1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause 3 * 4 * Copyright (c) 2007, Myricom Inc. 5 * Copyright (c) 2008, Intel Corporation. 6 * Copyright (c) 2012 The FreeBSD Foundation 7 * Copyright (c) 2016-2021 Mellanox Technologies. 8 * All rights reserved. 9 * 10 * Portions of this software were developed by Bjoern Zeeb 11 * under sponsorship from the FreeBSD Foundation. 12 * 13 * Redistribution and use in source and binary forms, with or without 14 * modification, are permitted provided that the following conditions 15 * are met: 16 * 1. Redistributions of source code must retain the above copyright 17 * notice, this list of conditions and the following disclaimer. 18 * 2. Redistributions in binary form must reproduce the above copyright 19 * notice, this list of conditions and the following disclaimer in the 20 * documentation and/or other materials provided with the distribution. 21 * 22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 23 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 24 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 25 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 26 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 27 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 28 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 29 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 30 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 31 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 32 * SUCH DAMAGE. 33 */ 34 35 #include <sys/cdefs.h> 36 #include "opt_inet.h" 37 #include "opt_inet6.h" 38 39 #include <sys/param.h> 40 #include <sys/systm.h> 41 #include <sys/kernel.h> 42 #include <sys/malloc.h> 43 #include <sys/mbuf.h> 44 #include <sys/socket.h> 45 #include <sys/socketvar.h> 46 #include <sys/sockbuf.h> 47 #include <sys/sysctl.h> 48 49 #include <net/if.h> 50 #include <net/if_var.h> 51 #include <net/ethernet.h> 52 #include <net/bpf.h> 53 #include <net/vnet.h> 54 #include <net/if_dl.h> 55 #include <net/if_media.h> 56 #include <net/if_private.h> 57 #include <net/if_types.h> 58 #include <net/infiniband.h> 59 #include <net/if_lagg.h> 60 61 #include <netinet/in_systm.h> 62 #include <netinet/in.h> 63 #include <netinet/ip6.h> 64 #include <netinet/ip.h> 65 #include <netinet/ip_var.h> 66 #include <netinet/in_pcb.h> 67 #include <netinet6/in6_pcb.h> 68 #include <netinet/tcp.h> 69 #include <netinet/tcp_seq.h> 70 #include <netinet/tcp_lro.h> 71 #include <netinet/tcp_var.h> 72 #include <netinet/tcpip.h> 73 #include <netinet/tcp_hpts.h> 74 #include <netinet/tcp_log_buf.h> 75 #include <netinet/tcp_fsm.h> 76 #include <netinet/udp.h> 77 #include <netinet6/ip6_var.h> 78 79 #include <machine/in_cksum.h> 80 81 static MALLOC_DEFINE(M_LRO, "LRO", "LRO control structures"); 82 83 #define TCP_LRO_TS_OPTION \ 84 ntohl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16) | \ 85 (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP) 86 87 static void tcp_lro_rx_done(struct lro_ctrl *lc); 88 static int tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, 