1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 2009 Bruce Simpson. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 3. The name of the author may not be used to endorse or promote 15 * products derived from this software without specific prior written 16 * permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 19 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 21 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 22 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 23 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 24 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 25 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 26 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 28 * SUCH DAMAGE. 29 * 30 * $KAME: mld6.c,v 1.27 2001/04/04 05:17:30 itojun Exp $ 31 */ 32 33 /*- 34 * Copyright (c) 1988 Stephen Deering. 35 * Copyright (c) 1992, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * This code is derived from software contributed to Berkeley by 39 * Stephen Deering of Stanford University. 40 * 41 * Redistribution and use in source and binary forms, with or without 42 * modification, are permitted provided that the following conditions 43 * are met: 44 * 1. Redistributions of source code must retain the above copyright 45 * notice, this list of conditions and the following disclaimer. 46 * 2. Redistributions in binary form must reproduce the above copyright 47 * notice, this list of conditions and the following disclaimer in the 48 * documentation and/or other materials provided with the distribution. 49 * 3. Neither the name of the University nor the names of its contributors 50 * may be used to endorse or promote products derived from this software 51 * without specific prior written permission. 52 * 53 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 54 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 55 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 56 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 57 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 58 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 59 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 60 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 61 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 62 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 63 * SUCH DAMAGE. 64 * 65 * @(#)igmp.c 8.1 (Berkeley) 7/19/93 66 */ 67 68 #include <sys/cdefs.h> 69 __FBSDID("$FreeBSD$"); 70 71 #include "opt_inet.h" 72 #include "opt_inet6.h" 73 74 #include <sys/param.h> 75 #include <sys/systm.h> 76 #include <sys/mbuf.h> 77 #include <sys/socket.h> 78 #include <sys/protosw.h> 79 #include <sys/sysctl.h> 80 #include <sys/kernel.h> 81 #include <sys/callout.h> 82 #include <sys/malloc.h> 83 #include <sys/module.h> 84 #include <sys/ktr.h> 85 86 #include <net/if.h> 87 #include <net/if_var.h> 88 #include <net/route.h> 89 #include <net/vnet.h> 90 91 #include <netinet/in.h> 92 #include <netinet/in_var.h> 93 #include <netinet6/in6_var.h> 94 #include <netinet/ip6.h> 95 #include <netinet6/ip6_var.h> 96 #include <netinet6/scope6_var.h> 97 #include <netinet/icmp6.h> 98 #include <netinet6/mld6.h> 99 #include <netinet6/mld6_var.h> 100 101 #include <security/mac/mac_framework.h> 102 103 #ifndef KTR_MLD 104 #define KTR_MLD KTR_INET6 105 #endif 106 107 static void mli_delete_locked(const struct ifnet *); 108 static void mld_dispatch_packet(struct mbuf *); 109 static void mld_dispatch_queue(struct mbufq *, int); 110 static void mld_final_leave(struct in6_multi *, struct mld_ifsoftc *); 111 static void mld_fasttimo_vnet(struct in6_multi_head *inmh); 112 static int mld_handle_state_change(struct in6_multi *, 113 struct mld_ifsoftc *); 114 static int mld_initial_join(struct in6_multi *, struct mld_ifsoftc *, 115 const int); 116 #ifdef KTR 117 static char * mld_rec_type_to_str(const int); 118 #endif 119 static void mld_set_version(struct mld_ifsoftc *, const int); 120 static void mld_slowtimo_vnet(void); 121 static int mld_v1_input_query(struct ifnet *, const struct ip6_hdr *, 122 /*const*/ struct mld_hdr *); 123 static int mld_v1_input_report(struct ifnet *, const struct ip6_hdr *, 124 /*const*/ struct mld_hdr *); 125 static void mld_v1_process_group_timer(struct in6_multi_head *, 126 struct in6_multi *); 127 static void mld_v1_process_querier_timers(struct mld_ifsoftc *); 128 static int mld_v1_transmit_report(struct in6_multi *, const int); 129 static void mld_v1_update_group(struct in6_multi *, const int); 130 static void mld_v2_cancel_link_timers(struct mld_ifsoftc *); 131 static void mld_v2_dispatch_general_query(struct mld_ifsoftc *); 132 static struct mbuf * 133 mld_v2_encap_report(struct ifnet *, struct mbuf *); 134 static int mld_v2_enqueue_filter_change(struct mbufq *, 135 struct in6_multi *); 136 static int mld_v2_enqueue_group_record(struct mbufq *, 137 struct in6_multi *, const int, const int, const int, 138 const int); 139 static int mld_v2_input_query(struct ifnet *, const struct ip6_hdr *, 140 struct mbuf *, struct mldv2_query *, const int, const int); 141 static int mld_v2_merge_state_changes(struct in6_multi *, 142 struct mbufq *); 143 static void mld_v2_process_group_timers(struct in6_multi_head *, 144 struct mbufq *, struct mbufq *, 145 struct in6_multi *, const int); 146 static int mld_v2_process_group_query(struct in6_multi *, 147 struct mld_ifsoftc *mli, int, struct mbuf *, 148 struct mldv2_query *, const int); 149 static int sysctl_mld_gsr(SYSCTL_HANDLER_ARGS); 150 static int sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS); 151 152 /* 153 * Normative references: RFC 2710, RFC 3590, RFC 3810. 154 * 155 * Locking: 156 * * The MLD subsystem lock ends up being system-wide for the moment, 157 * but could be per-VIMAGE later on. 158 * * The permitted lock order is: IN6_MULTI_LOCK, MLD_LOCK, IF_ADDR_LOCK. 159 * Any may be taken independently; if any are held at the same 160 * time, the above lock order must be followed. 161 * * IN6_MULTI_LOCK covers in_multi. 162 * * MLD_LOCK covers per-link state and any global variables in this file. 163 * * IF_ADDR_LOCK covers if_multiaddrs, which is used for a variety of 164 * per-link state iterators. 165 * 166 * XXX LOR PREVENTION 167 * A special case for IPv6 is the in6_setscope() routine. ip6_output() 168 * will not accept an ifp; it wants an embedded scope ID, unlike 169 * ip_output(), which happily takes the ifp given to it. The embedded 170 * scope ID is only used by MLD to select the outgoing interface. 171 * 172 * During interface attach and detach, MLD will take MLD_LOCK *after* 173 * the IF_AFDATA_LOCK. 174 * As in6_setscope() takes IF_AFDATA_LOCK then SCOPE_LOCK, we can't call 175 * it with MLD_LOCK held without triggering an LOR. A netisr with indirect 176 * dispatch could work around this, but we'd rather not do that, as it 177 * can introduce other races. 178 * 179 * As such, we exploit the fact that the scope ID is just the interface 180 * index, and embed it in the IPv6 destination address accordingly. 181 * This is potentially NOT VALID for MLDv1 reports, as they 182 * are always sent to the multicast group itself; as MLDv2 183 * reports are always sent to ff02::16, this is not an issue 184 * when MLDv2 is in use. 185 * 186 * This does not however eliminate the LOR when ip6_output() itself 187 * calls in6_setscope() internally whilst MLD_LOCK is held. This will 188 * trigger a LOR warning in WITNESS when the ifnet is detached. 189 * 190 * The right answer is probably to make IF_AFDATA_LOCK an rwlock, given 191 * how it's used across the network stack. Here we're simply exploiting 192 * the fact that MLD runs at a similar layer in the stack to scope6.c. 193 * 194 * VIMAGE: 195 * * Each in6_multi corresponds to an ifp, and each ifp corresponds 196 * to a vnet in ifp->if_vnet. 197 */ 198 static struct mtx mld_mtx; 199 static MALLOC_DEFINE(M_MLD, "mld", "mld state"); 200 201 #define MLD_EMBEDSCOPE(pin6, zoneid) \ 202 if (IN6_IS_SCOPE_LINKLOCAL(pin6) || \ 203 IN6_IS_ADDR_MC_INTFACELOCAL(pin6)) \ 204 (pin6)->s6_addr16[1] = htons((zoneid) & 0xFFFF) \ 205 206 /* 207 * VIMAGE-wide globals. 208 */ 209 VNET_DEFINE_STATIC(struct timeval, mld_gsrdelay) = {10, 0}; 210 VNET_DEFINE_STATIC(LIST_HEAD(, mld_ifsoftc), mli_head); 211 VNET_DEFINE_STATIC(int, interface_timers_running6); 212 VNET_DEFINE_STATIC(int, state_change_timers_running6); 213 VNET_DEFINE_STATIC(int, current_state_timers_running6); 214 215 #define V_mld_gsrdelay VNET(mld_gsrdelay) 216 #define V_mli_head VNET(mli_head) 217 #define V_interface_timers_running6 VNET(interface_timers_running6) 218 #define V_state_change_timers_running6 VNET(state_change_timers_running6) 219 #define V_current_state_timers_running6 VNET(current_state_timers_running6) 220 221 SYSCTL_DECL(_net_inet6); /* Note: Not in any common header. */ 222 223 SYSCTL_NODE(_net_inet6, OID_AUTO, mld, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 224 "IPv6 Multicast Listener Discovery"); 225 226 /* 227 * Virtualized sysctls. 228 */ 229 SYSCTL_PROC(_net_inet6_mld, OID_AUTO, gsrdelay, 230 CTLFLAG_VNET | CTLTYPE_INT | CTLFLAG_RW | CTLFLAG_MPSAFE, 231 &VNET_NAME(mld_gsrdelay.tv_sec), 0, sysctl_mld_gsr, "I", 232 "Rate limit for MLDv2 Group-and-Source queries in seconds"); 233 234 /* 235 * Non-virtualized sysctls. 236 */ 237 static SYSCTL_NODE(_net_inet6_mld, OID_AUTO, ifinfo, 238 CTLFLAG_RD | CTLFLAG_MPSAFE, sysctl_mld_ifinfo, 239 "Per-interface MLDv2 state"); 240 241 static int mld_v1enable = 1; 242 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v1enable, CTLFLAG_RWTUN, 243 &mld_v1enable, 0, "Enable fallback to MLDv1"); 244 245 static int mld_v2enable = 1; 246 SYSCTL_INT(_net_inet6_mld, OID_AUTO, v2enable, CTLFLAG_RWTUN, 247 &mld_v2enable, 0, "Enable MLDv2"); 248 249 static int mld_use_allow = 1; 250 SYSCTL_INT(_net_inet6_mld, OID_AUTO, use_allow, CTLFLAG_RWTUN, 251 &mld_use_allow, 0, "Use ALLOW/BLOCK for RFC 4604 SSM joins/leaves"); 252 253 /* 254 * Packed Router Alert option structure declaration. 255 */ 256 struct mld_raopt { 257 struct ip6_hbh hbh; 258 struct ip6_opt pad; 259 struct ip6_opt_router ra; 260 } __packed; 261 262 /* 263 * Router Alert hop-by-hop option header. 264 */ 265 static struct mld_raopt mld_ra = { 266 .hbh = { 0, 0 }, 267 .pad = { .ip6o_type = IP6OPT_PADN, 0 }, 268 .ra = { 269 .ip6or_type = IP6OPT_ROUTER_ALERT, 270 .ip6or_len = IP6OPT_RTALERT_LEN - 2, 271 .ip6or_value[0] = ((IP6OPT_RTALERT_MLD >> 8) & 0xFF), 272 .ip6or_value[1] = (IP6OPT_RTALERT_MLD & 0xFF) 273 } 274 }; 275 static struct ip6_pktopts mld_po; 276 277 static __inline void 278 mld_save_context(struct mbuf *m, struct ifnet *ifp) 279 { 280 281 #ifdef VIMAGE 282 m->m_pkthdr.PH_loc.ptr = ifp->if_vnet; 283 #endif /* VIMAGE */ 284 m->m_pkthdr.rcvif = ifp; 285 m->m_pkthdr.flowid = ifp->if_index; 286 } 287 288 static __inline void 289 mld_scrub_context(struct mbuf *m) 290 { 291 292 m->m_pkthdr.PH_loc.ptr = NULL; 293 m->m_pkthdr.flowid = 0; 294 } 295 296 /* 297 * Restore context from a queued output chain. 298 * Return saved ifindex. 299 * 300 * VIMAGE: The assertion is there to make sure that we 301 * actually called CURVNET_SET() with what's in the mbuf chain. 302 */ 303 static __inline uint32_t 304 mld_restore_context(struct mbuf *m) 305 { 306 307 #if defined(VIMAGE) && defined(INVARIANTS) 308 KASSERT(curvnet == m->m_pkthdr.PH_loc.ptr, 309 ("%s: called when curvnet was not restored: cuvnet %p m ptr %p", 310 __func__, curvnet, m->m_pkthdr.PH_loc.ptr)); 311 #endif 312 return (m->m_pkthdr.flowid); 313 } 314 315 /* 316 * Retrieve or set threshold between group-source queries in seconds. 317 * 318 * VIMAGE: Assume curvnet set by caller. 319 * SMPng: NOTE: Serialized by MLD lock. 320 */ 321 static int 322 sysctl_mld_gsr(SYSCTL_HANDLER_ARGS) 323 { 324 int error; 325 int i; 326 327 error = sysctl_wire_old_buffer(req, sizeof(int)); 328 if (error) 329 return (error); 330 331 MLD_LOCK(); 332 333 i = V_mld_gsrdelay.tv_sec; 334 335 error = sysctl_handle_int(oidp, &i, 0, req); 336 if (error || !req->newptr) 337 goto out_locked; 338 339 if (i < -1 || i >= 60) { 340 error = EINVAL; 341 goto out_locked; 342 } 343 344 CTR2(KTR_MLD, "change mld_gsrdelay from %d to %d", 345 V_mld_gsrdelay.tv_sec, i); 346 V_mld_gsrdelay.tv_sec = i; 347 348 out_locked: 349 MLD_UNLOCK(); 350 return (error); 351 } 352 353 /* 354 * Expose struct mld_ifsoftc to userland, keyed by ifindex. 355 * For use by ifmcstat(8). 