1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: nd6.c,v 1.144 2001/05/24 07:44:00 itojun Exp $ 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include "opt_inet.h" 38 #include "opt_inet6.h" 39 40 #include <sys/param.h> 41 #include <sys/systm.h> 42 #include <sys/eventhandler.h> 43 #include <sys/callout.h> 44 #include <sys/lock.h> 45 #include <sys/malloc.h> 46 #include <sys/mbuf.h> 47 #include <sys/mutex.h> 48 #include <sys/socket.h> 49 #include <sys/sockio.h> 50 #include <sys/time.h> 51 #include <sys/kernel.h> 52 #include <sys/protosw.h> 53 #include <sys/errno.h> 54 #include <sys/syslog.h> 55 #include <sys/rwlock.h> 56 #include <sys/queue.h> 57 #include <sys/sdt.h> 58 #include <sys/sysctl.h> 59 60 #include <net/if.h> 61 #include <net/if_var.h> 62 #include <net/if_dl.h> 63 #include <net/if_types.h> 64 #include <net/route.h> 65 #include <net/vnet.h> 66 67 #include <netinet/in.h> 68 #include <netinet/in_kdtrace.h> 69 #include <net/if_llatbl.h> 70 #include <netinet/if_ether.h> 71 #include <netinet6/in6_var.h> 72 #include <netinet/ip6.h> 73 #include <netinet6/ip6_var.h> 74 #include <netinet6/scope6_var.h> 75 #include <netinet6/nd6.h> 76 #include <netinet6/in6_ifattach.h> 77 #include <netinet/icmp6.h> 78 #include <netinet6/send.h> 79 80 #include <sys/limits.h> 81 82 #include <security/mac/mac_framework.h> 83 84 #define ND6_SLOWTIMER_INTERVAL (60 * 60) /* 1 hour */ 85 #define ND6_RECALC_REACHTM_INTERVAL (60 * 120) /* 2 hours */ 86 87 #define SIN6(s) ((const struct sockaddr_in6 *)(s)) 88 89 MALLOC_DEFINE(M_IP6NDP, "ip6ndp", "IPv6 Neighbor Discovery"); 90 91 /* timer values */ 92 VNET_DEFINE(int, nd6_prune) = 1; /* walk list every 1 seconds */ 93 VNET_DEFINE(int, nd6_delay) = 5; /* delay first probe time 5 second */ 94 VNET_DEFINE(int, nd6_umaxtries) = 3; /* maximum unicast query */ 95 VNET_DEFINE(int, nd6_mmaxtries) = 3; /* maximum multicast query */ 96 VNET_DEFINE(int, nd6_useloopback) = 1; /* use loopback interface for 97 * local traffic */ 98 VNET_DEFINE(int, nd6_gctimer) = (60 * 60 * 24); /* 1 day: garbage 99 * collection timer */ 100 101 /* preventing too many loops in ND option parsing */ 102 VNET_DEFINE_STATIC(int, nd6_maxndopt) = 10; /* max # of ND options allowed */ 103 104 VNET_DEFINE(int, nd6_maxnudhint) = 0; /* max # of subsequent upper 105 * layer hints */ 106 VNET_DEFINE_STATIC(int, nd6_maxqueuelen) = 1; /* max pkts cached in unresolved 107 * ND entries */ 108 #define V_nd6_maxndopt VNET(nd6_maxndopt) 109 #define V_nd6_maxqueuelen VNET(nd6_maxqueuelen) 110 111 #ifdef ND6_DEBUG 112 VNET_DEFINE(int, nd6_debug) = 1; 113 #else 114 VNET_DEFINE(int, nd6_debug) = 0; 115 #endif 116 117 static eventhandler_tag lle_event_eh, iflladdr_event_eh, ifnet_link_event_eh; 118 119 VNET_DEFINE(struct nd_prhead, nd_prefix); 120 VNET_DEFINE(struct rwlock, nd6_lock); 121 VNET_DEFINE(uint64_t, nd6_list_genid); 122 VNET_DEFINE(struct mtx, nd6_onlink_mtx); 123 124 VNET_DEFINE(int, nd6_recalc_reachtm_interval) = ND6_RECALC_REACHTM_INTERVAL; 125 #define V_nd6_recalc_reachtm_interval VNET(nd6_recalc_reachtm_interval) 126 127 int (*send_sendso_input_hook)(struct mbuf *, struct ifnet *, int, int); 128 129 static int nd6_is_new_addr_neighbor(const struct sockaddr_in6 *, 130 struct ifnet *); 131 static void nd6_setmtu0(struct ifnet *, struct nd_ifinfo *); 132 static void nd6_slowtimo(void *); 133 static int regen_tmpaddr(struct in6_ifaddr *); 134 static void nd6_free(struct llentry **, int); 135 static void nd6_free_redirect(const struct llentry *); 136 static void nd6_llinfo_timer(void *); 137 static void nd6_llinfo_settimer_locked(struct llentry *, long); 138 static void clear_llinfo_pqueue(struct llentry *); 139 static void nd6_rtrequest(int, struct rtentry *, struct rt_addrinfo *); 140 static int nd6_resolve_slow(struct ifnet *, int, struct mbuf *, 141 const struct sockaddr_in6 *, u_char *, uint32_t *, struct llentry **); 142 static int nd6_need_cache(struct ifnet *); 143 144 145 VNET_DEFINE_STATIC(struct callout, nd6_slowtimo_ch); 146 #define V_nd6_slowtimo_ch VNET(nd6_slowtimo_ch) 147 148 VNET_DEFINE_STATIC(struct callout, nd6_timer_ch); 149 #define V_nd6_timer_ch VNET(nd6_timer_ch) 150 151 SYSCTL_DECL(_net_inet6_icmp6); 152 153 static void 154 nd6_lle_event(void *arg __unused, struct llentry *lle, int evt) 155 { 156 struct rt_addrinfo rtinfo; 157 struct sockaddr_in6 dst; 158 struct sockaddr_dl gw; 159 struct ifnet *ifp; 160 int type; 161 int fibnum; 162 163 LLE_WLOCK_ASSERT(lle); 164 165 if (lltable_get_af(lle->lle_tbl) != AF_INET6) 166 return; 167 168 switch (evt) { 169 case LLENTRY_RESOLVED: 170 type = RTM_ADD; 171 KASSERT(lle->la_flags & LLE_VALID, 172 ("%s: %p resolved but not valid?", __func__, lle)); 173 break; 174 case LLENTRY_EXPIRED: 175 type = RTM_DELETE; 176 break; 177 default: 178 return; 179 } 180 181 ifp = lltable_get_ifp(lle->lle_tbl); 182 183 bzero(&dst, sizeof(dst)); 184 bzero(&gw, sizeof(gw)); 185 bzero(&rtinfo, sizeof(rtinfo)); 186 lltable_fill_sa_entry(lle, (struct sockaddr *)&dst); 187 dst.sin6_scope_id = in6_getscopezone(ifp, 188 in6_addrscope(&dst.sin6_addr)); 189 gw.sdl_len = sizeof(struct sockaddr_dl); 190 gw.sdl_family = AF_LINK; 191 gw.sdl_alen = ifp->if_addrlen; 192 gw.sdl_index = ifp->if_index; 193 gw.sdl_type = ifp->if_type; 194 if (evt == LLENTRY_RESOLVED) 195 bcopy(lle->ll_addr, gw.sdl_data, ifp->if_addrlen); 196 rtinfo.rti_info[RTAX_DST] = (struct sockaddr *)&dst; 197 rtinfo.rti_info[RTAX_GATEWAY] = (struct sockaddr *)&gw; 198 rtinfo.rti_addrs = RTA_DST | RTA_GATEWAY; 199 fibnum = V_rt_add_addr_allfibs ? RT_ALL_FIBS : ifp->if_fib; 200 rt_missmsg_fib(type, &rtinfo, RTF_HOST | RTF_LLDATA | ( 201 type == RTM_ADD ? RTF_UP: 0), 0, fibnum); 202 } 203 204 /* 205 * A handler for interface link layer address change event. 206 */ 207 static void 208 nd6_iflladdr(void *arg __unused, struct ifnet *ifp) 209 { 210 211 lltable_update_ifaddr(LLTABLE6(ifp)); 212 } 213 214 void 215 nd6_init(void) 216 { 217 218 mtx_init(&V_nd6_onlink_mtx, "nd6 onlink", NULL, MTX_DEF); 219 rw_init(&V_nd6_lock, "nd6 list"); 220 221 LIST_INIT(&V_nd_prefix); 222 nd6_defrouter_init(); 223 224 /* Start timers. */ 225 callout_init(&V_nd6_slowtimo_ch, 0); 226 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 227 nd6_slowtimo, curvnet); 228 229 callout_init(&V_nd6_timer_ch, 0); 230 callout_reset(&V_nd6_timer_ch, hz, nd6_timer, curvnet); 231 232 nd6_dad_init(); 233 if (IS_DEFAULT_VNET(curvnet)) { 234 lle_event_eh = EVENTHANDLER_REGISTER(lle_event, nd6_lle_event, 235 NULL, EVENTHANDLER_PRI_ANY); 236 iflladdr_event_eh = EVENTHANDLER_REGISTER(iflladdr_event, 237 nd6_iflladdr, NULL, EVENTHANDLER_PRI_ANY); 238 ifnet_link_event_eh = EVENTHANDLER_REGISTER(ifnet_link_event, 239 nd6_ifnet_link_event, NULL, EVENTHANDLER_PRI_ANY); 240 } 241 } 242 243 #ifdef VIMAGE 244 void 245 nd6_destroy() 246 { 247 248 callout_drain(&V_nd6_slowtimo_ch); 249 callout_drain(&V_nd6_timer_ch); 250 if (IS_DEFAULT_VNET(curvnet)) { 251 EVENTHANDLER_DEREGISTER(ifnet_link_event, ifnet_link_event_eh); 252 EVENTHANDLER_DEREGISTER(lle_event, lle_event_eh); 253 EVENTHANDLER_DEREGISTER(iflladdr_event, iflladdr_event_eh); 254 } 255 rw_destroy(&V_nd6_lock); 256 mtx_destroy(&V_nd6_onlink_mtx); 257 } 258 #endif 259 260 struct nd_ifinfo * 261 nd6_ifattach(struct ifnet *ifp) 262 { 263 struct nd_ifinfo *nd; 264 265 nd = malloc(sizeof(*nd), M_IP6NDP, M_WAITOK | M_ZERO); 266 nd->initialized = 1; 267 268 nd->chlim = IPV6_DEFHLIM; 269 nd->basereachable = REACHABLE_TIME; 270 nd->reachable = ND_COMPUTE_RTIME(nd->basereachable); 271 nd->retrans = RETRANS_TIMER; 272 273 nd->flags = ND6_IFF_PERFORMNUD; 274 275 /* A loopback interface always has ND6_IFF_AUTO_LINKLOCAL. 276 * XXXHRS: Clear ND6_IFF_AUTO_LINKLOCAL on an IFT_BRIDGE interface by 277 * default regardless of the V_ip6_auto_linklocal configuration to 278 * give a reasonable default behavior. 279 */ 280 if ((V_ip6_auto_linklocal && ifp->if_type != IFT_BRIDGE) || 281 (ifp->if_flags & IFF_LOOPBACK)) 282 nd->flags |= ND6_IFF_AUTO_LINKLOCAL; 283 /* 284 * A loopback interface does not need to accept RTADV. 285 * XXXHRS: Clear ND6_IFF_ACCEPT_RTADV on an IFT_BRIDGE interface by 286 * default regardless of the V_ip6_accept_rtadv configuration to 287 * prevent the interface from accepting RA messages arrived 288 * on one of the member interfaces with ND6_IFF_ACCEPT_RTADV. 289 */ 290 if (V_ip6_accept_rtadv && 291 !(ifp->if_flags & IFF_LOOPBACK) && 292 (ifp->if_type != IFT_BRIDGE)) 293 nd->flags |= ND6_IFF_ACCEPT_RTADV; 294 if (V_ip6_no_radr && !