89 uint32_t csum, bool use_hash); 90 91 #ifdef TCPHPTS 92 static bool do_bpf_strip_and_compress(struct tcpcb *, struct lro_ctrl *, 93 struct lro_entry *, struct mbuf **, struct mbuf **, struct mbuf **, 94 bool *, bool, bool, struct ifnet *, bool); 95 96 #endif 97 98 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, lro, CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 99 "TCP LRO"); 100 101 static long tcplro_stacks_wanting_mbufq; 102 counter_u64_t tcp_inp_lro_direct_queue; 103 counter_u64_t tcp_inp_lro_wokeup_queue; 104 counter_u64_t tcp_inp_lro_compressed; 105 counter_u64_t tcp_inp_lro_locks_taken; 106 counter_u64_t tcp_extra_mbuf; 107 counter_u64_t tcp_would_have_but; 108 counter_u64_t tcp_comp_total; 109 counter_u64_t tcp_uncomp_total; 110 counter_u64_t tcp_bad_csums; 111 112 static unsigned tcp_lro_entries = TCP_LRO_ENTRIES; 113 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, entries, 114 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_entries, 0, 115 "default number of LRO entries"); 116 117 static uint32_t tcp_lro_cpu_set_thresh = TCP_LRO_CPU_DECLARATION_THRESH; 118 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_cpu_threshold, 119 CTLFLAG_RDTUN | CTLFLAG_MPSAFE, &tcp_lro_cpu_set_thresh, 0, 120 "Number of interrupts in a row on the same CPU that will make us declare an 'affinity' cpu?"); 121 122 static uint32_t tcp_less_accurate_lro_ts = 0; 123 SYSCTL_UINT(_net_inet_tcp_lro, OID_AUTO, lro_less_accurate, 124 CTLFLAG_MPSAFE, &tcp_less_accurate_lro_ts, 0, 125 "Do we trade off efficency by doing less timestamp operations for time accuracy?"); 126 127 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, fullqueue, CTLFLAG_RD, 128 &tcp_inp_lro_direct_queue, "Number of lro's fully queued to transport"); 129 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, wokeup, CTLFLAG_RD, 130 &tcp_inp_lro_wokeup_queue, "Number of lro's where we woke up transport via hpts"); 131 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, compressed, CTLFLAG_RD, 132 &tcp_inp_lro_compressed, "Number of lro's compressed and sent to transport"); 133 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lockcnt, CTLFLAG_RD, 134 &tcp_inp_lro_locks_taken, "Number of lro's inp_wlocks taken"); 135 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, extra_mbuf, CTLFLAG_RD, 136 &tcp_extra_mbuf, "Number of times we had an extra compressed ack dropped into the tp"); 137 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, would_have_but, CTLFLAG_RD, 138 &tcp_would_have_but, "Number of times we would have had an extra compressed, but mget failed"); 139 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, with_m_ackcmp, CTLFLAG_RD, 140 &tcp_comp_total, "Number of mbufs queued with M_ACKCMP flags set"); 141 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, without_m_ackcmp, CTLFLAG_RD, 142 &tcp_uncomp_total, "Number of mbufs queued without M_ACKCMP"); 143 SYSCTL_COUNTER_U64(_net_inet_tcp_lro, OID_AUTO, lro_badcsum, CTLFLAG_RD, 144 &tcp_bad_csums, "Number of