1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_vlan_var.h> 96 #include <net/if_llatbl.h> 97 #include <net/ethernet.h> 98 #include <net/netisr.h> 99 #include <net/route.h> 100 #include <net/route/nhop.h> 101 #include <net/pfil.h> 102 #include <net/rss_config.h> 103 #include <net/vnet.h> 104 105 #include <netinet/in.h> 106 #include <netinet/in_var.h> 107 #include <netinet/ip_var.h> 108 #include <netinet6/in6_fib.h> 109 #include <netinet6/in6_var.h> 110 #include <netinet/ip6.h> 111 #include <netinet/icmp6.h> 112 #include <netinet6/ip6_var.h> 113 #include <netinet/in_pcb.h> 114 #include <netinet/tcp_var.h> 115 #include <netinet6/nd6.h> 116 #include <netinet6/in6_rss.h> 117 118 #include <netipsec/ipsec_support.h> 119 #if defined(SCTP) || defined(SCTP_SUPPORT) 120 #include <netinet/sctp.h> 121 #include <netinet/sctp_crc32.h> 122 #endif 123 124 #include <netinet6/ip6protosw.h> 125 #include <netinet6/scope6_var.h> 126 127 extern int in6_mcast_loop; 128 129 struct ip6_exthdrs { 130 struct mbuf *ip6e_ip6; 131 struct mbuf *ip6e_hbh; 132 struct mbuf *ip6e_dest1; 133 struct mbuf *ip6e_rthdr; 134 struct mbuf *ip6e_dest2; 135 }; 136 137 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 138 139 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 140 struct ucred *, int); 141 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 142 struct socket *, struct sockopt *); 143 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 144 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 145 struct ucred *, int, int, int); 146 147 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 148 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 149 struct ip6_frag **); 150 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 151 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 152 static int ip6_getpmtu(struct route_in6 *, int, 153 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 154 u_int); 155 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 156 u_long *, int *, u_int); 157 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 158 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 159 160 /* 161 * Make an extension header from option data. hp is the source, 162 * mp is the destination, and _ol is the optlen. 163 */ 164 #define MAKE_EXTHDR(hp, mp, _ol) \ 165 do { \ 166 if (hp) { \ 167 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 168 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 169 ((eh)->ip6e_len + 1) << 3); \ 170 if (error) \ 171 goto freehdrs; \ 172 (_ol) += (*(mp))->m_len; \ 173 } \ 174 } while (/*CONSTCOND*/ 0) 175 176 /* 177 * Form a chain of extension headers. 178 * m is the extension header mbuf 179 * mp is the previous mbuf in the chain 180 * p is the next header 181 * i is the type of option. 182 */ 183 #define MAKE_CHAIN(m, mp, p, i)\ 184 do {\ 185 if (m) {\ 186 if (!hdrsplit) \ 187 panic("%s:%d: assumption failed: "\ 188 "hdr not split: hdrsplit %d exthdrs %p",\ 189 __func__, __LINE__, hdrsplit, &exthdrs);\ 190 *mtod((m), u_char *) = *(p);\ 191 *(p) = (i);\ 192 p = mtod((m), u_char *);\ 193 (m)->m_next = (mp)->m_next;\ 194 (mp)->m_next = (m);\ 195 (mp) = (m);\ 196 }\ 197 } while (/*CONSTCOND*/ 0) 198 199 void 200 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 201 { 202 u_short csum; 203 204 csum = in_cksum_skip(m, offset + plen, offset); 205 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 206 csum = 0xffff; 207 offset += m->m_pkthdr.csum_data; /* checksum offset */ 208 209 if (offset + sizeof(csum) > m->m_len) 210 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 211 else 212 *(u_short *)mtodo(m, offset) = csum; 213 } 214 215 static void 216 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 217 int plen, int optlen) 218 { 219 220 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 221 "csum_flags %#x", 222 __func__, __LINE__, plen, optlen, m, ifp, csum_flags)); 223 224 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 225 in6_delayed_cksum(m, plen - optlen, 226 sizeof(struct ip6_hdr) + optlen); 227 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 228 } 229 #if defined(SCTP) || defined(SCTP_SUPPORT) 230 if (csum_flags & CSUM_SCTP_IPV6) { 231 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 232 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 233 } 234 #endif 235 } 236 237 int 238 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 239 int fraglen , uint32_t id) 240 { 241 struct mbuf *m, **mnext, *m_frgpart; 242 struct ip6_hdr *ip6, *mhip6; 243 struct ip6_frag *ip6f; 244 int off; 245 int error; 246 int tlen = m0->m_pkthdr.len; 247 248 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 249 250 m = m0; 251 ip6 = mtod(m, struct ip6_hdr *); 252 mnext = &m->m_nextpkt; 253 254 for (off = hlen; off < tlen; off += fraglen) { 255 m = m_gethdr(M_NOWAIT, MT_DATA); 256 if (!m) { 257 IP6STAT_INC(ip6s_odropped); 258 return (ENOBUFS); 259 } 260 261 /* 262 * Make sure the complete packet header gets copied 263 * from the originating mbuf to the newly created 264 * mbuf. This also ensures that existing firewall 265 * classification(s), VLAN tags and so on get copied 266 * to the resulting fragmented packet(s): 267 */ 268 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 269 m_free(m); 270 IP6STAT_INC(ip6s_odropped); 271 return (ENOBUFS); 272 } 273 274 *mnext = m; 275 mnext = &m->m_nextpkt; 276 m->m_data += max_linkhdr; 277 mhip6 = mtod(m, struct ip6_hdr *); 278 *mhip6 = *ip6; 279 m->m_len = sizeof(*mhip6); 280 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 281 if (error) { 282 IP6STAT_INC(ip6s_odropped); 283 return (error); 284 } 285 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 286 if (off + fraglen >= tlen) 287 fraglen = tlen - off; 288 else 289 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 290 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 291 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 292 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 293 IP6STAT_INC(ip6s_odropped); 294 return (ENOBUFS); 295 } 296 m_cat(m, m_frgpart); 297 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 298 ip6f->ip6f_reserved = 0; 299 ip6f->ip6f_ident = id; 300 ip6f->ip6f_nxt = nextproto; 301 IP6STAT_INC(ip6s_ofragments); 302 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 303 } 304 305 return (0); 306 } 307 308 static int 309 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 310 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro, 311 bool stamp_tag) 312 { 313 #ifdef KERN_TLS 314 struct ktls_session *tls = NULL; 315 #endif 316 struct m_snd_tag *mst; 317 int error; 318 319 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 320 mst = NULL; 321 322 #ifdef KERN_TLS 323 /* 324 * If this is an unencrypted TLS record, save a reference to 325 * the record. This local reference is used to call 326 * ktls_output_eagain after the mbuf has been freed (thus 327 * dropping the mbuf's reference) in if_output. 328 */ 329 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 330 tls = ktls_hold(m->m_next->m_epg_tls); 331 mst = tls->snd_tag; 332 333 /* 334 * If a TLS session doesn't have a valid tag, it must 335 * have had an earlier ifp mismatch, so drop this 336 * packet. 337 */ 338 if (mst == NULL) { 339 m_freem(m); 340 error = EAGAIN; 341 goto done; 342 } 343 /* 344 * Always stamp tags that include NIC ktls. 345 */ 346 stamp_tag = true; 347 } 348 #endif 349 #ifdef RATELIMIT 350 if (inp != NULL && mst == NULL) { 351 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 352 (inp->inp_snd_tag != NULL && 353 inp->inp_snd_tag->ifp != ifp)) 354 in_pcboutput_txrtlmt(inp, ifp, m); 355 356 if (inp->inp_snd_tag != NULL) 357 mst = inp->inp_snd_tag; 358 } 359 #endif 360 if (stamp_tag && mst != NULL) { 361 KASSERT(m->m_pkthdr.rcvif == NULL, 362 ("trying to add a send tag to a forwarded packet")); 363 if (mst->ifp != ifp) { 364 m_freem(m); 365 error = EAGAIN; 366 goto done; 367 } 368 369 /* stamp send tag on mbuf */ 370 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 371 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 372 } 373 374 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 375 376 done: 377 /* Check for route change invalidating send tags. */ 378 #ifdef KERN_TLS 379 if (tls != NULL) { 380 if (error == EAGAIN) 381 error = ktls_output_eagain(inp, tls); 382 ktls_free(tls); 383 } 384 #endif 385 #ifdef RATELIMIT 386 if (error == EAGAIN) 387 in_pcboutput_eagain(inp); 388 #endif 389 return (error); 390 } 391 392 /* 393 * IP6 output. 394 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 395 * nxt, hlim, src, dst). 396 * This function may modify ver and hlim only. 397 * The mbuf chain containing the packet will be freed. 398 * The mbuf opt, if present, will not be freed. 399 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 400 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 401 * then result of route lookup is stored in ro->ro_nh. 402 * 403 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 404 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 405 * 406 * ifpp - XXX: just for statistics 407 */ 408 int 409 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 410 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 411 struct ifnet **ifpp, struct inpcb *inp) 412 { 413 struct ip6_hdr *ip6; 414 struct ifnet *ifp, *origifp; 415 struct mbuf *m = m0; 416 struct mbuf *mprev; 417 struct route_in6 *ro_pmtu; 418 struct nhop_object *nh; 419 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 420 struct in6_addr odst; 421 u_char *nexthdrp; 422 int tlen, len; 423 int error = 0; 424 int vlan_pcp = -1; 425 struct in6_ifaddr *ia = NULL; 426 u_long mtu; 427 int alwaysfrag, dontfrag; 428 u_int32_t optlen, plen = 0, unfragpartlen; 429 struct ip6_exthdrs exthdrs; 430 struct in6_addr src0, dst0; 431 u_int32_t zone; 432 bool hdrsplit; 433 int sw_csum, tso; 434 int needfiblookup; 435 uint32_t fibnum; 436 struct m_tag *fwd_tag = NULL; 437 uint32_t id; 438 439 NET_EPOCH_ASSERT(); 440 441 if (inp != NULL) { 442 INP_LOCK_ASSERT(inp); 443 M_SETFIB(m, inp->inp_inc.inc_fibnum); 444 if ((flags & IP_NODEFAULTFLOWID) == 0) { 445 /* Unconditionally set flowid. */ 446 m->m_pkthdr.flowid = inp->inp_flowid; 447 M_HASHTYPE_SET(m, inp->inp_flowtype); 448 } 449 if ((inp->inp_flags2 & INP_2PCP_SET) != 0) 450 vlan_pcp = (inp->inp_flags2 & INP_2PCP_MASK) >> 451 INP_2PCP_SHIFT; 452 #ifdef NUMA 453 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 454 #endif 455 } 456 457 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 458 /* 459 * IPSec checking which handles several cases. 460 * FAST IPSEC: We re-injected the packet. 461 * XXX: need scope argument. 462 */ 463 if (IPSEC_ENABLED(ipv6)) { 464 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 465 if (error == EINPROGRESS) 466 error = 0; 467 goto done; 468 } 469 } 470 #endif /* IPSEC */ 471 472 /* Source address validation. */ 473 ip6 = mtod(m, struct ip6_hdr *); 474 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 475 (flags & IPV6_UNSPECSRC) == 0) { 476 error = EOPNOTSUPP; 477 IP6STAT_INC(ip6s_badscope); 478 goto bad; 479 } 480 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 481 error = EOPNOTSUPP; 482 IP6STAT_INC(ip6s_badscope); 483 goto bad; 484 } 485 486 /* 487 * If we are given packet options to add extension headers prepare them. 488 * Calculate the total length of the extension header chain. 489 * Keep the length of the unfragmentable part for fragmentation. 