1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 #include "opt_route.h" 40 41 #include <sys/param.h> 42 #include <sys/systm.h> 43 #include <sys/eventhandler.h> 44 #include <sys/callout.h> 45 #include <sys/lock.h> 46 #include <sys/malloc.h> 47 #include <sys/mbuf.h> 48 #include <sys/mutex.h> 49 #include <sys/socket.h> 50 #include <sys/sockio.h> 51 #include <sys/time.h> 52 #include <sys/kernel.h> 53 #include <sys/protosw.h> 54 #include <sys/errno.h> 55 #include <sys/syslog.h> 56 #include <sys/rwlock.h> 57 #include <sys/queue.h> 58 #include <sys/sdt.h> 59 #include <sys/sysctl.h> 60 61 #include <net/if.h> 62 #include <net/if_var.h> 63 #include <net/if_dl.h> 64 #include <net/if_types.h> 65 #include <net/route.h> 66 #include <net/route/route_ctl.h> 67 #include <net/route/nhop.h> 68 #include <net/vnet.h> 69 70 #include <netinet/in.h> 71 #include <netinet/in_kdtrace.h> 72 #include <net/if_llatbl.h> 73 #include <netinet/if_ether.h> 74 #include <netinet6/in6_var.h> 75 #include <netinet/ip6.h> 76 #include <netinet6/ip6_var.h> 77 #include <netinet6/scope6_var.h> 78 #include <netinet6/nd6.h> 79 #include <netinet6/in6_ifattach.h> 80 #include <netinet/icmp6.h> 81 #include <netinet6/send.h> 82 83 #include <sys/limits.h> 84 85 #include <security/mac/mac_framework.h> 86 87 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 88 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 89 90 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 91 92 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 93 94 /* timer values */ 95 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 96 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 97 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 98 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 99 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 100 * local traffic */ 101 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 102 * collection timer */ 103 104 /* preventing too many loops in ND option parsing */ 105 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 106 107 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 108 * layer hints */ 109 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 110 * ND entries */ 111 #define V_nd6_maxndopt VNET(nd6_maxndopt) 112 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 113 114 #ifdef ND6_DEBUG 115 VNET_DEFINE(int, nd6_debug) = 1; 116 #else 117 VNET_DEFINE(int, nd6_debug) = 0; 118 #endif 119 120 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 121 122 VNET_DEFINE(struct nd_prhead, nd_prefix); 123 VNET_DEFINE(struct rwlock, nd6_lock); 124 VNET_DEFINE(uint64_t, nd6_list_genid); 125 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 126 127 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 128 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 129 130 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 131 132 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 133 struct ifnet *); 134 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 135 static void nd6_slowtimo(void *); 136 static int regen_tmpaddr(struct in6_ifaddr *); 137 static void nd6_free(struct llentry **, int); 138 static void nd6_free_redirect(const struct llentry *); 139 static void nd6_llinfo_timer(void *); 140 static void nd6_llinfo_settimer_locked(struct llentry *, long); 141 static void clear_llinfo_pqueue(struct llentry *); 142 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 143 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 144 static int nd6_need_cache(struct ifnet *); 145 146 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 147 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 148 149 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 150 #define V_nd6_timer_ch VNET(nd6_timer_ch) 151 152 SYSCTL_DECL(_net_inet6_icmp6); 153 154 static void 155 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 156 { 157 struct rt_addrinfo rtinfo; 158 struct sockaddr_in6 dst; 159 struct sockaddr_dl gw; 160 struct ifnet *ifp; 161 int type; 162 int fibnum; 163 164 LLE_WLOCK_ASSERT(lle); 165 166 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 167 return; 168 169 switch (evt) { 170 case LLENTRY_RESOLVED: 171 type = RTM_ADD; 172 KASSERT(lle->la_flags & LLE_VALID, 173 ("%s: %p resolved but not valid?", __func__, lle)); 174 break; 175 case LLENTRY_EXPIRED: 176 type = RTM_DELETE; 177 break; 178 default: 179 return; 180 } 181 182 ifp = lltable_get_ifp(lle->lle_tbl); 183 184 bzero(&dst, sizeof(dst)); 185 bzero(&gw, sizeof(gw)); 186 bzero(&rtinfo, sizeof(rtinfo)); 187 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 188 dst.sin6_scope_id = in6_getscopezone(ifp, 189 in6_addrscope(&dst.sin6_addr)); 190 gw.sdl_len = sizeof(struct sockaddr_dl); 191 gw.sdl_family = AF_LINK; 192 gw.sdl_alen = ifp->if_addrlen; 193 gw.sdl_index = ifp->if_index; 194 gw.sdl_type = ifp->if_type; 195 if (evt == LLENTRY_RESOLVED) 196 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 197 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 198 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 199 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 200 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 201 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 202 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 203 } 204 205 /* 206 * A handler for interface link layer address change event. 207 */ 208 static void 209 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 210 { 211 212 lltable_update_ifaddr(LLTABLE6(ifp)); 213 } 214 215 void 216 nd6_init(void) 217 { 218 219 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 220 rw_init(&V_nd6_lock, "nd6 list"); 221 222 LIST_INIT(&V_nd_prefix); 223 nd6_defrouter_init(); 224 225 /* Start timers. */ 226 callout_init(&V_nd6_slowtimo_ch, 0); 227 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 228 nd6_slowtimo, curvnet); 229 230 callout_init(&V_nd6_timer_ch, 0); 231 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 232 233 nd6_dad_init(); 234 if (IS_DEFAULT_VNET(curvnet)) { 235 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 236 NULL, EVENTHANDLER_PRI_ANY); 237 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 238 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 239 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 240 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 241 } 242 } 243 244 #ifdef VIMAGE 245 void 246 nd6_destroy() 247 { 248 249 callout_drain(&V_nd6_slowtimo_ch); 250 callout_drain(&V_nd6_timer_ch); 251 if (IS_DEFAULT_VNET(curvnet)) { 252 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 253 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 254 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 255 } 256 rw_destroy(&V_nd6_lock); 257 mtx_destroy(&V_nd6_onlink_mtx); 258 } 259 #endif 260 261 struct nd_ifinfo * 262 nd6_ifattach(struct ifnet *ifp) 263 { 264 struct nd_ifinfo *nd; 265 266 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 267 nd->initialized = 1; 268 269 nd->chlim = IPV6_DEFHLIM; 270 nd->basereachable = REACHABLE_TIME; 271 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 272 nd->retrans = RETRANS_TIMER; 273 274 nd->flags = ND6_IFF_PERFORMNUD; 275 276 /* Set IPv6 disabled on all interfaces but loopback by default. */ 277 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 278 nd->flags |= ND6_IFF_IFDISABLED; 279 280 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 281 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 282 * default regardless of the V_ip6_auto_linklocal configuration to 283 * give a reasonable default behavior. 284 */ 285 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 286 (ifp->if_flags & IFF_LOOPBACK)) 287 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 288 /* 289 * A loopback interface does not need to accept RTADV. 290 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 291 * default regardless of the V_ip6_accept_rtadv configuration to 292 * prevent the interface from accepting RA messages arrived 293 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 294 */ 295 if (V_ip6_accept_rtadv && 296 !