(ifp->if_flags & IFF_LOOPBACK)) 295 nd->flags |= ND6_IFF_NO_RADR; 296 297 /* XXX: we cannot call nd6_setmtu since ifp is not fully initialized */ 298 nd6_setmtu0(ifp, nd); 299 300 return nd; 301 } 302 303 void 304 nd6_ifdetach(struct ifnet *ifp, struct nd_ifinfo *nd) 305 { 306 struct epoch_tracker et; 307 struct ifaddr *ifa, *next; 308 309 NET_EPOCH_ENTER(et); 310 CK_STAILQ_FOREACH_SAFE(ifa, &ifp->if_addrhead, ifa_link, next) { 311 if (ifa->ifa_addr->sa_family != AF_INET6) 312 continue; 313 314 /* stop DAD processing */ 315 nd6_dad_stop(ifa); 316 } 317 NET_EPOCH_EXIT(et); 318 319 free(nd, M_IP6NDP); 320 } 321 322 /* 323 * Reset ND level link MTU. This function is called when the physical MTU 324 * changes, which means we might have to adjust the ND level MTU. 325 */ 326 void 327 nd6_setmtu(struct ifnet *ifp) 328 { 329 if (ifp->if_afdata[AF_INET6] == NULL) 330 return; 331 332 nd6_setmtu0(ifp, ND_IFINFO(ifp)); 333 } 334 335 /* XXX todo: do not maintain copy of ifp->if_mtu in ndi->maxmtu */ 336 void 337 nd6_setmtu0(struct ifnet *ifp, struct nd_ifinfo *ndi) 338 { 339 u_int32_t omaxmtu; 340 341 omaxmtu = ndi->maxmtu; 342 ndi->maxmtu = ifp->if_mtu; 343 344 /* 345 * Decreasing the interface MTU under IPV6 minimum MTU may cause 346 * undesirable situation. We thus notify the operator of the change 347 * explicitly. The check for omaxmtu is necessary to restrict the 348 * log to the case of changing the MTU, not initializing it. 349 */ 350 if (omaxmtu >= IPV6_MMTU && ndi->maxmtu < IPV6_MMTU) { 351 log(LOG_NOTICE, "nd6_setmtu0: " 352 "new link MTU on %s (%lu) is too small for IPv6\n", 353 if_name(ifp), (unsigned long)ndi->maxmtu); 354 } 355 356 if (ndi->maxmtu > V_in6_maxmtu) 357 in6_setmaxmtu(); /* check all interfaces just in case */ 358 359 } 360 361 void 362 nd6_option_init(void *opt, int icmp6len, union nd_opts *ndopts) 363 { 364 365 bzero(ndopts, sizeof(*ndopts)); 366 ndopts->nd_opts_search = (struct nd_opt_hdr *)opt; 367 ndopts->nd_opts_last 368 = (struct nd_opt_hdr *)(((u_char *)opt) + icmp6len); 369 370 if (icmp6len == 0) { 371 ndopts->nd_opts_done = 1; 372 ndopts->nd_opts_search = NULL; 373 } 374 } 375 376 /* 377 * Take one ND option. 378 */ 379 struct nd_opt_hdr * 380 nd6_option(union nd_opts *ndopts) 381 { 382 struct nd_opt_hdr *nd_opt; 383 int olen; 384 385 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 386 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 387 __func__)); 388 if (ndopts->nd_opts_search == NULL) 389 return NULL; 390 if (ndopts->nd_opts_done) 391 return NULL; 392 393 nd_opt = ndopts->nd_opts_search; 394 395 /* make sure nd_opt_len is inside the buffer */ 396 if ((caddr_t)&nd_opt->nd_opt_len >= (caddr_t)ndopts->nd_opts_last) { 397 bzero(ndopts, sizeof(*ndopts)); 398 return NULL; 399 } 400 401 olen = nd_opt->nd_opt_len << 3; 402 if (olen == 0) { 403 /* 404 * Message validation requires that all included 405 * options have a length that is greater than zero. 406 */ 407 bzero(ndopts, sizeof(*ndopts)); 408 return NULL; 409 } 410 411 ndopts->nd_opts_search = (struct nd_opt_hdr *)((caddr_t)nd_opt + olen); 412 if (ndopts->nd_opts_search > ndopts->nd_opts_last) { 413 /* option overruns the end of buffer, invalid */ 414 bzero(ndopts, sizeof(*ndopts)); 415 return NULL; 416 } else if (ndopts->nd_opts_search == ndopts->nd_opts_last) { 417 /* reached the end of options chain */ 418 ndopts->nd_opts_done = 1; 419 ndopts->nd_opts_search = NULL; 420 } 421 return nd_opt; 422 } 423 424 /* 425 * Parse multiple ND options. 426 * This function is much easier to use, for ND routines that do not need 427 * multiple options of the same type. 428 */ 429 int 430 nd6_options(union nd_opts *ndopts) 431 { 432 struct nd_opt_hdr *nd_opt; 433 int i = 0; 434 435 KASSERT(ndopts != NULL, ("%s: ndopts == NULL", __func__)); 436 KASSERT(ndopts->nd_opts_last != NULL, ("%s: uninitialized ndopts", 437 __func__)); 438 if (ndopts->nd_opts_search == NULL) 439 return 0; 440 441 while (1) { 442 nd_opt = nd6_option(ndopts); 443 if (nd_opt == NULL && ndopts->nd_opts_last == NULL) { 444 /* 445 * Message validation requires that all included 446 * options have a length that is greater than zero. 447 */ 448 ICMP6STAT_INC(icp6s_nd_badopt); 449 bzero(ndopts, sizeof(*ndopts)); 450 return -1; 451 } 452 453 if (nd_opt == NULL) 454 goto skip1; 455 456 switch (nd_opt->nd_opt_type) { 457 case ND_OPT_SOURCE_LINKADDR: 458 case ND_OPT_TARGET_LINKADDR: 459 case ND_OPT_MTU: 460 case ND_OPT_REDIRECTED_HEADER: 461 case ND_OPT_NONCE: 462 if (ndopts->nd_opt_array[nd_opt->nd_opt_type]) { 463 nd6log((LOG_INFO, 464 "duplicated ND6 option found (type=%d)\n", 465 nd_opt->nd_opt_type)); 466 /* XXX bark? */ 467 } else { 468 ndopts->nd_opt_array[nd_opt->nd_opt_type] 469 = nd_opt; 470 } 471 break; 472 case ND_OPT_PREFIX_INFORMATION: 473 if (ndopts->nd_opt_array[nd_opt->nd_opt_type] == 0) { 474 ndopts->nd_opt_array[nd_opt->nd_opt_type] 475 = nd_opt; 476 } 477 ndopts->nd_opts_pi_end = 478 (struct nd_opt_prefix_info *)nd_opt; 479 break; 480 /* What about ND_OPT_ROUTE_INFO? RFC 4191 */ 481 case ND_OPT_RDNSS: /* RFC 6106 */ 482 case ND_OPT_DNSSL: /* RFC 6106 */ 483 /* 484 * Silently ignore options we know and do not care about 485 * in the kernel. 486 */ 487 break; 488 default: 489 /* 490 * Unknown options must be silently ignored, 491 * to accommodate future extension to the protocol. 492 */ 493 nd6log((LOG_DEBUG, 494 "nd6_options: unsupported option %d - " 495 "option ignored\n", nd_opt->nd_opt_type)); 496 } 497 498 skip1: 499 i++; 500 if (i > V_nd6_maxndopt) { 501 ICMP6STAT_INC(icp6s_nd_toomanyopt); 502 nd6log((LOG_INFO, "too many loop in nd opt\n")); 503 break; 504 } 505 506 if (ndopts->nd_opts_done) 507 break; 508 } 509 510 return 0; 511 } 512 513 /* 514 * ND6 timer routine to handle ND6 entries 515 */ 516 static void 517 nd6_llinfo_settimer_locked(struct llentry *ln, long tick) 518 { 519 int canceled; 520 521 LLE_WLOCK_ASSERT(ln); 522 523 if (tick < 0) { 524 ln->la_expire = 0; 525 ln->ln_ntick = 0; 526 canceled = callout_stop(&ln->lle_timer); 527 } else { 528 ln->la_expire = time_uptime + tick / hz; 529 LLE_ADDREF(ln); 530 if (tick > INT_MAX) { 531 ln->ln_ntick = tick - INT_MAX; 532 canceled = callout_reset(&ln->lle_timer, INT_MAX, 533 nd6_llinfo_timer, ln); 534 } else { 535 ln->ln_ntick = 0; 536 canceled = callout_reset(&ln->lle_timer, tick, 537 nd6_llinfo_timer, ln); 538 } 539 } 540 if (canceled > 0) 541 LLE_REMREF(ln); 542 } 543 544 /* 545 * Gets source address of the first packet in hold queue 546 * and stores it in @src. 547 * Returns pointer to @src (if hold queue is not empty) or NULL. 548 * 549 * Set noinline to be dtrace-friendly 550 */ 551 static __noinline struct in6_addr * 552 nd6_llinfo_get_holdsrc(struct llentry *ln, struct in6_addr *src) 553 { 554 struct ip6_hdr hdr; 555 struct mbuf *m; 556 557 if (ln->la_hold == NULL) 558 return (NULL); 559 560 /* 561 * assume every packet in la_hold has the same IP header 562 */ 563 m = ln->la_hold; 564 if (sizeof(hdr) > m->m_len) 565 return (NULL); 566 567 m_copydata(m, 0, sizeof(hdr), (caddr_t)&hdr); 568 *src = hdr.ip6_src; 569 570 return (src); 571 } 572 573 /* 574 * Checks if we need to switch from STALE state. 575 * 576 * RFC 4861 requires switching from STALE to DELAY state 577 * on first packet matching entry, waiting V_nd6_delay and 578 * transition to PROBE state (if upper layer confirmation was 579 * not received). 580 * 581 * This code performs a bit differently: 582 * On packet hit we don't change state (but desired state 583 * can be guessed by control plane). However, after V_nd6_delay 584 * seconds code will transition to PROBE state (so DELAY state 585 * is kinda skipped in most situations). 586 * 587 * Typically, V_nd6_gctimer is bigger than V_nd6_delay, so 588 * we perform the following upon entering STALE state: 589 * 590 * 1) Arm timer to run each V_nd6_delay seconds to make sure that 591 * if packet was transmitted at the start of given interval, we 592 * would be able to switch to PROBE state in V_nd6_delay seconds 593 * as user expects. 594 * 595 * 2) Reschedule timer until original V_nd6_gctimer expires keeping 596 * lle in STALE state (remaining timer value stored in lle_remtime). 597 * 598 * 3) Reschedule timer if packet was transmitted less that V_nd6_delay 599 * seconds ago. 600 * 601 * Returns non-zero value if the entry is still STALE (storing 602 * the next timer interval in @pdelay). 603 * 604 * Returns zero value if original timer expired or we need to switch to 605 * PROBE (store that in @do_switch variable). 606 */ 607 static int 608 nd6_is_stale(struct llentry *lle, long *pdelay, int *do_switch) 609 { 610 int nd_delay, nd_gctimer, r_skip_req; 611 time_t lle_hittime; 612 long delay; 613 614 *do_switch = 0; 615 nd_gctimer = V_nd6_gctimer; 616 nd_delay = V_nd6_delay; 617 618 LLE_REQ_LOCK(lle); 619 r_skip_req = lle->r_skip_req; 620 lle_hittime = lle->lle_hittime; 621 LLE_REQ_UNLOCK(lle); 622 623 if (r_skip_req > 0) { 624 625 /* 626 * Nonzero r_skip_req value was set upon entering 627 * STALE state. Since value was not changed, no 628 * packets were passed using this lle. Ask for 629 * timer reschedule and keep STALE state. 630 */ 631 delay = (long)(MIN(nd_gctimer, nd_delay)); 632 delay *= hz; 633 if (lle->lle_remtime > delay) 634 lle->lle_remtime -= delay; 635 else { 636 delay = lle->lle_remtime; 637 lle->lle_remtime = 0; 638 } 639 640 if (delay == 0) { 641 642 /* 643 * The original ng6_gctime timeout ended, 644 * no more rescheduling. 645 */ 646 return (0); 647 } 648 649 *pdelay = delay; 650 return (1); 651 } 652 653 /* 654 * Packet received. Verify timestamp 655 */ 656 delay = (long)(time_uptime - lle_hittime); 657 if (delay < nd_delay) { 658 659 /* 660 * V_nd6_delay still not passed since the first 661 * hit in STALE state. 662 * Reshedule timer and return. 663 */ 664 *pdelay = (long)(nd_delay - delay) * hz; 665 return (1); 666 } 667 668 /* Request switching to probe */ 669 *do_switch = 1; 670 return (0); 671 } 672 673 674 /* 675 * Switch @lle state to new state optionally arming timers. 