((result->m_flags & M_PKTHDR) == 0) { 6796 error = EINVAL; 6797 goto fail; 6798 } 6799 6800 if (result->m_len < sizeof(struct sadb_msg)) { 6801 result = m_pullup(result, sizeof(struct sadb_msg)); 6802 if (result == NULL) { 6803 error = ENOBUFS; 6804 goto fail; 6805 } 6806 } 6807 6808 result->m_pkthdr.len = 0; 6809 for (m = result; m; m = m->m_next) 6810 result->m_pkthdr.len += m->m_len; 6811 6812 mtod(result, struct sadb_msg *)->sadb_msg_len = 6813 PFKEY_UNIT64(result->m_pkthdr.len); 6814 6815 KEYDBG(KEY_STAMP, 6816 printf("%s: SP(%p)\n", __func__, sp)); 6817 KEYDBG(KEY_DATA, kdebug_secasindex(saidx, NULL)); 6818 6819 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 6820 6821 fail: 6822 if (result) 6823 m_freem(result); 6824 return error; 6825 } 6826 6827 static uint32_t 6828 key_newacq(const struct secasindex *saidx, int *perror) 6829 { 6830 struct secacq *acq; 6831 uint32_t seq; 6832 6833 acq = malloc(sizeof(*acq), M_IPSEC_SAQ, M_NOWAIT | M_ZERO); 6834 if (acq == NULL) { 6835 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6836 *perror = ENOBUFS; 6837 return (0); 6838 } 6839 6840 /* copy secindex */ 6841 bcopy(saidx, &acq->saidx, sizeof(acq->saidx)); 6842 acq->created = time_second; 6843 acq->count = 0; 6844 6845 /* add to acqtree */ 6846 ACQ_LOCK(); 6847 seq = acq->seq = (V_acq_seq == ~0 ? 1 : ++V_acq_seq); 6848 LIST_INSERT_HEAD(&V_acqtree, acq, chain); 6849 LIST_INSERT_HEAD(ACQADDRHASH_HASH(saidx), acq, addrhash); 6850 LIST_INSERT_HEAD(ACQSEQHASH_HASH(seq), acq, seqhash); 6851 ACQ_UNLOCK(); 6852 *perror = 0; 6853 return (seq); 6854 } 6855 6856 static uint32_t 6857 key_getacq(const struct secasindex *saidx, int *perror) 6858 { 6859 struct secacq *acq; 6860 uint32_t seq; 6861 6862 ACQ_LOCK(); 6863 LIST_FOREACH(acq, ACQADDRHASH_HASH(saidx), addrhash) { 6864 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY)) { 6865 if (acq->count > V_key_blockacq_count) { 6866 /* 6867 * Reset counter and send message. 6868 * Also reset created time to keep ACQ for 6869 * this saidx. 6870 */ 6871 acq->created = time_second; 6872 acq->count = 0; 6873 seq = acq->seq; 6874 } else { 6875 /* 6876 * Increment counter and do nothing. 6877 * We send SADB_ACQUIRE message only 6878 * for each V_key_blockacq_count packet. 6879 */ 6880 acq->count++; 6881 seq = 0; 6882 } 6883 break; 6884 } 6885 } 6886 ACQ_UNLOCK(); 6887 if (acq != NULL) { 6888 *perror = 0; 6889 return (seq); 6890 } 6891 /* allocate new entry */ 6892 return (key_newacq(saidx, perror)); 6893 } 6894 6895 static int 6896 key_acqreset(uint32_t seq) 6897 { 6898 struct secacq *acq; 6899 6900 ACQ_LOCK(); 6901 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6902 if (acq->seq == seq) { 6903 acq->count = 0; 6904 acq->created = time_second; 6905 break; 6906 } 6907 } 6908 ACQ_UNLOCK(); 6909 if (acq == NULL) 6910 return (ESRCH); 6911 return (0); 6912 } 6913 /* 6914 * Mark ACQ entry as stale to remove it in key_flush_acq(). 6915 * Called after successful SADB_GETSPI message. 6916 */ 6917 static int 6918 key_acqdone(const struct secasindex *saidx, uint32_t seq) 6919 { 6920 struct secacq *acq; 6921 6922 ACQ_LOCK(); 6923 LIST_FOREACH(acq, ACQSEQHASH_HASH(seq), seqhash) { 6924 if (acq->seq == seq) 6925 break; 6926 } 6927 if (acq != NULL) { 6928 if (key_cmpsaidx(&acq->saidx, saidx, CMP_EXACTLY) == 0) { 6929 ipseclog((LOG_DEBUG, 6930 "%s: Mismatched saidx for ACQ %u\n", __func__, seq)); 6931 acq = NULL; 6932 } else { 6933 acq->created = 0; 6934 } 6935 } else { 6936 ipseclog((LOG_DEBUG, 6937 "%s: ACQ %u is not found.\n", __func__, seq)); 6938 } 6939 ACQ_UNLOCK(); 6940 if (acq == NULL) 6941 return (ESRCH); 6942 return (0); 6943 } 6944 6945 static struct secspacq * 6946 key_newspacq(struct secpolicyindex *spidx) 6947 { 6948 struct secspacq *acq; 6949 6950 /* get new entry */ 6951 acq = malloc(sizeof(struct secspacq), M_IPSEC_SAQ, M_NOWAIT|M_ZERO); 6952 if (acq == NULL) { 6953 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 6954 return NULL; 6955 } 6956 6957 /* copy secindex */ 6958 bcopy(spidx, &acq->spidx, sizeof(acq->spidx)); 6959 acq->created = time_second; 6960 acq->count = 0; 6961 6962 /* add to spacqtree */ 6963 SPACQ_LOCK(); 6964 LIST_INSERT_HEAD(&V_spacqtree, acq, chain); 6965 SPACQ_UNLOCK(); 6966 6967 return acq; 6968 } 6969 6970 static struct secspacq * 6971 key_getspacq(struct secpolicyindex *spidx) 6972 { 6973 struct secspacq *acq; 6974 6975 SPACQ_LOCK(); 6976 LIST_FOREACH(acq, &V_spacqtree, chain) { 6977 if (key_cmpspidx_exactly(spidx, &acq->spidx)) { 6978 /* NB: return holding spacq_lock */ 6979 return acq; 6980 } 6981 } 6982 SPACQ_UNLOCK(); 6983 6984 return NULL; 6985 } 6986 6987 /* 6988 * SADB_ACQUIRE processing, 6989 * in first situation, is receiving 6990 * <base> 6991 * from the ikmpd, and clear sequence of its secasvar entry. 6992 * 6993 * In second situation, is receiving 6994 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6995 * from a user land process, and return 6996 * <base, address(SD), (address(P),) (identity(SD),) (sensitivity,) proposal> 6997 * to the socket. 6998 * 6999 * m will always be freed. 7000 */ 7001 static int 7002 key_acquire2(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7003 { 7004 SAHTREE_RLOCK_TRACKER; 7005 struct sadb_address *src0, *dst0; 7006 struct secasindex saidx; 7007 struct secashead *sah; 7008 uint32_t reqid; 7009 int error; 7010 uint8_t mode, proto; 7011 7012 IPSEC_ASSERT(so != NULL, ("null socket")); 7013 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7014 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7015 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7016 7017 /* 7018 * Error message from KMd. 7019 * We assume that if error was occurred in IKEd, the length of PFKEY 7020 * message is equal to the size of sadb_msg structure. 7021 * We do not raise error even if error occurred in this function. 7022 */ 7023 if (mhp->msg->sadb_msg_len == PFKEY_UNIT64(sizeof(struct sadb_msg))) { 7024 /* check sequence number */ 7025 if (mhp->msg->sadb_msg_seq == 0 || 7026 mhp->msg->sadb_msg_errno == 0) { 7027 ipseclog((LOG_DEBUG, "%s: must specify sequence " 7028 "number and errno.\n", __func__)); 7029 } else { 7030 /* 7031 * IKEd reported that error occurred. 7032 * XXXAE: what it expects from the kernel? 7033 * Probably we should send SADB_ACQUIRE again? 7034 * If so, reset ACQ's state. 7035 * XXXAE: it looks useless. 