(ifp->if_flags & IFF_LOOPBACK) && 297 (ifp->if_type != IFT_BRIDGE)) { 298 nd->flags |= ND6_IFF_ACCEPT_RTADV; 299 /* If we globally accept rtadv, assume IPv6 on. */ 300 nd->flags &= ~ND6_IFF_IFDISABLED; 301 } 302 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 303 nd->flags |= ND6_IFF_NO_RADR; 304 305 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 306 nd6_setmtu0(ifp, nd); 307 308 return nd; 309 } 310 311 void 312 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 313 { 314 struct epoch_tracker et; 315 struct ifaddr *ifa, *next; 316 317 NET_EPOCH_ENTER(et); 318 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 319 if (ifa->ifa_addr->sa_family != AF_INET6) 320 continue; 321 322 /* stop DAD processing */ 323 nd6_dad_stop(ifa); 324 } 325 NET_EPOCH_EXIT(et); 326 327 free(nd, M_IP6NDP); 328 } 329 330 /* 331 * Reset ND level link MTU. This function is called when the physical MTU 332 * changes, which means we might have to adjust the ND level MTU. 333 */ 334 void 335 nd6_setmtu(struct ifnet *ifp) 336 { 337 if (ifp->if_afdata[AF_INET6] == NULL) 338 return; 339 340 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 341 } 342 343 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 344 void 345 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 346 { 347 u_int32_t omaxmtu; 348 349 omaxmtu = ndi->maxmtu; 350 ndi->maxmtu = ifp->if_mtu; 351 352 /* 353 * Decreasing the interface MTU under IPV6 minimum MTU may cause 354 * undesirable situation. We thus notify the operator of the change 355 * explicitly. The check for omaxmtu is necessary to restrict the 356 * log to the case of changing the MTU, not initializing it. 357 */ 358 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 359 log(LOG_NOTICE, "nd6_setmtu0: " 360 "new link MTU on %s (%lu) is too small for IPv6\n", 361 if_name(ifp), (unsigned long)ndi->maxmtu); 362 } 363 364 if (ndi->maxmtu > V_in6_maxmtu) 365 in6_setmaxmtu(); /* check all interfaces just in case */ 366 367 } 368 369 void 370 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 371 { 372 373 bzero(ndopts, sizeof(*ndopts)); 374 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 375 ndopts->nd_opts_last 376 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 377 378 if (icmp6len == 0) { 379 ndopts->nd_opts_done = 1; 380 ndopts->nd_opts_search = NULL; 381 } 382 } 383 384 /* 385 * Take one ND option. 386 */ 387 struct nd_opt_hdr * 388 nd6_option(union nd_opts *ndopts) 389 { 390 struct nd_opt_hdr *nd_opt; 391 int olen; 392 393 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 394 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 395 __func__)); 396 if (ndopts->nd_opts_search == NULL) 397 return NULL; 398 if (ndopts->nd_opts_done) 399 return NULL; 400 401 nd_opt = ndopts->nd_opts_search; 402 403 /* make sure nd_opt_len is inside the buffer */ 404 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 405 bzero(ndopts, sizeof(*ndopts)); 406 return NULL; 407 } 408 409 olen = nd_opt->nd_opt_len << 3; 410 if (olen == 0) { 411 /* 412 * Message validation requires that all included 413 * options have a length that is greater than zero. 414 */ 415 bzero(ndopts, sizeof(*ndopts)); 416 return NULL; 417 } 418 419 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 420 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 421 /* option overruns the end of buffer, invalid */ 422 bzero(ndopts, sizeof(*ndopts)); 423 return NULL; 424 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 425 /* reached the end of options chain */ 426 ndopts->nd_opts_done = 1; 427 ndopts->nd_opts_search = NULL; 428 } 429 return nd_opt; 430 } 431 432 /* 433 * Parse multiple ND options. 434 * This function is much easier to use, for ND routines that do not need 435 * multiple options of the same type. 436 */ 437 int 438 nd6_options(union nd_opts *ndopts) 439 { 440 struct nd_opt_hdr *nd_opt; 441 int i = 0; 442 443 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 444 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 445 __func__)); 446 if (ndopts->nd_opts_search == NULL) 447 return 0; 448 449 while (1) { 450 nd_opt = nd6_option(ndopts); 451 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 452 /* 453 * Message validation requires that all included 454 * options have a length that is greater than zero. 455 */ 456 ICMP6STAT_INC(icp6s_nd_badopt); 457 bzero(ndopts, sizeof(*ndopts)); 458 return -1; 459 } 460 461 if (nd_opt == NULL) 462 goto skip1; 463 464 switch (nd_opt->nd_opt_type) { 465 case ND_OPT_SOURCE_LINKADDR: 466 case ND_OPT_TARGET_LINKADDR: 467 case ND_OPT_MTU: 468 case ND_OPT_REDIRECTED_HEADER: 469 case ND_OPT_NONCE: 470 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 471 nd6log((LOG_INFO, 472 "duplicated ND6 option found (type=%d)\n", 473 nd_opt->nd_opt_type)); 474 /* XXX bark? */ 475 } else { 476 ndopts->nd_opt_array[nd_opt->nd_opt_type] 477 = nd_opt; 478 } 479 break; 480 case ND_OPT_PREFIX_INFORMATION: 481 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 482 ndopts->nd_opt_array[nd_opt->nd_opt_type] 483 = nd_opt; 484 } 485 ndopts->nd_opts_pi_end = 486 (struct nd_opt_prefix_info *)nd_opt; 487 break; 488 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 489 case ND_OPT_RDNSS: /* RFC 6106 */ 490 case ND_OPT_DNSSL: /* RFC 6106 */ 491 /* 492 * Silently ignore options we know and do not care about 493 * in the kernel. 494 */ 495 break; 496 default: 497 /* 498 * Unknown options must be silently ignored, 499 * to accommodate future extension to the protocol. 500 */ 501 nd6log((LOG_DEBUG, 502 "nd6_options: unsupported option %d - " 503 "option ignored\n", nd_opt->nd_opt_type)); 504 } 505 506 skip1: 507 i++; 508 if (i > V_nd6_maxndopt) { 509 ICMP6STAT_INC(icp6s_nd_toomanyopt); 510 nd6log((LOG_INFO, "too many loop in nd opt\n")); 511 break; 512 } 513 514 if (ndopts->nd_opts_done) 515 break; 516 } 517 518 return 0; 519 } 520 521 /* 522 * ND6 timer routine to handle ND6 entries 523 */ 524 static void 525 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 526 { 527 int canceled; 528 529 LLE_WLOCK_ASSERT(ln); 530 531 if (tick < 0) { 532 ln->la_expire = 0; 533 ln->ln_ntick = 0; 534 canceled = callout_stop(&ln->lle_timer); 535 } else { 536 ln->la_expire = time_uptime + tick / hz; 537 LLE_ADDREF(ln); 538 if (tick > INT_MAX) { 539 ln->ln_ntick = tick - INT_MAX; 540 canceled = callout_reset(&ln->lle_timer, INT_MAX, 541 nd6_llinfo_timer, ln); 542 } else { 543 ln->ln_ntick = 0; 544 canceled = callout_reset(&ln->lle_timer, tick, 545 nd6_llinfo_timer, ln); 546 } 547 } 548 if (canceled > 0) 549 LLE_REMREF(ln); 550 } 551 552 /* 553 * Gets source address of the first packet in hold queue 554 * and stores it in @src. 555 * Returns pointer to @src (if hold queue is not empty) or NULL. 556 * 557 * Set noinline to be dtrace-friendly 558 */ 559 static __noinline struct in6_addr * 560 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 561 { 562 struct ip6_hdr hdr; 563 struct mbuf *m; 564 565 if (ln->la_hold == NULL) 566 return (NULL); 567 568 /* 569 * assume every packet in la_hold has the same IP header 570 */ 571 m = ln->la_hold; 572 if (sizeof(hdr) > m->m_len) 573 return (NULL); 574 575 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 576 *src = hdr.ip6_src; 577 578 return (src); 579 } 580 581 /* 582 * Checks if we need to switch from STALE state. 583 * 584 * RFC 4861 requires switching from STALE to DELAY state 585 * on first packet matching entry, waiting V_nd6_delay and 586 * transition to PROBE state (if upper layer confirmation was 587 * not received). 588 * 589 * This code performs a bit differently: 590 * On packet hit we don't change state (but desired state 591 * can be guessed by control plane). However, after V_nd6_delay 592 * seconds code will transition to PROBE state (so DELAY state 593 * is kinda skipped in most situations). 594 * 595 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 596 * we perform the following upon entering STALE state: 597 * 598 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 599 * if packet was transmitted at the start of given interval, we 600 * would be able to switch to PROBE state in V_nd6_delay seconds 601 * as user expects. 602 * 603 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 604 * lle in STALE state (remaining timer value stored in lle_remtime). 605 * 606 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 607 * seconds ago. 608 * 609 * Returns non-zero value if the entry is still STALE (storing 610 * the next timer interval in @pdelay). 611 * 612 * Returns zero value if original timer expired or we need to switch to 613 * PROBE (store that in @do_switch variable). 614 */ 615 static int 616 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 617 { 618 int nd_delay, nd_gctimer, r_skip_req; 619 time_t lle_hittime; 620 long delay; 621 622 *do_switch = 0; 623 nd_gctimer = V_nd6_gctimer; 624 nd_delay = V_nd6_delay; 625 626 LLE_REQ_LOCK(lle); 627 r_skip_req = lle->r_skip_req; 628 lle_hittime = lle->lle_hittime; 629 LLE_REQ_UNLOCK(lle); 630 631 if (r_skip_req > 0) { 632 /* 633 * Nonzero r_skip_req value was set upon entering 634 * STALE state. Since value was not changed, no 635 * packets were passed using this lle. Ask for 636 * timer reschedule and keep STALE state. 637 */ 638 delay = (long)(MIN(nd_gctimer, nd_delay)); 639 delay *= hz; 640 if (lle->lle_remtime > delay) 641 lle->lle_remtime -= delay; 642 else { 643 delay = lle->lle_remtime; 644 lle->lle_remtime = 0; 645 } 646 647 if (delay == 0) { 648 /* 649 * The original ng6_gctime timeout ended, 650 * no more rescheduling. 651 */ 652 return (0); 653 } 654 655 *pdelay = delay; 656 return (1); 657 } 658 659 /* 660 * Packet received. Verify timestamp 661 */ 662 delay = (long)(time_uptime - lle_hittime); 663 if (delay < nd_delay) { 664 /* 665 * V_nd6_delay still not passed since the first 666 * hit in STALE state. 667 * Reshedule timer and return. 668 */ 669 *pdelay = (long)(nd_delay - delay) * hz; 670 return (1); 671 } 672 673 /* Request switching to probe */ 674 *do_switch = 1; 675 return (0); 676 } 677 678 /* 679 * Switch @lle state to new state optionally arming timers. 