356 * 357 * VIMAGE: Assume curvnet set by caller. The node handler itself 358 * is not directly virtualized. 359 */ 360 static int 361 sysctl_mld_ifinfo(SYSCTL_HANDLER_ARGS) 362 { 363 struct epoch_tracker et; 364 int *name; 365 int error; 366 u_int namelen; 367 struct ifnet *ifp; 368 struct mld_ifsoftc *mli; 369 370 name = (int *)arg1; 371 namelen = arg2; 372 373 if (req->newptr != NULL) 374 return (EPERM); 375 376 if (namelen != 1) 377 return (EINVAL); 378 379 error = sysctl_wire_old_buffer(req, sizeof(struct mld_ifinfo)); 380 if (error) 381 return (error); 382 383 IN6_MULTI_LOCK(); 384 IN6_MULTI_LIST_LOCK(); 385 MLD_LOCK(); 386 NET_EPOCH_ENTER(et); 387 388 error = ENOENT; 389 ifp = ifnet_byindex(name[0]); 390 if (ifp == NULL) 391 goto out_locked; 392 393 LIST_FOREACH(mli, &V_mli_head, mli_link) { 394 if (ifp == mli->mli_ifp) { 395 struct mld_ifinfo info; 396 397 info.mli_version = mli->mli_version; 398 info.mli_v1_timer = mli->mli_v1_timer; 399 info.mli_v2_timer = mli->mli_v2_timer; 400 info.mli_flags = mli->mli_flags; 401 info.mli_rv = mli->mli_rv; 402 info.mli_qi = mli->mli_qi; 403 info.mli_qri = mli->mli_qri; 404 info.mli_uri = mli->mli_uri; 405 error = SYSCTL_OUT(req, &info, sizeof(info)); 406 break; 407 } 408 } 409 410 out_locked: 411 NET_EPOCH_EXIT(et); 412 MLD_UNLOCK(); 413 IN6_MULTI_LIST_UNLOCK(); 414 IN6_MULTI_UNLOCK(); 415 return (error); 416 } 417 418 /* 419 * Dispatch an entire queue of pending packet chains. 420 * VIMAGE: Assumes the vnet pointer has been set. 421 */ 422 static void 423 mld_dispatch_queue(struct mbufq *mq, int limit) 424 { 425 struct mbuf *m; 426 427 while ((m = mbufq_dequeue(mq)) != NULL) { 428 CTR3(KTR_MLD, "%s: dispatch %p from %p", __func__, mq, m); 429 mld_dispatch_packet(m); 430 if (--limit == 0) 431 break; 432 } 433 } 434 435 /* 436 * Filter outgoing MLD report state by group. 437 * 438 * Reports are ALWAYS suppressed for ALL-HOSTS (ff02::1) 439 * and node-local addresses. However, kernel and socket consumers 440 * always embed the KAME scope ID in the address provided, so strip it 441 * when performing comparison. 442 * Note: This is not the same as the *multicast* scope. 443 * 444 * Return zero if the given group is one for which MLD reports 445 * should be suppressed, or non-zero if reports should be issued. 446 */ 447 static __inline int 448 mld_is_addr_reported(const struct in6_addr *addr) 449 { 450 451 KASSERT(IN6_IS_ADDR_MULTICAST(addr), ("%s: not multicast", __func__)); 452 453 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_NODELOCAL) 454 return (0); 455 456 if (IPV6_ADDR_MC_SCOPE(addr) == IPV6_ADDR_SCOPE_LINKLOCAL) { 457 struct in6_addr tmp = *addr; 458 in6_clearscope(&tmp); 459 if (IN6_ARE_ADDR_EQUAL(&tmp, &in6addr_linklocal_allnodes)) 460 return (0); 461 } 462 463 return (1); 464 } 465 466 /* 467 * Attach MLD when PF_INET6 is attached to an interface. Assumes that the 468 * current VNET is set by the caller. 469 */ 470 struct mld_ifsoftc * 471 mld_domifattach(struct ifnet *ifp) 472 { 473 struct mld_ifsoftc *mli; 474 475 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, if_name(ifp)); 476 477 mli = malloc(sizeof(struct mld_ifsoftc), M_MLD, M_WAITOK | M_ZERO); 478 mli->mli_ifp = ifp; 479 mli->mli_version = MLD_VERSION_2; 480 mli->mli_flags = 0; 481 mli->mli_rv = MLD_RV_INIT; 482 mli->mli_qi = MLD_QI_INIT; 483 mli->mli_qri = MLD_QRI_INIT; 484 mli->mli_uri = MLD_URI_INIT; 485 mbufq_init(&mli->mli_gq, MLD_MAX_RESPONSE_PACKETS); 486 if ((ifp->if_flags & IFF_MULTICAST) == 0) 487 mli->mli_flags |= MLIF_SILENT; 488 if (mld_use_allow) 489 mli->mli_flags |= MLIF_USEALLOW; 490 491 MLD_LOCK(); 492 LIST_INSERT_HEAD(&V_mli_head, mli, mli_link); 493 MLD_UNLOCK(); 494 495 return (mli); 496 } 497 498 /* 499 * Hook for ifdetach. 500 * 501 * NOTE: Some finalization tasks need to run before the protocol domain 502 * is detached, but also before the link layer does its cleanup. 503 * Run before link-layer cleanup; cleanup groups, but do not free MLD state. 504 * 505 * SMPng: Caller must hold IN6_MULTI_LOCK(). 506 * Must take IF_ADDR_LOCK() to cover if_multiaddrs iterator. 507 * XXX This routine is also bitten by unlocked ifma_protospec access. 508 */ 509 void 510 mld_ifdetach(struct ifnet *ifp, struct in6_multi_head *inmh) 511 { 512 struct epoch_tracker et; 513 struct mld_ifsoftc *mli; 514 struct ifmultiaddr *ifma; 515 struct in6_multi *inm; 516 517 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", __func__, ifp, 518 if_name(ifp)); 519 520 IN6_MULTI_LIST_LOCK_ASSERT(); 521 MLD_LOCK(); 522 523 mli = MLD_IFINFO(ifp); 524 IF_ADDR_WLOCK(ifp); 525 /* 526 * Extract list of in6_multi associated with the detaching ifp 527 * which the PF_INET6 layer is about to release. 528 */ 529 NET_EPOCH_ENTER(et); 530 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 531 inm = in6m_ifmultiaddr_get_inm(ifma); 532 if (inm == NULL) 533 continue; 534 in6m_disconnect_locked(inmh, inm); 535 536 if (mli->mli_version == MLD_VERSION_2) { 537 in6m_clear_recorded(inm); 538 539 /* 540 * We need to release the final reference held 541 * for issuing the INCLUDE {}. 542 */ 543 if (inm->in6m_state == MLD_LEAVING_MEMBER) { 544 inm->in6m_state = MLD_NOT_MEMBER; 545 in6m_rele_locked(inmh, inm); 546 } 547 } 548 } 549 NET_EPOCH_EXIT(et); 550 IF_ADDR_WUNLOCK(ifp); 551 MLD_UNLOCK(); 552 } 553 554 /* 555 * Hook for domifdetach. 556 * Runs after link-layer cleanup; free MLD state. 557 * 558 * SMPng: Normally called with IF_AFDATA_LOCK held. 559 */ 560 void 561 mld_domifdetach(struct ifnet *ifp) 562 { 563 564 CTR3(KTR_MLD, "%s: called for ifp %p(%s)", 565 __func__, ifp, if_name(ifp)); 566 567 MLD_LOCK(); 568 mli_delete_locked(ifp); 569 MLD_UNLOCK(); 570 } 571 572 static void 573 mli_delete_locked(const struct ifnet *ifp) 574 { 575 struct mld_ifsoftc *mli, *tmli; 576 577 CTR3(KTR_MLD, "%s: freeing mld_ifsoftc for ifp %p(%s)", 578 __func__, ifp, if_name(ifp)); 579 580 MLD_LOCK_ASSERT(); 581 582 LIST_FOREACH_SAFE(mli, &V_mli_head, mli_link, tmli) { 583 if (mli->mli_ifp == ifp) { 584 /* 585 * Free deferred General Query responses. 586 */ 587 mbufq_drain(&mli->mli_gq); 588 589 LIST_REMOVE(mli, mli_link); 590 591 free(mli, M_MLD); 592 return; 593 } 594 } 595 } 596 597 /* 598 * Process a received MLDv1 general or address-specific query. 599 * Assumes that the query header has been pulled up to sizeof(mld_hdr). 600 * 601 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 602 * mld_addr. This is OK as we own the mbuf chain. 603 */ 604 static int 605 mld_v1_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 606 /*const*/ struct mld_hdr *mld) 607 { 608 struct ifmultiaddr *ifma; 609 struct mld_ifsoftc *mli; 610 struct in6_multi *inm; 611 int is_general_query; 612 uint16_t timer; 613 #ifdef KTR 614 char ip6tbuf[INET6_ADDRSTRLEN]; 615 #endif 616 617 NET_EPOCH_ASSERT(); 618 619 is_general_query = 0; 620 621 if (!mld_v1enable) { 622 CTR3(KTR_MLD, "ignore v1 query %s on ifp %p(%s)", 623 ip6_sprintf(ip6tbuf, &mld->mld_addr), 624 ifp, if_name(ifp)); 625 return (0); 626 } 627 628 /* 629 * RFC3810 Section 6.2: MLD queries must originate from 630 * a router's link-local address. 631 */ 632 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 633 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 634 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 635 ifp, if_name(ifp)); 636 return (0); 637 } 638 639 /* 640 * Do address field validation upfront before we accept 641 * the query. 642 */ 643 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 644 /* 645 * MLDv1 General Query. 646 * If this was not sent to the all-nodes group, ignore it. 647 */ 648 struct in6_addr dst; 649 650 dst = ip6->ip6_dst; 651 in6_clearscope(&dst); 652 if (!IN6_ARE_ADDR_EQUAL(&dst, &in6addr_linklocal_allnodes)) 653 return (EINVAL); 654 is_general_query = 1; 655 } else { 656 /* 657 * Embed scope ID of receiving interface in MLD query for 658 * lookup whilst we don't hold other locks. 659 */ 660 in6_setscope(&mld->mld_addr, ifp, NULL); 661 } 662 663 IN6_MULTI_LIST_LOCK(); 664 MLD_LOCK(); 665 666 /* 667 * Switch to MLDv1 host compatibility mode. 668 */ 669 mli = MLD_IFINFO(ifp); 670 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 671 mld_set_version(mli, MLD_VERSION_1); 672 673 timer = (ntohs(mld->mld_maxdelay) * PR_FASTHZ) / MLD_TIMER_SCALE; 674 if (timer == 0) 675 timer = 1; 676 677 if (is_general_query) { 678 /* 679 * For each reporting group joined on this 680 * interface, kick the report timer. 681 */ 682 CTR2(KTR_MLD, "process v1 general query on ifp %p(%s)", 683 ifp, if_name(ifp)); 684 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 685 inm = in6m_ifmultiaddr_get_inm(ifma); 686 if (inm == NULL) 687 continue; 688 mld_v1_update_group(inm, timer); 689 } 690 } else { 691 /* 692 * MLDv1 Group-Specific Query. 693 * If this is a group-specific MLDv1 query, we need only 694 * look up the single group to process it. 695 */ 696 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 697 if (inm != NULL) { 698 CTR3(KTR_MLD, "process v1 query %s on ifp %p(%s)", 699 ip6_sprintf(ip6tbuf, &mld->mld_addr), 700 ifp, if_name(ifp)); 701 mld_v1_update_group(inm, timer); 702 } 703 /* XXX Clear embedded scope ID as userland won't expect it. */ 704 in6_clearscope(&mld->mld_addr); 705 } 706 707 MLD_UNLOCK(); 708 IN6_MULTI_LIST_UNLOCK(); 709 710 return (0); 711 } 712 713 /* 714 * Update the report timer on a group in response to an MLDv1 query. 715 * 716 * If we are becoming the reporting member for this group, start the timer. 717 * If we already are the reporting member for this group, and timer is 718 * below the threshold, reset it. 719 * 720 * We may be updating the group for the first time since we switched 721 * to MLDv2. If we are, then we must clear any recorded source lists, 722 * and transition to REPORTING state; the group timer is overloaded 723 * for group and group-source query responses. 724 * 725 * Unlike MLDv2, the delay per group should be jittered 726 * to avoid bursts of MLDv1 reports. 727 */ 728 static void 729 mld_v1_update_group(struct in6_multi *inm, const int timer) 730 { 731 #ifdef KTR 732 char ip6tbuf[INET6_ADDRSTRLEN]; 733 #endif 734 735 CTR4(KTR_MLD, "%s: %s/%s timer=%d", __func__, 736 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 737 if_name(inm->in6m_ifp), timer); 738 739 IN6_MULTI_LIST_LOCK_ASSERT(); 740 741 switch (inm->in6m_state) { 742 case MLD_NOT_MEMBER: 743 case MLD_SILENT_MEMBER: 744 break; 745 case MLD_REPORTING_MEMBER: 746 if (inm->in6m_timer != 0 && 747 inm->in6m_timer <= timer) { 748 CTR1(KTR_MLD, "%s: REPORTING and timer running, " 749 "skipping.", __func__); 750 break; 751 } 752 /* FALLTHROUGH */ 753 case MLD_SG_QUERY_PENDING_MEMBER: 754 case MLD_G_QUERY_PENDING_MEMBER: 755 case MLD_IDLE_MEMBER: 756 case MLD_LAZY_MEMBER: 757 case MLD_AWAKENING_MEMBER: 758 CTR1(KTR_MLD, "%s: ->REPORTING", __func__); 759 inm->in6m_state = MLD_REPORTING_MEMBER; 760 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 761 V_current_state_timers_running6 = 1; 762 break; 763 case MLD_SLEEPING_MEMBER: 764 CTR1(KTR_MLD, "%s: ->AWAKENING", __func__); 765 inm->in6m_state = MLD_AWAKENING_MEMBER; 766 break; 767 case MLD_LEAVING_MEMBER: 768 break; 769 } 770 } 771 772 /* 773 * Process a received MLDv2 general, group-specific or 774 * group-and-source-specific query. 775 * 776 * Assumes that mld points to a struct mldv2_query which is stored in 777 * contiguous memory. 778 * 779 * Return 0 if successful, otherwise an appropriate error code is returned. 780 */ 781 static int 782 mld_v2_input_query(struct ifnet *ifp, const struct ip6_hdr *ip6, 783 struct mbuf *m, struct mldv2_query *mld, const int off, const int icmp6len) 784 { 785 struct mld_ifsoftc *mli; 786 struct in6_multi *inm; 787 uint32_t maxdelay, nsrc, qqi; 788 int is_general_query; 789 uint16_t timer; 790 uint8_t qrv; 791 #ifdef KTR 792 char ip6tbuf[INET6_ADDRSTRLEN]; 793 #endif 794 795 NET_EPOCH_ASSERT(); 796 797 if (!mld_v2enable) { 798 CTR3(KTR_MLD, "ignore v2 query src %s on ifp %p(%s)", 799 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 800 ifp, if_name(ifp)); 801 return (0); 802 } 803 804 /* 805 * RFC3810 Section 6.2: MLD queries must originate from 806 * a router's link-local address. 