7036 */ 7037 key_acqreset(mhp->msg->sadb_msg_seq); 7038 } 7039 m_freem(m); 7040 return (0); 7041 } 7042 7043 /* 7044 * This message is from user land. 7045 */ 7046 7047 /* map satype to proto */ 7048 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7049 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7050 __func__)); 7051 return key_senderror(so, m, EINVAL); 7052 } 7053 7054 if (SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_SRC) || 7055 SADB_CHECKHDR(mhp, SADB_EXT_ADDRESS_DST) || 7056 SADB_CHECKHDR(mhp, SADB_EXT_PROPOSAL)) { 7057 ipseclog((LOG_DEBUG, 7058 "%s: invalid message: missing required header.\n", 7059 __func__)); 7060 return key_senderror(so, m, EINVAL); 7061 } 7062 if (SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_SRC) || 7063 SADB_CHECKLEN(mhp, SADB_EXT_ADDRESS_DST) || 7064 SADB_CHECKLEN(mhp, SADB_EXT_PROPOSAL)) { 7065 ipseclog((LOG_DEBUG, 7066 "%s: invalid message: wrong header size.\n", __func__)); 7067 return key_senderror(so, m, EINVAL); 7068 } 7069 7070 if (SADB_CHECKHDR(mhp, SADB_X_EXT_SA2)) { 7071 mode = IPSEC_MODE_ANY; 7072 reqid = 0; 7073 } else { 7074 if (SADB_CHECKLEN(mhp, SADB_X_EXT_SA2)) { 7075 ipseclog((LOG_DEBUG, 7076 "%s: invalid message: wrong header size.\n", 7077 __func__)); 7078 return key_senderror(so, m, EINVAL); 7079 } 7080 mode = ((struct sadb_x_sa2 *) 7081 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_mode; 7082 reqid = ((struct sadb_x_sa2 *) 7083 mhp->ext[SADB_X_EXT_SA2])->sadb_x_sa2_reqid; 7084 } 7085 7086 src0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_SRC]; 7087 dst0 = (struct sadb_address *)mhp->ext[SADB_EXT_ADDRESS_DST]; 7088 7089 error = key_checksockaddrs((struct sockaddr *)(src0 + 1), 7090 (struct sockaddr *)(dst0 + 1)); 7091 if (error != 0) { 7092 ipseclog((LOG_DEBUG, "%s: invalid sockaddr.\n", __func__)); 7093 return key_senderror(so, m, EINVAL); 7094 } 7095 KEY_SETSECASIDX(proto, mode, reqid, src0 + 1, dst0 + 1, &saidx); 7096 7097 /* get a SA index */ 7098 SAHTREE_RLOCK(); 7099 LIST_FOREACH(sah, SAHADDRHASH_HASH(&saidx), addrhash) { 7100 if (key_cmpsaidx(&sah->saidx, &saidx, CMP_MODE_REQID)) 7101 break; 7102 } 7103 SAHTREE_RUNLOCK(); 7104 if (sah != NULL) { 7105 ipseclog((LOG_DEBUG, "%s: a SA exists already.\n", __func__)); 7106 return key_senderror(so, m, EEXIST); 7107 } 7108 7109 error = key_acquire(&saidx, NULL); 7110 if (error != 0) { 7111 ipseclog((LOG_DEBUG, 7112 "%s: error %d returned from key_acquire()\n", 7113 __func__, error)); 7114 return key_senderror(so, m, error); 7115 } 7116 m_freem(m); 7117 return (0); 7118 } 7119 7120 /* 7121 * SADB_REGISTER processing. 7122 * If SATYPE_UNSPEC has been passed as satype, only return sabd_supported. 7123 * receive 7124 * <base> 7125 * from the ikmpd, and register a socket to send PF_KEY messages, 7126 * and send 7127 * <base, supported> 7128 * to KMD by PF_KEY. 7129 * If socket is detached, must free from regnode. 7130 * 7131 * m will always be freed. 7132 */ 7133 static int 7134 key_register(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7135 { 7136 struct secreg *reg, *newreg = NULL; 7137 7138 IPSEC_ASSERT(so != NULL, ("null socket")); 7139 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7140 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7141 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7142 7143 /* check for invalid register message */ 7144 if (mhp->msg->sadb_msg_satype >= sizeof(V_regtree)/sizeof(V_regtree[0])) 7145 return key_senderror(so, m, EINVAL); 7146 7147 /* When SATYPE_UNSPEC is specified, only return sabd_supported. */ 7148 if (mhp->msg->sadb_msg_satype == SADB_SATYPE_UNSPEC) 7149 goto setmsg; 7150 7151 /* check whether existing or not */ 7152 REGTREE_LOCK(); 7153 LIST_FOREACH(reg, &V_regtree[mhp->msg->sadb_msg_satype], chain) { 7154 if (reg->so == so) { 7155 REGTREE_UNLOCK(); 7156 ipseclog((LOG_DEBUG, "%s: socket exists already.\n", 7157 __func__)); 7158 return key_senderror(so, m, EEXIST); 7159 } 7160 } 7161 7162 /* create regnode */ 7163 newreg = malloc(sizeof(struct secreg), M_IPSEC_SAR, M_NOWAIT|M_ZERO); 7164 if (newreg == NULL) { 7165 REGTREE_UNLOCK(); 7166 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7167 return key_senderror(so, m, ENOBUFS); 7168 } 7169 7170 newreg->so = so; 7171 ((struct keycb *)(so->so_pcb))->kp_registered++; 7172 7173 /* add regnode to regtree. */ 7174 LIST_INSERT_HEAD(&V_regtree[mhp->msg->sadb_msg_satype], newreg, chain); 7175 REGTREE_UNLOCK(); 7176 7177 setmsg: 7178 { 7179 struct mbuf *n; 7180 struct sadb_msg *newmsg; 7181 struct sadb_supported *sup; 7182 u_int len, alen, elen; 7183 int off; 7184 int i; 7185 struct sadb_alg *alg; 7186 7187 /* create new sadb_msg to reply. */ 7188 alen = 0; 7189 for (i = 1; i <= SADB_AALG_MAX; i++) { 7190 if (auth_algorithm_lookup(i)) 7191 alen += sizeof(struct sadb_alg); 7192 } 7193 if (alen) 7194 alen += sizeof(struct sadb_supported); 7195 elen = 0; 7196 for (i = 1; i <= SADB_EALG_MAX; i++) { 7197 if (enc_algorithm_lookup(i)) 7198 elen += sizeof(struct sadb_alg); 7199 } 7200 if (elen) 7201 elen += sizeof(struct sadb_supported); 7202 7203 len = sizeof(struct sadb_msg) + alen + elen; 7204 7205 if (len > MCLBYTES) 7206 return key_senderror(so, m, ENOBUFS); 7207 7208 n = key_mget(len); 7209 if (n == NULL) 7210 return key_senderror(so, m, ENOBUFS); 7211 7212 n->m_pkthdr.len = n->m_len = len; 7213 n->m_next = NULL; 7214 off = 0; 7215 7216 m_copydata(m, 0, sizeof(struct sadb_msg), mtod(n, caddr_t) + off); 7217 newmsg = mtod(n, struct sadb_msg *); 7218 newmsg->sadb_msg_errno = 0; 7219 newmsg->sadb_msg_len = PFKEY_UNIT64(len); 7220 off += PFKEY_ALIGN8(sizeof(struct sadb_msg)); 7221 7222 /* for authentication algorithm */ 7223 if (alen) { 7224 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7225 sup->sadb_supported_len = PFKEY_UNIT64(alen); 7226 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_AUTH; 7227 off += PFKEY_ALIGN8(sizeof(*sup)); 7228 7229 for (i = 1; i <= SADB_AALG_MAX; i++) { 7230 const struct auth_hash *aalgo; 7231 u_int16_t minkeysize, maxkeysize; 7232 7233 aalgo = auth_algorithm_lookup(i); 7234 if (!aalgo) 7235 continue; 7236 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7237 alg->sadb_alg_id = i; 7238 alg->sadb_alg_ivlen = 0; 7239 key_getsizes_ah(aalgo, i, &minkeysize, &maxkeysize); 7240 alg->sadb_alg_minbits = _BITS(minkeysize); 7241 alg->sadb_alg_maxbits = _BITS(maxkeysize); 7242 off += PFKEY_ALIGN8(sizeof(*alg)); 7243 } 7244 } 7245 7246 /* for encryption algorithm */ 7247 if (elen) { 7248 sup = (struct sadb_supported *)(mtod(n, caddr_t) + off); 7249 sup->sadb_supported_len = PFKEY_UNIT64(elen); 7250 sup->sadb_supported_exttype = SADB_EXT_SUPPORTED_ENCRYPT; 7251 off += PFKEY_ALIGN8(sizeof(*sup)); 7252 7253 for (i = 1; i <= SADB_EALG_MAX; i++) { 7254 const struct enc_xform *ealgo; 7255 7256 ealgo = enc_algorithm_lookup(i); 7257 if (!ealgo) 7258 continue; 7259 alg = (struct sadb_alg *)(mtod(n, caddr_t) + off); 7260 alg->sadb_alg_id = i; 7261 alg->sadb_alg_ivlen = ealgo->ivsize; 7262 alg->sadb_alg_minbits = _BITS(ealgo->minkey); 7263 alg->sadb_alg_maxbits = _BITS(ealgo->maxkey); 7264 off += PFKEY_ALIGN8(sizeof(struct sadb_alg)); 7265 } 7266 } 7267 7268 IPSEC_ASSERT(off == len, 7269 ("length assumption failed (off %u len %u)", off, len)); 7270 7271 m_freem(m); 7272 return key_sendup_mbuf(so, n, KEY_SENDUP_REGISTERED); 7273 } 7274 } 7275 7276 /* 7277 * free secreg entry registered. 