1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project. 5 * All rights reserved. 6 * 7 * Redistribution and use in source and binary forms, with or without 8 * modification, are permitted provided that the following conditions 9 * are met: 10 * 1. Redistributions of source code must retain the above copyright 11 * notice, this list of conditions and the following disclaimer. 12 * 2. Redistributions in binary form must reproduce the above copyright 13 * notice, this list of conditions and the following disclaimer in the 14 * documentation and/or other materials provided with the distribution. 15 * 3. Neither the name of the project nor the names of its contributors 16 * may be used to endorse or promote products derived from this software 17 * without specific prior written permission. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 * 31 * $KAME: ip6_output.c,v 1.279 2002/01/26 06:12:30 jinmei Exp $ 32 */ 33 34 /*- 35 * Copyright (c) 1982, 1986, 1988, 1990, 1993 36 * The Regents of the University of California. All rights reserved. 37 * 38 * Redistribution and use in source and binary forms, with or without 39 * modification, are permitted provided that the following conditions 40 * are met: 41 * 1. Redistributions of source code must retain the above copyright 42 * notice, this list of conditions and the following disclaimer. 43 * 2. Redistributions in binary form must reproduce the above copyright 44 * notice, this list of conditions and the following disclaimer in the 45 * documentation and/or other materials provided with the distribution. 46 * 3. Neither the name of the University nor the names of its contributors 47 * may be used to endorse or promote products derived from this software 48 * without specific prior written permission. 49 * 50 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 51 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 52 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 53 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 54 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 55 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 56 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 57 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 58 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 59 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 60 * SUCH DAMAGE. 61 * 62 * @(#)ip_output.c 8.3 (Berkeley) 1/21/94 63 */ 64 65 #include <sys/cdefs.h> 66 __FBSDID("$FreeBSD$"); 67 68 #include "opt_inet.h" 69 #include "opt_inet6.h" 70 #include "opt_ipsec.h" 71 #include "opt_kern_tls.h" 72 #include "opt_ratelimit.h" 73 #include "opt_route.h" 74 #include "opt_rss.h" 75 #include "opt_sctp.h" 76 77 #include <sys/param.h> 78 #include <sys/kernel.h> 79 #include <sys/ktls.h> 80 #include <sys/malloc.h> 81 #include <sys/mbuf.h> 82 #include <sys/errno.h> 83 #include <sys/priv.h> 84 #include <sys/proc.h> 85 #include <sys/protosw.h> 86 #include <sys/socket.h> 87 #include <sys/socketvar.h> 88 #include <sys/syslog.h> 89 #include <sys/ucred.h> 90 91 #include <machine/in_cksum.h> 92 93 #include <net/if.h> 94 #include <net/if_var.h> 95 #include <net/if_llatbl.h> 96 #include <net/netisr.h> 97 #include <net/route.h> 98 #include <net/route/nhop.h> 99 #include <net/pfil.h> 100 #include <net/rss_config.h> 101 #include <net/vnet.h> 102 103 #include <netinet/in.h> 104 #include <netinet/in_var.h> 105 #include <netinet/ip_var.h> 106 #include <netinet6/in6_fib.h> 107 #include <netinet6/in6_var.h> 108 #include <netinet/ip6.h> 109 #include <netinet/icmp6.h> 110 #include <netinet6/ip6_var.h> 111 #include <netinet/in_pcb.h> 112 #include <netinet/tcp_var.h> 113 #include <netinet6/nd6.h> 114 #include <netinet6/in6_rss.h> 115 116 #include <netipsec/ipsec_support.h> 117 #ifdef SCTP 118 #include <netinet/sctp.h> 119 #include <netinet/sctp_crc32.h> 120 #endif 121 122 #include <netinet6/ip6protosw.h> 123 #include <netinet6/scope6_var.h> 124 125 extern int in6_mcast_loop; 126 127 struct ip6_exthdrs { 128 struct mbuf *ip6e_ip6; 129 struct mbuf *ip6e_hbh; 130 struct mbuf *ip6e_dest1; 131 struct mbuf *ip6e_rthdr; 132 struct mbuf *ip6e_dest2; 133 }; 134 135 static MALLOC_DEFINE(M_IP6OPT, "ip6opt", "IPv6 options"); 136 137 static int ip6_pcbopt(int, u_char *, int, struct ip6_pktopts **, 138 struct ucred *, int); 139 static int ip6_pcbopts(struct ip6_pktopts **, struct mbuf *, 140 struct socket *, struct sockopt *); 141 static int ip6_getpcbopt(struct inpcb *, int, struct sockopt *); 142 static int ip6_setpktopt(int, u_char *, int, struct ip6_pktopts *, 143 struct ucred *, int, int, int); 144 145 static int ip6_copyexthdr(struct mbuf **, caddr_t, int); 146 static int ip6_insertfraghdr(struct mbuf *, struct mbuf *, int, 147 struct ip6_frag **); 148 static int ip6_insert_jumboopt(struct ip6_exthdrs *, u_int32_t); 149 static int ip6_splithdr(struct mbuf *, struct ip6_exthdrs *); 150 static int ip6_getpmtu(struct route_in6 *, int, 151 struct ifnet *, const struct in6_addr *, u_long *, int *, u_int, 152 u_int); 153 static int ip6_calcmtu(struct ifnet *, const struct in6_addr *, u_long, 154 u_long *, int *, u_int); 155 static int ip6_getpmtu_ctl(u_int, const struct in6_addr *, u_long *); 156 static int copypktopts(struct ip6_pktopts *, struct ip6_pktopts *, int); 157 158 159 /* 160 * Make an extension header from option data. hp is the source, 161 * mp is the destination, and _ol is the optlen. 162 */ 163 #define MAKE_EXTHDR(hp, mp, _ol) \ 164 do { \ 165 if (hp) { \ 166 struct ip6_ext *eh = (struct ip6_ext *)(hp); \ 167 error = ip6_copyexthdr((mp), (caddr_t)(hp), \ 168 ((eh)->ip6e_len + 1) << 3); \ 169 if (error) \ 170 goto freehdrs; \ 171 (_ol) += (*(mp))->m_len; \ 172 } \ 173 } while (/*CONSTCOND*/ 0) 174 175 /* 176 * Form a chain of extension headers. 177 * m is the extension header mbuf 178 * mp is the previous mbuf in the chain 179 * p is the next header 180 * i is the type of option. 181 */ 182 #define MAKE_CHAIN(m, mp, p, i)\ 183 do {\ 184 if (m) {\ 185 if (!hdrsplit) \ 186 panic("%s:%d: assumption failed: "\ 187 "hdr not split: hdrsplit %d exthdrs %p",\ 188 __func__, __LINE__, hdrsplit, &exthdrs);\ 189 *mtod((m), u_char *) = *(p);\ 190 *(p) = (i);\ 191 p = mtod((m), u_char *);\ 192 (m)->m_next = (mp)->m_next;\ 193 (mp)->m_next = (m);\ 194 (mp) = (m);\ 195 }\ 196 } while (/*CONSTCOND*/ 0) 197 198 void 199 in6_delayed_cksum(struct mbuf *m, uint32_t plen, u_short offset) 200 { 201 u_short csum; 202 203 csum = in_cksum_skip(m, offset + plen, offset); 204 if (m->m_pkthdr.csum_flags & CSUM_UDP_IPV6 && csum == 0) 205 csum = 0xffff; 206 offset += m->m_pkthdr.csum_data; /* checksum offset */ 207 208 if (offset + sizeof(csum) > m->m_len) 209 m_copyback(m, offset, sizeof(csum), (caddr_t)&csum); 210 else 211 *(u_short *)mtodo(m, offset) = csum; 212 } 213 214 static int 215 ip6_output_delayed_csum(struct mbuf *m, struct ifnet *ifp, int csum_flags, 216 int plen, int optlen, bool frag) 217 { 218 219 KASSERT((plen >= optlen), ("%s:%d: plen %d < optlen %d, m %p, ifp %p " 220 "csum_flags %#x frag %d\n", 221 __func__, __LINE__, plen, optlen, m, ifp, csum_flags, frag)); 222 223 if ((csum_flags & CSUM_DELAY_DATA_IPV6) || 224 #ifdef SCTP 225 (csum_flags & CSUM_SCTP_IPV6) || 226 #endif 227 (!frag && (ifp->if_capenable & IFCAP_NOMAP) == 0)) { 228 m = mb_unmapped_to_ext(m); 229 if (m == NULL) { 230 if (frag) 231 in6_ifstat_inc(ifp, ifs6_out_fragfail); 232 else 233 IP6STAT_INC(ip6s_odropped); 234 return (ENOBUFS); 235 } 236 if (csum_flags & CSUM_DELAY_DATA_IPV6) { 237 in6_delayed_cksum(m, plen - optlen, 238 sizeof(struct ip6_hdr) + optlen); 239 m->m_pkthdr.csum_flags &= ~CSUM_DELAY_DATA_IPV6; 240 } 241 #ifdef SCTP 242 if (csum_flags & CSUM_SCTP_IPV6) { 243 sctp_delayed_cksum(m, sizeof(struct ip6_hdr) + optlen); 244 m->m_pkthdr.csum_flags &= ~CSUM_SCTP_IPV6; 245 } 246 #endif 247 } 248 249 return (0); 250 } 251 252 int 253 ip6_fragment(struct ifnet *ifp, struct mbuf *m0, int hlen, u_char nextproto, 254 int fraglen , uint32_t id) 255 { 256 struct mbuf *m, **mnext, *m_frgpart; 257 struct ip6_hdr *ip6, *mhip6; 258 struct ip6_frag *ip6f; 259 int off; 260 int error; 261 int tlen = m0->m_pkthdr.len; 262 263 KASSERT((fraglen % 8 == 0), ("Fragment length must be a multiple of 8")); 264 265 m = m0; 266 ip6 = mtod(m, struct ip6_hdr *); 267 mnext = &m->m_nextpkt; 268 269 for (off = hlen; off < tlen; off += fraglen) { 270 m = m_gethdr(M_NOWAIT, MT_DATA); 271 if (!m) { 272 IP6STAT_INC(ip6s_odropped); 273 return (ENOBUFS); 274 } 275 276 /* 277 * Make sure the complete packet header gets copied 278 * from the originating mbuf to the newly created 279 * mbuf. This also ensures that existing firewall 280 * classification(s), VLAN tags and so on get copied 281 * to the resulting fragmented packet(s): 282 */ 283 if (m_dup_pkthdr(m, m0, M_NOWAIT) == 0) { 284 m_free(m); 285 IP6STAT_INC(ip6s_odropped); 286 return (ENOBUFS); 287 } 288 289 *mnext = m; 290 mnext = &m->m_nextpkt; 291 m->m_data += max_linkhdr; 292 mhip6 = mtod(m, struct ip6_hdr *); 293 *mhip6 = *ip6; 294 m->m_len = sizeof(*mhip6); 295 error = ip6_insertfraghdr(m0, m, hlen, &ip6f); 296 if (error) { 297 IP6STAT_INC(ip6s_odropped); 298 return (error); 299 } 300 ip6f->ip6f_offlg = htons((u_short)((off - hlen) & ~7)); 301 if (off + fraglen >= tlen) 302 fraglen = tlen - off; 303 else 304 ip6f->ip6f_offlg |= IP6F_MORE_FRAG; 305 mhip6->ip6_plen = htons((u_short)(fraglen + hlen + 306 sizeof(*ip6f) - sizeof(struct ip6_hdr))); 307 if ((m_frgpart = m_copym(m0, off, fraglen, M_NOWAIT)) == NULL) { 308 IP6STAT_INC(ip6s_odropped); 309 return (ENOBUFS); 310 } 311 m_cat(m, m_frgpart); 312 m->m_pkthdr.len = fraglen + hlen + sizeof(*ip6f); 313 ip6f->ip6f_reserved = 0; 314 ip6f->ip6f_ident = id; 315 ip6f->ip6f_nxt = nextproto; 316 IP6STAT_INC(ip6s_ofragments); 317 in6_ifstat_inc(ifp, ifs6_out_fragcreat); 318 } 319 320 return (0); 321 } 322 323 static int 324 ip6_output_send(struct inpcb *inp, struct ifnet *ifp, struct ifnet *origifp, 325 struct mbuf *m, struct sockaddr_in6 *dst, struct route_in6 *ro) 326 { 327 #ifdef KERN_TLS 328 struct ktls_session *tls = NULL; 329 #endif 330 struct m_snd_tag *mst; 331 int error; 332 333 MPASS((m->m_pkthdr.csum_flags & CSUM_SND_TAG) == 0); 334 mst = NULL; 335 336 #ifdef KERN_TLS 337 /* 338 * If this is an unencrypted TLS record, save a reference to 339 * the record. This local reference is used to call 340 * ktls_output_eagain after the mbuf has been freed (thus 341 * dropping the mbuf's reference) in if_output. 342 */ 343 if (m->m_next != NULL && mbuf_has_tls_session(m->m_next)) { 344 tls = ktls_hold(m->m_next->m_epg_tls); 345 mst = tls->snd_tag; 346 347 /* 348 * If a TLS session doesn't have a valid tag, it must 349 * have had an earlier ifp mismatch, so drop this 350 * packet. 351 */ 352 if (mst == NULL) { 353 error = EAGAIN; 354 goto done; 355 } 356 } 357 #endif 358 #ifdef RATELIMIT 359 if (inp != NULL && mst == NULL) { 360 if ((inp->inp_flags2 & INP_RATE_LIMIT_CHANGED) != 0 || 361 (inp->inp_snd_tag != NULL && 362 inp->inp_snd_tag->ifp != ifp)) 363 in_pcboutput_txrtlmt(inp, ifp, m); 364 365 if (inp->inp_snd_tag != NULL) 366 mst = inp->inp_snd_tag; 367 } 368 #endif 369 if (mst != NULL) { 370 KASSERT(m->m_pkthdr.rcvif == NULL, 371 ("trying to add a send tag to a forwarded packet")); 372 if (mst->ifp != ifp) { 373 error = EAGAIN; 374 goto done; 375 } 376 377 /* stamp send tag on mbuf */ 378 m->m_pkthdr.snd_tag = m_snd_tag_ref(mst); 379 m->m_pkthdr.csum_flags |= CSUM_SND_TAG; 380 } 381 382 error = nd6_output_ifp(ifp, origifp, m, dst, (struct route *)ro); 383 384 done: 385 /* Check for route change invalidating send tags. */ 386 #ifdef KERN_TLS 387 if (tls != NULL) { 388 if (error == EAGAIN) 389 error = ktls_output_eagain(inp, tls); 390 ktls_free(tls); 391 } 392 #endif 393 #ifdef RATELIMIT 394 if (error == EAGAIN) 395 in_pcboutput_eagain(inp); 396 #endif 397 return (error); 398 } 399 400 /* 401 * IP6 output. 