1 /*- 2 * SPDX-License-Identifier: BSD-3-Clause 3 * 4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1995 5 * The Regents of the University of California. 6 * Copyright (c) 2008 Robert N. M. Watson 7 * Copyright (c) 2010-2011 Juniper Networks, Inc. 8 * Copyright (c) 2014 Kevin Lo 9 * All rights reserved. 10 * 11 * Portions of this software were developed by Robert N. M. Watson under 12 * contract to Juniper Networks, Inc. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 3. Neither the name of the University nor the names of its contributors 23 * may be used to endorse or promote products derived from this software 24 * without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 27 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 28 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 29 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 30 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 31 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 32 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 33 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 34 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 35 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 36 * SUCH DAMAGE. 37 * 38 * @(#)udp_usrreq.c 8.6 (Berkeley) 5/23/95 39 */ 40 41 #include <sys/cdefs.h> 42 #include "opt_inet.h" 43 #include "opt_inet6.h" 44 #include "opt_ipsec.h" 45 #include "opt_route.h" 46 #include "opt_rss.h" 47 48 #include <sys/param.h> 49 #include <sys/domain.h> 50 #include <sys/eventhandler.h> 51 #include <sys/jail.h> 52 #include <sys/kernel.h> 53 #include <sys/lock.h> 54 #include <sys/malloc.h> 55 #include <sys/mbuf.h> 56 #include <sys/priv.h> 57 #include <sys/proc.h> 58 #include <sys/protosw.h> 59 #include <sys/sdt.h> 60 #include <sys/signalvar.h> 61 #include <sys/socket.h> 62 #include <sys/socketvar.h> 63 #include <sys/sx.h> 64 #include <sys/sysctl.h> 65 #include <sys/syslog.h> 66 #include <sys/systm.h> 67 68 #include <vm/uma.h> 69 70 #include <net/if.h> 71 #include <net/if_var.h> 72 #include <net/route.h> 73 #include <net/route/nhop.h> 74 #include <net/rss_config.h> 75 76 #include <netinet/in.h> 77 #include <netinet/in_kdtrace.h> 78 #include <netinet/in_fib.h> 79 #include <netinet/in_pcb.h> 80 #include <netinet/in_systm.h> 81 #include <netinet/in_var.h> 82 #include <netinet/ip.h> 83 #ifdef INET6 84 #include <netinet/ip6.h> 85 #endif 86 #include <netinet/ip_icmp.h> 87 #include <netinet/icmp_var.h> 88 #include <netinet/ip_var.h> 89 #include <netinet/ip_options.h> 90 #ifdef INET6 91 #include <netinet6/ip6_var.h> 92 #endif 93 #include <netinet/udp.h> 94 #include <netinet/udp_var.h> 95 #include <netinet/udplite.h> 96 #include <netinet/in_rss.h> 97 98 #include <netipsec/ipsec_support.h> 99 100 #include <machine/in_cksum.h> 101 102 #include <security/mac/mac_framework.h> 103 104 /* 105 * UDP and UDP-Lite protocols implementation. 106 * Per RFC 768, August, 1980. 107 * Per RFC 3828, July, 2004. 108 */ 109 110 /* 111 * BSD 4.2 defaulted the udp checksum to be off. Turning off udp checksums 112 * removes the only data integrity mechanism for packets and malformed 113 * packets that would otherwise be discarded due to bad checksums, and may 114 * cause problems (especially for NFS data blocks). 115 */ 116 VNET_DEFINE(int, udp_cksum) = 1; 117 SYSCTL_INT(_net_inet_udp, UDPCTL_CHECKSUM, checksum, CTLFLAG_VNET | CTLFLAG_RW, 118 &VNET_NAME(udp_cksum), 0, "compute udp checksum"); 119 120 VNET_DEFINE(int, udp_log_in_vain) = 0; 121 SYSCTL_INT(_net_inet_udp, OID_AUTO, log_in_vain, CTLFLAG_VNET | CTLFLAG_RW, 122 &VNET_NAME(udp_log_in_vain), 0, "Log all incoming UDP packets"); 123 124 VNET_DEFINE(int, udp_blackhole) = 0; 125 SYSCTL_INT(_net_inet_udp, OID_AUTO, blackhole, CTLFLAG_VNET | CTLFLAG_RW, 126 &VNET_NAME(udp_blackhole), 0, 127 "Do not send port unreachables for refused connects"); 128 VNET_DEFINE(bool, udp_blackhole_local) = false; 129 SYSCTL_BOOL(_net_inet_udp, OID_AUTO, blackhole_local, CTLFLAG_VNET | 130 CTLFLAG_RW, &VNET_NAME(udp_blackhole_local), false, 131 "Enforce net.inet.udp.blackhole for locally originated packets"); 132 133 u_long udp_sendspace = 9216; /* really max datagram size */ 134 SYSCTL_ULONG(_net_inet_udp, UDPCTL_MAXDGRAM, maxdgram, CTLFLAG_RW, 135 &udp_sendspace, 0, "Maximum outgoing UDP datagram size"); 136 137 u_long udp_recvspace = 40 * (1024 + 138 #ifdef INET6 139 sizeof(struct sockaddr_in6) 140 #else 141 sizeof(struct sockaddr_in) 142 #endif 143 ); /* 40 1K datagrams */ 144 145 SYSCTL_ULONG(_net_inet_udp, UDPCTL_RECVSPACE, recvspace, CTLFLAG_RW, 146 &udp_recvspace, 0, "Maximum space for incoming UDP datagrams"); 147 148 VNET_DEFINE(struct inpcbinfo, udbinfo); 149 VNET_DEFINE(struct inpcbinfo, ulitecbinfo); 150 151 #ifndef UDBHASHSIZE 152 #define UDBHASHSIZE 128 153 #endif 154 155 VNET_PCPUSTAT_DEFINE(struct udpstat, udpstat); /* from udp_var.h */ 156 VNET_PCPUSTAT_SYSINIT(udpstat); 157 SYSCTL_VNET_PCPUSTAT(_net_inet_udp, UDPCTL_STATS, stats, struct udpstat, 158 udpstat, "UDP statistics (struct udpstat, netinet/udp_var.h)"); 159 160 #ifdef VIMAGE 161 VNET_PCPUSTAT_SYSUNINIT(udpstat); 162 #endif /* VIMAGE */ 163 #ifdef INET 164 static void udp_detach(struct socket *so); 165 #endif 166 167 INPCBSTORAGE_DEFINE(udpcbstor, udpcb, "udpinp", "udp_inpcb", "udp", "udphash"); 168 INPCBSTORAGE_DEFINE(udplitecbstor, udpcb, "udpliteinp", "udplite_inpcb", 169 "udplite", "udplitehash"); 170 171 static void 172 udp_vnet_init(void *arg __unused) 173 { 174 175 /* 176 * For now default to 2-tuple UDP hashing - until the fragment 177 * reassembly code can also update the flowid. 178 * 179 * Once we can calculate the flowid that way and re-establish 180 * a 4-tuple, flip this to 4-tuple. 181 */ 182 in_pcbinfo_init(&V_udbinfo, &udpcbstor, UDBHASHSIZE, UDBHASHSIZE); 183 /* Additional pcbinfo for UDP-Lite */ 184 in_pcbinfo_init(&V_ulitecbinfo, &udplitecbstor, UDBHASHSIZE, 185 UDBHASHSIZE); 186 } 187 VNET_SYSINIT(udp_vnet_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, 188 udp_vnet_init, NULL); 189 190 /* 191 * Kernel module interface for updating udpstat. The argument is an index 192 * into udpstat treated as an array of u_long. While this encodes the 193 * general layout of udpstat into the caller, it doesn't encode its location, 194 * so that future changes to add, for example, per-CPU stats support won't 195 * cause binary compatibility problems for kernel modules. 