1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static void 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 223 224 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 225 in6_delayed_cksum(m, plen - optlen, 226 sizeof(struct ip6_hdr) + optlen); 227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 228 } 229 #if defined(SCTP) || defined(SCTP_SUPPORT) 230 if (csum_flags & CSUM_SCTP_IPV6) { 231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 233 } 234 #endif 235 } 236 237 int 238 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 239 int fraglen , uint32_t id) 240 { 241 struct mbuf *m, **mnext, *m_frgpart; 242 struct ip6_hdr *ip6, *mhip6; 243 struct ip6_frag *ip6f; 244 int off; 245 int error; 246 int tlen = m0->m_pkthdr.len; 247 248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 249 250 m = m0; 251 ip6 = mtod(m, struct ip6_hdr *); 252 mnext = &m->m_nextpkt; 253 254 for (off = hlen; off < tlen; off += fraglen) { 255 m = m_gethdr(M_NOWAIT, MT_DATA); 256 if (!m) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 261 /* 262 * Make sure the complete packet header gets copied 263 * from the originating mbuf to the newly created 264 * mbuf. This also ensures that existing firewall 265 * classification(s), VLAN tags and so on get copied 266 * to the resulting fragmented packet(s): 267 */ 268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 269 m_free(m); 270 IP6STAT_INC(ip6s_odropped); 271 return (ENOBUFS); 272 } 273 274 *mnext = m; 275 mnext = &m->m_nextpkt; 276 m->m_data += max_linkhdr; 277 mhip6 = mtod(m, struct ip6_hdr *); 278 *mhip6 = *ip6; 279 m->m_len = sizeof(*mhip6); 280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 281 if (error) { 282 IP6STAT_INC(ip6s_odropped); 283 return (error); 284 } 285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 286 if (off + fraglen >= tlen) 287 fraglen = tlen - off; 288 else 289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 291 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 293 IP6STAT_INC(ip6s_odropped); 294 return (ENOBUFS); 295 } 296 m_cat(m, m_frgpart); 297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 298 ip6f->ip6f_reserved = 0; 299 ip6f->ip6f_ident = id; 300 ip6f->ip6f_nxt = nextproto; 301 IP6STAT_INC(ip6s_ofragments); 302 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 303 } 304 305 return (0); 306 } 307 308 static int 309 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 311 bool stamp_tag) 312 { 313 #ifdef KERN_TLS 314 struct ktls_session *tls = NULL; 315 #endif 316 struct m_snd_tag *mst; 317 int error; 318 319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 320 mst = NULL; 321 322 #ifdef KERN_TLS 323 /* 324 * If this is an unencrypted TLS record, save a reference to 325 * the record. This local reference is used to call 326 * ktls_output_eagain after the mbuf has been freed (thus 327 * dropping the mbuf's reference) in if_output. 328 */ 329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 330 tls = ktls_hold(m->m_next->m_epg_tls); 331 mst = tls->snd_tag; 332 333 /* 334 * If a TLS session doesn't have a valid tag, it must 335 * have had an earlier ifp mismatch, so drop this 336 * packet. 337 */ 338 if (mst == NULL) { 339 error = EAGAIN; 340 goto done; 341 } 342 /* 343 * Always stamp tags that include NIC ktls. 344 */ 345 stamp_tag = true; 346 } 347 #endif 348 #ifdef RATELIMIT 349 if (inp != NULL && mst == NULL) { 350 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 351 (inp->inp_snd_tag != NULL && 352 inp->inp_snd_tag->ifp != ifp)) 353 in_pcboutput_txrtlmt(inp, ifp, m); 354 355 if (inp->inp_snd_tag != NULL) 356 mst = inp->inp_snd_tag; 357 } 358 #endif 359 if (stamp_tag && mst != NULL) { 360 KASSERT(m->m_pkthdr.rcvif == NULL, 361 ("trying to add a send tag to a forwarded packet")); 362 if (mst->ifp != ifp) { 363 error = EAGAIN; 364 goto done; 365 } 366 367 /* stamp send tag on mbuf */ 368 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 369 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 370 } 371 372 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 373 374 done: 375 /* Check for route change invalidating send tags. */ 376 #ifdef KERN_TLS 377 if (tls != NULL) { 378 if (error == EAGAIN) 379 error = ktls_output_eagain(inp, tls); 380 ktls_free(tls); 381 } 382 #endif 383 #ifdef RATELIMIT 384 if (error == EAGAIN) 385 in_pcboutput_eagain(inp); 386 #endif 387 return (error); 388 } 389 390 /* 391 * IP6 output. 392 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 393 * nxt, hlim, src, dst). 394 * This function may modify ver and hlim only. 395 * The mbuf chain containing the packet will be freed. 396 * The mbuf opt, if present, will not be freed. 397 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 398 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 399 * then result of route lookup is stored in ro->ro_nh. 400 * 401 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 402 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 403 * 404 * ifpp - XXX: just for statistics 405 */ 406 int 407 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 408 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 409 struct ifnet **ifpp, struct inpcb *inp) 410 { 411 struct ip6_hdr *ip6; 412 struct ifnet *ifp, *origifp; 413 struct mbuf *m = m0; 414 struct mbuf *mprev; 415 struct route_in6 *ro_pmtu; 416 struct nhop_object *nh; 417 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 418 struct in6_addr odst; 419 u_char *nexthdrp; 420 int tlen, len; 421 int error = 0; 422 int vlan_pcp = -1; 423 struct in6_ifaddr *ia = NULL; 424 u_long mtu; 425 int alwaysfrag, dontfrag; 426 u_int32_t optlen, plen = 0, unfragpartlen; 427 struct ip6_exthdrs exthdrs; 428 struct in6_addr src0, dst0; 429 u_int32_t zone; 430 bool hdrsplit; 431 int sw_csum, tso; 432 int needfiblookup; 433 uint32_t fibnum; 434 struct m_tag *fwd_tag = NULL; 435 uint32_t id; 436 437 NET_EPOCH_ASSERT(); 438 439 if (inp != NULL) { 440 INP_LOCK_ASSERT(inp); 441 M_SETFIB(m, inp->inp_inc.inc_fibnum); 442 if ((flags & IP_NODEFAULTFLOWID) == 0) { 443 /* Unconditionally set flowid. */ 444 m->m_pkthdr.flowid = inp->inp_flowid; 445 M_HASHTYPE_SET(m, inp->inp_flowtype); 446 } 447 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 448 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 449 INP_2PCP_SHIFT; 450 #ifdef NUMA 451 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 452 #endif 453 } 454 455 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 456 /* 457 * IPSec checking which handles several cases. 458 * FAST IPSEC: We re-injected the packet. 459 * XXX: need scope argument. 460 */ 461 if (IPSEC_ENABLED(ipv6)) { 462 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 463 if (error == EINPROGRESS) 464 error = 0; 465 goto done; 466 } 467 } 468 #endif /* IPSEC */ 469 470 /* Source address validation. */ 471 ip6 = mtod(m, struct ip6_hdr *); 472 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 473 (flags & IPV6_UNSPECSRC) == 0) { 474 error = EOPNOTSUPP; 475 IP6STAT_INC(ip6s_badscope); 476 goto bad; 477 } 478 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 479 error = EOPNOTSUPP; 480 IP6STAT_INC(ip6s_badscope); 481 goto bad; 482 } 483 484 /* 485 * If we are given packet options to add extension headers prepare them. 486 * Calculate the total length of the extension header chain. 487 * Keep the length of the unfragmentable part for fragmentation. 488 */ 489 bzero(&exthdrs, sizeof(exthdrs)); 490 optlen = 0; 491 unfragpartlen = sizeof(struct ip6_hdr); 492 if (opt) { 493 /* Hop-by-Hop options header. */ 494 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 495 496 /* Destination options header (1st part). */ 497 if (opt->ip6po_rthdr) { 498 #ifndef RTHDR_SUPPORT_IMPLEMENTED 499 /* 500 * If there is a routing header, discard the packet 501 * right away here. RH0/1 are obsolete and we do not 502 * currently support RH2/3/4. 503 * People trying to use RH253/254 may want to disable 504 * this check. 505 * The moment we do support any routing header (again) 506 * this block should check the routing type more 507 * selectively. 508 */ 509 error = EINVAL; 510 goto bad; 511 #endif 512 513 /* 514 * Destination options header (1st part). 515 * This only makes sense with a routing header. 516 * See Section 9.2 of RFC 3542. 517 * Disabling this part just for MIP6 convenience is 518 * a bad idea. We need to think carefully about a 519 * way to make the advanced API coexist with MIP6 520 * options, which might automatically be inserted in 521 * the kernel. 522 */ 523 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 524 optlen); 525 } 526 /* Routing header. */ 527 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 528 529 unfragpartlen += optlen; 530 531 /* 532 * NOTE: we don't add AH/ESP length here (done in 533 * ip6_ipsec_output()). 534 */ 535 536 /* Destination options header (2nd part). */ 537 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 538 } 539 540 /* 541 * If there is at least one extension header, 542 * separate IP6 header from the payload. 543 */ 544 hdrsplit = false; 545 if (optlen) { 546 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 547 m = NULL; 548 goto freehdrs; 549 } 550 m = exthdrs.ip6e_ip6; 551 ip6 = mtod(m, struct ip6_hdr *); 552 hdrsplit = true; 553 } 554 555 /* Adjust mbuf packet header length. */ 556 m->m_pkthdr.len += optlen; 557 plen = m->m_pkthdr.len - sizeof(*ip6); 558 559 /* If this is a jumbo payload, insert a jumbo payload option. */ 560 if (plen > IPV6_MAXPACKET) { 561 if (!hdrsplit) { 562 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 563 m = NULL; 564 goto freehdrs; 565 } 566 m = exthdrs.ip6e_ip6; 567 ip6 = mtod(m, struct ip6_hdr *); 568 hdrsplit = true; 569 } 570 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 571 goto freehdrs; 572 ip6->ip6_plen = 0; 573 } else 574 ip6->ip6_plen = htons(plen); 575 nexthdrp = &ip6->ip6_nxt; 576 577 if (optlen) { 578 /* 579 * Concatenate headers and fill in next header fields. 580 * Here we have, on "m" 581 * IPv6 payload 582 * and we insert headers accordingly. 583 * Finally, we should be getting: 584 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 585 * 586 * During the header composing process "m" points to IPv6 587 * header. "mprev" points to an extension header prior to esp. 588 */ 589 mprev = m; 590 591 /* 592 * We treat dest2 specially. This makes IPsec processing 593 * much easier. The goal here is to make mprev point the 594 * mbuf prior to dest2. 595 * 596 * Result: IPv6 dest2 payload. 597 * m and mprev will point to IPv6 header. 598 */ 599 if (exthdrs.ip6e_dest2) { 600 if (!hdrsplit) 601 panic("%s:%d: assumption failed: " 602 "hdr not split: hdrsplit %d exthdrs %p", 603 __func__, __LINE__, hdrsplit, &exthdrs); 604 exthdrs.ip6e_dest2->m_next = m->m_next; 605 m->m_next = exthdrs.ip6e_dest2; 606 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 607 ip6->ip6_nxt = IPPROTO_DSTOPTS; 608 } 609 610 /* 611 * Result: IPv6 hbh dest1 rthdr dest2 payload. 