7278 * XXX: I want to do free a socket marked done SADB_RESIGER to socket. 7279 */ 7280 void 7281 key_freereg(struct socket *so) 7282 { 7283 struct secreg *reg; 7284 int i; 7285 7286 IPSEC_ASSERT(so != NULL, ("NULL so")); 7287 7288 /* 7289 * check whether existing or not. 7290 * check all type of SA, because there is a potential that 7291 * one socket is registered to multiple type of SA. 7292 */ 7293 REGTREE_LOCK(); 7294 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 7295 LIST_FOREACH(reg, &V_regtree[i], chain) { 7296 if (reg->so == so && __LIST_CHAINED(reg)) { 7297 LIST_REMOVE(reg, chain); 7298 free(reg, M_IPSEC_SAR); 7299 break; 7300 } 7301 } 7302 } 7303 REGTREE_UNLOCK(); 7304 } 7305 7306 /* 7307 * SADB_EXPIRE processing 7308 * send 7309 * <base, SA, SA2, lifetime(C and one of HS), address(SD)> 7310 * to KMD by PF_KEY. 7311 * NOTE: We send only soft lifetime extension. 7312 * 7313 * OUT: 0 : succeed 7314 * others : error number 7315 */ 7316 static int 7317 key_expire(struct secasvar *sav, int hard) 7318 { 7319 struct mbuf *result = NULL, *m; 7320 struct sadb_lifetime *lt; 7321 uint32_t replay_count; 7322 int error, len; 7323 uint8_t satype; 7324 7325 SECASVAR_RLOCK_TRACKER; 7326 7327 IPSEC_ASSERT (sav != NULL, ("null sav")); 7328 IPSEC_ASSERT (sav->sah != NULL, ("null sa header")); 7329 7330 KEYDBG(KEY_STAMP, 7331 printf("%s: SA(%p) expired %s lifetime\n", __func__, 7332 sav, hard ? "hard": "soft")); 7333 KEYDBG(KEY_DATA, kdebug_secasv(sav)); 7334 /* set msg header */ 7335 satype = key_proto2satype(sav->sah->saidx.proto); 7336 IPSEC_ASSERT(satype != 0, ("invalid proto, satype %u", satype)); 7337 m = key_setsadbmsg(SADB_EXPIRE, 0, satype, sav->seq, 0, sav->refcnt); 7338 if (!m) { 7339 error = ENOBUFS; 7340 goto fail; 7341 } 7342 result = m; 7343 7344 /* create SA extension */ 7345 m = key_setsadbsa(sav); 7346 if (!m) { 7347 error = ENOBUFS; 7348 goto fail; 7349 } 7350 m_cat(result, m); 7351 7352 /* create SA extension */ 7353 SECASVAR_RLOCK(sav); 7354 replay_count = sav->replay ? sav->replay->count : 0; 7355 SECASVAR_RUNLOCK(sav); 7356 7357 m = key_setsadbxsa2(sav->sah->saidx.mode, replay_count, 7358 sav->sah->saidx.reqid); 7359 if (!m) { 7360 error = ENOBUFS; 7361 goto fail; 7362 } 7363 m_cat(result, m); 7364 7365 if (sav->replay && sav->replay->wsize > UINT8_MAX) { 7366 m = key_setsadbxsareplay(sav->replay->wsize); 7367 if (!m) { 7368 error = ENOBUFS; 7369 goto fail; 7370 } 7371 m_cat(result, m); 7372 } 7373 7374 /* create lifetime extension (current and soft) */ 7375 len = PFKEY_ALIGN8(sizeof(*lt)) * 2; 7376 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 7377 if (m == NULL) { 7378 error = ENOBUFS; 7379 goto fail; 7380 } 7381 m_align(m, len); 7382 m->m_len = len; 7383 bzero(mtod(m, caddr_t), len); 7384 lt = mtod(m, struct sadb_lifetime *); 7385 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7386 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_CURRENT; 7387 lt->sadb_lifetime_allocations = 7388 (uint32_t)counter_u64_fetch(sav->lft_c_allocations); 7389 lt->sadb_lifetime_bytes = 7390 counter_u64_fetch(sav->lft_c_bytes); 7391 lt->sadb_lifetime_addtime = sav->created; 7392 lt->sadb_lifetime_usetime = sav->firstused; 7393 lt = (struct sadb_lifetime *)(mtod(m, caddr_t) + len / 2); 7394 lt->sadb_lifetime_len = PFKEY_UNIT64(sizeof(struct sadb_lifetime)); 7395 if (hard) { 7396 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_HARD; 7397 lt->sadb_lifetime_allocations = sav->lft_h->allocations; 7398 lt->sadb_lifetime_bytes = sav->lft_h->bytes; 7399 lt->sadb_lifetime_addtime = sav->lft_h->addtime; 7400 lt->sadb_lifetime_usetime = sav->lft_h->usetime; 7401 } else { 7402 lt->sadb_lifetime_exttype = SADB_EXT_LIFETIME_SOFT; 7403 lt->sadb_lifetime_allocations = sav->lft_s->allocations; 7404 lt->sadb_lifetime_bytes = sav->lft_s->bytes; 7405 lt->sadb_lifetime_addtime = sav->lft_s->addtime; 7406 lt->sadb_lifetime_usetime = sav->lft_s->usetime; 7407 } 7408 m_cat(result, m); 7409 7410 /* set sadb_address for source */ 7411 m = key_setsadbaddr(SADB_EXT_ADDRESS_SRC, 7412 &sav->sah->saidx.src.sa, 7413 FULLMASK, IPSEC_ULPROTO_ANY); 7414 if (!m) { 7415 error = ENOBUFS; 7416 goto fail; 7417 } 7418 m_cat(result, m); 7419 7420 /* set sadb_address for destination */ 7421 m = key_setsadbaddr(SADB_EXT_ADDRESS_DST, 7422 &sav->sah->saidx.dst.sa, 7423 FULLMASK, IPSEC_ULPROTO_ANY); 7424 if (!m) { 7425 error = ENOBUFS; 7426 goto fail; 7427 } 7428 m_cat(result, m); 7429 7430 /* 7431 * XXX-BZ Handle NAT-T extensions here. 7432 * XXXAE: it doesn't seem quite useful. IKEs should not depend on 7433 * this information, we report only significant SA fields. 7434 */ 7435 7436 if ((result->m_flags & M_PKTHDR) == 0) { 7437 error = EINVAL; 7438 goto fail; 7439 } 7440 7441 if (result->m_len < sizeof(struct sadb_msg)) { 7442 result = m_pullup(result, sizeof(struct sadb_msg)); 7443 if (result == NULL) { 7444 error = ENOBUFS; 7445 goto fail; 7446 } 7447 } 7448 7449 result->m_pkthdr.len = 0; 7450 for (m = result; m; m = m->m_next) 7451 result->m_pkthdr.len += m->m_len; 7452 7453 mtod(result, struct sadb_msg *)->sadb_msg_len = 7454 PFKEY_UNIT64(result->m_pkthdr.len); 7455 7456 return key_sendup_mbuf(NULL, result, KEY_SENDUP_REGISTERED); 7457 7458 fail: 7459 if (result) 7460 m_freem(result); 7461 return error; 7462 } 7463 7464 static void 7465 key_freesah_flushed(struct secashead_queue *flushq) 7466 { 7467 struct secashead *sah, *nextsah; 7468 struct secasvar *sav, *nextsav; 7469 7470 sah = TAILQ_FIRST(flushq); 7471 while (sah != NULL) { 7472 sav = TAILQ_FIRST(&sah->savtree_larval); 7473 while (sav != NULL) { 7474 nextsav = TAILQ_NEXT(sav, chain); 7475 TAILQ_REMOVE(&sah->savtree_larval, sav, chain); 7476 key_freesav(&sav); /* release last reference */ 7477 key_freesah(&sah); /* release reference from SAV */ 7478 sav = nextsav; 7479 } 7480 sav = TAILQ_FIRST(&sah->savtree_alive); 7481 while (sav != NULL) { 7482 nextsav = TAILQ_NEXT(sav, chain); 7483 TAILQ_REMOVE(&sah->savtree_alive, sav, chain); 7484 key_freesav(&sav); /* release last reference */ 7485 key_freesah(&sah); /* release reference from SAV */ 7486 sav = nextsav; 7487 } 7488 nextsah = TAILQ_NEXT(sah, chain); 7489 key_freesah(&sah); /* release last reference */ 7490 sah = nextsah; 7491 } 7492 } 7493 7494 /* 7495 * SADB_FLUSH processing 7496 * receive 7497 * <base> 7498 * from the ikmpd, and free all entries in secastree. 