490 */ 491 bzero(&exthdrs, sizeof(exthdrs)); 492 optlen = 0; 493 unfragpartlen = sizeof(struct ip6_hdr); 494 if (opt) { 495 /* Hop-by-Hop options header. */ 496 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 497 498 /* Destination options header (1st part). */ 499 if (opt->ip6po_rthdr) { 500 #ifndef RTHDR_SUPPORT_IMPLEMENTED 501 /* 502 * If there is a routing header, discard the packet 503 * right away here. RH0/1 are obsolete and we do not 504 * currently support RH2/3/4. 505 * People trying to use RH253/254 may want to disable 506 * this check. 507 * The moment we do support any routing header (again) 508 * this block should check the routing type more 509 * selectively. 510 */ 511 error = EINVAL; 512 goto bad; 513 #endif 514 515 /* 516 * Destination options header (1st part). 517 * This only makes sense with a routing header. 518 * See Section 9.2 of RFC 3542. 519 * Disabling this part just for MIP6 convenience is 520 * a bad idea. We need to think carefully about a 521 * way to make the advanced API coexist with MIP6 522 * options, which might automatically be inserted in 523 * the kernel. 524 */ 525 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 526 optlen); 527 } 528 /* Routing header. */ 529 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 530 531 unfragpartlen += optlen; 532 533 /* 534 * NOTE: we don't add AH/ESP length here (done in 535 * ip6_ipsec_output()). 536 */ 537 538 /* Destination options header (2nd part). */ 539 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 540 } 541 542 /* 543 * If there is at least one extension header, 544 * separate IP6 header from the payload. 545 */ 546 hdrsplit = false; 547 if (optlen) { 548 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 549 m = NULL; 550 goto freehdrs; 551 } 552 m = exthdrs.ip6e_ip6; 553 ip6 = mtod(m, struct ip6_hdr *); 554 hdrsplit = true; 555 } 556 557 /* Adjust mbuf packet header length. */ 558 m->m_pkthdr.len += optlen; 559 plen = m->m_pkthdr.len - sizeof(*ip6); 560 561 /* If this is a jumbo payload, insert a jumbo payload option. */ 562 if (plen > IPV6_MAXPACKET) { 563 if (!hdrsplit) { 564 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 565 m = NULL; 566 goto freehdrs; 567 } 568 m = exthdrs.ip6e_ip6; 569 ip6 = mtod(m, struct ip6_hdr *); 570 hdrsplit = true; 571 } 572 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 573 goto freehdrs; 574 ip6->ip6_plen = 0; 575 } else 576 ip6->ip6_plen = htons(plen); 577 nexthdrp = &ip6->ip6_nxt; 578 579 if (optlen) { 580 /* 581 * Concatenate headers and fill in next header fields. 582 * Here we have, on "m" 583 * IPv6 payload 584 * and we insert headers accordingly. 585 * Finally, we should be getting: 586 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 587 * 588 * During the header composing process "m" points to IPv6 589 * header. "mprev" points to an extension header prior to esp. 590 */ 591 mprev = m; 592 593 /* 594 * We treat dest2 specially. This makes IPsec processing 595 * much easier. The goal here is to make mprev point the 596 * mbuf prior to dest2. 597 * 598 * Result: IPv6 dest2 payload. 599 * m and mprev will point to IPv6 header. 600 */ 601 if (exthdrs.ip6e_dest2) { 602 if (!hdrsplit) 603 panic("%s:%d: assumption failed: " 604 "hdr not split: hdrsplit %d exthdrs %p", 605 __func__, __LINE__, hdrsplit, &exthdrs); 606 exthdrs.ip6e_dest2->m_next = m->m_next; 607 m->m_next = exthdrs.ip6e_dest2; 608 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 609 ip6->ip6_nxt = IPPROTO_DSTOPTS; 610 } 611 612 /* 613 * Result: IPv6 hbh dest1 rthdr dest2 payload. 614 * m will point to IPv6 header. mprev will point to the 615 * extension header prior to dest2 (rthdr in the above case). 616 */ 617 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 618 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 619 IPPROTO_DSTOPTS); 620 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 621 IPPROTO_ROUTING); 622 } 623 624 IP6STAT_INC(ip6s_localout); 625 626 /* Route packet. */ 627 ro_pmtu = ro; 628 if (opt && opt->ip6po_rthdr) 629 ro = &opt->ip6po_route; 630 if (ro != NULL) 631 dst = (struct sockaddr_in6 *)&ro->ro_dst; 632 else 633 dst = &sin6; 634 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 635 636 again: 637 /* 638 * If specified, try to fill in the traffic class field. 639 * Do not override if a non-zero value is already set. 640 * We check the diffserv field and the ECN field separately. 641 */ 642 if (opt && opt->ip6po_tclass >= 0) { 643 int mask = 0; 644 645 if (IPV6_DSCP(ip6) == 0) 646 mask |= 0xfc; 647 if (IPV6_ECN(ip6) == 0) 648 mask |= 0x03; 649 if (mask != 0) 650 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 651 } 652 653 /* Fill in or override the hop limit field, if necessary. */ 654 if (opt && opt->ip6po_hlim != -1) 655 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 656 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 657 if (im6o != NULL) 658 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 659 else 660 ip6->ip6_hlim = V_ip6_defmcasthlim; 661 } 662 663 if (ro == NULL || ro->ro_nh == NULL) { 664 bzero(dst, sizeof(*dst)); 665 dst->sin6_family = AF_INET6; 666 dst->sin6_len = sizeof(*dst); 667 dst->sin6_addr = ip6->ip6_dst; 668 } 669 /* 670 * Validate route against routing table changes. 671 * Make sure that the address family is set in route. 672 */ 673 nh = NULL; 674 ifp = NULL; 675 mtu = 0; 676 if (ro != NULL) { 677 if (ro->ro_nh != NULL && inp != NULL) { 678 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 679 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 680 fibnum); 681 } 682 if (ro->ro_nh != NULL && fwd_tag == NULL && 683 (!NH_IS_VALID(ro->ro_nh) || 684 ro->ro_dst.sin6_family != AF_INET6 || 685 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 686 RO_INVALIDATE_CACHE(ro); 687 688 if (ro->ro_nh != NULL && fwd_tag == NULL && 689 ro->ro_dst.sin6_family == AF_INET6 && 690 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 691 nh = ro->ro_nh; 692 ifp = nh->nh_ifp; 693 } else { 694 if (ro->ro_lle) 695 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 696 ro->ro_lle = NULL; 697 if (fwd_tag == NULL) { 698 bzero(&dst_sa, sizeof(dst_sa)); 699 dst_sa.sin6_family = AF_INET6; 700 dst_sa.sin6_len = sizeof(dst_sa); 701 dst_sa.sin6_addr = ip6->ip6_dst; 702 } 703 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 704 &nh, fibnum, m->m_pkthdr.flowid); 705 if (error != 0) { 706 IP6STAT_INC(ip6s_noroute); 707 if (ifp != NULL) 708 in6_ifstat_inc(ifp, ifs6_out_discard); 709 goto bad; 710 } 711 if (ifp != NULL) 712 mtu = ifp->if_mtu; 713 } 714 if (nh == NULL) { 715 /* 716 * If in6_selectroute() does not return a nexthop 717 * dst may not have been updated. 718 */ 719 *dst = dst_sa; /* XXX */ 720 } else { 721 if (nh->nh_flags & NHF_HOST) 722 mtu = nh->nh_mtu; 723 ia = (struct in6_ifaddr *)(nh->nh_ifa); 724 counter_u64_add(nh->nh_pksent, 1); 725 } 726 } else { 727 struct nhop_object *nh; 728 struct in6_addr kdst; 729 uint32_t scopeid; 730 731 if (fwd_tag == NULL) { 732 bzero(&dst_sa, sizeof(dst_sa)); 733 dst_sa.sin6_family = AF_INET6; 734 dst_sa.sin6_len = sizeof(dst_sa); 735 dst_sa.sin6_addr = ip6->ip6_dst; 736 } 737 738 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 739 im6o != NULL && 740 (ifp = im6o->im6o_multicast_ifp) != NULL) { 741 /* We do not need a route lookup. */ 742 *dst = dst_sa; /* XXX */ 743 goto nonh6lookup; 744 } 745 746 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 747 748 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 749 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 750 if (scopeid > 0) { 751 ifp = in6_getlinkifnet(scopeid); 752 if (ifp == NULL) { 753 error = EHOSTUNREACH; 754 goto bad; 755 } 756 *dst = dst_sa; /* XXX */ 757 goto nonh6lookup; 758 } 759 } 760 761 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 762 m->m_pkthdr.flowid); 763 if (nh == NULL) { 764 IP6STAT_INC(ip6s_noroute); 765 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 766 error = EHOSTUNREACH;; 767 goto bad; 768 } 769 770 ifp = nh->nh_ifp; 771 mtu = nh->nh_mtu; 772 ia = ifatoia6(nh->nh_ifa); 773 if (nh->nh_flags & NHF_GATEWAY) 774 dst->sin6_addr = nh->gw6_sa.sin6_addr; 775 else if (fwd_tag != NULL) 776 dst->sin6_addr = dst_sa.sin6_addr; 777 nonh6lookup: 778 ; 779 } 780 781 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 782 if ((flags & IPV6_FORWARDING) == 0) { 783 /* XXX: the FORWARDING flag can be set for mrouting. */ 784 in6_ifstat_inc(ifp, ifs6_out_request); 785 } 786 787 /* Setup data structures for scope ID checks. */ 788 src0 = ip6->ip6_src; 789 bzero(&src_sa, sizeof(src_sa)); 790 src_sa.sin6_family = AF_INET6; 791 src_sa.sin6_len = sizeof(src_sa); 792 src_sa.sin6_addr = ip6->ip6_src; 793 794 dst0 = ip6->ip6_dst; 795 /* Re-initialize to be sure. */ 796 bzero(&dst_sa, sizeof(dst_sa)); 797 dst_sa.sin6_family = AF_INET6; 798 dst_sa.sin6_len = sizeof(dst_sa); 799 dst_sa.sin6_addr = ip6->ip6_dst; 800 801 /* Check for valid scope ID. */ 802 if (in6_setscope(&src0, ifp, &zone) == 0 && 803 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 804 in6_setscope(&dst0, ifp, &zone) == 0 && 805 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 806 /* 807 * The outgoing interface is in the zone of the source 808 * and destination addresses. 809 * 810 * Because the loopback interface cannot receive 811 * packets with a different scope ID than its own, 812 * there is a trick to pretend the outgoing packet 813 * was received by the real network interface, by 814 * setting "origifp" different from "ifp". This is 815 * only allowed when "ifp" is a loopback network 816 * interface. Refer to code in nd6_output_ifp() for 817 * more details. 818 */ 819 origifp = ifp; 820 821 /* 822 * We should use ia_ifp to support the case of sending 823 * packets to an address of our own. 824 */ 825 if (ia != NULL && ia->ia_ifp) 826 ifp = ia->ia_ifp; 827 828 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 829 sa6_recoverscope(&src_sa) != 0 || 830 sa6_recoverscope(&dst_sa) != 0 || 831 dst_sa.sin6_scope_id == 0 || 832 (src_sa.sin6_scope_id != 0 && 833 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 834 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 835 /* 836 * If the destination network interface is not a 837 * loopback interface, or the destination network 838 * address has no scope ID, or the source address has 839 * a scope ID set which is different from the 840 * destination address one, or there is no network 841 * interface representing this scope ID, the address 842 * pair is considered invalid. 843 */ 844 IP6STAT_INC(ip6s_badscope); 845 in6_ifstat_inc(ifp, ifs6_out_discard); 846 if (error == 0) 847 error = EHOSTUNREACH; /* XXX */ 848 goto bad; 849 } 850 /* All scope ID checks are successful. */ 851 852 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 853 if (opt && opt->ip6po_nextroute.ro_nh) { 854 /* 855 * The nexthop is explicitly specified by the 856 * application. We assume the next hop is an IPv6 857 * address. 858 */ 859 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 860 } 861 else if ((nh->nh_flags & NHF_GATEWAY)) 862 dst = &nh->gw6_sa; 863 } 864 865 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 866 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 867 } else { 868 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 869 in6_ifstat_inc(ifp, ifs6_out_mcast); 870 871 /* Confirm that the outgoing interface supports multicast. */ 872 if (!