packets that the common code saw with bad csums"); 145 146 void 147 tcp_lro_reg_mbufq(void) 148 { 149 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, 1); 150 } 151 152 void 153 tcp_lro_dereg_mbufq(void) 154 { 155 atomic_fetchadd_long(&tcplro_stacks_wanting_mbufq, -1); 156 } 157 158 static __inline void 159 tcp_lro_active_insert(struct lro_ctrl *lc, struct lro_head *bucket, 160 struct lro_entry *le) 161 { 162 163 LIST_INSERT_HEAD(&lc->lro_active, le, next); 164 LIST_INSERT_HEAD(bucket, le, hash_next); 165 } 166 167 static __inline void 168 tcp_lro_active_remove(struct lro_entry *le) 169 { 170 171 LIST_REMOVE(le, next); /* active list */ 172 LIST_REMOVE(le, hash_next); /* hash bucket */ 173 } 174 175 int 176 tcp_lro_init(struct lro_ctrl *lc) 177 { 178 return (tcp_lro_init_args(lc, NULL, tcp_lro_entries, 0)); 179 } 180 181 int 182 tcp_lro_init_args(struct lro_ctrl *lc, struct ifnet *ifp, 183 unsigned lro_entries, unsigned lro_mbufs) 184 { 185 struct lro_entry *le; 186 size_t size; 187 unsigned i, elements; 188 189 lc->lro_bad_csum = 0; 190 lc->lro_queued = 0; 191 lc->lro_flushed = 0; 192 lc->lro_mbuf_count = 0; 193 lc->lro_mbuf_max = lro_mbufs; 194 lc->lro_cnt = lro_entries; 195 lc->lro_ackcnt_lim = TCP_LRO_ACKCNT_MAX; 196 lc->lro_length_lim = TCP_LRO_LENGTH_MAX; 197 lc->ifp = ifp; 198 LIST_INIT(&lc->lro_free); 199 LIST_INIT(&lc->lro_active); 200 201 /* create hash table to accelerate entry lookup */ 202 if (lro_entries > lro_mbufs) 203 elements = lro_entries; 204 else 205 elements = lro_mbufs; 206 lc->lro_hash = phashinit_flags(elements, M_LRO, &lc->lro_hashsz, 207 HASH_NOWAIT); 208 if (lc->lro_hash == NULL) { 209 memset(lc, 0, sizeof(*lc)); 210 return (ENOMEM); 211 } 212 213 /* compute size to allocate */ 214 size = (lro_mbufs * sizeof(struct lro_mbuf_sort)) + 215 (lro_entries * sizeof(*le)); 216 lc->lro_mbuf_data = (struct lro_mbuf_sort *) 217 malloc(size, M_LRO, M_NOWAIT | M_ZERO); 218 219 /* check for out of memory */ 220 if (lc->lro_mbuf_data == NULL) { 221 free(lc->lro_hash, M_LRO); 222 memset(lc, 0, sizeof(*lc)); 223 return (ENOMEM); 224 } 225 /* compute offset for LRO entries */ 226 le = (struct lro_entry *) 227 (lc->lro_mbuf_data + lro_mbufs); 228 229 /* setup linked list */ 230 for (i = 0; i != lro_entries; i++) 231 LIST_INSERT_HEAD(&lc->lro_free, le + i, next); 232 233 return (0); 234 } 235 236 struct vxlan_header { 237 uint32_t vxlh_flags; 238 uint32_t vxlh_vni; 239 }; 240 241 static inline void * 242 tcp_lro_low_level_parser(void *ptr, struct lro_parser *parser, bool update_data, bool is_vxlan, int mlen) 243 { 244 const struct ether_vlan_header *eh; 245 void *old; 246 uint16_t eth_type; 247 248 if (update_data) 249 memset(parser, 0, sizeof(*parser)); 250 251 old = ptr; 252 253 if (is_vxlan) { 254 const struct vxlan_header *vxh; 255 vxh = ptr; 256 ptr = (uint8_t *)ptr + sizeof(*vxh); 257 if (update_data) { 258 parser->data.vxlan_vni = 259 vxh->vxlh_vni & htonl(0xffffff00); 260 } 261 } 262 263 eh = ptr; 264 if (__predict_false(eh->evl_encap_proto == htons(ETHERTYPE_VLAN))) { 