196 */ 197 void 198 kmod_udpstat_inc(int statnum) 199 { 200 201 counter_u64_add(VNET(udpstat)[statnum], 1); 202 } 203 204 #ifdef VIMAGE 205 static void 206 udp_destroy(void *unused __unused) 207 { 208 209 in_pcbinfo_destroy(&V_udbinfo); 210 in_pcbinfo_destroy(&V_ulitecbinfo); 211 } 212 VNET_SYSUNINIT(udp, SI_SUB_PROTO_DOMAIN, SI_ORDER_FOURTH, udp_destroy, NULL); 213 #endif 214 215 #ifdef INET 216 /* 217 * Subroutine of udp_input(), which appends the provided mbuf chain to the 218 * passed pcb/socket. The caller must provide a sockaddr_in via udp_in that 219 * contains the source address. If the socket ends up being an IPv6 socket, 220 * udp_append() will convert to a sockaddr_in6 before passing the address 221 * into the socket code. 222 * 223 * In the normal case udp_append() will return 0, indicating that you 224 * must unlock the inp. However if a tunneling protocol is in place we increment 225 * the inpcb refcnt and unlock the inp, on return from the tunneling protocol we 226 * then decrement the reference count. If the inp_rele returns 1, indicating the 227 * inp is gone, we return that to the caller to tell them *not* to unlock 228 * the inp. In the case of multi-cast this will cause the distribution 229 * to stop (though most tunneling protocols known currently do *not* use 230 * multicast). 231 */ 232 static int 233 udp_append(struct inpcb *inp, struct ip *ip, struct mbuf *n, int off, 234 struct sockaddr_in *udp_in) 235 { 236 struct sockaddr *append_sa; 237 struct socket *so; 238 struct mbuf *tmpopts, *opts = NULL; 239 #ifdef INET6 240 struct sockaddr_in6 udp_in6; 241 #endif 242 struct udpcb *up; 243 bool filtered; 244 245 INP_LOCK_ASSERT(inp); 246 247 /* 248 * Engage the tunneling protocol. 249 */ 250 up = intoudpcb(inp); 251 if (up->u_tun_func != NULL) { 252 in_pcbref(inp); 253 INP_RUNLOCK(inp); 254 filtered = (*up->u_tun_func)(n, off, inp, (struct sockaddr *)&udp_in[0], 255 up->u_tun_ctx); 256 INP_RLOCK(inp); 257 if (filtered) 258 return (in_pcbrele_rlocked(inp)); 259 } 260 261 off += sizeof(struct udphdr); 262 263 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 264 /* Check AH/ESP integrity. */ 265 if (IPSEC_ENABLED(ipv4) && 266 IPSEC_CHECK_POLICY(ipv4, n, inp) != 0) { 267 m_freem(n); 268 return (0); 269 } 270 if (up->u_flags & UF_ESPINUDP) {/* IPSec UDP encaps. */ 271 if (IPSEC_ENABLED(ipv4) && 272 UDPENCAP_INPUT(n, off, AF_INET) != 0) 273 return (0); /* Consumed. */ 274 } 275 #endif /* IPSEC */ 276 #ifdef MAC 277 if (mac_inpcb_check_deliver(inp, n) != 0) { 278 m_freem(n); 279 return (0); 280 } 281 #endif /* MAC */ 282 if (inp->inp_flags & INP_CONTROLOPTS || 283 inp->inp_socket->so_options & (SO_TIMESTAMP | SO_BINTIME)) { 284 #ifdef INET6 285 if (inp->inp_vflag & INP_IPV6) 286 (void)ip6_savecontrol_v4(inp, n, &opts, NULL); 287 else 288 #endif /* INET6 */ 289 ip_savecontrol(inp, &opts, ip, n); 290 } 291 if ((inp->inp_vflag & INP_IPV4) && (inp->inp_flags2 & INP_ORIGDSTADDR)) { 292 tmpopts = sbcreatecontrol(&udp_in[1], 293 sizeof(struct sockaddr_in), IP_ORIGDSTADDR, IPPROTO_IP, 294 M_NOWAIT); 295 if (tmpopts) { 296 if (opts) { 297 tmpopts->m_next = opts; 298 opts = tmpopts; 299 } else 300 opts = tmpopts; 301 } 302 } 303 #ifdef INET6 304 if (inp->inp_vflag & INP_IPV6) { 305 bzero(&udp_in6, sizeof(udp_in6)); 306 udp_in6.sin6_len = sizeof(udp_in6); 307 udp_in6.sin6_family = AF_INET6; 308 in6_sin_2_v4mapsin6(&udp_in[0], &udp_in6); 309 append_sa = (struct sockaddr *)&udp_in6; 310 } else 311 #endif /* INET6 */ 312 append_sa = (struct sockaddr *)&udp_in[0]; 313 m_adj(n, off); 314 315 so = inp->inp_socket; 316 SOCKBUF_LOCK(&so->so_rcv); 317 if (sbappendaddr_locked(&so->so_rcv, append_sa, n, opts) == 0) { 318 soroverflow_locked(so); 319 m_freem(n); 320 if (opts) 321 m_freem(opts); 322 UDPSTAT_INC(udps_fullsock); 323 } else 324 sorwakeup_locked(so); 325 return (0); 326 } 327 328 static bool 329 udp_multi_match(const struct inpcb *inp, void *v) 330 { 331 struct ip *ip = v; 332 struct udphdr *uh = (struct udphdr *)(ip + 1); 333 334 if (inp->inp_lport != uh->uh_dport) 335 return (false); 336 #ifdef INET6 337 if ((inp->inp_vflag & INP_IPV4) == 0) 338 return (false); 339 #endif 340 if (inp->inp_laddr.s_addr != INADDR_ANY && 341 inp->inp_laddr.s_addr != ip->ip_dst.s_addr) 342 return (false); 343 if (inp->inp_faddr.s_addr != INADDR_ANY && 344 inp->inp_faddr.s_addr != ip->ip_src.s_addr) 345 return (false); 346 if (inp->inp_fport != 0 && 347 inp->inp_fport != uh->uh_sport) 348 return (false); 349 350 return (true); 351 } 352 353 static int 354 udp_multi_input(struct mbuf *m, int proto, struct sockaddr_in *udp_in) 355 { 356 struct ip *ip = mtod(m, struct ip *); 357 struct inpcb_iterator inpi = INP_ITERATOR(udp_get_inpcbinfo(proto), 358 INPLOOKUP_RLOCKPCB, udp_multi_match, ip); 359 #ifdef KDTRACE_HOOKS 360 struct udphdr *uh = (struct udphdr *)(ip + 1); 361 #endif 362 struct inpcb *inp; 363 struct mbuf *n; 364 int appends = 0; 365 366 MPASS(ip->ip_hl == sizeof(struct ip) >> 2); 367 368 while ((inp = inp_next(&inpi)) != NULL) { 369 /* 370 * XXXRW: Because we weren't holding either the inpcb 371 * or the hash lock when we checked for a match 372 * before, we should probably recheck now that the 373 * inpcb lock is held. 374 */ 375 /* 376 * Handle socket delivery policy for any-source 377 * and source-specific multicast. [RFC3678] 378 */ 379 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) { 380 struct ip_moptions *imo; 381 struct sockaddr_in group; 382 int blocked; 383 384 imo = inp->inp_moptions; 385 if (imo == NULL) 386 continue; 387 bzero(&group, sizeof(struct sockaddr_in)); 388 group.sin_len = sizeof(struct sockaddr_in); 389 group.sin_family = AF_INET; 390 group.sin_addr = ip->ip_dst; 391 392 blocked = imo_multi_filter(imo, m->m_pkthdr.rcvif, 393 (struct sockaddr *)&group, 394 (struct sockaddr *)&udp_in[0]); 395 if (blocked != MCAST_PASS) { 396 if (blocked == MCAST_NOTGMEMBER) 397 IPSTAT_INC(ips_notmember); 398 if (blocked == MCAST_NOTSMEMBER || 399 blocked == MCAST_MUTED) 400 UDPSTAT_INC(udps_filtermcast); 401 continue; 402 } 403 } 404 if ((n = m_copym(m, 0, M_COPYALL, M_NOWAIT)) != NULL) { 405 if (proto == IPPROTO_UDPLITE) 406 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 407 else 408 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 409 if (udp_append(inp, ip, n, sizeof(struct ip), udp_in)) { 410 break; 411 } else 412 appends++; 413 } 414 /* 415 * Don't look for additional matches if this one does 416 * not have either the SO_REUSEPORT or SO_REUSEADDR 417 * socket options set. This heuristic avoids 418 * searching through all pcbs in the common case of a 419 * non-shared port. It assumes that an application 420 * will never clear these options after setting them. 421 */ 422 if ((inp->inp_socket->so_options & 423 (SO_REUSEPORT|SO_REUSEPORT_LB|SO_REUSEADDR)) == 0) { 424 INP_RUNLOCK(inp); 425 break; 426 } 427 } 428 429 if (appends == 0) { 430 /* 431 * No matching pcb found; discard datagram. (No need 432 * to send an ICMP Port Unreachable for a broadcast 433 * or multicast datgram.) 434 */ 435 UDPSTAT_INC(udps_noport); 436 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr))) 437 UDPSTAT_INC(udps_noportmcast); 438 else 439 UDPSTAT_INC(udps_noportbcast); 440 } 441 m_freem(m); 442 443 return (IPPROTO_DONE); 444 } 445 446 static int 447 udp_input(struct mbuf **mp, int *offp, int proto) 448 { 449 struct ip *ip; 450 struct udphdr *uh; 451 struct ifnet *ifp; 452 struct inpcb *inp; 453 uint16_t len, ip_len; 454 struct inpcbinfo *pcbinfo; 455 struct sockaddr_in udp_in[2]; 456 struct mbuf *m; 457 struct m_tag *fwd_tag; 458 int cscov_partial, iphlen; 459 460 m = *mp; 461 iphlen = *offp; 462 ifp = m->m_pkthdr.rcvif; 463 *mp = NULL; 464 UDPSTAT_INC(udps_ipackets); 465 466 /* 467 * Strip IP options, if any; should skip this, make available to 468 * user, and use on returned packets, but we don't yet have a way to 469 * check the checksum with options still present. 470 */ 471 if (iphlen > sizeof (struct ip)) { 472 ip_stripoptions(m); 473 iphlen = sizeof(struct ip); 474 } 475 476 /* 477 * Get IP and UDP header together in first mbuf. 478 */ 479 if (m->m_len < iphlen + sizeof(struct udphdr)) { 480 if ((m = m_pullup(m, iphlen + sizeof(struct udphdr))) == NULL) { 481 UDPSTAT_INC(udps_hdrops); 482 return (IPPROTO_DONE); 483 } 484 } 485 ip = mtod(m, struct ip *); 486 uh = (struct udphdr *)((caddr_t)ip + iphlen); 487 cscov_partial = (proto == IPPROTO_UDPLITE) ? 1 : 0; 488 489 /* 490 * Destination port of 0 is illegal, based on RFC768. 491 */ 492 if (uh->uh_dport == 0) 493 goto badunlocked; 494 495 /* 496 * Construct sockaddr format source address. Stuff source address 497 * and datagram in user buffer. 498 */ 499 bzero(&udp_in[0], sizeof(struct sockaddr_in) * 2); 500 udp_in[0].sin_len = sizeof(struct sockaddr_in); 501 udp_in[0].sin_family = AF_INET; 502 udp_in[0].sin_port = uh->uh_sport; 503 udp_in[0].sin_addr = ip->ip_src; 504 udp_in[1].sin_len = sizeof(struct sockaddr_in); 505 udp_in[1].sin_family = AF_INET; 506 udp_in[1].sin_port = uh->uh_dport; 507 udp_in[1].sin_addr = ip->ip_dst; 508 509 /* 510 * Make mbuf data length reflect UDP length. If not enough data to 511 * reflect UDP length, drop. 512 */ 513 len = ntohs((u_short)uh->uh_ulen); 514 ip_len = ntohs(ip->ip_len) - iphlen; 515 if (proto == IPPROTO_UDPLITE && (len == 0 || len == ip_len)) { 516 /* Zero means checksum over the complete packet. */ 517 if (len == 0) 518 len = ip_len; 519 cscov_partial = 0; 520 } 521 if (ip_len != len) { 522 if (len > ip_len || len < sizeof(struct udphdr)) { 523 UDPSTAT_INC(udps_badlen); 524 goto badunlocked; 525 } 526 if (proto == IPPROTO_UDP) 527 m_adj(m, len - ip_len); 528 } 529 530 /* 531 * Checksum extended UDP header and data. 532 */ 533 if (uh->uh_sum) { 534 u_short uh_sum; 535 536 if ((m->m_pkthdr.csum_flags & CSUM_DATA_VALID) && 537 !cscov_partial) { 538 if (m->m_pkthdr.csum_flags & CSUM_PSEUDO_HDR) 539 uh_sum = m->m_pkthdr.csum_data; 540 else 541 uh_sum = in_pseudo(ip->ip_src.s_addr, 542 ip->ip_dst.s_addr, htonl((u_short)len + 543 m->m_pkthdr.csum_data + proto)); 544 uh_sum ^= 0xffff; 545 } else { 546 char b[offsetof(struct ipovly, ih_src)]; 547 struct ipovly *ipov = (struct ipovly *)ip; 548 549 bcopy(ipov, b, sizeof(b)); 550 bzero(ipov, sizeof(ipov->ih_x1)); 551 ipov->ih_len = (proto == IPPROTO_UDP) ? 552 uh->uh_ulen : htons(ip_len); 553 uh_sum = in_cksum(m, len + sizeof (struct ip)); 554 bcopy(b, ipov, sizeof(b)); 555 } 556 if (uh_sum) { 557 UDPSTAT_INC(udps_badsum); 558 m_freem(m); 559 return (IPPROTO_DONE); 560 } 561 } else { 562 if (proto == IPPROTO_UDP) { 563 UDPSTAT_INC(udps_nosum); 564 } else { 565 /* UDPLite requires a checksum */ 566 /* XXX: What is the right UDPLite MIB counter here? */ 567 m_freem(m); 568 return (IPPROTO_DONE); 569 } 570 } 571 572 if (IN_MULTICAST(ntohl(ip->ip_dst.s_addr)) || 573 in_broadcast(ip->ip_dst, ifp)) 574 return (udp_multi_input(m, proto, udp_in)); 575 576 pcbinfo = udp_get_inpcbinfo(proto); 577 578 /* 579 * Locate pcb for datagram. 580 * 581 * Grab info from PACKET_TAG_IPFORWARD tag prepended to the chain. 582 */ 583 if ((m->m_flags & M_IP_NEXTHOP) && 584 (fwd_tag = m_tag_find(m, PACKET_TAG_IPFORWARD, NULL)) != NULL) { 585 struct sockaddr_in *next_hop; 586 587 next_hop = (struct sockaddr_in *)(fwd_tag + 1); 588 589 /* 590 * Transparently forwarded. Pretend to be the destination. 591 * Already got one like this? 592 */ 593 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 594 ip->ip_dst, uh->uh_dport, INPLOOKUP_RLOCKPCB, ifp, m); 595 if (!inp) { 596 /* 597 * It's new. Try to find the ambushing socket. 598 * Because we've rewritten the destination address, 599 * any hardware-generated hash is ignored. 