680 * 681 * Set noinline to be dtrace-friendly 682 */ 683 __noinline void 684 nd6_llinfo_setstate(struct llentry *lle, int newstate) 685 { 686 struct ifnet *ifp; 687 int nd_gctimer, nd_delay; 688 long delay, remtime; 689 690 delay = 0; 691 remtime = 0; 692 693 switch (newstate) { 694 case ND6_LLINFO_INCOMPLETE: 695 ifp = lle->lle_tbl->llt_ifp; 696 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 697 break; 698 case ND6_LLINFO_REACHABLE: 699 if (!ND6_LLINFO_PERMANENT(lle)) { 700 ifp = lle->lle_tbl->llt_ifp; 701 delay = (long)ND_IFINFO(ifp)->reachable * hz; 702 } 703 break; 704 case ND6_LLINFO_STALE: 705 706 /* 707 * Notify fast path that we want to know if any packet 708 * is transmitted by setting r_skip_req. 709 */ 710 LLE_REQ_LOCK(lle); 711 lle->r_skip_req = 1; 712 LLE_REQ_UNLOCK(lle); 713 nd_delay = V_nd6_delay; 714 nd_gctimer = V_nd6_gctimer; 715 716 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 717 remtime = (long)nd_gctimer * hz - delay; 718 break; 719 case ND6_LLINFO_DELAY: 720 lle->la_asked = 0; 721 delay = (long)V_nd6_delay * hz; 722 break; 723 } 724 725 if (delay > 0) 726 nd6_llinfo_settimer_locked(lle, delay); 727 728 lle->lle_remtime = remtime; 729 lle->ln_state = newstate; 730 } 731 732 /* 733 * Timer-dependent part of nd state machine. 734 * 735 * Set noinline to be dtrace-friendly 736 */ 737 static __noinline void 738 nd6_llinfo_timer(void *arg) 739 { 740 struct epoch_tracker et; 741 struct llentry *ln; 742 struct in6_addr *dst, *pdst, *psrc, src; 743 struct ifnet *ifp; 744 struct nd_ifinfo *ndi; 745 int do_switch, send_ns; 746 long delay; 747 748 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 749 ln = (struct llentry *)arg; 750 ifp = lltable_get_ifp(ln->lle_tbl); 751 CURVNET_SET(ifp->if_vnet); 752 753 ND6_RLOCK(); 754 LLE_WLOCK(ln); 755 if (callout_pending(&ln->lle_timer)) { 756 /* 757 * Here we are a bit odd here in the treatment of 758 * active/pending. If the pending bit is set, it got 759 * rescheduled before I ran. The active 760 * bit we ignore, since if it was stopped 761 * in ll_tablefree() and was currently running 762 * it would have return 0 so the code would 763 * not have deleted it since the callout could 764 * not be stopped so we want to go through 765 * with the delete here now. If the callout 766 * was restarted, the pending bit will be back on and 767 * we just want to bail since the callout_reset would 768 * return 1 and our reference would have been removed 769 * by nd6_llinfo_settimer_locked above since canceled 770 * would have been 1. 771 */ 772 LLE_WUNLOCK(ln); 773 ND6_RUNLOCK(); 774 CURVNET_RESTORE(); 775 return; 776 } 777 NET_EPOCH_ENTER(et); 778 ndi = ND_IFINFO(ifp); 779 send_ns = 0; 780 dst = &ln->r_l3addr.addr6; 781 pdst = dst; 782 783 if (ln->ln_ntick > 0) { 784 if (ln->ln_ntick > INT_MAX) { 785 ln->ln_ntick -= INT_MAX; 786 nd6_llinfo_settimer_locked(ln, INT_MAX); 787 } else { 788 ln->ln_ntick = 0; 789 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 790 } 791 goto done; 792 } 793 794 if (ln->la_flags & LLE_STATIC) { 795 goto done; 796 } 797 798 if (ln->la_flags & LLE_DELETED) { 799 nd6_free(&ln, 0); 800 goto done; 801 } 802 803 switch (ln->ln_state) { 804 case ND6_LLINFO_INCOMPLETE: 805 if (ln->la_asked < V_nd6_mmaxtries) { 806 ln->la_asked++; 807 send_ns = 1; 808 /* Send NS to multicast address */ 809 pdst = NULL; 810 } else { 811 struct mbuf *m = ln->la_hold; 812 if (m) { 813 struct mbuf *m0; 814 815 /* 816 * assuming every packet in la_hold has the 817 * same IP header. Send error after unlock. 818 */ 819 m0 = m->m_nextpkt; 820 m->m_nextpkt = NULL; 821 ln->la_hold = m0; 822 clear_llinfo_pqueue(ln); 823 } 824 nd6_free(&ln, 0); 825 if (m != NULL) { 826 struct mbuf *n = m; 827 828 /* 829 * if there are any ummapped mbufs, we 830 * must free them, rather than using 831 * them for an ICMP, as they cannot be 832 * checksummed. 833 */ 834 while ((n = n->m_next) != NULL) { 835 if (n->m_flags & M_EXTPG) 836 break; 837 } 838 if (n != NULL) { 839 m_freem(m); 840 m = NULL; 841 } else { 842 icmp6_error2(m, ICMP6_DST_UNREACH, 843 ICMP6_DST_UNREACH_ADDR, 0, ifp); 844 } 845 } 846 } 847 break; 848 case ND6_LLINFO_REACHABLE: 849 if (!ND6_LLINFO_PERMANENT(ln)) 850 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 851 break; 852 853 case ND6_LLINFO_STALE: 854 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 855 /* 856 * No packet has used this entry and GC timeout 857 * has not been passed. Reshedule timer and 858 * return. 859 */ 860 nd6_llinfo_settimer_locked(ln, delay); 861 break; 862 } 863 864 if (do_switch == 0) { 865 /* 866 * GC timer has ended and entry hasn't been used. 867 * Run Garbage collector (RFC 4861, 5.3) 868 */ 869 if (!ND6_LLINFO_PERMANENT(ln)) 870 nd6_free(&ln, 1); 871 break; 872 } 873 874 /* Entry has been used AND delay timer has ended. */ 875 876 /* FALLTHROUGH */ 877 878 case ND6_LLINFO_DELAY: 879 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 880 /* We need NUD */ 881 ln->la_asked = 1; 882 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 883 send_ns = 1; 884 } else 885 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 886 break; 887 case ND6_LLINFO_PROBE: 888 if (ln->la_asked < V_nd6_umaxtries) { 889 ln->la_asked++; 890 send_ns = 1; 891 } else { 892 nd6_free(&ln, 0); 893 } 894 break; 895 default: 896 panic("%s: paths in a dark night can be confusing: %d", 897 __func__, ln->ln_state); 898 } 899 done: 900 if (ln != NULL) 901 ND6_RUNLOCK(); 902 if (send_ns != 0) { 903 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 904 psrc = nd6_llinfo_get_holdsrc(ln, &src); 905 LLE_FREE_LOCKED(ln); 906 ln = NULL; 907 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 908 } 909 910 if (ln != NULL) 911 LLE_FREE_LOCKED(ln); 912 NET_EPOCH_EXIT(et); 913 CURVNET_RESTORE(); 914 } 915 916 /* 917 * ND6 timer routine to expire default route list and prefix list 918 */ 919 void 920 nd6_timer(void *arg) 921 { 922 CURVNET_SET((struct vnet *) arg); 923 struct epoch_tracker et; 924 struct nd_prhead prl; 925 struct nd_prefix *pr, *npr; 926 struct ifnet *ifp; 927 struct in6_ifaddr *ia6, *nia6; 928 uint64_t genid; 929 930 LIST_INIT(&prl); 931 932 NET_EPOCH_ENTER(et); 933 nd6_defrouter_timer(); 934 935 /* 936 * expire interface addresses. 937 * in the past the loop was inside prefix expiry processing. 938 * However, from a stricter speci-confrmance standpoint, we should 939 * rather separate address lifetimes and prefix lifetimes. 940 * 941 * XXXRW: in6_ifaddrhead locking. 942 */ 943 addrloop: 944 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 945 /* check address lifetime */ 946 if (IFA6_IS_INVALID(ia6)) { 947 int regen = 0; 948 949 /* 950 * If the expiring address is temporary, try 951 * regenerating a new one. This would be useful when 952 * we suspended a laptop PC, then turned it on after a 953 * period that could invalidate all temporary 954 * addresses. Although we may have to restart the 955 * loop (see below), it must be after purging the 956 * address. Otherwise, we'd see an infinite loop of 957 * regeneration. 958 */ 959 if (V_ip6_use_tempaddr && 960 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 961 if (regen_tmpaddr(ia6) == 0) 962 regen = 1; 963 } 964 965 in6_purgeaddr(&ia6->ia_ifa); 966 967 if (regen) 968 goto addrloop; /* XXX: see below */ 969 } else if (IFA6_IS_DEPRECATED(ia6)) { 970 int oldflags = ia6->ia6_flags; 971 972 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 973 974 /* 975 * If a temporary address has just become deprecated, 976 * regenerate a new one if possible. 977 */ 978 if (V_ip6_use_tempaddr && 979 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 980 (oldflags & IN6_IFF_DEPRECATED) == 0) { 981 if (regen_tmpaddr(ia6) == 0) { 982 /* 983 * A new temporary address is 984 * generated. 985 * XXX: this means the address chain 986 * has changed while we are still in 987 * the loop. Although the change 988 * would not cause disaster (because 989 * it's not a deletion, but an 990 * addition,) we'd rather restart the 991 * loop just for safety. Or does this 992 * significantly reduce performance?? 993 */ 994 goto addrloop; 995 } 996 } 997 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 998 /* 999 * Schedule DAD for a tentative address. This happens 1000 * if the interface was down or not running 1001 * when the address was configured. 1002 */ 1003 int delay; 1004 1005 delay = arc4random() % 1006 (MAX_RTR_SOLICITATION_DELAY * hz); 1007 nd6_dad_start((struct ifaddr *)ia6, delay); 1008 } else { 1009 /* 1010 * Check status of the interface. If it is down, 1011 * mark the address as tentative for future DAD. 1012 */ 1013 ifp = ia6->ia_ifp; 1014 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 1015 ((ifp->if_flags & IFF_UP) == 0 || 1016 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 1017 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1018 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1019 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1020 } 1021 1022 /* 1023 * A new RA might have made a deprecated address 1024 * preferred. 1025 */ 1026 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1027 } 1028 } 1029 NET_EPOCH_EXIT(et); 1030 1031 ND6_WLOCK(); 1032 restart: 1033 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1034 /* 1035 * Expire prefixes. Since the pltime is only used for 1036 * autoconfigured addresses, pltime processing for prefixes is 1037 * not necessary. 