265 eth_type = eh->evl_proto; 266 if (update_data) { 267 /* strip priority and keep VLAN ID only */ 268 parser->data.vlan_id = eh->evl_tag & htons(EVL_VLID_MASK); 269 } 270 /* advance to next header */ 271 ptr = (uint8_t *)ptr + ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN; 272 mlen -= (ETHER_HDR_LEN + ETHER_VLAN_ENCAP_LEN); 273 } else { 274 eth_type = eh->evl_encap_proto; 275 /* advance to next header */ 276 mlen -= ETHER_HDR_LEN; 277 ptr = (uint8_t *)ptr + ETHER_HDR_LEN; 278 } 279 if (__predict_false(mlen <= 0)) 280 return (NULL); 281 switch (eth_type) { 282 #ifdef INET 283 case htons(ETHERTYPE_IP): 284 parser->ip4 = ptr; 285 if (__predict_false(mlen < sizeof(struct ip))) 286 return (NULL); 287 /* Ensure there are no IPv4 options. */ 288 if ((parser->ip4->ip_hl << 2) != sizeof (*parser->ip4)) 289 break; 290 /* .. and the packet is not fragmented. */ 291 if (parser->ip4->ip_off & htons(IP_MF|IP_OFFMASK)) 292 break; 293 /* .. and the packet has valid src/dst addrs */ 294 if (__predict_false(parser->ip4->ip_src.s_addr == INADDR_ANY || 295 parser->ip4->ip_dst.s_addr == INADDR_ANY)) 296 break; 297 ptr = (uint8_t *)ptr + (parser->ip4->ip_hl << 2); 298 mlen -= sizeof(struct ip); 299 if (update_data) { 300 parser->data.s_addr.v4 = parser->ip4->ip_src; 301 parser->data.d_addr.v4 = parser->ip4->ip_dst; 302 } 303 switch (parser->ip4->ip_p) { 304 case IPPROTO_UDP: 305 if (__predict_false(mlen < sizeof(struct udphdr))) 306 return (NULL); 307 parser->udp = ptr; 308 if (update_data) { 309 parser->data.lro_type = LRO_TYPE_IPV4_UDP; 310 parser->data.s_port = parser->udp->uh_sport; 311 parser->data.d_port = parser->udp->uh_dport; 312 } else { 313 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_UDP); 314 } 315 ptr = ((uint8_t *)ptr + sizeof(*parser->udp)); 316 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 317 return (ptr); 318 case IPPROTO_TCP: 319 parser->tcp = ptr; 320 if (__predict_false(mlen < sizeof(struct tcphdr))) 321 return (NULL); 322 if (update_data) { 323 parser->data.lro_type = LRO_TYPE_IPV4_TCP; 324 parser->data.s_port = parser->tcp->th_sport; 325 parser->data.d_port = parser->tcp->th_dport; 326 } else { 327 MPASS(parser->data.lro_type == LRO_TYPE_IPV4_TCP); 328 } 329 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 330 return (NULL); 331 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 332 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 333 return (ptr); 334 default: 335 break; 336 } 337 break; 338 #endif 339 #ifdef INET6 340 case htons(ETHERTYPE_IPV6): 341 parser->ip6 = ptr; 342 if (__predict_false(mlen < sizeof(struct ip6_hdr))) 343 return (NULL); 344 /* Ensure the packet has valid src/dst addrs */ 345 if (__predict_false(IN6_IS_ADDR_UNSPECIFIED(&parser->ip6->ip6_src) || 346 IN6_IS_ADDR_UNSPECIFIED(&parser->ip6->ip6_dst))) 347 return (NULL); 348 ptr = (uint8_t *)ptr + sizeof(*parser->ip6); 349 if (update_data) { 350 parser->data.s_addr.v6 = parser->ip6->ip6_src; 351 parser->data.d_addr.v6 = parser->ip6->ip6_dst; 352 } 353 mlen -= sizeof(struct