600 */ 601 inp = in_pcblookup(pcbinfo, ip->ip_src, 602 uh->uh_sport, next_hop->sin_addr, 603 next_hop->sin_port ? htons(next_hop->sin_port) : 604 uh->uh_dport, INPLOOKUP_WILDCARD | 605 INPLOOKUP_RLOCKPCB, ifp); 606 } 607 /* Remove the tag from the packet. We don't need it anymore. */ 608 m_tag_delete(m, fwd_tag); 609 m->m_flags &= ~M_IP_NEXTHOP; 610 } else 611 inp = in_pcblookup_mbuf(pcbinfo, ip->ip_src, uh->uh_sport, 612 ip->ip_dst, uh->uh_dport, INPLOOKUP_WILDCARD | 613 INPLOOKUP_RLOCKPCB, ifp, m); 614 if (inp == NULL) { 615 if (V_udp_log_in_vain) { 616 char src[INET_ADDRSTRLEN]; 617 char dst[INET_ADDRSTRLEN]; 618 619 log(LOG_INFO, 620 "Connection attempt to UDP %s:%d from %s:%d\n", 621 inet_ntoa_r(ip->ip_dst, dst), ntohs(uh->uh_dport), 622 inet_ntoa_r(ip->ip_src, src), ntohs(uh->uh_sport)); 623 } 624 if (proto == IPPROTO_UDPLITE) 625 UDPLITE_PROBE(receive, NULL, NULL, ip, NULL, uh); 626 else 627 UDP_PROBE(receive, NULL, NULL, ip, NULL, uh); 628 UDPSTAT_INC(udps_noport); 629 if (m->m_flags & (M_BCAST | M_MCAST)) { 630 UDPSTAT_INC(udps_noportbcast); 631 goto badunlocked; 632 } 633 if (V_udp_blackhole && (V_udp_blackhole_local || 634 !in_localip(ip->ip_src))) 635 goto badunlocked; 636 if (badport_bandlim(BANDLIM_ICMP_UNREACH) < 0) 637 goto badunlocked; 638 icmp_error(m, ICMP_UNREACH, ICMP_UNREACH_PORT, 0, 0); 639 return (IPPROTO_DONE); 640 } 641 642 /* 643 * Check the minimum TTL for socket. 644 */ 645 INP_RLOCK_ASSERT(inp); 646 if (inp->inp_ip_minttl && inp->inp_ip_minttl > ip->ip_ttl) { 647 if (proto == IPPROTO_UDPLITE) 648 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 649 else 650 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 651 INP_RUNLOCK(inp); 652 m_freem(m); 653 return (IPPROTO_DONE); 654 } 655 if (cscov_partial) { 656 struct udpcb *up; 657 658 up = intoudpcb(inp); 659 if (up->u_rxcslen == 0 || up->u_rxcslen > len) { 660 INP_RUNLOCK(inp); 661 m_freem(m); 662 return (IPPROTO_DONE); 663 } 664 } 665 666 if (proto == IPPROTO_UDPLITE) 667 UDPLITE_PROBE(receive, NULL, inp, ip, inp, uh); 668 else 669 UDP_PROBE(receive, NULL, inp, ip, inp, uh); 670 if (udp_append(inp, ip, m, iphlen, udp_in) == 0) 671 INP_RUNLOCK(inp); 672 return (IPPROTO_DONE); 673 674 badunlocked: 675 m_freem(m); 676 return (IPPROTO_DONE); 677 } 678 #endif /* INET */ 679 680 /* 681 * Notify a udp user of an asynchronous error; just wake up so that they can 682 * collect error status. 683 */ 684 struct inpcb * 685 udp_notify(struct inpcb *inp, int errno) 686 { 687 688 INP_WLOCK_ASSERT(inp); 689 if ((errno == EHOSTUNREACH || errno == ENETUNREACH || 690 errno == EHOSTDOWN) && inp->inp_route.ro_nh) { 691 NH_FREE(inp->inp_route.ro_nh); 692 inp->inp_route.ro_nh = (struct nhop_object *)NULL; 693 } 694 695 inp->inp_socket->so_error = errno; 696 sorwakeup(inp->inp_socket); 697 sowwakeup(inp->inp_socket); 698 return (inp); 699 } 700 701 #ifdef INET 702 static void 703 udp_common_ctlinput(struct icmp *icmp, struct inpcbinfo *pcbinfo) 704 { 705 struct ip *ip = &icmp->icmp_ip; 706 struct udphdr *uh; 707 struct inpcb *inp; 708 709 if (icmp_errmap(icmp) == 0) 710 return; 711 712 uh = (struct udphdr *)((caddr_t)ip + (ip->ip_hl << 2)); 713 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, ip->ip_src, 714 uh->uh_sport, INPLOOKUP_WLOCKPCB, NULL); 715 if (inp != NULL) { 716 INP_WLOCK_ASSERT(inp); 717 if (inp->inp_socket != NULL) 718 udp_notify(inp, icmp_errmap(icmp)); 719 INP_WUNLOCK(inp); 720 } else { 721 inp = in_pcblookup(pcbinfo, ip->ip_dst, uh->uh_dport, 722 ip->ip_src, uh->uh_sport, 723 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 724 if (inp != NULL) { 725 struct udpcb *up; 726 udp_tun_icmp_t *func; 727 728 up = intoudpcb(inp); 729 func = up->u_icmp_func; 730 INP_RUNLOCK(inp); 731 if (func != NULL) 732 func(icmp); 733 } 734 } 735 } 736 737 static void 738 udp_ctlinput(struct icmp *icmp) 739 { 740 741 return (udp_common_ctlinput(icmp, &V_udbinfo)); 742 } 743 744 static void 745 udplite_ctlinput(struct icmp *icmp) 746 { 747 748 return (udp_common_ctlinput(icmp, &V_ulitecbinfo)); 749 } 750 #endif /* INET */ 751 752 static int 753 udp_pcblist(SYSCTL_HANDLER_ARGS) 754 { 755 struct inpcb_iterator inpi = INP_ALL_ITERATOR(&V_udbinfo, 756 INPLOOKUP_RLOCKPCB); 757 struct xinpgen xig; 758 struct inpcb *inp; 759 int error; 760 761 if (req->newptr != 0) 762 return (EPERM); 763 764 if (req->oldptr == 0) { 765 int n; 766 767 n = V_udbinfo.ipi_count; 768 n += imax(n / 8, 10); 769 req->oldidx = 2 * (sizeof xig) + n * sizeof(struct xinpcb); 770 return (0); 771 } 772 773 if ((error = sysctl_wire_old_buffer(req, 0)) != 0) 774 return (error); 775 776 bzero(&xig, sizeof(xig)); 777 xig.xig_len = sizeof xig; 778 xig.xig_count = V_udbinfo.ipi_count; 779 xig.xig_gen = V_udbinfo.ipi_gencnt; 780 xig.xig_sogen = so_gencnt; 781 error = SYSCTL_OUT(req, &xig, sizeof xig); 782 if (error) 783 return (error); 784 785 while ((inp = inp_next(&inpi)) != NULL) { 786 if (inp->inp_gencnt <= xig.xig_gen && 787 cr_canseeinpcb(req->td->td_ucred, inp) == 0) { 788 struct xinpcb xi; 789 790 in_pcbtoxinpcb(inp, &xi); 791 error = SYSCTL_OUT(req, &xi, sizeof xi); 792 if (error) { 793 INP_RUNLOCK(inp); 794 break; 795 } 796 } 797 } 798 799 if (!error) { 800 /* 801 * Give the user an updated idea of our state. If the 802 * generation differs from what we told her before, she knows 803 * that something happened while we were processing this 804 * request, and it might be necessary to retry. 