(ifp->if_flags & IFF_MULTICAST)) { 873 IP6STAT_INC(ip6s_noroute); 874 in6_ifstat_inc(ifp, ifs6_out_discard); 875 error = ENETUNREACH; 876 goto bad; 877 } 878 if ((im6o == NULL && in6_mcast_loop) || 879 (im6o && im6o->im6o_multicast_loop)) { 880 /* 881 * Loop back multicast datagram if not expressly 882 * forbidden to do so, even if we have not joined 883 * the address; protocols will filter it later, 884 * thus deferring a hash lookup and lock acquisition 885 * at the expense of an m_copym(). 886 */ 887 ip6_mloopback(ifp, m); 888 } else { 889 /* 890 * If we are acting as a multicast router, perform 891 * multicast forwarding as if the packet had just 892 * arrived on the interface to which we are about 893 * to send. The multicast forwarding function 894 * recursively calls this function, using the 895 * IPV6_FORWARDING flag to prevent infinite recursion. 896 * 897 * Multicasts that are looped back by ip6_mloopback(), 898 * above, will be forwarded by the ip6_input() routine, 899 * if necessary. 900 */ 901 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 902 /* 903 * XXX: ip6_mforward expects that rcvif is NULL 904 * when it is called from the originating path. 905 * However, it may not always be the case. 906 */ 907 m->m_pkthdr.rcvif = NULL; 908 if (ip6_mforward(ip6, ifp, m) != 0) { 909 m_freem(m); 910 goto done; 911 } 912 } 913 } 914 /* 915 * Multicasts with a hoplimit of zero may be looped back, 916 * above, but must not be transmitted on a network. 917 * Also, multicasts addressed to the loopback interface 918 * are not sent -- the above call to ip6_mloopback() will 919 * loop back a copy if this host actually belongs to the 920 * destination group on the loopback interface. 921 */ 922 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 923 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 924 m_freem(m); 925 goto done; 926 } 927 } 928 929 /* 930 * Fill the outgoing inteface to tell the upper layer 931 * to increment per-interface statistics. 932 */ 933 if (ifpp) 934 *ifpp = ifp; 935 936 /* Determine path MTU. */ 937 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 938 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 939 goto bad; 940 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 941 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 942 ifp, alwaysfrag, fibnum)); 943 944 /* 945 * The caller of this function may specify to use the minimum MTU 946 * in some cases. 947 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 948 * setting. The logic is a bit complicated; by default, unicast 949 * packets will follow path MTU while multicast packets will be sent at 950 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 951 * including unicast ones will be sent at the minimum MTU. Multicast 952 * packets will always be sent at the minimum MTU unless 953 * IP6PO_MINMTU_DISABLE is explicitly specified. 954 * See RFC 3542 for more details. 955 */ 956 if (mtu > IPV6_MMTU) { 957 if ((flags & IPV6_MINMTU)) 958 mtu = IPV6_MMTU; 959 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 960 mtu = IPV6_MMTU; 961 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 962 (opt == NULL || 963 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 964 mtu = IPV6_MMTU; 965 } 966 } 967 968 /* 969 * Clear embedded scope identifiers if necessary. 970 * in6_clearscope() will touch the addresses only when necessary. 971 */ 972 in6_clearscope(&ip6->ip6_src); 973 in6_clearscope(&ip6->ip6_dst); 974 975 /* 976 * If the outgoing packet contains a hop-by-hop options header, 977 * it must be examined and processed even by the source node. 978 * (RFC 2460, section 4.) 979 */ 980 if (exthdrs.ip6e_hbh) { 981 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 982 u_int32_t dummy; /* XXX unused */ 983 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 984 985 #ifdef DIAGNOSTIC 986 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 987 panic("ip6e_hbh is not contiguous"); 988 #endif 989 /* 990 * XXX: if we have to send an ICMPv6 error to the sender, 991 * we need the M_LOOP flag since icmp6_error() expects 992 * the IPv6 and the hop-by-hop options header are 993 * contiguous unless the flag is set. 994 */ 995 m->m_flags |= M_LOOP; 996 m->m_pkthdr.rcvif = ifp; 997 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 998 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 999 &dummy, &plen) < 0) { 1000 /* m was already freed at this point. */ 1001 error = EINVAL;/* better error? */ 1002 goto done; 1003 } 1004 m->m_flags &= ~M_LOOP; /* XXX */ 1005 m->m_pkthdr.rcvif = NULL; 1006 } 1007 1008 /* Jump over all PFIL processing if hooks are not active. */ 1009 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1010 goto passout; 1011 1012 odst = ip6->ip6_dst; 1013 /* Run through list of hooks for output packets. */ 1014 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1015 case PFIL_PASS: 1016 ip6 = mtod(m, struct ip6_hdr *); 1017 break; 1018 case PFIL_DROPPED: 1019 error = EACCES; 1020 /* FALLTHROUGH */ 1021 case PFIL_CONSUMED: 1022 goto done; 1023 } 1024 1025 needfiblookup = 0; 1026 /* See if destination IP address was changed by packet filter. */ 1027 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1028 m->m_flags |= M_SKIP_FIREWALL; 1029 /* If destination is now ourself drop to ip6_input(). */ 1030 if (in6_localip(&ip6->ip6_dst)) { 1031 m->m_flags |= M_FASTFWD_OURS; 1032 if (m->m_pkthdr.rcvif == NULL) 1033 m->m_pkthdr.rcvif = V_loif; 1034 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1035 m->m_pkthdr.csum_flags |= 1036 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1037 m->m_pkthdr.csum_data = 0xffff; 1038 } 1039 #if defined(SCTP) || defined(SCTP_SUPPORT) 1040 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1041 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1042 #endif 1043 error = netisr_queue(NETISR_IPV6, m); 1044 goto done; 1045 } else { 1046 if (ro != NULL) 1047 RO_INVALIDATE_CACHE(ro); 1048 needfiblookup = 1; /* Redo the routing table lookup. */ 1049 } 1050 } 1051 /* See if fib was changed by packet filter. */ 1052 if (fibnum != M_GETFIB(m)) { 1053 m->m_flags |= M_SKIP_FIREWALL; 1054 fibnum = M_GETFIB(m); 1055 if (ro != NULL) 1056 RO_INVALIDATE_CACHE(ro); 1057 needfiblookup = 1; 1058 } 1059 if (needfiblookup) 1060 goto again; 1061 1062 /* See if local, if yes, send it to netisr. */ 1063 if (m->m_flags & M_FASTFWD_OURS) { 1064 if (m->m_pkthdr.rcvif == NULL) 1065 m->m_pkthdr.rcvif = V_loif; 1066 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1067 m->m_pkthdr.csum_flags |= 1068 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1069 m->m_pkthdr.csum_data = 0xffff; 1070 } 1071 #if defined(SCTP) || defined(SCTP_SUPPORT) 1072 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1073 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1074 #endif 1075 error = netisr_queue(NETISR_IPV6, m); 1076 goto done; 1077 } 1078 /* Or forward to some other address? */ 1079 if ((m->m_flags & M_IP6_NEXTHOP) && 1080 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1081 if (ro != NULL) 1082 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1083 else 1084 dst = &sin6; 1085 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1086 m->m_flags |= M_SKIP_FIREWALL; 1087 m->m_flags &= ~M_IP6_NEXTHOP; 1088 m_tag_delete(m, fwd_tag); 1089 goto again; 1090 } 1091 1092 passout: 1093 if (vlan_pcp > -1) 1094 EVL_APPLY_PRI(m, vlan_pcp); 1095 1096 /* Ensure the packet data is mapped if the interface requires it. */ 1097 if ((ifp->if_capenable & IFCAP_MEXTPG) == 0) { 1098 m = mb_unmapped_to_ext(m); 1099 if (m == NULL) { 1100 IP6STAT_INC(ip6s_odropped); 1101 return (ENOBUFS); 1102 } 1103 } 1104 1105 /* 1106 * Send the packet to the outgoing interface. 1107 * If necessary, do IPv6 fragmentation before sending. 1108 * 1109 * The logic here is rather complex: 1110 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1111 * 1-a: send as is if tlen <= path mtu 1112 * 1-b: fragment if tlen > path mtu 1113 * 1114 * 2: if user asks us not to fragment (dontfrag == 1) 1115 * 2-a: send as is if tlen <= interface mtu 1116 * 2-b: error if tlen > interface mtu 1117 * 1118 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1119 * always fragment 1120 * 1121 * 4: if dontfrag == 1 && alwaysfrag == 1 1122 * error, as we cannot handle this conflicting request. 1123 */ 1124 sw_csum = m->m_pkthdr.csum_flags; 1125 if (!hdrsplit) { 1126 tso = ((sw_csum & ifp->if_hwassist & 1127 (CSUM_TSO | CSUM_INNER_TSO)) != 0) ? 1 : 0; 1128 sw_csum &= ~ifp->if_hwassist; 1129 } else 1130 tso = 0; 1131 /* 1132 * If we added extension headers, we will not do TSO and calculate the 1133 * checksums ourselves for now. 1134 * XXX-BZ Need a framework to know when the NIC can handle it, even 1135 * with ext. hdrs. 1136 */ 1137 ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen); 1138 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1139 tlen = m->m_pkthdr.len; 1140 1141 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1142 dontfrag = 1; 1143 else 1144 dontfrag = 0; 1145 if (dontfrag && alwaysfrag) { /* Case 4. */ 1146 /* Conflicting request - can't transmit. */ 1147 error = EMSGSIZE; 1148 goto bad; 1149 } 1150 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1151 /* 1152 * Even if the DONTFRAG option is specified, we cannot send the 1153 * packet when the data length is larger than the MTU of the 1154 * outgoing interface. 1155 * Notify the error by sending IPV6_PATHMTU ancillary data if 1156 * application wanted to know the MTU value. Also return an 1157 * error code (this is not described in the API spec). 1158 */ 1159 if (inp != NULL) 1160 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1161 error = EMSGSIZE; 1162 goto bad; 1163 } 1164 1165 /* Transmit packet without fragmentation. */ 1166 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1167 struct in6_ifaddr *ia6; 1168 1169 ip6 = mtod(m, struct ip6_hdr *); 1170 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1171 if (ia6) { 1172 /* Record statistics for this interface address. */ 1173 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1174 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1175 m->m_pkthdr.len); 1176 } 1177 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1178 (flags & IP_NO_SND_TAG_RL) ? false : true); 1179 goto done; 1180 } 1181 1182 /* Try to fragment the packet. Cases 1-b and 3. */ 1183 if (mtu < IPV6_MMTU) { 1184 /* Path MTU cannot be less than IPV6_MMTU. */ 1185 error = EMSGSIZE; 1186 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1187 goto bad; 1188 } else if (ip6->ip6_plen == 0) { 1189 /* Jumbo payload cannot be fragmented. */ 1190 error = EMSGSIZE; 1191 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1192 goto bad; 1193 } else { 1194 u_char nextproto; 1195 1196 /* 1197 * Too large for the destination or interface; 1198 * fragment if possible. 1199 * Must be able to put at least 8 bytes per fragment. 1200 */ 1201 if (mtu > IPV6_MAXPACKET) 1202 mtu = IPV6_MAXPACKET; 1203 1204 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1205 if (len < 8) { 1206 error = EMSGSIZE; 1207 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1208 goto bad; 1209 } 1210 1211 /* 1212 * If the interface will not calculate checksums on 1213 * fragmented packets, then do it here. 1214 * XXX-BZ handle the hw offloading case. Need flags. 