676 * 677 * Set noinline to be dtrace-friendly 678 */ 679 __noinline void 680 nd6_llinfo_setstate(struct llentry *lle, int newstate) 681 { 682 struct ifnet *ifp; 683 int nd_gctimer, nd_delay; 684 long delay, remtime; 685 686 delay = 0; 687 remtime = 0; 688 689 switch (newstate) { 690 case ND6_LLINFO_INCOMPLETE: 691 ifp = lle->lle_tbl->llt_ifp; 692 delay = (long)ND_IFINFO(ifp)->retrans * hz / 1000; 693 break; 694 case ND6_LLINFO_REACHABLE: 695 if (!ND6_LLINFO_PERMANENT(lle)) { 696 ifp = lle->lle_tbl->llt_ifp; 697 delay = (long)ND_IFINFO(ifp)->reachable * hz; 698 } 699 break; 700 case ND6_LLINFO_STALE: 701 702 /* 703 * Notify fast path that we want to know if any packet 704 * is transmitted by setting r_skip_req. 705 */ 706 LLE_REQ_LOCK(lle); 707 lle->r_skip_req = 1; 708 LLE_REQ_UNLOCK(lle); 709 nd_delay = V_nd6_delay; 710 nd_gctimer = V_nd6_gctimer; 711 712 delay = (long)(MIN(nd_gctimer, nd_delay)) * hz; 713 remtime = (long)nd_gctimer * hz - delay; 714 break; 715 case ND6_LLINFO_DELAY: 716 lle->la_asked = 0; 717 delay = (long)V_nd6_delay * hz; 718 break; 719 } 720 721 if (delay > 0) 722 nd6_llinfo_settimer_locked(lle, delay); 723 724 lle->lle_remtime = remtime; 725 lle->ln_state = newstate; 726 } 727 728 /* 729 * Timer-dependent part of nd state machine. 730 * 731 * Set noinline to be dtrace-friendly 732 */ 733 static __noinline void 734 nd6_llinfo_timer(void *arg) 735 { 736 struct epoch_tracker et; 737 struct llentry *ln; 738 struct in6_addr *dst, *pdst, *psrc, src; 739 struct ifnet *ifp; 740 struct nd_ifinfo *ndi; 741 int do_switch, send_ns; 742 long delay; 743 744 KASSERT(arg != NULL, ("%s: arg NULL", __func__)); 745 ln = (struct llentry *)arg; 746 ifp = lltable_get_ifp(ln->lle_tbl); 747 CURVNET_SET(ifp->if_vnet); 748 749 ND6_RLOCK(); 750 LLE_WLOCK(ln); 751 if (callout_pending(&ln->lle_timer)) { 752 /* 753 * Here we are a bit odd here in the treatment of 754 * active/pending. If the pending bit is set, it got 755 * rescheduled before I ran. The active 756 * bit we ignore, since if it was stopped 757 * in ll_tablefree() and was currently running 758 * it would have return 0 so the code would 759 * not have deleted it since the callout could 760 * not be stopped so we want to go through 761 * with the delete here now. If the callout 762 * was restarted, the pending bit will be back on and 763 * we just want to bail since the callout_reset would 764 * return 1 and our reference would have been removed 765 * by nd6_llinfo_settimer_locked above since canceled 766 * would have been 1. 767 */ 768 LLE_WUNLOCK(ln); 769 ND6_RUNLOCK(); 770 CURVNET_RESTORE(); 771 return; 772 } 773 NET_EPOCH_ENTER(et); 774 ndi = ND_IFINFO(ifp); 775 send_ns = 0; 776 dst = &ln->r_l3addr.addr6; 777 pdst = dst; 778 779 if (ln->ln_ntick > 0) { 780 if (ln->ln_ntick > INT_MAX) { 781 ln->ln_ntick -= INT_MAX; 782 nd6_llinfo_settimer_locked(ln, INT_MAX); 783 } else { 784 ln->ln_ntick = 0; 785 nd6_llinfo_settimer_locked(ln, ln->ln_ntick); 786 } 787 goto done; 788 } 789 790 if (ln->la_flags & LLE_STATIC) { 791 goto done; 792 } 793 794 if (ln->la_flags & LLE_DELETED) { 795 nd6_free(&ln, 0); 796 goto done; 797 } 798 799 switch (ln->ln_state) { 800 case ND6_LLINFO_INCOMPLETE: 801 if (ln->la_asked < V_nd6_mmaxtries) { 802 ln->la_asked++; 803 send_ns = 1; 804 /* Send NS to multicast address */ 805 pdst = NULL; 806 } else { 807 struct mbuf *m = ln->la_hold; 808 if (m) { 809 struct mbuf *m0; 810 811 /* 812 * assuming every packet in la_hold has the 813 * same IP header. Send error after unlock. 814 */ 815 m0 = m->m_nextpkt; 816 m->m_nextpkt = NULL; 817 ln->la_hold = m0; 818 clear_llinfo_pqueue(ln); 819 } 820 nd6_free(&ln, 0); 821 if (m != NULL) 822 icmp6_error2(m, ICMP6_DST_UNREACH, 823 ICMP6_DST_UNREACH_ADDR, 0, ifp); 824 } 825 break; 826 case ND6_LLINFO_REACHABLE: 827 if (!ND6_LLINFO_PERMANENT(ln)) 828 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 829 break; 830 831 case ND6_LLINFO_STALE: 832 if (nd6_is_stale(ln, &delay, &do_switch) != 0) { 833 834 /* 835 * No packet has used this entry and GC timeout 836 * has not been passed. Reshedule timer and 837 * return. 838 */ 839 nd6_llinfo_settimer_locked(ln, delay); 840 break; 841 } 842 843 if (do_switch == 0) { 844 845 /* 846 * GC timer has ended and entry hasn't been used. 847 * Run Garbage collector (RFC 4861, 5.3) 848 */ 849 if (!ND6_LLINFO_PERMANENT(ln)) 850 nd6_free(&ln, 1); 851 break; 852 } 853 854 /* Entry has been used AND delay timer has ended. */ 855 856 /* FALLTHROUGH */ 857 858 case ND6_LLINFO_DELAY: 859 if (ndi && (ndi->flags & ND6_IFF_PERFORMNUD) != 0) { 860 /* We need NUD */ 861 ln->la_asked = 1; 862 nd6_llinfo_setstate(ln, ND6_LLINFO_PROBE); 863 send_ns = 1; 864 } else 865 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); /* XXX */ 866 break; 867 case ND6_LLINFO_PROBE: 868 if (ln->la_asked < V_nd6_umaxtries) { 869 ln->la_asked++; 870 send_ns = 1; 871 } else { 872 nd6_free(&ln, 0); 873 } 874 break; 875 default: 876 panic("%s: paths in a dark night can be confusing: %d", 877 __func__, ln->ln_state); 878 } 879 done: 880 if (ln != NULL) 881 ND6_RUNLOCK(); 882 if (send_ns != 0) { 883 nd6_llinfo_settimer_locked(ln, (long)ndi->retrans * hz / 1000); 884 psrc = nd6_llinfo_get_holdsrc(ln, &src); 885 LLE_FREE_LOCKED(ln); 886 ln = NULL; 887 nd6_ns_output(ifp, psrc, pdst, dst, NULL); 888 } 889 890 if (ln != NULL) 891 LLE_FREE_LOCKED(ln); 892 NET_EPOCH_EXIT(et); 893 CURVNET_RESTORE(); 894 } 895 896 897 /* 898 * ND6 timer routine to expire default route list and prefix list 899 */ 900 void 901 nd6_timer(void *arg) 902 { 903 CURVNET_SET((struct vnet *) arg); 904 struct epoch_tracker et; 905 struct nd_prhead prl; 906 struct nd_prefix *pr, *npr; 907 struct ifnet *ifp; 908 struct in6_ifaddr *ia6, *nia6; 909 uint64_t genid; 910 911 LIST_INIT(&prl); 912 913 NET_EPOCH_ENTER(et); 914 nd6_defrouter_timer(); 915 916 /* 917 * expire interface addresses. 918 * in the past the loop was inside prefix expiry processing. 919 * However, from a stricter speci-confrmance standpoint, we should 920 * rather separate address lifetimes and prefix lifetimes. 921 * 922 * XXXRW: in6_ifaddrhead locking. 923 */ 924 addrloop: 925 CK_STAILQ_FOREACH_SAFE(ia6, &V_in6_ifaddrhead, ia_link, nia6) { 926 /* check address lifetime */ 927 if (IFA6_IS_INVALID(ia6)) { 928 int regen = 0; 929 930 /* 931 * If the expiring address is temporary, try 932 * regenerating a new one. This would be useful when 933 * we suspended a laptop PC, then turned it on after a 934 * period that could invalidate all temporary 935 * addresses. Although we may have to restart the 936 * loop (see below), it must be after purging the 937 * address. Otherwise, we'd see an infinite loop of 938 * regeneration. 939 */ 940 if (V_ip6_use_tempaddr && 941 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0) { 942 if (regen_tmpaddr(ia6) == 0) 943 regen = 1; 944 } 945 946 in6_purgeaddr(&ia6->ia_ifa); 947 948 if (regen) 949 goto addrloop; /* XXX: see below */ 950 } else if (IFA6_IS_DEPRECATED(ia6)) { 951 int oldflags = ia6->ia6_flags; 952 953 ia6->ia6_flags |= IN6_IFF_DEPRECATED; 954 955 /* 956 * If a temporary address has just become deprecated, 957 * regenerate a new one if possible. 958 */ 959 if (V_ip6_use_tempaddr && 960 (ia6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 961 (oldflags & IN6_IFF_DEPRECATED) == 0) { 962 963 if (regen_tmpaddr(ia6) == 0) { 964 /* 965 * A new temporary address is 966 * generated. 967 * XXX: this means the address chain 968 * has changed while we are still in 969 * the loop. Although the change 970 * would not cause disaster (because 971 * it's not a deletion, but an 972 * addition,) we'd rather restart the 973 * loop just for safety. Or does this 974 * significantly reduce performance?? 975 */ 976 goto addrloop; 977 } 978 } 979 } else if ((ia6->ia6_flags & IN6_IFF_TENTATIVE) != 0) { 980 /* 981 * Schedule DAD for a tentative address. This happens 982 * if the interface was down or not running 983 * when the address was configured. 984 */ 985 int delay; 986 987 delay = arc4random() % 988 (MAX_RTR_SOLICITATION_DELAY * hz); 989 nd6_dad_start((struct ifaddr *)ia6, delay); 990 } else { 991 /* 992 * Check status of the interface. If it is down, 993 * mark the address as tentative for future DAD. 994 */ 995 ifp = ia6->ia_ifp; 996 if ((ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0 && 997 ((ifp->if_flags & IFF_UP) == 0 || 998 (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0 || 999 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)){ 1000 ia6->ia6_flags &= ~IN6_IFF_DUPLICATED; 1001 ia6->ia6_flags |= IN6_IFF_TENTATIVE; 1002 } 1003 1004 /* 1005 * A new RA might have made a deprecated address 1006 * preferred. 1007 */ 1008 ia6->ia6_flags &= ~IN6_IFF_DEPRECATED; 1009 } 1010 } 1011 NET_EPOCH_EXIT(et); 1012 1013 ND6_WLOCK(); 1014 restart: 1015 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1016 /* 1017 * Expire prefixes. Since the pltime is only used for 1018 * autoconfigured addresses, pltime processing for prefixes is 1019 * not necessary. 1020 * 1021 * Only unlink after all derived addresses have expired. This 1022 * may not occur until two hours after the prefix has expired 1023 * per RFC 4862. If the prefix expires before its derived 1024 * addresses, mark it off-link. This will be done automatically 1025 * after unlinking if no address references remain. 