402 * The packet in mbuf chain m contains a skeletal IP6 header (with pri, len, 403 * nxt, hlim, src, dst). 404 * This function may modify ver and hlim only. 405 * The mbuf chain containing the packet will be freed. 406 * The mbuf opt, if present, will not be freed. 407 * If route_in6 ro is present and has ro_nh initialized, route lookup would be 408 * skipped and ro->ro_nh would be used. If ro is present but ro->ro_nh is NULL, 409 * then result of route lookup is stored in ro->ro_nh. 410 * 411 * Type of "mtu": rt_mtu is u_long, ifnet.ifr_mtu is int, and nd_ifinfo.linkmtu 412 * is uint32_t. So we use u_long to hold largest one, which is rt_mtu. 413 * 414 * ifpp - XXX: just for statistics 415 */ 416 /* 417 * XXX TODO: no flowid is assigned for outbound flows? 418 */ 419 int 420 ip6_output(struct mbuf *m0, struct ip6_pktopts *opt, 421 struct route_in6 *ro, int flags, struct ip6_moptions *im6o, 422 struct ifnet **ifpp, struct inpcb *inp) 423 { 424 struct ip6_hdr *ip6; 425 struct ifnet *ifp, *origifp; 426 struct mbuf *m = m0; 427 struct mbuf *mprev; 428 struct route_in6 *ro_pmtu; 429 struct nhop_object *nh; 430 struct sockaddr_in6 *dst, sin6, src_sa, dst_sa; 431 struct in6_addr odst; 432 u_char *nexthdrp; 433 int tlen, len; 434 int error = 0; 435 struct in6_ifaddr *ia = NULL; 436 u_long mtu; 437 int alwaysfrag, dontfrag; 438 u_int32_t optlen, plen = 0, unfragpartlen; 439 struct ip6_exthdrs exthdrs; 440 struct in6_addr src0, dst0; 441 u_int32_t zone; 442 bool hdrsplit; 443 int sw_csum, tso; 444 int needfiblookup; 445 uint32_t fibnum; 446 struct m_tag *fwd_tag = NULL; 447 uint32_t id; 448 449 NET_EPOCH_ASSERT(); 450 451 if (inp != NULL) { 452 INP_LOCK_ASSERT(inp); 453 M_SETFIB(m, inp->inp_inc.inc_fibnum); 454 if ((flags & IP_NODEFAULTFLOWID) == 0) { 455 /* Unconditionally set flowid. */ 456 m->m_pkthdr.flowid = inp->inp_flowid; 457 M_HASHTYPE_SET(m, inp->inp_flowtype); 458 } 459 #ifdef NUMA 460 m->m_pkthdr.numa_domain = inp->inp_numa_domain; 461 #endif 462 } 463 464 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 465 /* 466 * IPSec checking which handles several cases. 467 * FAST IPSEC: We re-injected the packet. 468 * XXX: need scope argument. 469 */ 470 if (IPSEC_ENABLED(ipv6)) { 471 if ((error = IPSEC_OUTPUT(ipv6, m, inp)) != 0) { 472 if (error == EINPROGRESS) 473 error = 0; 474 goto done; 475 } 476 } 477 #endif /* IPSEC */ 478 479 /* Source address validation. */ 480 ip6 = mtod(m, struct ip6_hdr *); 481 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src) && 482 (flags & IPV6_UNSPECSRC) == 0) { 483 error = EOPNOTSUPP; 484 IP6STAT_INC(ip6s_badscope); 485 goto bad; 486 } 487 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_src)) { 488 error = EOPNOTSUPP; 489 IP6STAT_INC(ip6s_badscope); 490 goto bad; 491 } 492 493 /* 494 * If we are given packet options to add extension headers prepare them. 495 * Calculate the total length of the extension header chain. 496 * Keep the length of the unfragmentable part for fragmentation. 497 */ 498 bzero(&exthdrs, sizeof(exthdrs)); 499 optlen = 0; 500 unfragpartlen = sizeof(struct ip6_hdr); 501 if (opt) { 502 /* Hop-by-Hop options header. */ 503 MAKE_EXTHDR(opt->ip6po_hbh, &exthdrs.ip6e_hbh, optlen); 504 505 /* Destination options header (1st part). */ 506 if (opt->ip6po_rthdr) { 507 #ifndef RTHDR_SUPPORT_IMPLEMENTED 508 /* 509 * If there is a routing header, discard the packet 510 * right away here. RH0/1 are obsolete and we do not 511 * currently support RH2/3/4. 512 * People trying to use RH253/254 may want to disable 513 * this check. 514 * The moment we do support any routing header (again) 515 * this block should check the routing type more 516 * selectively. 517 */ 518 error = EINVAL; 519 goto bad; 520 #endif 521 522 /* 523 * Destination options header (1st part). 524 * This only makes sense with a routing header. 525 * See Section 9.2 of RFC 3542. 526 * Disabling this part just for MIP6 convenience is 527 * a bad idea. We need to think carefully about a 528 * way to make the advanced API coexist with MIP6 529 * options, which might automatically be inserted in 530 * the kernel. 531 */ 532 MAKE_EXTHDR(opt->ip6po_dest1, &exthdrs.ip6e_dest1, 533 optlen); 534 } 535 /* Routing header. */ 536 MAKE_EXTHDR(opt->ip6po_rthdr, &exthdrs.ip6e_rthdr, optlen); 537 538 unfragpartlen += optlen; 539 540 /* 541 * NOTE: we don't add AH/ESP length here (done in 542 * ip6_ipsec_output()). 543 */ 544 545 /* Destination options header (2nd part). */ 546 MAKE_EXTHDR(opt->ip6po_dest2, &exthdrs.ip6e_dest2, optlen); 547 } 548 549 /* 550 * If there is at least one extension header, 551 * separate IP6 header from the payload. 552 */ 553 hdrsplit = false; 554 if (optlen) { 555 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 556 m = NULL; 557 goto freehdrs; 558 } 559 m = exthdrs.ip6e_ip6; 560 ip6 = mtod(m, struct ip6_hdr *); 561 hdrsplit = true; 562 } 563 564 /* Adjust mbuf packet header length. */ 565 m->m_pkthdr.len += optlen; 566 plen = m->m_pkthdr.len - sizeof(*ip6); 567 568 /* If this is a jumbo payload, insert a jumbo payload option. */ 569 if (plen > IPV6_MAXPACKET) { 570 if (!hdrsplit) { 571 if ((error = ip6_splithdr(m, &exthdrs)) != 0) { 572 m = NULL; 573 goto freehdrs; 574 } 575 m = exthdrs.ip6e_ip6; 576 ip6 = mtod(m, struct ip6_hdr *); 577 hdrsplit = true; 578 } 579 if ((error = ip6_insert_jumboopt(&exthdrs, plen)) != 0) 580 goto freehdrs; 581 ip6->ip6_plen = 0; 582 } else 583 ip6->ip6_plen = htons(plen); 584 nexthdrp = &ip6->ip6_nxt; 585 586 if (optlen) { 587 /* 588 * Concatenate headers and fill in next header fields. 589 * Here we have, on "m" 590 * IPv6 payload 591 * and we insert headers accordingly. 592 * Finally, we should be getting: 593 * IPv6 hbh dest1 rthdr ah* [esp* dest2 payload]. 594 * 595 * During the header composing process "m" points to IPv6 596 * header. "mprev" points to an extension header prior to esp. 597 */ 598 mprev = m; 599 600 /* 601 * We treat dest2 specially. This makes IPsec processing 602 * much easier. The goal here is to make mprev point the 603 * mbuf prior to dest2. 604 * 605 * Result: IPv6 dest2 payload. 606 * m and mprev will point to IPv6 header. 607 */ 608 if (exthdrs.ip6e_dest2) { 609 if (!hdrsplit) 610 panic("%s:%d: assumption failed: " 611 "hdr not split: hdrsplit %d exthdrs %p", 612 __func__, __LINE__, hdrsplit, &exthdrs); 613 exthdrs.ip6e_dest2->m_next = m->m_next; 614 m->m_next = exthdrs.ip6e_dest2; 615 *mtod(exthdrs.ip6e_dest2, u_char *) = ip6->ip6_nxt; 616 ip6->ip6_nxt = IPPROTO_DSTOPTS; 617 } 618 619 /* 620 * Result: IPv6 hbh dest1 rthdr dest2 payload. 621 * m will point to IPv6 header. mprev will point to the 622 * extension header prior to dest2 (rthdr in the above case). 623 */ 624 MAKE_CHAIN(exthdrs.ip6e_hbh, mprev, nexthdrp, IPPROTO_HOPOPTS); 625 MAKE_CHAIN(exthdrs.ip6e_dest1, mprev, nexthdrp, 626 IPPROTO_DSTOPTS); 627 MAKE_CHAIN(exthdrs.ip6e_rthdr, mprev, nexthdrp, 628 IPPROTO_ROUTING); 629 } 630 631 IP6STAT_INC(ip6s_localout); 632 633 /* Route packet. */ 634 ro_pmtu = ro; 635 if (opt && opt->ip6po_rthdr) 636 ro = &opt->ip6po_route; 637 if (ro != NULL) 638 dst = (struct sockaddr_in6 *)&ro->ro_dst; 639 else 640 dst = &sin6; 641 fibnum = (inp != NULL) ? inp->inp_inc.inc_fibnum : M_GETFIB(m); 642 643 again: 644 /* 645 * If specified, try to fill in the traffic class field. 646 * Do not override if a non-zero value is already set. 647 * We check the diffserv field and the ECN field separately. 648 */ 649 if (opt && opt->ip6po_tclass >= 0) { 650 int mask = 0; 651 652 if ((ip6->ip6_flow & htonl(0xfc << 20)) == 0) 653 mask |= 0xfc; 654 if ((ip6->ip6_flow & htonl(0x03 << 20)) == 0) 655 mask |= 0x03; 656 if (mask != 0) 657 ip6->ip6_flow |= htonl((opt->ip6po_tclass & mask) << 20); 658 } 659 660 /* Fill in or override the hop limit field, if necessary. */ 661 if (opt && opt->ip6po_hlim != -1) 662 ip6->ip6_hlim = opt->ip6po_hlim & 0xff; 663 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 664 if (im6o != NULL) 665 ip6->ip6_hlim = im6o->im6o_multicast_hlim; 666 else 667 ip6->ip6_hlim = V_ip6_defmcasthlim; 668 } 669 670 if (ro == NULL || ro->ro_nh == NULL) { 671 bzero(dst, sizeof(*dst)); 672 dst->sin6_family = AF_INET6; 673 dst->sin6_len = sizeof(*dst); 674 dst->sin6_addr = ip6->ip6_dst; 675 } 676 /* 677 * Validate route against routing table changes. 678 * Make sure that the address family is set in route. 679 */ 680 nh = NULL; 681 ifp = NULL; 682 mtu = 0; 683 if (ro != NULL) { 684 if (ro->ro_nh != NULL && inp != NULL) { 685 ro->ro_dst.sin6_family = AF_INET6; /* XXX KASSERT? */ 686 NH_VALIDATE((struct route *)ro, &inp->inp_rt_cookie, 687 fibnum); 688 } 689 if (ro->ro_nh != NULL && fwd_tag == NULL && 690 (!NH_IS_VALID(ro->ro_nh) || 691 ro->ro_dst.sin6_family != AF_INET6 || 692 !IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst))) 693 RO_INVALIDATE_CACHE(ro); 694 695 if (ro->ro_nh != NULL && fwd_tag == NULL && 696 ro->ro_dst.sin6_family == AF_INET6 && 697 IN6_ARE_ADDR_EQUAL(&ro->ro_dst.sin6_addr, &ip6->ip6_dst)) { 698 nh = ro->ro_nh; 699 ifp = nh->nh_ifp; 700 } else { 701 if (ro->ro_lle) 702 LLE_FREE(ro->ro_lle); /* zeros ro_lle */ 703 ro->ro_lle = NULL; 704 if (fwd_tag == NULL) { 705 bzero(&dst_sa, sizeof(dst_sa)); 706 dst_sa.sin6_family = AF_INET6; 707 dst_sa.sin6_len = sizeof(dst_sa); 708 dst_sa.sin6_addr = ip6->ip6_dst; 709 } 710 error = in6_selectroute(&dst_sa, opt, im6o, ro, &ifp, 711 &nh, fibnum, m->m_pkthdr.flowid); 712 if (error != 0) { 713 IP6STAT_INC(ip6s_noroute); 714 if (ifp != NULL) 715 in6_ifstat_inc(ifp, ifs6_out_discard); 716 goto bad; 717 } 718 if (ifp != NULL) 719 mtu = ifp->if_mtu; 720 } 721 if (nh == NULL) { 722 /* 723 * If in6_selectroute() does not return a nexthop 724 * dst may not have been updated. 725 */ 726 *dst = dst_sa; /* XXX */ 727 } else { 728 if (nh->nh_flags & NHF_HOST) 729 mtu = nh->nh_mtu; 730 ia = (struct in6_ifaddr *)(nh->nh_ifa); 731 counter_u64_add(nh->nh_pksent, 1); 732 } 733 } else { 734 struct nhop6_extended nh6; 735 struct in6_addr kdst; 736 uint32_t scopeid; 737 738 if (fwd_tag == NULL) { 739 bzero(&dst_sa, sizeof(dst_sa)); 740 dst_sa.sin6_family = AF_INET6; 741 dst_sa.sin6_len = sizeof(dst_sa); 742 dst_sa.sin6_addr = ip6->ip6_dst; 743 } 744 745 if (IN6_IS_ADDR_MULTICAST(&dst_sa.sin6_addr) && 746 im6o != NULL && 747 (ifp = im6o->im6o_multicast_ifp) != NULL) { 748 /* We do not need a route lookup. */ 749 *dst = dst_sa; /* XXX */ 750 goto nonh6lookup; 751 } 752 753 in6_splitscope(&dst_sa.sin6_addr, &kdst, &scopeid); 754 755 if (IN6_IS_ADDR_MC_LINKLOCAL(&dst_sa.sin6_addr) || 756 IN6_IS_ADDR_MC_NODELOCAL(&dst_sa.sin6_addr)) { 757 if (scopeid > 0) { 758 ifp = in6_getlinkifnet(scopeid); 759 *dst = dst_sa; /* XXX */ 760 goto nonh6lookup; 761 } 762 } 763 764 error = fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, 765 &nh6); 766 if (error != 0) { 767 IP6STAT_INC(ip6s_noroute); 768 /* No ifp in6_ifstat_inc(ifp, ifs6_out_discard); */ 769 error = EHOSTUNREACH;; 770 goto bad; 771 } 772 773 ifp = nh6.nh_ifp; 774 mtu = nh6.nh_mtu; 775 dst->sin6_addr = nh6.nh_addr; 776 ia = nh6.nh_ia; 777 fib6_free_nh_ext(fibnum, &nh6); 778 nonh6lookup: 779 ; 780 } 781 782 /* Then nh (for unicast) and ifp must be non-NULL valid values. */ 783 if ((flags & IPV6_FORWARDING) == 0) { 784 /* XXX: the FORWARDING flag can be set for mrouting. */ 785 in6_ifstat_inc(ifp, ifs6_out_request); 786 } 787 788 /* Setup data structures for scope ID checks. */ 789 src0 = ip6->ip6_src; 790 bzero(&src_sa, sizeof(src_sa)); 791 src_sa.sin6_family = AF_INET6; 792 src_sa.sin6_len = sizeof(src_sa); 793 src_sa.sin6_addr = ip6->ip6_src; 794 795 dst0 = ip6->ip6_dst; 796 /* Re-initialize to be sure. */ 797 bzero(&dst_sa, sizeof(dst_sa)); 798 dst_sa.sin6_family = AF_INET6; 799 dst_sa.sin6_len = sizeof(dst_sa); 800 dst_sa.sin6_addr = ip6->ip6_dst; 801 802 /* Check for valid scope ID. */ 803 if (in6_setscope(&src0, ifp, &zone) == 0 && 804 sa6_recoverscope(&src_sa) == 0 && zone == src_sa.sin6_scope_id && 805 in6_setscope(&dst0, ifp, &zone) == 0 && 806 sa6_recoverscope(&dst_sa) == 0 && zone == dst_sa.sin6_scope_id) { 807 /* 808 * The outgoing interface is in the zone of the source 809 * and destination addresses. 