805 */ 806 xig.xig_gen = V_udbinfo.ipi_gencnt; 807 xig.xig_sogen = so_gencnt; 808 xig.xig_count = V_udbinfo.ipi_count; 809 error = SYSCTL_OUT(req, &xig, sizeof xig); 810 } 811 812 return (error); 813 } 814 815 SYSCTL_PROC(_net_inet_udp, UDPCTL_PCBLIST, pcblist, 816 CTLTYPE_OPAQUE | CTLFLAG_RD | CTLFLAG_MPSAFE, NULL, 0, 817 udp_pcblist, "S,xinpcb", 818 "List of active UDP sockets"); 819 820 #ifdef INET 821 static int 822 udp_getcred(SYSCTL_HANDLER_ARGS) 823 { 824 struct xucred xuc; 825 struct sockaddr_in addrs[2]; 826 struct epoch_tracker et; 827 struct inpcb *inp; 828 int error; 829 830 error = priv_check(req->td, PRIV_NETINET_GETCRED); 831 if (error) 832 return (error); 833 error = SYSCTL_IN(req, addrs, sizeof(addrs)); 834 if (error) 835 return (error); 836 NET_EPOCH_ENTER(et); 837 inp = in_pcblookup(&V_udbinfo, addrs[1].sin_addr, addrs[1].sin_port, 838 addrs[0].sin_addr, addrs[0].sin_port, 839 INPLOOKUP_WILDCARD | INPLOOKUP_RLOCKPCB, NULL); 840 NET_EPOCH_EXIT(et); 841 if (inp != NULL) { 842 INP_RLOCK_ASSERT(inp); 843 if (inp->inp_socket == NULL) 844 error = ENOENT; 845 if (error == 0) 846 error = cr_canseeinpcb(req->td->td_ucred, inp); 847 if (error == 0) 848 cru2x(inp->inp_cred, &xuc); 849 INP_RUNLOCK(inp); 850 } else 851 error = ENOENT; 852 if (error == 0) 853 error = SYSCTL_OUT(req, &xuc, sizeof(struct xucred)); 854 return (error); 855 } 856 857 SYSCTL_PROC(_net_inet_udp, OID_AUTO, getcred, 858 CTLTYPE_OPAQUE | CTLFLAG_RW | CTLFLAG_PRISON | CTLFLAG_MPSAFE, 859 0, 0, udp_getcred, "S,xucred", 860 "Get the xucred of a UDP connection"); 861 #endif /* INET */ 862 863 int 864 udp_ctloutput(struct socket *so, struct sockopt *sopt) 865 { 866 struct inpcb *inp; 867 struct udpcb *up; 868 int isudplite, error, optval; 869 870 error = 0; 871 isudplite = (so->so_proto->pr_protocol == IPPROTO_UDPLITE) ? 1 : 0; 872 inp = sotoinpcb(so); 873 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 874 INP_WLOCK(inp); 875 if (sopt->sopt_level != so->so_proto->pr_protocol) { 876 #ifdef INET6 877 if (INP_CHECK_SOCKAF(so, AF_INET6)) { 878 INP_WUNLOCK(inp); 879 error = ip6_ctloutput(so, sopt); 880 } 881 #endif 882 #if defined(INET) && defined(INET6) 883 else 884 #endif 885 #ifdef INET 886 { 887 INP_WUNLOCK(inp); 888 error = ip_ctloutput(so, sopt); 889 } 890 #endif 891 return (error); 892 } 893 894 switch (sopt->sopt_dir) { 895 case SOPT_SET: 896 switch (sopt->sopt_name) { 897 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 898 #ifdef INET 899 case UDP_ENCAP: 900 if (!IPSEC_ENABLED(ipv4)) { 901 INP_WUNLOCK(inp); 902 return (ENOPROTOOPT); 903 } 904 error = UDPENCAP_PCBCTL(inp, sopt); 905 break; 906 #endif /* INET */ 907 #endif /* IPSEC */ 908 case UDPLITE_SEND_CSCOV: 909 case UDPLITE_RECV_CSCOV: 910 if (!isudplite) { 911 INP_WUNLOCK(inp); 912 error = ENOPROTOOPT; 913 break; 914 } 915 INP_WUNLOCK(inp); 916 error = sooptcopyin(sopt, &optval, sizeof(optval), 917 sizeof(optval)); 918 if (error != 0) 919 break; 920 inp = sotoinpcb(so); 921 KASSERT(inp != NULL, ("%s: inp == NULL", __func__)); 922 INP_WLOCK(inp); 923 up = intoudpcb(inp); 924 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 925 if ((optval != 0 && optval < 8) || (optval > 65535)) { 926 INP_WUNLOCK(inp); 927 error = EINVAL; 928 break; 929 } 930 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 931 up->u_txcslen = optval; 932 else 933 up->u_rxcslen = optval; 934 INP_WUNLOCK(inp); 935 break; 936 default: 937 INP_WUNLOCK(inp); 938 error = ENOPROTOOPT; 939 break; 940 } 941 break; 942 case SOPT_GET: 943 switch (sopt->sopt_name) { 944 #if defined(IPSEC) || defined(IPSEC_SUPPORT) 945 #ifdef INET 946 case UDP_ENCAP: 947 if (!IPSEC_ENABLED(ipv4)) { 948 INP_WUNLOCK(inp); 949 return (ENOPROTOOPT); 950 } 951 error = UDPENCAP_PCBCTL(inp, sopt); 952 break; 953 #endif /* INET */ 954 #endif /* IPSEC */ 955 case UDPLITE_SEND_CSCOV: 956 case UDPLITE_RECV_CSCOV: 957 if (!isudplite) { 958 INP_WUNLOCK(inp); 959 error = ENOPROTOOPT; 960 break; 961 } 962 up = intoudpcb(inp); 963 KASSERT(up != NULL, ("%s: up == NULL", __func__)); 964 if (sopt->sopt_name == UDPLITE_SEND_CSCOV) 965 optval = up->u_txcslen; 966 else 967 optval = up->u_rxcslen; 968 INP_WUNLOCK(inp); 969 error = sooptcopyout(sopt, &optval, sizeof(optval)); 970 break; 971 default: 972 INP_WUNLOCK(inp); 973 error = ENOPROTOOPT; 974 break; 975 } 976 break; 977 } 978 return (error); 979 } 980 981 #ifdef INET 982 #ifdef INET6 983 /* The logic here is derived from ip6_setpktopt(). See comments there. */ 984 static int 985 udp_v4mapped_pktinfo(struct cmsghdr *cm, struct sockaddr_in * src, 986 struct inpcb *inp, int flags) 987 { 988 struct ifnet *ifp; 989 struct in6_pktinfo *pktinfo; 990 struct in_addr ia; 991 992 if ((flags & PRUS_IPV6) == 0) 993 return (0); 994 995 if (cm->cmsg_level != IPPROTO_IPV6) 996 return (0); 997 998 if (cm->cmsg_type != IPV6_2292PKTINFO && 999 cm->cmsg_type != IPV6_PKTINFO) 1000 return (0); 1001 1002 if (cm->cmsg_len != 1003 CMSG_LEN(sizeof(struct in6_pktinfo))) 1004 return (EINVAL); 1005 1006 pktinfo = (struct in6_pktinfo *)CMSG_DATA(cm); 1007 if (!IN6_IS_ADDR_V4MAPPED(&pktinfo->ipi6_addr) && 1008 !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) 1009 return (EINVAL); 1010 1011 /* Validate the interface index if specified. */ 1012 if (pktinfo->ipi6_ifindex) { 1013 struct epoch_tracker et; 1014 1015 NET_EPOCH_ENTER(et); 1016 ifp = ifnet_byindex(pktinfo->ipi6_ifindex); 1017 NET_EPOCH_EXIT(et); /* XXXGL: unsafe ifp */ 1018 if (ifp == NULL) 1019 return (ENXIO); 1020 } else 1021 ifp = NULL; 1022 if (ifp != NULL && !IN6_IS_ADDR_UNSPECIFIED(&pktinfo->ipi6_addr)) { 1023 ia.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1024 if (in_ifhasaddr(ifp, ia) == 0) 1025 return (EADDRNOTAVAIL); 1026 } 1027 1028 bzero(src, sizeof(*src)); 1029 src->sin_family = AF_INET; 1030 src->sin_len = sizeof(*src); 1031 src->sin_port = inp->inp_lport; 1032 src->sin_addr.s_addr = pktinfo->ipi6_addr.s6_addr32[3]; 1033 1034 return (0); 1035 } 1036 #endif /* INET6 */ 1037 1038 int 1039 udp_send(struct socket *so, int flags, struct mbuf *m, struct sockaddr *addr, 1040 struct mbuf *control, struct thread *td) 1041 { 1042 struct inpcb *inp; 1043 struct udpiphdr *ui; 1044 int len, error = 0; 1045 struct in_addr faddr, laddr; 1046 struct cmsghdr *cm; 1047 struct inpcbinfo *pcbinfo; 1048 struct sockaddr_in *sin, src; 1049 struct epoch_tracker et; 1050 int cscov_partial = 0; 1051 int ipflags = 0; 1052 u_short fport, lport; 1053 u_char tos, vflagsav; 1054 uint8_t pr; 1055 uint16_t cscov = 0; 1056 uint32_t flowid = 0; 1057 uint8_t flowtype = M_HASHTYPE_NONE; 1058 1059 inp = sotoinpcb(so); 1060 KASSERT(inp != NULL, ("udp_send: inp == NULL")); 1061 1062 if (addr != NULL) { 1063 if (addr->sa_family != AF_INET) 1064 error = EAFNOSUPPORT; 1065 else if (addr->sa_len != sizeof(struct sockaddr_in)) 1066 error = EINVAL; 1067 if (__predict_false(error != 0)) { 1068 m_freem(control); 1069 m_freem(m); 1070 return (error); 1071 } 1072 } 1073 1074 len = m->m_pkthdr.len; 1075 if (len + sizeof(struct udpiphdr) > IP_MAXPACKET) { 1076 if (control) 1077 m_freem(control); 1078 m_freem(m); 1079 return (EMSGSIZE); 1080 } 1081 1082 src.sin_family = 0; 1083 sin = (struct sockaddr_in *)addr; 1084 1085 /* 1086 * udp_send() may need to temporarily bind or connect the current 1087 * inpcb. As such, we don't know up front whether we will need the 1088 * pcbinfo lock or not. Do any work to decide what is needed up 1089 * front before acquiring any locks. 