1026 */ 1027 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME || 1028 time_uptime - pr->ndpr_lastupdate <= pr->ndpr_vltime) 1029 continue; 1030 1031 if (pr->ndpr_addrcnt == 0) { 1032 nd6_prefix_unlink(pr, &prl); 1033 continue; 1034 } 1035 if ((pr->ndpr_stateflags & NDPRF_ONLINK) != 0) { 1036 genid = V_nd6_list_genid; 1037 nd6_prefix_ref(pr); 1038 ND6_WUNLOCK(); 1039 ND6_ONLINK_LOCK(); 1040 (void)nd6_prefix_offlink(pr); 1041 ND6_ONLINK_UNLOCK(); 1042 ND6_WLOCK(); 1043 nd6_prefix_rele(pr); 1044 if (genid != V_nd6_list_genid) 1045 goto restart; 1046 } 1047 } 1048 ND6_WUNLOCK(); 1049 1050 while ((pr = LIST_FIRST(&prl)) != NULL) { 1051 LIST_REMOVE(pr, ndpr_entry); 1052 nd6_prefix_del(pr); 1053 } 1054 1055 callout_reset(&V_nd6_timer_ch, V_nd6_prune * hz, 1056 nd6_timer, curvnet); 1057 1058 CURVNET_RESTORE(); 1059 } 1060 1061 /* 1062 * ia6 - deprecated/invalidated temporary address 1063 */ 1064 static int 1065 regen_tmpaddr(struct in6_ifaddr *ia6) 1066 { 1067 struct ifaddr *ifa; 1068 struct ifnet *ifp; 1069 struct in6_ifaddr *public_ifa6 = NULL; 1070 1071 NET_EPOCH_ASSERT(); 1072 1073 ifp = ia6->ia_ifa.ifa_ifp; 1074 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1075 struct in6_ifaddr *it6; 1076 1077 if (ifa->ifa_addr->sa_family != AF_INET6) 1078 continue; 1079 1080 it6 = (struct in6_ifaddr *)ifa; 1081 1082 /* ignore no autoconf addresses. */ 1083 if ((it6->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1084 continue; 1085 1086 /* ignore autoconf addresses with different prefixes. */ 1087 if (it6->ia6_ndpr == NULL || it6->ia6_ndpr != ia6->ia6_ndpr) 1088 continue; 1089 1090 /* 1091 * Now we are looking at an autoconf address with the same 1092 * prefix as ours. If the address is temporary and is still 1093 * preferred, do not create another one. It would be rare, but 1094 * could happen, for example, when we resume a laptop PC after 1095 * a long period. 1096 */ 1097 if ((it6->ia6_flags & IN6_IFF_TEMPORARY) != 0 && 1098 !IFA6_IS_DEPRECATED(it6)) { 1099 public_ifa6 = NULL; 1100 break; 1101 } 1102 1103 /* 1104 * This is a public autoconf address that has the same prefix 1105 * as ours. If it is preferred, keep it. We can't break the 1106 * loop here, because there may be a still-preferred temporary 1107 * address with the prefix. 1108 */ 1109 if (!IFA6_IS_DEPRECATED(it6)) 1110 public_ifa6 = it6; 1111 } 1112 if (public_ifa6 != NULL) 1113 ifa_ref(&public_ifa6->ia_ifa); 1114 1115 if (public_ifa6 != NULL) { 1116 int e; 1117 1118 if ((e = in6_tmpifadd(public_ifa6, 0, 0)) != 0) { 1119 ifa_free(&public_ifa6->ia_ifa); 1120 log(LOG_NOTICE, "regen_tmpaddr: failed to create a new" 1121 " tmp addr,errno=%d\n", e); 1122 return (-1); 1123 } 1124 ifa_free(&public_ifa6->ia_ifa); 1125 return (0); 1126 } 1127 1128 return (-1); 1129 } 1130 1131 /* 1132 * Remove prefix and default router list entries corresponding to ifp. Neighbor 1133 * cache entries are freed in in6_domifdetach(). 1134 */ 1135 void 1136 nd6_purge(struct ifnet *ifp) 1137 { 1138 struct nd_prhead prl; 1139 struct nd_prefix *pr, *npr; 1140 1141 LIST_INIT(&prl); 1142 1143 /* Purge default router list entries toward ifp. */ 1144 nd6_defrouter_purge(ifp); 1145 1146 ND6_WLOCK(); 1147 /* 1148 * Remove prefixes on ifp. We should have already removed addresses on 1149 * this interface, so no addresses should be referencing these prefixes. 1150 */ 1151 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, npr) { 1152 if (pr->ndpr_ifp == ifp) 1153 nd6_prefix_unlink(pr, &prl); 1154 } 1155 ND6_WUNLOCK(); 1156 1157 /* Delete the unlinked prefix objects. */ 1158 while ((pr = LIST_FIRST(&prl)) != NULL) { 1159 LIST_REMOVE(pr, ndpr_entry); 1160 nd6_prefix_del(pr); 1161 } 1162 1163 /* cancel default outgoing interface setting */ 1164 if (V_nd6_defifindex == ifp->if_index) 1165 nd6_setdefaultiface(0); 1166 1167 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1168 /* Refresh default router list. */ 1169 defrouter_select_fib(ifp->if_fib); 1170 } 1171 } 1172 1173 /* 1174 * the caller acquires and releases the lock on the lltbls 1175 * Returns the llentry locked 1176 */ 1177 struct llentry * 1178 nd6_lookup(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1179 { 1180 struct sockaddr_in6 sin6; 1181 struct llentry *ln; 1182 1183 bzero(&sin6, sizeof(sin6)); 1184 sin6.sin6_len = sizeof(struct sockaddr_in6); 1185 sin6.sin6_family = AF_INET6; 1186 sin6.sin6_addr = *addr6; 1187 1188 IF_AFDATA_LOCK_ASSERT(ifp); 1189 1190 ln = lla_lookup(LLTABLE6(ifp), flags, (struct sockaddr *)&sin6); 1191 1192 return (ln); 1193 } 1194 1195 static struct llentry * 1196 nd6_alloc(const struct in6_addr *addr6, int flags, struct ifnet *ifp) 1197 { 1198 struct sockaddr_in6 sin6; 1199 struct llentry *ln; 1200 1201 bzero(&sin6, sizeof(sin6)); 1202 sin6.sin6_len = sizeof(struct sockaddr_in6); 1203 sin6.sin6_family = AF_INET6; 1204 sin6.sin6_addr = *addr6; 1205 1206 ln = lltable_alloc_entry(LLTABLE6(ifp), 0, (struct sockaddr *)&sin6); 1207 if (ln != NULL) 1208 ln->ln_state = ND6_LLINFO_NOSTATE; 1209 1210 return (ln); 1211 } 1212 1213 /* 1214 * Test whether a given IPv6 address is a neighbor or not, ignoring 1215 * the actual neighbor cache. The neighbor cache is ignored in order 1216 * to not reenter the routing code from within itself. 1217 */ 1218 static int 1219 nd6_is_new_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1220 { 1221 struct nd_prefix *pr; 1222 struct ifaddr *ifa; 1223 struct rt_addrinfo info; 1224 struct sockaddr_in6 rt_key; 1225 const struct sockaddr *dst6; 1226 uint64_t genid; 1227 int error, fibnum; 1228 1229 /* 1230 * A link-local address is always a neighbor. 1231 * XXX: a link does not necessarily specify a single interface. 1232 */ 1233 if (IN6_IS_ADDR_LINKLOCAL(&addr->sin6_addr)) { 1234 struct sockaddr_in6 sin6_copy; 1235 u_int32_t zone; 1236 1237 /* 1238 * We need sin6_copy since sa6_recoverscope() may modify the 1239 * content (XXX). 1240 */ 1241 sin6_copy = *addr; 1242 if (sa6_recoverscope(&sin6_copy)) 1243 return (0); /* XXX: should be impossible */ 1244 if (in6_setscope(&sin6_copy.sin6_addr, ifp, &zone)) 1245 return (0); 1246 if (sin6_copy.sin6_scope_id == zone) 1247 return (1); 1248 else 1249 return (0); 1250 } 1251 1252 bzero(&rt_key, sizeof(rt_key)); 1253 bzero(&info, sizeof(info)); 1254 info.rti_info[RTAX_DST] = (struct sockaddr *)&rt_key; 1255 1256 /* 1257 * If the address matches one of our addresses, 1258 * it should be a neighbor. 1259 * If the address matches one of our on-link prefixes, it should be a 1260 * neighbor. 1261 */ 1262 ND6_RLOCK(); 1263 restart: 1264 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 1265 if (pr->ndpr_ifp != ifp) 1266 continue; 1267 1268 if ((pr->ndpr_stateflags & NDPRF_ONLINK) == 0) { 1269 dst6 = (const struct sockaddr *)&pr->ndpr_prefix; 1270 1271 /* 1272 * We only need to check all FIBs if add_addr_allfibs 1273 * is unset. If set, checking any FIB will suffice. 1274 */ 1275 fibnum = V_rt_add_addr_allfibs ? rt_numfibs - 1 : 0; 1276 for (; fibnum < rt_numfibs; fibnum++) { 1277 genid = V_nd6_list_genid; 1278 ND6_RUNLOCK(); 1279 1280 /* 1281 * Restore length field before 1282 * retrying lookup 1283 */ 1284 rt_key.sin6_len = sizeof(rt_key); 1285 error = rib_lookup_info(fibnum, dst6, 0, 0, 1286 &info); 1287 1288 ND6_RLOCK(); 1289 if (genid != V_nd6_list_genid) 1290 goto restart; 1291 if (error == 0) 1292 break; 1293 } 1294 if (error != 0) 1295 continue; 1296 1297 /* 1298 * This is the case where multiple interfaces 1299 * have the same prefix, but only one is installed 1300 * into the routing table and that prefix entry 1301 * is not the one being examined here. In the case 1302 * where RADIX_MPATH is enabled, multiple route 1303 * entries (of the same rt_key value) will be 1304 * installed because the interface addresses all 1305 * differ. 1306 */ 1307 if (!IN6_ARE_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1308 &rt_key.sin6_addr)) 1309 continue; 1310 } 1311 1312 if (IN6_ARE_MASKED_ADDR_EQUAL(&pr->ndpr_prefix.sin6_addr, 1313 &addr->sin6_addr, &pr->ndpr_mask)) { 1314 ND6_RUNLOCK(); 1315 return (1); 1316 } 1317 } 1318 ND6_RUNLOCK(); 1319 1320 /* 1321 * If the address is assigned on the node of the other side of 1322 * a p2p interface, the address should be a neighbor. 1323 */ 1324 if (ifp->if_flags & IFF_POINTOPOINT) { 1325 struct epoch_tracker et; 1326 1327 NET_EPOCH_ENTER(et); 1328 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1329 if (ifa->ifa_addr->sa_family != addr->sin6_family) 1330 continue; 1331 if (ifa->ifa_dstaddr != NULL && 1332 sa_equal(addr, ifa->ifa_dstaddr)) { 1333 NET_EPOCH_EXIT(et); 1334 return 1; 1335 } 1336 } 1337 NET_EPOCH_EXIT(et); 1338 } 1339 1340 /* 1341 * If the default router list is empty, all addresses are regarded 1342 * as on-link, and thus, as a neighbor. 1343 */ 1344 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV && 1345 nd6_defrouter_list_empty() && 1346 V_nd6_defifindex == ifp->if_index) { 1347 return (1); 1348 } 1349 1350 return (0); 1351 } 1352 1353 1354 /* 1355 * Detect if a given IPv6 address identifies a neighbor on a given link. 1356 * XXX: should take care of the destination of a p2p link? 1357 */ 1358 int 1359 nd6_is_addr_neighbor(const struct sockaddr_in6 *addr, struct ifnet *ifp) 1360 { 1361 struct llentry *lle; 1362 int rc = 0; 1363 1364 NET_EPOCH_ASSERT(); 1365 IF_AFDATA_UNLOCK_ASSERT(ifp); 1366 if (nd6_is_new_addr_neighbor(addr, ifp)) 1367 return (1); 1368 1369 /* 1370 * Even if the address matches none of our addresses, it might be 1371 * in the neighbor cache. 