1038 * 1039 * Only unlink after all derived addresses have expired. This 1040 * may not occur until two hours after the prefix has expired 1041 * per RFC 4862. If the prefix expires before its derived 1042 * addresses, mark it off-link. This will be done automatically 1043 * after unlinking if no address references remain. 1044 */ 1045 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1046 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1047 continue; 1048 1049 if (pr->ndpr_addrcnt == 0) { 1050 nd6_prefix_unlink(pr, &prl); 1051 continue; 1052 } 1053 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1054 genid = V_nd6_list_genid; 1055 nd6_prefix_ref(pr); 1056 ND6_WUNLOCK(); 1057 ND6_ONLINK_LOCK(); 1058 (void)nd6_prefix_offlink(pr); 1059 ND6_ONLINK_UNLOCK(); 1060 ND6_WLOCK(); 1061 nd6_prefix_rele(pr); 1062 if (genid != V_nd6_list_genid) 1063 goto restart; 1064 } 1065 } 1066 ND6_WUNLOCK(); 1067 1068 while ((pr = LIST_FIRST(&prl)) != NULL) { 1069 LIST_REMOVE(pr, ndpr_entry); 1070 nd6_prefix_del(pr); 1071 } 1072 1073 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1074 nd6_timer, curvnet); 1075 1076 CURVNET_RESTORE(); 1077 } 1078 1079 /* 1080 * ia6 - deprecated/invalidated temporary address 1081 */ 1082 static int 1083 regen_tmpaddr(struct in6_ifaddr *ia6) 1084 { 1085 struct ifaddr *ifa; 1086 struct ifnet *ifp; 1087 struct in6_ifaddr *public_ifa6 = NULL; 1088 1089 NET_EPOCH_ASSERT(); 1090 1091 ifp = ia6->ia_ifa.ifa_ifp; 1092 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1093 struct in6_ifaddr *it6; 1094 1095 if (ifa->ifa_addr->sa_family != AF_INET6) 1096 continue; 1097 1098 it6 = (struct in6_ifaddr *)ifa; 1099 1100 /* ignore no autoconf addresses. */ 1101 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1102 continue; 1103 1104 /* ignore autoconf addresses with different prefixes. */ 1105 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1106 continue; 1107 1108 /* 1109 * Now we are looking at an autoconf address with the same 1110 * prefix as ours. If the address is temporary and is still 1111 * preferred, do not create another one. It would be rare, but 1112 * could happen, for example, when we resume a laptop PC after 1113 * a long period. 1114 */ 1115 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1116 !IFA6_IS_DEPRECATED(it6)) { 1117 public_ifa6 = NULL; 1118 break; 1119 } 1120 1121 /* 1122 * This is a public autoconf address that has the same prefix 1123 * as ours. If it is preferred, keep it. We can't break the 1124 * loop here, because there may be a still-preferred temporary 1125 * address with the prefix. 1126 */ 1127 if (!IFA6_IS_DEPRECATED(it6)) 1128 public_ifa6 = it6; 1129 } 1130 if (public_ifa6 != NULL) 1131 ifa_ref(&public_ifa6->ia_ifa); 1132 1133 if (public_ifa6 != NULL) { 1134 int e; 1135 1136 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1137 ifa_free(&public_ifa6->ia_ifa); 1138 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1139 " tmp addr,errno=%d\n", e); 1140 return (-1); 1141 } 1142 ifa_free(&public_ifa6->ia_ifa); 1143 return (0); 1144 } 1145 1146 return (-1); 1147 } 1148 1149 /* 1150 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1151 * cache entries are freed in in6_domifdetach(). 1152 */ 1153 void 1154 nd6_purge(struct ifnet *ifp) 1155 { 1156 struct nd_prhead prl; 1157 struct nd_prefix *pr, *npr; 1158 1159 LIST_INIT(&prl); 1160 1161 /* Purge default router list entries toward ifp. */ 1162 nd6_defrouter_purge(ifp); 1163 1164 ND6_WLOCK(); 1165 /* 1166 * Remove prefixes on ifp. We should have already removed addresses on 1167 * this interface, so no addresses should be referencing these prefixes. 1168 */ 1169 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1170 if (pr->ndpr_ifp == ifp) 1171 nd6_prefix_unlink(pr, &prl); 1172 } 1173 ND6_WUNLOCK(); 1174 1175 /* Delete the unlinked prefix objects. */ 1176 while ((pr = LIST_FIRST(&prl)) != NULL) { 1177 LIST_REMOVE(pr, ndpr_entry); 1178 nd6_prefix_del(pr); 1179 } 1180 1181 /* cancel default outgoing interface setting */ 1182 if (V_nd6_defifindex == ifp->if_index) 1183 nd6_setdefaultiface(0); 1184 1185 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1186 /* Refresh default router list. */ 1187 defrouter_select_fib(ifp->if_fib); 1188 } 1189 } 1190 1191 /* 1192 * the caller acquires and releases the lock on the lltbls 1193 * Returns the llentry locked 1194 */ 1195 struct llentry * 1196 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1197 { 1198 struct sockaddr_in6 sin6; 1199 struct llentry *ln; 1200 1201 bzero(&sin6, sizeof(sin6)); 1202 sin6.sin6_len = sizeof(struct sockaddr_in6); 1203 sin6.sin6_family = AF_INET6; 1204 sin6.sin6_addr = *addr6; 1205 1206 IF_AFDATA_LOCK_ASSERT(ifp); 1207 1208 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1209 1210 return (ln); 1211 } 1212 1213 static struct llentry * 1214 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1215 { 1216 struct sockaddr_in6 sin6; 1217 struct llentry *ln; 1218 1219 bzero(&sin6, sizeof(sin6)); 1220 sin6.sin6_len = sizeof(struct sockaddr_in6); 1221 sin6.sin6_family = AF_INET6; 1222 sin6.sin6_addr = *addr6; 1223 1224 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1225 if (ln != NULL) 1226 ln->ln_state = ND6_LLINFO_NOSTATE; 1227 1228 return (ln); 1229 } 1230 1231 /* 1232 * Test whether a given IPv6 address is a neighbor or not, ignoring 1233 * the actual neighbor cache. The neighbor cache is ignored in order 1234 * to not reenter the routing code from within itself. 1235 */ 1236 static int 1237 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1238 { 1239 struct nd_prefix *pr; 1240 struct ifaddr *ifa; 1241 struct rt_addrinfo info; 1242 struct sockaddr_in6 rt_key; 1243 const struct sockaddr *dst6; 1244 uint64_t genid; 1245 int error, fibnum; 1246 1247 /* 1248 * A link-local address is always a neighbor. 1249 * XXX: a link does not necessarily specify a single interface. 1250 */ 1251 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1252 struct sockaddr_in6 sin6_copy; 1253 u_int32_t zone; 1254 1255 /* 1256 * We need sin6_copy since sa6_recoverscope() may modify the 1257 * content (XXX). 1258 */ 1259 sin6_copy = *addr; 1260 if (sa6_recoverscope(&sin6_copy)) 1261 return (0); /* XXX: should be impossible */ 1262 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1263 return (0); 1264 if (sin6_copy.sin6_scope_id == zone) 1265 return (1); 1266 else 1267 return (0); 1268 } 1269 1270 bzero(&rt_key, sizeof(rt_key)); 1271 bzero(&info, sizeof(info)); 1272 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1273 1274 /* 1275 * If the address matches one of our addresses, 1276 * it should be a neighbor. 1277 * If the address matches one of our on-link prefixes, it should be a 1278 * neighbor. 1279 */ 1280 ND6_RLOCK(); 1281 restart: 1282 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1283 if (pr->ndpr_ifp != ifp) 1284 continue; 1285 1286 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1287 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1288 1289 /* 1290 * We only need to check all FIBs if add_addr_allfibs 1291 * is unset. If set, checking any FIB will suffice. 1292 */ 1293 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1294 for (; fibnum < rt_numfibs; fibnum++) { 1295 genid = V_nd6_list_genid; 1296 ND6_RUNLOCK(); 1297 1298 /* 1299 * Restore length field before 1300 * retrying lookup 1301 */ 1302 rt_key.sin6_len = sizeof(rt_key); 1303 error = rib_lookup_info(fibnum, dst6, 0, 0, 1304 &info); 1305 1306 ND6_RLOCK(); 1307 if (genid != V_nd6_list_genid) 1308 goto restart; 1309 if (error == 0) 1310 break; 1311 } 1312 if (error != 0) 1313 continue; 1314 1315 /* 1316 * This is the case where multiple interfaces 1317 * have the same prefix, but only one is installed 1318 * into the routing table and that prefix entry 1319 * is not the one being examined here. 1320 */ 1321 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1322 &rt_key.sin6_addr)) 1323 continue; 1324 } 1325 1326 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1327 &addr->sin6_addr, &pr->ndpr_mask)) { 1328 ND6_RUNLOCK(); 1329 return (1); 1330 } 1331 } 1332 ND6_RUNLOCK(); 1333 1334 /* 1335 * If the address is assigned on the node of the other side of 1336 * a p2p interface, the address should be a neighbor. 1337 */ 1338 if (ifp->if_flags & IFF_POINTOPOINT) { 1339 struct epoch_tracker et; 1340 1341 NET_EPOCH_ENTER(et); 1342 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1343 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1344 continue; 1345 if (ifa->ifa_dstaddr != NULL && 1346 sa_equal(addr, ifa->ifa_dstaddr)) { 1347 NET_EPOCH_EXIT(et); 1348 return 1; 1349 } 1350 } 1351 NET_EPOCH_EXIT(et); 1352 } 1353 1354 /* 1355 * If the default router list is empty, all addresses are regarded 1356 * as on-link, and thus, as a neighbor. 1357 */ 1358 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1359 nd6_defrouter_list_empty() && 1360 V_nd6_defifindex == ifp->if_index) { 1361 return (1); 1362 } 1363 1364 return (0); 1365 } 1366 1367 /* 1368 * Detect if a given IPv6 address identifies a neighbor on a given link. 1369 * XXX: should take care of the destination of a p2p link? 1370 */ 1371 int 1372 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1373 { 1374 struct llentry *lle; 1375 int rc = 0; 1376 1377 NET_EPOCH_ASSERT(); 1378 IF_AFDATA_UNLOCK_ASSERT(ifp); 1379 if (nd6_is_new_addr_neighbor(addr, ifp)) 1380 return (1); 1381 1382 /* 1383 * Even if the address matches none of our addresses, it might be 1384 * in the neighbor cache. 