807 */ 808 if (!IN6_IS_SCOPE_LINKLOCAL(&ip6->ip6_src)) { 809 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 810 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 811 ifp, if_name(ifp)); 812 return (0); 813 } 814 815 is_general_query = 0; 816 817 CTR2(KTR_MLD, "input v2 query on ifp %p(%s)", ifp, if_name(ifp)); 818 819 maxdelay = ntohs(mld->mld_maxdelay); /* in 1/10ths of a second */ 820 if (maxdelay >= 32768) { 821 maxdelay = (MLD_MRC_MANT(maxdelay) | 0x1000) << 822 (MLD_MRC_EXP(maxdelay) + 3); 823 } 824 timer = (maxdelay * PR_FASTHZ) / MLD_TIMER_SCALE; 825 if (timer == 0) 826 timer = 1; 827 828 qrv = MLD_QRV(mld->mld_misc); 829 if (qrv < 2) { 830 CTR3(KTR_MLD, "%s: clamping qrv %d to %d", __func__, 831 qrv, MLD_RV_INIT); 832 qrv = MLD_RV_INIT; 833 } 834 835 qqi = mld->mld_qqi; 836 if (qqi >= 128) { 837 qqi = MLD_QQIC_MANT(mld->mld_qqi) << 838 (MLD_QQIC_EXP(mld->mld_qqi) + 3); 839 } 840 841 nsrc = ntohs(mld->mld_numsrc); 842 if (nsrc > MLD_MAX_GS_SOURCES) 843 return (EMSGSIZE); 844 if (icmp6len < sizeof(struct mldv2_query) + 845 (nsrc * sizeof(struct in6_addr))) 846 return (EMSGSIZE); 847 848 /* 849 * Do further input validation upfront to avoid resetting timers 850 * should we need to discard this query. 851 */ 852 if (IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) { 853 /* 854 * A general query with a source list has undefined 855 * behaviour; discard it. 856 */ 857 if (nsrc > 0) 858 return (EINVAL); 859 is_general_query = 1; 860 } else { 861 /* 862 * Embed scope ID of receiving interface in MLD query for 863 * lookup whilst we don't hold other locks (due to KAME 864 * locking lameness). We own this mbuf chain just now. 865 */ 866 in6_setscope(&mld->mld_addr, ifp, NULL); 867 } 868 869 IN6_MULTI_LIST_LOCK(); 870 MLD_LOCK(); 871 872 mli = MLD_IFINFO(ifp); 873 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 874 875 /* 876 * Discard the v2 query if we're in Compatibility Mode. 877 * The RFC is pretty clear that hosts need to stay in MLDv1 mode 878 * until the Old Version Querier Present timer expires. 879 */ 880 if (mli->mli_version != MLD_VERSION_2) 881 goto out_locked; 882 883 mld_set_version(mli, MLD_VERSION_2); 884 mli->mli_rv = qrv; 885 mli->mli_qi = qqi; 886 mli->mli_qri = maxdelay; 887 888 CTR4(KTR_MLD, "%s: qrv %d qi %d maxdelay %d", __func__, qrv, qqi, 889 maxdelay); 890 891 if (is_general_query) { 892 /* 893 * MLDv2 General Query. 894 * 895 * Schedule a current-state report on this ifp for 896 * all groups, possibly containing source lists. 897 * 898 * If there is a pending General Query response 899 * scheduled earlier than the selected delay, do 900 * not schedule any other reports. 901 * Otherwise, reset the interface timer. 902 */ 903 CTR2(KTR_MLD, "process v2 general query on ifp %p(%s)", 904 ifp, if_name(ifp)); 905 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) { 906 mli->mli_v2_timer = MLD_RANDOM_DELAY(timer); 907 V_interface_timers_running6 = 1; 908 } 909 } else { 910 /* 911 * MLDv2 Group-specific or Group-and-source-specific Query. 912 * 913 * Group-source-specific queries are throttled on 914 * a per-group basis to defeat denial-of-service attempts. 915 * Queries for groups we are not a member of on this 916 * link are simply ignored. 917 */ 918 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 919 if (inm == NULL) 920 goto out_locked; 921 if (nsrc > 0) { 922 if (!ratecheck(&inm->in6m_lastgsrtv, 923 &V_mld_gsrdelay)) { 924 CTR1(KTR_MLD, "%s: GS query throttled.", 925 __func__); 926 goto out_locked; 927 } 928 } 929 CTR2(KTR_MLD, "process v2 group query on ifp %p(%s)", 930 ifp, if_name(ifp)); 931 /* 932 * If there is a pending General Query response 933 * scheduled sooner than the selected delay, no 934 * further report need be scheduled. 935 * Otherwise, prepare to respond to the 936 * group-specific or group-and-source query. 937 */ 938 if (mli->mli_v2_timer == 0 || mli->mli_v2_timer >= timer) 939 mld_v2_process_group_query(inm, mli, timer, m, mld, off); 940 941 /* XXX Clear embedded scope ID as userland won't expect it. */ 942 in6_clearscope(&mld->mld_addr); 943 } 944 945 out_locked: 946 MLD_UNLOCK(); 947 IN6_MULTI_LIST_UNLOCK(); 948 949 return (0); 950 } 951 952 /* 953 * Process a received MLDv2 group-specific or group-and-source-specific 954 * query. 955 * Return <0 if any error occurred. Currently this is ignored. 956 */ 957 static int 958 mld_v2_process_group_query(struct in6_multi *inm, struct mld_ifsoftc *mli, 959 int timer, struct mbuf *m0, struct mldv2_query *mld, const int off) 960 { 961 int retval; 962 uint16_t nsrc; 963 964 IN6_MULTI_LIST_LOCK_ASSERT(); 965 MLD_LOCK_ASSERT(); 966 967 retval = 0; 968 969 switch (inm->in6m_state) { 970 case MLD_NOT_MEMBER: 971 case MLD_SILENT_MEMBER: 972 case MLD_SLEEPING_MEMBER: 973 case MLD_LAZY_MEMBER: 974 case MLD_AWAKENING_MEMBER: 975 case MLD_IDLE_MEMBER: 976 case MLD_LEAVING_MEMBER: 977 return (retval); 978 break; 979 case MLD_REPORTING_MEMBER: 980 case MLD_G_QUERY_PENDING_MEMBER: 981 case MLD_SG_QUERY_PENDING_MEMBER: 982 break; 983 } 984 985 nsrc = ntohs(mld->mld_numsrc); 986 987 /* Length should be checked by calling function. */ 988 KASSERT((m0->m_flags & M_PKTHDR) == 0 || 989 m0->m_pkthdr.len >= off + sizeof(struct mldv2_query) + 990 nsrc * sizeof(struct in6_addr), 991 ("mldv2 packet is too short: (%d bytes < %zd bytes, m=%p)", 992 m0->m_pkthdr.len, off + sizeof(struct mldv2_query) + 993 nsrc * sizeof(struct in6_addr), m0)); 994 995 /* 996 * Deal with group-specific queries upfront. 997 * If any group query is already pending, purge any recorded 998 * source-list state if it exists, and schedule a query response 999 * for this group-specific query. 1000 */ 1001 if (nsrc == 0) { 1002 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 1003 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) { 1004 in6m_clear_recorded(inm); 1005 timer = min(inm->in6m_timer, timer); 1006 } 1007 inm->in6m_state = MLD_G_QUERY_PENDING_MEMBER; 1008 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1009 V_current_state_timers_running6 = 1; 1010 return (retval); 1011 } 1012 1013 /* 1014 * Deal with the case where a group-and-source-specific query has 1015 * been received but a group-specific query is already pending. 1016 */ 1017 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER) { 1018 timer = min(inm->in6m_timer, timer); 1019 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1020 V_current_state_timers_running6 = 1; 1021 return (retval); 1022 } 1023 1024 /* 1025 * Finally, deal with the case where a group-and-source-specific 1026 * query has been received, where a response to a previous g-s-r 1027 * query exists, or none exists. 1028 * In this case, we need to parse the source-list which the Querier 1029 * has provided us with and check if we have any source list filter 1030 * entries at T1 for these sources. If we do not, there is no need 1031 * schedule a report and the query may be dropped. 1032 * If we do, we must record them and schedule a current-state 1033 * report for those sources. 1034 */ 1035 if (inm->in6m_nsrc > 0) { 1036 struct in6_addr srcaddr; 1037 int i, nrecorded; 1038 int soff; 1039 1040 soff = off + sizeof(struct mldv2_query); 1041 nrecorded = 0; 1042 for (i = 0; i < nsrc; i++) { 1043 m_copydata(m0, soff, sizeof(struct in6_addr), 1044 (caddr_t)&srcaddr); 1045 retval = in6m_record_source(inm, &srcaddr); 1046 if (retval < 0) 1047 break; 1048 nrecorded += retval; 1049 soff += sizeof(struct in6_addr); 1050 } 1051 if (nrecorded > 0) { 1052 CTR1(KTR_MLD, 1053 "%s: schedule response to SG query", __func__); 1054 inm->in6m_state = MLD_SG_QUERY_PENDING_MEMBER; 1055 inm->in6m_timer = MLD_RANDOM_DELAY(timer); 1056 V_current_state_timers_running6 = 1; 1057 } 1058 } 1059 1060 return (retval); 1061 } 1062 1063 /* 1064 * Process a received MLDv1 host membership report. 1065 * Assumes mld points to mld_hdr in pulled up mbuf chain. 1066 * 1067 * NOTE: Can't be fully const correct as we temporarily embed scope ID in 1068 * mld_addr. This is OK as we own the mbuf chain. 1069 */ 1070 static int 1071 mld_v1_input_report(struct ifnet *ifp, const struct ip6_hdr *ip6, 1072 /*const*/ struct mld_hdr *mld) 1073 { 1074 struct in6_addr src, dst; 1075 struct in6_ifaddr *ia; 1076 struct in6_multi *inm; 1077 #ifdef KTR 1078 char ip6tbuf[INET6_ADDRSTRLEN]; 1079 #endif 1080 1081 NET_EPOCH_ASSERT(); 1082 1083 if (!mld_v1enable) { 1084 CTR3(KTR_MLD, "ignore v1 report %s on ifp %p(%s)", 1085 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1086 ifp, if_name(ifp)); 1087 return (0); 1088 } 1089 1090 if (ifp->if_flags & IFF_LOOPBACK) 1091 return (0); 1092 1093 /* 1094 * MLDv1 reports must originate from a host's link-local address, 1095 * or the unspecified address (when booting). 1096 */ 1097 src = ip6->ip6_src; 1098 in6_clearscope(&src); 1099 if (!IN6_IS_SCOPE_LINKLOCAL(&src) && !IN6_IS_ADDR_UNSPECIFIED(&src)) { 1100 CTR3(KTR_MLD, "ignore v1 query src %s on ifp %p(%s)", 1101 ip6_sprintf(ip6tbuf, &ip6->ip6_src), 1102 ifp, if_name(ifp)); 1103 return (EINVAL); 1104 } 1105 1106 /* 1107 * RFC2710 Section 4: MLDv1 reports must pertain to a multicast 1108 * group, and must be directed to the group itself. 1109 */ 1110 dst = ip6->ip6_dst; 1111 in6_clearscope(&dst); 1112 if (!IN6_IS_ADDR_MULTICAST(&mld->mld_addr) || 1113 !IN6_ARE_ADDR_EQUAL(&mld->mld_addr, &dst)) { 1114 CTR3(KTR_MLD, "ignore v1 query dst %s on ifp %p(%s)", 1115 ip6_sprintf(ip6tbuf, &ip6->ip6_dst), 1116 ifp, if_name(ifp)); 1117 return (EINVAL); 1118 } 1119 1120 /* 1121 * Make sure we don't hear our own membership report, as fast 1122 * leave requires knowing that we are the only member of a 1123 * group. Assume we used the link-local address if available, 1124 * otherwise look for ::. 1125 * 1126 * XXX Note that scope ID comparison is needed for the address 1127 * returned by in6ifa_ifpforlinklocal(), but SHOULD NOT be 1128 * performed for the on-wire address. 1129 */ 1130 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1131 if ((ia && IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, IA6_IN6(ia))) || 1132 (ia == NULL && IN6_IS_ADDR_UNSPECIFIED(&src))) { 1133 if (ia != NULL) 1134 ifa_free(&ia->ia_ifa); 1135 return (0); 1136 } 1137 if (ia != NULL) 1138 ifa_free(&ia->ia_ifa); 1139 1140 CTR3(KTR_MLD, "process v1 report %s on ifp %p(%s)", 1141 ip6_sprintf(ip6tbuf, &mld->mld_addr), ifp, if_name(ifp)); 1142 1143 /* 1144 * Embed scope ID of receiving interface in MLD query for lookup 1145 * whilst we don't hold other locks (due to KAME locking lameness). 1146 */ 1147 if (!IN6_IS_ADDR_UNSPECIFIED(&mld->mld_addr)) 1148 in6_setscope(&mld->mld_addr, ifp, NULL); 1149 1150 IN6_MULTI_LIST_LOCK(); 1151 MLD_LOCK(); 1152 1153 /* 1154 * MLDv1 report suppression. 1155 * If we are a member of this group, and our membership should be 1156 * reported, and our group timer is pending or about to be reset, 1157 * stop our group timer by transitioning to the 'lazy' state. 1158 */ 1159 inm = in6m_lookup_locked(ifp, &mld->mld_addr); 1160 if (inm != NULL) { 1161 struct mld_ifsoftc *mli; 1162 1163 mli = inm->in6m_mli; 1164 KASSERT(mli != NULL, 1165 ("%s: no mli for ifp %p", __func__, ifp)); 1166 1167 /* 1168 * If we are in MLDv2 host mode, do not allow the 1169 * other host's MLDv1 report to suppress our reports. 1170 */ 1171 if (mli->mli_version == MLD_VERSION_2) 1172 goto out_locked; 1173 1174 inm->in6m_timer = 0; 1175 1176 switch (inm->in6m_state) { 1177 case MLD_NOT_MEMBER: 1178 case MLD_SILENT_MEMBER: 1179 case MLD_SLEEPING_MEMBER: 1180 break; 1181 case MLD_REPORTING_MEMBER: 1182 case MLD_IDLE_MEMBER: 1183 case MLD_AWAKENING_MEMBER: 1184 CTR3(KTR_MLD, 1185 "report suppressed for %s on ifp %p(%s)", 1186 ip6_sprintf(ip6tbuf, &mld->mld_addr), 1187 ifp, if_name(ifp)); 1188 case MLD_LAZY_MEMBER: 1189 inm->in6m_state = MLD_LAZY_MEMBER; 1190 break; 1191 case MLD_G_QUERY_PENDING_MEMBER: 1192 case MLD_SG_QUERY_PENDING_MEMBER: 1193 case MLD_LEAVING_MEMBER: 1194 break; 1195 } 1196 } 1197 1198 out_locked: 1199 MLD_UNLOCK(); 1200 IN6_MULTI_LIST_UNLOCK(); 1201 1202 /* XXX Clear embedded scope ID as userland won't expect it. */ 1203 in6_clearscope(&mld->mld_addr); 1204 1205 return (0); 1206 } 1207 1208 /* 1209 * MLD input path. 1210 * 1211 * Assume query messages which fit in a single ICMPv6 message header 1212 * have been pulled up. 1213 * Assume that userland will want to see the message, even if it 1214 * otherwise fails kernel input validation; do not free it. 1215 * Pullup may however free the mbuf chain m if it fails. 1216 * 1217 * Return IPPROTO_DONE if we freed m. Otherwise, return 0. 