7499 * and send, 7500 * <base> 7501 * to the ikmpd. 7502 * NOTE: to do is only marking SADB_SASTATE_DEAD. 7503 * 7504 * m will always be freed. 7505 */ 7506 static int 7507 key_flush(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7508 { 7509 struct secashead_queue flushq; 7510 struct sadb_msg *newmsg; 7511 struct secashead *sah, *nextsah; 7512 struct secasvar *sav; 7513 uint8_t proto; 7514 int i; 7515 7516 IPSEC_ASSERT(so != NULL, ("null socket")); 7517 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7518 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7519 7520 /* map satype to proto */ 7521 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7522 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7523 __func__)); 7524 return key_senderror(so, m, EINVAL); 7525 } 7526 KEYDBG(KEY_STAMP, 7527 printf("%s: proto %u\n", __func__, proto)); 7528 7529 TAILQ_INIT(&flushq); 7530 if (proto == IPSEC_PROTO_ANY) { 7531 /* no SATYPE specified, i.e. flushing all SA. */ 7532 SAHTREE_WLOCK(); 7533 /* Move all SAHs into flushq */ 7534 TAILQ_CONCAT(&flushq, &V_sahtree, chain); 7535 /* Flush all buckets in SPI hash */ 7536 for (i = 0; i < V_savhash_mask + 1; i++) 7537 LIST_INIT(&V_savhashtbl[i]); 7538 /* Flush all buckets in SAHADDRHASH */ 7539 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 7540 LIST_INIT(&V_sahaddrhashtbl[i]); 7541 /* Mark all SAHs as unlinked */ 7542 TAILQ_FOREACH(sah, &flushq, chain) { 7543 sah->state = SADB_SASTATE_DEAD; 7544 /* 7545 * Callout handler makes its job using 7546 * RLOCK and drain queues. In case, when this 7547 * function will be called just before it 7548 * acquires WLOCK, we need to mark SAs as 7549 * unlinked to prevent second unlink. 7550 */ 7551 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7552 sav->state = SADB_SASTATE_DEAD; 7553 } 7554 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7555 sav->state = SADB_SASTATE_DEAD; 7556 } 7557 } 7558 SAHTREE_WUNLOCK(); 7559 } else { 7560 SAHTREE_WLOCK(); 7561 sah = TAILQ_FIRST(&V_sahtree); 7562 while (sah != NULL) { 7563 IPSEC_ASSERT(sah->state != SADB_SASTATE_DEAD, 7564 ("DEAD SAH %p in SADB_FLUSH", sah)); 7565 nextsah = TAILQ_NEXT(sah, chain); 7566 if (sah->saidx.proto != proto) { 7567 sah = nextsah; 7568 continue; 7569 } 7570 sah->state = SADB_SASTATE_DEAD; 7571 TAILQ_REMOVE(&V_sahtree, sah, chain); 7572 LIST_REMOVE(sah, addrhash); 7573 /* Unlink all SAs from SPI hash */ 7574 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7575 LIST_REMOVE(sav, spihash); 7576 sav->state = SADB_SASTATE_DEAD; 7577 } 7578 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7579 LIST_REMOVE(sav, spihash); 7580 sav->state = SADB_SASTATE_DEAD; 7581 } 7582 /* Add SAH into flushq */ 7583 TAILQ_INSERT_HEAD(&flushq, sah, chain); 7584 sah = nextsah; 7585 } 7586 SAHTREE_WUNLOCK(); 7587 } 7588 7589 key_freesah_flushed(&flushq); 7590 /* Free all queued SAs and SAHs */ 7591 if (m->m_len < sizeof(struct sadb_msg) || 7592 sizeof(struct sadb_msg) > m->m_len + M_TRAILINGSPACE(m)) { 7593 ipseclog((LOG_DEBUG, "%s: No more memory.\n", __func__)); 7594 return key_senderror(so, m, ENOBUFS); 7595 } 7596 7597 if (m->m_next) 7598 m_freem(m->m_next); 7599 m->m_next = NULL; 7600 m->m_pkthdr.len = m->m_len = sizeof(struct sadb_msg); 7601 newmsg = mtod(m, struct sadb_msg *); 7602 newmsg->sadb_msg_errno = 0; 7603 newmsg->sadb_msg_len = PFKEY_UNIT64(m->m_pkthdr.len); 7604 7605 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7606 } 7607 7608 /* 7609 * SADB_DUMP processing 7610 * dump all entries including status of DEAD in SAD. 7611 * receive 7612 * <base> 7613 * from the ikmpd, and dump all secasvar leaves 7614 * and send, 7615 * <base> ..... 7616 * to the ikmpd. 7617 * 7618 * m will always be freed. 7619 */ 7620 static int 7621 key_dump(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7622 { 7623 SAHTREE_RLOCK_TRACKER; 7624 struct secashead *sah; 7625 struct secasvar *sav; 7626 struct mbuf *n; 7627 uint32_t cnt; 7628 uint8_t proto, satype; 7629 7630 IPSEC_ASSERT(so != NULL, ("null socket")); 7631 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7632 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7633 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7634 7635 /* map satype to proto */ 7636 if ((proto = key_satype2proto(mhp->msg->sadb_msg_satype)) == 0) { 7637 ipseclog((LOG_DEBUG, "%s: invalid satype is passed.\n", 7638 __func__)); 7639 return key_senderror(so, m, EINVAL); 7640 } 7641 7642 /* count sav entries to be sent to the userland. */ 7643 cnt = 0; 7644 SAHTREE_RLOCK(); 7645 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7646 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7647 proto != sah->saidx.proto) 7648 continue; 7649 7650 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) 7651 cnt++; 7652 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) 7653 cnt++; 7654 } 7655 7656 if (cnt == 0) { 7657 SAHTREE_RUNLOCK(); 7658 return key_senderror(so, m, ENOENT); 7659 } 7660 7661 /* send this to the userland, one at a time. */ 7662 TAILQ_FOREACH(sah, &V_sahtree, chain) { 7663 if (mhp->msg->sadb_msg_satype != SADB_SATYPE_UNSPEC && 7664 proto != sah->saidx.proto) 7665 continue; 7666 7667 /* map proto to satype */ 7668 if ((satype = key_proto2satype(sah->saidx.proto)) == 0) { 7669 SAHTREE_RUNLOCK(); 7670 ipseclog((LOG_DEBUG, "%s: there was invalid proto in " 7671 "SAD.\n", __func__)); 7672 return key_senderror(so, m, EINVAL); 7673 } 7674 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 7675 n = key_setdumpsa(sav, SADB_DUMP, satype, 7676 --cnt, mhp->msg->sadb_msg_pid); 7677 if (n == NULL) { 7678 SAHTREE_RUNLOCK(); 7679 return key_senderror(so, m, ENOBUFS); 7680 } 7681 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7682 } 7683 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 7684 n = key_setdumpsa(sav, SADB_DUMP, satype, 7685 --cnt, mhp->msg->sadb_msg_pid); 7686 if (n == NULL) { 7687 SAHTREE_RUNLOCK(); 7688 return key_senderror(so, m, ENOBUFS); 7689 } 7690 key_sendup_mbuf(so, n, KEY_SENDUP_ONE); 7691 } 7692 } 7693 SAHTREE_RUNLOCK(); 7694 m_freem(m); 7695 return (0); 7696 } 7697 /* 7698 * SADB_X_PROMISC processing 7699 * 7700 * m will always be freed. 