1372 */ 1373 if ((lle = nd6_lookup(&addr->sin6_addr, 0, ifp)) != NULL) { 1374 LLE_RUNLOCK(lle); 1375 rc = 1; 1376 } 1377 return (rc); 1378 } 1379 1380 /* 1381 * Free an nd6 llinfo entry. 1382 * Since the function would cause significant changes in the kernel, DO NOT 1383 * make it global, unless you have a strong reason for the change, and are sure 1384 * that the change is safe. 1385 * 1386 * Set noinline to be dtrace-friendly 1387 */ 1388 static __noinline void 1389 nd6_free(struct llentry **lnp, int gc) 1390 { 1391 struct ifnet *ifp; 1392 struct llentry *ln; 1393 struct nd_defrouter *dr; 1394 1395 ln = *lnp; 1396 *lnp = NULL; 1397 1398 LLE_WLOCK_ASSERT(ln); 1399 ND6_RLOCK_ASSERT(); 1400 1401 ifp = lltable_get_ifp(ln->lle_tbl); 1402 if ((ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) != 0) 1403 dr = defrouter_lookup_locked(&ln->r_l3addr.addr6, ifp); 1404 else 1405 dr = NULL; 1406 ND6_RUNLOCK(); 1407 1408 if ((ln->la_flags & LLE_DELETED) == 0) 1409 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_EXPIRED); 1410 1411 /* 1412 * we used to have pfctlinput(PRC_HOSTDEAD) here. 1413 * even though it is not harmful, it was not really necessary. 1414 */ 1415 1416 /* cancel timer */ 1417 nd6_llinfo_settimer_locked(ln, -1); 1418 1419 if (ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 1420 if (dr != NULL && dr->expire && 1421 ln->ln_state == ND6_LLINFO_STALE && gc) { 1422 /* 1423 * If the reason for the deletion is just garbage 1424 * collection, and the neighbor is an active default 1425 * router, do not delete it. Instead, reset the GC 1426 * timer using the router's lifetime. 1427 * Simply deleting the entry would affect default 1428 * router selection, which is not necessarily a good 1429 * thing, especially when we're using router preference 1430 * values. 1431 * XXX: the check for ln_state would be redundant, 1432 * but we intentionally keep it just in case. 1433 */ 1434 if (dr->expire > time_uptime) 1435 nd6_llinfo_settimer_locked(ln, 1436 (dr->expire - time_uptime) * hz); 1437 else 1438 nd6_llinfo_settimer_locked(ln, 1439 (long)V_nd6_gctimer * hz); 1440 1441 LLE_REMREF(ln); 1442 LLE_WUNLOCK(ln); 1443 defrouter_rele(dr); 1444 return; 1445 } 1446 1447 if (dr) { 1448 /* 1449 * Unreachablity of a router might affect the default 1450 * router selection and on-link detection of advertised 1451 * prefixes. 1452 */ 1453 1454 /* 1455 * Temporarily fake the state to choose a new default 1456 * router and to perform on-link determination of 1457 * prefixes correctly. 1458 * Below the state will be set correctly, 1459 * or the entry itself will be deleted. 1460 */ 1461 ln->ln_state = ND6_LLINFO_INCOMPLETE; 1462 } 1463 1464 if (ln->ln_router || dr) { 1465 1466 /* 1467 * We need to unlock to avoid a LOR with rt6_flush() with the 1468 * rnh and for the calls to pfxlist_onlink_check() and 1469 * defrouter_select_fib() in the block further down for calls 1470 * into nd6_lookup(). We still hold a ref. 1471 */ 1472 LLE_WUNLOCK(ln); 1473 1474 /* 1475 * rt6_flush must be called whether or not the neighbor 1476 * is in the Default Router List. 1477 * See a corresponding comment in nd6_na_input(). 1478 */ 1479 rt6_flush(&ln->r_l3addr.addr6, ifp); 1480 } 1481 1482 if (dr) { 1483 /* 1484 * Since defrouter_select_fib() does not affect the 1485 * on-link determination and MIP6 needs the check 1486 * before the default router selection, we perform 1487 * the check now. 1488 */ 1489 pfxlist_onlink_check(); 1490 1491 /* 1492 * Refresh default router list. 1493 */ 1494 defrouter_select_fib(dr->ifp->if_fib); 1495 } 1496 1497 /* 1498 * If this entry was added by an on-link redirect, remove the 1499 * corresponding host route. 1500 */ 1501 if (ln->la_flags & LLE_REDIRECT) 1502 nd6_free_redirect(ln); 1503 1504 if (ln->ln_router || dr) 1505 LLE_WLOCK(ln); 1506 } 1507 1508 /* 1509 * Save to unlock. We still hold an extra reference and will not 1510 * free(9) in llentry_free() if someone else holds one as well. 1511 */ 1512 LLE_WUNLOCK(ln); 1513 IF_AFDATA_LOCK(ifp); 1514 LLE_WLOCK(ln); 1515 /* Guard against race with other llentry_free(). */ 1516 if (ln->la_flags & LLE_LINKED) { 1517 /* Remove callout reference */ 1518 LLE_REMREF(ln); 1519 lltable_unlink_entry(ln->lle_tbl, ln); 1520 } 1521 IF_AFDATA_UNLOCK(ifp); 1522 1523 llentry_free(ln); 1524 if (dr != NULL) 1525 defrouter_rele(dr); 1526 } 1527 1528 static int 1529 nd6_isdynrte(const struct rtentry *rt, void *xap) 1530 { 1531 1532 if (rt->rt_flags == (RTF_UP | RTF_HOST | RTF_DYNAMIC)) 1533 return (1); 1534 1535 return (0); 1536 } 1537 /* 1538 * Remove the rtentry for the given llentry, 1539 * both of which were installed by a redirect. 1540 */ 1541 static void 1542 nd6_free_redirect(const struct llentry *ln) 1543 { 1544 int fibnum; 1545 struct sockaddr_in6 sin6; 1546 struct rt_addrinfo info; 1547 1548 lltable_fill_sa_entry(ln, (struct sockaddr *)&sin6); 1549 memset(&info, 0, sizeof(info)); 1550 info.rti_info[RTAX_DST] = (struct sockaddr *)&sin6; 1551 info.rti_filter = nd6_isdynrte; 1552 1553 for (fibnum = 0; fibnum < rt_numfibs; fibnum++) 1554 rtrequest1_fib(RTM_DELETE, &info, NULL, fibnum); 1555 } 1556 1557 /* 1558 * Rejuvenate this function for routing operations related 1559 * processing. 1560 */ 1561 void 1562 nd6_rtrequest(int req, struct rtentry *rt, struct rt_addrinfo *info) 1563 { 1564 struct sockaddr_in6 *gateway; 1565 struct nd_defrouter *dr; 1566 struct ifnet *ifp; 1567 1568 gateway = (struct sockaddr_in6 *)rt->rt_gateway; 1569 ifp = rt->rt_ifp; 1570 1571 switch (req) { 1572 case RTM_ADD: 1573 break; 1574 1575 case RTM_DELETE: 1576 if (!ifp) 1577 return; 1578 /* 1579 * Only indirect routes are interesting. 1580 */ 1581 if ((rt->rt_flags & RTF_GATEWAY) == 0) 1582 return; 1583 /* 1584 * check for default route 1585 */ 1586 if (IN6_ARE_ADDR_EQUAL(&in6addr_any, 1587 &SIN6(rt_key(rt))->sin6_addr)) { 1588 dr = defrouter_lookup(&gateway->sin6_addr, ifp); 1589 if (dr != NULL) { 1590 dr->installed = 0; 1591 defrouter_rele(dr); 1592 } 1593 } 1594 break; 1595 } 1596 } 1597 1598 1599 int 1600 nd6_ioctl(u_long cmd, caddr_t data, struct ifnet *ifp) 1601 { 1602 struct in6_ndireq *ndi = (struct in6_ndireq *)data; 1603 struct in6_nbrinfo *nbi = (struct in6_nbrinfo *)data; 1604 struct in6_ndifreq *ndif = (struct in6_ndifreq *)data; 1605 struct epoch_tracker et; 1606 int error = 0; 1607 1608 if (ifp->if_afdata[AF_INET6] == NULL) 1609 return (EPFNOSUPPORT); 1610 switch (cmd) { 1611 case OSIOCGIFINFO_IN6: 1612 #define ND ndi->ndi 1613 /* XXX: old ndp(8) assumes a positive value for linkmtu. */ 1614 bzero(&ND, sizeof(ND)); 1615 ND.linkmtu = IN6_LINKMTU(ifp); 1616 ND.maxmtu = ND_IFINFO(ifp)->maxmtu; 1617 ND.basereachable = ND_IFINFO(ifp)->basereachable; 1618 ND.reachable = ND_IFINFO(ifp)->reachable; 1619 ND.retrans = ND_IFINFO(ifp)->retrans; 1620 ND.flags = ND_IFINFO(ifp)->flags; 1621 ND.recalctm = ND_IFINFO(ifp)->recalctm; 1622 ND.chlim = ND_IFINFO(ifp)->chlim; 1623 break; 1624 case SIOCGIFINFO_IN6: 1625 ND = *ND_IFINFO(ifp); 1626 break; 1627 case SIOCSIFINFO_IN6: 1628 /* 1629 * used to change host variables from userland. 1630 * intended for a use on router to reflect RA configurations. 1631 */ 1632 /* 0 means 'unspecified' */ 1633 if (ND.linkmtu != 0) { 1634 if (ND.linkmtu < IPV6_MMTU || 1635 ND.linkmtu > IN6_LINKMTU(ifp)) { 1636 error = EINVAL; 1637 break; 1638 } 1639 ND_IFINFO(ifp)->linkmtu = ND.linkmtu; 1640 } 1641 1642 if (ND.basereachable != 0) { 1643 int obasereachable = ND_IFINFO(ifp)->basereachable; 1644 1645 ND_IFINFO(ifp)->basereachable = ND.basereachable; 1646 if (ND.basereachable != obasereachable) 1647 ND_IFINFO(ifp)->reachable = 1648 ND_COMPUTE_RTIME(ND.basereachable); 1649 } 1650 if (ND.retrans != 0) 1651 ND_IFINFO(ifp)->retrans = ND.retrans; 1652 if (ND.chlim != 0) 1653 ND_IFINFO(ifp)->chlim = ND.chlim; 1654 /* FALLTHROUGH */ 1655 case SIOCSIFINFO_FLAGS: 1656 { 1657 struct ifaddr *ifa; 1658 struct in6_ifaddr *ia; 1659 1660 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1661 !(ND.flags & ND6_IFF_IFDISABLED)) { 1662 /* ifdisabled 1->0 transision */ 1663 1664 /* 1665 * If the interface is marked as ND6_IFF_IFDISABLED and 1666 * has an link-local address with IN6_IFF_DUPLICATED, 1667 * do not clear ND6_IFF_IFDISABLED. 1668 * See RFC 4862, Section 5.4.5. 1669 */ 1670 NET_EPOCH_ENTER(et); 1671 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, ifa_link) { 1672 if (ifa->ifa_addr->sa_family != AF_INET6) 1673 continue; 1674 ia = (struct in6_ifaddr *)ifa; 1675 if ((ia->ia6_flags & IN6_IFF_DUPLICATED) && 1676 IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1677 break; 1678 } 1679 NET_EPOCH_EXIT(et); 1680 1681 if (ifa != NULL) { 1682 /* LLA is duplicated. */ 1683 ND.flags |= ND6_IFF_IFDISABLED; 1684 log(LOG_ERR, "Cannot enable an interface" 1685 " with a link-local address marked" 1686 " duplicate.\n"); 1687 } else { 1688 ND_IFINFO(ifp)->flags &= ~ND6_IFF_IFDISABLED; 1689 if (ifp->if_flags & IFF_UP) 1690 in6_if_up(ifp); 1691 } 1692 } else if (!(ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) && 1693 (ND.flags & ND6_IFF_IFDISABLED)) { 1694 /* ifdisabled 0->1 transision */ 1695 /* Mark all IPv6 address as tentative. */ 1696 1697 ND_IFINFO(ifp)->flags |= ND6_IFF_IFDISABLED; 1698 if (V_ip6_dad_count > 0 && 1699 (ND_IFINFO(ifp)->flags & ND6_IFF_NO_DAD) == 0) { 1700 NET_EPOCH_ENTER(et); 1701 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1702 ifa_link) { 1703 if (ifa->ifa_addr->sa_family != 1704 AF_INET6) 1705 continue; 1706 ia = (struct in6_ifaddr *)ifa; 1707 ia->ia6_flags |= IN6_IFF_TENTATIVE; 1708 } 1709 NET_EPOCH_EXIT(et); 1710 } 1711 } 1712 1713 if (ND.flags & ND6_IFF_AUTO_LINKLOCAL) { 1714 if (!(ND_IFINFO(ifp)->flags & ND6_IFF_AUTO_LINKLOCAL)) { 1715 /* auto_linklocal 0->1 transision */ 1716 1717 /* If no link-local address on ifp, configure */ 1718 ND_IFINFO(ifp)->flags |= ND6_IFF_AUTO_LINKLOCAL; 1719 in6_ifattach(ifp, NULL); 1720 } else if (!(ND.flags & ND6_IFF_IFDISABLED) && 1721 ifp->if_flags & IFF_UP) { 1722 /* 1723 * When the IF already has 1724 * ND6_IFF_AUTO_LINKLOCAL, no link-local 1725 * address is assigned, and IFF_UP, try to 1726 * assign one. 1727 */ 1728 NET_EPOCH_ENTER(et); 1729 CK_STAILQ_FOREACH(ifa, &ifp->if_addrhead, 1730 ifa_link) { 1731 if (ifa->ifa_addr->sa_family != 1732 AF_INET6) 1733 continue; 1734 ia = (struct in6_ifaddr *)ifa; 1735 if (IN6_IS_ADDR_LINKLOCAL(IA6_IN6(ia))) 1736 break; 1737 } 1738 NET_EPOCH_EXIT(et); 1739 if (ifa != NULL) 1740 /* No LLA is configured. */ 1741 in6_ifattach(ifp, NULL); 1742 } 1743 } 1744 ND_IFINFO(ifp)->flags = ND.flags; 1745 break; 1746 } 1747 #undef ND 1748 case SIOCSNDFLUSH_IN6: /* XXX: the ioctl name is confusing... */ 1749 /* sync kernel routing table with the default router list */ 1750 defrouter_reset(); 1751 defrouter_select_fib(RT_ALL_FIBS); 1752 break; 1753 case SIOCSPFXFLUSH_IN6: 1754 { 1755 /* flush all the prefix advertised by routers */ 1756 struct in6_ifaddr *ia, *ia_next; 1757 struct nd_prefix *pr, *next; 1758 struct nd_prhead prl; 1759 1760 LIST_INIT(&prl); 1761 1762 ND6_WLOCK(); 1763 LIST_FOREACH_SAFE(pr, &V_nd_prefix, ndpr_entry, next) { 1764 if (IN6_IS_ADDR_LINKLOCAL(&pr->ndpr_prefix.sin6_addr)) 1765 continue; /* XXX */ 1766 nd6_prefix_unlink(pr, &prl); 1767 } 1768 ND6_WUNLOCK(); 1769 1770 while ((pr = LIST_FIRST(&prl)) != NULL) { 1771 LIST_REMOVE(pr, ndpr_entry); 1772 /* XXXRW: in6_ifaddrhead locking. */ 1773 CK_STAILQ_FOREACH_SAFE(ia, &V_in6_ifaddrhead, ia_link, 1774 ia_next) { 1775 if ((ia->ia6_flags & IN6_IFF_AUTOCONF) == 0) 1776 continue; 1777 1778 if (ia->ia6_ndpr == pr) 1779 in6_purgeaddr(&ia->ia_ifa); 1780 } 1781 nd6_prefix_del(pr); 1782 } 1783 break; 1784 } 1785 case SIOCSRTRFLUSH_IN6: 1786 { 1787 /* flush all the default routers */ 1788 1789 defrouter_reset(); 1790 nd6_defrouter_flush_all(); 1791 defrouter_select_fib(RT_ALL_FIBS); 1792 break; 1793 } 1794 case SIOCGNBRINFO_IN6: 1795 { 1796 struct llentry *ln; 1797 struct in6_addr nb_addr = nbi->addr; /* make local for safety */ 1798 1799 if ((error = in6_setscope(&nb_addr, ifp, NULL)) != 0) 1800 return (error); 1801 1802 NET_EPOCH_ENTER(et); 1803 ln = nd6_lookup(&nb_addr, 0, ifp); 1804 NET_EPOCH_EXIT(et); 1805 1806 if (ln == NULL) { 1807 error = EINVAL; 1808 break; 1809 } 1810 nbi->state = ln->ln_state; 1811 nbi->asked = ln->la_asked; 1812 nbi->isrouter = ln->ln_router; 1813 if (ln->la_expire == 0) 1814 nbi->expire = 0; 1815 else 1816 nbi->expire = ln->la_expire + ln->lle_remtime / hz + 1817 (time_second - time_uptime); 1818 LLE_RUNLOCK(ln); 1819 break; 1820 } 1821 case SIOCGDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1822 ndif->ifindex = V_nd6_defifindex; 1823 break; 1824 case SIOCSDEFIFACE_IN6: /* XXX: should be implemented as a sysctl? */ 1825 return (nd6_setdefaultiface(ndif->ifindex)); 1826 } 1827 return (error); 1828 } 1829 1830 /* 1831 * Calculates new isRouter value based on provided parameters and 1832 * returns it. 1833 */ 1834 static int 1835 nd6_is_router(int type, int code, int is_new, int old_addr, int new_addr, 1836 int ln_router) 1837 { 1838 1839 /* 1840 * ICMP6 type dependent behavior. 1841 * 1842 * NS: clear IsRouter if new entry 1843 * RS: clear IsRouter 1844 * RA: set IsRouter if there's lladdr 1845 * redir: clear IsRouter if new entry 1846 * 1847 * RA case, (1): 1848 * The spec says that we must set IsRouter in the following cases: 1849 * - If lladdr exist, set IsRouter. This means (1-5). 1850 * - If it is old entry (!newentry), set IsRouter. This means (7). 1851 * So, based on the spec, in (1-5) and (7) cases we must set IsRouter. 1852 * A quetion arises for (1) case. (1) case has no lladdr in the 1853 * neighbor cache, this is similar to (6). 1854 * This case is rare but we figured that we MUST NOT set IsRouter. 1855 * 1856 * is_new old_addr new_addr NS RS RA redir 1857 * D R 1858 * 0 n n (1) c ? s 1859 * 0 y n (2) c s s 1860 * 0 n y (3) c s s 1861 * 0 y y (4) c s s 1862 * 0 y y (5) c s s 1863 * 1 -- n (6) c c c s 1864 * 1 -- y (7) c c s c s 1865 * 1866 * (c=clear s=set) 1867 */ 1868 switch (type & 0xff) { 1869 case ND_NEIGHBOR_SOLICIT: 1870 /* 1871 * New entry must have is_router flag cleared. 1872 */ 1873 if (is_new) /* (6-7) */ 1874 ln_router = 0; 1875 break; 1876 case ND_REDIRECT: 1877 /* 1878 * If the icmp is a redirect to a better router, always set the 1879 * is_router flag. Otherwise, if the entry is newly created, 1880 * clear the flag. [RFC 2461, sec 8.3] 1881 */ 1882 if (code == ND_REDIRECT_ROUTER) 1883 ln_router = 1; 1884 else { 1885 if (is_new) /* (6-7) */ 1886 ln_router = 0; 1887 } 1888 break; 1889 case ND_ROUTER_SOLICIT: 1890 /* 1891 * is_router flag must always be cleared. 1892 */ 1893 ln_router = 0; 1894 break; 1895 case ND_ROUTER_ADVERT: 1896 /* 1897 * Mark an entry with lladdr as a router. 1898 */ 1899 if ((!is_new && (old_addr || new_addr)) || /* (2-5) */ 1900 (is_new && new_addr)) { /* (7) */ 1901 ln_router = 1; 1902 } 1903 break; 1904 } 1905 1906 return (ln_router); 1907 } 1908 1909 /* 1910 * Create neighbor cache entry and cache link-layer address, 1911 * on reception of inbound ND6 packets. (RS/RA/NS/redirect) 1912 * 1913 * type - ICMP6 type 1914 * code - type dependent information 1915 * 1916 */ 1917 void 1918 nd6_cache_lladdr(struct ifnet *ifp, struct in6_addr *from, char *lladdr, 1919 int lladdrlen, int type, int code) 1920 { 1921 struct llentry *ln = NULL, *ln_tmp; 1922 int is_newentry; 1923 int do_update; 1924 int olladdr; 1925 int llchange; 1926 int flags; 1927 uint16_t router = 0; 1928 struct sockaddr_in6 sin6; 1929 struct mbuf *chain = NULL; 1930 u_char linkhdr[LLE_MAX_LINKHDR]; 1931 size_t linkhdrsize; 1932 int lladdr_off; 1933 1934 NET_EPOCH_ASSERT(); 1935 IF_AFDATA_UNLOCK_ASSERT(ifp); 1936 1937 KASSERT(ifp != NULL, ("%s: ifp == NULL", __func__)); 1938 KASSERT(from != NULL, ("%s: from == NULL", __func__)); 1939 1940 /* nothing must be updated for unspecified address */ 1941 if (IN6_IS_ADDR_UNSPECIFIED(from)) 1942 return; 1943 1944 /* 1945 * Validation about ifp->if_addrlen and lladdrlen must be done in 1946 * the caller. 1947 * 1948 * XXX If the link does not have link-layer adderss, what should 1949 * we do? (ifp->if_addrlen == 0) 1950 * Spec says nothing in sections for RA, RS and NA. There's small 1951 * description on it in NS section (RFC 2461 7.2.3). 1952 */ 1953 flags = lladdr ? LLE_EXCLUSIVE : 0; 1954 ln = nd6_lookup(from, flags, ifp); 1955 is_newentry = 0; 1956 if (ln == NULL) { 1957 flags |= LLE_EXCLUSIVE; 1958 ln = nd6_alloc(from, 0, ifp); 1959 if (ln == NULL) 1960 return; 1961 1962 /* 1963 * Since we already know all the data for the new entry, 1964 * fill it before insertion. 1965 */ 1966 if (lladdr != NULL) { 1967 linkhdrsize = sizeof(linkhdr); 1968 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 1969 linkhdr, &linkhdrsize, &lladdr_off) != 0) 1970 return; 1971 lltable_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 1972 lladdr_off); 1973 } 1974 1975 IF_AFDATA_WLOCK(ifp); 1976 LLE_WLOCK(ln); 1977 /* Prefer any existing lle over newly-created one */ 1978 ln_tmp = nd6_lookup(from, LLE_EXCLUSIVE, ifp); 1979 if (ln_tmp == NULL) 1980 lltable_link_entry(LLTABLE6(ifp), ln); 1981 IF_AFDATA_WUNLOCK(ifp); 1982 if (ln_tmp == NULL) { 1983 /* No existing lle, mark as new entry (6,7) */ 1984 is_newentry = 1; 1985 if (lladdr != NULL) { /* (7) */ 1986 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 1987 EVENTHANDLER_INVOKE(lle_event, ln, 1988 LLENTRY_RESOLVED); 1989 } 1990 } else { 1991 lltable_free_entry(LLTABLE6(ifp), ln); 1992 ln = ln_tmp; 1993 ln_tmp = NULL; 1994 } 1995 } 1996 /* do nothing if static ndp is set */ 1997 if ((ln->la_flags & LLE_STATIC)) { 1998 if (flags & LLE_EXCLUSIVE) 1999 LLE_WUNLOCK(ln); 2000 else 2001 LLE_RUNLOCK(ln); 2002 return; 2003 } 2004 2005 olladdr = (ln->la_flags & LLE_VALID) ? 