810 * 811 * Because the loopback interface cannot receive 812 * packets with a different scope ID than its own, 813 * there is a trick to pretend the outgoing packet 814 * was received by the real network interface, by 815 * setting "origifp" different from "ifp". This is 816 * only allowed when "ifp" is a loopback network 817 * interface. Refer to code in nd6_output_ifp() for 818 * more details. 819 */ 820 origifp = ifp; 821 822 /* 823 * We should use ia_ifp to support the case of sending 824 * packets to an address of our own. 825 */ 826 if (ia != NULL && ia->ia_ifp) 827 ifp = ia->ia_ifp; 828 829 } else if ((ifp->if_flags & IFF_LOOPBACK) == 0 || 830 sa6_recoverscope(&src_sa) != 0 || 831 sa6_recoverscope(&dst_sa) != 0 || 832 dst_sa.sin6_scope_id == 0 || 833 (src_sa.sin6_scope_id != 0 && 834 src_sa.sin6_scope_id != dst_sa.sin6_scope_id) || 835 (origifp = ifnet_byindex(dst_sa.sin6_scope_id)) == NULL) { 836 /* 837 * If the destination network interface is not a 838 * loopback interface, or the destination network 839 * address has no scope ID, or the source address has 840 * a scope ID set which is different from the 841 * destination address one, or there is no network 842 * interface representing this scope ID, the address 843 * pair is considered invalid. 844 */ 845 IP6STAT_INC(ip6s_badscope); 846 in6_ifstat_inc(ifp, ifs6_out_discard); 847 if (error == 0) 848 error = EHOSTUNREACH; /* XXX */ 849 goto bad; 850 } 851 /* All scope ID checks are successful. */ 852 853 if (nh && !IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 854 if (opt && opt->ip6po_nextroute.ro_nh) { 855 /* 856 * The nexthop is explicitly specified by the 857 * application. We assume the next hop is an IPv6 858 * address. 859 */ 860 dst = (struct sockaddr_in6 *)opt->ip6po_nexthop; 861 } 862 else if ((nh->nh_flags & NHF_GATEWAY)) 863 dst = &nh->gw6_sa; 864 } 865 866 if (!IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) { 867 m->m_flags &= ~(M_BCAST | M_MCAST); /* Just in case. */ 868 } else { 869 m->m_flags = (m->m_flags & ~M_BCAST) | M_MCAST; 870 in6_ifstat_inc(ifp, ifs6_out_mcast); 871 872 /* Confirm that the outgoing interface supports multicast. */ 873 if (!(ifp->if_flags & IFF_MULTICAST)) { 874 IP6STAT_INC(ip6s_noroute); 875 in6_ifstat_inc(ifp, ifs6_out_discard); 876 error = ENETUNREACH; 877 goto bad; 878 } 879 if ((im6o == NULL && in6_mcast_loop) || 880 (im6o && im6o->im6o_multicast_loop)) { 881 /* 882 * Loop back multicast datagram if not expressly 883 * forbidden to do so, even if we have not joined 884 * the address; protocols will filter it later, 885 * thus deferring a hash lookup and lock acquisition 886 * at the expense of an m_copym(). 887 */ 888 ip6_mloopback(ifp, m); 889 } else { 890 /* 891 * If we are acting as a multicast router, perform 892 * multicast forwarding as if the packet had just 893 * arrived on the interface to which we are about 894 * to send. The multicast forwarding function 895 * recursively calls this function, using the 896 * IPV6_FORWARDING flag to prevent infinite recursion. 897 * 898 * Multicasts that are looped back by ip6_mloopback(), 899 * above, will be forwarded by the ip6_input() routine, 900 * if necessary. 901 */ 902 if (V_ip6_mrouter && (flags & IPV6_FORWARDING) == 0) { 903 /* 904 * XXX: ip6_mforward expects that rcvif is NULL 905 * when it is called from the originating path. 906 * However, it may not always be the case. 907 */ 908 m->m_pkthdr.rcvif = NULL; 909 if (ip6_mforward(ip6, ifp, m) != 0) { 910 m_freem(m); 911 goto done; 912 } 913 } 914 } 915 /* 916 * Multicasts with a hoplimit of zero may be looped back, 917 * above, but must not be transmitted on a network. 918 * Also, multicasts addressed to the loopback interface 919 * are not sent -- the above call to ip6_mloopback() will 920 * loop back a copy if this host actually belongs to the 921 * destination group on the loopback interface. 922 */ 923 if (ip6->ip6_hlim == 0 || (ifp->if_flags & IFF_LOOPBACK) || 924 IN6_IS_ADDR_MC_INTFACELOCAL(&ip6->ip6_dst)) { 925 m_freem(m); 926 goto done; 927 } 928 } 929 930 /* 931 * Fill the outgoing inteface to tell the upper layer 932 * to increment per-interface statistics. 933 */ 934 if (ifpp) 935 *ifpp = ifp; 936 937 /* Determine path MTU. */ 938 if ((error = ip6_getpmtu(ro_pmtu, ro != ro_pmtu, ifp, &ip6->ip6_dst, 939 &mtu, &alwaysfrag, fibnum, *nexthdrp)) != 0) 940 goto bad; 941 KASSERT(mtu > 0, ("%s:%d: mtu %ld, ro_pmtu %p ro %p ifp %p " 942 "alwaysfrag %d fibnum %u\n", __func__, __LINE__, mtu, ro_pmtu, ro, 943 ifp, alwaysfrag, fibnum)); 944 945 /* 946 * The caller of this function may specify to use the minimum MTU 947 * in some cases. 948 * An advanced API option (IPV6_USE_MIN_MTU) can also override MTU 949 * setting. The logic is a bit complicated; by default, unicast 950 * packets will follow path MTU while multicast packets will be sent at 951 * the minimum MTU. If IP6PO_MINMTU_ALL is specified, all packets 952 * including unicast ones will be sent at the minimum MTU. Multicast 953 * packets will always be sent at the minimum MTU unless 954 * IP6PO_MINMTU_DISABLE is explicitly specified. 955 * See RFC 3542 for more details. 956 */ 957 if (mtu > IPV6_MMTU) { 958 if ((flags & IPV6_MINMTU)) 959 mtu = IPV6_MMTU; 960 else if (opt && opt->ip6po_minmtu == IP6PO_MINMTU_ALL) 961 mtu = IPV6_MMTU; 962 else if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst) && 963 (opt == NULL || 964 opt->ip6po_minmtu != IP6PO_MINMTU_DISABLE)) { 965 mtu = IPV6_MMTU; 966 } 967 } 968 969 /* 970 * Clear embedded scope identifiers if necessary. 971 * in6_clearscope() will touch the addresses only when necessary. 972 */ 973 in6_clearscope(&ip6->ip6_src); 974 in6_clearscope(&ip6->ip6_dst); 975 976 /* 977 * If the outgoing packet contains a hop-by-hop options header, 978 * it must be examined and processed even by the source node. 979 * (RFC 2460, section 4.) 980 */ 981 if (exthdrs.ip6e_hbh) { 982 struct ip6_hbh *hbh = mtod(exthdrs.ip6e_hbh, struct ip6_hbh *); 983 u_int32_t dummy; /* XXX unused */ 984 u_int32_t plen = 0; /* XXX: ip6_process will check the value */ 985 986 #ifdef DIAGNOSTIC 987 if ((hbh->ip6h_len + 1) << 3 > exthdrs.ip6e_hbh->m_len) 988 panic("ip6e_hbh is not contiguous"); 989 #endif 990 /* 991 * XXX: if we have to send an ICMPv6 error to the sender, 992 * we need the M_LOOP flag since icmp6_error() expects 993 * the IPv6 and the hop-by-hop options header are 994 * contiguous unless the flag is set. 995 */ 996 m->m_flags |= M_LOOP; 997 m->m_pkthdr.rcvif = ifp; 998 if (ip6_process_hopopts(m, (u_int8_t *)(hbh + 1), 999 ((hbh->ip6h_len + 1) << 3) - sizeof(struct ip6_hbh), 1000 &dummy, &plen) < 0) { 1001 /* m was already freed at this point. */ 1002 error = EINVAL;/* better error? */ 1003 goto done; 1004 } 1005 m->m_flags &= ~M_LOOP; /* XXX */ 1006 m->m_pkthdr.rcvif = NULL; 1007 } 1008 1009 /* Jump over all PFIL processing if hooks are not active. */ 1010 if (!PFIL_HOOKED_OUT(V_inet6_pfil_head)) 1011 goto passout; 1012 1013 odst = ip6->ip6_dst; 1014 /* Run through list of hooks for output packets. */ 1015 switch (pfil_run_hooks(V_inet6_pfil_head, &m, ifp, PFIL_OUT, inp)) { 1016 case PFIL_PASS: 1017 ip6 = mtod(m, struct ip6_hdr *); 1018 break; 1019 case PFIL_DROPPED: 1020 error = EACCES; 1021 /* FALLTHROUGH */ 1022 case PFIL_CONSUMED: 1023 goto done; 1024 } 1025 1026 needfiblookup = 0; 1027 /* See if destination IP address was changed by packet filter. */ 1028 if (!IN6_ARE_ADDR_EQUAL(&odst, &ip6->ip6_dst)) { 1029 m->m_flags |= M_SKIP_FIREWALL; 1030 /* If destination is now ourself drop to ip6_input(). */ 1031 if (in6_localip(&ip6->ip6_dst)) { 1032 m->m_flags |= M_FASTFWD_OURS; 1033 if (m->m_pkthdr.rcvif == NULL) 1034 m->m_pkthdr.rcvif = V_loif; 1035 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1036 m->m_pkthdr.csum_flags |= 1037 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1038 m->m_pkthdr.csum_data = 0xffff; 1039 } 1040 #ifdef SCTP 1041 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1042 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1043 #endif 1044 error = netisr_queue(NETISR_IPV6, m); 1045 goto done; 1046 } else { 1047 if (ro != NULL) 1048 RO_INVALIDATE_CACHE(ro); 1049 needfiblookup = 1; /* Redo the routing table lookup. */ 1050 } 1051 } 1052 /* See if fib was changed by packet filter. */ 1053 if (fibnum != M_GETFIB(m)) { 1054 m->m_flags |= M_SKIP_FIREWALL; 1055 fibnum = M_GETFIB(m); 1056 if (ro != NULL) 1057 RO_INVALIDATE_CACHE(ro); 1058 needfiblookup = 1; 1059 } 1060 if (needfiblookup) 1061 goto again; 1062 1063 /* See if local, if yes, send it to netisr. */ 1064 if (m->m_flags & M_FASTFWD_OURS) { 1065 if (m->m_pkthdr.rcvif == NULL) 1066 m->m_pkthdr.rcvif = V_loif; 1067 if (m->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 1068 m->m_pkthdr.csum_flags |= 1069 CSUM_DATA_VALID_IPV6 | CSUM_PSEUDO_HDR; 1070 m->m_pkthdr.csum_data = 0xffff; 1071 } 1072 #ifdef SCTP 1073 if (m->m_pkthdr.csum_flags & CSUM_SCTP_IPV6) 1074 m->m_pkthdr.csum_flags |= CSUM_SCTP_VALID; 1075 #endif 1076 error = netisr_queue(NETISR_IPV6, m); 1077 goto done; 1078 } 1079 /* Or forward to some other address? */ 1080 if ((m->m_flags & M_IP6_NEXTHOP) && 1081 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 1082 if (ro != NULL) 1083 dst = (struct sockaddr_in6 *)&ro->ro_dst; 1084 else 1085 dst = &sin6; 1086 bcopy((fwd_tag+1), &dst_sa, sizeof(struct sockaddr_in6)); 1087 m->m_flags |= M_SKIP_FIREWALL; 1088 m->m_flags &= ~M_IP6_NEXTHOP; 1089 m_tag_delete(m, fwd_tag); 1090 goto again; 1091 } 1092 1093 passout: 1094 /* 1095 * Send the packet to the outgoing interface. 1096 * If necessary, do IPv6 fragmentation before sending. 1097 * 1098 * The logic here is rather complex: 1099 * 1: normal case (dontfrag == 0, alwaysfrag == 0) 1100 * 1-a: send as is if tlen <= path mtu 1101 * 1-b: fragment if tlen > path mtu 1102 * 1103 * 2: if user asks us not to fragment (dontfrag == 1) 1104 * 2-a: send as is if tlen <= interface mtu 1105 * 2-b: error if tlen > interface mtu 1106 * 1107 * 3: if we always need to attach fragment header (alwaysfrag == 1) 1108 * always fragment 1109 * 1110 * 4: if dontfrag == 1 && alwaysfrag == 1 1111 * error, as we cannot handle this conflicting request. 1112 */ 1113 sw_csum = m->m_pkthdr.csum_flags; 1114 if (!hdrsplit) { 1115 tso = ((sw_csum & ifp->if_hwassist & CSUM_TSO) != 0) ? 1 : 0; 1116 sw_csum &= ~ifp->if_hwassist; 1117 } else 1118 tso = 0; 1119 /* 1120 * If we added extension headers, we will not do TSO and calculate the 1121 * checksums ourselves for now. 1122 * XXX-BZ Need a framework to know when the NIC can handle it, even 1123 * with ext. hdrs. 1124 */ 1125 error = ip6_output_delayed_csum(m, ifp, sw_csum, plen, optlen, false); 1126 if (error != 0) 1127 goto bad; 1128 /* XXX-BZ m->m_pkthdr.csum_flags &= ~ifp->if_hwassist; */ 1129 tlen = m->m_pkthdr.len; 1130 1131 if ((opt && (opt->ip6po_flags & IP6PO_DONTFRAG)) || tso) 1132 dontfrag = 1; 1133 else 1134 dontfrag = 0; 1135 if (dontfrag && alwaysfrag) { /* Case 4. */ 1136 /* Conflicting request - can't transmit. */ 1137 error = EMSGSIZE; 1138 goto bad; 1139 } 1140 if (dontfrag && tlen > IN6_LINKMTU(ifp) && !tso) { /* Case 2-b. */ 1141 /* 1142 * Even if the DONTFRAG option is specified, we cannot send the 1143 * packet when the data length is larger than the MTU of the 1144 * outgoing interface. 