1090 * 1091 * We will need network epoch in either case, to safely lookup into 1092 * pcb hash. 1093 */ 1094 if (sin == NULL || 1095 (inp->inp_laddr.s_addr == INADDR_ANY && inp->inp_lport == 0) || 1096 (flags & PRUS_IPV6) != 0) 1097 INP_WLOCK(inp); 1098 else 1099 INP_RLOCK(inp); 1100 NET_EPOCH_ENTER(et); 1101 tos = inp->inp_ip_tos; 1102 if (control != NULL) { 1103 /* 1104 * XXX: Currently, we assume all the optional information is 1105 * stored in a single mbuf. 1106 */ 1107 if (control->m_next) { 1108 m_freem(control); 1109 error = EINVAL; 1110 goto release; 1111 } 1112 for (; control->m_len > 0; 1113 control->m_data += CMSG_ALIGN(cm->cmsg_len), 1114 control->m_len -= CMSG_ALIGN(cm->cmsg_len)) { 1115 cm = mtod(control, struct cmsghdr *); 1116 if (control->m_len < sizeof(*cm) || cm->cmsg_len == 0 1117 || cm->cmsg_len > control->m_len) { 1118 error = EINVAL; 1119 break; 1120 } 1121 #ifdef INET6 1122 error = udp_v4mapped_pktinfo(cm, &src, inp, flags); 1123 if (error != 0) 1124 break; 1125 #endif 1126 if (cm->cmsg_level != IPPROTO_IP) 1127 continue; 1128 1129 switch (cm->cmsg_type) { 1130 case IP_SENDSRCADDR: 1131 if (cm->cmsg_len != 1132 CMSG_LEN(sizeof(struct in_addr))) { 1133 error = EINVAL; 1134 break; 1135 } 1136 bzero(&src, sizeof(src)); 1137 src.sin_family = AF_INET; 1138 src.sin_len = sizeof(src); 1139 src.sin_port = inp->inp_lport; 1140 src.sin_addr = 1141 *(struct in_addr *)CMSG_DATA(cm); 1142 break; 1143 1144 case IP_TOS: 1145 if (cm->cmsg_len != CMSG_LEN(sizeof(u_char))) { 1146 error = EINVAL; 1147 break; 1148 } 1149 tos = *(u_char *)CMSG_DATA(cm); 1150 break; 1151 1152 case IP_FLOWID: 1153 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1154 error = EINVAL; 1155 break; 1156 } 1157 flowid = *(uint32_t *) CMSG_DATA(cm); 1158 break; 1159 1160 case IP_FLOWTYPE: 1161 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1162 error = EINVAL; 1163 break; 1164 } 1165 flowtype = *(uint32_t *) CMSG_DATA(cm); 1166 break; 1167 1168 #ifdef RSS 1169 case IP_RSSBUCKETID: 1170 if (cm->cmsg_len != CMSG_LEN(sizeof(uint32_t))) { 1171 error = EINVAL; 1172 break; 1173 } 1174 /* This is just a placeholder for now */ 1175 break; 1176 #endif /* RSS */ 1177 default: 1178 error = ENOPROTOOPT; 1179 break; 1180 } 1181 if (error) 1182 break; 1183 } 1184 m_freem(control); 1185 control = NULL; 1186 } 1187 if (error) 1188 goto release; 1189 1190 pr = inp->inp_socket->so_proto->pr_protocol; 1191 pcbinfo = udp_get_inpcbinfo(pr); 1192 1193 /* 1194 * If the IP_SENDSRCADDR control message was specified, override the 1195 * source address for this datagram. Its use is invalidated if the 1196 * address thus specified is incomplete or clobbers other inpcbs. 1197 */ 1198 laddr = inp->inp_laddr; 1199 lport = inp->inp_lport; 1200 if (src.sin_family == AF_INET) { 1201 if ((lport == 0) || 1202 (laddr.s_addr == INADDR_ANY && 1203 src.sin_addr.s_addr == INADDR_ANY)) { 1204 error = EINVAL; 1205 goto release; 1206 } 1207 if ((flags & PRUS_IPV6) != 0) { 1208 vflagsav = inp->inp_vflag; 1209 inp->inp_vflag |= INP_IPV4; 1210 inp->inp_vflag &= ~INP_IPV6; 1211 } 1212 INP_HASH_WLOCK(pcbinfo); 1213 error = in_pcbbind_setup(inp, &src, &laddr.s_addr, &lport, 1214 td->td_ucred); 1215 INP_HASH_WUNLOCK(pcbinfo); 1216 if ((flags & PRUS_IPV6) != 0) 1217 inp->inp_vflag = vflagsav; 1218 if (error) 1219 goto release; 1220 } 1221 1222 /* 1223 * If a UDP socket has been connected, then a local address/port will 1224 * have been selected and bound. 1225 * 1226 * If a UDP socket has not been connected to, then an explicit 1227 * destination address must be used, in which case a local 1228 * address/port may not have been selected and bound. 1229 */ 1230 if (sin != NULL) { 1231 INP_LOCK_ASSERT(inp); 1232 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1233 error = EISCONN; 1234 goto release; 1235 } 1236 1237 /* 1238 * Jail may rewrite the destination address, so let it do 1239 * that before we use it. 1240 */ 1241 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1242 if (error) 1243 goto release; 1244 1245 /* 1246 * If a local address or port hasn't yet been selected, or if 1247 * the destination address needs to be rewritten due to using 1248 * a special INADDR_ constant, invoke in_pcbconnect_setup() 1249 * to do the heavy lifting. Once a port is selected, we 1250 * commit the binding back to the socket; we also commit the 1251 * binding of the address if in jail. 1252 * 1253 * If we already have a valid binding and we're not 1254 * requesting a destination address rewrite, use a fast path. 1255 */ 1256 if (inp->inp_laddr.s_addr == INADDR_ANY || 1257 inp->inp_lport == 0 || 1258 sin->sin_addr.s_addr == INADDR_ANY || 1259 sin->sin_addr.s_addr == INADDR_BROADCAST) { 1260 if ((flags & PRUS_IPV6) != 0) { 1261 vflagsav = inp->inp_vflag; 1262 inp->inp_vflag |= INP_IPV4; 1263 inp->inp_vflag &= ~INP_IPV6; 1264 } 1265 INP_HASH_WLOCK(pcbinfo); 1266 error = in_pcbconnect_setup(inp, sin, &laddr.s_addr, 1267 &lport, &faddr.s_addr, &fport, td->td_ucred); 1268 if ((flags & PRUS_IPV6) != 0) 1269 inp->inp_vflag = vflagsav; 1270 if (error) { 1271 INP_HASH_WUNLOCK(pcbinfo); 1272 goto release; 1273 } 1274 1275 /* 1276 * XXXRW: Why not commit the port if the address is 1277 * !INADDR_ANY? 1278 */ 1279 /* Commit the local port if newly assigned. */ 1280 if (inp->inp_laddr.s_addr == INADDR_ANY && 1281 inp->inp_lport == 0) { 1282 INP_WLOCK_ASSERT(inp); 1283 /* 1284 * Remember addr if jailed, to prevent 1285 * rebinding. 