1 : 0; 2006 if (olladdr && lladdr) { 2007 llchange = bcmp(lladdr, ln->ll_addr, 2008 ifp->if_addrlen); 2009 } else if (!olladdr && lladdr) 2010 llchange = 1; 2011 else 2012 llchange = 0; 2013 2014 /* 2015 * newentry olladdr lladdr llchange (*=record) 2016 * 0 n n -- (1) 2017 * 0 y n -- (2) 2018 * 0 n y y (3) * STALE 2019 * 0 y y n (4) * 2020 * 0 y y y (5) * STALE 2021 * 1 -- n -- (6) NOSTATE(= PASSIVE) 2022 * 1 -- y -- (7) * STALE 2023 */ 2024 2025 do_update = 0; 2026 if (is_newentry == 0 && llchange != 0) { 2027 do_update = 1; /* (3,5) */ 2028 2029 /* 2030 * Record source link-layer address 2031 * XXX is it dependent to ifp->if_type? 2032 */ 2033 linkhdrsize = sizeof(linkhdr); 2034 if (lltable_calc_llheader(ifp, AF_INET6, lladdr, 2035 linkhdr, &linkhdrsize, &lladdr_off) != 0) 2036 return; 2037 2038 if (lltable_try_set_entry_addr(ifp, ln, linkhdr, linkhdrsize, 2039 lladdr_off) == 0) { 2040 /* Entry was deleted */ 2041 return; 2042 } 2043 2044 nd6_llinfo_setstate(ln, ND6_LLINFO_STALE); 2045 2046 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2047 2048 if (ln->la_hold != NULL) 2049 nd6_grab_holdchain(ln, &chain, &sin6); 2050 } 2051 2052 /* Calculates new router status */ 2053 router = nd6_is_router(type, code, is_newentry, olladdr, 2054 lladdr != NULL ? 1 : 0, ln->ln_router); 2055 2056 ln->ln_router = router; 2057 /* Mark non-router redirects with special flag */ 2058 if ((type & 0xFF) == ND_REDIRECT && code != ND_REDIRECT_ROUTER) 2059 ln->la_flags |= LLE_REDIRECT; 2060 2061 if (flags & LLE_EXCLUSIVE) 2062 LLE_WUNLOCK(ln); 2063 else 2064 LLE_RUNLOCK(ln); 2065 2066 if (chain != NULL) 2067 nd6_flush_holdchain(ifp, chain, &sin6); 2068 2069 /* 2070 * When the link-layer address of a router changes, select the 2071 * best router again. In particular, when the neighbor entry is newly 2072 * created, it might affect the selection policy. 2073 * Question: can we restrict the first condition to the "is_newentry" 2074 * case? 2075 * XXX: when we hear an RA from a new router with the link-layer 2076 * address option, defrouter_select_fib() is called twice, since 2077 * defrtrlist_update called the function as well. However, I believe 2078 * we can compromise the overhead, since it only happens the first 2079 * time. 2080 * XXX: although defrouter_select_fib() should not have a bad effect 2081 * for those are not autoconfigured hosts, we explicitly avoid such 2082 * cases for safety. 2083 */ 2084 if ((do_update || is_newentry) && router && 2085 ND_IFINFO(ifp)->flags & ND6_IFF_ACCEPT_RTADV) { 2086 /* 2087 * guaranteed recursion 2088 */ 2089 defrouter_select_fib(ifp->if_fib); 2090 } 2091 } 2092 2093 static void 2094 nd6_slowtimo(void *arg) 2095 { 2096 struct epoch_tracker et; 2097 CURVNET_SET((struct vnet *) arg); 2098 struct nd_ifinfo *nd6if; 2099 struct ifnet *ifp; 2100 2101 callout_reset(&V_nd6_slowtimo_ch, ND6_SLOWTIMER_INTERVAL * hz, 2102 nd6_slowtimo, curvnet); 2103 NET_EPOCH_ENTER(et); 2104 CK_STAILQ_FOREACH(ifp, &V_ifnet, if_link) { 2105 if (ifp->if_afdata[AF_INET6] == NULL) 2106 continue; 2107 nd6if = ND_IFINFO(ifp); 2108 if (nd6if->basereachable && /* already initialized */ 2109 (nd6if->recalctm -= ND6_SLOWTIMER_INTERVAL) <= 0) { 2110 /* 2111 * Since reachable time rarely changes by router 2112 * advertisements, we SHOULD insure that a new random 2113 * value gets recomputed at least once every few hours. 2114 * (RFC 2461, 6.3.4) 2115 */ 2116 nd6if->recalctm = V_nd6_recalc_reachtm_interval; 2117 nd6if->reachable = ND_COMPUTE_RTIME(nd6if->basereachable); 2118 } 2119 } 2120 NET_EPOCH_EXIT(et); 2121 CURVNET_RESTORE(); 2122 } 2123 2124 void 2125 nd6_grab_holdchain(struct llentry *ln, struct mbuf **chain, 2126 struct sockaddr_in6 *sin6) 2127 { 2128 2129 LLE_WLOCK_ASSERT(ln); 2130 2131 *chain = ln->la_hold; 2132 ln->la_hold = NULL; 2133 lltable_fill_sa_entry(ln, (struct sockaddr *)sin6); 2134 2135 if (ln->ln_state == ND6_LLINFO_STALE) { 2136 2137 /* 2138 * The first time we send a packet to a 2139 * neighbor whose entry is STALE, we have 2140 * to change the state to DELAY and a sets 2141 * a timer to expire in DELAY_FIRST_PROBE_TIME 2142 * seconds to ensure do neighbor unreachability 2143 * detection on expiration. 2144 * (RFC 2461 7.3.3) 2145 */ 2146 nd6_llinfo_setstate(ln, ND6_LLINFO_DELAY); 2147 } 2148 } 2149 2150 int 2151 nd6_output_ifp(struct ifnet *ifp, struct ifnet *origifp, struct mbuf *m, 2152 struct sockaddr_in6 *dst, struct route *ro) 2153 { 2154 int error; 2155 int ip6len; 2156 struct ip6_hdr *ip6; 2157 struct m_tag *mtag; 2158 2159 #ifdef MAC 2160 mac_netinet6_nd6_send(ifp, m); 2161 #endif 2162 2163 /* 2164 * If called from nd6_ns_output() (NS), nd6_na_output() (NA), 2165 * icmp6_redirect_output() (REDIRECT) or from rip6_output() (RS, RA 2166 * as handled by rtsol and rtadvd), mbufs will be tagged for SeND 2167 * to be diverted to user space. When re-injected into the kernel, 2168 * send_output() will directly dispatch them to the outgoing interface. 2169 */ 2170 if (send_sendso_input_hook != NULL) { 2171 mtag = m_tag_find(m, PACKET_TAG_ND_OUTGOING, NULL); 2172 if (mtag != NULL) { 2173 ip6 = mtod(m, struct ip6_hdr *); 2174 ip6len = sizeof(struct ip6_hdr) + ntohs(ip6->ip6_plen); 2175 /* Use the SEND socket */ 2176 error = send_sendso_input_hook(m, ifp, SND_OUT, 2177 ip6len); 2178 /* -1 == no app on SEND socket */ 2179 if (error == 0 || error != -1) 2180 return (error); 2181 } 2182 } 2183 2184 m_clrprotoflags(m); /* Avoid confusing lower layers. */ 2185 IP_PROBE(send, NULL, NULL, mtod(m, struct ip6_hdr *), ifp, NULL, 2186 mtod(m, struct ip6_hdr *)); 2187 2188 if ((ifp->if_flags & IFF_LOOPBACK) == 0) 2189 origifp = ifp; 2190 2191 error = (*ifp->if_output)(origifp, m, (struct sockaddr *)dst, ro); 2192 return (error); 2193 } 2194 2195 /* 2196 * Lookup link headerfor @sa_dst address. Stores found 2197 * data in @desten buffer. Copy of lle ln_flags can be also 2198 * saved in @pflags if @pflags is non-NULL. 2199 * 2200 * If destination LLE does not exists or lle state modification 2201 * is required, call "slow" version. 2202 * 2203 * Return values: 2204 * - 0 on success (address copied to buffer). 2205 * - EWOULDBLOCK (no local error, but address is still unresolved) 2206 * - other errors (alloc failure, etc) 2207 */ 2208 int 2209 nd6_resolve(struct ifnet *ifp, int is_gw, struct mbuf *m, 2210 const struct sockaddr *sa_dst, u_char *desten, uint32_t *pflags, 2211 struct llentry **plle) 2212 { 2213 struct llentry *ln = NULL; 2214 const struct sockaddr_in6 *dst6; 2215 2216 NET_EPOCH_ASSERT(); 2217 2218 if (pflags != NULL) 2219 *pflags = 0; 2220 2221 dst6 = (const struct sockaddr_in6 *)sa_dst; 2222 2223 /* discard the packet if IPv6 operation is disabled on the interface */ 2224 if ((ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED)) { 2225 m_freem(m); 2226 return (ENETDOWN); /* better error? */ 2227 } 2228 2229 if (m != NULL && m->m_flags & M_MCAST) { 2230 switch (ifp->if_type) { 2231 case IFT_ETHER: 2232 case IFT_L2VLAN: 2233 case IFT_BRIDGE: 2234 ETHER_MAP_IPV6_MULTICAST(&dst6->sin6_addr, 2235 desten); 2236 return (0); 2237 default: 2238 m_freem(m); 2239 return (EAFNOSUPPORT); 2240 } 2241 } 2242 2243 ln = nd6_lookup(&dst6->sin6_addr, plle ? LLE_EXCLUSIVE : LLE_UNLOCKED, 2244 ifp); 2245 if (ln != NULL && (ln->r_flags & RLLE_VALID) != 0) { 2246 /* Entry found, let's copy lle info */ 2247 bcopy(ln->r_linkdata, desten, ln->r_hdrlen); 2248 if (pflags != NULL) 2249 *pflags = LLE_VALID | (ln->r_flags & RLLE_IFADDR); 2250 /* Check if we have feedback request from nd6 timer */ 2251 if (ln->r_skip_req != 0) { 2252 LLE_REQ_LOCK(ln); 2253 ln->r_skip_req = 0; /* Notify that entry was used */ 2254 ln->lle_hittime = time_uptime; 2255 LLE_REQ_UNLOCK(ln); 2256 } 2257 if (plle) { 2258 LLE_ADDREF(ln); 2259 *plle = ln; 2260 LLE_WUNLOCK(ln); 2261 } 2262 return (0); 2263 } else if (plle && ln) 2264 LLE_WUNLOCK(ln); 2265 2266 return (nd6_resolve_slow(ifp, 0, m, dst6, desten, pflags, plle)); 2267 } 2268 2269 2270 /* 2271 * Do L2 address resolution for @sa_dst address. Stores found 2272 * address in @desten buffer. Copy of lle ln_flags can be also 2273 * saved in @pflags if @pflags is non-NULL. 2274 * 2275 * Heavy version. 2276 * Function assume that destination LLE does not exist, 2277 * is invalid or stale, so LLE_EXCLUSIVE lock needs to be acquired. 2278 * 2279 * Set noinline to be dtrace-friendly 2280 */ 2281 static __noinline int 2282 nd6_resolve_slow(struct ifnet *ifp, int flags, struct mbuf *m, 2283 const struct sockaddr_in6 *dst, u_char *desten, uint32_t *pflags, 2284 struct llentry **plle) 2285 { 2286 struct llentry *lle = NULL, *lle_tmp; 2287 struct in6_addr *psrc, src; 2288 int send_ns, ll_len; 2289 char *lladdr; 2290 2291 NET_EPOCH_ASSERT(); 2292 2293 /* 2294 * Address resolution or Neighbor Unreachability Detection 2295 * for the next hop. 2296 * At this point, the destination of the packet must be a unicast 2297 * or an anycast address(i.e. not a multicast). 2298 */ 2299 if (lle == NULL) { 2300 lle = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2301 if ((lle == NULL) && nd6_is_addr_neighbor(dst, ifp)) { 2302 /* 2303 * Since nd6_is_addr_neighbor() internally calls nd6_lookup(), 2304 * the condition below is not very efficient. But we believe 2305 * it is tolerable, because this should be a rare case. 2306 */ 2307 lle = nd6_alloc(&dst->sin6_addr, 0, ifp); 2308 if (lle == NULL) { 2309 char ip6buf[INET6_ADDRSTRLEN]; 2310 log(LOG_DEBUG, 2311 "nd6_output: can't allocate llinfo for %s " 2312 "(ln=%p)\n", 2313 ip6_sprintf(ip6buf, &dst->sin6_addr), lle); 2314 m_freem(m); 2315 return (ENOBUFS); 2316 } 2317 2318 IF_AFDATA_WLOCK(ifp); 2319 LLE_WLOCK(lle); 2320 /* Prefer any existing entry over newly-created one */ 2321 lle_tmp = nd6_lookup(&dst->sin6_addr, LLE_EXCLUSIVE, ifp); 2322 if (lle_tmp == NULL) 2323 lltable_link_entry(LLTABLE6(ifp), lle); 2324 IF_AFDATA_WUNLOCK(ifp); 2325 if (lle_tmp != NULL) { 2326 lltable_free_entry(LLTABLE6(ifp), lle); 2327 lle = lle_tmp; 2328 lle_tmp = NULL; 2329 } 2330 } 2331 } 2332 if (lle == NULL) { 2333 m_freem(m); 2334 return (ENOBUFS); 2335 } 2336 2337 LLE_WLOCK_ASSERT(lle); 2338 2339 /* 2340 * The first time we send a packet to a neighbor whose entry is 2341 * STALE, we have to change the state to DELAY and a sets a timer to 2342 * expire in DELAY_FIRST_PROBE_TIME seconds to ensure do 2343 * neighbor unreachability detection on expiration. 