1145 * Notify the error by sending IPV6_PATHMTU ancillary data if 1146 * application wanted to know the MTU value. Also return an 1147 * error code (this is not described in the API spec). 1148 */ 1149 if (inp != NULL) 1150 ip6_notify_pmtu(inp, &dst_sa, (u_int32_t)mtu); 1151 error = EMSGSIZE; 1152 goto bad; 1153 } 1154 1155 /* Transmit packet without fragmentation. */ 1156 if (dontfrag || (!alwaysfrag && tlen <= mtu)) { /* Cases 1-a and 2-a. */ 1157 struct in6_ifaddr *ia6; 1158 1159 ip6 = mtod(m, struct ip6_hdr *); 1160 ia6 = in6_ifawithifp(ifp, &ip6->ip6_src); 1161 if (ia6) { 1162 /* Record statistics for this interface address. */ 1163 counter_u64_add(ia6->ia_ifa.ifa_opackets, 1); 1164 counter_u64_add(ia6->ia_ifa.ifa_obytes, 1165 m->m_pkthdr.len); 1166 ifa_free(&ia6->ia_ifa); 1167 } 1168 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1169 goto done; 1170 } 1171 1172 /* Try to fragment the packet. Cases 1-b and 3. */ 1173 if (mtu < IPV6_MMTU) { 1174 /* Path MTU cannot be less than IPV6_MMTU. */ 1175 error = EMSGSIZE; 1176 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1177 goto bad; 1178 } else if (ip6->ip6_plen == 0) { 1179 /* Jumbo payload cannot be fragmented. */ 1180 error = EMSGSIZE; 1181 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1182 goto bad; 1183 } else { 1184 u_char nextproto; 1185 1186 /* 1187 * Too large for the destination or interface; 1188 * fragment if possible. 1189 * Must be able to put at least 8 bytes per fragment. 1190 */ 1191 if (mtu > IPV6_MAXPACKET) 1192 mtu = IPV6_MAXPACKET; 1193 1194 len = (mtu - unfragpartlen - sizeof(struct ip6_frag)) & ~7; 1195 if (len < 8) { 1196 error = EMSGSIZE; 1197 in6_ifstat_inc(ifp, ifs6_out_fragfail); 1198 goto bad; 1199 } 1200 1201 /* 1202 * If the interface will not calculate checksums on 1203 * fragmented packets, then do it here. 1204 * XXX-BZ handle the hw offloading case. Need flags. 1205 */ 1206 error = ip6_output_delayed_csum(m, ifp, m->m_pkthdr.csum_flags, 1207 plen, optlen, true); 1208 if (error != 0) 1209 goto bad; 1210 1211 /* 1212 * Change the next header field of the last header in the 1213 * unfragmentable part. 1214 */ 1215 if (exthdrs.ip6e_rthdr) { 1216 nextproto = *mtod(exthdrs.ip6e_rthdr, u_char *); 1217 *mtod(exthdrs.ip6e_rthdr, u_char *) = IPPROTO_FRAGMENT; 1218 } else if (exthdrs.ip6e_dest1) { 1219 nextproto = *mtod(exthdrs.ip6e_dest1, u_char *); 1220 *mtod(exthdrs.ip6e_dest1, u_char *) = IPPROTO_FRAGMENT; 1221 } else if (exthdrs.ip6e_hbh) { 1222 nextproto = *mtod(exthdrs.ip6e_hbh, u_char *); 1223 *mtod(exthdrs.ip6e_hbh, u_char *) = IPPROTO_FRAGMENT; 1224 } else { 1225 ip6 = mtod(m, struct ip6_hdr *); 1226 nextproto = ip6->ip6_nxt; 1227 ip6->ip6_nxt = IPPROTO_FRAGMENT; 1228 } 1229 1230 /* 1231 * Loop through length of segment after first fragment, 1232 * make new header and copy data of each part and link onto 1233 * chain. 1234 */ 1235 m0 = m; 1236 id = htonl(ip6_randomid()); 1237 error = ip6_fragment(ifp, m, unfragpartlen, nextproto,len, id); 1238 if (error != 0) 1239 goto sendorfree; 1240 1241 in6_ifstat_inc(ifp, ifs6_out_fragok); 1242 } 1243 1244 /* Remove leading garbage. */ 1245 sendorfree: 1246 m = m0->m_nextpkt; 1247 m0->m_nextpkt = 0; 1248 m_freem(m0); 1249 for (; m; m = m0) { 1250 m0 = m->m_nextpkt; 1251 m->m_nextpkt = 0; 1252 if (error == 0) { 1253 /* Record statistics for this interface address. */ 1254 if (ia) { 1255 counter_u64_add(ia->ia_ifa.ifa_opackets, 1); 1256 counter_u64_add(ia->ia_ifa.ifa_obytes, 1257 m->m_pkthdr.len); 1258 } 1259 error = ip6_output_send(inp, ifp, origifp, m, dst, ro); 1260 } else 1261 m_freem(m); 1262 } 1263 1264 if (error == 0) 1265 IP6STAT_INC(ip6s_fragmented); 1266 1267 done: 1268 return (error); 1269 1270 freehdrs: 1271 m_freem(exthdrs.ip6e_hbh); /* m_freem() checks if mbuf is NULL. */ 1272 m_freem(exthdrs.ip6e_dest1); 1273 m_freem(exthdrs.ip6e_rthdr); 1274 m_freem(exthdrs.ip6e_dest2); 1275 /* FALLTHROUGH */ 1276 bad: 1277 if (m) 1278 m_freem(m); 1279 goto done; 1280 } 1281 1282 static int 1283 ip6_copyexthdr(struct mbuf **mp, caddr_t hdr, int hlen) 1284 { 1285 struct mbuf *m; 1286 1287 if (hlen > MCLBYTES) 1288 return (ENOBUFS); /* XXX */ 1289 1290 if (hlen > MLEN) 1291 m = m_getcl(M_NOWAIT, MT_DATA, 0); 1292 else 1293 m = m_get(M_NOWAIT, MT_DATA); 1294 if (m == NULL) 1295 return (ENOBUFS); 1296 m->m_len = hlen; 1297 if (hdr) 1298 bcopy(hdr, mtod(m, caddr_t), hlen); 1299 1300 *mp = m; 1301 return (0); 1302 } 1303 1304 /* 1305 * Insert jumbo payload option. 1306 */ 1307 static int 1308 ip6_insert_jumboopt(struct ip6_exthdrs *exthdrs, u_int32_t plen) 1309 { 1310 struct mbuf *mopt; 1311 u_char *optbuf; 1312 u_int32_t v; 1313 1314 #define JUMBOOPTLEN 8 /* length of jumbo payload option and padding */ 1315 1316 /* 1317 * If there is no hop-by-hop options header, allocate new one. 1318 * If there is one but it doesn't have enough space to store the 1319 * jumbo payload option, allocate a cluster to store the whole options. 1320 * Otherwise, use it to store the options. 1321 */ 1322 if (exthdrs->ip6e_hbh == NULL) { 1323 mopt = m_get(M_NOWAIT, MT_DATA); 1324 if (mopt == NULL) 1325 return (ENOBUFS); 1326 mopt->m_len = JUMBOOPTLEN; 1327 optbuf = mtod(mopt, u_char *); 1328 optbuf[1] = 0; /* = ((JUMBOOPTLEN) >> 3) - 1 */ 1329 exthdrs->ip6e_hbh = mopt; 1330 } else { 1331 struct ip6_hbh *hbh; 1332 1333 mopt = exthdrs->ip6e_hbh; 1334 if (M_TRAILINGSPACE(mopt) < JUMBOOPTLEN) { 1335 /* 1336 * XXX assumption: 1337 * - exthdrs->ip6e_hbh is not referenced from places 1338 * other than exthdrs. 1339 * - exthdrs->ip6e_hbh is not an mbuf chain. 1340 */ 1341 int oldoptlen = mopt->m_len; 1342 struct mbuf *n; 1343 1344 /* 1345 * XXX: give up if the whole (new) hbh header does 1346 * not fit even in an mbuf cluster. 1347 */ 1348 if (oldoptlen + JUMBOOPTLEN > MCLBYTES) 1349 return (ENOBUFS); 1350 1351 /* 1352 * As a consequence, we must always prepare a cluster 1353 * at this point. 1354 */ 1355 n = m_getcl(M_NOWAIT, MT_DATA, 0); 1356 if (n == NULL) 1357 return (ENOBUFS); 1358 n->m_len = oldoptlen + JUMBOOPTLEN; 1359 bcopy(mtod(mopt, caddr_t), mtod(n, caddr_t), 1360 oldoptlen); 1361 optbuf = mtod(n, caddr_t) + oldoptlen; 1362 m_freem(mopt); 1363 mopt = exthdrs->ip6e_hbh = n; 1364 } else { 1365 optbuf = mtod(mopt, u_char *) + mopt->m_len; 1366 mopt->m_len += JUMBOOPTLEN; 1367 } 1368 optbuf[0] = IP6OPT_PADN; 1369 optbuf[1] = 1; 1370 1371 /* 1372 * Adjust the header length according to the pad and 1373 * the jumbo payload option. 1374 */ 1375 hbh = mtod(mopt, struct ip6_hbh *); 1376 hbh->ip6h_len += (JUMBOOPTLEN >> 3); 1377 } 1378 1379 /* fill in the option. */ 1380 optbuf[2] = IP6OPT_JUMBO; 1381 optbuf[3] = 4; 1382 v = (u_int32_t)htonl(plen + JUMBOOPTLEN); 1383 bcopy(&v, &optbuf[4], sizeof(u_int32_t)); 1384 1385 /* finally, adjust the packet header length */ 1386 exthdrs->ip6e_ip6->m_pkthdr.len += JUMBOOPTLEN; 1387 1388 return (0); 1389 #undef JUMBOOPTLEN 1390 } 1391 1392 /* 1393 * Insert fragment header and copy unfragmentable header portions. 1394 */ 1395 static int 1396 ip6_insertfraghdr(struct mbuf *m0, struct mbuf *m, int hlen, 1397 struct ip6_frag **frghdrp) 1398 { 1399 struct mbuf *n, *mlast; 1400 1401 if (hlen > sizeof(struct ip6_hdr)) { 1402 n = m_copym(m0, sizeof(struct ip6_hdr), 1403 hlen - sizeof(struct ip6_hdr), M_NOWAIT); 1404 if (n == NULL) 1405 return (ENOBUFS); 1406 m->m_next = n; 1407 } else 1408 n = m; 1409 1410 /* Search for the last mbuf of unfragmentable part. */ 1411 for (mlast = n; mlast->m_next; mlast = mlast->m_next) 1412 ; 1413 1414 if (M_WRITABLE(mlast) && 1415 M_TRAILINGSPACE(mlast) >= sizeof(struct ip6_frag)) { 1416 /* use the trailing space of the last mbuf for the fragment hdr */ 1417 *frghdrp = (struct ip6_frag *)(mtod(mlast, caddr_t) + 1418 mlast->m_len); 1419 mlast->m_len += sizeof(struct ip6_frag); 1420 m->m_pkthdr.len += sizeof(struct ip6_frag); 1421 } else { 1422 /* allocate a new mbuf for the fragment header */ 1423 struct mbuf *mfrg; 1424 1425 mfrg = m_get(M_NOWAIT, MT_DATA); 1426 if (mfrg == NULL) 1427 return (ENOBUFS); 1428 mfrg->m_len = sizeof(struct ip6_frag); 1429 *frghdrp = mtod(mfrg, struct ip6_frag *); 1430 mlast->m_next = mfrg; 1431 } 1432 1433 return (0); 1434 } 1435 1436 /* 1437 * Calculates IPv6 path mtu for destination @dst. 1438 * Resulting MTU is stored in @mtup. 1439 * 1440 * Returns 0 on success. 1441 */ 1442 static int 1443 ip6_getpmtu_ctl(u_int fibnum, const struct in6_addr *dst, u_long *mtup) 1444 { 1445 struct nhop6_extended nh6; 1446 struct in6_addr kdst; 1447 uint32_t scopeid; 1448 struct ifnet *ifp; 1449 u_long mtu; 1450 int error; 1451 1452 in6_splitscope(dst, &kdst, &scopeid); 1453 if (fib6_lookup_nh_ext(fibnum, &kdst, scopeid, NHR_REF, 0, &nh6) != 0) 1454 return (EHOSTUNREACH); 1455 1456 ifp = nh6.nh_ifp; 1457 mtu = nh6.nh_mtu; 1458 1459 error = ip6_calcmtu(ifp, dst, mtu, mtup, NULL, 0); 1460 fib6_free_nh_ext(fibnum, &nh6); 1461 1462 return (error); 1463 } 1464 1465 /* 1466 * Calculates IPv6 path MTU for @dst based on transmit @ifp, 1467 * and cached data in @ro_pmtu. 1468 * MTU from (successful) route lookup is saved (along with dst) 1469 * inside @ro_pmtu to avoid subsequent route lookups after packet 1470 * filter processing. 1471 * 1472 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1473 * Returns 0 on success. 1474 */ 1475 static int 1476 ip6_getpmtu(struct route_in6 *ro_pmtu, int do_lookup, 1477 struct ifnet *ifp, const struct in6_addr *dst, u_long *mtup, 1478 int *alwaysfragp, u_int fibnum, u_int proto) 1479 { 1480 struct nhop6_basic nh6; 1481 struct in6_addr kdst; 1482 uint32_t scopeid; 1483 struct sockaddr_in6 *sa6_dst, sin6; 1484 u_long mtu; 1485 1486 mtu = 0; 1487 if (ro_pmtu == NULL || do_lookup) { 1488 1489 /* 1490 * Here ro_pmtu has final destination address, while 1491 * ro might represent immediate destination. 1492 * Use ro_pmtu destination since mtu might differ. 1493 */ 1494 if (ro_pmtu != NULL) { 1495 sa6_dst = (struct sockaddr_in6 *)&ro_pmtu->ro_dst; 1496 if (!IN6_ARE_ADDR_EQUAL(&sa6_dst->sin6_addr, dst)) 1497 ro_pmtu->ro_mtu = 0; 1498 } else 1499 sa6_dst = &sin6; 1500 1501 if (ro_pmtu == NULL || ro_pmtu->ro_mtu == 0) { 1502 bzero(sa6_dst, sizeof(*sa6_dst)); 1503 sa6_dst->sin6_family = AF_INET6; 1504 sa6_dst->sin6_len = sizeof(struct sockaddr_in6); 1505 sa6_dst->sin6_addr = *dst; 1506 1507 in6_splitscope(dst, &kdst, &scopeid); 1508 if (fib6_lookup_nh_basic(fibnum, &kdst, scopeid, 0, 0, 1509 &nh6) == 0) { 1510 mtu = nh6.nh_mtu; 1511 if (ro_pmtu != NULL) 1512 ro_pmtu->ro_mtu = mtu; 1513 } 1514 } else 1515 mtu = ro_pmtu->ro_mtu; 1516 } 1517 1518 if (ro_pmtu != NULL && ro_pmtu->ro_nh != NULL) 1519 mtu = ro_pmtu->ro_nh->nh_mtu; 1520 1521 return (ip6_calcmtu(ifp, dst, mtu, mtup, alwaysfragp, proto)); 1522 } 1523 1524 /* 1525 * Calculate MTU based on transmit @ifp, route mtu @rt_mtu and 1526 * hostcache data for @dst. 1527 * Stores mtu and always-frag value into @mtup and @alwaysfragp. 1528 * 1529 * Returns 0 on success. 