612 * m will point to IPv6 header. mprev will point to the 613 * extension header prior to dest2 (rthdr in the above case). 614 */ 615 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 616 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 617 IPPROTO_DSTOPTS); 618 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 619 IPPROTO_ROUTING); 620 } 621 622 IP6STAT_INC(ip6s_localout); 623 624 /* Route packet. */ 625 ro_pmtu = ro; 626 if (opt && opt->ip6po_rthdr) 627 ro = &opt->ip6po_route; 628 if (ro != NULL) 629 dst = (struct sockaddr_in6 *)&ro->ro_dst; 630 else 631 dst = &sin6; 632 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 633 634 again: 635 /* 636 * If specified, try to fill in the traffic class field. 637 * Do not override if a non-zero value is already set. 638 * We check the diffserv field and the ECN field separately. 639 */ 640 if (opt && opt->ip6po_tclass >= 0) { 641 int mask = 0; 642 643 if (IPV6_DSCP(ip6) == 0) 644 mask |= 0xfc; 645 if (IPV6_ECN(ip6) == 0) 646 mask |= 0x03; 647 if (mask != 0) 648 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 649 } 650 651 /* Fill in or override the hop limit field, if necessary. */ 652 if (opt && opt->ip6po_hlim != -1) 653 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 654 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 655 if (im6o != NULL) 656 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 657 else 658 ip6->ip6_hlim = V_ip6_defmcasthlim; 659 } 660 661 if (ro == NULL || ro->ro_nh == NULL) { 662 bzero(dst, sizeof(*dst)); 663 dst->sin6_family = AF_INET6; 664 dst->sin6_len = sizeof(*dst); 665 dst->sin6_addr = ip6->ip6_dst; 666 } 667 /* 668 * Validate route against routing table changes. 669 * Make sure that the address family is set in route. 670 */ 671 nh = NULL; 672 ifp = NULL; 673 mtu = 0; 674 if (ro != NULL) { 675 if (ro->ro_nh != NULL && inp != NULL) { 676 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 677 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 678 fibnum); 679 } 680 if (ro->ro_nh != NULL && fwd_tag == NULL && 681 (!NH_IS_VALID(ro->ro_nh) || 682 ro->ro_dst.sin6_family != AF_INET6 || 683 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 684 RO_INVALIDATE_CACHE(ro); 685 686 if (ro->ro_nh != NULL && fwd_tag == NULL && 687 ro->ro_dst.sin6_family == AF_INET6 && 688 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 689 nh = ro->ro_nh; 690 ifp = nh->nh_ifp; 691 } else { 692 if (ro->ro_lle) 693 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 694 ro->ro_lle = NULL; 695 if (fwd_tag == NULL) { 696 bzero(&dst_sa, sizeof(dst_sa)); 697 dst_sa.sin6_family = AF_INET6; 698 dst_sa.sin6_len = sizeof(dst_sa); 699 dst_sa.sin6_addr = ip6->ip6_dst; 700 } 701 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 702 &nh, fibnum, m->m_pkthdr.flowid); 703 if (error != 0) { 704 IP6STAT_INC(ip6s_noroute); 705 if (ifp != NULL) 706 in6_ifstat_inc(ifp, ifs6_out_discard); 707 goto bad; 708 } 709 if (ifp != NULL) 710 mtu = ifp->if_mtu; 711 } 712 if (nh == NULL) { 713 /* 714 * If in6_selectroute() does not return a nexthop 715 * dst may not have been updated. 716 */ 717 *dst = dst_sa; /* XXX */ 718 } else { 719 if (nh->nh_flags & NHF_HOST) 720 mtu = nh->nh_mtu; 721 ia = (struct in6_ifaddr *)(nh->nh_ifa); 722 counter_u64_add(nh->nh_pksent, 1); 723 } 724 } else { 725 struct nhop_object *nh; 726 struct in6_addr kdst; 727 uint32_t scopeid; 728 729 if (fwd_tag == NULL) { 730 bzero(&dst_sa, sizeof(dst_sa)); 731 dst_sa.sin6_family = AF_INET6; 732 dst_sa.sin6_len = sizeof(dst_sa); 733 dst_sa.sin6_addr = ip6->ip6_dst; 734 } 735 736 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 737 im6o != NULL && 738 (ifp = im6o->im6o_multicast_ifp) != NULL) { 739 /* We do not need a route lookup. */ 740 *dst = dst_sa; /* XXX */ 741 goto nonh6lookup; 742 } 743 744 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 745 746 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 747 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 748 if (scopeid > 0) { 749 ifp = in6_getlinkifnet(scopeid); 750 if (ifp == NULL) { 751 error = EHOSTUNREACH; 752 goto bad; 753 } 754 *dst = dst_sa; /* XXX */ 755 goto nonh6lookup; 756 } 757 } 758 759 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 760 m->m_pkthdr.flowid); 761 if (nh == NULL) { 762 IP6STAT_INC(ip6s_noroute); 763 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 764 error = EHOSTUNREACH;; 765 goto bad; 766 } 767 768 ifp = nh->nh_ifp; 769 mtu = nh->nh_mtu; 770 ia = ifatoia6(nh->nh_ifa); 771 if (nh->nh_flags & NHF_GATEWAY) 772 dst->sin6_addr = nh->gw6_sa.sin6_addr; 773 nonh6lookup: 774 ; 775 } 776 777 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 778 if ((flags & IPV6_FORWARDING) == 0) { 779 /* XXX: the FORWARDING flag can be set for mrouting. */ 780 in6_ifstat_inc(ifp, ifs6_out_request); 781 } 782 783 /* Setup data structures for scope ID checks. */ 784 src0 = ip6->ip6_src; 785 bzero(&src_sa, sizeof(src_sa)); 786 src_sa.sin6_family = AF_INET6; 787 src_sa.sin6_len = sizeof(src_sa); 788 src_sa.sin6_addr = ip6->ip6_src; 789 790 dst0 = ip6->ip6_dst; 791 /* Re-initialize to be sure. */ 792 bzero(&dst_sa, sizeof(dst_sa)); 793 dst_sa.sin6_family = AF_INET6; 794 dst_sa.sin6_len = sizeof(dst_sa); 795 dst_sa.sin6_addr = ip6->ip6_dst; 796 797 /* Check for valid scope ID. */ 798 if (in6_setscope(&src0, ifp, &zone) == 0 && 799 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 800 in6_setscope(&dst0, ifp, &zone) == 0 && 801 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 802 /* 803 * The outgoing interface is in the zone of the source 804 * and destination addresses. 805 * 806 * Because the loopback interface cannot receive 807 * packets with a different scope ID than its own, 808 * there is a trick to pretend the outgoing packet 809 * was received by the real network interface, by 810 * setting "origifp" different from "ifp". This is 811 * only allowed when "ifp" is a loopback network 812 * interface. Refer to code in nd6_output_ifp() for 813 * more details. 814 */ 815 origifp = ifp; 816 817 /* 818 * We should use ia_ifp to support the case of sending 819 * packets to an address of our own. 820 */ 821 if (ia != NULL && ia->ia_ifp) 822 ifp = ia->ia_ifp; 823 824 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 825 sa6_recoverscope(&src_sa) != 0 || 826 sa6_recoverscope(&dst_sa) != 0 || 827 dst_sa.sin6_scope_id == 0 || 828 (src_sa.sin6_scope_id != 0 && 829 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 830 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 831 /* 832 * If the destination network interface is not a 833 * loopback interface, or the destination network 834 * address has no scope ID, or the source address has 835 * a scope ID set which is different from the 836 * destination address one, or there is no network 837 * interface representing this scope ID, the address 838 * pair is considered invalid. 839 */ 840 IP6STAT_INC(ip6s_badscope); 841 in6_ifstat_inc(ifp, ifs6_out_discard); 842 if (error == 0) 843 error = EHOSTUNREACH; /* XXX */ 844 goto bad; 845 } 846 /* All scope ID checks are successful. */ 847 848 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 849 if (opt && opt->ip6po_nextroute.ro_nh) { 850 /* 851 * The nexthop is explicitly specified by the 852 * application. We assume the next hop is an IPv6 853 * address. 854 */ 855 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 856 } 857 else if ((nh->nh_flags & NHF_GATEWAY)) 858 dst = &nh->gw6_sa; 859 } 860 861 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 862 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 863 } else { 864 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 865 in6_ifstat_inc(ifp, ifs6_out_mcast); 866 867 /* Confirm that the outgoing interface supports multicast. */ 868 if (!(ifp->if_flags & IFF_MULTICAST)) { 869 IP6STAT_INC(ip6s_noroute); 870 in6_ifstat_inc(ifp, ifs6_out_discard); 871 error = ENETUNREACH; 872 goto bad; 873 } 874 if ((im6o == NULL && in6_mcast_loop) || 875 (im6o && im6o->im6o_multicast_loop)) { 876 /* 877 * Loop back multicast datagram if not expressly 878 * forbidden to do so, even if we have not joined 879 * the address; protocols will filter it later, 880 * thus deferring a hash lookup and lock acquisition 881 * at the expense of an m_copym(). 882 */ 883 ip6_mloopback(ifp, m); 884 } else { 885 /* 886 * If we are acting as a multicast router, perform 887 * multicast forwarding as if the packet had just 888 * arrived on the interface to which we are about 889 * to send. The multicast forwarding function 890 * recursively calls this function, using the 891 * IPV6_FORWARDING flag to prevent infinite recursion. 892 * 893 * Multicasts that are looped back by ip6_mloopback(), 894 * above, will be forwarded by the ip6_input() routine, 895 * if necessary. 896 */ 897 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 898 /* 899 * XXX: ip6_mforward expects that rcvif is NULL 900 * when it is called from the originating path. 901 * However, it may not always be the case. 902 */ 903 m->m_pkthdr.rcvif = NULL; 904 if (ip6_mforward(ip6, ifp, m) != 0) { 905 m_freem(m); 906 goto done; 907 } 908 } 909 } 910 /* 911 * Multicasts with a hoplimit of zero may be looped back, 912 * above, but must not be transmitted on a network. 913 * Also, multicasts addressed to the loopback interface 914 * are not sent -- the above call to ip6_mloopback() will 915 * loop back a copy if this host actually belongs to the 916 * destination group on the loopback interface. 917 */ 918 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 919 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 920 m_freem(m); 921 goto done; 922 } 923 } 924 925 /* 926 * Fill the outgoing inteface to tell the upper layer 927 * to increment per-interface statistics. 928 */ 929 if (ifpp) 930 *ifpp = ifp; 931 932 /* Determine path MTU. */ 933 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 934 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 935 goto bad; 936 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 937 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 938 ifp, alwaysfrag, fibnum)); 939 940 /* 941 * The caller of this function may specify to use the minimum MTU 942 * in some cases. 943 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 944 * setting. The logic is a bit complicated; by default, unicast 945 * packets will follow path MTU while multicast packets will be sent at 946 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 947 * including unicast ones will be sent at the minimum MTU. Multicast 948 * packets will always be sent at the minimum MTU unless 949 * IP6PO_MINMTU_DISABLE is explicitly specified. 950 * See RFC 3542 for more details. 