7701 */ 7702 static int 7703 key_promisc(struct socket *so, struct mbuf *m, const struct sadb_msghdr *mhp) 7704 { 7705 int olen; 7706 7707 IPSEC_ASSERT(so != NULL, ("null socket")); 7708 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7709 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 7710 IPSEC_ASSERT(mhp->msg != NULL, ("null msg")); 7711 7712 olen = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 7713 7714 if (olen < sizeof(struct sadb_msg)) { 7715 #if 1 7716 return key_senderror(so, m, EINVAL); 7717 #else 7718 m_freem(m); 7719 return 0; 7720 #endif 7721 } else if (olen == sizeof(struct sadb_msg)) { 7722 /* enable/disable promisc mode */ 7723 struct keycb *kp; 7724 7725 if ((kp = so->so_pcb) == NULL) 7726 return key_senderror(so, m, EINVAL); 7727 mhp->msg->sadb_msg_errno = 0; 7728 switch (mhp->msg->sadb_msg_satype) { 7729 case 0: 7730 case 1: 7731 kp->kp_promisc = mhp->msg->sadb_msg_satype; 7732 break; 7733 default: 7734 return key_senderror(so, m, EINVAL); 7735 } 7736 7737 /* send the original message back to everyone */ 7738 mhp->msg->sadb_msg_errno = 0; 7739 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7740 } else { 7741 /* send packet as is */ 7742 7743 m_adj(m, PFKEY_ALIGN8(sizeof(struct sadb_msg))); 7744 7745 /* TODO: if sadb_msg_seq is specified, send to specific pid */ 7746 return key_sendup_mbuf(so, m, KEY_SENDUP_ALL); 7747 } 7748 } 7749 7750 static int (*key_typesw[])(struct socket *, struct mbuf *, 7751 const struct sadb_msghdr *) = { 7752 [SADB_RESERVED] = NULL, 7753 [SADB_GETSPI] = key_getspi, 7754 [SADB_UPDATE] = key_update, 7755 [SADB_ADD] = key_add, 7756 [SADB_DELETE] = key_delete, 7757 [SADB_GET] = key_get, 7758 [SADB_ACQUIRE] = key_acquire2, 7759 [SADB_REGISTER] = key_register, 7760 [SADB_EXPIRE] = NULL, 7761 [SADB_FLUSH] = key_flush, 7762 [SADB_DUMP] = key_dump, 7763 [SADB_X_PROMISC] = key_promisc, 7764 [SADB_X_PCHANGE] = NULL, 7765 [SADB_X_SPDUPDATE] = key_spdadd, 7766 [SADB_X_SPDADD] = key_spdadd, 7767 [SADB_X_SPDDELETE] = key_spddelete, 7768 [SADB_X_SPDGET] = key_spdget, 7769 [SADB_X_SPDACQUIRE] = NULL, 7770 [SADB_X_SPDDUMP] = key_spddump, 7771 [SADB_X_SPDFLUSH] = key_spdflush, 7772 [SADB_X_SPDSETIDX] = key_spdadd, 7773 [SADB_X_SPDEXPIRE] = NULL, 7774 [SADB_X_SPDDELETE2] = key_spddelete2, 7775 }; 7776 7777 /* 7778 * parse sadb_msg buffer to process PFKEYv2, 7779 * and create a data to response if needed. 7780 * I think to be dealed with mbuf directly. 7781 * IN: 7782 * msgp : pointer to pointer to a received buffer pulluped. 7783 * This is rewrited to response. 7784 * so : pointer to socket. 7785 * OUT: 7786 * length for buffer to send to user process. 7787 */ 7788 int 7789 key_parse(struct mbuf *m, struct socket *so) 7790 { 7791 struct sadb_msg *msg; 7792 struct sadb_msghdr mh; 7793 u_int orglen; 7794 int error; 7795 int target; 7796 7797 IPSEC_ASSERT(so != NULL, ("null socket")); 7798 IPSEC_ASSERT(m != NULL, ("null mbuf")); 7799 7800 if (m->m_len < sizeof(struct sadb_msg)) { 7801 m = m_pullup(m, sizeof(struct sadb_msg)); 7802 if (!m) 7803 return ENOBUFS; 7804 } 7805 msg = mtod(m, struct sadb_msg *); 7806 orglen = PFKEY_UNUNIT64(msg->sadb_msg_len); 7807 target = KEY_SENDUP_ONE; 7808 7809 if ((m->m_flags & M_PKTHDR) == 0 || m->m_pkthdr.len != orglen) { 7810 ipseclog((LOG_DEBUG, "%s: invalid message length.\n",__func__)); 7811 PFKEYSTAT_INC(out_invlen); 7812 error = EINVAL; 7813 goto senderror; 7814 } 7815 7816 if (msg->sadb_msg_version != PF_KEY_V2) { 7817 ipseclog((LOG_DEBUG, "%s: PF_KEY version %u is mismatched.\n", 7818 __func__, msg->sadb_msg_version)); 7819 PFKEYSTAT_INC(out_invver); 7820 error = EINVAL; 7821 goto senderror; 7822 } 7823 7824 if (msg->sadb_msg_type > SADB_MAX) { 7825 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7826 __func__, msg->sadb_msg_type)); 7827 PFKEYSTAT_INC(out_invmsgtype); 7828 error = EINVAL; 7829 goto senderror; 7830 } 7831 7832 /* for old-fashioned code - should be nuked */ 7833 if (m->m_pkthdr.len > MCLBYTES) { 7834 m_freem(m); 7835 return ENOBUFS; 7836 } 7837 if (m->m_next) { 7838 struct mbuf *n; 7839 7840 n = key_mget(m->m_pkthdr.len); 7841 if (n == NULL) { 7842 m_freem(m); 7843 return ENOBUFS; 7844 } 7845 m_copydata(m, 0, m->m_pkthdr.len, mtod(n, caddr_t)); 7846 n->m_pkthdr.len = n->m_len = m->m_pkthdr.len; 7847 n->m_next = NULL; 7848 m_freem(m); 7849 m = n; 7850 } 7851 7852 /* align the mbuf chain so that extensions are in contiguous region. */ 7853 error = key_align(m, &mh); 7854 if (error) 7855 return error; 7856 7857 msg = mh.msg; 7858 7859 /* We use satype as scope mask for spddump */ 7860 if (msg->sadb_msg_type == SADB_X_SPDDUMP) { 7861 switch (msg->sadb_msg_satype) { 7862 case IPSEC_POLICYSCOPE_ANY: 7863 case IPSEC_POLICYSCOPE_GLOBAL: 7864 case IPSEC_POLICYSCOPE_IFNET: 7865 case IPSEC_POLICYSCOPE_PCB: 7866 break; 7867 default: 7868 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7869 __func__, msg->sadb_msg_type)); 7870 PFKEYSTAT_INC(out_invsatype); 7871 error = EINVAL; 7872 goto senderror; 7873 } 7874 } else { 7875 switch (msg->sadb_msg_satype) { /* check SA type */ 7876 case SADB_SATYPE_UNSPEC: 7877 switch (msg->sadb_msg_type) { 7878 case SADB_GETSPI: 7879 case SADB_UPDATE: 7880 case SADB_ADD: 7881 case SADB_DELETE: 7882 case SADB_GET: 7883 case SADB_ACQUIRE: 7884 case SADB_EXPIRE: 7885 ipseclog((LOG_DEBUG, "%s: must specify satype " 7886 "when msg type=%u.\n", __func__, 7887 msg->sadb_msg_type)); 7888 PFKEYSTAT_INC(out_invsatype); 7889 error = EINVAL; 7890 goto senderror; 7891 } 7892 break; 7893 case SADB_SATYPE_AH: 7894 case SADB_SATYPE_ESP: 7895 case SADB_X_SATYPE_IPCOMP: 7896 case SADB_X_SATYPE_TCPSIGNATURE: 7897 switch (msg->sadb_msg_type) { 7898 case SADB_X_SPDADD: 7899 case SADB_X_SPDDELETE: 7900 case SADB_X_SPDGET: 7901 case SADB_X_SPDFLUSH: 7902 case SADB_X_SPDSETIDX: 7903 case SADB_X_SPDUPDATE: 7904 case SADB_X_SPDDELETE2: 7905 ipseclog((LOG_DEBUG, "%s: illegal satype=%u\n", 7906 __func__, msg->sadb_msg_type)); 7907 PFKEYSTAT_INC(out_invsatype); 7908 error = EINVAL; 7909 goto senderror; 7910 } 7911 break; 7912 case SADB_SATYPE_RSVP: 7913 case SADB_SATYPE_OSPFV2: 7914 case SADB_SATYPE_RIPV2: 7915 case SADB_SATYPE_MIP: 7916 ipseclog((LOG_DEBUG, "%s: type %u isn't supported.\n", 7917 __func__, msg->sadb_msg_satype)); 7918 PFKEYSTAT_INC(out_invsatype); 7919 error = EOPNOTSUPP; 7920 goto senderror; 7921 case 1: /* XXX: What does it do? */ 7922 if (msg->sadb_msg_type == SADB_X_PROMISC) 7923 break; 7924 /*FALLTHROUGH*/ 7925 default: 7926 ipseclog((LOG_DEBUG, "%s: invalid type %u is passed.