1385 */ 1386 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1387 LLE_RUNLOCK(lle); 1388 rc = 1; 1389 } 1390 return (rc); 1391 } 1392 1393 /* 1394 * Free an nd6 llinfo entry. 1395 * Since the function would cause significant changes in the kernel, DO NOT 1396 * make it global, unless you have a strong reason for the change, and are sure 1397 * that the change is safe. 1398 * 1399 * Set noinline to be dtrace-friendly 1400 */ 1401 static __noinline void 1402 nd6_free(struct llentry **lnp, int gc) 1403 { 1404 struct ifnet *ifp; 1405 struct llentry *ln; 1406 struct nd_defrouter *dr; 1407 1408 ln = *lnp; 1409 *lnp = NULL; 1410 1411 LLE_WLOCK_ASSERT(ln); 1412 ND6_RLOCK_ASSERT(); 1413 1414 ifp = lltable_get_ifp(ln->lle_tbl); 1415 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1416 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1417 else 1418 dr = NULL; 1419 ND6_RUNLOCK(); 1420 1421 if ((ln->la_flags & LLE_DELETED) == 0) 1422 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1423 1424 /* 1425 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1426 * even though it is not harmful, it was not really necessary. 1427 */ 1428 1429 /* cancel timer */ 1430 nd6_llinfo_settimer_locked(ln, -1); 1431 1432 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1433 if (dr != NULL && dr->expire && 1434 ln->ln_state == ND6_LLINFO_STALE && gc) { 1435 /* 1436 * If the reason for the deletion is just garbage 1437 * collection, and the neighbor is an active default 1438 * router, do not delete it. Instead, reset the GC 1439 * timer using the router's lifetime. 1440 * Simply deleting the entry would affect default 1441 * router selection, which is not necessarily a good 1442 * thing, especially when we're using router preference 1443 * values. 1444 * XXX: the check for ln_state would be redundant, 1445 * but we intentionally keep it just in case. 1446 */ 1447 if (dr->expire > time_uptime) 1448 nd6_llinfo_settimer_locked(ln, 1449 (dr->expire - time_uptime) * hz); 1450 else 1451 nd6_llinfo_settimer_locked(ln, 1452 (long)V_nd6_gctimer * hz); 1453 1454 LLE_REMREF(ln); 1455 LLE_WUNLOCK(ln); 1456 defrouter_rele(dr); 1457 return; 1458 } 1459 1460 if (dr) { 1461 /* 1462 * Unreachablity of a router might affect the default 1463 * router selection and on-link detection of advertised 1464 * prefixes. 1465 */ 1466 1467 /* 1468 * Temporarily fake the state to choose a new default 1469 * router and to perform on-link determination of 1470 * prefixes correctly. 1471 * Below the state will be set correctly, 1472 * or the entry itself will be deleted. 1473 */ 1474 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1475 } 1476 1477 if (ln->ln_router || dr) { 1478 /* 1479 * We need to unlock to avoid a LOR with rt6_flush() with the 1480 * rnh and for the calls to pfxlist_onlink_check() and 1481 * defrouter_select_fib() in the block further down for calls 1482 * into nd6_lookup(). We still hold a ref. 1483 */ 1484 LLE_WUNLOCK(ln); 1485 1486 /* 1487 * rt6_flush must be called whether or not the neighbor 1488 * is in the Default Router List. 1489 * See a corresponding comment in nd6_na_input(). 1490 */ 1491 rt6_flush(&ln->r_l3addr.addr6, ifp); 1492 } 1493 1494 if (dr) { 1495 /* 1496 * Since defrouter_select_fib() does not affect the 1497 * on-link determination and MIP6 needs the check 1498 * before the default router selection, we perform 1499 * the check now. 1500 */ 1501 pfxlist_onlink_check(); 1502 1503 /* 1504 * Refresh default router list. 1505 */ 1506 defrouter_select_fib(dr->ifp->if_fib); 1507 } 1508 1509 /* 1510 * If this entry was added by an on-link redirect, remove the 1511 * corresponding host route. 1512 */ 1513 if (ln->la_flags & LLE_REDIRECT) 1514 nd6_free_redirect(ln); 1515 1516 if (ln->ln_router || dr) 1517 LLE_WLOCK(ln); 1518 } 1519 1520 /* 1521 * Save to unlock. We still hold an extra reference and will not 1522 * free(9) in llentry_free() if someone else holds one as well. 1523 */ 1524 LLE_WUNLOCK(ln); 1525 IF_AFDATA_LOCK(ifp); 1526 LLE_WLOCK(ln); 1527 /* Guard against race with other llentry_free(). */ 1528 if (ln->la_flags & LLE_LINKED) { 1529 /* Remove callout reference */ 1530 LLE_REMREF(ln); 1531 lltable_unlink_entry(ln->lle_tbl, ln); 1532 } 1533 IF_AFDATA_UNLOCK(ifp); 1534 1535 llentry_free(ln); 1536 if (dr != NULL) 1537 defrouter_rele(dr); 1538 } 1539 1540 static int 1541 nd6_isdynrte(const struct rtentry *rt, const struct nhop_object *nh, void *xap) 1542 { 1543 1544 if (nh->nh_flags & NHF_REDIRECT) 1545 return (1); 1546 1547 return (0); 1548 } 1549 1550 /* 1551 * Remove the rtentry for the given llentry, 1552 * both of which were installed by a redirect. 1553 */ 1554 static void 1555 nd6_free_redirect(const struct llentry *ln) 1556 { 1557 int fibnum; 1558 struct sockaddr_in6 sin6; 1559 struct rt_addrinfo info; 1560 struct rib_cmd_info rc; 1561 struct epoch_tracker et; 1562 1563 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1564 memset(&info, 0, sizeof(info)); 1565 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1566 info.rti_filter = nd6_isdynrte; 1567 1568 NET_EPOCH_ENTER(et); 1569 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1570 rib_action(fibnum, RTM_DELETE, &info, &rc); 1571 NET_EPOCH_EXIT(et); 1572 } 1573 1574 /* 1575 * Updates status of the default router route. 1576 */ 1577 static void 1578 check_release_defrouter(struct rib_cmd_info *rc, void *_cbdata) 1579 { 1580 struct nd_defrouter *dr; 1581 struct nhop_object *nh; 1582 1583 nh = rc->rc_nh_old; 1584 1585 if ((nh != NULL) && (nh->nh_flags & NHF_DEFAULT)) { 1586 dr = defrouter_lookup(&nh->gw6_sa.sin6_addr, nh->nh_ifp); 1587 if (dr != NULL) { 1588 dr->installed = 0; 1589 defrouter_rele(dr); 1590 } 1591 } 1592 } 1593 1594 void 1595 nd6_subscription_cb(struct rib_head *rnh, struct rib_cmd_info *rc, void *arg) 1596 { 1597 1598 #ifdef ROUTE_MPATH 1599 rib_decompose_notification(rc, check_release_defrouter, NULL); 1600 #else 1601 check_release_defrouter(rc, NULL); 1602 #endif 1603 } 1604 1605 int 1606 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1607 { 1608 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1609 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1610 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1611 struct epoch_tracker et; 1612 int error = 0; 1613 1614 if (ifp->if_afdata[AF_INET6] == NULL) 1615 return (EPFNOSUPPORT); 1616 switch (cmd) { 1617 case OSIOCGIFINFO_IN6: 1618 #define ND ndi->ndi 1619 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1620 bzero(&ND, sizeof(ND)); 1621 ND.linkmtu = IN6_LINKMTU(ifp); 1622 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1623 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1624 ND.reachable = ND_IFINFO(ifp)->reachable; 1625 ND.retrans = ND_IFINFO(ifp)->retrans; 1626 ND.flags = ND_IFINFO(ifp)->flags; 1627 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1628 ND.chlim = ND_IFINFO(ifp)->chlim; 1629 break; 1630 case SIOCGIFINFO_IN6: 1631 ND = *ND_IFINFO(ifp); 1632 break; 1633 case SIOCSIFINFO_IN6: 1634 /* 1635 * used to change host variables from userland. 1636 * intended for a use on router to reflect RA configurations. 1637 */ 1638 /* 0 means 'unspecified' */ 1639 if (ND.linkmtu != 0) { 1640 if (ND.linkmtu < IPV6_MMTU || 1641 ND.linkmtu > IN6_LINKMTU(ifp)) { 1642 error = EINVAL; 1643 break; 1644 } 1645 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1646 } 1647 1648 if (ND.basereachable != 0) { 1649 int obasereachable = ND_IFINFO(ifp)->basereachable; 1650 1651 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1652 if (ND.basereachable != obasereachable) 1653 ND_IFINFO(ifp)->reachable = 1654 ND_COMPUTE_RTIME(ND.basereachable); 1655 } 1656 if (ND.retrans != 0) 1657 ND_IFINFO(ifp)->retrans = ND.retrans; 1658 if (ND.chlim != 0) 1659 ND_IFINFO(ifp)->chlim = ND.chlim; 1660 /* FALLTHROUGH */ 1661 case SIOCSIFINFO_FLAGS: 1662 { 1663 struct ifaddr *ifa; 1664 struct in6_ifaddr *ia; 1665 1666 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1667 !(ND.flags & ND6_IFF_IFDISABLED)) { 1668 /* ifdisabled 1->0 transision */ 1669 1670 /* 1671 * If the interface is marked as ND6_IFF_IFDISABLED and 1672 * has an link-local address with IN6_IFF_DUPLICATED, 1673 * do not clear ND6_IFF_IFDISABLED. 1674 * See RFC 4862, Section 5.4.5. 1675 */ 1676 NET_EPOCH_ENTER(et); 1677 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1678 if (ifa->ifa_addr->sa_family != AF_INET6) 1679 continue; 1680 ia = (struct in6_ifaddr *)ifa; 1681 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1682 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1683 break; 1684 } 1685 NET_EPOCH_EXIT(et); 1686 1687 if (ifa != NULL) { 1688 /* LLA is duplicated. */ 1689 ND.flags |= ND6_IFF_IFDISABLED; 1690 log(LOG_ERR, "Cannot enable an interface" 1691 " with a link-local address marked" 1692 " duplicate.