ip6_hdr); 354 switch (parser->ip6->ip6_nxt) { 355 case IPPROTO_UDP: 356 if (__predict_false(mlen < sizeof(struct udphdr))) 357 return (NULL); 358 parser->udp = ptr; 359 if (update_data) { 360 parser->data.lro_type = LRO_TYPE_IPV6_UDP; 361 parser->data.s_port = parser->udp->uh_sport; 362 parser->data.d_port = parser->udp->uh_dport; 363 } else { 364 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_UDP); 365 } 366 ptr = (uint8_t *)ptr + sizeof(*parser->udp); 367 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 368 return (ptr); 369 case IPPROTO_TCP: 370 if (__predict_false(mlen < sizeof(struct tcphdr))) 371 return (NULL); 372 parser->tcp = ptr; 373 if (update_data) { 374 parser->data.lro_type = LRO_TYPE_IPV6_TCP; 375 parser->data.s_port = parser->tcp->th_sport; 376 parser->data.d_port = parser->tcp->th_dport; 377 } else { 378 MPASS(parser->data.lro_type == LRO_TYPE_IPV6_TCP); 379 } 380 if (__predict_false(mlen < (parser->tcp->th_off << 2))) 381 return (NULL); 382 ptr = (uint8_t *)ptr + (parser->tcp->th_off << 2); 383 parser->total_hdr_len = (uint8_t *)ptr - (uint8_t *)old; 384 return (ptr); 385 default: 386 break; 387 } 388 break; 389 #endif 390 default: 391 break; 392 } 393 /* Invalid packet - cannot parse */ 394 return (NULL); 395 } 396 397 static const int vxlan_csum = CSUM_INNER_L3_CALC | CSUM_INNER_L3_VALID | 398 CSUM_INNER_L4_CALC | CSUM_INNER_L4_VALID; 399 400 static inline struct lro_parser * 401 tcp_lro_parser(struct mbuf *m, struct lro_parser *po, struct lro_parser *pi, bool update_data) 402 { 403 void *data_ptr; 404 405 /* Try to parse outer headers first. */ 406 data_ptr = tcp_lro_low_level_parser(m->m_data, po, update_data, false, m->m_len); 407 if (data_ptr == NULL || po->total_hdr_len > m->m_len) 408 return (NULL); 409 410 if (update_data) { 411 /* Store VLAN ID, if any. */ 412 if (__predict_false(m->m_flags & M_VLANTAG)) { 413 po->data.vlan_id = 414 htons(m->m_pkthdr.ether_vtag) & htons(EVL_VLID_MASK); 415 } 416 /* Store decrypted flag, if any. */ 417 if (__predict_false((m->m_pkthdr.csum_flags & 418 CSUM_TLS_MASK) == CSUM_TLS_DECRYPTED)) 419 po->data.lro_flags |= LRO_FLAG_DECRYPTED; 420 } 421 422 switch (po->data.lro_type) { 423 case LRO_TYPE_IPV4_UDP: 424 case LRO_TYPE_IPV6_UDP: 425 /* Check for VXLAN headers. */ 426 if ((m->m_pkthdr.csum_flags & vxlan_csum) != vxlan_csum) 427 break; 428 429 /* Try to parse inner headers. */ 430 data_ptr = tcp_lro_low_level_parser(data_ptr, pi, update_data, true, 431 (m->m_len - ((caddr_t)data_ptr - m->m_data))); 432 if (data_ptr == NULL || (pi->total_hdr_len + po->total_hdr_len) > m->m_len) 433 break; 434 435 /* Verify supported header types. */ 436 switch (pi->data.lro_type) { 437 case LRO_TYPE_IPV4_TCP: 438 case LRO_TYPE_IPV6_TCP: 439 return (pi); 440 default: 441 break; 442 } 443 break; 444 case LRO_TYPE_IPV4_TCP: 445 case LRO_TYPE_IPV6_TCP: 446 if (update_data) 447 memset(pi, 0, sizeof(*pi)); 448 return (po); 449 default: 450 break; 451 } 452 return (NULL); 453 } 454 455 static inline int 456 tcp_lro_trim_mbuf_chain(struct