1218 */ 1219 int 1220 mld_input(struct mbuf **mp, int off, int icmp6len) 1221 { 1222 struct ifnet *ifp; 1223 struct ip6_hdr *ip6; 1224 struct mbuf *m; 1225 struct mld_hdr *mld; 1226 int mldlen; 1227 1228 m = *mp; 1229 CTR3(KTR_MLD, "%s: called w/mbuf (%p,%d)", __func__, m, off); 1230 1231 ifp = m->m_pkthdr.rcvif; 1232 1233 /* Pullup to appropriate size. */ 1234 if (m->m_len < off + sizeof(*mld)) { 1235 m = m_pullup(m, off + sizeof(*mld)); 1236 if (m == NULL) { 1237 ICMP6STAT_INC(icp6s_badlen); 1238 return (IPPROTO_DONE); 1239 } 1240 } 1241 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1242 if (mld->mld_type == MLD_LISTENER_QUERY && 1243 icmp6len >= sizeof(struct mldv2_query)) { 1244 mldlen = sizeof(struct mldv2_query); 1245 } else { 1246 mldlen = sizeof(struct mld_hdr); 1247 } 1248 if (m->m_len < off + mldlen) { 1249 m = m_pullup(m, off + mldlen); 1250 if (m == NULL) { 1251 ICMP6STAT_INC(icp6s_badlen); 1252 return (IPPROTO_DONE); 1253 } 1254 } 1255 *mp = m; 1256 ip6 = mtod(m, struct ip6_hdr *); 1257 mld = (struct mld_hdr *)(mtod(m, uint8_t *) + off); 1258 1259 /* 1260 * Userland needs to see all of this traffic for implementing 1261 * the endpoint discovery portion of multicast routing. 1262 */ 1263 switch (mld->mld_type) { 1264 case MLD_LISTENER_QUERY: 1265 icmp6_ifstat_inc(ifp, ifs6_in_mldquery); 1266 if (icmp6len == sizeof(struct mld_hdr)) { 1267 if (mld_v1_input_query(ifp, ip6, mld) != 0) 1268 return (0); 1269 } else if (icmp6len >= sizeof(struct mldv2_query)) { 1270 if (mld_v2_input_query(ifp, ip6, m, 1271 (struct mldv2_query *)mld, off, icmp6len) != 0) 1272 return (0); 1273 } 1274 break; 1275 case MLD_LISTENER_REPORT: 1276 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1277 if (mld_v1_input_report(ifp, ip6, mld) != 0) 1278 return (0); 1279 break; 1280 case MLDV2_LISTENER_REPORT: 1281 icmp6_ifstat_inc(ifp, ifs6_in_mldreport); 1282 break; 1283 case MLD_LISTENER_DONE: 1284 icmp6_ifstat_inc(ifp, ifs6_in_mlddone); 1285 break; 1286 default: 1287 break; 1288 } 1289 1290 return (0); 1291 } 1292 1293 /* 1294 * Fast timeout handler (global). 1295 * VIMAGE: Timeout handlers are expected to service all vimages. 1296 */ 1297 void 1298 mld_fasttimo(void) 1299 { 1300 struct in6_multi_head inmh; 1301 VNET_ITERATOR_DECL(vnet_iter); 1302 1303 SLIST_INIT(&inmh); 1304 1305 VNET_LIST_RLOCK_NOSLEEP(); 1306 VNET_FOREACH(vnet_iter) { 1307 CURVNET_SET(vnet_iter); 1308 mld_fasttimo_vnet(&inmh); 1309 CURVNET_RESTORE(); 1310 } 1311 VNET_LIST_RUNLOCK_NOSLEEP(); 1312 in6m_release_list_deferred(&inmh); 1313 } 1314 1315 /* 1316 * Fast timeout handler (per-vnet). 1317 * 1318 * VIMAGE: Assume caller has set up our curvnet. 1319 */ 1320 static void 1321 mld_fasttimo_vnet(struct in6_multi_head *inmh) 1322 { 1323 struct epoch_tracker et; 1324 struct mbufq scq; /* State-change packets */ 1325 struct mbufq qrq; /* Query response packets */ 1326 struct ifnet *ifp; 1327 struct mld_ifsoftc *mli; 1328 struct ifmultiaddr *ifma; 1329 struct in6_multi *inm; 1330 int uri_fasthz; 1331 1332 uri_fasthz = 0; 1333 1334 /* 1335 * Quick check to see if any work needs to be done, in order to 1336 * minimize the overhead of fasttimo processing. 1337 * SMPng: XXX Unlocked reads. 1338 */ 1339 if (!V_current_state_timers_running6 && 1340 !V_interface_timers_running6 && 1341 !V_state_change_timers_running6) 1342 return; 1343 1344 IN6_MULTI_LIST_LOCK(); 1345 MLD_LOCK(); 1346 1347 /* 1348 * MLDv2 General Query response timer processing. 1349 */ 1350 if (V_interface_timers_running6) { 1351 CTR1(KTR_MLD, "%s: interface timers running", __func__); 1352 1353 V_interface_timers_running6 = 0; 1354 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1355 if (mli->mli_v2_timer == 0) { 1356 /* Do nothing. */ 1357 } else if (--mli->mli_v2_timer == 0) { 1358 mld_v2_dispatch_general_query(mli); 1359 } else { 1360 V_interface_timers_running6 = 1; 1361 } 1362 } 1363 } 1364 1365 if (!V_current_state_timers_running6 && 1366 !V_state_change_timers_running6) 1367 goto out_locked; 1368 1369 V_current_state_timers_running6 = 0; 1370 V_state_change_timers_running6 = 0; 1371 1372 CTR1(KTR_MLD, "%s: state change timers running", __func__); 1373 1374 /* 1375 * MLD host report and state-change timer processing. 1376 * Note: Processing a v2 group timer may remove a node. 1377 */ 1378 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1379 ifp = mli->mli_ifp; 1380 1381 if (mli->mli_version == MLD_VERSION_2) { 1382 uri_fasthz = MLD_RANDOM_DELAY(mli->mli_uri * 1383 PR_FASTHZ); 1384 mbufq_init(&qrq, MLD_MAX_G_GS_PACKETS); 1385 mbufq_init(&scq, MLD_MAX_STATE_CHANGE_PACKETS); 1386 } 1387 1388 NET_EPOCH_ENTER(et); 1389 IF_ADDR_WLOCK(ifp); 1390 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1391 inm = in6m_ifmultiaddr_get_inm(ifma); 1392 if (inm == NULL) 1393 continue; 1394 switch (mli->mli_version) { 1395 case MLD_VERSION_1: 1396 mld_v1_process_group_timer(inmh, inm); 1397 break; 1398 case MLD_VERSION_2: 1399 mld_v2_process_group_timers(inmh, &qrq, 1400 &scq, inm, uri_fasthz); 1401 break; 1402 } 1403 } 1404 IF_ADDR_WUNLOCK(ifp); 1405 1406 switch (mli->mli_version) { 1407 case MLD_VERSION_1: 1408 /* 1409 * Transmit reports for this lifecycle. This 1410 * is done while not holding IF_ADDR_LOCK 1411 * since this can call 1412 * in6ifa_ifpforlinklocal() which locks 1413 * IF_ADDR_LOCK internally as well as 1414 * ip6_output() to transmit a packet. 1415 */ 1416 while ((inm = SLIST_FIRST(inmh)) != NULL) { 1417 SLIST_REMOVE_HEAD(inmh, in6m_defer); 1418 (void)mld_v1_transmit_report(inm, 1419 MLD_LISTENER_REPORT); 1420 } 1421 break; 1422 case MLD_VERSION_2: 1423 mld_dispatch_queue(&qrq, 0); 1424 mld_dispatch_queue(&scq, 0); 1425 break; 1426 } 1427 NET_EPOCH_EXIT(et); 1428 } 1429 1430 out_locked: 1431 MLD_UNLOCK(); 1432 IN6_MULTI_LIST_UNLOCK(); 1433 } 1434 1435 /* 1436 * Update host report group timer. 1437 * Will update the global pending timer flags. 1438 */ 1439 static void 1440 mld_v1_process_group_timer(struct in6_multi_head *inmh, struct in6_multi *inm) 1441 { 1442 int report_timer_expired; 1443 1444 IN6_MULTI_LIST_LOCK_ASSERT(); 1445 MLD_LOCK_ASSERT(); 1446 1447 if (inm->in6m_timer == 0) { 1448 report_timer_expired = 0; 1449 } else if (--inm->in6m_timer == 0) { 1450 report_timer_expired = 1; 1451 } else { 1452 V_current_state_timers_running6 = 1; 1453 return; 1454 } 1455 1456 switch (inm->in6m_state) { 1457 case MLD_NOT_MEMBER: 1458 case MLD_SILENT_MEMBER: 1459 case MLD_IDLE_MEMBER: 1460 case MLD_LAZY_MEMBER: 1461 case MLD_SLEEPING_MEMBER: 1462 case MLD_AWAKENING_MEMBER: 1463 break; 1464 case MLD_REPORTING_MEMBER: 1465 if (report_timer_expired) { 1466 inm->in6m_state = MLD_IDLE_MEMBER; 1467 SLIST_INSERT_HEAD(inmh, inm, in6m_defer); 1468 } 1469 break; 1470 case MLD_G_QUERY_PENDING_MEMBER: 1471 case MLD_SG_QUERY_PENDING_MEMBER: 1472 case MLD_LEAVING_MEMBER: 1473 break; 1474 } 1475 } 1476 1477 /* 1478 * Update a group's timers for MLDv2. 1479 * Will update the global pending timer flags. 1480 * Note: Unlocked read from mli. 1481 */ 1482 static void 1483 mld_v2_process_group_timers(struct in6_multi_head *inmh, 1484 struct mbufq *qrq, struct mbufq *scq, 1485 struct in6_multi *inm, const int uri_fasthz) 1486 { 1487 int query_response_timer_expired; 1488 int state_change_retransmit_timer_expired; 1489 #ifdef KTR 1490 char ip6tbuf[INET6_ADDRSTRLEN]; 1491 #endif 1492 1493 IN6_MULTI_LIST_LOCK_ASSERT(); 1494 MLD_LOCK_ASSERT(); 1495 1496 query_response_timer_expired = 0; 1497 state_change_retransmit_timer_expired = 0; 1498 1499 /* 1500 * During a transition from compatibility mode back to MLDv2, 1501 * a group record in REPORTING state may still have its group 1502 * timer active. This is a no-op in this function; it is easier 1503 * to deal with it here than to complicate the slow-timeout path. 1504 */ 1505 if (inm->in6m_timer == 0) { 1506 query_response_timer_expired = 0; 1507 } else if (--inm->in6m_timer == 0) { 1508 query_response_timer_expired = 1; 1509 } else { 1510 V_current_state_timers_running6 = 1; 1511 } 1512 1513 if (inm->in6m_sctimer == 0) { 1514 state_change_retransmit_timer_expired = 0; 1515 } else if (--inm->in6m_sctimer == 0) { 1516 state_change_retransmit_timer_expired = 1; 1517 } else { 1518 V_state_change_timers_running6 = 1; 1519 } 1520 1521 /* We are in fasttimo, so be quick about it. */ 1522 if (!state_change_retransmit_timer_expired && 1523 !query_response_timer_expired) 1524 return; 1525 1526 switch (inm->in6m_state) { 1527 case MLD_NOT_MEMBER: 1528 case MLD_SILENT_MEMBER: 1529 case MLD_SLEEPING_MEMBER: 1530 case MLD_LAZY_MEMBER: 1531 case MLD_AWAKENING_MEMBER: 1532 case MLD_IDLE_MEMBER: 1533 break; 1534 case MLD_G_QUERY_PENDING_MEMBER: 1535 case MLD_SG_QUERY_PENDING_MEMBER: 1536 /* 1537 * Respond to a previously pending Group-Specific 1538 * or Group-and-Source-Specific query by enqueueing 1539 * the appropriate Current-State report for 1540 * immediate transmission. 1541 */ 1542 if (query_response_timer_expired) { 1543 int retval __unused; 1544 1545 retval = mld_v2_enqueue_group_record(qrq, inm, 0, 1, 1546 (inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER), 1547 0); 1548 CTR2(KTR_MLD, "%s: enqueue record = %d", 1549 __func__, retval); 1550 inm->in6m_state = MLD_REPORTING_MEMBER; 1551 in6m_clear_recorded(inm); 1552 } 1553 /* FALLTHROUGH */ 1554 case MLD_REPORTING_MEMBER: 1555 case MLD_LEAVING_MEMBER: 1556 if (state_change_retransmit_timer_expired) { 1557 /* 1558 * State-change retransmission timer fired. 1559 * If there are any further pending retransmissions, 1560 * set the global pending state-change flag, and 1561 * reset the timer. 1562 */ 1563 if (--inm->in6m_scrv > 0) { 1564 inm->in6m_sctimer = uri_fasthz; 1565 V_state_change_timers_running6 = 1; 1566 } 1567 /* 1568 * Retransmit the previously computed state-change 1569 * report. If there are no further pending 1570 * retransmissions, the mbuf queue will be consumed. 1571 * Update T0 state to T1 as we have now sent 1572 * a state-change. 1573 */ 1574 (void)mld_v2_merge_state_changes(inm, scq); 1575 1576 in6m_commit(inm); 1577 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 1578 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1579 if_name(inm->in6m_ifp)); 1580 1581 /* 1582 * If we are leaving the group for good, make sure 1583 * we release MLD's reference to it. 1584 * This release must be deferred using a SLIST, 1585 * as we are called from a loop which traverses 1586 * the in_ifmultiaddr TAILQ. 1587 */ 1588 if (inm->in6m_state == MLD_LEAVING_MEMBER && 1589 inm->in6m_scrv == 0) { 1590 inm->in6m_state = MLD_NOT_MEMBER; 1591 in6m_disconnect_locked(inmh, inm); 1592 in6m_rele_locked(inmh, inm); 1593 } 1594 } 1595 break; 1596 } 1597 } 1598 1599 /* 1600 * Switch to a different version on the given interface, 1601 * as per Section 9.12. 1602 */ 1603 static void 1604 mld_set_version(struct mld_ifsoftc *mli, const int version) 1605 { 1606 int old_version_timer; 1607 1608 MLD_LOCK_ASSERT(); 1609 1610 CTR4(KTR_MLD, "%s: switching to v%d on ifp %p(%s)", __func__, 1611 version, mli->mli_ifp, if_name(mli->mli_ifp)); 1612 1613 if (version == MLD_VERSION_1) { 1614 /* 1615 * Compute the "Older Version Querier Present" timer as per 1616 * Section 9.12. 1617 */ 1618 old_version_timer = (mli->mli_rv * mli->mli_qi) + mli->mli_qri; 1619 old_version_timer *= PR_SLOWHZ; 1620 mli->mli_v1_timer = old_version_timer; 1621 } 1622 1623 if (mli->mli_v1_timer > 0 && mli->mli_version != MLD_VERSION_1) { 1624 mli->mli_version = MLD_VERSION_1; 1625 mld_v2_cancel_link_timers(mli); 1626 } 1627 } 1628 1629 /* 1630 * Cancel pending MLDv2 timers for the given link and all groups 1631 * joined on it; state-change, general-query, and group-query timers. 1632 */ 1633 static void 1634 mld_v2_cancel_link_timers(struct mld_ifsoftc *mli) 1635 { 1636 struct epoch_tracker et; 1637 struct in6_multi_head inmh; 1638 struct ifmultiaddr *ifma; 1639 struct ifnet *ifp; 1640 struct in6_multi *inm; 1641 1642 CTR3(KTR_MLD, "%s: cancel v2 timers on ifp %p(%s)", __func__, 1643 mli->mli_ifp, if_name(mli->mli_ifp)); 1644 1645 SLIST_INIT(&inmh); 1646 IN6_MULTI_LIST_LOCK_ASSERT(); 1647 MLD_LOCK_ASSERT(); 1648 1649 /* 1650 * Fast-track this potentially expensive operation 1651 * by checking all the global 'timer pending' flags. 