\n"); 1693 } else { 1694 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1695 if (ifp->if_flags & IFF_UP) 1696 in6_if_up(ifp); 1697 } 1698 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1699 (ND.flags & ND6_IFF_IFDISABLED)) { 1700 /* ifdisabled 0->1 transision */ 1701 /* Mark all IPv6 address as tentative. */ 1702 1703 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1704 if (V_ip6_dad_count > 0 && 1705 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1706 NET_EPOCH_ENTER(et); 1707 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1708 ifa_link) { 1709 if (ifa->ifa_addr->sa_family != 1710 AF_INET6) 1711 continue; 1712 ia = (struct in6_ifaddr *)ifa; 1713 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1714 } 1715 NET_EPOCH_EXIT(et); 1716 } 1717 } 1718 1719 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1720 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1721 /* auto_linklocal 0->1 transision */ 1722 1723 /* If no link-local address on ifp, configure */ 1724 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1725 in6_ifattach(ifp, NULL); 1726 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1727 ifp->if_flags & IFF_UP) { 1728 /* 1729 * When the IF already has 1730 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1731 * address is assigned, and IFF_UP, try to 1732 * assign one. 1733 */ 1734 NET_EPOCH_ENTER(et); 1735 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1736 ifa_link) { 1737 if (ifa->ifa_addr->sa_family != 1738 AF_INET6) 1739 continue; 1740 ia = (struct in6_ifaddr *)ifa; 1741 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1742 break; 1743 } 1744 NET_EPOCH_EXIT(et); 1745 if (ifa != NULL) 1746 /* No LLA is configured. */ 1747 in6_ifattach(ifp, NULL); 1748 } 1749 } 1750 ND_IFINFO(ifp)->flags = ND.flags; 1751 break; 1752 } 1753 #undef ND 1754 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1755 /* sync kernel routing table with the default router list */ 1756 defrouter_reset(); 1757 defrouter_select_fib(RT_ALL_FIBS); 1758 break; 1759 case SIOCSPFXFLUSH_IN6: 1760 { 1761 /* flush all the prefix advertised by routers */ 1762 struct in6_ifaddr *ia, *ia_next; 1763 struct nd_prefix *pr, *next; 1764 struct nd_prhead prl; 1765 1766 LIST_INIT(&prl); 1767 1768 ND6_WLOCK(); 1769 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1770 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1771 continue; /* XXX */ 1772 nd6_prefix_unlink(pr, &prl); 1773 } 1774 ND6_WUNLOCK(); 1775 1776 while ((pr = LIST_FIRST(&prl)) != NULL) { 1777 LIST_REMOVE(pr, ndpr_entry); 1778 /* XXXRW: in6_ifaddrhead locking. */ 1779 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1780 ia_next) { 1781 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1782 continue; 1783 1784 if (ia->ia6_ndpr == pr) 1785 in6_purgeaddr(&ia->ia_ifa); 1786 } 1787 nd6_prefix_del(pr); 1788 } 1789 break; 1790 } 1791 case SIOCSRTRFLUSH_IN6: 1792 { 1793 /* flush all the default routers */ 1794 1795 defrouter_reset(); 1796 nd6_defrouter_flush_all(); 1797 defrouter_select_fib(RT_ALL_FIBS); 1798 break; 1799 } 1800 case SIOCGNBRINFO_IN6: 1801 { 1802 struct llentry *ln; 1803 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1804 1805 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1806 return (error); 1807 1808 NET_EPOCH_ENTER(et); 1809 ln = nd6_lookup(&nb_addr, 0, ifp); 1810 NET_EPOCH_EXIT(et); 1811 1812 if (ln == NULL) { 1813 error = EINVAL; 1814 break; 1815 } 1816 nbi->state = ln->ln_state; 1817 nbi->asked = ln->la_asked; 1818 nbi->isrouter = ln->ln_router; 1819 if (ln->la_expire == 0) 1820 nbi->expire = 0; 1821 else 1822 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1823 (time_second - time_uptime); 1824 LLE_RUNLOCK(ln); 1825 break; 1826 } 1827 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1828 ndif->ifindex = V_nd6_defifindex; 1829 break; 1830 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1831 return (nd6_setdefaultiface(ndif->ifindex)); 1832 } 1833 return (error); 1834 } 1835 1836 /* 1837 * Calculates new isRouter value based on provided parameters and 1838 * returns it. 1839 */ 1840 static int 1841 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1842 int ln_router) 1843 { 1844 1845 /* 1846 * ICMP6 type dependent behavior. 1847 * 1848 * NS: clear IsRouter if new entry 1849 * RS: clear IsRouter 1850 * RA: set IsRouter if there's lladdr 1851 * redir: clear IsRouter if new entry 1852 * 1853 * RA case, (1): 1854 * The spec says that we must set IsRouter in the following cases: 1855 * - If lladdr exist, set IsRouter. This means (1-5). 1856 * - If it is old entry (!newentry), set IsRouter. This means (7). 1857 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1858 * A quetion arises for (1) case. (1) case has no lladdr in the 1859 * neighbor cache, this is similar to (6). 1860 * This case is rare but we figured that we MUST NOT set IsRouter. 1861 * 1862 * is_new old_addr new_addr NS RS RA redir 1863 * D R 1864 * 0 n n (1) c ? s 1865 * 0 y n (2) c s s 1866 * 0 n y (3) c s s 1867 * 0 y y (4) c s s 1868 * 0 y y (5) c s s 1869 * 1 -- n (6) c c c s 1870 * 1 -- y (7) c c s c s 1871 * 1872 * (c=clear s=set) 1873 */ 1874 switch (type & 0xff) { 1875 case ND_NEIGHBOR_SOLICIT: 1876 /* 1877 * New entry must have is_router flag cleared. 1878 */ 1879 if (is_new) /* (6-7) */ 1880 ln_router = 0; 1881 break; 1882 case ND_REDIRECT: 1883 /* 1884 * If the icmp is a redirect to a better router, always set the 1885 * is_router flag. Otherwise, if the entry is newly created, 1886 * clear the flag. [RFC 2461, sec 8.3] 1887 */ 1888 if (code == ND_REDIRECT_ROUTER) 1889 ln_router = 1; 1890 else { 1891 if (is_new) /* (6-7) */ 1892 ln_router = 0; 1893 } 1894 break; 1895 case ND_ROUTER_SOLICIT: 1896 /* 1897 * is_router flag must always be cleared. 1898 */ 1899 ln_router = 0; 1900 break; 1901 case ND_ROUTER_ADVERT: 1902 /* 1903 * Mark an entry with lladdr as a router. 1904 */ 1905 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1906 (is_new && new_addr)) { /* (7) */ 1907 ln_router = 1; 1908 } 1909 break; 1910 } 1911 1912 return (ln_router); 1913 } 1914 1915 /* 1916 * Create neighbor cache entry and cache link-layer address, 1917 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1918 * 1919 * type - ICMP6 type 1920 * code - type dependent information 1921 * 1922 */ 1923 void 1924 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1925 int lladdrlen, int type, int code) 1926 { 1927 struct llentry *ln = NULL, *ln_tmp; 1928 int is_newentry; 1929 int do_update; 1930 int olladdr; 1931 int llchange; 1932 int flags; 1933 uint16_t router = 0; 1934 struct sockaddr_in6 sin6; 1935 struct mbuf *chain = NULL; 1936 u_char linkhdr[LLE_MAX_LINKHDR]; 1937 size_t linkhdrsize; 1938 int lladdr_off; 1939 1940 NET_EPOCH_ASSERT(); 1941 IF_AFDATA_UNLOCK_ASSERT(ifp); 1942 1943 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1944 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1945 1946 /* nothing must be updated for unspecified address */ 1947 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1948 return; 1949 1950 /* 1951 * Validation about ifp->if_addrlen and lladdrlen must be done in 1952 * the caller. 1953 * 1954 * XXX If the link does not have link-layer adderss, what should 1955 * we do? (ifp->if_addrlen == 0) 1956 * Spec says nothing in sections for RA, RS and NA. There's small 1957 * description on it in NS section (RFC 2461 7.2.3). 1958 */ 1959 flags = lladdr ? LLE_EXCLUSIVE : 0; 1960 ln = nd6_lookup(from, flags, ifp); 1961 is_newentry = 0; 1962 if (ln == NULL) { 1963 flags |= LLE_EXCLUSIVE; 1964 ln = nd6_alloc(from, 0, ifp); 1965 if (ln == NULL) 1966 return; 1967 1968 /* 1969 * Since we already know all the data for the new entry, 1970 * fill it before insertion. 1971 */ 1972 if (lladdr != NULL) { 1973 linkhdrsize = sizeof(linkhdr); 1974 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1975 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1976 return; 1977 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1978 lladdr_off); 1979 } 1980 1981 IF_AFDATA_WLOCK(ifp); 1982 LLE_WLOCK(ln); 1983 /* Prefer any existing lle over newly-created one */ 1984 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1985 if (ln_tmp == NULL) 1986 lltable_link_entry(LLTABLE6(ifp), ln); 1987 IF_AFDATA_WUNLOCK(ifp); 1988 if (ln_tmp == NULL) { 1989 /* No existing lle, mark as new entry (6,7) */ 1990 is_newentry = 1; 1991 if (lladdr != NULL) { /* (7) */ 1992 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1993 EVENTHANDLER_INVOKE(lle_event, ln, 1994 LLENTRY_RESOLVED); 1995 } 1996 } else { 1997 lltable_free_entry(LLTABLE6(ifp), ln); 1998 ln = ln_tmp; 1999 ln_tmp = NULL; 2000 } 2001 } 2002 /* do nothing if static ndp is set */ 2003 if ((ln->la_flags & LLE_STATIC)) { 2004 if (flags & LLE_EXCLUSIVE) 2005 LLE_WUNLOCK(ln); 2006 else 2007 LLE_RUNLOCK(ln); 2008 return; 2009 } 2010 2011 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2012 if (olladdr && lladdr) { 2013 llchange = bcmp(lladdr, ln->ll_addr, 2014 ifp->if_addrlen); 2015 } else if (!olladdr && lladdr) 2016 llchange = 1; 2017 else 2018 llchange = 0; 2019 2020 /* 2021 * newentry olladdr lladdr llchange (*=record) 2022 * 0 n n -- (1) 2023 * 0 y n -- (2) 2024 * 0 n y y (3) * STALE 2025 * 0 y y n (4) * 2026 * 0 y y y (5) * STALE 2027 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2028 * 1 -- y -- (7) * STALE 2029 */ 2030 2031 do_update = 0; 2032 if (is_newentry == 0 && llchange != 0) { 2033 do_update = 1; /* (3,5) */ 2034 2035 /* 2036 * Record source link-layer address 2037 * XXX is it dependent to ifp->if_type? 2038 */ 2039 linkhdrsize = sizeof(linkhdr); 2040 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2041 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2042 return; 2043 2044 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2045 lladdr_off) == 0) { 2046 /* Entry was deleted */ 2047 return; 2048 } 2049 2050 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2051 2052 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2053 2054 if (ln->la_hold != NULL) 2055 nd6_grab_holdchain(ln, &chain, &sin6); 2056 } 2057 2058 /* Calculates new router status */ 2059 router = nd6_is_router(type, code, is_newentry, olladdr, 2060 lladdr != NULL ? 