1530 */ 1531 static int 1532 ip6_calcmtu(struct ifnet *ifp, const struct in6_addr *dst, u_long rt_mtu, 1533 u_long *mtup, int *alwaysfragp, u_int proto) 1534 { 1535 u_long mtu = 0; 1536 int alwaysfrag = 0; 1537 int error = 0; 1538 1539 if (rt_mtu > 0) { 1540 u_int32_t ifmtu; 1541 struct in_conninfo inc; 1542 1543 bzero(&inc, sizeof(inc)); 1544 inc.inc_flags |= INC_ISIPV6; 1545 inc.inc6_faddr = *dst; 1546 1547 ifmtu = IN6_LINKMTU(ifp); 1548 1549 /* TCP is known to react to pmtu changes so skip hc */ 1550 if (proto != IPPROTO_TCP) 1551 mtu = tcp_hc_getmtu(&inc); 1552 1553 if (mtu) 1554 mtu = min(mtu, rt_mtu); 1555 else 1556 mtu = rt_mtu; 1557 if (mtu == 0) 1558 mtu = ifmtu; 1559 else if (mtu < IPV6_MMTU) { 1560 /* 1561 * RFC2460 section 5, last paragraph: 1562 * if we record ICMPv6 too big message with 1563 * mtu < IPV6_MMTU, transmit packets sized IPV6_MMTU 1564 * or smaller, with framgent header attached. 1565 * (fragment header is needed regardless from the 1566 * packet size, for translators to identify packets) 1567 */ 1568 alwaysfrag = 1; 1569 mtu = IPV6_MMTU; 1570 } 1571 } else if (ifp) { 1572 mtu = IN6_LINKMTU(ifp); 1573 } else 1574 error = EHOSTUNREACH; /* XXX */ 1575 1576 *mtup = mtu; 1577 if (alwaysfragp) 1578 *alwaysfragp = alwaysfrag; 1579 return (error); 1580 } 1581 1582 /* 1583 * IP6 socket option processing. 1584 */ 1585 int 1586 ip6_ctloutput(struct socket *so, struct sockopt *sopt) 1587 { 1588 int optdatalen, uproto; 1589 void *optdata; 1590 struct inpcb *inp = sotoinpcb(so); 1591 int error, optval; 1592 int level, op, optname; 1593 int optlen; 1594 struct thread *td; 1595 #ifdef RSS 1596 uint32_t rss_bucket; 1597 int retval; 1598 #endif 1599 1600 /* 1601 * Don't use more than a quarter of mbuf clusters. N.B.: 1602 * nmbclusters is an int, but nmbclusters * MCLBYTES may overflow 1603 * on LP64 architectures, so cast to u_long to avoid undefined 1604 * behavior. ILP32 architectures cannot have nmbclusters 1605 * large enough to overflow for other reasons. 1606 */ 1607 #define IPV6_PKTOPTIONS_MBUF_LIMIT ((u_long)nmbclusters * MCLBYTES / 4) 1608 1609 level = sopt->sopt_level; 1610 op = sopt->sopt_dir; 1611 optname = sopt->sopt_name; 1612 optlen = sopt->sopt_valsize; 1613 td = sopt->sopt_td; 1614 error = 0; 1615 optval = 0; 1616 uproto = (int)so->so_proto->pr_protocol; 1617 1618 if (level != IPPROTO_IPV6) { 1619 error = EINVAL; 1620 1621 if (sopt->sopt_level == SOL_SOCKET && 1622 sopt->sopt_dir == SOPT_SET) { 1623 switch (sopt->sopt_name) { 1624 case SO_REUSEADDR: 1625 INP_WLOCK(inp); 1626 if ((so->so_options & SO_REUSEADDR) != 0) 1627 inp->inp_flags2 |= INP_REUSEADDR; 1628 else 1629 inp->inp_flags2 &= ~INP_REUSEADDR; 1630 INP_WUNLOCK(inp); 1631 error = 0; 1632 break; 1633 case SO_REUSEPORT: 1634 INP_WLOCK(inp); 1635 if ((so->so_options & SO_REUSEPORT) != 0) 1636 inp->inp_flags2 |= INP_REUSEPORT; 1637 else 1638 inp->inp_flags2 &= ~INP_REUSEPORT; 1639 INP_WUNLOCK(inp); 1640 error = 0; 1641 break; 1642 case SO_REUSEPORT_LB: 1643 INP_WLOCK(inp); 1644 if ((so->so_options & SO_REUSEPORT_LB) != 0) 1645 inp->inp_flags2 |= INP_REUSEPORT_LB; 1646 else 1647 inp->inp_flags2 &= ~INP_REUSEPORT_LB; 1648 INP_WUNLOCK(inp); 1649 error = 0; 1650 break; 1651 case SO_SETFIB: 1652 INP_WLOCK(inp); 1653 inp->inp_inc.inc_fibnum = so->so_fibnum; 1654 INP_WUNLOCK(inp); 1655 error = 0; 1656 break; 1657 case SO_MAX_PACING_RATE: 1658 #ifdef RATELIMIT 1659 INP_WLOCK(inp); 1660 inp->inp_flags2 |= INP_RATE_LIMIT_CHANGED; 1661 INP_WUNLOCK(inp); 1662 error = 0; 1663 #else 1664 error = EOPNOTSUPP; 1665 #endif 1666 break; 1667 default: 1668 break; 1669 } 1670 } 1671 } else { /* level == IPPROTO_IPV6 */ 1672 switch (op) { 1673 1674 case SOPT_SET: 1675 switch (optname) { 1676 case IPV6_2292PKTOPTIONS: 1677 #ifdef IPV6_PKTOPTIONS 1678 case IPV6_PKTOPTIONS: 1679 #endif 1680 { 1681 struct mbuf *m; 1682 1683 if (optlen > IPV6_PKTOPTIONS_MBUF_LIMIT) { 1684 printf("ip6_ctloutput: mbuf limit hit\n"); 1685 error = ENOBUFS; 1686 break; 1687 } 1688 1689 error = soopt_getm(sopt, &m); /* XXX */ 1690 if (error != 0) 1691 break; 1692 error = soopt_mcopyin(sopt, m); /* XXX */ 1693 if (error != 0) 1694 break; 1695 INP_WLOCK(inp); 1696 error = ip6_pcbopts(&inp->in6p_outputopts, m, 1697 so, sopt); 1698 INP_WUNLOCK(inp); 1699 m_freem(m); /* XXX */ 1700 break; 1701 } 1702 1703 /* 1704 * Use of some Hop-by-Hop options or some 1705 * Destination options, might require special 1706 * privilege. That is, normal applications 1707 * (without special privilege) might be forbidden 1708 * from setting certain options in outgoing packets, 1709 * and might never see certain options in received 1710 * packets. [RFC 2292 Section 6] 1711 * KAME specific note: 1712 * KAME prevents non-privileged users from sending or 1713 * receiving ANY hbh/dst options in order to avoid 1714 * overhead of parsing options in the kernel. 1715 */ 1716 case IPV6_RECVHOPOPTS: 1717 case IPV6_RECVDSTOPTS: 1718 case IPV6_RECVRTHDRDSTOPTS: 1719 if (td != NULL) { 1720 error = priv_check(td, 1721 PRIV_NETINET_SETHDROPTS); 1722 if (error) 1723 break; 1724 } 1725 /* FALLTHROUGH */ 1726 case IPV6_UNICAST_HOPS: 1727 case IPV6_HOPLIMIT: 1728 1729 case IPV6_RECVPKTINFO: 1730 case IPV6_RECVHOPLIMIT: 1731 case IPV6_RECVRTHDR: 1732 case IPV6_RECVPATHMTU: 1733 case IPV6_RECVTCLASS: 1734 case IPV6_RECVFLOWID: 1735 #ifdef RSS 1736 case IPV6_RECVRSSBUCKETID: 1737 #endif 1738 case IPV6_V6ONLY: 1739 case IPV6_AUTOFLOWLABEL: 1740 case IPV6_ORIGDSTADDR: 1741 case IPV6_BINDANY: 1742 case IPV6_BINDMULTI: 1743 #ifdef RSS 1744 case IPV6_RSS_LISTEN_BUCKET: 1745 #endif 1746 if (optname == IPV6_BINDANY && td != NULL) { 1747 error = priv_check(td, 1748 PRIV_NETINET_BINDANY); 1749 if (error) 1750 break; 1751 } 1752 1753 if (optlen != sizeof(int)) { 1754 error = EINVAL; 1755 break; 1756 } 1757 error = sooptcopyin(sopt, &optval, 1758 sizeof optval, sizeof optval); 1759 if (error) 1760 break; 1761 switch (optname) { 1762 1763 case IPV6_UNICAST_HOPS: 1764 if (optval < -1 || optval >= 256) 1765 error = EINVAL; 1766 else { 1767 /* -1 = kernel default */ 1768 inp->in6p_hops = optval; 1769 if ((inp->inp_vflag & 1770 INP_IPV4) != 0) 1771 inp->inp_ip_ttl = optval; 1772 } 1773 break; 1774 #define OPTSET(bit) \ 1775 do { \ 1776 INP_WLOCK(inp); \ 1777 if (optval) \ 1778 inp->inp_flags |= (bit); \ 1779 else \ 1780 inp->inp_flags &= ~(bit); \ 1781 INP_WUNLOCK(inp); \ 1782 } while (/*CONSTCOND*/ 0) 1783 #define OPTSET2292(bit) \ 1784 do { \ 1785 INP_WLOCK(inp); \ 1786 inp->inp_flags |= IN6P_RFC2292; \ 1787 if (optval) \ 1788 inp->inp_flags |= (bit); \ 1789 else \ 1790 inp->inp_flags &= ~(bit); \ 1791 INP_WUNLOCK(inp); \ 1792 } while (/*CONSTCOND*/ 0) 1793 #define OPTBIT(bit) (inp->inp_flags & (bit) ? 1 : 0) 1794 1795 #define OPTSET2_N(bit, val) do { \ 1796 if (val) \ 1797 inp->inp_flags2 |= bit; \ 1798 else \ 1799 inp->inp_flags2 &= ~bit; \ 1800 } while (0) 1801 #define OPTSET2(bit, val) do { \ 1802 INP_WLOCK(inp); \ 1803 OPTSET2_N(bit, val); \ 1804 INP_WUNLOCK(inp); \ 1805 } while (0) 1806 #define OPTBIT2(bit) (inp->inp_flags2 & (bit) ? 1 : 0) 1807 #define OPTSET2292_EXCLUSIVE(bit) \ 1808 do { \ 1809 INP_WLOCK(inp); \ 1810 if (OPTBIT(IN6P_RFC2292)) { \ 1811 error = EINVAL; \ 1812 } else { \ 1813 if (optval) \ 1814 inp->inp_flags |= (bit); \ 1815 else \ 1816 inp->inp_flags &= ~(bit); \ 1817 } \ 1818 INP_WUNLOCK(inp); \ 1819 } while (/*CONSTCOND*/ 0) 1820 1821 case IPV6_RECVPKTINFO: 1822 OPTSET2292_EXCLUSIVE(IN6P_PKTINFO); 1823 break; 1824 1825 case IPV6_HOPLIMIT: 1826 { 1827 struct ip6_pktopts **optp; 1828 1829 /* cannot mix with RFC2292 */ 1830 if (OPTBIT(IN6P_RFC2292)) { 1831 error = EINVAL; 1832 break; 1833 } 1834 INP_WLOCK(inp); 1835 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1836 INP_WUNLOCK(inp); 1837 return (ECONNRESET); 1838 } 1839 optp = &inp->in6p_outputopts; 1840 error = ip6_pcbopt(IPV6_HOPLIMIT, 1841 (u_char *)&optval, sizeof(optval), 1842 optp, (td != NULL) ? td->td_ucred : 1843 NULL, uproto); 1844 INP_WUNLOCK(inp); 1845 break; 1846 } 1847 1848 case IPV6_RECVHOPLIMIT: 1849 OPTSET2292_EXCLUSIVE(IN6P_HOPLIMIT); 1850 break; 1851 1852 case IPV6_RECVHOPOPTS: 1853 OPTSET2292_EXCLUSIVE(IN6P_HOPOPTS); 1854 break; 1855 1856 case IPV6_RECVDSTOPTS: 1857 OPTSET2292_EXCLUSIVE(IN6P_DSTOPTS); 1858 break; 1859 1860 case IPV6_RECVRTHDRDSTOPTS: 1861 OPTSET2292_EXCLUSIVE(IN6P_RTHDRDSTOPTS); 1862 break; 1863 1864 case IPV6_RECVRTHDR: 1865 OPTSET2292_EXCLUSIVE(IN6P_RTHDR); 1866 break; 1867 1868 case IPV6_RECVPATHMTU: 1869 /* 1870 * We ignore this option for TCP 1871 * sockets. 1872 * (RFC3542 leaves this case 1873 * unspecified.) 1874 */ 1875 if (uproto != IPPROTO_TCP) 1876 OPTSET(IN6P_MTU); 1877 break; 1878 1879 case IPV6_RECVFLOWID: 1880 OPTSET2(INP_RECVFLOWID, optval); 1881 break; 1882 1883 #ifdef RSS 1884 case IPV6_RECVRSSBUCKETID: 1885 OPTSET2(INP_RECVRSSBUCKETID, optval); 1886 break; 1887 #endif 1888 1889 case IPV6_V6ONLY: 1890 INP_WLOCK(inp); 1891 if (inp->inp_lport || 1892 !IN6_IS_ADDR_UNSPECIFIED(&inp->in6p_laddr)) { 1893 /* 1894 * The socket is already bound. 1895 */ 1896 INP_WUNLOCK(inp); 1897 error = EINVAL; 1898 break; 1899 } 1900 if (optval) { 1901 inp->inp_flags |= IN6P_IPV6_V6ONLY; 1902 inp->inp_vflag &= ~INP_IPV4; 1903 } else { 1904 inp->inp_flags &= ~IN6P_IPV6_V6ONLY; 1905 inp->inp_vflag |= INP_IPV4; 1906 } 1907 INP_WUNLOCK(inp); 1908 break; 1909 case IPV6_RECVTCLASS: 1910 /* cannot mix with RFC2292 XXX */ 1911 OPTSET2292_EXCLUSIVE(IN6P_TCLASS); 1912 break; 1913 case IPV6_AUTOFLOWLABEL: 1914 OPTSET(IN6P_AUTOFLOWLABEL); 1915 break; 1916 1917 case IPV6_ORIGDSTADDR: 1918 OPTSET2(INP_ORIGDSTADDR, optval); 1919 break; 1920 case IPV6_BINDANY: 1921 OPTSET(INP_BINDANY); 1922 break; 1923 1924 case IPV6_BINDMULTI: 1925 OPTSET2(INP_BINDMULTI, optval); 1926 break; 1927 #ifdef RSS 1928 case IPV6_RSS_LISTEN_BUCKET: 1929 if ((optval >= 0) && 1930 (optval < rss_getnumbuckets())) { 1931 INP_WLOCK(inp); 1932 inp->inp_rss_listen_bucket = optval; 1933 OPTSET2_N(INP_RSS_BUCKET_SET, 1); 1934 INP_WUNLOCK(inp); 1935 } else { 1936 error = EINVAL; 1937 } 1938 break; 1939 #endif 1940 } 1941 break; 1942 1943 case IPV6_TCLASS: 1944 case IPV6_DONTFRAG: 1945 case IPV6_USE_MIN_MTU: 1946 case IPV6_PREFER_TEMPADDR: 1947 if (optlen != sizeof(optval)) { 1948 error = EINVAL; 1949 break; 1950 } 1951 error = sooptcopyin(sopt, &optval, 1952 sizeof optval, sizeof optval); 1953 if (error) 1954 break; 1955 { 1956 struct ip6_pktopts **optp; 1957 INP_WLOCK(inp); 1958 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1959 INP_WUNLOCK(inp); 1960 return (ECONNRESET); 1961 } 1962 optp = &inp->in6p_outputopts; 1963 error = ip6_pcbopt(optname, 1964 (u_char *)&optval, sizeof(optval), 1965 optp, (td != NULL) ? td->td_ucred : 1966 NULL, uproto); 1967 INP_WUNLOCK(inp); 1968 break; 1969 } 1970 1971 case IPV6_2292PKTINFO: 1972 case IPV6_2292HOPLIMIT: 1973 case IPV6_2292HOPOPTS: 1974 case IPV6_2292DSTOPTS: 1975 case IPV6_2292RTHDR: 1976 /* RFC 2292 */ 1977 if (optlen != sizeof(int)) { 1978 error = EINVAL; 1979 break; 1980 } 1981 error = sooptcopyin(sopt, &optval, 1982 sizeof optval, sizeof optval); 1983 if (error) 1984 break; 1985 switch (optname) { 1986 case IPV6_2292PKTINFO: 1987 OPTSET2292(IN6P_PKTINFO); 1988 break; 1989 case IPV6_2292HOPLIMIT: 1990 OPTSET2292(IN6P_HOPLIMIT); 1991 break; 1992 case IPV6_2292HOPOPTS: 1993 /* 1994 * Check super-user privilege. 1995 * See comments for IPV6_RECVHOPOPTS. 1996 */ 1997 if (td != NULL) { 1998 error = priv_check(td, 1999 PRIV_NETINET_SETHDROPTS); 2000 if (error) 2001 return (error); 2002 } 2003 OPTSET2292(IN6P_HOPOPTS); 2004 break; 2005 case IPV6_2292DSTOPTS: 2006 if (td != NULL) { 2007 error = priv_check(td, 2008 PRIV_NETINET_SETHDROPTS); 2009 if (error) 2010 return (error); 2011 } 2012 OPTSET2292(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); /* XXX */ 2013 break; 2014 case IPV6_2292RTHDR: 2015 OPTSET2292(IN6P_RTHDR); 2016 break; 2017 } 2018 break; 2019 case IPV6_PKTINFO: 2020 case IPV6_HOPOPTS: 2021 case IPV6_RTHDR: 2022 case IPV6_DSTOPTS: 2023 case IPV6_RTHDRDSTOPTS: 2024 case IPV6_NEXTHOP: 2025 { 2026 /* new advanced API (RFC3542) */ 2027 u_char *optbuf; 2028 u_char optbuf_storage[MCLBYTES]; 2029 int optlen; 2030 struct ip6_pktopts **optp; 2031 2032 /* cannot mix with RFC2292 */ 2033 if (OPTBIT(IN6P_RFC2292)) { 2034 error = EINVAL; 2035 break; 2036 } 2037 2038 /* 2039 * We only ensure valsize is not too large 2040 * here. Further validation will be done 2041 * later. 