1215 */ 1216 ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, plen, 1217 optlen); 1218 1219 /* 1220 * Change the next header field of the last header in the 1221 * unfragmentable part. 1222 */ 1223 if (exthdrs.ip6e_rthdr) { 1224 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1225 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1226 } else if (exthdrs.ip6e_dest1) { 1227 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1228 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1229 } else if (exthdrs.ip6e_hbh) { 1230 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1231 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1232 } else { 1233 ip6 = mtod(m, struct ip6_hdr *); 1234 nextproto = ip6->ip6_nxt; 1235 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1236 } 1237 1238 /* 1239 * Loop through length of segment after first fragment, 1240 * make new header and copy data of each part and link onto 1241 * chain. 1242 */ 1243 m0 = m; 1244 id = htonl(ip6_randomid()); 1245 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1246 if (error != 0) 1247 goto sendorfree; 1248 1249 in6_ifstat_inc(ifp, ifs6_out_fragok); 1250 } 1251 1252 /* Remove leading garbage. */ 1253 sendorfree: 1254 m = m0->m_nextpkt; 1255 m0->m_nextpkt = 0; 1256 m_freem(m0); 1257 for (; m; m = m0) { 1258 m0 = m->m_nextpkt; 1259 m->m_nextpkt = 0; 1260 if (error == 0) { 1261 /* Record statistics for this interface address. */ 1262 if (ia) { 1263 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1264 counter_u64_add(ia->ia_ifa.ifa_obytes, 1265 m->m_pkthdr.len); 1266 } 1267 if (vlan_pcp > -1) 1268 EVL_APPLY_PRI(m, vlan_pcp); 1269 error = ip6_output_send(inp, ifp, origifp, m, dst, ro, 1270 true); 1271 } else 1272 m_freem(m); 1273 } 1274 1275 if (error == 0) 1276 IP6STAT_INC(ip6s_fragmented); 1277 1278 done: 1279 return (error); 1280 1281 freehdrs: 1282 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1283 m_freem(exthdrs.ip6e_dest1); 1284 m_freem(exthdrs.ip6e_rthdr); 1285 m_freem(exthdrs.ip6e_dest2); 1286 /* FALLTHROUGH */ 1287 bad: 1288 if (m) 1289 m_freem(m); 1290 goto done; 1291 } 1292 1293 static int 1294 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1295 { 1296 struct mbuf *m; 1297 1298 if (hlen > MCLBYTES) 1299 return (ENOBUFS); /* XXX */ 1300 1301 if (hlen > MLEN) 1302 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1303 else 1304 m = m_get(M_NOWAIT, MT_DATA); 1305 if (m == NULL) 1306 return (ENOBUFS); 1307 m->m_len = hlen; 1308 if (hdr) 1309 bcopy(hdr, mtod(m, caddr_t), hlen); 1310 1311 *mp = m; 1312 return (0); 1313 } 1314 1315 /* 1316 * Insert jumbo payload option. 1317 */ 1318 static int 1319 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1320 { 1321 struct mbuf *mopt; 1322 u_char *optbuf; 1323 u_int32_t v; 1324 1325 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1326 1327 /* 1328 * If there is no hop-by-hop options header, allocate new one. 1329 * If there is one but it doesn't have enough space to store the 1330 * jumbo payload option, allocate a cluster to store the whole options. 1331 * Otherwise, use it to store the options. 1332 */ 1333 if (exthdrs->ip6e_hbh == NULL) { 1334 mopt = m_get(M_NOWAIT, MT_DATA); 1335 if (mopt == NULL) 1336 return (ENOBUFS); 1337 mopt->m_len = JUMBOOPTLEN; 1338 optbuf = mtod(mopt, u_char *); 1339 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1340 exthdrs->ip6e_hbh = mopt; 1341 } else { 1342 struct ip6_hbh *hbh; 1343 1344 mopt = exthdrs->ip6e_hbh; 1345 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1346 /* 1347 * XXX assumption: 1348 * - exthdrs->ip6e_hbh is not referenced from places 1349 * other than exthdrs. 1350 * - exthdrs->ip6e_hbh is not an mbuf chain. 1351 */ 1352 int oldoptlen = mopt->m_len; 1353 struct mbuf *n; 1354 1355 /* 1356 * XXX: give up if the whole (new) hbh header does 1357 * not fit even in an mbuf cluster. 1358 */ 1359 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1360 return (ENOBUFS); 1361 1362 /* 1363 * As a consequence, we must always prepare a cluster 1364 * at this point. 1365 */ 1366 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1367 if (n == NULL) 1368 return (ENOBUFS); 1369 n->m_len = oldoptlen + JUMBOOPTLEN; 1370 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1371 oldoptlen); 1372 optbuf = mtod(n, caddr_t) + oldoptlen; 1373 m_freem(mopt); 1374 mopt = exthdrs->ip6e_hbh = n; 1375 } else { 1376 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1377 mopt->m_len += JUMBOOPTLEN; 1378 } 1379 optbuf[0] = IP6OPT_PADN; 1380 optbuf[1] = 1; 1381 1382 /* 1383 * Adjust the header length according to the pad and 1384 * the jumbo payload option. 1385 */ 1386 hbh = mtod(mopt, struct ip6_hbh *); 1387 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1388 } 1389 1390 /* fill in the option. */ 1391 optbuf[2] = IP6OPT_JUMBO; 1392 optbuf[3] = 4; 1393 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1394 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1395 1396 /* finally, adjust the packet header length */ 1397 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1398 1399 return (0); 1400 #undef JUMBOOPTLEN 1401 } 1402 1403 /* 1404 * Insert fragment header and copy unfragmentable header portions. 1405 */ 1406 static int 1407 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1408 struct ip6_frag **frghdrp) 1409 { 1410 struct mbuf *n, *mlast; 1411 1412 if (hlen > sizeof(struct ip6_hdr)) { 1413 n = m_copym(m0, sizeof(struct ip6_hdr), 1414 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1415 if (n == NULL) 1416 return (ENOBUFS); 1417 m->m_next = n; 1418 } else 1419 n = m; 1420 1421 /* Search for the last mbuf of unfragmentable part. */ 1422 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1423 ; 1424 1425 if (M_WRITABLE(mlast) && 1426 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1427 /* use the trailing space of the last mbuf for the fragment hdr */ 1428 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1429 mlast->m_len); 1430 mlast->m_len += sizeof(struct ip6_frag); 1431 m->m_pkthdr.len += sizeof(struct ip6_frag); 1432 } else { 1433 /* allocate a new mbuf for the fragment header */ 1434 struct mbuf *mfrg; 1435 1436 mfrg = m_get(M_NOWAIT, MT_DATA); 1437 if (mfrg == NULL) 1438 return (ENOBUFS); 1439 mfrg->m_len = sizeof(struct ip6_frag); 1440 *frghdrp = mtod(mfrg, struct ip6_frag *); 1441 mlast->m_next = mfrg; 1442 } 1443 1444 return (0); 1445 } 1446 1447 /* 1448 * Calculates IPv6 path mtu for destination @dst. 1449 * Resulting MTU is stored in @mtup. 1450 * 1451 * Returns 0 on success. 1452 */ 1453 static int 1454 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1455 { 1456 struct epoch_tracker et; 1457 struct nhop_object *nh; 1458 struct in6_addr kdst; 1459 uint32_t scopeid; 1460 int error; 1461 1462 in6_splitscope(dst, &kdst, &scopeid); 1463 1464 NET_EPOCH_ENTER(et); 1465 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1466 if (nh != NULL) 1467 error = ip6_calcmtu(nh->nh_ifp, dst, nh->nh_mtu, mtup, NULL, 0); 1468 else 1469 error = EHOSTUNREACH; 1470 NET_EPOCH_EXIT(et); 1471 1472 return (error); 1473 } 1474 1475 /* 1476 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1477 * and cached data in @ro_pmtu. 1478 * MTU from (successful) route lookup is saved (along with dst) 1479 * inside @ro_pmtu to avoid subsequent route lookups after packet 1480 * filter processing. 1481 * 1482 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1483 * Returns 0 on success. 1484 */ 1485 static int 1486 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1487 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1488 int *alwaysfragp, u_int fibnum, u_int proto) 1489 { 1490 struct nhop_object *nh; 1491 struct in6_addr kdst; 1492 uint32_t scopeid; 1493 struct sockaddr_in6 *sa6_dst, sin6; 1494 u_long mtu; 1495 1496 NET_EPOCH_ASSERT(); 1497 1498 mtu = 0; 1499 if (ro_pmtu == NULL || do_lookup) { 1500 /* 1501 * Here ro_pmtu has final destination address, while 1502 * ro might represent immediate destination. 1503 * Use ro_pmtu destination since mtu might differ. 1504 */ 1505 if (ro_pmtu != NULL) { 1506 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1507 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1508 ro_pmtu->ro_mtu = 0; 1509 } else 1510 sa6_dst = &sin6; 1511 1512 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1513 bzero(sa6_dst, sizeof(*sa6_dst)); 1514 sa6_dst->sin6_family = AF_INET6; 1515 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1516 sa6_dst->sin6_addr = *dst; 1517 1518 in6_splitscope(dst, &kdst, &scopeid); 1519 nh = fib6_lookup(fibnum, &kdst, scopeid, NHR_NONE, 0); 1520 if (nh != NULL) { 1521 mtu = nh->nh_mtu; 1522 if (ro_pmtu != NULL) 1523 ro_pmtu->ro_mtu = mtu; 1524 } 1525 } else 1526 mtu = ro_pmtu->ro_mtu; 1527 } 1528 1529 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1530 mtu = ro_pmtu->ro_nh->nh_mtu; 1531 1532 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1533 } 1534 1535 /* 1536 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1537 * hostcache data for @dst. 1538 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1539 * 1540 * Returns 0 on success. 1541 */ 1542 static int 1543 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1544 u_long *mtup, int *alwaysfragp, u_int proto) 1545 { 1546 u_long mtu = 0; 1547 int alwaysfrag = 0; 1548 int error = 0; 1549 1550 if (rt_mtu > 0) { 1551 u_int32_t ifmtu; 1552 struct in_conninfo inc; 1553 1554 bzero(&inc, sizeof(inc)); 1555 inc.inc_flags |= INC_ISIPV6; 1556 inc.inc6_faddr = *dst; 1557 1558 ifmtu = IN6_LINKMTU(ifp); 1559 1560 /* TCP is known to react to pmtu changes so skip hc */ 1561 if (proto != IPPROTO_TCP) 1562 mtu = tcp_hc_getmtu(&inc); 1563 1564 if (mtu) 1565 mtu = min(mtu, rt_mtu); 1566 else 1567 mtu = rt_mtu; 1568 if (mtu == 0) 1569 mtu = ifmtu; 1570 else if (mtu < IPV6_MMTU) { 1571 /* 1572 * RFC2460 section 5, last paragraph: 1573 * if we record ICMPv6 too big message with 1574 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1575 * or smaller, with framgent header attached. 1576 * (fragment header is needed regardless from the 1577 * packet size, for translators to identify packets) 1578 */ 1579 alwaysfrag = 1; 1580 mtu = IPV6_MMTU; 1581 } 1582 } else if (ifp) { 1583 mtu = IN6_LINKMTU(ifp); 1584 } else 1585 error = EHOSTUNREACH; /* XXX */ 1586 1587 *mtup = mtu; 1588 if (alwaysfragp) 1589 *alwaysfragp = alwaysfrag; 1590 return (error); 1591 } 1592 1593 /* 1594 * IP6 socket option processing. 1595 */ 1596 int 1597 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1598 { 1599 int optdatalen, uproto; 1600 void *optdata; 1601 struct inpcb *inp = sotoinpcb(so); 1602 int error, optval; 1603 int level, op, optname; 1604 int optlen; 1605 struct thread *td; 1606 #ifdef RSS 1607 uint32_t rss_bucket; 1608 int retval; 1609 #endif 1610 1611 /* 1612 * Don't use more than a quarter of mbuf clusters. N.B.: 1613 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1614 * on LP64 architectures, so cast to u_long to avoid undefined 1615 * behavior. ILP32 architectures cannot have nmbclusters 1616 * large enough to overflow for other reasons. 