\n", 7927 __func__, msg->sadb_msg_satype)); 7928 PFKEYSTAT_INC(out_invsatype); 7929 error = EINVAL; 7930 goto senderror; 7931 } 7932 } 7933 7934 /* check field of upper layer protocol and address family */ 7935 if (mh.ext[SADB_EXT_ADDRESS_SRC] != NULL 7936 && mh.ext[SADB_EXT_ADDRESS_DST] != NULL) { 7937 struct sadb_address *src0, *dst0; 7938 u_int plen; 7939 7940 src0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_SRC]); 7941 dst0 = (struct sadb_address *)(mh.ext[SADB_EXT_ADDRESS_DST]); 7942 7943 /* check upper layer protocol */ 7944 if (src0->sadb_address_proto != dst0->sadb_address_proto) { 7945 ipseclog((LOG_DEBUG, "%s: upper layer protocol " 7946 "mismatched.\n", __func__)); 7947 PFKEYSTAT_INC(out_invaddr); 7948 error = EINVAL; 7949 goto senderror; 7950 } 7951 7952 /* check family */ 7953 if (PFKEY_ADDR_SADDR(src0)->sa_family != 7954 PFKEY_ADDR_SADDR(dst0)->sa_family) { 7955 ipseclog((LOG_DEBUG, "%s: address family mismatched.\n", 7956 __func__)); 7957 PFKEYSTAT_INC(out_invaddr); 7958 error = EINVAL; 7959 goto senderror; 7960 } 7961 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7962 PFKEY_ADDR_SADDR(dst0)->sa_len) { 7963 ipseclog((LOG_DEBUG, "%s: address struct size " 7964 "mismatched.\n", __func__)); 7965 PFKEYSTAT_INC(out_invaddr); 7966 error = EINVAL; 7967 goto senderror; 7968 } 7969 7970 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7971 case AF_INET: 7972 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7973 sizeof(struct sockaddr_in)) { 7974 PFKEYSTAT_INC(out_invaddr); 7975 error = EINVAL; 7976 goto senderror; 7977 } 7978 break; 7979 case AF_INET6: 7980 if (PFKEY_ADDR_SADDR(src0)->sa_len != 7981 sizeof(struct sockaddr_in6)) { 7982 PFKEYSTAT_INC(out_invaddr); 7983 error = EINVAL; 7984 goto senderror; 7985 } 7986 break; 7987 default: 7988 ipseclog((LOG_DEBUG, "%s: unsupported address family\n", 7989 __func__)); 7990 PFKEYSTAT_INC(out_invaddr); 7991 error = EAFNOSUPPORT; 7992 goto senderror; 7993 } 7994 7995 switch (PFKEY_ADDR_SADDR(src0)->sa_family) { 7996 case AF_INET: 7997 plen = sizeof(struct in_addr) << 3; 7998 break; 7999 case AF_INET6: 8000 plen = sizeof(struct in6_addr) << 3; 8001 break; 8002 default: 8003 plen = 0; /*fool gcc*/ 8004 break; 8005 } 8006 8007 /* check max prefix length */ 8008 if (src0->sadb_address_prefixlen > plen || 8009 dst0->sadb_address_prefixlen > plen) { 8010 ipseclog((LOG_DEBUG, "%s: illegal prefixlen.\n", 8011 __func__)); 8012 PFKEYSTAT_INC(out_invaddr); 8013 error = EINVAL; 8014 goto senderror; 8015 } 8016 8017 /* 8018 * prefixlen == 0 is valid because there can be a case when 8019 * all addresses are matched. 8020 */ 8021 } 8022 8023 if (msg->sadb_msg_type >= nitems(key_typesw) || 8024 key_typesw[msg->sadb_msg_type] == NULL) { 8025 PFKEYSTAT_INC(out_invmsgtype); 8026 error = EINVAL; 8027 goto senderror; 8028 } 8029 8030 return (*key_typesw[msg->sadb_msg_type])(so, m, &mh); 8031 8032 senderror: 8033 msg->sadb_msg_errno = error; 8034 return key_sendup_mbuf(so, m, target); 8035 } 8036 8037 static int 8038 key_senderror(struct socket *so, struct mbuf *m, int code) 8039 { 8040 struct sadb_msg *msg; 8041 8042 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8043 ("mbuf too small, len %u", m->m_len)); 8044 8045 msg = mtod(m, struct sadb_msg *); 8046 msg->sadb_msg_errno = code; 8047 return key_sendup_mbuf(so, m, KEY_SENDUP_ONE); 8048 } 8049 8050 /* 8051 * set the pointer to each header into message buffer. 8052 * m will be freed on error. 8053 * XXX larger-than-MCLBYTES extension? 8054 */ 8055 static int 8056 key_align(struct mbuf *m, struct sadb_msghdr *mhp) 8057 { 8058 struct mbuf *n; 8059 struct sadb_ext *ext; 8060 size_t off, end; 8061 int extlen; 8062 int toff; 8063 8064 IPSEC_ASSERT(m != NULL, ("null mbuf")); 8065 IPSEC_ASSERT(mhp != NULL, ("null msghdr")); 8066 IPSEC_ASSERT(m->m_len >= sizeof(struct sadb_msg), 8067 ("mbuf too small, len %u", m->m_len)); 8068 8069 /* initialize */ 8070 bzero(mhp, sizeof(*mhp)); 8071 8072 mhp->msg = mtod(m, struct sadb_msg *); 8073 mhp->ext[0] = (struct sadb_ext *)mhp->msg; /*XXX backward compat */ 8074 8075 end = PFKEY_UNUNIT64(mhp->msg->sadb_msg_len); 8076 extlen = end; /*just in case extlen is not updated*/ 8077 for (off = sizeof(struct sadb_msg); off < end; off += extlen) { 8078 n = m_pulldown(m, off, sizeof(struct sadb_ext), &toff); 8079 if (!n) { 8080 /* m is already freed */ 8081 return ENOBUFS; 8082 } 8083 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8084 8085 /* set pointer */ 8086 switch (ext->sadb_ext_type) { 8087 case SADB_EXT_SA: 8088 case SADB_EXT_ADDRESS_SRC: 8089 case SADB_EXT_ADDRESS_DST: 8090 case SADB_EXT_ADDRESS_PROXY: 8091 case SADB_EXT_LIFETIME_CURRENT: 8092 case SADB_EXT_LIFETIME_HARD: 8093 case SADB_EXT_LIFETIME_SOFT: 8094 case SADB_EXT_KEY_AUTH: 8095 case SADB_EXT_KEY_ENCRYPT: 8096 case SADB_EXT_IDENTITY_SRC: 8097 case SADB_EXT_IDENTITY_DST: 8098 case SADB_EXT_SENSITIVITY: 8099 case SADB_EXT_PROPOSAL: 8100 case SADB_EXT_SUPPORTED_AUTH: 8101 case SADB_EXT_SUPPORTED_ENCRYPT: 8102 case SADB_EXT_SPIRANGE: 8103 case SADB_X_EXT_POLICY: 8104 case SADB_X_EXT_SA2: 8105 case SADB_X_EXT_NAT_T_TYPE: 8106 case SADB_X_EXT_NAT_T_SPORT: 8107 case SADB_X_EXT_NAT_T_DPORT: 8108 case SADB_X_EXT_NAT_T_OAI: 8109 case SADB_X_EXT_NAT_T_OAR: 8110 case SADB_X_EXT_NAT_T_FRAG: 8111 case SADB_X_EXT_SA_REPLAY: 8112 case SADB_X_EXT_NEW_ADDRESS_SRC: 8113 case SADB_X_EXT_NEW_ADDRESS_DST: 8114 /* duplicate check */ 8115 /* 8116 * XXX Are there duplication payloads of either 8117 * KEY_AUTH or KEY_ENCRYPT ? 8118 */ 8119 if (mhp->ext[ext->sadb_ext_type] != NULL) { 8120 ipseclog((LOG_DEBUG, "%s: duplicate ext_type " 8121 "%u\n", __func__, ext->sadb_ext_type)); 8122 m_freem(m); 8123 PFKEYSTAT_INC(out_dupext); 8124 return EINVAL; 8125 } 8126 break; 8127 default: 8128 ipseclog((LOG_DEBUG, "%s: invalid ext_type %u\n", 8129 __func__, ext->sadb_ext_type)); 8130 m_freem(m); 8131 PFKEYSTAT_INC(out_invexttype); 8132 return EINVAL; 8133 } 8134 8135 extlen = PFKEY_UNUNIT64(ext->sadb_ext_len); 8136 8137 if (key_validate_ext(ext, extlen)) { 8138 m_freem(m); 8139 PFKEYSTAT_INC(out_invlen); 8140 return EINVAL; 8141 } 8142 8143 n = m_pulldown(m, off, extlen, &toff); 8144 if (!n) { 8145 /* m is already freed */ 8146 return ENOBUFS; 8147 } 8148 ext = (struct sadb_ext *)(mtod(n, caddr_t) + toff); 8149 8150 mhp->ext[ext->sadb_ext_type] = ext; 8151 mhp->extoff[ext->sadb_ext_type] = off; 8152 mhp->extlen[ext->sadb_ext_type] = extlen; 8153 } 8154 8155 if (off != end) { 8156 m_freem(m); 8157 PFKEYSTAT_INC(out_invlen); 8158 return EINVAL; 8159 } 8160 8161 return 0; 8162 } 8163 8164 static int 8165 key_validate_ext(const struct sadb_ext *ext, int len) 8166 { 8167 const struct sockaddr *sa; 8168 enum { NONE, ADDR } checktype = NONE; 8169 int baselen = 0; 8170 const int sal = offsetof(struct sockaddr, sa_len) + sizeof(sa->sa_len); 8171 8172 if (len != PFKEY_UNUNIT64(ext->sadb_ext_len)) 8173 return EINVAL; 8174 8175 /* if it does not match minimum/maximum length, bail */ 8176 if (ext->sadb_ext_type >= nitems(minsize) || 8177 ext->sadb_ext_type >= nitems(maxsize)) 8178 return EINVAL; 8179 if (!minsize[ext->sadb_ext_type] || len < minsize[ext->sadb_ext_type]) 8180 return EINVAL; 8181 if (maxsize[ext->sadb_ext_type] && len > maxsize[ext->sadb_ext_type]) 8182 return EINVAL; 8183 8184 /* more checks based on sadb_ext_type XXX need more */ 8185 switch (ext->sadb_ext_type) { 8186 case SADB_EXT_ADDRESS_SRC: 8187 case SADB_EXT_ADDRESS_DST: 8188 case SADB_EXT_ADDRESS_PROXY: 8189 case SADB_X_EXT_NAT_T_OAI: 8190 case SADB_X_EXT_NAT_T_OAR: 8191 case SADB_X_EXT_NEW_ADDRESS_SRC: 8192 case SADB_X_EXT_NEW_ADDRESS_DST: 8193 baselen = PFKEY_ALIGN8(sizeof(struct sadb_address)); 8194 checktype = ADDR; 8195 break; 8196 case SADB_EXT_IDENTITY_SRC: 8197 case SADB_EXT_IDENTITY_DST: 8198 if (((const struct sadb_ident *)ext)->sadb_ident_type == 8199 SADB_X_IDENTTYPE_ADDR) { 8200 baselen = PFKEY_ALIGN8(sizeof(struct sadb_ident)); 8201 checktype = ADDR; 8202 } else 8203 checktype = NONE; 8204 break; 8205 default: 8206 checktype = NONE; 8207 break; 8208 } 8209 8210 switch (checktype) { 8211 case NONE: 8212 break; 8213 case ADDR: 8214 sa = (const struct sockaddr *)(((const u_int8_t*)ext)+baselen); 8215 if (len < baselen + sal) 8216 return EINVAL; 8217 if (baselen + PFKEY_ALIGN8(sa->sa_len) != len) 8218 return EINVAL; 8219 break; 8220 } 8221 8222 return 0; 8223 } 8224 8225 void 8226 spdcache_init(void) 8227 { 8228 int i; 8229 8230 TUNABLE_INT_FETCH("net.key.spdcache.maxentries", 8231 &V_key_spdcache_maxentries); 8232 TUNABLE_INT_FETCH("net.key.spdcache.threshold", 8233 &V_key_spdcache_threshold); 8234 8235 if (V_key_spdcache_maxentries) { 8236 V_key_spdcache_maxentries = MAX(V_key_spdcache_maxentries, 8237 SPDCACHE_MAX_ENTRIES_PER_HASH); 8238 V_spdcachehashtbl = hashinit(V_key_spdcache_maxentries / 8239 SPDCACHE_MAX_ENTRIES_PER_HASH, 8240 M_IPSEC_SPDCACHE, &V_spdcachehash_mask); 8241 V_key_spdcache_maxentries = (V_spdcachehash_mask + 1) 8242 * SPDCACHE_MAX_ENTRIES_PER_HASH; 8243 8244 V_spdcache_lock = malloc(sizeof(struct mtx) * 8245 (V_spdcachehash_mask + 1), 8246 M_IPSEC_SPDCACHE, M_WAITOK | M_ZERO); 8247 8248 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8249 SPDCACHE_LOCK_INIT(i); 8250 } 8251 } 8252 8253 struct spdcache_entry * 8254 spdcache_entry_alloc(const struct secpolicyindex *spidx, struct secpolicy *sp) 8255 { 8256 struct spdcache_entry *entry; 8257 8258 entry = malloc(sizeof(struct spdcache_entry), M_IPSEC_SPDCACHE, 8259 M_NOWAIT | M_ZERO); 8260 if (entry == NULL) 8261 return (NULL); 8262 8263 if (sp != NULL) 8264 SP_ADDREF(sp); 8265 8266 entry->spidx = *spidx; 8267 entry->sp = sp; 8268 8269 return (entry); 8270 } 8271 8272 void 8273 spdcache_entry_free(struct spdcache_entry *entry) 8274 { 8275 8276 if (entry->sp != NULL) 8277 key_freesp(&entry->sp); 8278 free(entry, M_IPSEC_SPDCACHE); 8279 } 8280 8281 void 8282 spdcache_clear(void) 8283 { 8284 struct spdcache_entry *entry; 8285 int i; 8286 8287 for (i = 0; i < V_spdcachehash_mask + 1; ++i) { 8288 SPDCACHE_LOCK(i); 8289 while (!LIST_EMPTY(&V_spdcachehashtbl[i])) { 8290 entry = LIST_FIRST(&V_spdcachehashtbl[i]); 8291 LIST_REMOVE(entry, chain); 8292 spdcache_entry_free(entry); 8293 } 8294 SPDCACHE_UNLOCK(i); 8295 } 8296 } 8297 8298 #ifdef VIMAGE 8299 void 8300 spdcache_destroy(void) 8301 { 8302 int i; 8303 8304 if (SPDCACHE_ENABLED()) { 8305 spdcache_clear(); 8306 hashdestroy(V_spdcachehashtbl, M_IPSEC_SPDCACHE, V_spdcachehash_mask); 8307 8308 for (i = 0; i < V_spdcachehash_mask + 1; ++i) 8309 SPDCACHE_LOCK_DESTROY(i); 8310 8311 free(V_spdcache_lock, M_IPSEC_SPDCACHE); 8312 } 8313 } 8314 #endif 8315 8316 static void 8317 key_vnet_init(void *arg __unused) 8318 { 8319 int i; 8320 8321 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8322 TAILQ_INIT(&V_sptree[i]); 8323 TAILQ_INIT(&V_sptree_ifnet[i]); 8324 } 8325 8326 TAILQ_INIT(&V_sahtree); 8327 V_sphashtbl = hashinit(SPHASH_NHASH, M_IPSEC_SP, &V_sphash_mask); 8328 V_savhashtbl = hashinit(SAVHASH_NHASH, M_IPSEC_SA, &V_savhash_mask); 8329 V_sahaddrhashtbl = hashinit(SAHHASH_NHASH, M_IPSEC_SAH, 8330 &V_sahaddrhash_mask); 8331 V_acqaddrhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8332 &V_acqaddrhash_mask); 8333 V_acqseqhashtbl = hashinit(ACQHASH_NHASH, M_IPSEC_SAQ, 8334 &V_acqseqhash_mask); 8335 8336 spdcache_init(); 8337 8338 for (i = 0; i <= SADB_SATYPE_MAX; i++) 8339 LIST_INIT(&V_regtree[i]); 8340 8341 LIST_INIT(&V_acqtree); 8342 LIST_INIT(&V_spacqtree); 8343 } 8344 VNET_SYSINIT(key_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, 8345 key_vnet_init, NULL); 8346 8347 static void 8348 key_init(void *arg __unused) 8349 { 8350 8351 ipsec_key_lft_zone = uma_zcreate("IPsec SA lft_c", 8352 sizeof(uint64_t) * 2, NULL, NULL, NULL, NULL, 8353 UMA_ALIGN_PTR, UMA_ZONE_PCPU); 8354 8355 SPTREE_LOCK_INIT(); 8356 REGTREE_LOCK_INIT(); 8357 SAHTREE_LOCK_INIT(); 8358 ACQ_LOCK_INIT(); 8359 SPACQ_LOCK_INIT(); 8360 SPI_ALLOC_LOCK_INIT(); 8361 8362 #ifndef IPSEC_DEBUG2 8363 callout_init(&key_timer, 1); 8364 callout_reset(&key_timer, hz, key_timehandler, NULL); 8365 #endif /*IPSEC_DEBUG2*/ 8366 8367 /* initialize key statistics */ 8368 keystat.getspi_count = 1; 8369 8370 if (bootverbose) 8371 printf("IPsec: Initialized Security Association Processing.\n"); 8372 } 8373 SYSINIT(key_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_init, NULL); 8374 8375 #ifdef VIMAGE 8376 static void 8377 key_vnet_destroy(void *arg __unused) 8378 { 8379 struct secashead_queue sahdrainq; 8380 struct secpolicy_queue drainq; 8381 struct secpolicy *sp, *nextsp; 8382 struct secacq *acq, *nextacq; 8383 struct secspacq *spacq, *nextspacq; 8384 struct secashead *sah; 8385 struct secasvar *sav; 8386 struct secreg *reg; 8387 int i; 8388 8389 /* 8390 * XXX: can we just call free() for each object without 8391 * walking through safe way with releasing references? 