951 */ 952 if (mtu > IPV6_MMTU) { 953 if ((flags & IPV6_MINMTU)) 954 mtu = IPV6_MMTU; 955 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 956 mtu = IPV6_MMTU; 957 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 958 (opt == NULL || 959 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 960 mtu = IPV6_MMTU; 961 } 962 } 963 964 /* 965 * Clear embedded scope identifiers if necessary. 966 * in6_clearscope() will touch the addresses only when necessary. 967 */ 968 in6_clearscope(&ip6->ip6_src); 969 in6_clearscope(&ip6->ip6_dst); 970 971 /* 972 * If the outgoing packet contains a hop-by-hop options header, 973 * it must be examined and processed even by the source node. 974 * (RFC 2460, section 4.) 975 */ 976 if (exthdrs.ip6e_hbh) { 977 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 978 u_int32_t dummy; /* XXX unused */ 979 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 980 981 #ifdef DIAGNOSTIC 982 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 983 panic("ip6e_hbh is not contiguous"); 984 #endif 985 /* 986 * XXX: if we have to send an ICMPv6 error to the sender, 987 * we need the M_LOOP flag since icmp6_error() expects 988 * the IPv6 and the hop-by-hop options header are 989 * contiguous unless the flag is set. 990 */ 991 m->m_flags |= M_LOOP; 992 m->m_pkthdr.rcvif = ifp; 993 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 994 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 995 &dummy, &plen) < 0) { 996 /* m was already freed at this point. */ 997 error = EINVAL;/* better error? */ 998 goto done; 999 } 1000 m->m_flags &= ~M_LOOP; /* XXX */ 1001 m->m_pkthdr.rcvif = NULL; 1002 } 1003 1004 /* Jump over all PFIL processing if hooks are not active. */ 1005 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1006 goto passout; 1007 1008 odst = ip6->ip6_dst; 1009 /* Run through list of hooks for output packets. */ 1010 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1011 case PFIL_PASS: 1012 ip6 = mtod(m, struct ip6_hdr *); 1013 break; 1014 case PFIL_DROPPED: 1015 error = EACCES; 1016 /* FALLTHROUGH */ 1017 case PFIL_CONSUMED: 1018 goto done; 1019 } 1020 1021 needfiblookup = 0; 1022 /* See if destination IP address was changed by packet filter. */ 1023 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1024 m->m_flags |= M_SKIP_FIREWALL; 1025 /* If destination is now ourself drop to ip6_input(). */ 1026 if (in6_localip(&ip6->ip6_dst)) { 1027 m->m_flags |= M_FASTFWD_OURS; 1028 if (m->m_pkthdr.rcvif == NULL) 1029 m->m_pkthdr.rcvif = V_loif; 1030 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1031 m->m_pkthdr.csum_flags |= 1032 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1033 m->m_pkthdr.csum_data = 0xffff; 1034 } 1035 #if defined(SCTP) || defined(SCTP_SUPPORT) 1036 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1037 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1038 #endif 1039 error = netisr_queue(NETISR_IPV6, m); 1040 goto done; 1041 } else { 1042 if (ro != NULL) 1043 RO_INVALIDATE_CACHE(ro); 1044 needfiblookup = 1; /* Redo the routing table lookup. */ 1045 } 1046 } 1047 /* See if fib was changed by packet filter. */ 1048 if (fibnum != M_GETFIB(m)) { 1049 m->m_flags |= M_SKIP_FIREWALL; 1050 fibnum = M_GETFIB(m); 1051 if (ro != NULL) 1052 RO_INVALIDATE_CACHE(ro); 1053 needfiblookup = 1; 1054 } 1055 if (needfiblookup) 1056 goto again; 1057 1058 /* See if local, if yes, send it to netisr. */ 1059 if (m->m_flags & M_FASTFWD_OURS) { 1060 if (m->m_pkthdr.rcvif == NULL) 1061 m->m_pkthdr.rcvif = V_loif; 1062 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1063 m->m_pkthdr.csum_flags |= 1064 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1065 m->m_pkthdr.csum_data = 0xffff; 1066 } 1067 #if defined(SCTP) || defined(SCTP_SUPPORT) 1068 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1069 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1070 #endif 1071 error = netisr_queue(NETISR_IPV6, m); 1072 goto done; 1073 } 1074 /* Or forward to some other address? */ 1075 if ((m->m_flags & M_IP6_NEXTHOP) && 1076 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1077 if (ro != NULL) 1078 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1079 else 1080 dst = &sin6; 1081 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1082 m->m_flags |= M_SKIP_FIREWALL; 1083 m->m_flags &= ~M_IP6_NEXTHOP; 1084 m_tag_delete(m, fwd_tag); 1085 goto again; 1086 } 1087 1088 passout: 1089 if (vlan_pcp > -1) 1090 EVL_APPLY_PRI(m, vlan_pcp); 1091 1092 /* Ensure the packet data is mapped if the interface requires it. */ 1093 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1094 m = mb_unmapped_to_ext(m); 1095 if (m == NULL) { 1096 IP6STAT_INC(ip6s_odropped); 1097 return (ENOBUFS); 1098 } 1099 } 1100 1101 /* 1102 * Send the packet to the outgoing interface. 1103 * If necessary, do IPv6 fragmentation before sending. 1104 * 1105 * The logic here is rather complex: 1106 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1107 * 1-a: send as is if tlen <= path mtu 1108 * 1-b: fragment if tlen > path mtu 1109 * 1110 * 2: if user asks us not to fragment (dontfrag == 1) 1111 * 2-a: send as is if tlen <= interface mtu 1112 * 2-b: error if tlen > interface mtu 1113 * 1114 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1115 * always fragment 1116 * 1117 * 4: if dontfrag == 1 && alwaysfrag == 1 1118 * error, as we cannot handle this conflicting request. 1119 */ 1120 sw_csum = m->m_pkthdr.csum_flags; 1121 if (!hdrsplit) { 1122 tso = ((sw_csum & ifp->if_hwassist & 1123 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1124 sw_csum &= ~ifp->if_hwassist; 1125 } else 1126 tso = 0; 1127 /* 1128 * If we added extension headers, we will not do TSO and calculate the 1129 * checksums ourselves for now. 1130 * XXX-BZ Need a framework to know when the NIC can handle it, even 1131 * with ext. hdrs. 1132 */ 1133 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1134 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1135 tlen = m->m_pkthdr.len; 1136 1137 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1138 dontfrag = 1; 1139 else 1140 dontfrag = 0; 1141 if (dontfrag && alwaysfrag) { /* Case 4. */ 1142 /* Conflicting request - can't transmit. */ 1143 error = EMSGSIZE; 1144 goto bad; 1145 } 1146 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1147 /* 1148 * Even if the DONTFRAG option is specified, we cannot send the 1149 * packet when the data length is larger than the MTU of the 1150 * outgoing interface. 1151 * Notify the error by sending IPV6_PATHMTU ancillary data if 1152 * application wanted to know the MTU value. Also return an 1153 * error code (this is not described in the API spec). 1154 */ 1155 if (inp != NULL) 1156 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1157 error = EMSGSIZE; 1158 goto bad; 1159 } 1160 1161 /* Transmit packet without fragmentation. */ 1162 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1163 struct in6_ifaddr *ia6; 1164 1165 ip6 = mtod(m, struct ip6_hdr *); 1166 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1167 if (ia6) { 1168 /* Record statistics for this interface address. */ 1169 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1170 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1171 m->m_pkthdr.len); 1172 } 1173 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1174 (flags & IP_NO_SND_TAG_RL) ? false : true); 1175 goto done; 1176 } 1177 1178 /* Try to fragment the packet. Cases 1-b and 3. */ 1179 if (mtu < IPV6_MMTU) { 1180 /* Path MTU cannot be less than IPV6_MMTU. */ 1181 error = EMSGSIZE; 1182 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1183 goto bad; 1184 } else if (ip6->ip6_plen == 0) { 1185 /* Jumbo payload cannot be fragmented. */ 1186 error = EMSGSIZE; 1187 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1188 goto bad; 1189 } else { 1190 u_char nextproto; 1191 1192 /* 1193 * Too large for the destination or interface; 1194 * fragment if possible. 1195 * Must be able to put at least 8 bytes per fragment. 1196 */ 1197 if (mtu > IPV6_MAXPACKET) 1198 mtu = IPV6_MAXPACKET; 1199 1200 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1201 if (len < 8) { 1202 error = EMSGSIZE; 1203 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1204 goto bad; 1205 } 1206 1207 /* 1208 * If the interface will not calculate checksums on 1209 * fragmented packets, then do it here. 1210 * XXX-BZ handle the hw offloading case. Need flags. 1211 */ 1212 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1213 optlen); 1214 1215 /* 1216 * Change the next header field of the last header in the 1217 * unfragmentable part. 1218 */ 1219 if (exthdrs.ip6e_rthdr) { 1220 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1221 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1222 } else if (exthdrs.ip6e_dest1) { 1223 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1224 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1225 } else if (exthdrs.ip6e_hbh) { 1226 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1227 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1228 } else { 1229 ip6 = mtod(m, struct ip6_hdr *); 1230 nextproto = ip6->ip6_nxt; 1231 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1232 } 1233 1234 /* 1235 * Loop through length of segment after first fragment, 1236 * make new header and copy data of each part and link onto 1237 * chain. 1238 */ 1239 m0 = m; 1240 id = htonl(ip6_randomid()); 1241 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1242 if (error != 0) 1243 goto sendorfree; 1244 1245 in6_ifstat_inc(ifp, ifs6_out_fragok); 1246 } 1247 1248 /* Remove leading garbage. */ 1249 sendorfree: 1250 m = m0->m_nextpkt; 1251 m0->m_nextpkt = 0; 1252 m_freem(m0); 1253 for (; m; m = m0) { 1254 m0 = m->m_nextpkt; 1255 m->m_nextpkt = 0; 1256 if (error == 0) { 1257 /* Record statistics for this interface address. */ 1258 if (ia) { 1259 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1260 counter_u64_add(ia->ia_ifa.ifa_obytes, 1261 m->m_pkthdr.len); 1262 } 1263 if (vlan_pcp > -1) 1264 EVL_APPLY_PRI(m, vlan_pcp); 1265 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1266 true); 1267 } else 1268 m_freem(m); 1269 } 1270 1271 if (error == 0) 1272 IP6STAT_INC(ip6s_fragmented); 1273 1274 done: 1275 return (error); 1276 1277 freehdrs: 1278 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1279 m_freem(exthdrs.ip6e_dest1); 1280 m_freem(exthdrs.ip6e_rthdr); 1281 m_freem(exthdrs.ip6e_dest2); 1282 /* FALLTHROUGH */ 1283 bad: 1284 if (m) 1285 m_freem(m); 1286 goto done; 1287 } 1288 1289 static int 1290 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1291 { 1292 struct mbuf *m; 1293 1294 if (hlen > MCLBYTES) 1295 return (ENOBUFS); /* XXX */ 1296 1297 if (hlen > MLEN) 1298 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1299 else 1300 m = m_get(M_NOWAIT, MT_DATA); 1301 if (m == NULL) 1302 return (ENOBUFS); 1303 m->m_len = hlen; 1304 if (hdr) 1305 bcopy(hdr, mtod(m, caddr_t), hlen); 1306 1307 *mp = m; 1308 return (0); 1309 } 1310 1311 /* 1312 * Insert jumbo payload option. 