1652 */ 1653 if (!V_interface_timers_running6 && 1654 !V_state_change_timers_running6 && 1655 !V_current_state_timers_running6) 1656 return; 1657 1658 mli->mli_v2_timer = 0; 1659 1660 ifp = mli->mli_ifp; 1661 1662 IF_ADDR_WLOCK(ifp); 1663 NET_EPOCH_ENTER(et); 1664 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 1665 inm = in6m_ifmultiaddr_get_inm(ifma); 1666 if (inm == NULL) 1667 continue; 1668 switch (inm->in6m_state) { 1669 case MLD_NOT_MEMBER: 1670 case MLD_SILENT_MEMBER: 1671 case MLD_IDLE_MEMBER: 1672 case MLD_LAZY_MEMBER: 1673 case MLD_SLEEPING_MEMBER: 1674 case MLD_AWAKENING_MEMBER: 1675 break; 1676 case MLD_LEAVING_MEMBER: 1677 /* 1678 * If we are leaving the group and switching 1679 * version, we need to release the final 1680 * reference held for issuing the INCLUDE {}. 1681 */ 1682 if (inm->in6m_refcount == 1) 1683 in6m_disconnect_locked(&inmh, inm); 1684 in6m_rele_locked(&inmh, inm); 1685 /* FALLTHROUGH */ 1686 case MLD_G_QUERY_PENDING_MEMBER: 1687 case MLD_SG_QUERY_PENDING_MEMBER: 1688 in6m_clear_recorded(inm); 1689 /* FALLTHROUGH */ 1690 case MLD_REPORTING_MEMBER: 1691 inm->in6m_sctimer = 0; 1692 inm->in6m_timer = 0; 1693 inm->in6m_state = MLD_REPORTING_MEMBER; 1694 /* 1695 * Free any pending MLDv2 state-change records. 1696 */ 1697 mbufq_drain(&inm->in6m_scq); 1698 break; 1699 } 1700 } 1701 NET_EPOCH_EXIT(et); 1702 IF_ADDR_WUNLOCK(ifp); 1703 in6m_release_list_deferred(&inmh); 1704 } 1705 1706 /* 1707 * Global slowtimo handler. 1708 * VIMAGE: Timeout handlers are expected to service all vimages. 1709 */ 1710 void 1711 mld_slowtimo(void) 1712 { 1713 VNET_ITERATOR_DECL(vnet_iter); 1714 1715 VNET_LIST_RLOCK_NOSLEEP(); 1716 VNET_FOREACH(vnet_iter) { 1717 CURVNET_SET(vnet_iter); 1718 mld_slowtimo_vnet(); 1719 CURVNET_RESTORE(); 1720 } 1721 VNET_LIST_RUNLOCK_NOSLEEP(); 1722 } 1723 1724 /* 1725 * Per-vnet slowtimo handler. 1726 */ 1727 static void 1728 mld_slowtimo_vnet(void) 1729 { 1730 struct mld_ifsoftc *mli; 1731 1732 MLD_LOCK(); 1733 1734 LIST_FOREACH(mli, &V_mli_head, mli_link) { 1735 mld_v1_process_querier_timers(mli); 1736 } 1737 1738 MLD_UNLOCK(); 1739 } 1740 1741 /* 1742 * Update the Older Version Querier Present timers for a link. 1743 * See Section 9.12 of RFC 3810. 1744 */ 1745 static void 1746 mld_v1_process_querier_timers(struct mld_ifsoftc *mli) 1747 { 1748 1749 MLD_LOCK_ASSERT(); 1750 1751 if (mli->mli_version != MLD_VERSION_2 && --mli->mli_v1_timer == 0) { 1752 /* 1753 * MLDv1 Querier Present timer expired; revert to MLDv2. 1754 */ 1755 CTR5(KTR_MLD, 1756 "%s: transition from v%d -> v%d on %p(%s)", 1757 __func__, mli->mli_version, MLD_VERSION_2, 1758 mli->mli_ifp, if_name(mli->mli_ifp)); 1759 mli->mli_version = MLD_VERSION_2; 1760 } 1761 } 1762 1763 /* 1764 * Transmit an MLDv1 report immediately. 1765 */ 1766 static int 1767 mld_v1_transmit_report(struct in6_multi *in6m, const int type) 1768 { 1769 struct ifnet *ifp; 1770 struct in6_ifaddr *ia; 1771 struct ip6_hdr *ip6; 1772 struct mbuf *mh, *md; 1773 struct mld_hdr *mld; 1774 1775 NET_EPOCH_ASSERT(); 1776 IN6_MULTI_LIST_LOCK_ASSERT(); 1777 MLD_LOCK_ASSERT(); 1778 1779 ifp = in6m->in6m_ifp; 1780 /* in process of being freed */ 1781 if (ifp == NULL) 1782 return (0); 1783 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 1784 /* ia may be NULL if link-local address is tentative. */ 1785 1786 mh = m_gethdr(M_NOWAIT, MT_DATA); 1787 if (mh == NULL) { 1788 if (ia != NULL) 1789 ifa_free(&ia->ia_ifa); 1790 return (ENOMEM); 1791 } 1792 md = m_get(M_NOWAIT, MT_DATA); 1793 if (md == NULL) { 1794 m_free(mh); 1795 if (ia != NULL) 1796 ifa_free(&ia->ia_ifa); 1797 return (ENOMEM); 1798 } 1799 mh->m_next = md; 1800 1801 /* 1802 * FUTURE: Consider increasing alignment by ETHER_HDR_LEN, so 1803 * that ether_output() does not need to allocate another mbuf 1804 * for the header in the most common case. 1805 */ 1806 M_ALIGN(mh, sizeof(struct ip6_hdr)); 1807 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + sizeof(struct mld_hdr); 1808 mh->m_len = sizeof(struct ip6_hdr); 1809 1810 ip6 = mtod(mh, struct ip6_hdr *); 1811 ip6->ip6_flow = 0; 1812 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 1813 ip6->ip6_vfc |= IPV6_VERSION; 1814 ip6->ip6_nxt = IPPROTO_ICMPV6; 1815 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 1816 ip6->ip6_dst = in6m->in6m_addr; 1817 1818 md->m_len = sizeof(struct mld_hdr); 1819 mld = mtod(md, struct mld_hdr *); 1820 mld->mld_type = type; 1821 mld->mld_code = 0; 1822 mld->mld_cksum = 0; 1823 mld->mld_maxdelay = 0; 1824 mld->mld_reserved = 0; 1825 mld->mld_addr = in6m->in6m_addr; 1826 in6_clearscope(&mld->mld_addr); 1827 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 1828 sizeof(struct ip6_hdr), sizeof(struct mld_hdr)); 1829 1830 mld_save_context(mh, ifp); 1831 mh->m_flags |= M_MLDV1; 1832 1833 mld_dispatch_packet(mh); 1834 1835 if (ia != NULL) 1836 ifa_free(&ia->ia_ifa); 1837 return (0); 1838 } 1839 1840 /* 1841 * Process a state change from the upper layer for the given IPv6 group. 1842 * 1843 * Each socket holds a reference on the in_multi in its own ip_moptions. 1844 * The socket layer will have made the necessary updates to.the group 1845 * state, it is now up to MLD to issue a state change report if there 1846 * has been any change between T0 (when the last state-change was issued) 1847 * and T1 (now). 1848 * 1849 * We use the MLDv2 state machine at group level. The MLd module 1850 * however makes the decision as to which MLD protocol version to speak. 1851 * A state change *from* INCLUDE {} always means an initial join. 1852 * A state change *to* INCLUDE {} always means a final leave. 1853 * 1854 * If delay is non-zero, and the state change is an initial multicast 1855 * join, the state change report will be delayed by 'delay' ticks 1856 * in units of PR_FASTHZ if MLDv1 is active on the link; otherwise 1857 * the initial MLDv2 state change report will be delayed by whichever 1858 * is sooner, a pending state-change timer or delay itself. 1859 * 1860 * VIMAGE: curvnet should have been set by caller, as this routine 1861 * is called from the socket option handlers. 1862 */ 1863 int 1864 mld_change_state(struct in6_multi *inm, const int delay) 1865 { 1866 struct mld_ifsoftc *mli; 1867 struct ifnet *ifp; 1868 int error; 1869 1870 IN6_MULTI_LIST_LOCK_ASSERT(); 1871 1872 error = 0; 1873 1874 /* 1875 * Check if the in6_multi has already been disconnected. 1876 */ 1877 if (inm->in6m_ifp == NULL) { 1878 CTR1(KTR_MLD, "%s: inm is disconnected", __func__); 1879 return (0); 1880 } 1881 1882 /* 1883 * Try to detect if the upper layer just asked us to change state 1884 * for an interface which has now gone away. 1885 */ 1886 KASSERT(inm->in6m_ifma != NULL, ("%s: no ifma", __func__)); 1887 ifp = inm->in6m_ifma->ifma_ifp; 1888 if (ifp == NULL) 1889 return (0); 1890 /* 1891 * Sanity check that netinet6's notion of ifp is the 1892 * same as net's. 1893 */ 1894 KASSERT(inm->in6m_ifp == ifp, ("%s: bad ifp", __func__)); 1895 1896 MLD_LOCK(); 1897 mli = MLD_IFINFO(ifp); 1898 KASSERT(mli != NULL, ("%s: no mld_ifsoftc for ifp %p", __func__, ifp)); 1899 1900 /* 1901 * If we detect a state transition to or from MCAST_UNDEFINED 1902 * for this group, then we are starting or finishing an MLD 1903 * life cycle for this group. 1904 */ 1905 if (inm->in6m_st[1].iss_fmode != inm->in6m_st[0].iss_fmode) { 1906 CTR3(KTR_MLD, "%s: inm transition %d -> %d", __func__, 1907 inm->in6m_st[0].iss_fmode, inm->in6m_st[1].iss_fmode); 1908 if (inm->in6m_st[0].iss_fmode == MCAST_UNDEFINED) { 1909 CTR1(KTR_MLD, "%s: initial join", __func__); 1910 error = mld_initial_join(inm, mli, delay); 1911 goto out_locked; 1912 } else if (inm->in6m_st[1].iss_fmode == MCAST_UNDEFINED) { 1913 CTR1(KTR_MLD, "%s: final leave", __func__); 1914 mld_final_leave(inm, mli); 1915 goto out_locked; 1916 } 1917 } else { 1918 CTR1(KTR_MLD, "%s: filter set change", __func__); 1919 } 1920 1921 error = mld_handle_state_change(inm, mli); 1922 1923 out_locked: 1924 MLD_UNLOCK(); 1925 return (error); 1926 } 1927 1928 /* 1929 * Perform the initial join for an MLD group. 1930 * 1931 * When joining a group: 1932 * If the group should have its MLD traffic suppressed, do nothing. 1933 * MLDv1 starts sending MLDv1 host membership reports. 1934 * MLDv2 will schedule an MLDv2 state-change report containing the 1935 * initial state of the membership. 1936 * 1937 * If the delay argument is non-zero, then we must delay sending the 1938 * initial state change for delay ticks (in units of PR_FASTHZ). 1939 */ 1940 static int 1941 mld_initial_join(struct in6_multi *inm, struct mld_ifsoftc *mli, 1942 const int delay) 1943 { 1944 struct epoch_tracker et; 1945 struct ifnet *ifp; 1946 struct mbufq *mq; 1947 int error, retval, syncstates; 1948 int odelay; 1949 #ifdef KTR 1950 char ip6tbuf[INET6_ADDRSTRLEN]; 1951 #endif 1952 1953 CTR4(KTR_MLD, "%s: initial join %s on ifp %p(%s)", 1954 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 1955 inm->in6m_ifp, if_name(inm->in6m_ifp)); 1956 1957 error = 0; 1958 syncstates = 1; 1959 1960 ifp = inm->in6m_ifp; 1961 1962 IN6_MULTI_LIST_LOCK_ASSERT(); 1963 MLD_LOCK_ASSERT(); 1964 1965 KASSERT(mli && mli->mli_ifp == ifp, ("%s: inconsistent ifp", __func__)); 1966 1967 /* 1968 * Groups joined on loopback or marked as 'not reported', 1969 * enter the MLD_SILENT_MEMBER state and 1970 * are never reported in any protocol exchanges. 1971 * All other groups enter the appropriate state machine 1972 * for the version in use on this link. 1973 * A link marked as MLIF_SILENT causes MLD to be completely 1974 * disabled for the link. 1975 */ 1976 if ((ifp->if_flags & IFF_LOOPBACK) || 1977 (mli->mli_flags & MLIF_SILENT) || 1978 !mld_is_addr_reported(&inm->in6m_addr)) { 1979 CTR1(KTR_MLD, 1980 "%s: not kicking state machine for silent group", __func__); 1981 inm->in6m_state = MLD_SILENT_MEMBER; 1982 inm->in6m_timer = 0; 1983 } else { 1984 /* 1985 * Deal with overlapping in_multi lifecycle. 1986 * If this group was LEAVING, then make sure 1987 * we drop the reference we picked up to keep the 1988 * group around for the final INCLUDE {} enqueue. 1989 */ 1990 if (mli->mli_version == MLD_VERSION_2 && 1991 inm->in6m_state == MLD_LEAVING_MEMBER) { 1992 inm->in6m_refcount--; 1993 MPASS(inm->in6m_refcount > 0); 1994 } 1995 inm->in6m_state = MLD_REPORTING_MEMBER; 1996 1997 switch (mli->mli_version) { 1998 case MLD_VERSION_1: 1999 /* 2000 * If a delay was provided, only use it if 2001 * it is greater than the delay normally 2002 * used for an MLDv1 state change report, 2003 * and delay sending the initial MLDv1 report 2004 * by not transitioning to the IDLE state. 2005 */ 2006 odelay = MLD_RANDOM_DELAY(MLD_V1_MAX_RI * PR_FASTHZ); 2007 if (delay) { 2008 inm->in6m_timer = max(delay, odelay); 2009 V_current_state_timers_running6 = 1; 2010 } else { 2011 inm->in6m_state = MLD_IDLE_MEMBER; 2012 NET_EPOCH_ENTER(et); 2013 error = mld_v1_transmit_report(inm, 2014 MLD_LISTENER_REPORT); 2015 NET_EPOCH_EXIT(et); 2016 if (error == 0) { 2017 inm->in6m_timer = odelay; 2018 V_current_state_timers_running6 = 1; 2019 } 2020 } 2021 break; 2022 2023 case MLD_VERSION_2: 2024 /* 2025 * Defer update of T0 to T1, until the first copy 2026 * of the state change has been transmitted. 2027 */ 2028 syncstates = 0; 2029 2030 /* 2031 * Immediately enqueue a State-Change Report for 2032 * this interface, freeing any previous reports. 2033 * Don't kick the timers if there is nothing to do, 2034 * or if an error occurred. 2035 */ 2036 mq = &inm->in6m_scq; 2037 mbufq_drain(mq); 2038 retval = mld_v2_enqueue_group_record(mq, inm, 1, 2039 0, 0, (mli->mli_flags & MLIF_USEALLOW)); 2040 CTR2(KTR_MLD, "%s: enqueue record = %d", 2041 __func__, retval); 2042 if (retval <= 0) { 2043 error = retval * -1; 2044 break; 2045 } 2046 2047 /* 2048 * Schedule transmission of pending state-change 2049 * report up to RV times for this link. The timer 2050 * will fire at the next mld_fasttimo (~200ms), 2051 * giving us an opportunity to merge the reports. 2052 * 2053 * If a delay was provided to this function, only 2054 * use this delay if sooner than the existing one. 2055 */ 2056 KASSERT(mli->mli_rv > 1, 2057 ("%s: invalid robustness %d", __func__, 2058 mli->mli_rv)); 2059 inm->in6m_scrv = mli->mli_rv; 2060 if (delay) { 2061 if (inm->in6m_sctimer > 1) { 2062 inm->in6m_sctimer = 2063 min(inm->in6m_sctimer, delay); 2064 } else 2065 inm->in6m_sctimer = delay; 2066 } else 2067 inm->in6m_sctimer = 1; 2068 V_state_change_timers_running6 = 1; 2069 2070 error = 0; 2071 break; 2072 } 2073 } 2074 2075 /* 2076 * Only update the T0 state if state change is atomic, 2077 * i.e. we don't need to wait for a timer to fire before we 2078 * can consider the state change to have been communicated. 