mbuf *m, const struct lro_parser *po) 457 { 458 int len; 459 460 switch (po->data.lro_type) { 461 #ifdef INET 462 case LRO_TYPE_IPV4_TCP: 463 len = ((uint8_t *)po->ip4 - (uint8_t *)m->m_data) + 464 ntohs(po->ip4->ip_len); 465 break; 466 #endif 467 #ifdef INET6 468 case LRO_TYPE_IPV6_TCP: 469 len = ((uint8_t *)po->ip6 - (uint8_t *)m->m_data) + 470 ntohs(po->ip6->ip6_plen) + sizeof(*po->ip6); 471 break; 472 #endif 473 default: 474 return (TCP_LRO_CANNOT); 475 } 476 477 /* 478 * If the frame is padded beyond the end of the IP packet, 479 * then trim the extra bytes off: 480 */ 481 if (__predict_true(m->m_pkthdr.len == len)) { 482 return (0); 483 } else if (m->m_pkthdr.len > len) { 484 m_adj(m, len - m->m_pkthdr.len); 485 return (0); 486 } 487 return (TCP_LRO_CANNOT); 488 } 489 490 static struct tcphdr * 491 tcp_lro_get_th(struct mbuf *m) 492 { 493 return ((struct tcphdr *)((uint8_t *)m->m_data + m->m_pkthdr.lro_tcp_h_off)); 494 } 495 496 static void 497 lro_free_mbuf_chain(struct mbuf *m) 498 { 499 struct mbuf *save; 500 501 while (m) { 502 save = m->m_nextpkt; 503 m->m_nextpkt = NULL; 504 m_freem(m); 505 m = save; 506 } 507 } 508 509 void 510 tcp_lro_free(struct lro_ctrl *lc) 511 { 512 struct lro_entry *le; 513 unsigned x; 514 515 /* reset LRO free list */ 516 LIST_INIT(&lc->lro_free); 517 518 /* free active mbufs, if any */ 519 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 520 tcp_lro_active_remove(le); 521 lro_free_mbuf_chain(le->m_head); 522 } 523 524 /* free hash table */ 525 free(lc->lro_hash, M_LRO); 526 lc->lro_hash = NULL; 527 lc->lro_hashsz = 0; 528 529 /* free mbuf array, if any */ 530 for (x = 0; x != lc->lro_mbuf_count; x++) 531 m_freem(lc->lro_mbuf_data[x].mb); 532 lc->lro_mbuf_count = 0; 533 534 /* free allocated memory, if any */ 535 free(lc->lro_mbuf_data, M_LRO); 536 lc->lro_mbuf_data = NULL; 537 } 538 539 static uint16_t 540 tcp_lro_rx_csum_tcphdr(const struct tcphdr *th) 541 { 542 const uint16_t *ptr; 543 uint32_t csum; 544 uint16_t len; 545 546 csum = -th->th_sum; /* exclude checksum field */ 547 len = th->th_off; 548 ptr = (const uint16_t *)th; 549 while (len--) { 550 csum += *ptr; 551 ptr++; 552 csum += *ptr; 553 ptr++; 554 } 555 while (csum > 0xffff) 556 csum = (csum >> 16) + (csum & 0xffff); 557 558 return (csum); 559 } 560 561 static uint16_t 562 tcp_lro_rx_csum_data(const struct lro_parser *pa, uint16_t tcp_csum) 563 { 564 uint32_t c; 565 uint16_t cs; 566 567 c = tcp_csum; 568 569 switch (pa->data.lro_type) { 570 #ifdef INET6 571 case LRO_TYPE_IPV6_TCP: 572 /* Compute full pseudo IPv6 header checksum. */ 573 cs = in6_cksum_pseudo(pa->ip6, ntohs(pa->ip6->ip6_plen), pa->ip6->ip6_nxt, 0); 574 break; 575 #endif 576 #ifdef INET 577 case LRO_TYPE_IPV4_TCP: 578 /* Compute full pseudo IPv4 header checsum. */ 579 cs = in_addword(ntohs(pa->ip4->ip_len) - sizeof(*pa->ip4), IPPROTO_TCP); 580 cs = in_pseudo(pa->ip4->ip_src.s_addr, pa->ip4->ip_dst.s_addr, htons(cs)); 581 break; 582 #endif 583 default: 584 cs = 0; /* Keep compiler happy. */ 585 break; 586 } 587 588 /* Complement checksum. */ 589 cs = ~cs; 590 c += cs; 591 592 /* Remove TCP header checksum. */ 593 cs = ~tcp_lro_rx_csum_tcphdr(pa->tcp); 594 c += cs; 595 596 /* Compute checksum remainder. */ 597 while (c > 0xffff) 598 c = (c >> 16) + (c & 0xffff); 599 600 return (c); 601 } 602 603 static void 604 tcp_lro_rx_done(struct lro_ctrl *lc) 605 { 606 struct lro_entry *le; 607 608 while ((le = LIST_FIRST(&lc->lro_active)) != NULL) { 609 tcp_lro_active_remove(le); 610 tcp_lro_flush(lc, le); 611 } 612 } 613 614 static void 615 tcp_lro_flush_active(struct lro_ctrl *lc) 616 { 617 struct lro_entry *le; 618 619 /* 620 * Walk through the list of le entries, and 621 * any one that does have packets flush. This 622 * is called because we have an inbound packet 623 * (e.g. SYN) that has to have all others flushed 624 * in front of it. Note we have to do the remove 625 * because tcp_lro_flush() assumes that the entry 626 * is being freed. This is ok it will just get 627 * reallocated again like it was new. 628 */ 629 LIST_FOREACH(le, &lc->lro_active, next) { 630 if (le->m_head != NULL) { 631 tcp_lro_active_remove(le); 632 tcp_lro_flush(lc, le); 633 } 634 } 635 } 636 637 void 638 tcp_lro_flush_inactive(struct lro_ctrl *lc, const struct timeval *timeout) 639 { 640 struct lro_entry *le, *le_tmp; 641 uint64_t now, tov; 642 struct bintime bt; 643 644 NET_EPOCH_ASSERT(); 645 if (LIST_EMPTY(&lc->lro_active)) 646 return; 647 648 /* get timeout time and current time in ns */ 649 binuptime(&bt); 650 now = bintime2ns(&bt); 651 tov = ((timeout->tv_sec * 1000000000) + (timeout->tv_usec * 1000)); 652 LIST_FOREACH_SAFE(le, &lc->lro_active, next, le_tmp) { 653 if (now >= (bintime2ns(&le->alloc_time) + tov)) { 654 tcp_lro_active_remove(le); 655 tcp_lro_flush(lc, le); 656 } 657 } 658 } 659 660 #ifdef INET 661 static int 662 tcp_lro_rx_ipv4(struct lro_ctrl *lc, struct mbuf *m, struct ip *ip4) 663 { 664 uint16_t csum; 665 666 /* Legacy IP has a header checksum that needs to be correct. */ 667 if (m->m_pkthdr.csum_flags & CSUM_IP_CHECKED) { 668 if (__predict_false((m->m_pkthdr.csum_flags & CSUM_IP_VALID) == 0)) { 669 lc->lro_bad_csum++; 670 return (TCP_LRO_CANNOT); 671 } 672 } else { 673 csum = in_cksum_hdr(ip4); 674 if (__predict_false(csum != 0)) { 675 lc->lro_bad_csum++; 676 return (TCP_LRO_CANNOT); 677 } 678 } 679 return (0); 680 } 681 #endif 682 683 #ifdef TCPHPTS 684 static void 685 tcp_lro_log(struct tcpcb *tp, const struct lro_ctrl *lc, 686 const struct lro_entry *le, const struct mbuf *m, 687 int frm, int32_t tcp_data_len, uint32_t th_seq, 688 uint32_t th_ack, uint16_t th_win) 689 { 690 if (tcp_bblogging_on(tp)) { 691 union tcp_log_stackspecific log; 692 struct timeval tv, btv; 693 uint32_t cts; 694 695 cts = tcp_get_usecs(&tv); 696 memset(&log, 0, sizeof(union tcp_log_stackspecific)); 697 log.u_bbr.flex8 = frm; 698 log.u_bbr.flex1 = tcp_data_len; 699 if (m) 700 log.u_bbr.flex2 = m->m_pkthdr.len; 701 else 702 log.u_bbr.flex2 = 0; 703 if (le->m_head) { 704 log.u_bbr.flex3 = le->m_head->m_pkthdr.lro_nsegs; 705 