1313 */ 1314 static int 1315 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1316 { 1317 struct mbuf *mopt; 1318 u_char *optbuf; 1319 u_int32_t v; 1320 1321 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1322 1323 /* 1324 * If there is no hop-by-hop options header, allocate new one. 1325 * If there is one but it doesn't have enough space to store the 1326 * jumbo payload option, allocate a cluster to store the whole options. 1327 * Otherwise, use it to store the options. 1328 */ 1329 if (exthdrs->ip6e_hbh == NULL) { 1330 mopt = m_get(M_NOWAIT, MT_DATA); 1331 if (mopt == NULL) 1332 return (ENOBUFS); 1333 mopt->m_len = JUMBOOPTLEN; 1334 optbuf = mtod(mopt, u_char *); 1335 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1336 exthdrs->ip6e_hbh = mopt; 1337 } else { 1338 struct ip6_hbh *hbh; 1339 1340 mopt = exthdrs->ip6e_hbh; 1341 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1342 /* 1343 * XXX assumption: 1344 * - exthdrs->ip6e_hbh is not referenced from places 1345 * other than exthdrs. 1346 * - exthdrs->ip6e_hbh is not an mbuf chain. 1347 */ 1348 int oldoptlen = mopt->m_len; 1349 struct mbuf *n; 1350 1351 /* 1352 * XXX: give up if the whole (new) hbh header does 1353 * not fit even in an mbuf cluster. 1354 */ 1355 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1356 return (ENOBUFS); 1357 1358 /* 1359 * As a consequence, we must always prepare a cluster 1360 * at this point. 1361 */ 1362 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1363 if (n == NULL) 1364 return (ENOBUFS); 1365 n->m_len = oldoptlen + JUMBOOPTLEN; 1366 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1367 oldoptlen); 1368 optbuf = mtod(n, caddr_t) + oldoptlen; 1369 m_freem(mopt); 1370 mopt = exthdrs->ip6e_hbh = n; 1371 } else { 1372 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1373 mopt->m_len += JUMBOOPTLEN; 1374 } 1375 optbuf[0] = IP6OPT_PADN; 1376 optbuf[1] = 1; 1377 1378 /* 1379 * Adjust the header length according to the pad and 1380 * the jumbo payload option. 1381 */ 1382 hbh = mtod(mopt, struct ip6_hbh *); 1383 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1384 } 1385 1386 /* fill in the option. */ 1387 optbuf[2] = IP6OPT_JUMBO; 1388 optbuf[3] = 4; 1389 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1390 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1391 1392 /* finally, adjust the packet header length */ 1393 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1394 1395 return (0); 1396 #undef JUMBOOPTLEN 1397 } 1398 1399 /* 1400 * Insert fragment header and copy unfragmentable header portions. 1401 */ 1402 static int 1403 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1404 struct ip6_frag **frghdrp) 1405 { 1406 struct mbuf *n, *mlast; 1407 1408 if (hlen > sizeof(struct ip6_hdr)) { 1409 n = m_copym(m0, sizeof(struct ip6_hdr), 1410 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1411 if (n == NULL) 1412 return (ENOBUFS); 1413 m->m_next = n; 1414 } else 1415 n = m; 1416 1417 /* Search for the last mbuf of unfragmentable part. */ 1418 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1419 ; 1420 1421 if (M_WRITABLE(mlast) && 1422 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1423 /* use the trailing space of the last mbuf for the fragment hdr */ 1424 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1425 mlast->m_len); 1426 mlast->m_len += sizeof(struct ip6_frag); 1427 m->m_pkthdr.len += sizeof(struct ip6_frag); 1428 } else { 1429 /* allocate a new mbuf for the fragment header */ 1430 struct mbuf *mfrg; 1431 1432 mfrg = m_get(M_NOWAIT, MT_DATA); 1433 if (mfrg == NULL) 1434 return (ENOBUFS); 1435 mfrg->m_len = sizeof(struct ip6_frag); 1436 *frghdrp = mtod(mfrg, struct ip6_frag *); 1437 mlast->m_next = mfrg; 1438 } 1439 1440 return (0); 1441 } 1442 1443 /* 1444 * Calculates IPv6 path mtu for destination @dst. 1445 * Resulting MTU is stored in @mtup. 1446 * 1447 * Returns 0 on success. 1448 */ 1449 static int 1450 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1451 { 1452 struct epoch_tracker et; 1453 struct nhop_object *nh; 1454 struct in6_addr kdst; 1455 uint32_t scopeid; 1456 int error; 1457 1458 in6_splitscope(dst, &kdst, &scopeid); 1459 1460 NET_EPOCH_ENTER(et); 1461 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1462 if (nh != NULL) 1463 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1464 else 1465 error = EHOSTUNREACH; 1466 NET_EPOCH_EXIT(et); 1467 1468 return (error); 1469 } 1470 1471 /* 1472 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1473 * and cached data in @ro_pmtu. 1474 * MTU from (successful) route lookup is saved (along with dst) 1475 * inside @ro_pmtu to avoid subsequent route lookups after packet 1476 * filter processing. 1477 * 1478 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1479 * Returns 0 on success. 1480 */ 1481 static int 1482 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1483 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1484 int *alwaysfragp, u_int fibnum, u_int proto) 1485 { 1486 struct nhop_object *nh; 1487 struct in6_addr kdst; 1488 uint32_t scopeid; 1489 struct sockaddr_in6 *sa6_dst, sin6; 1490 u_long mtu; 1491 1492 NET_EPOCH_ASSERT(); 1493 1494 mtu = 0; 1495 if (ro_pmtu == NULL || do_lookup) { 1496 /* 1497 * Here ro_pmtu has final destination address, while 1498 * ro might represent immediate destination. 1499 * Use ro_pmtu destination since mtu might differ. 1500 */ 1501 if (ro_pmtu != NULL) { 1502 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1503 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1504 ro_pmtu->ro_mtu = 0; 1505 } else 1506 sa6_dst = &sin6; 1507 1508 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1509 bzero(sa6_dst, sizeof(*sa6_dst)); 1510 sa6_dst->sin6_family = AF_INET6; 1511 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1512 sa6_dst->sin6_addr = *dst; 1513 1514 in6_splitscope(dst, &kdst, &scopeid); 1515 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1516 if (nh != NULL) { 1517 mtu = nh->nh_mtu; 1518 if (ro_pmtu != NULL) 1519 ro_pmtu->ro_mtu = mtu; 1520 } 1521 } else 1522 mtu = ro_pmtu->ro_mtu; 1523 } 1524 1525 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1526 mtu = ro_pmtu->ro_nh->nh_mtu; 1527 1528 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1529 } 1530 1531 /* 1532 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1533 * hostcache data for @dst. 1534 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1535 * 1536 * Returns 0 on success. 1537 */ 1538 static int 1539 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1540 u_long *mtup, int *alwaysfragp, u_int proto) 1541 { 1542 u_long mtu = 0; 1543 int alwaysfrag = 0; 1544 int error = 0; 1545 1546 if (rt_mtu > 0) { 1547 u_int32_t ifmtu; 1548 struct in_conninfo inc; 1549 1550 bzero(&inc, sizeof(inc)); 1551 inc.inc_flags |= INC_ISIPV6; 1552 inc.inc6_faddr = *dst; 1553 1554 ifmtu = IN6_LINKMTU(ifp); 1555 1556 /* TCP is known to react to pmtu changes so skip hc */ 1557 if (proto != IPPROTO_TCP) 1558 mtu = tcp_hc_getmtu(&inc); 1559 1560 if (mtu) 1561 mtu = min(mtu, rt_mtu); 1562 else 1563 mtu = rt_mtu; 1564 if (mtu == 0) 1565 mtu = ifmtu; 1566 else if (mtu < IPV6_MMTU) { 1567 /* 1568 * RFC2460 section 5, last paragraph: 1569 * if we record ICMPv6 too big message with 1570 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1571 * or smaller, with framgent header attached. 1572 * (fragment header is needed regardless from the 1573 * packet size, for translators to identify packets) 1574 */ 1575 alwaysfrag = 1; 1576 mtu = IPV6_MMTU; 1577 } 1578 } else if (ifp) { 1579 mtu = IN6_LINKMTU(ifp); 1580 } else 1581 error = EHOSTUNREACH; /* XXX */ 1582 1583 *mtup = mtu; 1584 if (alwaysfragp) 1585 *alwaysfragp = alwaysfrag; 1586 return (error); 1587 } 1588 1589 /* 1590 * IP6 socket option processing. 1591 */ 1592 int 1593 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1594 { 1595 int optdatalen, uproto; 1596 void *optdata; 1597 struct inpcb *inp = sotoinpcb(so); 1598 int error, optval; 1599 int level, op, optname; 1600 int optlen; 1601 struct thread *td; 1602 #ifdef RSS 1603 uint32_t rss_bucket; 1604 int retval; 1605 #endif 1606 1607 /* 1608 * Don't use more than a quarter of mbuf clusters. N.B.: 1609 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1610 * on LP64 architectures, so cast to u_long to avoid undefined 1611 * behavior. ILP32 architectures cannot have nmbclusters 1612 * large enough to overflow for other reasons. 1613 */ 1614 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1615 1616 level = sopt->sopt_level; 1617 op = sopt->sopt_dir; 1618 optname = sopt->sopt_name; 1619 optlen = sopt->sopt_valsize; 1620 td = sopt->sopt_td; 1621 error = 0; 1622 optval = 0; 1623 uproto = (int)so->so_proto->pr_protocol; 1624 1625 if (level != IPPROTO_IPV6) { 1626 error = EINVAL; 1627 1628 if (sopt->sopt_level == SOL_SOCKET && 1629 sopt->sopt_dir == SOPT_SET) { 1630 switch (sopt->sopt_name) { 1631 case SO_REUSEADDR: 1632 INP_WLOCK(inp); 1633 if ((so->so_options & SO_REUSEADDR) != 0) 1634 inp->inp_flags2 |= INP_REUSEADDR; 1635 else 1636 inp->inp_flags2 &= ~INP_REUSEADDR; 1637 INP_WUNLOCK(inp); 1638 error = 0; 1639 break; 1640 case SO_REUSEPORT: 1641 INP_WLOCK(inp); 1642 if ((so->so_options & SO_REUSEPORT) != 0) 1643 inp->inp_flags2 |= INP_REUSEPORT; 1644 else 1645 inp->inp_flags2 &= ~INP_REUSEPORT; 1646 INP_WUNLOCK(inp); 1647 error = 0; 1648 break; 1649 case SO_REUSEPORT_LB: 1650 INP_WLOCK(inp); 1651 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1652 inp->inp_flags2 |= INP_REUSEPORT_LB; 1653 else 1654 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1655 INP_WUNLOCK(inp); 1656 error = 0; 1657 break; 1658 case SO_SETFIB: 1659 INP_WLOCK(inp); 1660 inp->inp_inc.inc_fibnum = so->so_fibnum; 1661 INP_WUNLOCK(inp); 1662 error = 0; 1663 break; 1664 case SO_MAX_PACING_RATE: 1665 #ifdef RATELIMIT 1666 INP_WLOCK(inp); 1667 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1668 INP_WUNLOCK(inp); 1669 error = 0; 1670 #else 1671 error = EOPNOTSUPP; 1672 #endif 1673 break; 1674 default: 1675 break; 1676 } 1677 } 1678 } else { /* level == IPPROTO_IPV6 */ 1679 switch (op) { 1680 case SOPT_SET: 1681 switch (optname) { 1682 case IPV6_2292PKTOPTIONS: 1683 #ifdef IPV6_PKTOPTIONS 1684 case IPV6_PKTOPTIONS: 1685 #endif 1686 { 1687 struct mbuf *m; 1688 1689 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1690 printf("ip6_ctloutput: mbuf limit hit\n"); 1691 error = ENOBUFS; 1692 break; 1693 } 1694 1695 error = soopt_getm(sopt, &m); /* XXX */ 1696 if (error != 0) 1697 break; 1698 error = soopt_mcopyin(sopt, m); /* XXX */ 1699 if (error != 0) 1700 break; 1701 INP_WLOCK(inp); 1702 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1703 so, sopt); 1704 INP_WUNLOCK(inp); 1705 m_freem(m); /* XXX */ 1706 break; 1707 } 1708 1709 /* 1710 * Use of some Hop-by-Hop options or some 1711 * Destination options, might require special 1712 * privilege. That is, normal applications 1713 * (without special privilege) might be forbidden 1714 * from setting certain options in outgoing packets, 1715 * and might never see certain options in received 1716 * packets. [RFC 2292 Section 6] 1717 * KAME specific note: 1718 * KAME prevents non-privileged users from sending or 1719 * receiving ANY hbh/dst options in order to avoid 1720 * overhead of parsing options in the kernel. 