1286 */ 1287 if (prison_flag(td->td_ucred, PR_IP4)) 1288 inp->inp_laddr = laddr; 1289 inp->inp_lport = lport; 1290 error = in_pcbinshash(inp); 1291 INP_HASH_WUNLOCK(pcbinfo); 1292 if (error != 0) { 1293 inp->inp_lport = 0; 1294 error = EAGAIN; 1295 goto release; 1296 } 1297 inp->inp_flags |= INP_ANONPORT; 1298 } else 1299 INP_HASH_WUNLOCK(pcbinfo); 1300 } else { 1301 faddr = sin->sin_addr; 1302 fport = sin->sin_port; 1303 } 1304 } else { 1305 INP_LOCK_ASSERT(inp); 1306 faddr = inp->inp_faddr; 1307 fport = inp->inp_fport; 1308 if (faddr.s_addr == INADDR_ANY) { 1309 error = ENOTCONN; 1310 goto release; 1311 } 1312 } 1313 1314 /* 1315 * Calculate data length and get a mbuf for UDP, IP, and possible 1316 * link-layer headers. Immediate slide the data pointer back forward 1317 * since we won't use that space at this layer. 1318 */ 1319 M_PREPEND(m, sizeof(struct udpiphdr) + max_linkhdr, M_NOWAIT); 1320 if (m == NULL) { 1321 error = ENOBUFS; 1322 goto release; 1323 } 1324 m->m_data += max_linkhdr; 1325 m->m_len -= max_linkhdr; 1326 m->m_pkthdr.len -= max_linkhdr; 1327 1328 /* 1329 * Fill in mbuf with extended UDP header and addresses and length put 1330 * into network format. 1331 */ 1332 ui = mtod(m, struct udpiphdr *); 1333 bzero(ui->ui_x1, sizeof(ui->ui_x1)); /* XXX still needed? */ 1334 ui->ui_v = IPVERSION << 4; 1335 ui->ui_pr = pr; 1336 ui->ui_src = laddr; 1337 ui->ui_dst = faddr; 1338 ui->ui_sport = lport; 1339 ui->ui_dport = fport; 1340 ui->ui_ulen = htons((u_short)len + sizeof(struct udphdr)); 1341 if (pr == IPPROTO_UDPLITE) { 1342 struct udpcb *up; 1343 uint16_t plen; 1344 1345 up = intoudpcb(inp); 1346 cscov = up->u_txcslen; 1347 plen = (u_short)len + sizeof(struct udphdr); 1348 if (cscov >= plen) 1349 cscov = 0; 1350 ui->ui_len = htons(plen); 1351 ui->ui_ulen = htons(cscov); 1352 /* 1353 * For UDP-Lite, checksum coverage length of zero means 1354 * the entire UDPLite packet is covered by the checksum. 1355 */ 1356 cscov_partial = (cscov == 0) ? 0 : 1; 1357 } 1358 1359 /* 1360 * Set the Don't Fragment bit in the IP header. 1361 */ 1362 if (inp->inp_flags & INP_DONTFRAG) { 1363 struct ip *ip; 1364 1365 ip = (struct ip *)&ui->ui_i; 1366 ip->ip_off |= htons(IP_DF); 1367 } 1368 1369 if (inp->inp_socket->so_options & SO_DONTROUTE) 1370 ipflags |= IP_ROUTETOIF; 1371 if (inp->inp_socket->so_options & SO_BROADCAST) 1372 ipflags |= IP_ALLOWBROADCAST; 1373 if (inp->inp_flags & INP_ONESBCAST) 1374 ipflags |= IP_SENDONES; 1375 1376 #ifdef MAC 1377 mac_inpcb_create_mbuf(inp, m); 1378 #endif 1379 1380 /* 1381 * Set up checksum and output datagram. 1382 */ 1383 ui->ui_sum = 0; 1384 if (pr == IPPROTO_UDPLITE) { 1385 if (inp->inp_flags & INP_ONESBCAST) 1386 faddr.s_addr = INADDR_BROADCAST; 1387 if (cscov_partial) { 1388 if ((ui->ui_sum = in_cksum(m, sizeof(struct ip) + cscov)) == 0) 1389 ui->ui_sum = 0xffff; 1390 } else { 1391 if ((ui->ui_sum = in_cksum(m, sizeof(struct udpiphdr) + len)) == 0) 1392 ui->ui_sum = 0xffff; 1393 } 1394 } else if (V_udp_cksum) { 1395 if (inp->inp_flags & INP_ONESBCAST) 1396 faddr.s_addr = INADDR_BROADCAST; 1397 ui->ui_sum = in_pseudo(ui->ui_src.s_addr, faddr.s_addr, 1398 htons((u_short)len + sizeof(struct udphdr) + pr)); 1399 m->m_pkthdr.csum_flags = CSUM_UDP; 1400 m->m_pkthdr.csum_data = offsetof(struct udphdr, uh_sum); 1401 } 1402 ((struct ip *)ui)->ip_len = htons(sizeof(struct udpiphdr) + len); 1403 ((struct ip *)ui)->ip_ttl = inp->inp_ip_ttl; /* XXX */ 1404 ((struct ip *)ui)->ip_tos = tos; /* XXX */ 1405 UDPSTAT_INC(udps_opackets); 1406 1407 /* 1408 * Setup flowid / RSS information for outbound socket. 1409 * 1410 * Once the UDP code decides to set a flowid some other way, 1411 * this allows the flowid to be overridden by userland. 1412 */ 1413 if (flowtype != M_HASHTYPE_NONE) { 1414 m->m_pkthdr.flowid = flowid; 1415 M_HASHTYPE_SET(m, flowtype); 1416 } 1417 #if defined(ROUTE_MPATH) || defined(RSS) 1418 else if (CALC_FLOWID_OUTBOUND_SENDTO) { 1419 uint32_t hash_val, hash_type; 1420 1421 hash_val = fib4_calc_packet_hash(laddr, faddr, 1422 lport, fport, pr, &hash_type); 1423 m->m_pkthdr.flowid = hash_val; 1424 M_HASHTYPE_SET(m, hash_type); 1425 } 1426 1427 /* 1428 * Don't override with the inp cached flowid value. 1429 * 1430 * Depending upon the kind of send being done, the inp 1431 * flowid/flowtype values may actually not be appropriate 1432 * for this particular socket send. 1433 * 1434 * We should either leave the flowid at zero (which is what is 1435 * currently done) or set it to some software generated 1436 * hash value based on the packet contents. 1437 */ 1438 ipflags |= IP_NODEFAULTFLOWID; 1439 #endif /* RSS */ 1440 1441 if (pr == IPPROTO_UDPLITE) 1442 UDPLITE_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1443 else 1444 UDP_PROBE(send, NULL, inp, &ui->ui_i, inp, &ui->ui_u); 1445 error = ip_output(m, inp->inp_options, 1446 INP_WLOCKED(inp) ? &inp->inp_route : NULL, ipflags, 1447 inp->inp_moptions, inp); 1448 INP_UNLOCK(inp); 1449 NET_EPOCH_EXIT(et); 1450 return (error); 1451 1452 release: 1453 INP_UNLOCK(inp); 1454 NET_EPOCH_EXIT(et); 1455 m_freem(m); 1456 return (error); 1457 } 1458 1459 void 1460 udp_abort(struct socket *so) 1461 { 1462 struct inpcb *inp; 1463 struct inpcbinfo *pcbinfo; 1464 1465 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1466 inp = sotoinpcb(so); 1467 KASSERT(inp != NULL, ("udp_abort: inp == NULL")); 1468 INP_WLOCK(inp); 1469 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1470 INP_HASH_WLOCK(pcbinfo); 1471 in_pcbdisconnect(inp); 1472 INP_HASH_WUNLOCK(pcbinfo); 1473 soisdisconnected(so); 1474 } 1475 INP_WUNLOCK(inp); 1476 } 1477 1478 static int 1479 udp_attach(struct socket *so, int proto, struct thread *td) 1480 { 1481 static uint32_t udp_flowid; 1482 struct inpcbinfo *pcbinfo; 1483 struct inpcb *inp; 1484 struct udpcb *up; 1485 int error; 1486 1487 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1488 inp = sotoinpcb(so); 1489 KASSERT(inp == NULL, ("udp_attach: inp != NULL")); 1490 error = soreserve(so, udp_sendspace, udp_recvspace); 1491 if (error) 1492 return (error); 1493 