1617 */ 1618 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1619 1620 level = sopt->sopt_level; 1621 op = sopt->sopt_dir; 1622 optname = sopt->sopt_name; 1623 optlen = sopt->sopt_valsize; 1624 td = sopt->sopt_td; 1625 error = 0; 1626 optval = 0; 1627 uproto = (int)so->so_proto->pr_protocol; 1628 1629 if (level != IPPROTO_IPV6) { 1630 error = EINVAL; 1631 1632 if (sopt->sopt_level == SOL_SOCKET && 1633 sopt->sopt_dir == SOPT_SET) { 1634 switch (sopt->sopt_name) { 1635 case SO_REUSEADDR: 1636 INP_WLOCK(inp); 1637 if ((so->so_options & SO_REUSEADDR) != 0) 1638 inp->inp_flags2 |= INP_REUSEADDR; 1639 else 1640 inp->inp_flags2 &= ~INP_REUSEADDR; 1641 INP_WUNLOCK(inp); 1642 error = 0; 1643 break; 1644 case SO_REUSEPORT: 1645 INP_WLOCK(inp); 1646 if ((so->so_options & SO_REUSEPORT) != 0) 1647 inp->inp_flags2 |= INP_REUSEPORT; 1648 else 1649 inp->inp_flags2 &= ~INP_REUSEPORT; 1650 INP_WUNLOCK(inp); 1651 error = 0; 1652 break; 1653 case SO_REUSEPORT_LB: 1654 INP_WLOCK(inp); 1655 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1656 inp->inp_flags2 |= INP_REUSEPORT_LB; 1657 else 1658 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1659 INP_WUNLOCK(inp); 1660 error = 0; 1661 break; 1662 case SO_SETFIB: 1663 INP_WLOCK(inp); 1664 inp->inp_inc.inc_fibnum = so->so_fibnum; 1665 INP_WUNLOCK(inp); 1666 error = 0; 1667 break; 1668 case SO_MAX_PACING_RATE: 1669 #ifdef RATELIMIT 1670 INP_WLOCK(inp); 1671 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1672 INP_WUNLOCK(inp); 1673 error = 0; 1674 #else 1675 error = EOPNOTSUPP; 1676 #endif 1677 break; 1678 default: 1679 break; 1680 } 1681 } 1682 } else { /* level == IPPROTO_IPV6 */ 1683 switch (op) { 1684 case SOPT_SET: 1685 switch (optname) { 1686 case IPV6_2292PKTOPTIONS: 1687 #ifdef IPV6_PKTOPTIONS 1688 case IPV6_PKTOPTIONS: 1689 #endif 1690 { 1691 struct mbuf *m; 1692 1693 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1694 printf("ip6_ctloutput: mbuf limit hit\n"); 1695 error = ENOBUFS; 1696 break; 1697 } 1698 1699 error = soopt_getm(sopt, &m); /* XXX */ 1700 if (error != 0) 1701 break; 1702 error = soopt_mcopyin(sopt, m); /* XXX */ 1703 if (error != 0) 1704 break; 1705 INP_WLOCK(inp); 1706 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1707 so, sopt); 1708 INP_WUNLOCK(inp); 1709 m_freem(m); /* XXX */ 1710 break; 1711 } 1712 1713 /* 1714 * Use of some Hop-by-Hop options or some 1715 * Destination options, might require special 1716 * privilege. That is, normal applications 1717 * (without special privilege) might be forbidden 1718 * from setting certain options in outgoing packets, 1719 * and might never see certain options in received 1720 * packets. [RFC 2292 Section 6] 1721 * KAME specific note: 1722 * KAME prevents non-privileged users from sending or 1723 * receiving ANY hbh/dst options in order to avoid 1724 * overhead of parsing options in the kernel. 1725 */ 1726 case IPV6_RECVHOPOPTS: 1727 case IPV6_RECVDSTOPTS: 1728 case IPV6_RECVRTHDRDSTOPTS: 1729 if (td != NULL) { 1730 error = priv_check(td, 1731 PRIV_NETINET_SETHDROPTS); 1732 if (error) 1733 break; 1734 } 1735 /* FALLTHROUGH */ 1736 case IPV6_UNICAST_HOPS: 1737 case IPV6_HOPLIMIT: 1738 1739 case IPV6_RECVPKTINFO: 1740 case IPV6_RECVHOPLIMIT: 1741 case IPV6_RECVRTHDR: 1742 case IPV6_RECVPATHMTU: 1743 case IPV6_RECVTCLASS: 1744 case IPV6_RECVFLOWID: 1745 #ifdef RSS 1746 case IPV6_RECVRSSBUCKETID: 1747 #endif 1748 case IPV6_V6ONLY: 1749 case IPV6_AUTOFLOWLABEL: 1750 case IPV6_ORIGDSTADDR: 1751 case IPV6_BINDANY: 1752 case IPV6_BINDMULTI: 1753 #ifdef RSS 1754 case IPV6_RSS_LISTEN_BUCKET: 1755 #endif 1756 case IPV6_VLAN_PCP: 1757 if (optname == IPV6_BINDANY && td != NULL) { 1758 error = priv_check(td, 1759 PRIV_NETINET_BINDANY); 1760 if (error) 1761 break; 1762 } 1763 1764 if (optlen != sizeof(int)) { 1765 error = EINVAL; 1766 break; 1767 } 1768 error = sooptcopyin(sopt, &optval, 1769 sizeof optval, sizeof optval); 1770 if (error) 1771 break; 1772 switch (optname) { 1773 case IPV6_UNICAST_HOPS: 1774 if (optval < -1 || optval >= 256) 1775 error = EINVAL; 1776 else { 1777 /* -1 = kernel default */ 1778 inp->in6p_hops = optval; 1779 if ((inp->inp_vflag & 1780 INP_IPV4) != 0) 1781 inp->inp_ip_ttl = optval; 1782 } 1783 break; 1784 #define OPTSET(bit) \ 1785 do { \ 1786 INP_WLOCK(inp); \ 1787 if (optval) \ 1788 inp->inp_flags |= (bit); \ 1789 else \ 1790 inp->inp_flags &= ~(bit); \ 1791 INP_WUNLOCK(inp); \ 1792 } while (/*CONSTCOND*/ 0) 1793 #define OPTSET2292(bit) \ 1794 do { \ 1795 INP_WLOCK(inp); \ 1796 inp->inp_flags |= IN6P_RFC2292; \ 1797 if (optval) \ 1798 inp->inp_flags |= (bit); \ 1799 else \ 1800 inp->inp_flags &= ~(bit); \ 1801 INP_WUNLOCK(inp); \ 1802 } while (/*CONSTCOND*/ 0) 1803 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1804 1805 #define OPTSET2_N(bit, val) do { \ 1806 if (val) \ 1807 inp->inp_flags2 |= bit; \ 1808 else \ 1809 inp->inp_flags2 &= ~bit; \ 1810 } while (0) 1811 #define OPTSET2(bit, val) do { \ 1812 INP_WLOCK(inp); \ 1813 OPTSET2_N(bit, val); \ 1814 INP_WUNLOCK(inp); \ 1815 } while (0) 1816 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1817 #define OPTSET2292_EXCLUSIVE(bit) \ 1818 do { \ 1819 INP_WLOCK(inp); \ 1820 if (OPTBIT(IN6P_RFC2292)) { \ 1821 error = EINVAL; \ 1822 } else { \ 1823 if (optval) \ 1824 inp->inp_flags |= (bit); \ 1825 else \ 1826 inp->inp_flags &= ~(bit); \ 1827 } \ 1828 INP_WUNLOCK(inp); \ 1829 } while (/*CONSTCOND*/ 0) 1830 1831 case IPV6_RECVPKTINFO: 1832 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1833 break; 1834 1835 case IPV6_HOPLIMIT: 1836 { 1837 struct ip6_pktopts **optp; 1838 1839 /* cannot mix with RFC2292 */ 1840 if (OPTBIT(IN6P_RFC2292)) { 1841 error = EINVAL; 1842 break; 1843 } 1844 INP_WLOCK(inp); 1845 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1846 INP_WUNLOCK(inp); 1847 return (ECONNRESET); 1848 } 1849 optp = &inp->in6p_outputopts; 1850 error = ip6_pcbopt(IPV6_HOPLIMIT, 1851 (u_char *)&optval, sizeof(optval), 1852 optp, (td != NULL) ? td->td_ucred : 1853 NULL, uproto); 1854 INP_WUNLOCK(inp); 1855 break; 1856 } 1857 1858 case IPV6_RECVHOPLIMIT: 1859 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1860 break; 1861 1862 case IPV6_RECVHOPOPTS: 1863 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1864 break; 1865 1866 case IPV6_RECVDSTOPTS: 1867 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1868 break; 1869 1870 case IPV6_RECVRTHDRDSTOPTS: 1871 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1872 break; 1873 1874 case IPV6_RECVRTHDR: 1875 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1876 break; 1877 1878 case IPV6_RECVPATHMTU: 1879 /* 1880 * We ignore this option for TCP 1881 * sockets. 1882 * (RFC3542 leaves this case 1883 * unspecified.) 1884 */ 1885 if (uproto != IPPROTO_TCP) 1886 OPTSET(IN6P_MTU); 1887 break; 1888 1889 case IPV6_RECVFLOWID: 1890 OPTSET2(INP_RECVFLOWID, optval); 1891 break; 1892 1893 #ifdef RSS 1894 case IPV6_RECVRSSBUCKETID: 1895 OPTSET2(INP_RECVRSSBUCKETID, optval); 1896 break; 1897 #endif 1898 1899 case IPV6_V6ONLY: 1900 INP_WLOCK(inp); 1901 if (inp->inp_lport || 1902 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1903 /* 1904 * The socket is already bound. 1905 */ 1906 INP_WUNLOCK(inp); 1907 error = EINVAL; 1908 break; 1909 } 1910 if (optval) { 1911 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1912 inp->inp_vflag &= ~INP_IPV4; 1913 } else { 1914 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1915 inp->inp_vflag |= INP_IPV4; 1916 } 1917 INP_WUNLOCK(inp); 1918 break; 1919 case IPV6_RECVTCLASS: 1920 /* cannot mix with RFC2292 XXX */ 1921 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1922 break; 1923 case IPV6_AUTOFLOWLABEL: 1924 OPTSET(IN6P_AUTOFLOWLABEL); 1925 break; 1926 1927 case IPV6_ORIGDSTADDR: 1928 OPTSET2(INP_ORIGDSTADDR, optval); 1929 break; 1930 case IPV6_BINDANY: 1931 OPTSET(INP_BINDANY); 1932 break; 1933 1934 case IPV6_BINDMULTI: 1935 OPTSET2(INP_BINDMULTI, optval); 1936 break; 1937 #ifdef RSS 1938 case IPV6_RSS_LISTEN_BUCKET: 1939 if ((optval >= 0) && 1940 (optval < rss_getnumbuckets())) { 1941 INP_WLOCK(inp); 1942 inp->inp_rss_listen_bucket = optval; 1943 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1944 INP_WUNLOCK(inp); 1945 } else { 1946 error = EINVAL; 1947 } 1948 break; 1949 #endif 1950 case IPV6_VLAN_PCP: 1951 if ((optval >= -1) && (optval <= 1952 (INP_2PCP_MASK >> INP_2PCP_SHIFT))) { 1953 if (optval == -1) { 1954 INP_WLOCK(inp); 1955 inp->inp_flags2 &= 1956 ~(INP_2PCP_SET | 1957 INP_2PCP_MASK); 1958 INP_WUNLOCK(inp); 1959 } else { 1960 INP_WLOCK(inp); 1961 inp->inp_flags2 |= 1962 INP_2PCP_SET; 1963 inp->inp_flags2 &= 1964 ~INP_2PCP_MASK; 1965 inp->inp_flags2 |= 1966 optval << 1967 INP_2PCP_SHIFT; 1968 INP_WUNLOCK(inp); 1969 } 1970 } else 1971 error = EINVAL; 1972 break; 1973 } 1974 break; 1975 1976 case IPV6_TCLASS: 1977 case IPV6_DONTFRAG: 1978 case IPV6_USE_MIN_MTU: 1979 case IPV6_PREFER_TEMPADDR: 1980 if (optlen != sizeof(optval)) { 1981 error = EINVAL; 1982 break; 1983 } 1984 error = sooptcopyin(sopt, &optval, 1985 sizeof optval, sizeof optval); 1986 if (error) 1987 break; 1988 { 1989 struct ip6_pktopts **optp; 1990 INP_WLOCK(inp); 1991 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1992 INP_WUNLOCK(inp); 1993 return (ECONNRESET); 1994 } 1995 optp = &inp->in6p_outputopts; 1996 error = ip6_pcbopt(optname, 1997 (u_char *)&optval, sizeof(optval), 1998 optp, (td != NULL) ? td->td_ucred : 1999 NULL, uproto); 2000 INP_WUNLOCK(inp); 2001 break; 2002 } 2003 2004 case IPV6_2292PKTINFO: 2005 case IPV6_2292HOPLIMIT: 2006 case IPV6_2292HOPOPTS: 2007 case IPV6_2292DSTOPTS: 2008 case IPV6_2292RTHDR: 2009 /* RFC 2292 */ 2010 if (optlen != sizeof(int)) { 2011 error = EINVAL; 2012 break; 2013 } 2014 error = sooptcopyin(sopt, &optval, 2015 sizeof optval, sizeof optval); 2016 if (error) 2017 break; 2018 switch (optname) { 2019 case IPV6_2292PKTINFO: 2020 OPTSET2292(IN6P_PKTINFO); 2021 break; 2022 case IPV6_2292HOPLIMIT: 2023 OPTSET2292(IN6P_HOPLIMIT); 2024 break; 2025 case IPV6_2292HOPOPTS: 2026 /* 2027 * Check super-user privilege. 2028 * See comments for IPV6_RECVHOPOPTS. 2029 */ 2030 if (td != NULL) { 2031 error = priv_check(td, 2032 PRIV_NETINET_SETHDROPTS); 2033 if (error) 2034 return (error); 2035 } 2036 OPTSET2292(IN6P_HOPOPTS); 2037 break; 2038 case IPV6_2292DSTOPTS: 2039 if (td != NULL) { 2040 error = priv_check(td, 2041 PRIV_NETINET_SETHDROPTS); 2042 if (error) 2043 return (error); 2044 } 2045 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2046 break; 2047 case IPV6_2292RTHDR: 2048 OPTSET2292(IN6P_RTHDR); 2049 break; 2050 } 2051 break; 2052 case IPV6_PKTINFO: 2053 case IPV6_HOPOPTS: 2054 case IPV6_RTHDR: 2055 case IPV6_DSTOPTS: 2056 case IPV6_RTHDRDSTOPTS: 2057 case IPV6_NEXTHOP: 2058 { 2059 /* new advanced API (RFC3542) */ 2060 u_char *optbuf; 2061 u_char optbuf_storage[MCLBYTES]; 2062 int optlen; 2063 struct ip6_pktopts **optp; 2064 2065 /* cannot mix with RFC2292 */ 2066 if (OPTBIT(IN6P_RFC2292)) { 2067 error = EINVAL; 2068 break; 2069 } 2070 2071 /* 2072 * We only ensure valsize is not too large 2073 * here. Further validation will be done 2074 * later. 