1721 */ 1722 case IPV6_RECVHOPOPTS: 1723 case IPV6_RECVDSTOPTS: 1724 case IPV6_RECVRTHDRDSTOPTS: 1725 if (td != NULL) { 1726 error = priv_check(td, 1727 PRIV_NETINET_SETHDROPTS); 1728 if (error) 1729 break; 1730 } 1731 /* FALLTHROUGH */ 1732 case IPV6_UNICAST_HOPS: 1733 case IPV6_HOPLIMIT: 1734 1735 case IPV6_RECVPKTINFO: 1736 case IPV6_RECVHOPLIMIT: 1737 case IPV6_RECVRTHDR: 1738 case IPV6_RECVPATHMTU: 1739 case IPV6_RECVTCLASS: 1740 case IPV6_RECVFLOWID: 1741 #ifdef RSS 1742 case IPV6_RECVRSSBUCKETID: 1743 #endif 1744 case IPV6_V6ONLY: 1745 case IPV6_AUTOFLOWLABEL: 1746 case IPV6_ORIGDSTADDR: 1747 case IPV6_BINDANY: 1748 case IPV6_BINDMULTI: 1749 #ifdef RSS 1750 case IPV6_RSS_LISTEN_BUCKET: 1751 #endif 1752 case IPV6_VLAN_PCP: 1753 if (optname == IPV6_BINDANY && td != NULL) { 1754 error = priv_check(td, 1755 PRIV_NETINET_BINDANY); 1756 if (error) 1757 break; 1758 } 1759 1760 if (optlen != sizeof(int)) { 1761 error = EINVAL; 1762 break; 1763 } 1764 error = sooptcopyin(sopt, &optval, 1765 sizeof optval, sizeof optval); 1766 if (error) 1767 break; 1768 switch (optname) { 1769 case IPV6_UNICAST_HOPS: 1770 if (optval < -1 || optval >= 256) 1771 error = EINVAL; 1772 else { 1773 /* -1 = kernel default */ 1774 inp->in6p_hops = optval; 1775 if ((inp->inp_vflag & 1776 INP_IPV4) != 0) 1777 inp->inp_ip_ttl = optval; 1778 } 1779 break; 1780 #define OPTSET(bit) \ 1781 do { \ 1782 INP_WLOCK(inp); \ 1783 if (optval) \ 1784 inp->inp_flags |= (bit); \ 1785 else \ 1786 inp->inp_flags &= ~(bit); \ 1787 INP_WUNLOCK(inp); \ 1788 } while (/*CONSTCOND*/ 0) 1789 #define OPTSET2292(bit) \ 1790 do { \ 1791 INP_WLOCK(inp); \ 1792 inp->inp_flags |= IN6P_RFC2292; \ 1793 if (optval) \ 1794 inp->inp_flags |= (bit); \ 1795 else \ 1796 inp->inp_flags &= ~(bit); \ 1797 INP_WUNLOCK(inp); \ 1798 } while (/*CONSTCOND*/ 0) 1799 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1800 1801 #define OPTSET2_N(bit, val) do { \ 1802 if (val) \ 1803 inp->inp_flags2 |= bit; \ 1804 else \ 1805 inp->inp_flags2 &= ~bit; \ 1806 } while (0) 1807 #define OPTSET2(bit, val) do { \ 1808 INP_WLOCK(inp); \ 1809 OPTSET2_N(bit, val); \ 1810 INP_WUNLOCK(inp); \ 1811 } while (0) 1812 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1813 #define OPTSET2292_EXCLUSIVE(bit) \ 1814 do { \ 1815 INP_WLOCK(inp); \ 1816 if (OPTBIT(IN6P_RFC2292)) { \ 1817 error = EINVAL; \ 1818 } else { \ 1819 if (optval) \ 1820 inp->inp_flags |= (bit); \ 1821 else \ 1822 inp->inp_flags &= ~(bit); \ 1823 } \ 1824 INP_WUNLOCK(inp); \ 1825 } while (/*CONSTCOND*/ 0) 1826 1827 case IPV6_RECVPKTINFO: 1828 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1829 break; 1830 1831 case IPV6_HOPLIMIT: 1832 { 1833 struct ip6_pktopts **optp; 1834 1835 /* cannot mix with RFC2292 */ 1836 if (OPTBIT(IN6P_RFC2292)) { 1837 error = EINVAL; 1838 break; 1839 } 1840 INP_WLOCK(inp); 1841 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1842 INP_WUNLOCK(inp); 1843 return (ECONNRESET); 1844 } 1845 optp = &inp->in6p_outputopts; 1846 error = ip6_pcbopt(IPV6_HOPLIMIT, 1847 (u_char *)&optval, sizeof(optval), 1848 optp, (td != NULL) ? td->td_ucred : 1849 NULL, uproto); 1850 INP_WUNLOCK(inp); 1851 break; 1852 } 1853 1854 case IPV6_RECVHOPLIMIT: 1855 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1856 break; 1857 1858 case IPV6_RECVHOPOPTS: 1859 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1860 break; 1861 1862 case IPV6_RECVDSTOPTS: 1863 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1864 break; 1865 1866 case IPV6_RECVRTHDRDSTOPTS: 1867 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1868 break; 1869 1870 case IPV6_RECVRTHDR: 1871 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1872 break; 1873 1874 case IPV6_RECVPATHMTU: 1875 /* 1876 * We ignore this option for TCP 1877 * sockets. 1878 * (RFC3542 leaves this case 1879 * unspecified.) 1880 */ 1881 if (uproto != IPPROTO_TCP) 1882 OPTSET(IN6P_MTU); 1883 break; 1884 1885 case IPV6_RECVFLOWID: 1886 OPTSET2(INP_RECVFLOWID, optval); 1887 break; 1888 1889 #ifdef RSS 1890 case IPV6_RECVRSSBUCKETID: 1891 OPTSET2(INP_RECVRSSBUCKETID, optval); 1892 break; 1893 #endif 1894 1895 case IPV6_V6ONLY: 1896 INP_WLOCK(inp); 1897 if (inp->inp_lport || 1898 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1899 /* 1900 * The socket is already bound. 1901 */ 1902 INP_WUNLOCK(inp); 1903 error = EINVAL; 1904 break; 1905 } 1906 if (optval) { 1907 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1908 inp->inp_vflag &= ~INP_IPV4; 1909 } else { 1910 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1911 inp->inp_vflag |= INP_IPV4; 1912 } 1913 INP_WUNLOCK(inp); 1914 break; 1915 case IPV6_RECVTCLASS: 1916 /* cannot mix with RFC2292 XXX */ 1917 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1918 break; 1919 case IPV6_AUTOFLOWLABEL: 1920 OPTSET(IN6P_AUTOFLOWLABEL); 1921 break; 1922 1923 case IPV6_ORIGDSTADDR: 1924 OPTSET2(INP_ORIGDSTADDR, optval); 1925 break; 1926 case IPV6_BINDANY: 1927 OPTSET(INP_BINDANY); 1928 break; 1929 1930 case IPV6_BINDMULTI: 1931 OPTSET2(INP_BINDMULTI, optval); 1932 break; 1933 #ifdef RSS 1934 case IPV6_RSS_LISTEN_BUCKET: 1935 if ((optval >= 0) && 1936 (optval < rss_getnumbuckets())) { 1937 INP_WLOCK(inp); 1938 inp->inp_rss_listen_bucket = optval; 1939 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1940 INP_WUNLOCK(inp); 1941 } else { 1942 error = EINVAL; 1943 } 1944 break; 1945 #endif 1946 case IPV6_VLAN_PCP: 1947 if ((optval >= -1) && (optval <= 1948 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1949 if (optval == -1) { 1950 INP_WLOCK(inp); 1951 inp->inp_flags2 &= 1952 ~(INP_2PCP_SET | 1953 INP_2PCP_MASK); 1954 INP_WUNLOCK(inp); 1955 } else { 1956 INP_WLOCK(inp); 1957 inp->inp_flags2 |= 1958 INP_2PCP_SET; 1959 inp->inp_flags2 &= 1960 ~INP_2PCP_MASK; 1961 inp->inp_flags2 |= 1962 optval << 1963 INP_2PCP_SHIFT; 1964 INP_WUNLOCK(inp); 1965 } 1966 } else 1967 error = EINVAL; 1968 break; 1969 } 1970 break; 1971 1972 case IPV6_TCLASS: 1973 case IPV6_DONTFRAG: 1974 case IPV6_USE_MIN_MTU: 1975 case IPV6_PREFER_TEMPADDR: 1976 if (optlen != sizeof(optval)) { 1977 error = EINVAL; 1978 break; 1979 } 1980 error = sooptcopyin(sopt, &optval, 1981 sizeof optval, sizeof optval); 1982 if (error) 1983 break; 1984 { 1985 struct ip6_pktopts **optp; 1986 INP_WLOCK(inp); 1987 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1988 INP_WUNLOCK(inp); 1989 return (ECONNRESET); 1990 } 1991 optp = &inp->in6p_outputopts; 1992 error = ip6_pcbopt(optname, 1993 (u_char *)&optval, sizeof(optval), 1994 optp, (td != NULL) ? td->td_ucred : 1995 NULL, uproto); 1996 INP_WUNLOCK(inp); 1997 break; 1998 } 1999 2000 case IPV6_2292PKTINFO: 2001 case IPV6_2292HOPLIMIT: 2002 case IPV6_2292HOPOPTS: 2003 case IPV6_2292DSTOPTS: 2004 case IPV6_2292RTHDR: 2005 /* RFC 2292 */ 2006 if (optlen != sizeof(int)) { 2007 error = EINVAL; 2008 break; 2009 } 2010 error = sooptcopyin(sopt, &optval, 2011 sizeof optval, sizeof optval); 2012 if (error) 2013 break; 2014 switch (optname) { 2015 case IPV6_2292PKTINFO: 2016 OPTSET2292(IN6P_PKTINFO); 2017 break; 2018 case IPV6_2292HOPLIMIT: 2019 OPTSET2292(IN6P_HOPLIMIT); 2020 break; 2021 case IPV6_2292HOPOPTS: 2022 /* 2023 * Check super-user privilege. 2024 * See comments for IPV6_RECVHOPOPTS. 2025 */ 2026 if (td != NULL) { 2027 error = priv_check(td, 2028 PRIV_NETINET_SETHDROPTS); 2029 if (error) 2030 return (error); 2031 } 2032 OPTSET2292(IN6P_HOPOPTS); 2033 break; 2034 case IPV6_2292DSTOPTS: 2035 if (td != NULL) { 2036 error = priv_check(td, 2037 PRIV_NETINET_SETHDROPTS); 2038 if (error) 2039 return (error); 2040 } 2041 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2042 break; 2043 case IPV6_2292RTHDR: 2044 OPTSET2292(IN6P_RTHDR); 2045 break; 2046 } 2047 break; 2048 case IPV6_PKTINFO: 2049 case IPV6_HOPOPTS: 2050 case IPV6_RTHDR: 2051 case IPV6_DSTOPTS: 2052 case IPV6_RTHDRDSTOPTS: 2053 case IPV6_NEXTHOP: 2054 { 2055 /* new advanced API (RFC3542) */ 2056 u_char *optbuf; 2057 u_char optbuf_storage[MCLBYTES]; 2058 int optlen; 2059 struct ip6_pktopts **optp; 2060 2061 /* cannot mix with RFC2292 */ 2062 if (OPTBIT(IN6P_RFC2292)) { 2063 error = EINVAL; 2064 break; 2065 } 2066 2067 /* 2068 * We only ensure valsize is not too large 2069 * here. Further validation will be done 2070 * later. 2071 */ 2072 error = sooptcopyin(sopt, optbuf_storage, 2073 sizeof(optbuf_storage), 0); 2074 if (error) 2075 break; 2076 optlen = sopt->sopt_valsize; 2077 optbuf = optbuf_storage; 2078 INP_WLOCK(inp); 2079 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2080 INP_WUNLOCK(inp); 2081 return (ECONNRESET); 2082 } 2083 optp = &inp->in6p_outputopts; 2084 error = ip6_pcbopt(optname, optbuf, optlen, 2085 optp, (td != NULL) ? td->td_ucred : NULL, 2086 uproto); 2087 INP_WUNLOCK(inp); 2088 break; 2089 } 2090 #undef OPTSET 2091 2092 case IPV6_MULTICAST_IF: 2093 case IPV6_MULTICAST_HOPS: 2094 case IPV6_MULTICAST_LOOP: 2095 case IPV6_JOIN_GROUP: 2096 case IPV6_LEAVE_GROUP: 2097 case IPV6_MSFILTER: 2098 case MCAST_BLOCK_SOURCE: 2099 case MCAST_UNBLOCK_SOURCE: 2100 case MCAST_JOIN_GROUP: 2101 case MCAST_LEAVE_GROUP: 2102 case MCAST_JOIN_SOURCE_GROUP: 2103 case MCAST_LEAVE_SOURCE_GROUP: 2104 error = ip6_setmoptions(inp, sopt); 2105 break; 2106 2107 case IPV6_PORTRANGE: 2108 error = sooptcopyin(sopt, &optval, 2109 sizeof optval, sizeof optval); 2110 if (error) 2111 break; 2112 2113 INP_WLOCK(inp); 2114 switch (optval) { 2115 case IPV6_PORTRANGE_DEFAULT: 2116 inp->inp_flags &= ~(INP_LOWPORT); 2117 inp->inp_flags &= ~(INP_HIGHPORT); 2118 break; 2119 2120 case IPV6_PORTRANGE_HIGH: 2121 inp->inp_flags &= ~(INP_LOWPORT); 2122 inp->inp_flags |= INP_HIGHPORT; 2123 break; 2124 2125 case IPV6_PORTRANGE_LOW: 2126 inp->inp_flags &= ~(INP_HIGHPORT); 2127 inp->inp_flags |= INP_LOWPORT; 2128 break; 2129 2130 default: 2131 error = EINVAL; 2132 break; 2133 } 2134 INP_WUNLOCK(inp); 2135 break; 2136 2137 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2138 case IPV6_IPSEC_POLICY: 2139 if (IPSEC_ENABLED(ipv6)) { 2140 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2141 break; 2142 } 2143 /* FALLTHROUGH */ 2144 #endif /* IPSEC */ 2145 2146 default: 2147 error = ENOPROTOOPT; 2148 break; 2149 } 2150 break; 2151 2152 case SOPT_GET: 2153 switch (optname) { 2154 case IPV6_2292PKTOPTIONS: 2155 #ifdef IPV6_PKTOPTIONS 2156 case IPV6_PKTOPTIONS: 2157 #endif 2158 /* 2159 * RFC3542 (effectively) deprecated the 2160 * semantics of the 2292-style pktoptions. 