2042 */ 2043 error = sooptcopyin(sopt, optbuf_storage, 2044 sizeof(optbuf_storage), 0); 2045 if (error) 2046 break; 2047 optlen = sopt->sopt_valsize; 2048 optbuf = optbuf_storage; 2049 INP_WLOCK(inp); 2050 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 2051 INP_WUNLOCK(inp); 2052 return (ECONNRESET); 2053 } 2054 optp = &inp->in6p_outputopts; 2055 error = ip6_pcbopt(optname, optbuf, optlen, 2056 optp, (td != NULL) ? td->td_ucred : NULL, 2057 uproto); 2058 INP_WUNLOCK(inp); 2059 break; 2060 } 2061 #undef OPTSET 2062 2063 case IPV6_MULTICAST_IF: 2064 case IPV6_MULTICAST_HOPS: 2065 case IPV6_MULTICAST_LOOP: 2066 case IPV6_JOIN_GROUP: 2067 case IPV6_LEAVE_GROUP: 2068 case IPV6_MSFILTER: 2069 case MCAST_BLOCK_SOURCE: 2070 case MCAST_UNBLOCK_SOURCE: 2071 case MCAST_JOIN_GROUP: 2072 case MCAST_LEAVE_GROUP: 2073 case MCAST_JOIN_SOURCE_GROUP: 2074 case MCAST_LEAVE_SOURCE_GROUP: 2075 error = ip6_setmoptions(inp, sopt); 2076 break; 2077 2078 case IPV6_PORTRANGE: 2079 error = sooptcopyin(sopt, &optval, 2080 sizeof optval, sizeof optval); 2081 if (error) 2082 break; 2083 2084 INP_WLOCK(inp); 2085 switch (optval) { 2086 case IPV6_PORTRANGE_DEFAULT: 2087 inp->inp_flags &= ~(INP_LOWPORT); 2088 inp->inp_flags &= ~(INP_HIGHPORT); 2089 break; 2090 2091 case IPV6_PORTRANGE_HIGH: 2092 inp->inp_flags &= ~(INP_LOWPORT); 2093 inp->inp_flags |= INP_HIGHPORT; 2094 break; 2095 2096 case IPV6_PORTRANGE_LOW: 2097 inp->inp_flags &= ~(INP_HIGHPORT); 2098 inp->inp_flags |= INP_LOWPORT; 2099 break; 2100 2101 default: 2102 error = EINVAL; 2103 break; 2104 } 2105 INP_WUNLOCK(inp); 2106 break; 2107 2108 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2109 case IPV6_IPSEC_POLICY: 2110 if (IPSEC_ENABLED(ipv6)) { 2111 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2112 break; 2113 } 2114 /* FALLTHROUGH */ 2115 #endif /* IPSEC */ 2116 2117 default: 2118 error = ENOPROTOOPT; 2119 break; 2120 } 2121 break; 2122 2123 case SOPT_GET: 2124 switch (optname) { 2125 2126 case IPV6_2292PKTOPTIONS: 2127 #ifdef IPV6_PKTOPTIONS 2128 case IPV6_PKTOPTIONS: 2129 #endif 2130 /* 2131 * RFC3542 (effectively) deprecated the 2132 * semantics of the 2292-style pktoptions. 2133 * Since it was not reliable in nature (i.e., 2134 * applications had to expect the lack of some 2135 * information after all), it would make sense 2136 * to simplify this part by always returning 2137 * empty data. 2138 */ 2139 sopt->sopt_valsize = 0; 2140 break; 2141 2142 case IPV6_RECVHOPOPTS: 2143 case IPV6_RECVDSTOPTS: 2144 case IPV6_RECVRTHDRDSTOPTS: 2145 case IPV6_UNICAST_HOPS: 2146 case IPV6_RECVPKTINFO: 2147 case IPV6_RECVHOPLIMIT: 2148 case IPV6_RECVRTHDR: 2149 case IPV6_RECVPATHMTU: 2150 2151 case IPV6_V6ONLY: 2152 case IPV6_PORTRANGE: 2153 case IPV6_RECVTCLASS: 2154 case IPV6_AUTOFLOWLABEL: 2155 case IPV6_BINDANY: 2156 case IPV6_FLOWID: 2157 case IPV6_FLOWTYPE: 2158 case IPV6_RECVFLOWID: 2159 #ifdef RSS 2160 case IPV6_RSSBUCKETID: 2161 case IPV6_RECVRSSBUCKETID: 2162 #endif 2163 case IPV6_BINDMULTI: 2164 switch (optname) { 2165 2166 case IPV6_RECVHOPOPTS: 2167 optval = OPTBIT(IN6P_HOPOPTS); 2168 break; 2169 2170 case IPV6_RECVDSTOPTS: 2171 optval = OPTBIT(IN6P_DSTOPTS); 2172 break; 2173 2174 case IPV6_RECVRTHDRDSTOPTS: 2175 optval = OPTBIT(IN6P_RTHDRDSTOPTS); 2176 break; 2177 2178 case IPV6_UNICAST_HOPS: 2179 optval = inp->in6p_hops; 2180 break; 2181 2182 case IPV6_RECVPKTINFO: 2183 optval = OPTBIT(IN6P_PKTINFO); 2184 break; 2185 2186 case IPV6_RECVHOPLIMIT: 2187 optval = OPTBIT(IN6P_HOPLIMIT); 2188 break; 2189 2190 case IPV6_RECVRTHDR: 2191 optval = OPTBIT(IN6P_RTHDR); 2192 break; 2193 2194 case IPV6_RECVPATHMTU: 2195 optval = OPTBIT(IN6P_MTU); 2196 break; 2197 2198 case IPV6_V6ONLY: 2199 optval = OPTBIT(IN6P_IPV6_V6ONLY); 2200 break; 2201 2202 case IPV6_PORTRANGE: 2203 { 2204 int flags; 2205 flags = inp->inp_flags; 2206 if (flags & INP_HIGHPORT) 2207 optval = IPV6_PORTRANGE_HIGH; 2208 else if (flags & INP_LOWPORT) 2209 optval = IPV6_PORTRANGE_LOW; 2210 else 2211 optval = 0; 2212 break; 2213 } 2214 case IPV6_RECVTCLASS: 2215 optval = OPTBIT(IN6P_TCLASS); 2216 break; 2217 2218 case IPV6_AUTOFLOWLABEL: 2219 optval = OPTBIT(IN6P_AUTOFLOWLABEL); 2220 break; 2221 2222 case IPV6_ORIGDSTADDR: 2223 optval = OPTBIT2(INP_ORIGDSTADDR); 2224 break; 2225 2226 case IPV6_BINDANY: 2227 optval = OPTBIT(INP_BINDANY); 2228 break; 2229 2230 case IPV6_FLOWID: 2231 optval = inp->inp_flowid; 2232 break; 2233 2234 case IPV6_FLOWTYPE: 2235 optval = inp->inp_flowtype; 2236 break; 2237 2238 case IPV6_RECVFLOWID: 2239 optval = OPTBIT2(INP_RECVFLOWID); 2240 break; 2241 #ifdef RSS 2242 case IPV6_RSSBUCKETID: 2243 retval = 2244 rss_hash2bucket(inp->inp_flowid, 2245 inp->inp_flowtype, 2246 &rss_bucket); 2247 if (retval == 0) 2248 optval = rss_bucket; 2249 else 2250 error = EINVAL; 2251 break; 2252 2253 case IPV6_RECVRSSBUCKETID: 2254 optval = OPTBIT2(INP_RECVRSSBUCKETID); 2255 break; 2256 #endif 2257 2258 case IPV6_BINDMULTI: 2259 optval = OPTBIT2(INP_BINDMULTI); 2260 break; 2261 2262 } 2263 if (error) 2264 break; 2265 error = sooptcopyout(sopt, &optval, 2266 sizeof optval); 2267 break; 2268 2269 case IPV6_PATHMTU: 2270 { 2271 u_long pmtu = 0; 2272 struct ip6_mtuinfo mtuinfo; 2273 struct in6_addr addr; 2274 2275 if (!(so->so_state & SS_ISCONNECTED)) 2276 return (ENOTCONN); 2277 /* 2278 * XXX: we dot not consider the case of source 2279 * routing, or optional information to specify 2280 * the outgoing interface. 2281 * Copy faddr out of inp to avoid holding lock 2282 * on inp during route lookup. 2283 */ 2284 INP_RLOCK(inp); 2285 bcopy(&inp->in6p_faddr, &addr, sizeof(addr)); 2286 INP_RUNLOCK(inp); 2287 error = ip6_getpmtu_ctl(so->so_fibnum, 2288 &addr, &pmtu); 2289 if (error) 2290 break; 2291 if (pmtu > IPV6_MAXPACKET) 2292 pmtu = IPV6_MAXPACKET; 2293 2294 bzero(&mtuinfo, sizeof(mtuinfo)); 2295 mtuinfo.ip6m_mtu = (u_int32_t)pmtu; 2296 optdata = (void *)&mtuinfo; 2297 optdatalen = sizeof(mtuinfo); 2298 error = sooptcopyout(sopt, optdata, 2299 optdatalen); 2300 break; 2301 } 2302 2303 case IPV6_2292PKTINFO: 2304 case IPV6_2292HOPLIMIT: 2305 case IPV6_2292HOPOPTS: 2306 case IPV6_2292RTHDR: 2307 case IPV6_2292DSTOPTS: 2308 switch (optname) { 2309 case IPV6_2292PKTINFO: 2310 optval = OPTBIT(IN6P_PKTINFO); 2311 break; 2312 case IPV6_2292HOPLIMIT: 2313 optval = OPTBIT(IN6P_HOPLIMIT); 2314 break; 2315 case IPV6_2292HOPOPTS: 2316 optval = OPTBIT(IN6P_HOPOPTS); 2317 break; 2318 case IPV6_2292RTHDR: 2319 optval = OPTBIT(IN6P_RTHDR); 2320 break; 2321 case IPV6_2292DSTOPTS: 2322 optval = OPTBIT(IN6P_DSTOPTS|IN6P_RTHDRDSTOPTS); 2323 break; 2324 } 2325 error = sooptcopyout(sopt, &optval, 2326 sizeof optval); 2327 break; 2328 case IPV6_PKTINFO: 2329 case IPV6_HOPOPTS: 2330 case IPV6_RTHDR: 2331 case IPV6_DSTOPTS: 2332 case IPV6_RTHDRDSTOPTS: 2333 case IPV6_NEXTHOP: 2334 case IPV6_TCLASS: 2335 case IPV6_DONTFRAG: 2336 case IPV6_USE_MIN_MTU: 2337 case IPV6_PREFER_TEMPADDR: 2338 error = ip6_getpcbopt(inp, optname, sopt); 2339 break; 2340 2341 case IPV6_MULTICAST_IF: 2342 case IPV6_MULTICAST_HOPS: 2343 case IPV6_MULTICAST_LOOP: 2344 case IPV6_MSFILTER: 2345 error = ip6_getmoptions(inp, sopt); 2346 break; 2347 2348 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 2349 case IPV6_IPSEC_POLICY: 2350 if (IPSEC_ENABLED(ipv6)) { 2351 error = IPSEC_PCBCTL(ipv6, inp, sopt); 2352 break; 2353 } 2354 /* FALLTHROUGH */ 2355 #endif /* IPSEC */ 2356 default: 2357 error = ENOPROTOOPT; 2358 break; 2359 } 2360 break; 2361 } 2362 } 2363 return (error); 2364 } 2365 2366 int 2367 ip6_raw_ctloutput(struct socket *so, struct sockopt *sopt) 2368 { 2369 int error = 0, optval, optlen; 2370 const int icmp6off = offsetof(struct icmp6_hdr, icmp6_cksum); 2371 struct inpcb *inp = sotoinpcb(so); 2372 int level, op, optname; 2373 2374 level = sopt->sopt_level; 2375 op = sopt->sopt_dir; 2376 optname = sopt->sopt_name; 2377 optlen = sopt->sopt_valsize; 2378 2379 if (level != IPPROTO_IPV6) { 2380 return (EINVAL); 2381 } 2382 2383 switch (optname) { 2384 case IPV6_CHECKSUM: 2385 /* 2386 * For ICMPv6 sockets, no modification allowed for checksum 2387 * offset, permit "no change" values to help existing apps. 2388 * 2389 * RFC3542 says: "An attempt to set IPV6_CHECKSUM 2390 * for an ICMPv6 socket will fail." 2391 * The current behavior does not meet RFC3542. 2392 */ 2393 switch (op) { 2394 case SOPT_SET: 2395 if (optlen != sizeof(int)) { 2396 error = EINVAL; 2397 break; 2398 } 2399 error = sooptcopyin(sopt, &optval, sizeof(optval), 2400 sizeof(optval)); 2401 if (error) 2402 break; 2403 if (optval < -1 || (optval % 2) != 0) { 2404 /* 2405 * The API assumes non-negative even offset 2406 * values or -1 as a special value. 2407 */ 2408 error = EINVAL; 2409 } else if (so->so_proto->pr_protocol == 2410 IPPROTO_ICMPV6) { 2411 if (optval != icmp6off) 2412 error = EINVAL; 2413 } else 2414 inp->in6p_cksum = optval; 2415 break; 2416 2417 case SOPT_GET: 2418 if (so->so_proto->pr_protocol == IPPROTO_ICMPV6) 2419 optval = icmp6off; 2420 else 2421 optval = inp->in6p_cksum; 2422 2423 error = sooptcopyout(sopt, &optval, sizeof(optval)); 2424 break; 2425 2426 default: 2427 error = EINVAL; 2428 break; 2429 } 2430 break; 2431 2432 default: 2433 error = ENOPROTOOPT; 2434 break; 2435 } 2436 2437 return (error); 2438 } 2439 2440 /* 2441 * Set up IP6 options in pcb for insertion in output packets or 2442 * specifying behavior of outgoing packets. 2443 */ 2444 static int 2445 ip6_pcbopts(struct ip6_pktopts **pktopt, struct mbuf *m, 2446 struct socket *so, struct sockopt *sopt) 2447 { 2448 struct ip6_pktopts *opt = *pktopt; 2449 int error = 0; 2450 struct thread *td = sopt->sopt_td; 2451 2452 /* turn off any old options. */ 2453 if (opt) { 2454 #ifdef DIAGNOSTIC 2455 if (opt->ip6po_pktinfo || opt->ip6po_nexthop || 2456 opt->ip6po_hbh || opt->ip6po_dest1 || opt->ip6po_dest2 || 2457 opt->ip6po_rhinfo.ip6po_rhi_rthdr) 2458 printf("ip6_pcbopts: all specified options are cleared.\n"); 2459 #endif 2460 ip6_clearpktopts(opt, -1); 2461 } else { 2462 opt = malloc(sizeof(*opt), M_IP6OPT, M_NOWAIT); 2463 if (opt == NULL) 2464 return (ENOMEM); 2465 } 2466 *pktopt = NULL; 2467 2468 if (!m || m->m_len == 0) { 2469 /* 2470 * Only turning off any previous options, regardless of 2471 * whether the opt is just created or given. 2472 */ 2473 free(opt, M_IP6OPT); 2474 return (0); 2475 } 2476 2477 /* set options specified by user. */ 2478 if ((error = ip6_setpktopts(m, opt, NULL, (td != NULL) ? 2479 td->td_ucred : NULL, so->so_proto->pr_protocol)) != 0) { 2480 ip6_clearpktopts(opt, -1); /* XXX: discard all options */ 2481 free(opt, M_IP6OPT); 2482 return (error); 2483 } 2484 *pktopt = opt; 2485 return (0); 2486 } 2487 2488 /* 2489 * initialize ip6_pktopts. beware that there are non-zero default values in 2490 * the struct. 