2079 */ 2080 if (syncstates) { 2081 in6m_commit(inm); 2082 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2083 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2084 if_name(inm->in6m_ifp)); 2085 } 2086 2087 return (error); 2088 } 2089 2090 /* 2091 * Issue an intermediate state change during the life-cycle. 2092 */ 2093 static int 2094 mld_handle_state_change(struct in6_multi *inm, struct mld_ifsoftc *mli) 2095 { 2096 struct ifnet *ifp; 2097 int retval; 2098 #ifdef KTR 2099 char ip6tbuf[INET6_ADDRSTRLEN]; 2100 #endif 2101 2102 CTR4(KTR_MLD, "%s: state change for %s on ifp %p(%s)", 2103 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2104 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2105 2106 ifp = inm->in6m_ifp; 2107 2108 IN6_MULTI_LIST_LOCK_ASSERT(); 2109 MLD_LOCK_ASSERT(); 2110 2111 KASSERT(mli && mli->mli_ifp == ifp, 2112 ("%s: inconsistent ifp", __func__)); 2113 2114 if ((ifp->if_flags & IFF_LOOPBACK) || 2115 (mli->mli_flags & MLIF_SILENT) || 2116 !mld_is_addr_reported(&inm->in6m_addr) || 2117 (mli->mli_version != MLD_VERSION_2)) { 2118 if (!mld_is_addr_reported(&inm->in6m_addr)) { 2119 CTR1(KTR_MLD, 2120 "%s: not kicking state machine for silent group", __func__); 2121 } 2122 CTR1(KTR_MLD, "%s: nothing to do", __func__); 2123 in6m_commit(inm); 2124 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2125 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2126 if_name(inm->in6m_ifp)); 2127 return (0); 2128 } 2129 2130 mbufq_drain(&inm->in6m_scq); 2131 2132 retval = mld_v2_enqueue_group_record(&inm->in6m_scq, inm, 1, 0, 0, 2133 (mli->mli_flags & MLIF_USEALLOW)); 2134 CTR2(KTR_MLD, "%s: enqueue record = %d", __func__, retval); 2135 if (retval <= 0) 2136 return (-retval); 2137 2138 /* 2139 * If record(s) were enqueued, start the state-change 2140 * report timer for this group. 2141 */ 2142 inm->in6m_scrv = mli->mli_rv; 2143 inm->in6m_sctimer = 1; 2144 V_state_change_timers_running6 = 1; 2145 2146 return (0); 2147 } 2148 2149 /* 2150 * Perform the final leave for a multicast address. 2151 * 2152 * When leaving a group: 2153 * MLDv1 sends a DONE message, if and only if we are the reporter. 2154 * MLDv2 enqueues a state-change report containing a transition 2155 * to INCLUDE {} for immediate transmission. 2156 */ 2157 static void 2158 mld_final_leave(struct in6_multi *inm, struct mld_ifsoftc *mli) 2159 { 2160 struct epoch_tracker et; 2161 int syncstates; 2162 #ifdef KTR 2163 char ip6tbuf[INET6_ADDRSTRLEN]; 2164 #endif 2165 2166 syncstates = 1; 2167 2168 CTR4(KTR_MLD, "%s: final leave %s on ifp %p(%s)", 2169 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2170 inm->in6m_ifp, if_name(inm->in6m_ifp)); 2171 2172 IN6_MULTI_LIST_LOCK_ASSERT(); 2173 MLD_LOCK_ASSERT(); 2174 2175 switch (inm->in6m_state) { 2176 case MLD_NOT_MEMBER: 2177 case MLD_SILENT_MEMBER: 2178 case MLD_LEAVING_MEMBER: 2179 /* Already leaving or left; do nothing. */ 2180 CTR1(KTR_MLD, 2181 "%s: not kicking state machine for silent group", __func__); 2182 break; 2183 case MLD_REPORTING_MEMBER: 2184 case MLD_IDLE_MEMBER: 2185 case MLD_G_QUERY_PENDING_MEMBER: 2186 case MLD_SG_QUERY_PENDING_MEMBER: 2187 if (mli->mli_version == MLD_VERSION_1) { 2188 #ifdef INVARIANTS 2189 if (inm->in6m_state == MLD_G_QUERY_PENDING_MEMBER || 2190 inm->in6m_state == MLD_SG_QUERY_PENDING_MEMBER) 2191 panic("%s: MLDv2 state reached, not MLDv2 mode", 2192 __func__); 2193 #endif 2194 NET_EPOCH_ENTER(et); 2195 mld_v1_transmit_report(inm, MLD_LISTENER_DONE); 2196 NET_EPOCH_EXIT(et); 2197 inm->in6m_state = MLD_NOT_MEMBER; 2198 V_current_state_timers_running6 = 1; 2199 } else if (mli->mli_version == MLD_VERSION_2) { 2200 /* 2201 * Stop group timer and all pending reports. 2202 * Immediately enqueue a state-change report 2203 * TO_IN {} to be sent on the next fast timeout, 2204 * giving us an opportunity to merge reports. 2205 */ 2206 mbufq_drain(&inm->in6m_scq); 2207 inm->in6m_timer = 0; 2208 inm->in6m_scrv = mli->mli_rv; 2209 CTR4(KTR_MLD, "%s: Leaving %s/%s with %d " 2210 "pending retransmissions.", __func__, 2211 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2212 if_name(inm->in6m_ifp), inm->in6m_scrv); 2213 if (inm->in6m_scrv == 0) { 2214 inm->in6m_state = MLD_NOT_MEMBER; 2215 inm->in6m_sctimer = 0; 2216 } else { 2217 int retval __diagused; 2218 2219 in6m_acquire_locked(inm); 2220 2221 retval = mld_v2_enqueue_group_record( 2222 &inm->in6m_scq, inm, 1, 0, 0, 2223 (mli->mli_flags & MLIF_USEALLOW)); 2224 KASSERT(retval != 0, 2225 ("%s: enqueue record = %d", __func__, 2226 retval)); 2227 2228 inm->in6m_state = MLD_LEAVING_MEMBER; 2229 inm->in6m_sctimer = 1; 2230 V_state_change_timers_running6 = 1; 2231 syncstates = 0; 2232 } 2233 break; 2234 } 2235 break; 2236 case MLD_LAZY_MEMBER: 2237 case MLD_SLEEPING_MEMBER: 2238 case MLD_AWAKENING_MEMBER: 2239 /* Our reports are suppressed; do nothing. */ 2240 break; 2241 } 2242 2243 if (syncstates) { 2244 in6m_commit(inm); 2245 CTR3(KTR_MLD, "%s: T1 -> T0 for %s/%s", __func__, 2246 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2247 if_name(inm->in6m_ifp)); 2248 inm->in6m_st[1].iss_fmode = MCAST_UNDEFINED; 2249 CTR3(KTR_MLD, "%s: T1 now MCAST_UNDEFINED for %p/%s", 2250 __func__, &inm->in6m_addr, if_name(inm->in6m_ifp)); 2251 } 2252 } 2253 2254 /* 2255 * Enqueue an MLDv2 group record to the given output queue. 2256 * 2257 * If is_state_change is zero, a current-state record is appended. 2258 * If is_state_change is non-zero, a state-change report is appended. 2259 * 2260 * If is_group_query is non-zero, an mbuf packet chain is allocated. 2261 * If is_group_query is zero, and if there is a packet with free space 2262 * at the tail of the queue, it will be appended to providing there 2263 * is enough free space. 2264 * Otherwise a new mbuf packet chain is allocated. 2265 * 2266 * If is_source_query is non-zero, each source is checked to see if 2267 * it was recorded for a Group-Source query, and will be omitted if 2268 * it is not both in-mode and recorded. 2269 * 2270 * If use_block_allow is non-zero, state change reports for initial join 2271 * and final leave, on an inclusive mode group with a source list, will be 2272 * rewritten to use the ALLOW_NEW and BLOCK_OLD record types, respectively. 2273 * 2274 * The function will attempt to allocate leading space in the packet 2275 * for the IPv6+ICMP headers to be prepended without fragmenting the chain. 2276 * 2277 * If successful the size of all data appended to the queue is returned, 2278 * otherwise an error code less than zero is returned, or zero if 2279 * no record(s) were appended. 2280 */ 2281 static int 2282 mld_v2_enqueue_group_record(struct mbufq *mq, struct in6_multi *inm, 2283 const int is_state_change, const int is_group_query, 2284 const int is_source_query, const int use_block_allow) 2285 { 2286 struct mldv2_record mr; 2287 struct mldv2_record *pmr; 2288 struct ifnet *ifp; 2289 struct ip6_msource *ims, *nims; 2290 struct mbuf *m0, *m, *md; 2291 int is_filter_list_change; 2292 int minrec0len, m0srcs, msrcs, nbytes, off; 2293 int record_has_sources; 2294 int now; 2295 int type; 2296 uint8_t mode; 2297 #ifdef KTR 2298 char ip6tbuf[INET6_ADDRSTRLEN]; 2299 #endif 2300 2301 IN6_MULTI_LIST_LOCK_ASSERT(); 2302 2303 ifp = inm->in6m_ifp; 2304 is_filter_list_change = 0; 2305 m = NULL; 2306 m0 = NULL; 2307 m0srcs = 0; 2308 msrcs = 0; 2309 nbytes = 0; 2310 nims = NULL; 2311 record_has_sources = 1; 2312 pmr = NULL; 2313 type = MLD_DO_NOTHING; 2314 mode = inm->in6m_st[1].iss_fmode; 2315 2316 /* 2317 * If we did not transition out of ASM mode during t0->t1, 2318 * and there are no source nodes to process, we can skip 2319 * the generation of source records. 2320 */ 2321 if (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0 && 2322 inm->in6m_nsrc == 0) 2323 record_has_sources = 0; 2324 2325 if (is_state_change) { 2326 /* 2327 * Queue a state change record. 2328 * If the mode did not change, and there are non-ASM 2329 * listeners or source filters present, 2330 * we potentially need to issue two records for the group. 2331 * If there are ASM listeners, and there was no filter 2332 * mode transition of any kind, do nothing. 2333 * 2334 * If we are transitioning to MCAST_UNDEFINED, we need 2335 * not send any sources. A transition to/from this state is 2336 * considered inclusive with some special treatment. 2337 * 2338 * If we are rewriting initial joins/leaves to use 2339 * ALLOW/BLOCK, and the group's membership is inclusive, 2340 * we need to send sources in all cases. 2341 */ 2342 if (mode != inm->in6m_st[0].iss_fmode) { 2343 if (mode == MCAST_EXCLUDE) { 2344 CTR1(KTR_MLD, "%s: change to EXCLUDE", 2345 __func__); 2346 type = MLD_CHANGE_TO_EXCLUDE_MODE; 2347 } else { 2348 CTR1(KTR_MLD, "%s: change to INCLUDE", 2349 __func__); 2350 if (use_block_allow) { 2351 /* 2352 * XXX 2353 * Here we're interested in state 2354 * edges either direction between 2355 * MCAST_UNDEFINED and MCAST_INCLUDE. 2356 * Perhaps we should just check 2357 * the group state, rather than 2358 * the filter mode. 2359 */ 2360 if (mode == MCAST_UNDEFINED) { 2361 type = MLD_BLOCK_OLD_SOURCES; 2362 } else { 2363 type = MLD_ALLOW_NEW_SOURCES; 2364 } 2365 } else { 2366 type = MLD_CHANGE_TO_INCLUDE_MODE; 2367 if (mode == MCAST_UNDEFINED) 2368 record_has_sources = 0; 2369 } 2370 } 2371 } else { 2372 if (record_has_sources) { 2373 is_filter_list_change = 1; 2374 } else { 2375 type = MLD_DO_NOTHING; 2376 } 2377 } 2378 } else { 2379 /* 2380 * Queue a current state record. 2381 */ 2382 if (mode == MCAST_EXCLUDE) { 2383 type = MLD_MODE_IS_EXCLUDE; 2384 } else if (mode == MCAST_INCLUDE) { 2385 type = MLD_MODE_IS_INCLUDE; 2386 KASSERT(inm->in6m_st[1].iss_asm == 0, 2387 ("%s: inm %p is INCLUDE but ASM count is %d", 2388 __func__, inm, inm->in6m_st[1].iss_asm)); 2389 } 2390 } 2391 2392 /* 2393 * Generate the filter list changes using a separate function. 2394 */ 2395 if (is_filter_list_change) 2396 return (mld_v2_enqueue_filter_change(mq, inm)); 2397 2398 if (type == MLD_DO_NOTHING) { 2399 CTR3(KTR_MLD, "%s: nothing to do for %s/%s", 2400 __func__, ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2401 if_name(inm->in6m_ifp)); 2402 return (0); 2403 } 2404 2405 /* 2406 * If any sources are present, we must be able to fit at least 2407 * one in the trailing space of the tail packet's mbuf, 2408 * ideally more. 2409 */ 2410 minrec0len = sizeof(struct mldv2_record); 2411 if (record_has_sources) 2412 minrec0len += sizeof(struct in6_addr); 2413 2414 CTR4(KTR_MLD, "%s: queueing %s for %s/%s", __func__, 2415 mld_rec_type_to_str(type), 2416 ip6_sprintf(ip6tbuf, &inm->in6m_addr), 2417 if_name(inm->in6m_ifp)); 2418 2419 /* 2420 * Check if we have a packet in the tail of the queue for this 2421 * group into which the first group record for this group will fit. 2422 * Otherwise allocate a new packet. 2423 * Always allocate leading space for IP6+RA+ICMPV6+REPORT. 2424 * Note: Group records for G/GSR query responses MUST be sent 2425 * in their own packet. 2426 */ 2427 m0 = mbufq_last(mq); 2428 if (!is_group_query && 2429 m0 != NULL && 2430 (m0->m_pkthdr.vt_nrecs + 1 <= MLD_V2_REPORT_MAXRECS) && 2431 (m0->m_pkthdr.len + minrec0len) < 2432 (ifp->if_mtu - MLD_MTUSPACE)) { 2433 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2434 sizeof(struct mldv2_record)) / 2435 sizeof(struct in6_addr); 2436 m = m0; 2437 CTR1(KTR_MLD, "%s: use existing packet", __func__); 2438 } else { 2439 if (mbufq_full(mq)) { 2440 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2441 return (-ENOMEM); 2442 } 2443 m = NULL; 2444 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2445 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2446 if (!is_state_change && !is_group_query) 2447 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2448 if (m == NULL) 2449 m = m_gethdr(M_NOWAIT, MT_DATA); 2450 if (m == NULL) 2451 return (-ENOMEM); 2452 2453 mld_save_context(m, ifp); 2454 2455 CTR1(KTR_MLD, "%s: allocated first packet", __func__); 2456 } 2457 2458 /* 2459 * Append group record. 2460 * If we have sources, we don't know how many yet. 2461 */ 2462 mr.mr_type = type; 2463 mr.mr_datalen = 0; 2464 mr.mr_numsrc = 0; 2465 mr.mr_addr = inm->in6m_addr; 2466 in6_clearscope(&mr.mr_addr); 2467 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2468 if (m != m0) 2469 m_freem(m); 2470 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2471 return (-ENOMEM); 2472 } 2473 nbytes += sizeof(struct mldv2_record); 2474 2475 /* 2476 * Append as many sources as will fit in the first packet. 