2161 * Since it was not reliable in nature (i.e., 2162 * applications had to expect the lack of some 2163 * information after all), it would make sense 2164 * to simplify this part by always returning 2165 * empty data. 2166 */ 2167 sopt->sopt_valsize = 0; 2168 break; 2169 2170 case IPV6_RECVHOPOPTS: 2171 case IPV6_RECVDSTOPTS: 2172 case IPV6_RECVRTHDRDSTOPTS: 2173 case IPV6_UNICAST_HOPS: 2174 case IPV6_RECVPKTINFO: 2175 case IPV6_RECVHOPLIMIT: 2176 case IPV6_RECVRTHDR: 2177 case IPV6_RECVPATHMTU: 2178 2179 case IPV6_V6ONLY: 2180 case IPV6_PORTRANGE: 2181 case IPV6_RECVTCLASS: 2182 case IPV6_AUTOFLOWLABEL: 2183 case IPV6_BINDANY: 2184 case IPV6_FLOWID: 2185 case IPV6_FLOWTYPE: 2186 case IPV6_RECVFLOWID: 2187 #ifdef RSS 2188 case IPV6_RSSBUCKETID: 2189 case IPV6_RECVRSSBUCKETID: 2190 #endif 2191 case IPV6_BINDMULTI: 2192 case IPV6_VLAN_PCP: 2193 switch (optname) { 2194 case IPV6_RECVHOPOPTS: 2195 optval = OPTBIT(IN6P_HOPOPTS); 2196 break; 2197 2198 case IPV6_RECVDSTOPTS: 2199 optval = OPTBIT(IN6P_DSTOPTS); 2200 break; 2201 2202 case IPV6_RECVRTHDRDSTOPTS: 2203 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2204 break; 2205 2206 case IPV6_UNICAST_HOPS: 2207 optval = inp->in6p_hops; 2208 break; 2209 2210 case IPV6_RECVPKTINFO: 2211 optval = OPTBIT(IN6P_PKTINFO); 2212 break; 2213 2214 case IPV6_RECVHOPLIMIT: 2215 optval = OPTBIT(IN6P_HOPLIMIT); 2216 break; 2217 2218 case IPV6_RECVRTHDR: 2219 optval = OPTBIT(IN6P_RTHDR); 2220 break; 2221 2222 case IPV6_RECVPATHMTU: 2223 optval = OPTBIT(IN6P_MTU); 2224 break; 2225 2226 case IPV6_V6ONLY: 2227 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2228 break; 2229 2230 case IPV6_PORTRANGE: 2231 { 2232 int flags; 2233 flags = inp->inp_flags; 2234 if (flags & INP_HIGHPORT) 2235 optval = IPV6_PORTRANGE_HIGH; 2236 else if (flags & INP_LOWPORT) 2237 optval = IPV6_PORTRANGE_LOW; 2238 else 2239 optval = 0; 2240 break; 2241 } 2242 case IPV6_RECVTCLASS: 2243 optval = OPTBIT(IN6P_TCLASS); 2244 break; 2245 2246 case IPV6_AUTOFLOWLABEL: 2247 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2248 break; 2249 2250 case IPV6_ORIGDSTADDR: 2251 optval = OPTBIT2(INP_ORIGDSTADDR); 2252 break; 2253 2254 case IPV6_BINDANY: 2255 optval = OPTBIT(INP_BINDANY); 2256 break; 2257 2258 case IPV6_FLOWID: 2259 optval = inp->inp_flowid; 2260 break; 2261 2262 case IPV6_FLOWTYPE: 2263 optval = inp->inp_flowtype; 2264 break; 2265 2266 case IPV6_RECVFLOWID: 2267 optval = OPTBIT2(INP_RECVFLOWID); 2268 break; 2269 #ifdef RSS 2270 case IPV6_RSSBUCKETID: 2271 retval = 2272 rss_hash2bucket(inp->inp_flowid, 2273 inp->inp_flowtype, 2274 &rss_bucket); 2275 if (retval == 0) 2276 optval = rss_bucket; 2277 else 2278 error = EINVAL; 2279 break; 2280 2281 case IPV6_RECVRSSBUCKETID: 2282 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2283 break; 2284 #endif 2285 2286 case IPV6_BINDMULTI: 2287 optval = OPTBIT2(INP_BINDMULTI); 2288 break; 2289 2290 case IPV6_VLAN_PCP: 2291 if (OPTBIT2(INP_2PCP_SET)) { 2292 optval = (inp->inp_flags2 & 2293 INP_2PCP_MASK) >> 2294 INP_2PCP_SHIFT; 2295 } else { 2296 optval = -1; 2297 } 2298 break; 2299 } 2300 2301 if (error) 2302 break; 2303 error = sooptcopyout(sopt, &optval, 2304 sizeof optval); 2305 break; 2306 2307 case IPV6_PATHMTU: 2308 { 2309 u_long pmtu = 0; 2310 struct ip6_mtuinfo mtuinfo; 2311 struct in6_addr addr; 2312 2313 if (!(so->so_state & SS_ISCONNECTED)) 2314 return (ENOTCONN); 2315 /* 2316 * XXX: we dot not consider the case of source 2317 * routing, or optional information to specify 2318 * the outgoing interface. 2319 * Copy faddr out of inp to avoid holding lock 2320 * on inp during route lookup. 2321 */ 2322 INP_RLOCK(inp); 2323 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2324 INP_RUNLOCK(inp); 2325 error = ip6_getpmtu_ctl(so->so_fibnum, 2326 &addr, &pmtu); 2327 if (error) 2328 break; 2329 if (pmtu > IPV6_MAXPACKET) 2330 pmtu = IPV6_MAXPACKET; 2331 2332 bzero(&mtuinfo, sizeof(mtuinfo)); 2333 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2334 optdata = (void *)&mtuinfo; 2335 optdatalen = sizeof(mtuinfo); 2336 error = sooptcopyout(sopt, optdata, 2337 optdatalen); 2338 break; 2339 } 2340 2341 case IPV6_2292PKTINFO: 2342 case IPV6_2292HOPLIMIT: 2343 case IPV6_2292HOPOPTS: 2344 case IPV6_2292RTHDR: 2345 case IPV6_2292DSTOPTS: 2346 switch (optname) { 2347 case IPV6_2292PKTINFO: 2348 optval = OPTBIT(IN6P_PKTINFO); 2349 break; 2350 case IPV6_2292HOPLIMIT: 2351 optval = OPTBIT(IN6P_HOPLIMIT); 2352 break; 2353 case IPV6_2292HOPOPTS: 2354 optval = OPTBIT(IN6P_HOPOPTS); 2355 break; 2356 case IPV6_2292RTHDR: 2357 optval = OPTBIT(IN6P_RTHDR); 2358 break; 2359 case IPV6_2292DSTOPTS: 2360 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2361 break; 2362 } 2363 error = sooptcopyout(sopt, &optval, 2364 sizeof optval); 2365 break; 2366 case IPV6_PKTINFO: 2367 case IPV6_HOPOPTS: 2368 case IPV6_RTHDR: 2369 case IPV6_DSTOPTS: 2370 case IPV6_RTHDRDSTOPTS: 2371 case IPV6_NEXTHOP: 2372 case IPV6_TCLASS: 2373 case IPV6_DONTFRAG: 2374 case IPV6_USE_MIN_MTU: 2375 case IPV6_PREFER_TEMPADDR: 2376 error = ip6_getpcbopt(inp, optname, sopt); 2377 break; 2378 2379 case IPV6_MULTICAST_IF: 2380 case IPV6_MULTICAST_HOPS: 2381 case IPV6_MULTICAST_LOOP: 2382 case IPV6_MSFILTER: 2383 error = ip6_getmoptions(inp, sopt); 2384 break; 2385 2386 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2387 case IPV6_IPSEC_POLICY: 2388 if (IPSEC_ENABLED(ipv6)) { 2389 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2390 break; 2391 } 2392 /* FALLTHROUGH */ 2393 #endif /* IPSEC */ 2394 default: 2395 error = ENOPROTOOPT; 2396 break; 2397 } 2398 break; 2399 } 2400 } 2401 return (error); 2402 } 2403 2404 int 2405 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2406 { 2407 int error = 0, optval, optlen; 2408 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2409 struct inpcb *inp = sotoinpcb(so); 2410 int level, op, optname; 2411 2412 level = sopt->sopt_level; 2413 op = sopt->sopt_dir; 2414 optname = sopt->sopt_name; 2415 optlen = sopt->sopt_valsize; 2416 2417 if (level != IPPROTO_IPV6) { 2418 return (EINVAL); 2419 } 2420 2421 switch (optname) { 2422 case IPV6_CHECKSUM: 2423 /* 2424 * For ICMPv6 sockets, no modification allowed for checksum 2425 * offset, permit "no change" values to help existing apps. 2426 * 2427 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2428 * for an ICMPv6 socket will fail." 2429 * The current behavior does not meet RFC3542. 2430 */ 2431 switch (op) { 2432 case SOPT_SET: 2433 if (optlen != sizeof(int)) { 2434 error = EINVAL; 2435 break; 2436 } 2437 error = sooptcopyin(sopt, &optval, sizeof(optval), 2438 sizeof(optval)); 2439 if (error) 2440 break; 2441 if (optval < -1 || (optval % 2) != 0) { 2442 /* 2443 * The API assumes non-negative even offset 2444 * values or -1 as a special value. 2445 */ 2446 error = EINVAL; 2447 } else if (so->so_proto->pr_protocol == 2448 IPPROTO_ICMPV6) { 2449 if (optval != icmp6off) 2450 error = EINVAL; 2451 } else 2452 inp->in6p_cksum = optval; 2453 break; 2454 2455 case SOPT_GET: 2456 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2457 optval = icmp6off; 2458 else 2459 optval = inp->in6p_cksum; 2460 2461 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2462 break; 2463 2464 default: 2465 error = EINVAL; 2466 break; 2467 } 2468 break; 2469 2470 default: 2471 error = ENOPROTOOPT; 2472 break; 2473 } 2474 2475 return (error); 2476 } 2477 2478 /* 2479 * Set up IP6 options in pcb for insertion in output packets or 2480 * specifying behavior of outgoing packets. 2481 */ 2482 static int 2483 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2484 struct socket *so, struct sockopt *sopt) 2485 { 2486 struct ip6_pktopts *opt = *pktopt; 2487 int error = 0; 2488 struct thread *td = sopt->sopt_td; 2489 struct epoch_tracker et; 2490 2491 /* turn off any old options. */ 2492 if (opt) { 2493 #ifdef DIAGNOSTIC 2494 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2495 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2496 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2497 printf("ip6_pcbopts: all specified options are cleared.\n"); 2498 #endif 2499 ip6_clearpktopts(opt, -1); 2500 } else { 2501 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2502 if (opt == NULL) 2503 return (ENOMEM); 2504 } 2505 *pktopt = NULL; 2506 2507 if (!m || m->m_len == 0) { 2508 /* 2509 * Only turning off any previous options, regardless of 2510 * whether the opt is just created or given. 2511 */ 2512 free(opt, M_IP6OPT); 2513 return (0); 2514 } 2515 2516 /* set options specified by user. */ 2517 NET_EPOCH_ENTER(et); 2518 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2519 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2520 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2521 free(opt, M_IP6OPT); 2522 NET_EPOCH_EXIT(et); 2523 return (error); 2524 } 2525 NET_EPOCH_EXIT(et); 2526 *pktopt = opt; 2527 return (0); 2528 } 2529 2530 /* 2531 * initialize ip6_pktopts. beware that there are non-zero default values in 2532 * the struct. 2533 */ 2534 void 2535 ip6_initpktopts(struct ip6_pktopts *opt) 2536 { 2537 2538 bzero(opt, sizeof(*opt)); 2539 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2540 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2541 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2542 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2543 } 2544 2545 static int 2546 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2547 struct ucred *cred, int uproto) 2548 { 2549 struct epoch_tracker et; 2550 struct ip6_pktopts *opt; 2551 int ret; 2552 2553 if (*pktopt == NULL) { 2554 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2555 M_NOWAIT); 2556 if (*pktopt == NULL) 2557 return (ENOBUFS); 2558 ip6_initpktopts(*pktopt); 2559 } 2560 opt = *pktopt; 2561 2562 NET_EPOCH_ENTER(et); 2563 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2564 NET_EPOCH_EXIT(et); 2565 2566 return (ret); 2567 } 2568 2569 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2570 if (pktopt && pktopt->field) { \ 2571 INP_RUNLOCK(inp); \ 2572 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2573 malloc_optdata = true; \ 2574 INP_RLOCK(inp); \ 2575 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2576 INP_RUNLOCK(inp); \ 2577 free(optdata, M_TEMP); \ 2578 return (ECONNRESET); \ 2579 } \ 2580 pktopt = inp->in6p_outputopts; \ 2581 if (pktopt && pktopt->field) { \ 2582 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2583 bcopy(pktopt->field, optdata, optdatalen); \ 2584 } else { \ 2585 free(optdata, M_TEMP); \ 2586 optdata = NULL; \ 2587 malloc_optdata = false; \ 2588 } \ 2589 } \ 2590 } while(0) 2591 2592 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2593 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2594 2595 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2596 pktopt->field->sa_len) 2597 2598 static int 2599 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2600 { 2601 void *optdata = NULL; 2602 bool malloc_optdata = false; 2603 int optdatalen = 0; 2604 int error = 0; 2605 struct in6_pktinfo null_pktinfo; 2606 int deftclass = 0, on; 2607 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2608 