8392 */ 8393 TAILQ_INIT(&drainq); 8394 SPTREE_WLOCK(); 8395 for (i = 0; i < IPSEC_DIR_MAX; i++) { 8396 TAILQ_CONCAT(&drainq, &V_sptree[i], chain); 8397 TAILQ_CONCAT(&drainq, &V_sptree_ifnet[i], chain); 8398 } 8399 for (i = 0; i < V_sphash_mask + 1; i++) 8400 LIST_INIT(&V_sphashtbl[i]); 8401 SPTREE_WUNLOCK(); 8402 spdcache_destroy(); 8403 8404 sp = TAILQ_FIRST(&drainq); 8405 while (sp != NULL) { 8406 nextsp = TAILQ_NEXT(sp, chain); 8407 key_freesp(&sp); 8408 sp = nextsp; 8409 } 8410 8411 TAILQ_INIT(&sahdrainq); 8412 SAHTREE_WLOCK(); 8413 TAILQ_CONCAT(&sahdrainq, &V_sahtree, chain); 8414 for (i = 0; i < V_savhash_mask + 1; i++) 8415 LIST_INIT(&V_savhashtbl[i]); 8416 for (i = 0; i < V_sahaddrhash_mask + 1; i++) 8417 LIST_INIT(&V_sahaddrhashtbl[i]); 8418 TAILQ_FOREACH(sah, &sahdrainq, chain) { 8419 sah->state = SADB_SASTATE_DEAD; 8420 TAILQ_FOREACH(sav, &sah->savtree_larval, chain) { 8421 sav->state = SADB_SASTATE_DEAD; 8422 } 8423 TAILQ_FOREACH(sav, &sah->savtree_alive, chain) { 8424 sav->state = SADB_SASTATE_DEAD; 8425 } 8426 } 8427 SAHTREE_WUNLOCK(); 8428 8429 key_freesah_flushed(&sahdrainq); 8430 hashdestroy(V_sphashtbl, M_IPSEC_SP, V_sphash_mask); 8431 hashdestroy(V_savhashtbl, M_IPSEC_SA, V_savhash_mask); 8432 hashdestroy(V_sahaddrhashtbl, M_IPSEC_SAH, V_sahaddrhash_mask); 8433 8434 REGTREE_LOCK(); 8435 for (i = 0; i <= SADB_SATYPE_MAX; i++) { 8436 LIST_FOREACH(reg, &V_regtree[i], chain) { 8437 if (__LIST_CHAINED(reg)) { 8438 LIST_REMOVE(reg, chain); 8439 free(reg, M_IPSEC_SAR); 8440 break; 8441 } 8442 } 8443 } 8444 REGTREE_UNLOCK(); 8445 8446 ACQ_LOCK(); 8447 acq = LIST_FIRST(&V_acqtree); 8448 while (acq != NULL) { 8449 nextacq = LIST_NEXT(acq, chain); 8450 LIST_REMOVE(acq, chain); 8451 free(acq, M_IPSEC_SAQ); 8452 acq = nextacq; 8453 } 8454 for (i = 0; i < V_acqaddrhash_mask + 1; i++) 8455 LIST_INIT(&V_acqaddrhashtbl[i]); 8456 for (i = 0; i < V_acqseqhash_mask + 1; i++) 8457 LIST_INIT(&V_acqseqhashtbl[i]); 8458 ACQ_UNLOCK(); 8459 8460 SPACQ_LOCK(); 8461 for (spacq = LIST_FIRST(&V_spacqtree); spacq != NULL; 8462 spacq = nextspacq) { 8463 nextspacq = LIST_NEXT(spacq, chain); 8464 if (__LIST_CHAINED(spacq)) { 8465 LIST_REMOVE(spacq, chain); 8466 free(spacq, M_IPSEC_SAQ); 8467 } 8468 } 8469 SPACQ_UNLOCK(); 8470 hashdestroy(V_acqaddrhashtbl, M_IPSEC_SAQ, V_acqaddrhash_mask); 8471 hashdestroy(V_acqseqhashtbl, M_IPSEC_SAQ, V_acqseqhash_mask); 8472 } 8473 VNET_SYSUNINIT(key_vnet_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_SECOND, 8474 key_vnet_destroy, NULL); 8475 #endif 8476 8477 /* 8478 * XXX: as long as domains are not unloadable, this function is never called, 8479 * provided for consistensy and future unload support. 8480 */ 8481 static void 8482 key_destroy(void *arg __unused) 8483 { 8484 uma_zdestroy(ipsec_key_lft_zone); 8485 8486 #ifndef IPSEC_DEBUG2 8487 callout_drain(&key_timer); 8488 #endif 8489 SPTREE_LOCK_DESTROY(); 8490 REGTREE_LOCK_DESTROY(); 8491 SAHTREE_LOCK_DESTROY(); 8492 ACQ_LOCK_DESTROY(); 8493 SPACQ_LOCK_DESTROY(); 8494 SPI_ALLOC_LOCK_DESTROY(); 8495 } 8496 SYSUNINIT(key_destroy, SI_SUB_PROTO_DOMAIN, SI_ORDER_FIRST, key_destroy, NULL); 8497 8498 /* record data transfer on SA, and update timestamps */ 8499 void 8500 key_sa_recordxfer(struct secasvar *sav, struct mbuf *m) 8501 { 8502 IPSEC_ASSERT(sav != NULL, ("Null secasvar")); 8503 IPSEC_ASSERT(m != NULL, ("Null mbuf")); 8504 8505 /* 8506 * XXX Currently, there is a difference of bytes size 8507 * between inbound and outbound processing. 8508 */ 8509 counter_u64_add(sav->lft_c_bytes, m->m_pkthdr.len); 8510 8511 /* 8512 * We use the number of packets as the unit of 8513 * allocations. We increment the variable 8514 * whenever {esp,ah}_{in,out}put is called. 8515 */ 8516 counter_u64_add(sav->lft_c_allocations, 1); 8517 8518 /* 8519 * NOTE: We record CURRENT usetime by using wall clock, 8520 * in seconds. HARD and SOFT lifetime are measured by the time 8521 * difference (again in seconds) from usetime. 8522 * 8523 * usetime 8524 * v expire expire 8525 * -----+-----+--------+---> t 8526 * <--------------> HARD 8527 * <-----> SOFT 8528 */ 8529 if (sav->firstused == 0) 8530 sav->firstused = time_second; 8531 } 8532 8533 /* 8534 * Take one of the kernel's security keys and convert it into a PF_KEY 8535 * structure within an mbuf, suitable for sending up to a waiting 8536 * application in user land. 8537 * 8538 * IN: 8539 * src: A pointer to a kernel security key. 8540 * exttype: Which type of key this is. Refer to the PF_KEY data structures. 8541 * OUT: 8542 * a valid mbuf or NULL indicating an error 8543 * 8544 */ 8545 8546 static struct mbuf * 8547 key_setkey(struct seckey *src, uint16_t exttype) 8548 { 8549 struct mbuf *m; 8550 struct sadb_key *p; 8551 int len; 8552 8553 if (src == NULL) 8554 return NULL; 8555 8556 len = PFKEY_ALIGN8(sizeof(struct sadb_key) + _KEYLEN(src)); 8557 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8558 if (m == NULL) 8559 return NULL; 8560 m_align(m, len); 8561 m->m_len = len; 8562 p = mtod(m, struct sadb_key *); 8563 bzero(p, len); 8564 p->sadb_key_len = PFKEY_UNIT64(len); 8565 p->sadb_key_exttype = exttype; 8566 p->sadb_key_bits = src->bits; 8567 bcopy(src->key_data, _KEYBUF(p), _KEYLEN(src)); 8568 8569 return m; 8570 } 8571 8572 /* 8573 * Take one of the kernel's lifetime data structures and convert it 8574 * into a PF_KEY structure within an mbuf, suitable for sending up to 8575 * a waiting application in user land. 8576 * 8577 * IN: 8578 * src: A pointer to a kernel lifetime structure. 8579 * exttype: Which type of lifetime this is. Refer to the PF_KEY 8580 * data structures for more information. 8581 * OUT: 8582 * a valid mbuf or NULL indicating an error 8583 * 8584 */ 8585 8586 static struct mbuf * 8587 key_setlifetime(struct seclifetime *src, uint16_t exttype) 8588 { 8589 struct mbuf *m = NULL; 8590 struct sadb_lifetime *p; 8591 int len = PFKEY_ALIGN8(sizeof(struct sadb_lifetime)); 8592 8593 if (src == NULL) 8594 return NULL; 8595 8596 m = m_get2(len, M_NOWAIT, MT_DATA, 0); 8597 if (m == NULL) 8598 return m; 8599 m_align(m, len); 8600 m->m_len = len; 8601 p = mtod(m, struct sadb_lifetime *); 8602 8603 bzero(p, len); 8604 p->sadb_lifetime_len = PFKEY_UNIT64(len); 8605 p->sadb_lifetime_exttype = exttype; 8606 p->sadb_lifetime_allocations = src->allocations; 8607 p->sadb_lifetime_bytes = src->bytes; 8608 p->sadb_lifetime_addtime = src->addtime; 8609 p->sadb_lifetime_usetime = src->usetime; 8610 8611 return m; 8612 8613 } 8614 8615 const struct enc_xform * 8616 enc_algorithm_lookup(int alg) 8617 { 8618 int i; 8619 8620 for (i = 0; i < nitems(supported_ealgs); i++) 8621 if (alg == supported_ealgs[i].sadb_alg) 8622 return (supported_ealgs[i].xform); 8623 return (NULL); 8624 } 8625 8626 const struct auth_hash * 8627 auth_algorithm_lookup(int alg) 8628 { 8629 int i; 8630 8631 for (i = 0; i < nitems(supported_aalgs); i++) 8632 if (alg == supported_aalgs[i].sadb_alg) 8633 return (supported_aalgs[i].xform); 8634 return (NULL); 8635 } 8636 8637 const struct comp_algo * 8638 comp_algorithm_lookup(int alg) 8639 { 8640 int i; 8641 8642 for (i = 0; i < nitems(supported_calgs); i++) 8643 if (alg == supported_calgs[i].sadb_alg) 8644 return (supported_calgs[i].xform); 8645 return (NULL); 8646 } 8647