2477 * If we are appending to a new packet, the chain allocation 2478 * may potentially use clusters; use m_getptr() in this case. 2479 * If we are appending to an existing packet, we need to obtain 2480 * a pointer to the group record after m_append(), in case a new 2481 * mbuf was allocated. 2482 * 2483 * Only append sources which are in-mode at t1. If we are 2484 * transitioning to MCAST_UNDEFINED state on the group, and 2485 * use_block_allow is zero, do not include source entries. 2486 * Otherwise, we need to include this source in the report. 2487 * 2488 * Only report recorded sources in our filter set when responding 2489 * to a group-source query. 2490 */ 2491 if (record_has_sources) { 2492 if (m == m0) { 2493 md = m_last(m); 2494 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2495 md->m_len - nbytes); 2496 } else { 2497 md = m_getptr(m, 0, &off); 2498 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + 2499 off); 2500 } 2501 msrcs = 0; 2502 RB_FOREACH_SAFE(ims, ip6_msource_tree, &inm->in6m_srcs, 2503 nims) { 2504 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2505 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2506 now = im6s_get_mode(inm, ims, 1); 2507 CTR2(KTR_MLD, "%s: node is %d", __func__, now); 2508 if ((now != mode) || 2509 (now == mode && 2510 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2511 CTR1(KTR_MLD, "%s: skip node", __func__); 2512 continue; 2513 } 2514 if (is_source_query && ims->im6s_stp == 0) { 2515 CTR1(KTR_MLD, "%s: skip unrecorded node", 2516 __func__); 2517 continue; 2518 } 2519 CTR1(KTR_MLD, "%s: append node", __func__); 2520 if (!m_append(m, sizeof(struct in6_addr), 2521 (void *)&ims->im6s_addr)) { 2522 if (m != m0) 2523 m_freem(m); 2524 CTR1(KTR_MLD, "%s: m_append() failed.", 2525 __func__); 2526 return (-ENOMEM); 2527 } 2528 nbytes += sizeof(struct in6_addr); 2529 ++msrcs; 2530 if (msrcs == m0srcs) 2531 break; 2532 } 2533 CTR2(KTR_MLD, "%s: msrcs is %d this packet", __func__, 2534 msrcs); 2535 pmr->mr_numsrc = htons(msrcs); 2536 nbytes += (msrcs * sizeof(struct in6_addr)); 2537 } 2538 2539 if (is_source_query && msrcs == 0) { 2540 CTR1(KTR_MLD, "%s: no recorded sources to report", __func__); 2541 if (m != m0) 2542 m_freem(m); 2543 return (0); 2544 } 2545 2546 /* 2547 * We are good to go with first packet. 2548 */ 2549 if (m != m0) { 2550 CTR1(KTR_MLD, "%s: enqueueing first packet", __func__); 2551 m->m_pkthdr.vt_nrecs = 1; 2552 mbufq_enqueue(mq, m); 2553 } else 2554 m->m_pkthdr.vt_nrecs++; 2555 2556 /* 2557 * No further work needed if no source list in packet(s). 2558 */ 2559 if (!record_has_sources) 2560 return (nbytes); 2561 2562 /* 2563 * Whilst sources remain to be announced, we need to allocate 2564 * a new packet and fill out as many sources as will fit. 2565 * Always try for a cluster first. 2566 */ 2567 while (nims != NULL) { 2568 if (mbufq_full(mq)) { 2569 CTR1(KTR_MLD, "%s: outbound queue full", __func__); 2570 return (-ENOMEM); 2571 } 2572 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2573 if (m == NULL) 2574 m = m_gethdr(M_NOWAIT, MT_DATA); 2575 if (m == NULL) 2576 return (-ENOMEM); 2577 mld_save_context(m, ifp); 2578 md = m_getptr(m, 0, &off); 2579 pmr = (struct mldv2_record *)(mtod(md, uint8_t *) + off); 2580 CTR1(KTR_MLD, "%s: allocated next packet", __func__); 2581 2582 if (!m_append(m, sizeof(struct mldv2_record), (void *)&mr)) { 2583 if (m != m0) 2584 m_freem(m); 2585 CTR1(KTR_MLD, "%s: m_append() failed.", __func__); 2586 return (-ENOMEM); 2587 } 2588 m->m_pkthdr.vt_nrecs = 1; 2589 nbytes += sizeof(struct mldv2_record); 2590 2591 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2592 sizeof(struct mldv2_record)) / sizeof(struct in6_addr); 2593 2594 msrcs = 0; 2595 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2596 CTR2(KTR_MLD, "%s: visit node %s", 2597 __func__, ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2598 now = im6s_get_mode(inm, ims, 1); 2599 if ((now != mode) || 2600 (now == mode && 2601 (!use_block_allow && mode == MCAST_UNDEFINED))) { 2602 CTR1(KTR_MLD, "%s: skip node", __func__); 2603 continue; 2604 } 2605 if (is_source_query && ims->im6s_stp == 0) { 2606 CTR1(KTR_MLD, "%s: skip unrecorded node", 2607 __func__); 2608 continue; 2609 } 2610 CTR1(KTR_MLD, "%s: append node", __func__); 2611 if (!m_append(m, sizeof(struct in6_addr), 2612 (void *)&ims->im6s_addr)) { 2613 if (m != m0) 2614 m_freem(m); 2615 CTR1(KTR_MLD, "%s: m_append() failed.", 2616 __func__); 2617 return (-ENOMEM); 2618 } 2619 ++msrcs; 2620 if (msrcs == m0srcs) 2621 break; 2622 } 2623 pmr->mr_numsrc = htons(msrcs); 2624 nbytes += (msrcs * sizeof(struct in6_addr)); 2625 2626 CTR1(KTR_MLD, "%s: enqueueing next packet", __func__); 2627 mbufq_enqueue(mq, m); 2628 } 2629 2630 return (nbytes); 2631 } 2632 2633 /* 2634 * Type used to mark record pass completion. 2635 * We exploit the fact we can cast to this easily from the 2636 * current filter modes on each ip_msource node. 2637 */ 2638 typedef enum { 2639 REC_NONE = 0x00, /* MCAST_UNDEFINED */ 2640 REC_ALLOW = 0x01, /* MCAST_INCLUDE */ 2641 REC_BLOCK = 0x02, /* MCAST_EXCLUDE */ 2642 REC_FULL = REC_ALLOW | REC_BLOCK 2643 } rectype_t; 2644 2645 /* 2646 * Enqueue an MLDv2 filter list change to the given output queue. 2647 * 2648 * Source list filter state is held in an RB-tree. When the filter list 2649 * for a group is changed without changing its mode, we need to compute 2650 * the deltas between T0 and T1 for each source in the filter set, 2651 * and enqueue the appropriate ALLOW_NEW/BLOCK_OLD records. 2652 * 2653 * As we may potentially queue two record types, and the entire R-B tree 2654 * needs to be walked at once, we break this out into its own function 2655 * so we can generate a tightly packed queue of packets. 2656 * 2657 * XXX This could be written to only use one tree walk, although that makes 2658 * serializing into the mbuf chains a bit harder. For now we do two walks 2659 * which makes things easier on us, and it may or may not be harder on 2660 * the L2 cache. 2661 * 2662 * If successful the size of all data appended to the queue is returned, 2663 * otherwise an error code less than zero is returned, or zero if 2664 * no record(s) were appended. 2665 */ 2666 static int 2667 mld_v2_enqueue_filter_change(struct mbufq *mq, struct in6_multi *inm) 2668 { 2669 static const int MINRECLEN = 2670 sizeof(struct mldv2_record) + sizeof(struct in6_addr); 2671 struct ifnet *ifp; 2672 struct mldv2_record mr; 2673 struct mldv2_record *pmr; 2674 struct ip6_msource *ims, *nims; 2675 struct mbuf *m, *m0, *md; 2676 int m0srcs, nbytes, npbytes, off, rsrcs, schanged; 2677 uint8_t mode, now, then; 2678 rectype_t crt, drt, nrt; 2679 #ifdef KTR 2680 int nallow, nblock; 2681 char ip6tbuf[INET6_ADDRSTRLEN]; 2682 #endif 2683 2684 IN6_MULTI_LIST_LOCK_ASSERT(); 2685 2686 if (inm->in6m_nsrc == 0 || 2687 (inm->in6m_st[0].iss_asm > 0 && inm->in6m_st[1].iss_asm > 0)) 2688 return (0); 2689 2690 ifp = inm->in6m_ifp; /* interface */ 2691 mode = inm->in6m_st[1].iss_fmode; /* filter mode at t1 */ 2692 crt = REC_NONE; /* current group record type */ 2693 drt = REC_NONE; /* mask of completed group record types */ 2694 nrt = REC_NONE; /* record type for current node */ 2695 m0srcs = 0; /* # source which will fit in current mbuf chain */ 2696 npbytes = 0; /* # of bytes appended this packet */ 2697 nbytes = 0; /* # of bytes appended to group's state-change queue */ 2698 rsrcs = 0; /* # sources encoded in current record */ 2699 schanged = 0; /* # nodes encoded in overall filter change */ 2700 #ifdef KTR 2701 nallow = 0; /* # of source entries in ALLOW_NEW */ 2702 nblock = 0; /* # of source entries in BLOCK_OLD */ 2703 #endif 2704 nims = NULL; /* next tree node pointer */ 2705 2706 /* 2707 * For each possible filter record mode. 2708 * The first kind of source we encounter tells us which 2709 * is the first kind of record we start appending. 2710 * If a node transitioned to UNDEFINED at t1, its mode is treated 2711 * as the inverse of the group's filter mode. 2712 */ 2713 while (drt != REC_FULL) { 2714 do { 2715 m0 = mbufq_last(mq); 2716 if (m0 != NULL && 2717 (m0->m_pkthdr.vt_nrecs + 1 <= 2718 MLD_V2_REPORT_MAXRECS) && 2719 (m0->m_pkthdr.len + MINRECLEN) < 2720 (ifp->if_mtu - MLD_MTUSPACE)) { 2721 m = m0; 2722 m0srcs = (ifp->if_mtu - m0->m_pkthdr.len - 2723 sizeof(struct mldv2_record)) / 2724 sizeof(struct in6_addr); 2725 CTR1(KTR_MLD, 2726 "%s: use previous packet", __func__); 2727 } else { 2728 m = m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR); 2729 if (m == NULL) 2730 m = m_gethdr(M_NOWAIT, MT_DATA); 2731 if (m == NULL) { 2732 CTR1(KTR_MLD, 2733 "%s: m_get*() failed", __func__); 2734 return (-ENOMEM); 2735 } 2736 m->m_pkthdr.vt_nrecs = 0; 2737 mld_save_context(m, ifp); 2738 m0srcs = (ifp->if_mtu - MLD_MTUSPACE - 2739 sizeof(struct mldv2_record)) / 2740 sizeof(struct in6_addr); 2741 npbytes = 0; 2742 CTR1(KTR_MLD, 2743 "%s: allocated new packet", __func__); 2744 } 2745 /* 2746 * Append the MLD group record header to the 2747 * current packet's data area. 2748 * Recalculate pointer to free space for next 2749 * group record, in case m_append() allocated 2750 * a new mbuf or cluster. 2751 */ 2752 memset(&mr, 0, sizeof(mr)); 2753 mr.mr_addr = inm->in6m_addr; 2754 in6_clearscope(&mr.mr_addr); 2755 if (!m_append(m, sizeof(mr), (void *)&mr)) { 2756 if (m != m0) 2757 m_freem(m); 2758 CTR1(KTR_MLD, 2759 "%s: m_append() failed", __func__); 2760 return (-ENOMEM); 2761 } 2762 npbytes += sizeof(struct mldv2_record); 2763 if (m != m0) { 2764 /* new packet; offset in chain */ 2765 md = m_getptr(m, npbytes - 2766 sizeof(struct mldv2_record), &off); 2767 pmr = (struct mldv2_record *)(mtod(md, 2768 uint8_t *) + off); 2769 } else { 2770 /* current packet; offset from last append */ 2771 md = m_last(m); 2772 pmr = (struct mldv2_record *)(mtod(md, 2773 uint8_t *) + md->m_len - 2774 sizeof(struct mldv2_record)); 2775 } 2776 /* 2777 * Begin walking the tree for this record type 2778 * pass, or continue from where we left off 2779 * previously if we had to allocate a new packet. 2780 * Only report deltas in-mode at t1. 2781 * We need not report included sources as allowed 2782 * if we are in inclusive mode on the group, 2783 * however the converse is not true. 2784 */ 2785 rsrcs = 0; 2786 if (nims == NULL) { 2787 nims = RB_MIN(ip6_msource_tree, 2788 &inm->in6m_srcs); 2789 } 2790 RB_FOREACH_FROM(ims, ip6_msource_tree, nims) { 2791 CTR2(KTR_MLD, "%s: visit node %s", __func__, 2792 ip6_sprintf(ip6tbuf, &ims->im6s_addr)); 2793 now = im6s_get_mode(inm, ims, 1); 2794 then = im6s_get_mode(inm, ims, 0); 2795 CTR3(KTR_MLD, "%s: mode: t0 %d, t1 %d", 2796 __func__, then, now); 2797 if (now == then) { 2798 CTR1(KTR_MLD, 2799 "%s: skip unchanged", __func__); 2800 continue; 2801 } 2802 if (mode == MCAST_EXCLUDE && 2803 now == MCAST_INCLUDE) { 2804 CTR1(KTR_MLD, 2805 "%s: skip IN src on EX group", 2806 __func__); 2807 continue; 2808 } 2809 nrt = (rectype_t)now; 2810 if (nrt == REC_NONE) 2811 nrt = (rectype_t)(~mode & REC_FULL); 2812 if (schanged++ == 0) { 2813 crt = nrt; 2814 } else if (crt != nrt) 2815 continue; 2816 if (!m_append(m, sizeof(struct in6_addr), 2817 (void *)&ims->im6s_addr)) { 2818 if (m != m0) 2819 m_freem(m); 2820 CTR1(KTR_MLD, 2821 "%s: m_append() failed", __func__); 2822 return (-ENOMEM); 2823 } 2824 #ifdef KTR 2825 nallow += !!(crt == REC_ALLOW); 2826 nblock += !!(crt == REC_BLOCK); 2827 #endif 2828 if (++rsrcs == m0srcs) 2829 break; 2830 } 2831 /* 2832 * If we did not append any tree nodes on this 2833 * pass, back out of allocations. 2834 */ 2835 if (rsrcs == 0) { 2836 npbytes -= sizeof(struct mldv2_record); 2837 if (m != m0) { 2838 CTR1(KTR_MLD, 2839 "%s: m_free(m)", __func__); 2840 m_freem(m); 2841 } else { 2842 CTR1(KTR_MLD, 2843 "%s: m_adj(m, -mr)", __func__); 2844 m_adj(m, -((int)sizeof( 2845 struct mldv2_record))); 2846 } 2847 continue; 2848 } 2849 npbytes += (rsrcs * sizeof(struct in6_addr)); 2850 if (crt == REC_ALLOW) 2851 pmr->mr_type = MLD_ALLOW_NEW_SOURCES; 2852 else if (crt == REC_BLOCK) 2853 pmr->mr_type = MLD_BLOCK_OLD_SOURCES; 2854 pmr->mr_numsrc = htons(rsrcs); 2855 /* 2856 * Count the new group record, and enqueue this 2857 * packet if it wasn't already queued. 