2491 */ 2492 void 2493 ip6_initpktopts(struct ip6_pktopts *opt) 2494 { 2495 2496 bzero(opt, sizeof(*opt)); 2497 opt->ip6po_hlim = -1; /* -1 means default hop limit */ 2498 opt->ip6po_tclass = -1; /* -1 means default traffic class */ 2499 opt->ip6po_minmtu = IP6PO_MINMTU_MCASTONLY; 2500 opt->ip6po_prefer_tempaddr = IP6PO_TEMPADDR_SYSTEM; 2501 } 2502 2503 static int 2504 ip6_pcbopt(int optname, u_char *buf, int len, struct ip6_pktopts **pktopt, 2505 struct ucred *cred, int uproto) 2506 { 2507 struct ip6_pktopts *opt; 2508 2509 if (*pktopt == NULL) { 2510 *pktopt = malloc(sizeof(struct ip6_pktopts), M_IP6OPT, 2511 M_NOWAIT); 2512 if (*pktopt == NULL) 2513 return (ENOBUFS); 2514 ip6_initpktopts(*pktopt); 2515 } 2516 opt = *pktopt; 2517 2518 return (ip6_setpktopt(optname, buf, len, opt, cred, 1, 0, uproto)); 2519 } 2520 2521 #define GET_PKTOPT_VAR(field, lenexpr) do { \ 2522 if (pktopt && pktopt->field) { \ 2523 INP_RUNLOCK(inp); \ 2524 optdata = malloc(sopt->sopt_valsize, M_TEMP, M_WAITOK); \ 2525 malloc_optdata = true; \ 2526 INP_RLOCK(inp); \ 2527 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { \ 2528 INP_RUNLOCK(inp); \ 2529 free(optdata, M_TEMP); \ 2530 return (ECONNRESET); \ 2531 } \ 2532 pktopt = inp->in6p_outputopts; \ 2533 if (pktopt && pktopt->field) { \ 2534 optdatalen = min(lenexpr, sopt->sopt_valsize); \ 2535 bcopy(&pktopt->field, optdata, optdatalen); \ 2536 } else { \ 2537 free(optdata, M_TEMP); \ 2538 optdata = NULL; \ 2539 malloc_optdata = false; \ 2540 } \ 2541 } \ 2542 } while(0) 2543 2544 #define GET_PKTOPT_EXT_HDR(field) GET_PKTOPT_VAR(field, \ 2545 (((struct ip6_ext *)pktopt->field)->ip6e_len + 1) << 3) 2546 2547 #define GET_PKTOPT_SOCKADDR(field) GET_PKTOPT_VAR(field, \ 2548 pktopt->field->sa_len) 2549 2550 static int 2551 ip6_getpcbopt(struct inpcb *inp, int optname, struct sockopt *sopt) 2552 { 2553 void *optdata = NULL; 2554 bool malloc_optdata = false; 2555 int optdatalen = 0; 2556 int error = 0; 2557 struct in6_pktinfo null_pktinfo; 2558 int deftclass = 0, on; 2559 int defminmtu = IP6PO_MINMTU_MCASTONLY; 2560 int defpreftemp = IP6PO_TEMPADDR_SYSTEM; 2561 struct ip6_pktopts *pktopt; 2562 2563 INP_RLOCK(inp); 2564 pktopt = inp->in6p_outputopts; 2565 2566 switch (optname) { 2567 case IPV6_PKTINFO: 2568 optdata = (void *)&null_pktinfo; 2569 if (pktopt && pktopt->ip6po_pktinfo) { 2570 bcopy(pktopt->ip6po_pktinfo, &null_pktinfo, 2571 sizeof(null_pktinfo)); 2572 in6_clearscope(&null_pktinfo.ipi6_addr); 2573 } else { 2574 /* XXX: we don't have to do this every time... */ 2575 bzero(&null_pktinfo, sizeof(null_pktinfo)); 2576 } 2577 optdatalen = sizeof(struct in6_pktinfo); 2578 break; 2579 case IPV6_TCLASS: 2580 if (pktopt && pktopt->ip6po_tclass >= 0) 2581 deftclass = pktopt->ip6po_tclass; 2582 optdata = (void *)&deftclass; 2583 optdatalen = sizeof(int); 2584 break; 2585 case IPV6_HOPOPTS: 2586 GET_PKTOPT_EXT_HDR(ip6po_hbh); 2587 break; 2588 case IPV6_RTHDR: 2589 GET_PKTOPT_EXT_HDR(ip6po_rthdr); 2590 break; 2591 case IPV6_RTHDRDSTOPTS: 2592 GET_PKTOPT_EXT_HDR(ip6po_dest1); 2593 break; 2594 case IPV6_DSTOPTS: 2595 GET_PKTOPT_EXT_HDR(ip6po_dest2); 2596 break; 2597 case IPV6_NEXTHOP: 2598 GET_PKTOPT_SOCKADDR(ip6po_nexthop); 2599 break; 2600 case IPV6_USE_MIN_MTU: 2601 if (pktopt) 2602 defminmtu = pktopt->ip6po_minmtu; 2603 optdata = (void *)&defminmtu; 2604 optdatalen = sizeof(int); 2605 break; 2606 case IPV6_DONTFRAG: 2607 if (pktopt && ((pktopt->ip6po_flags) & IP6PO_DONTFRAG)) 2608 on = 1; 2609 else 2610 on = 0; 2611 optdata = (void *)&on; 2612 optdatalen = sizeof(on); 2613 break; 2614 case IPV6_PREFER_TEMPADDR: 2615 if (pktopt) 2616 defpreftemp = pktopt->ip6po_prefer_tempaddr; 2617 optdata = (void *)&defpreftemp; 2618 optdatalen = sizeof(int); 2619 break; 2620 default: /* should not happen */ 2621 #ifdef DIAGNOSTIC 2622 panic("ip6_getpcbopt: unexpected option\n"); 2623 #endif 2624 INP_RUNLOCK(inp); 2625 return (ENOPROTOOPT); 2626 } 2627 INP_RUNLOCK(inp); 2628 2629 error = sooptcopyout(sopt, optdata, optdatalen); 2630 if (malloc_optdata) 2631 free(optdata, M_TEMP); 2632 2633 return (error); 2634 } 2635 2636 void 2637 ip6_clearpktopts(struct ip6_pktopts *pktopt, int optname) 2638 { 2639 if (pktopt == NULL) 2640 return; 2641 2642 if (optname == -1 || optname == IPV6_PKTINFO) { 2643 if (pktopt->ip6po_pktinfo) 2644 free(pktopt->ip6po_pktinfo, M_IP6OPT); 2645 pktopt->ip6po_pktinfo = NULL; 2646 } 2647 if (optname == -1 || optname == IPV6_HOPLIMIT) 2648 pktopt->ip6po_hlim = -1; 2649 if (optname == -1 || optname == IPV6_TCLASS) 2650 pktopt->ip6po_tclass = -1; 2651 if (optname == -1 || optname == IPV6_NEXTHOP) { 2652 if (pktopt->ip6po_nextroute.ro_nh) { 2653 NH_FREE(pktopt->ip6po_nextroute.ro_nh); 2654 pktopt->ip6po_nextroute.ro_nh = NULL; 2655 } 2656 if (pktopt->ip6po_nexthop) 2657 free(pktopt->ip6po_nexthop, M_IP6OPT); 2658 pktopt->ip6po_nexthop = NULL; 2659 } 2660 if (optname == -1 || optname == IPV6_HOPOPTS) { 2661 if (pktopt->ip6po_hbh) 2662 free(pktopt->ip6po_hbh, M_IP6OPT); 2663 pktopt->ip6po_hbh = NULL; 2664 } 2665 if (optname == -1 || optname == IPV6_RTHDRDSTOPTS) { 2666 if (pktopt->ip6po_dest1) 2667 free(pktopt->ip6po_dest1, M_IP6OPT); 2668 pktopt->ip6po_dest1 = NULL; 2669 } 2670 if (optname == -1 || optname == IPV6_RTHDR) { 2671 if (pktopt->ip6po_rhinfo.ip6po_rhi_rthdr) 2672 free(pktopt->ip6po_rhinfo.ip6po_rhi_rthdr, M_IP6OPT); 2673 pktopt->ip6po_rhinfo.ip6po_rhi_rthdr = NULL; 2674 if (pktopt->ip6po_route.ro_nh) { 2675 NH_FREE(pktopt->ip6po_route.ro_nh); 2676 pktopt->ip6po_route.ro_nh = NULL; 2677 } 2678 } 2679 if (optname == -1 || optname == IPV6_DSTOPTS) { 2680 if (pktopt->ip6po_dest2) 2681 free(pktopt->ip6po_dest2, M_IP6OPT); 2682 pktopt->ip6po_dest2 = NULL; 2683 } 2684 } 2685 2686 #define PKTOPT_EXTHDRCPY(type) \ 2687 do {\ 2688 if (src->type) {\ 2689 int hlen = (((struct ip6_ext *)src->type)->ip6e_len + 1) << 3;\ 2690 dst->type = malloc(hlen, M_IP6OPT, canwait);\ 2691 if (dst->type == NULL)\ 2692 goto bad;\ 2693 bcopy(src->type, dst->type, hlen);\ 2694 }\ 2695 } while (/*CONSTCOND*/ 0) 2696 2697 static int 2698 copypktopts(struct ip6_pktopts *dst, struct ip6_pktopts *src, int canwait) 2699 { 2700 if (dst == NULL || src == NULL) { 2701 printf("ip6_clearpktopts: invalid argument\n"); 2702 return (EINVAL); 2703 } 2704 2705 dst->ip6po_hlim = src->ip6po_hlim; 2706 dst->ip6po_tclass = src->ip6po_tclass; 2707 dst->ip6po_flags = src->ip6po_flags; 2708 dst->ip6po_minmtu = src->ip6po_minmtu; 2709 dst->ip6po_prefer_tempaddr = src->ip6po_prefer_tempaddr; 2710 if (src->ip6po_pktinfo) { 2711 dst->ip6po_pktinfo = malloc(sizeof(*dst->ip6po_pktinfo), 2712 M_IP6OPT, canwait); 2713 if (dst->ip6po_pktinfo == NULL) 2714 goto bad; 2715 *dst->ip6po_pktinfo = *src->ip6po_pktinfo; 2716 } 2717 if (src->ip6po_nexthop) { 2718 dst->ip6po_nexthop = malloc(src->ip6po_nexthop->sa_len, 2719 M_IP6OPT, canwait); 2720 if (dst->ip6po_nexthop == NULL) 2721 goto bad; 2722 bcopy(src->ip6po_nexthop, dst->ip6po_nexthop, 2723 src->ip6po_nexthop->sa_len); 2724 } 2725 PKTOPT_EXTHDRCPY(ip6po_hbh); 2726 PKTOPT_EXTHDRCPY(ip6po_dest1); 2727 PKTOPT_EXTHDRCPY(ip6po_dest2); 2728 PKTOPT_EXTHDRCPY(ip6po_rthdr); /* not copy the cached route */ 2729 return (0); 2730 2731 bad: 2732 ip6_clearpktopts(dst, -1); 2733 return (ENOBUFS); 2734 } 2735 #undef PKTOPT_EXTHDRCPY 2736 2737 struct ip6_pktopts * 2738 ip6_copypktopts(struct ip6_pktopts *src, int canwait) 2739 { 2740 int error; 2741 struct ip6_pktopts *dst; 2742 2743 dst = malloc(sizeof(*dst), M_IP6OPT, canwait); 2744 if (dst == NULL) 2745 return (NULL); 2746 ip6_initpktopts(dst); 2747 2748 if ((error = copypktopts(dst, src, canwait)) != 0) { 2749 free(dst, M_IP6OPT); 2750 return (NULL); 2751 } 2752 2753 return (dst); 2754 } 2755 2756 void 2757 ip6_freepcbopts(struct ip6_pktopts *pktopt) 2758 { 2759 if (pktopt == NULL) 2760 return; 2761 2762 ip6_clearpktopts(pktopt, -1); 2763 2764 free(pktopt, M_IP6OPT); 2765 } 2766 2767 /* 2768 * Set IPv6 outgoing packet options based on advanced API. 2769 */ 2770 int 2771 ip6_setpktopts(struct mbuf *control, struct ip6_pktopts *opt, 2772 struct ip6_pktopts *stickyopt, struct ucred *cred, int uproto) 2773 { 2774 struct cmsghdr *cm = NULL; 2775 2776 if (control == NULL || opt == NULL) 2777 return (EINVAL); 2778 2779 ip6_initpktopts(opt); 2780 if (stickyopt) { 2781 int error; 2782 2783 /* 2784 * If stickyopt is provided, make a local copy of the options 2785 * for this particular packet, then override them by ancillary 2786 * objects. 2787 * XXX: copypktopts() does not copy the cached route to a next 2788 * hop (if any). This is not very good in terms of efficiency, 2789 * but we can allow this since this option should be rarely 2790 * used. 2791 */ 2792 if ((error = copypktopts(opt, stickyopt, M_NOWAIT)) != 0) 2793 return (error); 2794 } 2795 2796 /* 2797 * XXX: Currently, we assume all the optional information is stored 2798 * in a single mbuf. 2799 */ 2800 if (control->m_next) 2801 return (EINVAL); 2802 2803 for (; control->m_len > 0; control->m_data += CMSG_ALIGN(cm->cmsg_len), 2804 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 2805 int error; 2806 2807 if (control->m_len < CMSG_LEN(0)) 2808 return (EINVAL); 2809 2810 cm = mtod(control, struct cmsghdr *); 2811 if (cm->cmsg_len == 0 || cm->cmsg_len > control->m_len) 2812 return (EINVAL); 2813 if (cm->cmsg_level != IPPROTO_IPV6) 2814 continue; 2815 2816 error = ip6_setpktopt(cm->cmsg_type, CMSG_DATA(cm), 2817 cm->cmsg_len - CMSG_LEN(0), opt, cred, 0, 1, uproto); 2818 if (error) 2819 return (error); 2820 } 2821 2822 return (0); 2823 } 2824 2825 /* 2826 * Set a particular packet option, as a sticky option or an ancillary data 2827 * item. "len" can be 0 only when it's a sticky option. 2828 * We have 4 cases of combination of "sticky" and "cmsg": 2829 * "sticky=0, cmsg=0": impossible 2830 * "sticky=0, cmsg=1": RFC2292 or RFC3542 ancillary data 2831 * "sticky=1, cmsg=0": RFC3542 socket option 2832 * "sticky=1, cmsg=1": RFC2292 socket option 2833 */ 2834 static int 2835 ip6_setpktopt(int optname, u_char *buf, int len, struct ip6_pktopts *opt, 2836 struct ucred *cred, int sticky, int cmsg, int uproto) 2837 { 2838 int minmtupolicy, preftemp; 2839 int error; 2840 2841 if (!sticky && !cmsg) { 2842 #ifdef DIAGNOSTIC 2843 printf("ip6_setpktopt: impossible case\n"); 2844 #endif 2845 return (EINVAL); 2846 } 2847 2848 /* 2849 * IPV6_2292xxx is for backward compatibility to RFC2292, and should 2850 * not be specified in the context of RFC3542. Conversely, 2851 * RFC3542 types should not be specified in the context of RFC2292. 2852 */ 2853 if (!cmsg) { 2854 switch (optname) { 2855 case IPV6_2292PKTINFO: 2856 case IPV6_2292HOPLIMIT: 2857 case IPV6_2292NEXTHOP: 2858 case IPV6_2292HOPOPTS: 2859 case IPV6_2292DSTOPTS: 2860 case IPV6_2292RTHDR: 2861 case IPV6_2292PKTOPTIONS: 2862 return (ENOPROTOOPT); 2863 } 2864 } 2865 if (sticky && cmsg) { 2866 switch (optname) { 2867 case IPV6_PKTINFO: 2868 case IPV6_HOPLIMIT: 2869 case IPV6_NEXTHOP: 2870 case IPV6_HOPOPTS: 2871 case IPV6_DSTOPTS: 2872 case IPV6_RTHDRDSTOPTS: 2873 case IPV6_RTHDR: 2874 case IPV6_USE_MIN_MTU: 2875 case IPV6_DONTFRAG: 2876 case IPV6_TCLASS: 2877 case IPV6_PREFER_TEMPADDR: /* XXX: not an RFC3542 option */ 2878 return (ENOPROTOOPT); 2879 } 2880 } 2881 2882 switch (optname) { 2883 case IPV6_2292PKTINFO: 2884 case IPV6_PKTINFO: 2885 { 2886 struct ifnet *ifp = NULL; 2887 struct in6_pktinfo *pktinfo; 2888 2889 if (len != sizeof(struct in6_pktinfo)) 2890 return (EINVAL); 2891 2892 pktinfo = (struct in6_pktinfo *)buf; 2893 2894 /* 2895 * An application can clear any sticky IPV6_PKTINFO option by 2896 * doing a "regular" setsockopt with ipi6_addr being 2897 * in6addr_any and ipi6_ifindex being zero. 2898 * [RFC 3542, Section 6] 2899 */ 2900 if (optname == IPV6_PKTINFO && opt->ip6po_pktinfo && 2901 pktinfo->ipi6_ifindex == 0 && 2902 IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2903 ip6_clearpktopts(opt, optname); 2904 break; 2905 } 2906 2907 if (uproto == IPPROTO_TCP && optname == IPV6_PKTINFO && 2908 sticky && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2909 return (EINVAL); 2910 } 2911 if (IN6_IS_ADDR_MULTICAST(&pktinfo->ipi6_addr)) 2912 return (EINVAL); 2913 /* validate the interface index if specified. */ 2914 if (pktinfo->ipi6_ifindex > V_if_index) 2915 return (ENXIO); 2916 if (pktinfo->ipi6_ifindex) { 2917 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 2918 if (ifp == NULL) 2919 return (ENXIO); 2920 } 2921 if (ifp != NULL && (ifp->if_afdata[AF_INET6] == NULL || 2922 (ND_IFINFO(ifp)->flags & ND6_IFF_IFDISABLED) != 0)) 2923 return (ENETDOWN); 2924 2925 if (ifp != NULL && 2926 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 2927 struct in6_ifaddr *ia; 2928 2929 in6_setscope(&pktinfo->ipi6_addr, ifp, NULL); 2930 ia = in6ifa_ifpwithaddr(ifp, &pktinfo->ipi6_addr); 2931 if (ia == NULL) 2932 return (EADDRNOTAVAIL); 2933 ifa_free(&ia->ia_ifa); 2934 } 2935 /* 2936 * We store the address anyway, and let in6_selectsrc() 2937 * validate the specified address. This is because ipi6_addr 2938 * may not have enough information about its scope zone, and 2939 * we may need additional information (such as outgoing 2940 * interface or the scope zone of a destination address) to 2941 * disambiguate the scope. 