2075 */ 2076 error = sooptcopyin(sopt, optbuf_storage, 2077 sizeof(optbuf_storage), 0); 2078 if (error) 2079 break; 2080 optlen = sopt->sopt_valsize; 2081 optbuf = optbuf_storage; 2082 INP_WLOCK(inp); 2083 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2084 INP_WUNLOCK(inp); 2085 return (ECONNRESET); 2086 } 2087 optp = &inp->in6p_outputopts; 2088 error = ip6_pcbopt(optname, optbuf, optlen, 2089 optp, (td != NULL) ? td->td_ucred : NULL, 2090 uproto); 2091 INP_WUNLOCK(inp); 2092 break; 2093 } 2094 #undef OPTSET 2095 2096 case IPV6_MULTICAST_IF: 2097 case IPV6_MULTICAST_HOPS: 2098 case IPV6_MULTICAST_LOOP: 2099 case IPV6_JOIN_GROUP: 2100 case IPV6_LEAVE_GROUP: 2101 case IPV6_MSFILTER: 2102 case MCAST_BLOCK_SOURCE: 2103 case MCAST_UNBLOCK_SOURCE: 2104 case MCAST_JOIN_GROUP: 2105 case MCAST_LEAVE_GROUP: 2106 case MCAST_JOIN_SOURCE_GROUP: 2107 case MCAST_LEAVE_SOURCE_GROUP: 2108 error = ip6_setmoptions(inp, sopt); 2109 break; 2110 2111 case IPV6_PORTRANGE: 2112 error = sooptcopyin(sopt, &optval, 2113 sizeof optval, sizeof optval); 2114 if (error) 2115 break; 2116 2117 INP_WLOCK(inp); 2118 switch (optval) { 2119 case IPV6_PORTRANGE_DEFAULT: 2120 inp->inp_flags &= ~(INP_LOWPORT); 2121 inp->inp_flags &= ~(INP_HIGHPORT); 2122 break; 2123 2124 case IPV6_PORTRANGE_HIGH: 2125 inp->inp_flags &= ~(INP_LOWPORT); 2126 inp->inp_flags |= INP_HIGHPORT; 2127 break; 2128 2129 case IPV6_PORTRANGE_LOW: 2130 inp->inp_flags &= ~(INP_HIGHPORT); 2131 inp->inp_flags |= INP_LOWPORT; 2132 break; 2133 2134 default: 2135 error = EINVAL; 2136 break; 2137 } 2138 INP_WUNLOCK(inp); 2139 break; 2140 2141 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2142 case IPV6_IPSEC_POLICY: 2143 if (IPSEC_ENABLED(ipv6)) { 2144 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2145 break; 2146 } 2147 /* FALLTHROUGH */ 2148 #endif /* IPSEC */ 2149 2150 default: 2151 error = ENOPROTOOPT; 2152 break; 2153 } 2154 break; 2155 2156 case SOPT_GET: 2157 switch (optname) { 2158 case IPV6_2292PKTOPTIONS: 2159 #ifdef IPV6_PKTOPTIONS 2160 case IPV6_PKTOPTIONS: 2161 #endif 2162 /* 2163 * RFC3542 (effectively) deprecated the 2164 * semantics of the 2292-style pktoptions. 2165 * Since it was not reliable in nature (i.e., 2166 * applications had to expect the lack of some 2167 * information after all), it would make sense 2168 * to simplify this part by always returning 2169 * empty data. 2170 */ 2171 sopt->sopt_valsize = 0; 2172 break; 2173 2174 case IPV6_RECVHOPOPTS: 2175 case IPV6_RECVDSTOPTS: 2176 case IPV6_RECVRTHDRDSTOPTS: 2177 case IPV6_UNICAST_HOPS: 2178 case IPV6_RECVPKTINFO: 2179 case IPV6_RECVHOPLIMIT: 2180 case IPV6_RECVRTHDR: 2181 case IPV6_RECVPATHMTU: 2182 2183 case IPV6_V6ONLY: 2184 case IPV6_PORTRANGE: 2185 case IPV6_RECVTCLASS: 2186 case IPV6_AUTOFLOWLABEL: 2187 case IPV6_BINDANY: 2188 case IPV6_FLOWID: 2189 case IPV6_FLOWTYPE: 2190 case IPV6_RECVFLOWID: 2191 #ifdef RSS 2192 case IPV6_RSSBUCKETID: 2193 case IPV6_RECVRSSBUCKETID: 2194 #endif 2195 case IPV6_BINDMULTI: 2196 case IPV6_VLAN_PCP: 2197 switch (optname) { 2198 case IPV6_RECVHOPOPTS: 2199 optval = OPTBIT(IN6P_HOPOPTS); 2200 break; 2201 2202 case IPV6_RECVDSTOPTS: 2203 optval = OPTBIT(IN6P_DSTOPTS); 2204 break; 2205 2206 case IPV6_RECVRTHDRDSTOPTS: 2207 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2208 break; 2209 2210 case IPV6_UNICAST_HOPS: 2211 optval = inp->in6p_hops; 2212 break; 2213 2214 case IPV6_RECVPKTINFO: 2215 optval = OPTBIT(IN6P_PKTINFO); 2216 break; 2217 2218 case IPV6_RECVHOPLIMIT: 2219 optval = OPTBIT(IN6P_HOPLIMIT); 2220 break; 2221 2222 case IPV6_RECVRTHDR: 2223 optval = OPTBIT(IN6P_RTHDR); 2224 break; 2225 2226 case IPV6_RECVPATHMTU: 2227 optval = OPTBIT(IN6P_MTU); 2228 break; 2229 2230 case IPV6_V6ONLY: 2231 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2232 break; 2233 2234 case IPV6_PORTRANGE: 2235 { 2236 int flags; 2237 flags = inp->inp_flags; 2238 if (flags & INP_HIGHPORT) 2239 optval = IPV6_PORTRANGE_HIGH; 2240 else if (flags & INP_LOWPORT) 2241 optval = IPV6_PORTRANGE_LOW; 2242 else 2243 optval = 0; 2244 break; 2245 } 2246 case IPV6_RECVTCLASS: 2247 optval = OPTBIT(IN6P_TCLASS); 2248 break; 2249 2250 case IPV6_AUTOFLOWLABEL: 2251 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2252 break; 2253 2254 case IPV6_ORIGDSTADDR: 2255 optval = OPTBIT2(INP_ORIGDSTADDR); 2256 break; 2257 2258 case IPV6_BINDANY: 2259 optval = OPTBIT(INP_BINDANY); 2260 break; 2261 2262 case IPV6_FLOWID: 2263 optval = inp->inp_flowid; 2264 break; 2265 2266 case IPV6_FLOWTYPE: 2267 optval = inp->inp_flowtype; 2268 break; 2269 2270 case IPV6_RECVFLOWID: 2271 optval = OPTBIT2(INP_RECVFLOWID); 2272 break; 2273 #ifdef RSS 2274 case IPV6_RSSBUCKETID: 2275 retval = 2276 rss_hash2bucket(inp->inp_flowid, 2277 inp->inp_flowtype, 2278 &rss_bucket); 2279 if (retval == 0) 2280 optval = rss_bucket; 2281 else 2282 error = EINVAL; 2283 break; 2284 2285 case IPV6_RECVRSSBUCKETID: 2286 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2287 break; 2288 #endif 2289 2290 case IPV6_BINDMULTI: 2291 optval = OPTBIT2(INP_BINDMULTI); 2292 break; 2293 2294 case IPV6_VLAN_PCP: 2295 if (OPTBIT2(INP_2PCP_SET)) { 2296 optval = (inp->inp_flags2 & 2297 INP_2PCP_MASK) >> 2298 INP_2PCP_SHIFT; 2299 } else { 2300 optval = -1; 2301 } 2302 break; 2303 } 2304 2305 if (error) 2306 break; 2307 error = sooptcopyout(sopt, &optval, 2308 sizeof optval); 2309 break; 2310 2311 case IPV6_PATHMTU: 2312 { 2313 u_long pmtu = 0; 2314 struct ip6_mtuinfo mtuinfo; 2315 struct in6_addr addr; 2316 2317 if (!(so->so_state & SS_ISCONNECTED)) 2318 return (ENOTCONN); 2319 /* 2320 * XXX: we dot not consider the case of source 2321 * routing, or optional information to specify 2322 * the outgoing interface. 2323 * Copy faddr out of inp to avoid holding lock 2324 * on inp during route lookup. 2325 */ 2326 INP_RLOCK(inp); 2327 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2328 INP_RUNLOCK(inp); 2329 error = ip6_getpmtu_ctl(so->so_fibnum, 2330 &addr, &pmtu); 2331 if (error) 2332 break; 2333 if (pmtu > IPV6_MAXPACKET) 2334 pmtu = IPV6_MAXPACKET; 2335 2336 bzero(&mtuinfo, sizeof(mtuinfo)); 2337 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2338 optdata = (void *)&mtuinfo; 2339 optdatalen = sizeof(mtuinfo); 2340 error = sooptcopyout(sopt, optdata, 2341 optdatalen); 2342 break; 2343 } 2344 2345 case IPV6_2292PKTINFO: 2346 case IPV6_2292HOPLIMIT: 2347 case IPV6_2292HOPOPTS: 2348 case IPV6_2292RTHDR: 2349 case IPV6_2292DSTOPTS: 2350 switch (optname) { 2351 case IPV6_2292PKTINFO: 2352 optval = OPTBIT(IN6P_PKTINFO); 2353 break; 2354 case IPV6_2292HOPLIMIT: 2355 optval = OPTBIT(IN6P_HOPLIMIT); 2356 break; 2357 case IPV6_2292HOPOPTS: 2358 optval = OPTBIT(IN6P_HOPOPTS); 2359 break; 2360 case IPV6_2292RTHDR: 2361 optval = OPTBIT(IN6P_RTHDR); 2362 break; 2363 case IPV6_2292DSTOPTS: 2364 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2365 break; 2366 } 2367 error = sooptcopyout(sopt, &optval, 2368 sizeof optval); 2369 break; 2370 case IPV6_PKTINFO: 2371 case IPV6_HOPOPTS: 2372 case IPV6_RTHDR: 2373 case IPV6_DSTOPTS: 2374 case IPV6_RTHDRDSTOPTS: 2375 case IPV6_NEXTHOP: 2376 case IPV6_TCLASS: 2377 case IPV6_DONTFRAG: 2378 case IPV6_USE_MIN_MTU: 2379 case IPV6_PREFER_TEMPADDR: 2380 error = ip6_getpcbopt(inp, optname, sopt); 2381 break; 2382 2383 case IPV6_MULTICAST_IF: 2384 case IPV6_MULTICAST_HOPS: 2385 case IPV6_MULTICAST_LOOP: 2386 case IPV6_MSFILTER: 2387 error = ip6_getmoptions(inp, sopt); 2388 break; 2389 2390 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2391 case IPV6_IPSEC_POLICY: 2392 if (IPSEC_ENABLED(ipv6)) { 2393 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2394 break; 2395 } 2396 /* FALLTHROUGH */ 2397 #endif /* IPSEC */ 2398 default: 2399 error = ENOPROTOOPT; 2400 break; 2401 } 2402 break; 2403 } 2404 } 2405 return (error); 2406 } 2407 2408 int 2409 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2410 { 2411 int error = 0, optval, optlen; 2412 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2413 struct inpcb *inp = sotoinpcb(so); 2414 int level, op, optname; 2415 2416 level = sopt->sopt_level; 2417 op = sopt->sopt_dir; 2418 optname = sopt->sopt_name; 2419 optlen = sopt->sopt_valsize; 2420 2421 if (level != IPPROTO_IPV6) { 2422 return (EINVAL); 2423 } 2424 2425 switch (optname) { 2426 case IPV6_CHECKSUM: 2427 /* 2428 * For ICMPv6 sockets, no modification allowed for checksum 2429 * offset, permit "no change" values to help existing apps. 2430 * 2431 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2432 * for an ICMPv6 socket will fail." 2433 * The current behavior does not meet RFC3542. 2434 */ 2435 switch (op) { 2436 case SOPT_SET: 2437 if (optlen != sizeof(int)) { 2438 error = EINVAL; 2439 break; 2440 } 2441 error = sooptcopyin(sopt, &optval, sizeof(optval), 2442 sizeof(optval)); 2443 if (error) 2444 break; 2445 if (optval < -1 || (optval % 2) != 0) { 2446 /* 2447 * The API assumes non-negative even offset 2448 * values or -1 as a special value. 2449 */ 2450 error = EINVAL; 2451 } else if (so->so_proto->pr_protocol == 2452 IPPROTO_ICMPV6) { 2453 if (optval != icmp6off) 2454 error = EINVAL; 2455 } else 2456 inp->in6p_cksum = optval; 2457 break; 2458 2459 case SOPT_GET: 2460 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2461 optval = icmp6off; 2462 else 2463 optval = inp->in6p_cksum; 2464 2465 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2466 break; 2467 2468 default: 2469 error = EINVAL; 2470 break; 2471 } 2472 break; 2473 2474 default: 2475 error = ENOPROTOOPT; 2476 break; 2477 } 2478 2479 return (error); 2480 } 2481 2482 /* 2483 * Set up IP6 options in pcb for insertion in output packets or 2484 * specifying behavior of outgoing packets. 2485 */ 2486 static int 2487 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2488 struct socket *so, struct sockopt *sopt) 2489 { 2490 struct ip6_pktopts *opt = *pktopt; 2491 int error = 0; 2492 struct thread *td = sopt->sopt_td; 2493 struct epoch_tracker et; 2494 2495 /* turn off any old options. */ 2496 if (opt) { 2497 #ifdef DIAGNOSTIC 2498 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2499 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2500 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2501 printf("ip6_pcbopts: all specified options are cleared.\n"); 2502 #endif 2503 ip6_clearpktopts(opt, -1); 2504 } else { 2505 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2506 if (opt == NULL) 2507 return (ENOMEM); 2508 } 2509 *pktopt = NULL; 2510 2511 if (!m || m->m_len == 0) { 2512 /* 2513 * Only turning off any previous options, regardless of 2514 * whether the opt is just created or given. 2515 */ 2516 free(opt, M_IP6OPT); 2517 return (0); 2518 } 2519 2520 /* set options specified by user. */ 2521 NET_EPOCH_ENTER(et); 2522 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2523 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2524 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2525 free(opt, M_IP6OPT); 2526 NET_EPOCH_EXIT(et); 2527 return (error); 2528 } 2529 NET_EPOCH_EXIT(et); 2530 *pktopt = opt; 2531 return (0); 2532 } 2533 2534 /* 2535 * initialize ip6_pktopts. beware that there are non-zero default values in 2536 * the struct. 