2344 * (RFC 2461 7.3.3) 2345 */ 2346 if (lle->ln_state == ND6_LLINFO_STALE) 2347 nd6_llinfo_setstate(lle, ND6_LLINFO_DELAY); 2348 2349 /* 2350 * If the neighbor cache entry has a state other than INCOMPLETE 2351 * (i.e. its link-layer address is already resolved), just 2352 * send the packet. 2353 */ 2354 if (lle->ln_state > ND6_LLINFO_INCOMPLETE) { 2355 if (flags & LLE_ADDRONLY) { 2356 lladdr = lle->ll_addr; 2357 ll_len = ifp->if_addrlen; 2358 } else { 2359 lladdr = lle->r_linkdata; 2360 ll_len = lle->r_hdrlen; 2361 } 2362 bcopy(lladdr, desten, ll_len); 2363 if (pflags != NULL) 2364 *pflags = lle->la_flags; 2365 if (plle) { 2366 LLE_ADDREF(lle); 2367 *plle = lle; 2368 } 2369 LLE_WUNLOCK(lle); 2370 return (0); 2371 } 2372 2373 /* 2374 * There is a neighbor cache entry, but no ethernet address 2375 * response yet. Append this latest packet to the end of the 2376 * packet queue in the mbuf. When it exceeds nd6_maxqueuelen, 2377 * the oldest packet in the queue will be removed. 2378 */ 2379 2380 if (lle->la_hold != NULL) { 2381 struct mbuf *m_hold; 2382 int i; 2383 2384 i = 0; 2385 for (m_hold = lle->la_hold; m_hold; m_hold = m_hold->m_nextpkt){ 2386 i++; 2387 if (m_hold->m_nextpkt == NULL) { 2388 m_hold->m_nextpkt = m; 2389 break; 2390 } 2391 } 2392 while (i >= V_nd6_maxqueuelen) { 2393 m_hold = lle->la_hold; 2394 lle->la_hold = lle->la_hold->m_nextpkt; 2395 m_freem(m_hold); 2396 i--; 2397 } 2398 } else { 2399 lle->la_hold = m; 2400 } 2401 2402 /* 2403 * If there has been no NS for the neighbor after entering the 2404 * INCOMPLETE state, send the first solicitation. 2405 * Note that for newly-created lle la_asked will be 0, 2406 * so we will transition from ND6_LLINFO_NOSTATE to 2407 * ND6_LLINFO_INCOMPLETE state here. 2408 */ 2409 psrc = NULL; 2410 send_ns = 0; 2411 if (lle->la_asked == 0) { 2412 lle->la_asked++; 2413 send_ns = 1; 2414 psrc = nd6_llinfo_get_holdsrc(lle, &src); 2415 2416 nd6_llinfo_setstate(lle, ND6_LLINFO_INCOMPLETE); 2417 } 2418 LLE_WUNLOCK(lle); 2419 if (send_ns != 0) 2420 nd6_ns_output(ifp, psrc, NULL, &dst->sin6_addr, NULL); 2421 2422 return (EWOULDBLOCK); 2423 } 2424 2425 /* 2426 * Do L2 address resolution for @sa_dst address. Stores found 2427 * address in @desten buffer. Copy of lle ln_flags can be also 2428 * saved in @pflags if @pflags is non-NULL. 2429 * 2430 * Return values: 2431 * - 0 on success (address copied to buffer). 2432 * - EWOULDBLOCK (no local error, but address is still unresolved) 2433 * - other errors (alloc failure, etc) 2434 */ 2435 int 2436 nd6_resolve_addr(struct ifnet *ifp, int flags, const struct sockaddr *dst, 2437 char *desten, uint32_t *pflags) 2438 { 2439 int error; 2440 2441 flags |= LLE_ADDRONLY; 2442 error = nd6_resolve_slow(ifp, flags, NULL, 2443 (const struct sockaddr_in6 *)dst, desten, pflags, NULL); 2444 return (error); 2445 } 2446 2447 int 2448 nd6_flush_holdchain(struct ifnet *ifp, struct mbuf *chain, 2449 struct sockaddr_in6 *dst) 2450 { 2451 struct mbuf *m, *m_head; 2452 int error = 0; 2453 2454 m_head = chain; 2455 2456 while (m_head) { 2457 m = m_head; 2458 m_head = m_head->m_nextpkt; 2459 error = nd6_output_ifp(ifp, ifp, m, dst, NULL); 2460 } 2461 2462 /* 2463 * XXX 2464 * note that intermediate errors are blindly ignored 2465 */ 2466 return (error); 2467 } 2468 2469 static int 2470 nd6_need_cache(struct ifnet *ifp) 2471 { 2472 /* 2473 * XXX: we currently do not make neighbor cache on any interface 2474 * other than Ethernet and GIF. 2475 * 2476 * RFC2893 says: 2477 * - unidirectional tunnels needs no ND 2478 */ 2479 switch (ifp->if_type) { 2480 case IFT_ETHER: 2481 case IFT_IEEE1394: 2482 case IFT_L2VLAN: 2483 case IFT_INFINIBAND: 2484 case IFT_BRIDGE: 2485 case IFT_PROPVIRTUAL: 2486 return (1); 2487 default: 2488 return (0); 2489 } 2490 } 2491 2492 /* 2493 * Add pernament ND6 link-layer record for given 2494 * interface address. 2495 * 2496 * Very similar to IPv4 arp_ifinit(), but: 2497 * 1) IPv6 DAD is performed in different place 2498 * 2) It is called by IPv6 protocol stack in contrast to 2499 * arp_ifinit() which is typically called in SIOCSIFADDR 2500 * driver ioctl handler. 2501 * 2502 */ 2503 int 2504 nd6_add_ifa_lle(struct in6_ifaddr *ia) 2505 { 2506 struct ifnet *ifp; 2507 struct llentry *ln, *ln_tmp; 2508 struct sockaddr *dst; 2509 2510 ifp = ia->ia_ifa.ifa_ifp; 2511 if (nd6_need_cache(ifp) == 0) 2512 return (0); 2513 2514 ia->ia_ifa.ifa_rtrequest = nd6_rtrequest; 2515 dst = (struct sockaddr *)&ia->ia_addr; 2516 ln = lltable_alloc_entry(LLTABLE6(ifp), LLE_IFADDR, dst); 2517 if (ln == NULL) 2518 return (ENOBUFS); 2519 2520 IF_AFDATA_WLOCK(ifp); 2521 LLE_WLOCK(ln); 2522 /* Unlink any entry if exists */ 2523 ln_tmp = lla_lookup(LLTABLE6(ifp), LLE_EXCLUSIVE, dst); 2524 if (ln_tmp != NULL) 2525 lltable_unlink_entry(LLTABLE6(ifp), ln_tmp); 2526 lltable_link_entry(LLTABLE6(ifp), ln); 2527 IF_AFDATA_WUNLOCK(ifp); 2528 2529 if (ln_tmp != NULL) 2530 EVENTHANDLER_INVOKE(lle_event, ln_tmp, LLENTRY_EXPIRED); 2531 EVENTHANDLER_INVOKE(lle_event, ln, LLENTRY_RESOLVED); 2532 2533 LLE_WUNLOCK(ln); 2534 if (ln_tmp != NULL) 2535 llentry_free(ln_tmp); 2536 2537 return (0); 2538 } 2539 2540 /* 2541 * Removes either all lle entries for given @ia, or lle 2542 * corresponding to @ia address. 2543 */ 2544 void 2545 nd6_rem_ifa_lle(struct in6_ifaddr *ia, int all) 2546 { 2547 struct sockaddr_in6 mask, addr; 2548 struct sockaddr *saddr, *smask; 2549 struct ifnet *ifp; 2550 2551 ifp = ia->ia_ifa.ifa_ifp; 2552 memcpy(&addr, &ia->ia_addr, sizeof(ia->ia_addr)); 2553 memcpy(&mask, &ia->ia_prefixmask, sizeof(ia->ia_prefixmask)); 2554 saddr = (struct sockaddr *)&addr; 2555 smask = (struct sockaddr *)&mask; 2556 2557 if (all != 0) 2558 lltable_prefix_free(AF_INET6, saddr, smask, LLE_STATIC); 2559 else 2560 lltable_delete_addr(LLTABLE6(ifp), LLE_IFADDR, saddr); 2561 } 2562 2563 static void 2564 clear_llinfo_pqueue(struct llentry *ln) 2565 { 2566 struct mbuf *m_hold, *m_hold_next; 2567 2568 for (m_hold = ln->la_hold; m_hold; m_hold = m_hold_next) { 2569 m_hold_next = m_hold->m_nextpkt; 2570 m_freem(m_hold); 2571 } 2572 2573 ln->la_hold = NULL; 2574 } 2575 2576 static int 2577 nd6_sysctl_prlist(SYSCTL_HANDLER_ARGS) 2578 { 2579 struct in6_prefix p; 2580 struct sockaddr_in6 s6; 2581 struct nd_prefix *pr; 2582 struct nd_pfxrouter *pfr; 2583 time_t maxexpire; 2584 int error; 2585 char ip6buf[INET6_ADDRSTRLEN]; 2586 2587 if (req->newptr) 2588 return (EPERM); 2589 2590 error = sysctl_wire_old_buffer(req, 0); 2591 if (error != 0) 2592 return (error); 2593 2594 bzero(&p, sizeof(p)); 2595 p.origin = PR_ORIG_RA; 2596 bzero(&s6, sizeof(s6)); 2597 s6.sin6_family = AF_INET6; 2598 s6.sin6_len = sizeof(s6); 2599 2600 ND6_RLOCK(); 2601 LIST_FOREACH(pr, &V_nd_prefix, ndpr_entry) { 2602 p.prefix = pr->ndpr_prefix; 2603 if (sa6_recoverscope(&p.prefix)) { 2604 log(LOG_ERR, "scope error in prefix list (%s)\n", 2605 ip6_sprintf(ip6buf, &p.prefix.sin6_addr)); 2606 /* XXX: press on... */ 2607 } 2608 p.raflags = pr->ndpr_raf; 2609 p.prefixlen = pr->ndpr_plen; 2610 p.vltime = pr->ndpr_vltime; 2611 p.pltime = pr->ndpr_pltime; 2612 p.if_index = pr->ndpr_ifp->if_index; 2613 if (pr->ndpr_vltime == ND6_INFINITE_LIFETIME) 2614 p.expire = 0; 2615 else { 2616 /* XXX: we assume time_t is signed. */ 2617 maxexpire = (-1) & 2618 ~((time_t)1 << ((sizeof(maxexpire) * 8) - 1)); 2619 if (pr->ndpr_vltime < maxexpire - pr->ndpr_lastupdate) 2620 p.expire = pr->ndpr_lastupdate + 2621 pr->ndpr_vltime + 2622 (time_second - time_uptime); 2623 else 2624 p.expire = maxexpire; 2625 } 2626 p.refcnt = pr->ndpr_addrcnt; 2627 p.flags = pr->ndpr_stateflags; 2628 p.advrtrs = 0; 2629 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) 2630 p.advrtrs++; 2631 error = SYSCTL_OUT(req, &p, sizeof(p)); 2632 if (error != 0) 2633 break; 2634 LIST_FOREACH(pfr, &pr->ndpr_advrtrs, pfr_entry) { 2635 s6.sin6_addr = pfr->router->rtaddr; 2636 if (sa6_recoverscope(&s6)) 2637 log(LOG_ERR, 2638 "scope error in prefix list (%s)\n", 2639 ip6_sprintf(ip6buf, &pfr->router->rtaddr)); 2640 error = SYSCTL_OUT(req, &s6, sizeof(s6)); 2641 if (error != 0) 2642 goto out; 2643 } 2644 } 2645 out: 2646 ND6_RUNLOCK(); 2647 return (error); 2648 } 2649 SYSCTL_PROC(_net_inet6_icmp6, ICMPV6CTL_ND6_PRLIST, nd6_prlist, 2650 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, 2651 NULL, 0, nd6_sysctl_prlist, "S,in6_prefix", 2652 "NDP prefix list"); 2653 SYSCTL_INT(_net_inet6_icmp6, ICMPV6CTL_ND6_MAXQLEN, nd6_maxqueuelen, 2654 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_maxqueuelen), 1, ""); 2655 SYSCTL_INT(_net_inet6_icmp6, OID_AUTO, nd6_gctimer, 2656 CTLFLAG_VNET | CTLFLAG_RW, &VNET_NAME(nd6_gctimer), (60 * 60 * 24), ""); 2657