2942 * XXX: the delay of the validation may confuse the 2943 * application when it is used as a sticky option. 2944 */ 2945 if (opt->ip6po_pktinfo == NULL) { 2946 opt->ip6po_pktinfo = malloc(sizeof(*pktinfo), 2947 M_IP6OPT, M_NOWAIT); 2948 if (opt->ip6po_pktinfo == NULL) 2949 return (ENOBUFS); 2950 } 2951 bcopy(pktinfo, opt->ip6po_pktinfo, sizeof(*pktinfo)); 2952 break; 2953 } 2954 2955 case IPV6_2292HOPLIMIT: 2956 case IPV6_HOPLIMIT: 2957 { 2958 int *hlimp; 2959 2960 /* 2961 * RFC 3542 deprecated the usage of sticky IPV6_HOPLIMIT 2962 * to simplify the ordering among hoplimit options. 2963 */ 2964 if (optname == IPV6_HOPLIMIT && sticky) 2965 return (ENOPROTOOPT); 2966 2967 if (len != sizeof(int)) 2968 return (EINVAL); 2969 hlimp = (int *)buf; 2970 if (*hlimp < -1 || *hlimp > 255) 2971 return (EINVAL); 2972 2973 opt->ip6po_hlim = *hlimp; 2974 break; 2975 } 2976 2977 case IPV6_TCLASS: 2978 { 2979 int tclass; 2980 2981 if (len != sizeof(int)) 2982 return (EINVAL); 2983 tclass = *(int *)buf; 2984 if (tclass < -1 || tclass > 255) 2985 return (EINVAL); 2986 2987 opt->ip6po_tclass = tclass; 2988 break; 2989 } 2990 2991 case IPV6_2292NEXTHOP: 2992 case IPV6_NEXTHOP: 2993 if (cred != NULL) { 2994 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 2995 if (error) 2996 return (error); 2997 } 2998 2999 if (len == 0) { /* just remove the option */ 3000 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3001 break; 3002 } 3003 3004 /* check if cmsg_len is large enough for sa_len */ 3005 if (len < sizeof(struct sockaddr) || len < *buf) 3006 return (EINVAL); 3007 3008 switch (((struct sockaddr *)buf)->sa_family) { 3009 case AF_INET6: 3010 { 3011 struct sockaddr_in6 *sa6 = (struct sockaddr_in6 *)buf; 3012 int error; 3013 3014 if (sa6->sin6_len != sizeof(struct sockaddr_in6)) 3015 return (EINVAL); 3016 3017 if (IN6_IS_ADDR_UNSPECIFIED(&sa6->sin6_addr) || 3018 IN6_IS_ADDR_MULTICAST(&sa6->sin6_addr)) { 3019 return (EINVAL); 3020 } 3021 if ((error = sa6_embedscope(sa6, V_ip6_use_defzone)) 3022 != 0) { 3023 return (error); 3024 } 3025 break; 3026 } 3027 case AF_LINK: /* should eventually be supported */ 3028 default: 3029 return (EAFNOSUPPORT); 3030 } 3031 3032 /* turn off the previous option, then set the new option. */ 3033 ip6_clearpktopts(opt, IPV6_NEXTHOP); 3034 opt->ip6po_nexthop = malloc(*buf, M_IP6OPT, M_NOWAIT); 3035 if (opt->ip6po_nexthop == NULL) 3036 return (ENOBUFS); 3037 bcopy(buf, opt->ip6po_nexthop, *buf); 3038 break; 3039 3040 case IPV6_2292HOPOPTS: 3041 case IPV6_HOPOPTS: 3042 { 3043 struct ip6_hbh *hbh; 3044 int hbhlen; 3045 3046 /* 3047 * XXX: We don't allow a non-privileged user to set ANY HbH 3048 * options, since per-option restriction has too much 3049 * overhead. 3050 */ 3051 if (cred != NULL) { 3052 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3053 if (error) 3054 return (error); 3055 } 3056 3057 if (len == 0) { 3058 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3059 break; /* just remove the option */ 3060 } 3061 3062 /* message length validation */ 3063 if (len < sizeof(struct ip6_hbh)) 3064 return (EINVAL); 3065 hbh = (struct ip6_hbh *)buf; 3066 hbhlen = (hbh->ip6h_len + 1) << 3; 3067 if (len != hbhlen) 3068 return (EINVAL); 3069 3070 /* turn off the previous option, then set the new option. */ 3071 ip6_clearpktopts(opt, IPV6_HOPOPTS); 3072 opt->ip6po_hbh = malloc(hbhlen, M_IP6OPT, M_NOWAIT); 3073 if (opt->ip6po_hbh == NULL) 3074 return (ENOBUFS); 3075 bcopy(hbh, opt->ip6po_hbh, hbhlen); 3076 3077 break; 3078 } 3079 3080 case IPV6_2292DSTOPTS: 3081 case IPV6_DSTOPTS: 3082 case IPV6_RTHDRDSTOPTS: 3083 { 3084 struct ip6_dest *dest, **newdest = NULL; 3085 int destlen; 3086 3087 if (cred != NULL) { /* XXX: see the comment for IPV6_HOPOPTS */ 3088 error = priv_check_cred(cred, PRIV_NETINET_SETHDROPTS); 3089 if (error) 3090 return (error); 3091 } 3092 3093 if (len == 0) { 3094 ip6_clearpktopts(opt, optname); 3095 break; /* just remove the option */ 3096 } 3097 3098 /* message length validation */ 3099 if (len < sizeof(struct ip6_dest)) 3100 return (EINVAL); 3101 dest = (struct ip6_dest *)buf; 3102 destlen = (dest->ip6d_len + 1) << 3; 3103 if (len != destlen) 3104 return (EINVAL); 3105 3106 /* 3107 * Determine the position that the destination options header 3108 * should be inserted; before or after the routing header. 3109 */ 3110 switch (optname) { 3111 case IPV6_2292DSTOPTS: 3112 /* 3113 * The old advacned API is ambiguous on this point. 3114 * Our approach is to determine the position based 3115 * according to the existence of a routing header. 3116 * Note, however, that this depends on the order of the 3117 * extension headers in the ancillary data; the 1st 3118 * part of the destination options header must appear 3119 * before the routing header in the ancillary data, 3120 * too. 3121 * RFC3542 solved the ambiguity by introducing 3122 * separate ancillary data or option types. 3123 */ 3124 if (opt->ip6po_rthdr == NULL) 3125 newdest = &opt->ip6po_dest1; 3126 else 3127 newdest = &opt->ip6po_dest2; 3128 break; 3129 case IPV6_RTHDRDSTOPTS: 3130 newdest = &opt->ip6po_dest1; 3131 break; 3132 case IPV6_DSTOPTS: 3133 newdest = &opt->ip6po_dest2; 3134 break; 3135 } 3136 3137 /* turn off the previous option, then set the new option. */ 3138 ip6_clearpktopts(opt, optname); 3139 *newdest = malloc(destlen, M_IP6OPT, M_NOWAIT); 3140 if (*newdest == NULL) 3141 return (ENOBUFS); 3142 bcopy(dest, *newdest, destlen); 3143 3144 break; 3145 } 3146 3147 case IPV6_2292RTHDR: 3148 case IPV6_RTHDR: 3149 { 3150 struct ip6_rthdr *rth; 3151 int rthlen; 3152 3153 if (len == 0) { 3154 ip6_clearpktopts(opt, IPV6_RTHDR); 3155 break; /* just remove the option */ 3156 } 3157 3158 /* message length validation */ 3159 if (len < sizeof(struct ip6_rthdr)) 3160 return (EINVAL); 3161 rth = (struct ip6_rthdr *)buf; 3162 rthlen = (rth->ip6r_len + 1) << 3; 3163 if (len != rthlen) 3164 return (EINVAL); 3165 3166 switch (rth->ip6r_type) { 3167 case IPV6_RTHDR_TYPE_0: 3168 if (rth->ip6r_len == 0) /* must contain one addr */ 3169 return (EINVAL); 3170 if (rth->ip6r_len % 2) /* length must be even */ 3171 return (EINVAL); 3172 if (rth->ip6r_len / 2 != rth->ip6r_segleft) 3173 return (EINVAL); 3174 break; 3175 default: 3176 return (EINVAL); /* not supported */ 3177 } 3178 3179 /* turn off the previous option */ 3180 ip6_clearpktopts(opt, IPV6_RTHDR); 3181 opt->ip6po_rthdr = malloc(rthlen, M_IP6OPT, M_NOWAIT); 3182 if (opt->ip6po_rthdr == NULL) 3183 return (ENOBUFS); 3184 bcopy(rth, opt->ip6po_rthdr, rthlen); 3185 3186 break; 3187 } 3188 3189 case IPV6_USE_MIN_MTU: 3190 if (len != sizeof(int)) 3191 return (EINVAL); 3192 minmtupolicy = *(int *)buf; 3193 if (minmtupolicy != IP6PO_MINMTU_MCASTONLY && 3194 minmtupolicy != IP6PO_MINMTU_DISABLE && 3195 minmtupolicy != IP6PO_MINMTU_ALL) { 3196 return (EINVAL); 3197 } 3198 opt->ip6po_minmtu = minmtupolicy; 3199 break; 3200 3201 case IPV6_DONTFRAG: 3202 if (len != sizeof(int)) 3203 return (EINVAL); 3204 3205 if (uproto == IPPROTO_TCP || *(int *)buf == 0) { 3206 /* 3207 * we ignore this option for TCP sockets. 3208 * (RFC3542 leaves this case unspecified.) 3209 */ 3210 opt->ip6po_flags &= ~IP6PO_DONTFRAG; 3211 } else 3212 opt->ip6po_flags |= IP6PO_DONTFRAG; 3213 break; 3214 3215 case IPV6_PREFER_TEMPADDR: 3216 if (len != sizeof(int)) 3217 return (EINVAL); 3218 preftemp = *(int *)buf; 3219 if (preftemp != IP6PO_TEMPADDR_SYSTEM && 3220 preftemp != IP6PO_TEMPADDR_NOTPREFER && 3221 preftemp != IP6PO_TEMPADDR_PREFER) { 3222 return (EINVAL); 3223 } 3224 opt->ip6po_prefer_tempaddr = preftemp; 3225 break; 3226 3227 default: 3228 return (ENOPROTOOPT); 3229 } /* end of switch */ 3230 3231 return (0); 3232 } 3233 3234 /* 3235 * Routine called from ip6_output() to loop back a copy of an IP6 multicast 3236 * packet to the input queue of a specified interface. Note that this 3237 * calls the output routine of the loopback "driver", but with an interface 3238 * pointer that might NOT be &loif -- easier than replicating that code here. 3239 */ 3240 void 3241 ip6_mloopback(struct ifnet *ifp, struct mbuf *m) 3242 { 3243 struct mbuf *copym; 3244 struct ip6_hdr *ip6; 3245 3246 copym = m_copym(m, 0, M_COPYALL, M_NOWAIT); 3247 if (copym == NULL) 3248 return; 3249 3250 /* 3251 * Make sure to deep-copy IPv6 header portion in case the data 3252 * is in an mbuf cluster, so that we can safely override the IPv6 3253 * header portion later. 3254 */ 3255 if (!M_WRITABLE(copym) || 3256 copym->m_len < sizeof(struct ip6_hdr)) { 3257 copym = m_pullup(copym, sizeof(struct ip6_hdr)); 3258 if (copym == NULL) 3259 return; 3260 } 3261 ip6 = mtod(copym, struct ip6_hdr *); 3262 /* 3263 * clear embedded scope identifiers if necessary. 3264 * in6_clearscope will touch the addresses only when necessary. 3265 */ 3266 in6_clearscope(&ip6->ip6_src); 3267 in6_clearscope(&ip6->ip6_dst); 3268 if (copym->m_pkthdr.csum_flags & CSUM_DELAY_DATA_IPV6) { 3269 copym->m_pkthdr.csum_flags |= CSUM_DATA_VALID_IPV6 | 3270 CSUM_PSEUDO_HDR; 3271 copym->m_pkthdr.csum_data = 0xffff; 3272 } 3273 if_simloop(ifp, copym, AF_INET6, 0); 3274 } 3275 3276 /* 3277 * Chop IPv6 header off from the payload. 3278 */ 3279 static int 3280 ip6_splithdr(struct mbuf *m, struct ip6_exthdrs *exthdrs) 3281 { 3282 struct mbuf *mh; 3283 struct ip6_hdr *ip6; 3284 3285 ip6 = mtod(m, struct ip6_hdr *); 3286 if (m->m_len > sizeof(*ip6)) { 3287 mh = m_gethdr(M_NOWAIT, MT_DATA); 3288 if (mh == NULL) { 3289 m_freem(m); 3290 return ENOBUFS; 3291 } 3292 m_move_pkthdr(mh, m); 3293 M_ALIGN(mh, sizeof(*ip6)); 3294 m->m_len -= sizeof(*ip6); 3295 m->m_data += sizeof(*ip6); 3296 mh->m_next = m; 3297 m = mh; 3298 m->m_len = sizeof(*ip6); 3299 bcopy((caddr_t)ip6, mtod(m, caddr_t), sizeof(*ip6)); 3300 } 3301 exthdrs->ip6e_ip6 = m; 3302 return 0; 3303 } 3304 3305 /* 3306 * Compute IPv6 extension header length. 3307 */ 3308 int 3309 ip6_optlen(struct inpcb *inp) 3310 { 3311 int len; 3312 3313 if (!inp->in6p_outputopts) 3314 return 0; 3315 3316 len = 0; 3317 #define elen(x) \ 3318 (((struct ip6_ext *)(x)) ? (((struct ip6_ext *)(x))->ip6e_len + 1) << 3 : 0) 3319 3320 len += elen(inp->in6p_outputopts->ip6po_hbh); 3321 if (inp->in6p_outputopts->ip6po_rthdr) 3322 /* dest1 is valid with rthdr only */ 3323 len += elen(inp->in6p_outputopts->ip6po_dest1); 3324 len += elen(inp->in6p_outputopts->ip6po_rthdr); 3325 len += elen(inp->in6p_outputopts->ip6po_dest2); 3326 return len; 3327 #undef elen 3328 } 3329