2537 */ 2538 void 2539 ip6_initpktopts(struct ip6_pktopts *opt) 2540 { 2541 2542 bzero(opt, sizeof(*opt)); 2543 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2544 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2545 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2546 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2547 } 2548 2549 static int 2550 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2551 struct ucred *cred, int uproto) 2552 { 2553 struct epoch_tracker et; 2554 struct ip6_pktopts *opt; 2555 int ret; 2556 2557 if (*pktopt == NULL) { 2558 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2559 M_NOWAIT); 2560 if (*pktopt == NULL) 2561 return (ENOBUFS); 2562 ip6_initpktopts(*pktopt); 2563 } 2564 opt = *pktopt; 2565 2566 NET_EPOCH_ENTER(et); 2567 ret = ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto); 2568 NET_EPOCH_EXIT(et); 2569 2570 return (ret); 2571 } 2572 2573 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2574 if (pktopt && pktopt->field) { \ 2575 INP_RUNLOCK(inp); \ 2576 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2577 malloc_optdata = true; \ 2578 INP_RLOCK(inp); \ 2579 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2580 INP_RUNLOCK(inp); \ 2581 free(optdata, M_TEMP); \ 2582 return (ECONNRESET); \ 2583 } \ 2584 pktopt = inp->in6p_outputopts; \ 2585 if (pktopt && pktopt->field) { \ 2586 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2587 bcopy(pktopt->field, optdata, optdatalen); \ 2588 } else { \ 2589 free(optdata, M_TEMP); \ 2590 optdata = NULL; \ 2591 malloc_optdata = false; \ 2592 } \ 2593 } \ 2594 } while(0) 2595 2596 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2597 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2598 2599 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2600 pktopt->field->sa_len) 2601 2602 static int 2603 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2604 { 2605 void *optdata = NULL; 2606 bool malloc_optdata = false; 2607 int optdatalen = 0; 2608 int error = 0; 2609 struct in6_pktinfo null_pktinfo; 2610 int deftclass = 0, on; 2611 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2612 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2613 struct ip6_pktopts *pktopt; 2614 2615 INP_RLOCK(inp); 2616 pktopt = inp->in6p_outputopts; 2617 2618 switch (optname) { 2619 case IPV6_PKTINFO: 2620 optdata = (void *)&null_pktinfo; 2621 if (pktopt && pktopt->ip6po_pktinfo) { 2622 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2623 sizeof(null_pktinfo)); 2624 in6_clearscope(&null_pktinfo.ipi6_addr); 2625 } else { 2626 /* XXX: we don't have to do this every time... */ 2627 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2628 } 2629 optdatalen = sizeof(struct in6_pktinfo); 2630 break; 2631 case IPV6_TCLASS: 2632 if (pktopt && pktopt->ip6po_tclass >= 0) 2633 deftclass = pktopt->ip6po_tclass; 2634 optdata = (void *)&deftclass; 2635 optdatalen = sizeof(int); 2636 break; 2637 case IPV6_HOPOPTS: 2638 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2639 break; 2640 case IPV6_RTHDR: 2641 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2642 break; 2643 case IPV6_RTHDRDSTOPTS: 2644 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2645 break; 2646 case IPV6_DSTOPTS: 2647 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2648 break; 2649 case IPV6_NEXTHOP: 2650 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2651 break; 2652 case IPV6_USE_MIN_MTU: 2653 if (pktopt) 2654 defminmtu = pktopt->ip6po_minmtu; 2655 optdata = (void *)&defminmtu; 2656 optdatalen = sizeof(int); 2657 break; 2658 case IPV6_DONTFRAG: 2659 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2660 on = 1; 2661 else 2662 on = 0; 2663 optdata = (void *)&on; 2664 optdatalen = sizeof(on); 2665 break; 2666 case IPV6_PREFER_TEMPADDR: 2667 if (pktopt) 2668 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2669 optdata = (void *)&defpreftemp; 2670 optdatalen = sizeof(int); 2671 break; 2672 default: /* should not happen */ 2673 #ifdef DIAGNOSTIC 2674 panic("ip6_getpcbopt: unexpected option\n"); 2675 #endif 2676 INP_RUNLOCK(inp); 2677 return (ENOPROTOOPT); 2678 } 2679 INP_RUNLOCK(inp); 2680 2681 error = sooptcopyout(sopt, optdata, optdatalen); 2682 if (malloc_optdata) 2683 free(optdata, M_TEMP); 2684 2685 return (error); 2686 } 2687 2688 void 2689 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2690 { 2691 if (pktopt == NULL) 2692 return; 2693 2694 if (optname == -1 || optname == IPV6_PKTINFO) { 2695 if (pktopt->ip6po_pktinfo) 2696 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2697 pktopt->ip6po_pktinfo = NULL; 2698 } 2699 if (optname == -1 || optname == IPV6_HOPLIMIT) 2700 pktopt->ip6po_hlim = -1; 2701 if (optname == -1 || optname == IPV6_TCLASS) 2702 pktopt->ip6po_tclass = -1; 2703 if (optname == -1 || optname == IPV6_NEXTHOP) { 2704 if (pktopt->ip6po_nextroute.ro_nh) { 2705 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2706 pktopt->ip6po_nextroute.ro_nh = NULL; 2707 } 2708 if (pktopt->ip6po_nexthop) 2709 free(pktopt->ip6po_nexthop, M_IP6OPT); 2710 pktopt->ip6po_nexthop = NULL; 2711 } 2712 if (optname == -1 || optname == IPV6_HOPOPTS) { 2713 if (pktopt->ip6po_hbh) 2714 free(pktopt->ip6po_hbh, M_IP6OPT); 2715 pktopt->ip6po_hbh = NULL; 2716 } 2717 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2718 if (pktopt->ip6po_dest1) 2719 free(pktopt->ip6po_dest1, M_IP6OPT); 2720 pktopt->ip6po_dest1 = NULL; 2721 } 2722 if (optname == -1 || optname == IPV6_RTHDR) { 2723 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2724 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2725 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2726 if (pktopt->ip6po_route.ro_nh) { 2727 NH_FREE(pktopt->ip6po_route.ro_nh); 2728 pktopt->ip6po_route.ro_nh = NULL; 2729 } 2730 } 2731 if (optname == -1 || optname == IPV6_DSTOPTS) { 2732 if (pktopt->ip6po_dest2) 2733 free(pktopt->ip6po_dest2, M_IP6OPT); 2734 pktopt->ip6po_dest2 = NULL; 2735 } 2736 } 2737 2738 #define PKTOPT_EXTHDRCPY(type) \ 2739 do {\ 2740 if (src->type) {\ 2741 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2742 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2743 if (dst->type == NULL)\ 2744 goto bad;\ 2745 bcopy(src->type, dst->type, hlen);\ 2746 }\ 2747 } while (/*CONSTCOND*/ 0) 2748 2749 static int 2750 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2751 { 2752 if (dst == NULL || src == NULL) { 2753 printf("ip6_clearpktopts: invalid argument\n"); 2754 return (EINVAL); 2755 } 2756 2757 dst->ip6po_hlim = src->ip6po_hlim; 2758 dst->ip6po_tclass = src->ip6po_tclass; 2759 dst->ip6po_flags = src->ip6po_flags; 2760 dst->ip6po_minmtu = src->ip6po_minmtu; 2761 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2762 if (src->ip6po_pktinfo) { 2763 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2764 M_IP6OPT, canwait); 2765 if (dst->ip6po_pktinfo == NULL) 2766 goto bad; 2767 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2768 } 2769 if (src->ip6po_nexthop) { 2770 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2771 M_IP6OPT, canwait); 2772 if (dst->ip6po_nexthop == NULL) 2773 goto bad; 2774 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2775 src->ip6po_nexthop->sa_len); 2776 } 2777 PKTOPT_EXTHDRCPY(ip6po_hbh); 2778 PKTOPT_EXTHDRCPY(ip6po_dest1); 2779 PKTOPT_EXTHDRCPY(ip6po_dest2); 2780 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2781 return (0); 2782 2783 bad: 2784 ip6_clearpktopts(dst, -1); 2785 return (ENOBUFS); 2786 } 2787 #undef PKTOPT_EXTHDRCPY 2788 2789 struct ip6_pktopts * 2790 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2791 { 2792 int error; 2793 struct ip6_pktopts *dst; 2794 2795 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2796 if (dst == NULL) 2797 return (NULL); 2798 ip6_initpktopts(dst); 2799 2800 if ((error = copypktopts(dst, src, canwait)) != 0) { 2801 free(dst, M_IP6OPT); 2802 return (NULL); 2803 } 2804 2805 return (dst); 2806 } 2807 2808 void 2809 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2810 { 2811 if (pktopt == NULL) 2812 return; 2813 2814 ip6_clearpktopts(pktopt, -1); 2815 2816 free(pktopt, M_IP6OPT); 2817 } 2818 2819 /* 2820 * Set IPv6 outgoing packet options based on advanced API. 2821 */ 2822 int 2823 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2824 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2825 { 2826 struct cmsghdr *cm = NULL; 2827 2828 if (control == NULL || opt == NULL) 2829 return (EINVAL); 2830 2831 /* 2832 * ip6_setpktopt can call ifnet_byindex(), so it's imperative that we 2833 * are in the network epoch here. 2834 */ 2835 NET_EPOCH_ASSERT(); 2836 2837 ip6_initpktopts(opt); 2838 if (stickyopt) { 2839 int error; 2840 2841 /* 2842 * If stickyopt is provided, make a local copy of the options 2843 * for this particular packet, then override them by ancillary 2844 * objects. 2845 * XXX: copypktopts() does not copy the cached route to a next 2846 * hop (if any). This is not very good in terms of efficiency, 2847 * but we can allow this since this option should be rarely 2848 * used. 2849 */ 2850 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2851 return (error); 2852 } 2853 2854 /* 2855 * XXX: Currently, we assume all the optional information is stored 2856 * in a single mbuf. 2857 */ 2858 if (control->m_next) 2859 return (EINVAL); 2860 2861 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2862 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2863 int error; 2864 2865 if (control->m_len < CMSG_LEN(0)) 2866 return (EINVAL); 2867 2868 cm = mtod(control, struct cmsghdr *); 2869 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2870 return (EINVAL); 2871 if (cm->cmsg_level != IPPROTO_IPV6) 2872 continue; 2873 2874 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2875 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2876 if (error) 2877 return (error); 2878 } 2879 2880 return (0); 2881 } 2882 2883 /* 2884 * Set a particular packet option, as a sticky option or an ancillary data 2885 * item. "len" can be 0 only when it's a sticky option. 2886 * We have 4 cases of combination of "sticky" and "cmsg": 2887 * "sticky=0, cmsg=0": impossible 2888 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2889 * "sticky=1, cmsg=0": RFC3542 socket option 2890 * "sticky=1, cmsg=1": RFC2292 socket option 2891 */ 2892 static int 2893 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2894 struct ucred *cred, int sticky, int cmsg, int uproto) 2895 { 2896 int minmtupolicy, preftemp; 2897 int error; 2898 2899 NET_EPOCH_ASSERT(); 2900 2901 if (!sticky && !cmsg) { 2902 #ifdef DIAGNOSTIC 2903 printf("ip6_setpktopt: impossible case\n"); 2904 #endif 2905 return (EINVAL); 2906 } 2907 2908 /* 2909 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2910 * not be specified in the context of RFC3542. Conversely, 2911 * RFC3542 types should not be specified in the context of RFC2292. 2912 */ 2913 if (!cmsg) { 2914 switch (optname) { 2915 case IPV6_2292PKTINFO: 2916 case IPV6_2292HOPLIMIT: 2917 case IPV6_2292NEXTHOP: 2918 case IPV6_2292HOPOPTS: 2919 case IPV6_2292DSTOPTS: 2920 case IPV6_2292RTHDR: 2921 case IPV6_2292PKTOPTIONS: 2922 return (ENOPROTOOPT); 2923 } 2924 } 2925 if (sticky && cmsg) { 2926 switch (optname) { 2927 case IPV6_PKTINFO: 2928 case IPV6_HOPLIMIT: 2929 case IPV6_NEXTHOP: 2930 case IPV6_HOPOPTS: 2931 case IPV6_DSTOPTS: 2932 case IPV6_RTHDRDSTOPTS: 2933 case IPV6_RTHDR: 2934 case IPV6_USE_MIN_MTU: 2935 case IPV6_DONTFRAG: 2936 case IPV6_TCLASS: 2937 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2938 return (ENOPROTOOPT); 2939 } 2940 } 2941 2942 switch (optname) { 2943 case IPV6_2292PKTINFO: 2944 case IPV6_PKTINFO: 2945 { 2946 struct ifnet *ifp = NULL; 2947 struct in6_pktinfo *pktinfo; 2948 2949 if (len != sizeof(struct in6_pktinfo)) 2950 return (EINVAL); 2951 2952 pktinfo = (struct in6_pktinfo *)buf; 2953 2954 /* 2955 * An application can clear any sticky IPV6_PKTINFO option by 2956 * doing a "regular" setsockopt with ipi6_addr being 2957 * in6addr_any and ipi6_ifindex being zero. 2958 * [RFC 3542, Section 6] 2959 */ 2960 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2961 pktinfo->ipi6_ifindex == 0 && 2962 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2963 ip6_clearpktopts(opt, optname); 2964 break; 2965 } 2966 2967 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2968 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2969 return (EINVAL); 2970 } 2971 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2972 return (EINVAL); 2973 /* validate the interface index if specified. */ 2974 if (pktinfo->ipi6_ifindex) { 2975 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2976 if (ifp == NULL) 2977 return (ENXIO); 2978 } 2979 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2980 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2981 return (ENETDOWN); 2982 2983 if (ifp != NULL && 2984 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2985 struct in6_ifaddr *ia; 2986 2987 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2988 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2989 if (ia == NULL) 2990 return (EADDRNOTAVAIL); 2991 ifa_free(&ia->ia_ifa); 2992 } 2993 /* 2994 * We store the address anyway, and let in6_selectsrc() 2995 * validate the specified address. This is because ipi6_addr 2996 * may not have enough information about its scope zone, and 2997 * we may need additional information (such as outgoing 2998 * interface or the scope zone of a destination address) to 2999 * disambiguate the scope. 