1 : 0, ln->ln_router); 2061 2062 ln->ln_router = router; 2063 /* Mark non-router redirects with special flag */ 2064 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2065 ln->la_flags |= LLE_REDIRECT; 2066 2067 if (flags & LLE_EXCLUSIVE) 2068 LLE_WUNLOCK(ln); 2069 else 2070 LLE_RUNLOCK(ln); 2071 2072 if (chain != NULL) 2073 nd6_flush_holdchain(ifp, chain, &sin6); 2074 2075 /* 2076 * When the link-layer address of a router changes, select the 2077 * best router again. In particular, when the neighbor entry is newly 2078 * created, it might affect the selection policy. 2079 * Question: can we restrict the first condition to the "is_newentry" 2080 * case? 2081 * XXX: when we hear an RA from a new router with the link-layer 2082 * address option, defrouter_select_fib() is called twice, since 2083 * defrtrlist_update called the function as well. However, I believe 2084 * we can compromise the overhead, since it only happens the first 2085 * time. 2086 * XXX: although defrouter_select_fib() should not have a bad effect 2087 * for those are not autoconfigured hosts, we explicitly avoid such 2088 * cases for safety. 2089 */ 2090 if ((do_update || is_newentry) && router && 2091 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2092 /* 2093 * guaranteed recursion 2094 */ 2095 defrouter_select_fib(ifp->if_fib); 2096 } 2097 } 2098 2099 static void 2100 nd6_slowtimo(void *arg) 2101 { 2102 struct epoch_tracker et; 2103 CURVNET_SET((struct vnet *) arg); 2104 struct nd_ifinfo *nd6if; 2105 struct ifnet *ifp; 2106 2107 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2108 nd6_slowtimo, curvnet); 2109 NET_EPOCH_ENTER(et); 2110 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2111 if (ifp->if_afdata[AF_INET6] == NULL) 2112 continue; 2113 nd6if = ND_IFINFO(ifp); 2114 if (nd6if->basereachable && /* already initialized */ 2115 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2116 /* 2117 * Since reachable time rarely changes by router 2118 * advertisements, we SHOULD insure that a new random 2119 * value gets recomputed at least once every few hours. 2120 * (RFC 2461, 6.3.4) 2121 */ 2122 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2123 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2124 } 2125 } 2126 NET_EPOCH_EXIT(et); 2127 CURVNET_RESTORE(); 2128 } 2129 2130 void 2131 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2132 struct sockaddr_in6 *sin6) 2133 { 2134 2135 LLE_WLOCK_ASSERT(ln); 2136 2137 *chain = ln->la_hold; 2138 ln->la_hold = NULL; 2139 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2140 2141 if (ln->ln_state == ND6_LLINFO_STALE) { 2142 /* 2143 * The first time we send a packet to a 2144 * neighbor whose entry is STALE, we have 2145 * to change the state to DELAY and a sets 2146 * a timer to expire in DELAY_FIRST_PROBE_TIME 2147 * seconds to ensure do neighbor unreachability 2148 * detection on expiration. 2149 * (RFC 2461 7.3.3) 2150 */ 2151 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2152 } 2153 } 2154 2155 int 2156 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2157 struct sockaddr_in6 *dst, struct route *ro) 2158 { 2159 int error; 2160 int ip6len; 2161 struct ip6_hdr *ip6; 2162 struct m_tag *mtag; 2163 2164 #ifdef MAC 2165 mac_netinet6_nd6_send(ifp, m); 2166 #endif 2167 2168 /* 2169 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2170 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2171 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2172 * to be diverted to user space. When re-injected into the kernel, 2173 * send_output() will directly dispatch them to the outgoing interface. 2174 */ 2175 if (send_sendso_input_hook != NULL) { 2176 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2177 if (mtag != NULL) { 2178 ip6 = mtod(m, struct ip6_hdr *); 2179 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2180 /* Use the SEND socket */ 2181 error = send_sendso_input_hook(m, ifp, SND_OUT, 2182 ip6len); 2183 /* -1 == no app on SEND socket */ 2184 if (error == 0 || error != -1) 2185 return (error); 2186 } 2187 } 2188 2189 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2190 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2191 mtod(m, struct ip6_hdr *)); 2192 2193 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2194 origifp = ifp; 2195 2196 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2197 return (error); 2198 } 2199 2200 /* 2201 * Lookup link headerfor @sa_dst address. Stores found 2202 * data in @desten buffer. Copy of lle ln_flags can be also 2203 * saved in @pflags if @pflags is non-NULL. 2204 * 2205 * If destination LLE does not exists or lle state modification 2206 * is required, call "slow" version. 2207 * 2208 * Return values: 2209 * - 0 on success (address copied to buffer). 2210 * - EWOULDBLOCK (no local error, but address is still unresolved) 2211 * - other errors (alloc failure, etc) 2212 */ 2213 int 2214 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2215 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2216 struct llentry **plle) 2217 { 2218 struct llentry *ln = NULL; 2219 const struct sockaddr_in6 *dst6; 2220 2221 NET_EPOCH_ASSERT(); 2222 2223 if (pflags != NULL) 2224 *pflags = 0; 2225 2226 dst6 = (const struct sockaddr_in6 *)sa_dst; 2227 2228 /* discard the packet if IPv6 operation is disabled on the interface */ 2229 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2230 m_freem(m); 2231 return (ENETDOWN); /* better error? */ 2232 } 2233 2234 if (m != NULL && m->m_flags & M_MCAST) { 2235 switch (ifp->if_type) { 2236 case IFT_ETHER: 2237 case IFT_L2VLAN: 2238 case IFT_BRIDGE: 2239 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2240 desten); 2241 return (0); 2242 default: 2243 m_freem(m); 2244 return (EAFNOSUPPORT); 2245 } 2246 } 2247 2248 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2249 ifp); 2250 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2251 /* Entry found, let's copy lle info */ 2252 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2253 if (pflags != NULL) 2254 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2255 /* Check if we have feedback request from nd6 timer */ 2256 if (ln->r_skip_req != 0) { 2257 LLE_REQ_LOCK(ln); 2258 ln->r_skip_req = 0; /* Notify that entry was used */ 2259 ln->lle_hittime = time_uptime; 2260 LLE_REQ_UNLOCK(ln); 2261 } 2262 if (plle) { 2263 LLE_ADDREF(ln); 2264 *plle = ln; 2265 LLE_WUNLOCK(ln); 2266 } 2267 return (0); 2268 } else if (plle && ln) 2269 LLE_WUNLOCK(ln); 2270 2271 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2272 } 2273 2274 /* 2275 * Do L2 address resolution for @sa_dst address. Stores found 2276 * address in @desten buffer. Copy of lle ln_flags can be also 2277 * saved in @pflags if @pflags is non-NULL. 2278 * 2279 * Heavy version. 2280 * Function assume that destination LLE does not exist, 2281 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2282 * 2283 * Set noinline to be dtrace-friendly 2284 */ 2285 static __noinline int 2286 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2287 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2288 struct llentry **plle) 2289 { 2290 struct llentry *lle = NULL, *lle_tmp; 2291 struct in6_addr *psrc, src; 2292 int send_ns, ll_len; 2293 char *lladdr; 2294 2295 NET_EPOCH_ASSERT(); 2296 2297 /* 2298 * Address resolution or Neighbor Unreachability Detection 2299 * for the next hop. 2300 * At this point, the destination of the packet must be a unicast 2301 * or an anycast address(i.e. not a multicast). 2302 */ 2303 if (lle == NULL) { 2304 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2305 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2306 /* 2307 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2308 * the condition below is not very efficient. But we believe 2309 * it is tolerable, because this should be a rare case. 2310 */ 2311 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2312 if (lle == NULL) { 2313 char ip6buf[INET6_ADDRSTRLEN]; 2314 log(LOG_DEBUG, 2315 "nd6_output: can't allocate llinfo for %s " 2316 "(ln=%p)\n", 2317 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2318 m_freem(m); 2319 return (ENOBUFS); 2320 } 2321 2322 IF_AFDATA_WLOCK(ifp); 2323 LLE_WLOCK(lle); 2324 /* Prefer any existing entry over newly-created one */ 2325 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2326 if (lle_tmp == NULL) 2327 lltable_link_entry(LLTABLE6(ifp), lle); 2328 IF_AFDATA_WUNLOCK(ifp); 2329 if (lle_tmp != NULL) { 2330 lltable_free_entry(LLTABLE6(ifp), lle); 2331 lle = lle_tmp; 2332 lle_tmp = NULL; 2333 } 2334 } 2335 } 2336 if (lle == NULL) { 2337 m_freem(m); 2338 return (ENOBUFS); 2339 } 2340 2341 LLE_WLOCK_ASSERT(lle); 2342 2343 /* 2344 * The first time we send a packet to a neighbor whose entry is 2345 * STALE, we have to change the state to DELAY and a sets a timer to 2346 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2347 * neighbor unreachability detection on expiration. 