2858 */ 2859 m->m_pkthdr.vt_nrecs++; 2860 if (m != m0) 2861 mbufq_enqueue(mq, m); 2862 nbytes += npbytes; 2863 } while (nims != NULL); 2864 drt |= crt; 2865 crt = (~crt & REC_FULL); 2866 } 2867 2868 CTR3(KTR_MLD, "%s: queued %d ALLOW_NEW, %d BLOCK_OLD", __func__, 2869 nallow, nblock); 2870 2871 return (nbytes); 2872 } 2873 2874 static int 2875 mld_v2_merge_state_changes(struct in6_multi *inm, struct mbufq *scq) 2876 { 2877 struct mbufq *gq; 2878 struct mbuf *m; /* pending state-change */ 2879 struct mbuf *m0; /* copy of pending state-change */ 2880 struct mbuf *mt; /* last state-change in packet */ 2881 int docopy, domerge; 2882 u_int recslen; 2883 2884 docopy = 0; 2885 domerge = 0; 2886 recslen = 0; 2887 2888 IN6_MULTI_LIST_LOCK_ASSERT(); 2889 MLD_LOCK_ASSERT(); 2890 2891 /* 2892 * If there are further pending retransmissions, make a writable 2893 * copy of each queued state-change message before merging. 2894 */ 2895 if (inm->in6m_scrv > 0) 2896 docopy = 1; 2897 2898 gq = &inm->in6m_scq; 2899 #ifdef KTR 2900 if (mbufq_first(gq) == NULL) { 2901 CTR2(KTR_MLD, "%s: WARNING: queue for inm %p is empty", 2902 __func__, inm); 2903 } 2904 #endif 2905 2906 m = mbufq_first(gq); 2907 while (m != NULL) { 2908 /* 2909 * Only merge the report into the current packet if 2910 * there is sufficient space to do so; an MLDv2 report 2911 * packet may only contain 65,535 group records. 2912 * Always use a simple mbuf chain concatentation to do this, 2913 * as large state changes for single groups may have 2914 * allocated clusters. 2915 */ 2916 domerge = 0; 2917 mt = mbufq_last(scq); 2918 if (mt != NULL) { 2919 recslen = m_length(m, NULL); 2920 2921 if ((mt->m_pkthdr.vt_nrecs + 2922 m->m_pkthdr.vt_nrecs <= 2923 MLD_V2_REPORT_MAXRECS) && 2924 (mt->m_pkthdr.len + recslen <= 2925 (inm->in6m_ifp->if_mtu - MLD_MTUSPACE))) 2926 domerge = 1; 2927 } 2928 2929 if (!domerge && mbufq_full(gq)) { 2930 CTR2(KTR_MLD, 2931 "%s: outbound queue full, skipping whole packet %p", 2932 __func__, m); 2933 mt = m->m_nextpkt; 2934 if (!docopy) 2935 m_freem(m); 2936 m = mt; 2937 continue; 2938 } 2939 2940 if (!docopy) { 2941 CTR2(KTR_MLD, "%s: dequeueing %p", __func__, m); 2942 m0 = mbufq_dequeue(gq); 2943 m = m0->m_nextpkt; 2944 } else { 2945 CTR2(KTR_MLD, "%s: copying %p", __func__, m); 2946 m0 = m_dup(m, M_NOWAIT); 2947 if (m0 == NULL) 2948 return (ENOMEM); 2949 m0->m_nextpkt = NULL; 2950 m = m->m_nextpkt; 2951 } 2952 2953 if (!domerge) { 2954 CTR3(KTR_MLD, "%s: queueing %p to scq %p)", 2955 __func__, m0, scq); 2956 mbufq_enqueue(scq, m0); 2957 } else { 2958 struct mbuf *mtl; /* last mbuf of packet mt */ 2959 2960 CTR3(KTR_MLD, "%s: merging %p with ifscq tail %p)", 2961 __func__, m0, mt); 2962 2963 mtl = m_last(mt); 2964 m0->m_flags &= ~M_PKTHDR; 2965 mt->m_pkthdr.len += recslen; 2966 mt->m_pkthdr.vt_nrecs += 2967 m0->m_pkthdr.vt_nrecs; 2968 2969 mtl->m_next = m0; 2970 } 2971 } 2972 2973 return (0); 2974 } 2975 2976 /* 2977 * Respond to a pending MLDv2 General Query. 2978 */ 2979 static void 2980 mld_v2_dispatch_general_query(struct mld_ifsoftc *mli) 2981 { 2982 struct ifmultiaddr *ifma; 2983 struct ifnet *ifp; 2984 struct in6_multi *inm; 2985 int retval __unused; 2986 2987 NET_EPOCH_ASSERT(); 2988 IN6_MULTI_LIST_LOCK_ASSERT(); 2989 MLD_LOCK_ASSERT(); 2990 2991 KASSERT(mli->mli_version == MLD_VERSION_2, 2992 ("%s: called when version %d", __func__, mli->mli_version)); 2993 2994 /* 2995 * Check that there are some packets queued. If so, send them first. 2996 * For large number of groups the reply to general query can take 2997 * many packets, we should finish sending them before starting of 2998 * queuing the new reply. 2999 */ 3000 if (mbufq_len(&mli->mli_gq) != 0) 3001 goto send; 3002 3003 ifp = mli->mli_ifp; 3004 3005 CK_STAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { 3006 inm = in6m_ifmultiaddr_get_inm(ifma); 3007 if (inm == NULL) 3008 continue; 3009 KASSERT(ifp == inm->in6m_ifp, 3010 ("%s: inconsistent ifp", __func__)); 3011 3012 switch (inm->in6m_state) { 3013 case MLD_NOT_MEMBER: 3014 case MLD_SILENT_MEMBER: 3015 break; 3016 case MLD_REPORTING_MEMBER: 3017 case MLD_IDLE_MEMBER: 3018 case MLD_LAZY_MEMBER: 3019 case MLD_SLEEPING_MEMBER: 3020 case MLD_AWAKENING_MEMBER: 3021 inm->in6m_state = MLD_REPORTING_MEMBER; 3022 retval = mld_v2_enqueue_group_record(&mli->mli_gq, 3023 inm, 0, 0, 0, 0); 3024 CTR2(KTR_MLD, "%s: enqueue record = %d", 3025 __func__, retval); 3026 break; 3027 case MLD_G_QUERY_PENDING_MEMBER: 3028 case MLD_SG_QUERY_PENDING_MEMBER: 3029 case MLD_LEAVING_MEMBER: 3030 break; 3031 } 3032 } 3033 3034 send: 3035 mld_dispatch_queue(&mli->mli_gq, MLD_MAX_RESPONSE_BURST); 3036 3037 /* 3038 * Slew transmission of bursts over 500ms intervals. 3039 */ 3040 if (mbufq_first(&mli->mli_gq) != NULL) { 3041 mli->mli_v2_timer = 1 + MLD_RANDOM_DELAY( 3042 MLD_RESPONSE_BURST_INTERVAL); 3043 V_interface_timers_running6 = 1; 3044 } 3045 } 3046 3047 /* 3048 * Transmit the next pending message in the output queue. 3049 * 3050 * VIMAGE: Needs to store/restore vnet pointer on a per-mbuf-chain basis. 3051 * MRT: Nothing needs to be done, as MLD traffic is always local to 3052 * a link and uses a link-scope multicast address. 3053 */ 3054 static void 3055 mld_dispatch_packet(struct mbuf *m) 3056 { 3057 struct ip6_moptions im6o; 3058 struct ifnet *ifp; 3059 struct ifnet *oifp; 3060 struct mbuf *m0; 3061 struct mbuf *md; 3062 struct ip6_hdr *ip6; 3063 struct mld_hdr *mld; 3064 int error; 3065 int off; 3066 int type; 3067 uint32_t ifindex; 3068 3069 CTR2(KTR_MLD, "%s: transmit %p", __func__, m); 3070 NET_EPOCH_ASSERT(); 3071 3072 /* 3073 * Set VNET image pointer from enqueued mbuf chain 3074 * before doing anything else. Whilst we use interface 3075 * indexes to guard against interface detach, they are 3076 * unique to each VIMAGE and must be retrieved. 3077 */ 3078 ifindex = mld_restore_context(m); 3079 3080 /* 3081 * Check if the ifnet still exists. This limits the scope of 3082 * any race in the absence of a global ifp lock for low cost 3083 * (an array lookup). 3084 */ 3085 ifp = ifnet_byindex(ifindex); 3086 if (ifp == NULL) { 3087 CTR3(KTR_MLD, "%s: dropped %p as ifindex %u went away.", 3088 __func__, m, ifindex); 3089 m_freem(m); 3090 IP6STAT_INC(ip6s_noroute); 3091 goto out; 3092 } 3093 3094 im6o.im6o_multicast_hlim = 1; 3095 im6o.im6o_multicast_loop = (V_ip6_mrouter != NULL); 3096 im6o.im6o_multicast_ifp = ifp; 3097 3098 if (m->m_flags & M_MLDV1) { 3099 m0 = m; 3100 } else { 3101 m0 = mld_v2_encap_report(ifp, m); 3102 if (m0 == NULL) { 3103 CTR2(KTR_MLD, "%s: dropped %p", __func__, m); 3104 IP6STAT_INC(ip6s_odropped); 3105 goto out; 3106 } 3107 } 3108 3109 mld_scrub_context(m0); 3110 m_clrprotoflags(m); 3111 m0->m_pkthdr.rcvif = V_loif; 3112 3113 ip6 = mtod(m0, struct ip6_hdr *); 3114 #if 0 3115 (void)in6_setscope(&ip6->ip6_dst, ifp, NULL); /* XXX LOR */ 3116 #else 3117 /* 3118 * XXX XXX Break some KPI rules to prevent an LOR which would 3119 * occur if we called in6_setscope() at transmission. 3120 * See comments at top of file. 3121 */ 3122 MLD_EMBEDSCOPE(&ip6->ip6_dst, ifp->if_index); 3123 #endif 3124 3125 /* 3126 * Retrieve the ICMPv6 type before handoff to ip6_output(), 3127 * so we can bump the stats. 3128 */ 3129 md = m_getptr(m0, sizeof(struct ip6_hdr), &off); 3130 mld = (struct mld_hdr *)(mtod(md, uint8_t *) + off); 3131 type = mld->mld_type; 3132 3133 oifp = NULL; 3134 error = ip6_output(m0, &mld_po, NULL, IPV6_UNSPECSRC, &im6o, 3135 &oifp, NULL); 3136 if (error) { 3137 CTR3(KTR_MLD, "%s: ip6_output(%p) = %d", __func__, m0, error); 3138 goto out; 3139 } 3140 ICMP6STAT_INC(icp6s_outhist[type]); 3141 if (oifp != NULL) { 3142 icmp6_ifstat_inc(oifp, ifs6_out_msg); 3143 switch (type) { 3144 case MLD_LISTENER_REPORT: 3145 case MLDV2_LISTENER_REPORT: 3146 icmp6_ifstat_inc(oifp, ifs6_out_mldreport); 3147 break; 3148 case MLD_LISTENER_DONE: 3149 icmp6_ifstat_inc(oifp, ifs6_out_mlddone); 3150 break; 3151 } 3152 } 3153 out: 3154 return; 3155 } 3156 3157 /* 3158 * Encapsulate an MLDv2 report. 3159 * 3160 * KAME IPv6 requires that hop-by-hop options be passed separately, 3161 * and that the IPv6 header be prepended in a separate mbuf. 3162 * 3163 * Returns a pointer to the new mbuf chain head, or NULL if the 3164 * allocation failed. 3165 */ 3166 static struct mbuf * 3167 mld_v2_encap_report(struct ifnet *ifp, struct mbuf *m) 3168 { 3169 struct mbuf *mh; 3170 struct mldv2_report *mld; 3171 struct ip6_hdr *ip6; 3172 struct in6_ifaddr *ia; 3173 int mldreclen; 3174 3175 KASSERT(ifp != NULL, ("%s: null ifp", __func__)); 3176 KASSERT((m->m_flags & M_PKTHDR), 3177 ("%s: mbuf chain %p is !M_PKTHDR", __func__, m)); 3178 3179 /* 3180 * RFC3590: OK to send as :: or tentative during DAD. 3181 */ 3182 NET_EPOCH_ASSERT(); 3183 ia = in6ifa_ifpforlinklocal(ifp, IN6_IFF_NOTREADY|IN6_IFF_ANYCAST); 3184 if (ia == NULL) 3185 CTR1(KTR_MLD, "%s: warning: ia is NULL", __func__); 3186 3187 mh = m_gethdr(M_NOWAIT, MT_DATA); 3188 if (mh == NULL) { 3189 if (ia != NULL) 3190 ifa_free(&ia->ia_ifa); 3191 m_freem(m); 3192 return (NULL); 3193 } 3194 M_ALIGN(mh, sizeof(struct ip6_hdr) + sizeof(struct mldv2_report)); 3195 3196 mldreclen = m_length(m, NULL); 3197 CTR2(KTR_MLD, "%s: mldreclen is %d", __func__, mldreclen); 3198 3199 mh->m_len = sizeof(struct ip6_hdr) + sizeof(struct mldv2_report); 3200 mh->m_pkthdr.len = sizeof(struct ip6_hdr) + 3201 sizeof(struct mldv2_report) + mldreclen; 3202 3203 ip6 = mtod(mh, struct ip6_hdr *); 3204 ip6->ip6_flow = 0; 3205 ip6->ip6_vfc &= ~IPV6_VERSION_MASK; 3206 ip6->ip6_vfc |= IPV6_VERSION; 3207 ip6->ip6_nxt = IPPROTO_ICMPV6; 3208 ip6->ip6_src = ia ? ia->ia_addr.sin6_addr : in6addr_any; 3209 if (ia != NULL) 3210 ifa_free(&ia->ia_ifa); 3211 ip6->ip6_dst = in6addr_linklocal_allv2routers; 3212 /* scope ID will be set in netisr */ 3213 3214 mld = (struct mldv2_report *)(ip6 + 1); 3215 mld->mld_type = MLDV2_LISTENER_REPORT; 3216 mld->mld_code = 0; 3217 mld->mld_cksum = 0; 3218 mld->mld_v2_reserved = 0; 3219 mld->mld_v2_numrecs = htons(m->m_pkthdr.vt_nrecs); 3220 m->m_pkthdr.vt_nrecs = 0; 3221 3222 mh->m_next = m; 3223 mld->mld_cksum = in6_cksum(mh, IPPROTO_ICMPV6, 3224 sizeof(struct ip6_hdr), sizeof(struct mldv2_report) + mldreclen); 3225 return (mh); 3226 } 3227 3228 #ifdef KTR 3229 static char * 3230 mld_rec_type_to_str(const int type) 3231 { 3232 3233 switch (type) { 3234 case MLD_CHANGE_TO_EXCLUDE_MODE: 3235 return "TO_EX"; 3236 break; 3237 case MLD_CHANGE_TO_INCLUDE_MODE: 3238 return "TO_IN"; 3239 break; 3240 case MLD_MODE_IS_EXCLUDE: 3241 return "MODE_EX"; 3242 break; 3243 case MLD_MODE_IS_INCLUDE: 3244 return "MODE_IN"; 3245 break; 3246 case MLD_ALLOW_NEW_SOURCES: 3247 return "ALLOW_NEW"; 3248 break; 3249 case MLD_BLOCK_OLD_SOURCES: 3250 return "BLOCK_OLD"; 3251 break; 3252 default: 3253 break; 3254 } 3255 return "unknown"; 3256 } 3257 #endif 3258 3259 static void 3260 mld_init(void *unused __unused) 3261 { 3262 3263 CTR1(KTR_MLD, "%s: initializing", __func__); 3264 MLD_LOCK_INIT(); 3265 3266 ip6_initpktopts(&mld_po); 3267 mld_po.ip6po_hlim = 1; 3268 mld_po.ip6po_hbh = &mld_ra.hbh; 3269 mld_po.ip6po_prefer_tempaddr = IP6PO_TEMPADDR_NOTPREFER; 3270 mld_po.ip6po_flags = IP6PO_DONTFRAG; 3271 } 3272 SYSINIT(mld_init, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_init, NULL); 3273 3274 static void 3275 mld_uninit(void *unused __unused) 3276 { 3277 3278 CTR1(KTR_MLD, "%s: tearing down", __func__); 3279 MLD_LOCK_DESTROY(); 3280 } 3281 SYSUNINIT(mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_MIDDLE, mld_uninit, NULL); 3282 3283 static void 3284 vnet_mld_init(const void *unused __unused) 3285 { 3286 3287 CTR1(KTR_MLD, "%s: initializing", __func__); 3288 3289 LIST_INIT(&V_mli_head); 3290 } 3291 VNET_SYSINIT(vnet_mld_init, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_init, 3292 NULL); 3293 3294 static void 3295 vnet_mld_uninit(const void *unused __unused) 3296 { 3297 3298 /* This can happen if we shutdown the network stack. */ 3299 CTR1(KTR_MLD, "%s: tearing down", __func__); 3300 } 3301 VNET_SYSUNINIT(vnet_mld_uninit, SI_SUB_PROTO_MC, SI_ORDER_ANY, vnet_mld_uninit, 3302 NULL); 3303 3304 static int 3305 mld_modevent(module_t mod, int type, void *unused __unused) 3306 { 3307 3308 switch (type) { 3309 case MOD_LOAD: 3310 case MOD_UNLOAD: 3311 break; 3312 default: 3313 return (EOPNOTSUPP); 3314 } 3315 return (0); 3316 } 3317 3318 static moduledata_t mld_mod = { 3319 "mld", 3320 mld_modevent, 3321 0 3322 }; 3323 DECLARE_MODULE(mld, mld_mod, SI_SUB_PROTO_MC, SI_ORDER_ANY); 3324