3000 * XXX: the delay of the validation may confuse the 3001 * application when it is used as a sticky option. 3002 */ 3003 if (opt->ip6po_pktinfo == NULL) { 3004 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 3005 M_IP6OPT, M_NOWAIT); 3006 if (opt->ip6po_pktinfo == NULL) 3007 return (ENOBUFS); 3008 } 3009 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 3010 break; 3011 } 3012 3013 case IPV6_2292HOPLIMIT: 3014 case IPV6_HOPLIMIT: 3015 { 3016 int *hlimp; 3017 3018 /* 3019 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 3020 * to simplify the ordering among hoplimit options. 3021 */ 3022 if (optname == IPV6_HOPLIMIT && sticky) 3023 return (ENOPROTOOPT); 3024 3025 if (len != sizeof(int)) 3026 return (EINVAL); 3027 hlimp = (int *)buf; 3028 if (*hlimp < -1 || *hlimp > 255) 3029 return (EINVAL); 3030 3031 opt->ip6po_hlim = *hlimp; 3032 break; 3033 } 3034 3035 case IPV6_TCLASS: 3036 { 3037 int tclass; 3038 3039 if (len != sizeof(int)) 3040 return (EINVAL); 3041 tclass = *(int *)buf; 3042 if (tclass < -1 || tclass > 255) 3043 return (EINVAL); 3044 3045 opt->ip6po_tclass = tclass; 3046 break; 3047 } 3048 3049 case IPV6_2292NEXTHOP: 3050 case IPV6_NEXTHOP: 3051 if (cred != NULL) { 3052 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3053 if (error) 3054 return (error); 3055 } 3056 3057 if (len == 0) { /* just remove the option */ 3058 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3059 break; 3060 } 3061 3062 /* check if cmsg_len is large enough for sa_len */ 3063 if (len < sizeof(struct sockaddr) || len < *buf) 3064 return (EINVAL); 3065 3066 switch (((struct sockaddr *)buf)->sa_family) { 3067 case AF_INET6: 3068 { 3069 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3070 int error; 3071 3072 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3073 return (EINVAL); 3074 3075 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3076 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3077 return (EINVAL); 3078 } 3079 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3080 != 0) { 3081 return (error); 3082 } 3083 break; 3084 } 3085 case AF_LINK: /* should eventually be supported */ 3086 default: 3087 return (EAFNOSUPPORT); 3088 } 3089 3090 /* turn off the previous option, then set the new option. */ 3091 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3092 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3093 if (opt->ip6po_nexthop == NULL) 3094 return (ENOBUFS); 3095 bcopy(buf, opt->ip6po_nexthop, *buf); 3096 break; 3097 3098 case IPV6_2292HOPOPTS: 3099 case IPV6_HOPOPTS: 3100 { 3101 struct ip6_hbh *hbh; 3102 int hbhlen; 3103 3104 /* 3105 * XXX: We don't allow a non-privileged user to set ANY HbH 3106 * options, since per-option restriction has too much 3107 * overhead. 3108 */ 3109 if (cred != NULL) { 3110 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3111 if (error) 3112 return (error); 3113 } 3114 3115 if (len == 0) { 3116 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3117 break; /* just remove the option */ 3118 } 3119 3120 /* message length validation */ 3121 if (len < sizeof(struct ip6_hbh)) 3122 return (EINVAL); 3123 hbh = (struct ip6_hbh *)buf; 3124 hbhlen = (hbh->ip6h_len + 1) << 3; 3125 if (len != hbhlen) 3126 return (EINVAL); 3127 3128 /* turn off the previous option, then set the new option. */ 3129 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3130 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3131 if (opt->ip6po_hbh == NULL) 3132 return (ENOBUFS); 3133 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3134 3135 break; 3136 } 3137 3138 case IPV6_2292DSTOPTS: 3139 case IPV6_DSTOPTS: 3140 case IPV6_RTHDRDSTOPTS: 3141 { 3142 struct ip6_dest *dest, **newdest = NULL; 3143 int destlen; 3144 3145 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3146 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3147 if (error) 3148 return (error); 3149 } 3150 3151 if (len == 0) { 3152 ip6_clearpktopts(opt, optname); 3153 break; /* just remove the option */ 3154 } 3155 3156 /* message length validation */ 3157 if (len < sizeof(struct ip6_dest)) 3158 return (EINVAL); 3159 dest = (struct ip6_dest *)buf; 3160 destlen = (dest->ip6d_len + 1) << 3; 3161 if (len != destlen) 3162 return (EINVAL); 3163 3164 /* 3165 * Determine the position that the destination options header 3166 * should be inserted; before or after the routing header. 3167 */ 3168 switch (optname) { 3169 case IPV6_2292DSTOPTS: 3170 /* 3171 * The old advacned API is ambiguous on this point. 3172 * Our approach is to determine the position based 3173 * according to the existence of a routing header. 3174 * Note, however, that this depends on the order of the 3175 * extension headers in the ancillary data; the 1st 3176 * part of the destination options header must appear 3177 * before the routing header in the ancillary data, 3178 * too. 3179 * RFC3542 solved the ambiguity by introducing 3180 * separate ancillary data or option types. 3181 */ 3182 if (opt->ip6po_rthdr == NULL) 3183 newdest = &opt->ip6po_dest1; 3184 else 3185 newdest = &opt->ip6po_dest2; 3186 break; 3187 case IPV6_RTHDRDSTOPTS: 3188 newdest = &opt->ip6po_dest1; 3189 break; 3190 case IPV6_DSTOPTS: 3191 newdest = &opt->ip6po_dest2; 3192 break; 3193 } 3194 3195 /* turn off the previous option, then set the new option. */ 3196 ip6_clearpktopts(opt, optname); 3197 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3198 if (*newdest == NULL) 3199 return (ENOBUFS); 3200 bcopy(dest, *newdest, destlen); 3201 3202 break; 3203 } 3204 3205 case IPV6_2292RTHDR: 3206 case IPV6_RTHDR: 3207 { 3208 struct ip6_rthdr *rth; 3209 int rthlen; 3210 3211 if (len == 0) { 3212 ip6_clearpktopts(opt, IPV6_RTHDR); 3213 break; /* just remove the option */ 3214 } 3215 3216 /* message length validation */ 3217 if (len < sizeof(struct ip6_rthdr)) 3218 return (EINVAL); 3219 rth = (struct ip6_rthdr *)buf; 3220 rthlen = (rth->ip6r_len + 1) << 3; 3221 if (len != rthlen) 3222 return (EINVAL); 3223 3224 switch (rth->ip6r_type) { 3225 case IPV6_RTHDR_TYPE_0: 3226 if (rth->ip6r_len == 0) /* must contain one addr */ 3227 return (EINVAL); 3228 if (rth->ip6r_len % 2) /* length must be even */ 3229 return (EINVAL); 3230 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3231 return (EINVAL); 3232 break; 3233 default: 3234 return (EINVAL); /* not supported */ 3235 } 3236 3237 /* turn off the previous option */ 3238 ip6_clearpktopts(opt, IPV6_RTHDR); 3239 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3240 if (opt->ip6po_rthdr == NULL) 3241 return (ENOBUFS); 3242 bcopy(rth, opt->ip6po_rthdr, rthlen); 3243 3244 break; 3245 } 3246 3247 case IPV6_USE_MIN_MTU: 3248 if (len != sizeof(int)) 3249 return (EINVAL); 3250 minmtupolicy = *(int *)buf; 3251 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3252 minmtupolicy != IP6PO_MINMTU_DISABLE && 3253 minmtupolicy != IP6PO_MINMTU_ALL) { 3254 return (EINVAL); 3255 } 3256 opt->ip6po_minmtu = minmtupolicy; 3257 break; 3258 3259 case IPV6_DONTFRAG: 3260 if (len != sizeof(int)) 3261 return (EINVAL); 3262 3263 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3264 /* 3265 * we ignore this option for TCP sockets. 3266 * (RFC3542 leaves this case unspecified.) 3267 */ 3268 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3269 } else 3270 opt->ip6po_flags |= IP6PO_DONTFRAG; 3271 break; 3272 3273 case IPV6_PREFER_TEMPADDR: 3274 if (len != sizeof(int)) 3275 return (EINVAL); 3276 preftemp = *(int *)buf; 3277 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3278 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3279 preftemp != IP6PO_TEMPADDR_PREFER) { 3280 return (EINVAL); 3281 } 3282 opt->ip6po_prefer_tempaddr = preftemp; 3283 break; 3284 3285 default: 3286 return (ENOPROTOOPT); 3287 } /* end of switch */ 3288 3289 return (0); 3290 } 3291 3292 /* 3293 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3294 * packet to the input queue of a specified interface. Note that this 3295 * calls the output routine of the loopback "driver", but with an interface 3296 * pointer that might NOT be &loif -- easier than replicating that code here. 3297 */ 3298 void 3299 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3300 { 3301 struct mbuf *copym; 3302 struct ip6_hdr *ip6; 3303 3304 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3305 if (copym == NULL) 3306 return; 3307 3308 /* 3309 * Make sure to deep-copy IPv6 header portion in case the data 3310 * is in an mbuf cluster, so that we can safely override the IPv6 3311 * header portion later. 3312 */ 3313 if (!M_WRITABLE(copym) || 3314 copym->m_len < sizeof(struct ip6_hdr)) { 3315 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3316 if (copym == NULL) 3317 return; 3318 } 3319 ip6 = mtod(copym, struct ip6_hdr *); 3320 /* 3321 * clear embedded scope identifiers if necessary. 3322 * in6_clearscope will touch the addresses only when necessary. 3323 */ 3324 in6_clearscope(&ip6->ip6_src); 3325 in6_clearscope(&ip6->ip6_dst); 3326 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3327 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3328 CSUM_PSEUDO_HDR; 3329 copym->m_pkthdr.csum_data = 0xffff; 3330 } 3331 if_simloop(ifp, copym, AF_INET6, 0); 3332 } 3333 3334 /* 3335 * Chop IPv6 header off from the payload. 3336 */ 3337 static int 3338 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3339 { 3340 struct mbuf *mh; 3341 struct ip6_hdr *ip6; 3342 3343 ip6 = mtod(m, struct ip6_hdr *); 3344 if (m->m_len > sizeof(*ip6)) { 3345 mh = m_gethdr(M_NOWAIT, MT_DATA); 3346 if (mh == NULL) { 3347 m_freem(m); 3348 return ENOBUFS; 3349 } 3350 m_move_pkthdr(mh, m); 3351 M_ALIGN(mh, sizeof(*ip6)); 3352 m->m_len -= sizeof(*ip6); 3353 m->m_data += sizeof(*ip6); 3354 mh->m_next = m; 3355 m = mh; 3356 m->m_len = sizeof(*ip6); 3357 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3358 } 3359 exthdrs->ip6e_ip6 = m; 3360 return 0; 3361 } 3362 3363 /* 3364 * Compute IPv6 extension header length. 3365 */ 3366 int 3367 ip6_optlen(struct inpcb *inp) 3368 { 3369 int len; 3370 3371 if (!inp->in6p_outputopts) 3372 return 0; 3373 3374 len = 0; 3375 #define elen(x) \ 3376 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3377 3378 len += elen(inp->in6p_outputopts->ip6po_hbh); 3379 if (inp->in6p_outputopts->ip6po_rthdr) 3380 /* dest1 is valid with rthdr only */ 3381 len += elen(inp->in6p_outputopts->ip6po_dest1); 3382 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3383 len += elen(inp->in6p_outputopts->ip6po_dest2); 3384 return len; 3385 #undef elen 3386 } 3387