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2609 struct ip6_pktopts *pktopt; 2610 2611 INP_RLOCK(inp); 2612 pktopt = inp->in6p_outputopts; 2613 2614 switch (optname) { 2615 case IPV6_PKTINFO: 2616 optdata = (void *)&null_pktinfo; 2617 if (pktopt && pktopt->ip6po_pktinfo) { 2618 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2619 sizeof(null_pktinfo)); 2620 in6_clearscope(&null_pktinfo.ipi6_addr); 2621 } else { 2622 /* XXX: we don't have to do this every time... */ 2623 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2624 } 2625 optdatalen = sizeof(struct in6_pktinfo); 2626 break; 2627 case IPV6_TCLASS: 2628 if (pktopt && pktopt->ip6po_tclass >= 0) 2629 deftclass = pktopt->ip6po_tclass; 2630 optdata = (void *)&deftclass; 2631 optdatalen = sizeof(int); 2632 break; 2633 case IPV6_HOPOPTS: 2634 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2635 break; 2636 case IPV6_RTHDR: 2637 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2638 break; 2639 case IPV6_RTHDRDSTOPTS: 2640 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2641 break; 2642 case IPV6_DSTOPTS: 2643 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2644 break; 2645 case IPV6_NEXTHOP: 2646 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2647 break; 2648 case IPV6_USE_MIN_MTU: 2649 if (pktopt) 2650 defminmtu = pktopt->ip6po_minmtu; 2651 optdata = (void *)&defminmtu; 2652 optdatalen = sizeof(int); 2653 break; 2654 case IPV6_DONTFRAG: 2655 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2656 on = 1; 2657 else 2658 on = 0; 2659 optdata = (void *)&on; 2660 optdatalen = sizeof(on); 2661 break; 2662 case IPV6_PREFER_TEMPADDR: 2663 if (pktopt) 2664 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2665 optdata = (void *)&defpreftemp; 2666 optdatalen = sizeof(int); 2667 break; 2668 default: /* should not happen */ 2669 #ifdef DIAGNOSTIC 2670 panic("ip6_getpcbopt: unexpected option\n"); 2671 #endif 2672 INP_RUNLOCK(inp); 2673 return (ENOPROTOOPT); 2674 } 2675 INP_RUNLOCK(inp); 2676 2677 error = sooptcopyout(sopt, optdata, optdatalen); 2678 if (malloc_optdata) 2679 free(optdata, M_TEMP); 2680 2681 return (error); 2682 } 2683 2684 void 2685 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2686 { 2687 if (pktopt == NULL) 2688 return; 2689 2690 if (optname == -1 || optname == IPV6_PKTINFO) { 2691 if (pktopt->ip6po_pktinfo) 2692 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2693 pktopt->ip6po_pktinfo = NULL; 2694 } 2695 if (optname == -1 || optname == IPV6_HOPLIMIT) 2696 pktopt->ip6po_hlim = -1; 2697 if (optname == -1 || optname == IPV6_TCLASS) 2698 pktopt->ip6po_tclass = -1; 2699 if (optname == -1 || optname == IPV6_NEXTHOP) { 2700 if (pktopt->ip6po_nextroute.ro_nh) { 2701 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2702 pktopt->ip6po_nextroute.ro_nh = NULL; 2703 } 2704 if (pktopt->ip6po_nexthop) 2705 free(pktopt->ip6po_nexthop, M_IP6OPT); 2706 pktopt->ip6po_nexthop = NULL; 2707 } 2708 if (optname == -1 || optname == IPV6_HOPOPTS) { 2709 if (pktopt->ip6po_hbh) 2710 free(pktopt->ip6po_hbh, M_IP6OPT); 2711 pktopt->ip6po_hbh = NULL; 2712 } 2713 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2714 if (pktopt->ip6po_dest1) 2715 free(pktopt->ip6po_dest1, M_IP6OPT); 2716 pktopt->ip6po_dest1 = NULL; 2717 } 2718 if (optname == -1 || optname == IPV6_RTHDR) { 2719 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2720 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2721 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2722 if (pktopt->ip6po_route.ro_nh) { 2723 NH_FREE(pktopt->ip6po_route.ro_nh); 2724 pktopt->ip6po_route.ro_nh = NULL; 2725 } 2726 } 2727 if (optname == -1 || optname == IPV6_DSTOPTS) { 2728 if (pktopt->ip6po_dest2) 2729 free(pktopt->ip6po_dest2, M_IP6OPT); 2730 pktopt->ip6po_dest2 = NULL; 2731 } 2732 } 2733 2734 #define PKTOPT_EXTHDRCPY(type) \ 2735 do {\ 2736 if (src->type) {\ 2737 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2738 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2739 if (dst->type == NULL)\ 2740 goto bad;\ 2741 bcopy(src->type, dst->type, hlen);\ 2742 }\ 2743 } while (/*CONSTCOND*/ 0) 2744 2745 static int 2746 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2747 { 2748 if (dst == NULL || src == NULL) { 2749 printf("ip6_clearpktopts: invalid argument\n"); 2750 return (EINVAL); 2751 } 2752 2753 dst->ip6po_hlim = src->ip6po_hlim; 2754 dst->ip6po_tclass = src->ip6po_tclass; 2755 dst->ip6po_flags = src->ip6po_flags; 2756 dst->ip6po_minmtu = src->ip6po_minmtu; 2757 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2758 if (src->ip6po_pktinfo) { 2759 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2760 M_IP6OPT, canwait); 2761 if (dst->ip6po_pktinfo == NULL) 2762 goto bad; 2763 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2764 } 2765 if (src->ip6po_nexthop) { 2766 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2767 M_IP6OPT, canwait); 2768 if (dst->ip6po_nexthop == NULL) 2769 goto bad; 2770 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2771 src->ip6po_nexthop->sa_len); 2772 } 2773 PKTOPT_EXTHDRCPY(ip6po_hbh); 2774 PKTOPT_EXTHDRCPY(ip6po_dest1); 2775 PKTOPT_EXTHDRCPY(ip6po_dest2); 2776 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2777 return (0); 2778 2779 bad: 2780 ip6_clearpktopts(dst, -1); 2781 return (ENOBUFS); 2782 } 2783 #undef PKTOPT_EXTHDRCPY 2784 2785 struct ip6_pktopts * 2786 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2787 { 2788 int error; 2789 struct ip6_pktopts *dst; 2790 2791 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2792 if (dst == NULL) 2793 return (NULL); 2794 ip6_initpktopts(dst); 2795 2796 if ((error = copypktopts(dst, src, canwait)) != 0) { 2797 free(dst, M_IP6OPT); 2798 return (NULL); 2799 } 2800 2801 return (dst); 2802 } 2803 2804 void 2805 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2806 { 2807 if (pktopt == NULL) 2808 return; 2809 2810 ip6_clearpktopts(pktopt, -1); 2811 2812 free(pktopt, M_IP6OPT); 2813 } 2814 2815 /* 2816 * Set IPv6 outgoing packet options based on advanced API. 2817 */ 2818 int 2819 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2820 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2821 { 2822 struct cmsghdr *cm = NULL; 2823 2824 if (control == NULL || opt == NULL) 2825 return (EINVAL); 2826 2827 /* 2828 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2829 * are in the network epoch here. 2830 */ 2831 NET_EPOCH_ASSERT(); 2832 2833 ip6_initpktopts(opt); 2834 if (stickyopt) { 2835 int error; 2836 2837 /* 2838 * If stickyopt is provided, make a local copy of the options 2839 * for this particular packet, then override them by ancillary 2840 * objects. 2841 * XXX: copypktopts() does not copy the cached route to a next 2842 * hop (if any). This is not very good in terms of efficiency, 2843 * but we can allow this since this option should be rarely 2844 * used. 2845 */ 2846 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2847 return (error); 2848 } 2849 2850 /* 2851 * XXX: Currently, we assume all the optional information is stored 2852 * in a single mbuf. 2853 */ 2854 if (control->m_next) 2855 return (EINVAL); 2856 2857 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2858 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2859 int error; 2860 2861 if (control->m_len < CMSG_LEN(0)) 2862 return (EINVAL); 2863 2864 cm = mtod(control, struct cmsghdr *); 2865 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2866 return (EINVAL); 2867 if (cm->cmsg_level != IPPROTO_IPV6) 2868 continue; 2869 2870 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2871 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2872 if (error) 2873 return (error); 2874 } 2875 2876 return (0); 2877 } 2878 2879 /* 2880 * Set a particular packet option, as a sticky option or an ancillary data 2881 * item. "len" can be 0 only when it's a sticky option. 2882 * We have 4 cases of combination of "sticky" and "cmsg": 2883 * "sticky=0, cmsg=0": impossible 2884 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2885 * "sticky=1, cmsg=0": RFC3542 socket option 2886 * "sticky=1, cmsg=1": RFC2292 socket option 2887 */ 2888 static int 2889 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2890 struct ucred *cred, int sticky, int cmsg, int uproto) 2891 { 2892 int minmtupolicy, preftemp; 2893 int error; 2894 2895 NET_EPOCH_ASSERT(); 2896 2897 if (!sticky && !cmsg) { 2898 #ifdef DIAGNOSTIC 2899 printf("ip6_setpktopt: impossible case\n"); 2900 #endif 2901 return (EINVAL); 2902 } 2903 2904 /* 2905 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2906 * not be specified in the context of RFC3542. Conversely, 2907 * RFC3542 types should not be specified in the context of RFC2292. 2908 */ 2909 if (!cmsg) { 2910 switch (optname) { 2911 case IPV6_2292PKTINFO: 2912 case IPV6_2292HOPLIMIT: 2913 case IPV6_2292NEXTHOP: 2914 case IPV6_2292HOPOPTS: 2915 case IPV6_2292DSTOPTS: 2916 case IPV6_2292RTHDR: 2917 case IPV6_2292PKTOPTIONS: 2918 return (ENOPROTOOPT); 2919 } 2920 } 2921 if (sticky && cmsg) { 2922 switch (optname) { 2923 case IPV6_PKTINFO: 2924 case IPV6_HOPLIMIT: 2925 case IPV6_NEXTHOP: 2926 case IPV6_HOPOPTS: 2927 case IPV6_DSTOPTS: 2928 case IPV6_RTHDRDSTOPTS: 2929 case IPV6_RTHDR: 2930 case IPV6_USE_MIN_MTU: 2931 case IPV6_DONTFRAG: 2932 case IPV6_TCLASS: 2933 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2934 return (ENOPROTOOPT); 2935 } 2936 } 2937 2938 switch (optname) { 2939 case IPV6_2292PKTINFO: 2940 case IPV6_PKTINFO: 2941 { 2942 struct ifnet *ifp = NULL; 2943 struct in6_pktinfo *pktinfo; 2944 2945 if (len != sizeof(struct in6_pktinfo)) 2946 return (EINVAL); 2947 2948 pktinfo = (struct in6_pktinfo *)buf; 2949 2950 /* 2951 * An application can clear any sticky IPV6_PKTINFO option by 2952 * doing a "regular" setsockopt with ipi6_addr being 2953 * in6addr_any and ipi6_ifindex being zero. 2954 * [RFC 3542, Section 6] 2955 */ 2956 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2957 pktinfo->ipi6_ifindex == 0 && 2958 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2959 ip6_clearpktopts(opt, optname); 2960 break; 2961 } 2962 2963 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2964 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2965 return (EINVAL); 2966 } 2967 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2968 return (EINVAL); 2969 /* validate the interface index if specified. */ 2970 if (pktinfo->ipi6_ifindex) { 2971 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2972 if (ifp == NULL) 2973 return (ENXIO); 2974 } 2975 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2976 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2977 return (ENETDOWN); 2978 2979 if (ifp != NULL && 2980 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2981 struct in6_ifaddr *ia; 2982 2983 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2984 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2985 if (ia == NULL) 2986 return (EADDRNOTAVAIL); 2987 ifa_free(&ia->ia_ifa); 2988 } 2989 /* 2990 * We store the address anyway, and let in6_selectsrc() 2991 * validate the specified address. This is because ipi6_addr 2992 * may not have enough information about its scope zone, and 2993 * we may need additional information (such as outgoing 2994 * interface or the scope zone of a destination address) to 2995 * disambiguate the scope. 