error = in_pcballoc(so, pcbinfo); 1494 if (error) 1495 return (error); 1496 1497 inp = sotoinpcb(so); 1498 inp->inp_ip_ttl = V_ip_defttl; 1499 inp->inp_flowid = atomic_fetchadd_int(&udp_flowid, 1); 1500 inp->inp_flowtype = M_HASHTYPE_OPAQUE; 1501 up = intoudpcb(inp); 1502 bzero(&up->u_start_zero, u_zero_size); 1503 INP_WUNLOCK(inp); 1504 1505 return (0); 1506 } 1507 #endif /* INET */ 1508 1509 int 1510 udp_set_kernel_tunneling(struct socket *so, udp_tun_func_t f, udp_tun_icmp_t i, void *ctx) 1511 { 1512 struct inpcb *inp; 1513 struct udpcb *up; 1514 1515 KASSERT(so->so_type == SOCK_DGRAM, 1516 ("udp_set_kernel_tunneling: !dgram")); 1517 inp = sotoinpcb(so); 1518 KASSERT(inp != NULL, ("udp_set_kernel_tunneling: inp == NULL")); 1519 INP_WLOCK(inp); 1520 up = intoudpcb(inp); 1521 if ((f != NULL || i != NULL) && ((up->u_tun_func != NULL) || 1522 (up->u_icmp_func != NULL))) { 1523 INP_WUNLOCK(inp); 1524 return (EBUSY); 1525 } 1526 up->u_tun_func = f; 1527 up->u_icmp_func = i; 1528 up->u_tun_ctx = ctx; 1529 INP_WUNLOCK(inp); 1530 return (0); 1531 } 1532 1533 #ifdef INET 1534 static int 1535 udp_bind(struct socket *so, struct sockaddr *nam, struct thread *td) 1536 { 1537 struct inpcb *inp; 1538 struct inpcbinfo *pcbinfo; 1539 struct sockaddr_in *sinp; 1540 int error; 1541 1542 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1543 inp = sotoinpcb(so); 1544 KASSERT(inp != NULL, ("udp_bind: inp == NULL")); 1545 1546 sinp = (struct sockaddr_in *)nam; 1547 if (nam->sa_family != AF_INET) { 1548 /* 1549 * Preserve compatibility with old programs. 1550 */ 1551 if (nam->sa_family != AF_UNSPEC || 1552 nam->sa_len < offsetof(struct sockaddr_in, sin_zero) || 1553 sinp->sin_addr.s_addr != INADDR_ANY) 1554 return (EAFNOSUPPORT); 1555 nam->sa_family = AF_INET; 1556 } 1557 if (nam->sa_len != sizeof(struct sockaddr_in)) 1558 return (EINVAL); 1559 1560 INP_WLOCK(inp); 1561 INP_HASH_WLOCK(pcbinfo); 1562 error = in_pcbbind(inp, sinp, td->td_ucred); 1563 INP_HASH_WUNLOCK(pcbinfo); 1564 INP_WUNLOCK(inp); 1565 return (error); 1566 } 1567 1568 static void 1569 udp_close(struct socket *so) 1570 { 1571 struct inpcb *inp; 1572 struct inpcbinfo *pcbinfo; 1573 1574 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1575 inp = sotoinpcb(so); 1576 KASSERT(inp != NULL, ("udp_close: inp == NULL")); 1577 INP_WLOCK(inp); 1578 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1579 INP_HASH_WLOCK(pcbinfo); 1580 in_pcbdisconnect(inp); 1581 INP_HASH_WUNLOCK(pcbinfo); 1582 soisdisconnected(so); 1583 } 1584 INP_WUNLOCK(inp); 1585 } 1586 1587 static int 1588 udp_connect(struct socket *so, struct sockaddr *nam, struct thread *td) 1589 { 1590 struct epoch_tracker et; 1591 struct inpcb *inp; 1592 struct inpcbinfo *pcbinfo; 1593 struct sockaddr_in *sin; 1594 int error; 1595 1596 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1597 inp = sotoinpcb(so); 1598 KASSERT(inp != NULL, ("udp_connect: inp == NULL")); 1599 1600 sin = (struct sockaddr_in *)nam; 1601 if (sin->sin_family != AF_INET) 1602 return (EAFNOSUPPORT); 1603 if (sin->sin_len != sizeof(*sin)) 1604 return (EINVAL); 1605 1606 INP_WLOCK(inp); 1607 if (inp->inp_faddr.s_addr != INADDR_ANY) { 1608 INP_WUNLOCK(inp); 1609 return (EISCONN); 1610 } 1611 error = prison_remote_ip4(td->td_ucred, &sin->sin_addr); 1612 if (error != 0) { 1613 INP_WUNLOCK(inp); 1614 return (error); 1615 } 1616 NET_EPOCH_ENTER(et); 1617 INP_HASH_WLOCK(pcbinfo); 1618 error = in_pcbconnect(inp, sin, td->td_ucred, true); 1619 INP_HASH_WUNLOCK(pcbinfo); 1620 NET_EPOCH_EXIT(et); 1621 if (error == 0) 1622 soisconnected(so); 1623 INP_WUNLOCK(inp); 1624 return (error); 1625 } 1626 1627 static void 1628 udp_detach(struct socket *so) 1629 { 1630 struct inpcb *inp; 1631 1632 inp = sotoinpcb(so); 1633 KASSERT(inp != NULL, ("udp_detach: inp == NULL")); 1634 KASSERT(inp->inp_faddr.s_addr == INADDR_ANY, 1635 ("udp_detach: not disconnected")); 1636 INP_WLOCK(inp); 1637 in_pcbdetach(inp); 1638 in_pcbfree(inp); 1639 } 1640 1641 int 1642 udp_disconnect(struct socket *so) 1643 { 1644 struct inpcb *inp; 1645 struct inpcbinfo *pcbinfo; 1646 1647 pcbinfo = udp_get_inpcbinfo(so->so_proto->pr_protocol); 1648 inp = sotoinpcb(so); 1649 KASSERT(inp != NULL, ("udp_disconnect: inp == NULL")); 1650 INP_WLOCK(inp); 1651 if (inp->inp_faddr.s_addr == INADDR_ANY) { 1652 INP_WUNLOCK(inp); 1653 return (ENOTCONN); 1654 } 1655 INP_HASH_WLOCK(pcbinfo); 1656 in_pcbdisconnect(inp); 1657 INP_HASH_WUNLOCK(pcbinfo); 1658 SOCK_LOCK(so); 1659 so->so_state &= ~SS_ISCONNECTED; /* XXX */ 1660 SOCK_UNLOCK(so); 1661 INP_WUNLOCK(inp); 1662 return (0); 1663 } 1664 #endif /* INET */ 1665 1666 int 1667 udp_shutdown(struct socket *so) 1668 { 1669 struct inpcb *inp; 1670 1671 inp = sotoinpcb(so); 1672 KASSERT(inp != NULL, ("udp_shutdown: inp == NULL")); 1673 INP_WLOCK(inp); 1674 socantsendmore(so); 1675 INP_WUNLOCK(inp); 1676 return (0); 1677 } 1678 1679 #ifdef INET 1680 #define UDP_PROTOSW \ 1681 .pr_type = SOCK_DGRAM, \ 1682 .pr_flags = PR_ATOMIC | PR_ADDR | PR_CAPATTACH, \ 1683 .pr_ctloutput = udp_ctloutput, \ 1684 .pr_abort = udp_abort, \ 1685 .pr_attach = udp_attach, \ 1686 .pr_bind = udp_bind, \ 1687 .pr_connect = udp_connect, \ 1688 .pr_control = in_control, \ 1689 .pr_detach = udp_detach, \ 1690 .pr_disconnect = udp_disconnect, \ 1691 .pr_peeraddr = in_getpeeraddr, \ 1692 .pr_send = udp_send, \ 1693 .pr_soreceive = soreceive_dgram, \ 1694 .pr_sosend = sosend_dgram, \ 1695 .pr_shutdown = udp_shutdown, \ 1696 .pr_sockaddr = in_getsockaddr, \ 1697 .pr_sosetlabel = in_pcbsosetlabel, \ 1698 .pr_close = udp_close 1699 1700 struct protosw udp_protosw = { 1701 .pr_protocol = IPPROTO_UDP, 1702 UDP_PROTOSW 1703 }; 1704 1705 struct protosw udplite_protosw = { 1706 .pr_protocol = IPPROTO_UDPLITE, 1707 UDP_PROTOSW 1708 }; 1709 1710 static void 1711 udp_init(void *arg __unused) 1712 { 1713 1714 IPPROTO_REGISTER(IPPROTO_UDP, udp_input, udp_ctlinput); 1715 IPPROTO_REGISTER(IPPROTO_UDPLITE, udp_input, udplite_ctlinput); 1716 } 1717 SYSINIT(udp_init, SI_SUB_PROTO_DOMAIN, SI_ORDER_THIRD, udp_init, NULL); 1718 #endif /* INET */ 1719