2348 * (RFC 2461 7.3.3) 2349 */ 2350 if (lle->ln_state == ND6_LLINFO_STALE) 2351 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2352 2353 /* 2354 * If the neighbor cache entry has a state other than INCOMPLETE 2355 * (i.e. its link-layer address is already resolved), just 2356 * send the packet. 2357 */ 2358 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2359 if (flags & LLE_ADDRONLY) { 2360 lladdr = lle->ll_addr; 2361 ll_len = ifp->if_addrlen; 2362 } else { 2363 lladdr = lle->r_linkdata; 2364 ll_len = lle->r_hdrlen; 2365 } 2366 bcopy(lladdr, desten, ll_len); 2367 if (pflags != NULL) 2368 *pflags = lle->la_flags; 2369 if (plle) { 2370 LLE_ADDREF(lle); 2371 *plle = lle; 2372 } 2373 LLE_WUNLOCK(lle); 2374 return (0); 2375 } 2376 2377 /* 2378 * There is a neighbor cache entry, but no ethernet address 2379 * response yet. Append this latest packet to the end of the 2380 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2381 * the oldest packet in the queue will be removed. 2382 */ 2383 2384 if (lle->la_hold != NULL) { 2385 struct mbuf *m_hold; 2386 int i; 2387 2388 i = 0; 2389 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2390 i++; 2391 if (m_hold->m_nextpkt == NULL) { 2392 m_hold->m_nextpkt = m; 2393 break; 2394 } 2395 } 2396 while (i >= V_nd6_maxqueuelen) { 2397 m_hold = lle->la_hold; 2398 lle->la_hold = lle->la_hold->m_nextpkt; 2399 m_freem(m_hold); 2400 i--; 2401 } 2402 } else { 2403 lle->la_hold = m; 2404 } 2405 2406 /* 2407 * If there has been no NS for the neighbor after entering the 2408 * INCOMPLETE state, send the first solicitation. 2409 * Note that for newly-created lle la_asked will be 0, 2410 * so we will transition from ND6_LLINFO_NOSTATE to 2411 * ND6_LLINFO_INCOMPLETE state here. 2412 */ 2413 psrc = NULL; 2414 send_ns = 0; 2415 if (lle->la_asked == 0) { 2416 lle->la_asked++; 2417 send_ns = 1; 2418 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2419 2420 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2421 } 2422 LLE_WUNLOCK(lle); 2423 if (send_ns != 0) 2424 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2425 2426 return (EWOULDBLOCK); 2427 } 2428 2429 /* 2430 * Do L2 address resolution for @sa_dst address. Stores found 2431 * address in @desten buffer. Copy of lle ln_flags can be also 2432 * saved in @pflags if @pflags is non-NULL. 2433 * 2434 * Return values: 2435 * - 0 on success (address copied to buffer). 2436 * - EWOULDBLOCK (no local error, but address is still unresolved) 2437 * - other errors (alloc failure, etc) 2438 */ 2439 int 2440 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2441 char *desten, uint32_t *pflags) 2442 { 2443 int error; 2444 2445 flags |= LLE_ADDRONLY; 2446 error = nd6_resolve_slow(ifp, flags, NULL, 2447 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2448 return (error); 2449 } 2450 2451 int 2452 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2453 struct sockaddr_in6 *dst) 2454 { 2455 struct mbuf *m, *m_head; 2456 int error = 0; 2457 2458 m_head = chain; 2459 2460 while (m_head) { 2461 m = m_head; 2462 m_head = m_head->m_nextpkt; 2463 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2464 } 2465 2466 /* 2467 * XXX 2468 * note that intermediate errors are blindly ignored 2469 */ 2470 return (error); 2471 } 2472 2473 static int 2474 nd6_need_cache(struct ifnet *ifp) 2475 { 2476 /* 2477 * XXX: we currently do not make neighbor cache on any interface 2478 * other than Ethernet and GIF. 2479 * 2480 * RFC2893 says: 2481 * - unidirectional tunnels needs no ND 2482 */ 2483 switch (ifp->if_type) { 2484 case IFT_ETHER: 2485 case IFT_IEEE1394: 2486 case IFT_L2VLAN: 2487 case IFT_INFINIBAND: 2488 case IFT_BRIDGE: 2489 case IFT_PROPVIRTUAL: 2490 return (1); 2491 default: 2492 return (0); 2493 } 2494 } 2495 2496 /* 2497 * Add pernament ND6 link-layer record for given 2498 * interface address. 2499 * 2500 * Very similar to IPv4 arp_ifinit(), but: 2501 * 1) IPv6 DAD is performed in different place 2502 * 2) It is called by IPv6 protocol stack in contrast to 2503 * arp_ifinit() which is typically called in SIOCSIFADDR 2504 * driver ioctl handler. 2505 * 2506 */ 2507 int 2508 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2509 { 2510 struct ifnet *ifp; 2511 struct llentry *ln, *ln_tmp; 2512 struct sockaddr *dst; 2513 2514 ifp = ia->ia_ifa.ifa_ifp; 2515 if (nd6_need_cache(ifp) == 0) 2516 return (0); 2517 2518 dst = (struct sockaddr *)&ia->ia_addr; 2519 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2520 if (ln == NULL) 2521 return (ENOBUFS); 2522 2523 IF_AFDATA_WLOCK(ifp); 2524 LLE_WLOCK(ln); 2525 /* Unlink any entry if exists */ 2526 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2527 if (ln_tmp != NULL) 2528 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2529 lltable_link_entry(LLTABLE6(ifp), ln); 2530 IF_AFDATA_WUNLOCK(ifp); 2531 2532 if (ln_tmp != NULL) 2533 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2534 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2535 2536 LLE_WUNLOCK(ln); 2537 if (ln_tmp != NULL) 2538 llentry_free(ln_tmp); 2539 2540 return (0); 2541 } 2542 2543 /* 2544 * Removes either all lle entries for given @ia, or lle 2545 * corresponding to @ia address. 2546 */ 2547 void 2548 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2549 { 2550 struct sockaddr_in6 mask, addr; 2551 struct sockaddr *saddr, *smask; 2552 struct ifnet *ifp; 2553 2554 ifp = ia->ia_ifa.ifa_ifp; 2555 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2556 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2557 saddr = (struct sockaddr *)&addr; 2558 smask = (struct sockaddr *)&mask; 2559 2560 if (all != 0) 2561 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2562 else 2563 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2564 } 2565 2566 static void 2567 clear_llinfo_pqueue(struct llentry *ln) 2568 { 2569 struct mbuf *m_hold, *m_hold_next; 2570 2571 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2572 m_hold_next = m_hold->m_nextpkt; 2573 m_freem(m_hold); 2574 } 2575 2576 ln->la_hold = NULL; 2577 } 2578 2579 static int 2580 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2581 { 2582 struct in6_prefix p; 2583 struct sockaddr_in6 s6; 2584 struct nd_prefix *pr; 2585 struct nd_pfxrouter *pfr; 2586 time_t maxexpire; 2587 int error; 2588 char ip6buf[INET6_ADDRSTRLEN]; 2589 2590 if (req->newptr) 2591 return (EPERM); 2592 2593 error = sysctl_wire_old_buffer(req, 0); 2594 if (error != 0) 2595 return (error); 2596 2597 bzero(&p, sizeof(p)); 2598 p.origin = PR_ORIG_RA; 2599 bzero(&s6, sizeof(s6)); 2600 s6.sin6_family = AF_INET6; 2601 s6.sin6_len = sizeof(s6); 2602 2603 ND6_RLOCK(); 2604 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2605 p.prefix = pr->ndpr_prefix; 2606 if (sa6_recoverscope(&p.prefix)) { 2607 log(LOG_ERR, "scope error in prefix list (%s)\n", 2608 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2609 /* XXX: press on... */ 2610 } 2611 p.raflags = pr->ndpr_raf; 2612 p.prefixlen = pr->ndpr_plen; 2613 p.vltime = pr->ndpr_vltime; 2614 p.pltime = pr->ndpr_pltime; 2615 p.if_index = pr->ndpr_ifp->if_index; 2616 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2617 p.expire = 0; 2618 else { 2619 /* XXX: we assume time_t is signed. */ 2620 maxexpire = (-1) & 2621 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2622 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2623 p.expire = pr->ndpr_lastupdate + 2624 pr->ndpr_vltime + 2625 (time_second - time_uptime); 2626 else 2627 p.expire = maxexpire; 2628 } 2629 p.refcnt = pr->ndpr_addrcnt; 2630 p.flags = pr->ndpr_stateflags; 2631 p.advrtrs = 0; 2632 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2633 p.advrtrs++; 2634 error = SYSCTL_OUT(req, &p, sizeof(p)); 2635 if (error != 0) 2636 break; 2637 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2638 s6.sin6_addr = pfr->router->rtaddr; 2639 if (sa6_recoverscope(&s6)) 2640 log(LOG_ERR, 2641 "scope error in prefix list (%s)\n", 2642 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2643 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2644 if (error != 0) 2645 goto out; 2646 } 2647 } 2648 out: 2649 ND6_RUNLOCK(); 2650 return (error); 2651 } 2652 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2653 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2654 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2655 "NDP prefix list"); 2656 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2657 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2658 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2659 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2660