2996 * XXX: the delay of the validation may confuse the 2997 * application when it is used as a sticky option. 2998 */ 2999 if (opt->ip6po_pktinfo == NULL) { 3000 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3001 M_IP6OPT, M_NOWAIT); 3002 if (opt->ip6po_pktinfo == NULL) 3003 return (ENOBUFS); 3004 } 3005 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3006 break; 3007 } 3008 3009 case IPV6_2292HOPLIMIT: 3010 case IPV6_HOPLIMIT: 3011 { 3012 int *hlimp; 3013 3014 /* 3015 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3016 * to simplify the ordering among hoplimit options. 3017 */ 3018 if (optname == IPV6_HOPLIMIT && sticky) 3019 return (ENOPROTOOPT); 3020 3021 if (len != sizeof(int)) 3022 return (EINVAL); 3023 hlimp = (int *)buf; 3024 if (*hlimp < -1 || *hlimp > 255) 3025 return (EINVAL); 3026 3027 opt->ip6po_hlim = *hlimp; 3028 break; 3029 } 3030 3031 case IPV6_TCLASS: 3032 { 3033 int tclass; 3034 3035 if (len != sizeof(int)) 3036 return (EINVAL); 3037 tclass = *(int *)buf; 3038 if (tclass < -1 || tclass > 255) 3039 return (EINVAL); 3040 3041 opt->ip6po_tclass = tclass; 3042 break; 3043 } 3044 3045 case IPV6_2292NEXTHOP: 3046 case IPV6_NEXTHOP: 3047 if (cred != NULL) { 3048 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3049 if (error) 3050 return (error); 3051 } 3052 3053 if (len == 0) { /* just remove the option */ 3054 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3055 break; 3056 } 3057 3058 /* check if cmsg_len is large enough for sa_len */ 3059 if (len < sizeof(struct sockaddr) || len < *buf) 3060 return (EINVAL); 3061 3062 switch (((struct sockaddr *)buf)->sa_family) { 3063 case AF_INET6: 3064 { 3065 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3066 int error; 3067 3068 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3069 return (EINVAL); 3070 3071 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3072 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3073 return (EINVAL); 3074 } 3075 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3076 != 0) { 3077 return (error); 3078 } 3079 break; 3080 } 3081 case AF_LINK: /* should eventually be supported */ 3082 default: 3083 return (EAFNOSUPPORT); 3084 } 3085 3086 /* turn off the previous option, then set the new option. */ 3087 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3088 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3089 if (opt->ip6po_nexthop == NULL) 3090 return (ENOBUFS); 3091 bcopy(buf, opt->ip6po_nexthop, *buf); 3092 break; 3093 3094 case IPV6_2292HOPOPTS: 3095 case IPV6_HOPOPTS: 3096 { 3097 struct ip6_hbh *hbh; 3098 int hbhlen; 3099 3100 /* 3101 * XXX: We don't allow a non-privileged user to set ANY HbH 3102 * options, since per-option restriction has too much 3103 * overhead. 3104 */ 3105 if (cred != NULL) { 3106 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3107 if (error) 3108 return (error); 3109 } 3110 3111 if (len == 0) { 3112 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3113 break; /* just remove the option */ 3114 } 3115 3116 /* message length validation */ 3117 if (len < sizeof(struct ip6_hbh)) 3118 return (EINVAL); 3119 hbh = (struct ip6_hbh *)buf; 3120 hbhlen = (hbh->ip6h_len + 1) << 3; 3121 if (len != hbhlen) 3122 return (EINVAL); 3123 3124 /* turn off the previous option, then set the new option. */ 3125 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3126 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3127 if (opt->ip6po_hbh == NULL) 3128 return (ENOBUFS); 3129 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3130 3131 break; 3132 } 3133 3134 case IPV6_2292DSTOPTS: 3135 case IPV6_DSTOPTS: 3136 case IPV6_RTHDRDSTOPTS: 3137 { 3138 struct ip6_dest *dest, **newdest = NULL; 3139 int destlen; 3140 3141 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3142 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3143 if (error) 3144 return (error); 3145 } 3146 3147 if (len == 0) { 3148 ip6_clearpktopts(opt, optname); 3149 break; /* just remove the option */ 3150 } 3151 3152 /* message length validation */ 3153 if (len < sizeof(struct ip6_dest)) 3154 return (EINVAL); 3155 dest = (struct ip6_dest *)buf; 3156 destlen = (dest->ip6d_len + 1) << 3; 3157 if (len != destlen) 3158 return (EINVAL); 3159 3160 /* 3161 * Determine the position that the destination options header 3162 * should be inserted; before or after the routing header. 3163 */ 3164 switch (optname) { 3165 case IPV6_2292DSTOPTS: 3166 /* 3167 * The old advacned API is ambiguous on this point. 3168 * Our approach is to determine the position based 3169 * according to the existence of a routing header. 3170 * Note, however, that this depends on the order of the 3171 * extension headers in the ancillary data; the 1st 3172 * part of the destination options header must appear 3173 * before the routing header in the ancillary data, 3174 * too. 3175 * RFC3542 solved the ambiguity by introducing 3176 * separate ancillary data or option types. 3177 */ 3178 if (opt->ip6po_rthdr == NULL) 3179 newdest = &opt->ip6po_dest1; 3180 else 3181 newdest = &opt->ip6po_dest2; 3182 break; 3183 case IPV6_RTHDRDSTOPTS: 3184 newdest = &opt->ip6po_dest1; 3185 break; 3186 case IPV6_DSTOPTS: 3187 newdest = &opt->ip6po_dest2; 3188 break; 3189 } 3190 3191 /* turn off the previous option, then set the new option. */ 3192 ip6_clearpktopts(opt, optname); 3193 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3194 if (*newdest == NULL) 3195 return (ENOBUFS); 3196 bcopy(dest, *newdest, destlen); 3197 3198 break; 3199 } 3200 3201 case IPV6_2292RTHDR: 3202 case IPV6_RTHDR: 3203 { 3204 struct ip6_rthdr *rth; 3205 int rthlen; 3206 3207 if (len == 0) { 3208 ip6_clearpktopts(opt, IPV6_RTHDR); 3209 break; /* just remove the option */ 3210 } 3211 3212 /* message length validation */ 3213 if (len < sizeof(struct ip6_rthdr)) 3214 return (EINVAL); 3215 rth = (struct ip6_rthdr *)buf; 3216 rthlen = (rth->ip6r_len + 1) << 3; 3217 if (len != rthlen) 3218 return (EINVAL); 3219 3220 switch (rth->ip6r_type) { 3221 case IPV6_RTHDR_TYPE_0: 3222 if (rth->ip6r_len == 0) /* must contain one addr */ 3223 return (EINVAL); 3224 if (rth->ip6r_len % 2) /* length must be even */ 3225 return (EINVAL); 3226 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3227 return (EINVAL); 3228 break; 3229 default: 3230 return (EINVAL); /* not supported */ 3231 } 3232 3233 /* turn off the previous option */ 3234 ip6_clearpktopts(opt, IPV6_RTHDR); 3235 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3236 if (opt->ip6po_rthdr == NULL) 3237 return (ENOBUFS); 3238 bcopy(rth, opt->ip6po_rthdr, rthlen); 3239 3240 break; 3241 } 3242 3243 case IPV6_USE_MIN_MTU: 3244 if (len != sizeof(int)) 3245 return (EINVAL); 3246 minmtupolicy = *(int *)buf; 3247 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3248 minmtupolicy != IP6PO_MINMTU_DISABLE && 3249 minmtupolicy != IP6PO_MINMTU_ALL) { 3250 return (EINVAL); 3251 } 3252 opt->ip6po_minmtu = minmtupolicy; 3253 break; 3254 3255 case IPV6_DONTFRAG: 3256 if (len != sizeof(int)) 3257 return (EINVAL); 3258 3259 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3260 /* 3261 * we ignore this option for TCP sockets. 3262 * (RFC3542 leaves this case unspecified.) 3263 */ 3264 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3265 } else 3266 opt->ip6po_flags |= IP6PO_DONTFRAG; 3267 break; 3268 3269 case IPV6_PREFER_TEMPADDR: 3270 if (len != sizeof(int)) 3271 return (EINVAL); 3272 preftemp = *(int *)buf; 3273 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3274 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3275 preftemp != IP6PO_TEMPADDR_PREFER) { 3276 return (EINVAL); 3277 } 3278 opt->ip6po_prefer_tempaddr = preftemp; 3279 break; 3280 3281 default: 3282 return (ENOPROTOOPT); 3283 } /* end of switch */ 3284 3285 return (0); 3286 } 3287 3288 /* 3289 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3290 * packet to the input queue of a specified interface. Note that this 3291 * calls the output routine of the loopback "driver", but with an interface 3292 * pointer that might NOT be &loif -- easier than replicating that code here. 3293 */ 3294 void 3295 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3296 { 3297 struct mbuf *copym; 3298 struct ip6_hdr *ip6; 3299 3300 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3301 if (copym == NULL) 3302 return; 3303 3304 /* 3305 * Make sure to deep-copy IPv6 header portion in case the data 3306 * is in an mbuf cluster, so that we can safely override the IPv6 3307 * header portion later. 3308 */ 3309 if (!M_WRITABLE(copym) || 3310 copym->m_len < sizeof(struct ip6_hdr)) { 3311 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3312 if (copym == NULL) 3313 return; 3314 } 3315 ip6 = mtod(copym, struct ip6_hdr *); 3316 /* 3317 * clear embedded scope identifiers if necessary. 3318 * in6_clearscope will touch the addresses only when necessary. 3319 */ 3320 in6_clearscope(&ip6->ip6_src); 3321 in6_clearscope(&ip6->ip6_dst); 3322 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3323 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3324 CSUM_PSEUDO_HDR; 3325 copym->m_pkthdr.csum_data = 0xffff; 3326 } 3327 if_simloop(ifp, copym, AF_INET6, 0); 3328 } 3329 3330 /* 3331 * Chop IPv6 header off from the payload. 3332 */ 3333 static int 3334 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3335 { 3336 struct mbuf *mh; 3337 struct ip6_hdr *ip6; 3338 3339 ip6 = mtod(m, struct ip6_hdr *); 3340 if (m->m_len > sizeof(*ip6)) { 3341 mh = m_gethdr(M_NOWAIT, MT_DATA); 3342 if (mh == NULL) { 3343 m_freem(m); 3344 return ENOBUFS; 3345 } 3346 m_move_pkthdr(mh, m); 3347 M_ALIGN(mh, sizeof(*ip6)); 3348 m->m_len -= sizeof(*ip6); 3349 m->m_data += sizeof(*ip6); 3350 mh->m_next = m; 3351 m = mh; 3352 m->m_len = sizeof(*ip6); 3353 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3354 } 3355 exthdrs->ip6e_ip6 = m; 3356 return 0; 3357 } 3358 3359 /* 3360 * Compute IPv6 extension header length. 3361 */ 3362 int 3363 ip6_optlen(struct inpcb *inp) 3364 { 3365 int len; 3366 3367 if (!inp->in6p_outputopts) 3368 return 0; 3369 3370 len = 0; 3371 #define elen(x) \ 3372 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3373 3374 len += elen(inp->in6p_outputopts->ip6po_hbh); 3375 if (inp->in6p_outputopts->ip6po_rthdr) 3376 /* dest1 is valid with rthdr only */ 3377 len += elen(inp->in6p_outputopts->ip6po_dest1); 3378 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3379 len += elen(inp->in6p_outputopts->ip6po_dest2); 3380 return len; 3381 #undef elen 3382 } 3383