log.u_bbr.flex4 = le->m_head->m_pkthdr.lro_tcp_d_len; 706 log.u_bbr.flex5 = le->m_head->m_pkthdr.len; 707 log.u_bbr.delRate = le->m_head->m_flags; 708 log.u_bbr.rttProp = le->m_head->m_pkthdr.rcv_tstmp; 709 } 710 log.u_bbr.inflight = th_seq; 711 log.u_bbr.delivered = th_ack; 712 log.u_bbr.timeStamp = cts; 713 log.u_bbr.epoch = le->next_seq; 714 log.u_bbr.lt_epoch = le->ack_seq; 715 log.u_bbr.pacing_gain = th_win; 716 log.u_bbr.cwnd_gain = le->window; 717 log.u_bbr.lost = curcpu; 718 log.u_bbr.cur_del_rate = (uintptr_t)m; 719 log.u_bbr.bw_inuse = (uintptr_t)le->m_head; 720 bintime2timeval(&lc->lro_last_queue_time, &btv); 721 log.u_bbr.flex6 = tcp_tv_to_usectick(&btv); 722 log.u_bbr.flex7 = le->compressed; 723 log.u_bbr.pacing_gain = le->uncompressed; 724 if (in_epoch(net_epoch_preempt)) 725 log.u_bbr.inhpts = 1; 726 else 727 log.u_bbr.inhpts = 0; 728 TCP_LOG_EVENTP(tp, NULL, &tptosocket(tp)->so_rcv, 729 &tptosocket(tp)->so_snd, 730 TCP_LOG_LRO, 0, 0, &log, false, &tv); 731 } 732 } 733 #endif 734 735 static inline void 736 tcp_lro_assign_and_checksum_16(uint16_t *ptr, uint16_t value, uint16_t *psum) 737 { 738 uint32_t csum; 739 740 csum = 0xffff - *ptr + value; 741 while (csum > 0xffff) 742 csum = (csum >> 16) + (csum & 0xffff); 743 *ptr = value; 744 *psum = csum; 745 } 746 747 static uint16_t 748 tcp_lro_update_checksum(const struct lro_parser *pa, const struct lro_entry *le, 749 uint16_t payload_len, uint16_t delta_sum) 750 { 751 uint32_t csum; 752 uint16_t tlen; 753 uint16_t temp[5] = {}; 754 755 switch (pa->data.lro_type) { 756 case LRO_TYPE_IPV4_TCP: 757 /* Compute new IPv4 length. */ 758 tlen = (pa->ip4->ip_hl << 2) + (pa->tcp->th_off << 2) + payload_len; 759 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 760 761 /* Subtract delta from current IPv4 checksum. */ 762 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 763 while (csum > 0xffff) 764 csum = (csum >> 16) + (csum & 0xffff); 765 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 766 goto update_tcp_header; 767 768 case LRO_TYPE_IPV6_TCP: 769 /* Compute new IPv6 length. */ 770 tlen = (pa->tcp->th_off << 2) + payload_len; 771 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 772 goto update_tcp_header; 773 774 case LRO_TYPE_IPV4_UDP: 775 /* Compute new IPv4 length. */ 776 tlen = (pa->ip4->ip_hl << 2) + sizeof(*pa->udp) + payload_len; 777 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_len, htons(tlen), &temp[0]); 778 779 /* Subtract delta from current IPv4 checksum. */ 780 csum = pa->ip4->ip_sum + 0xffff - temp[0]; 781 while (csum > 0xffff) 782 csum = (csum >> 16) + (csum & 0xffff); 783 tcp_lro_assign_and_checksum_16(&pa->ip4->ip_sum, csum, &temp[1]); 784 goto update_udp_header; 785 786 case LRO_TYPE_IPV6_UDP: 787 /* Compute new IPv6 length. */ 788 tlen = sizeof(*pa->udp) + payload_len; 789 tcp_lro_assign_and_checksum_16(&pa->ip6->ip6_plen, htons(tlen), &temp[0]); 790 goto update_udp_header; 791 792 default: 793 return (0); 794 } 795 796 update_tcp_header: 797 /* Compute current TCP header checksum. */ 798 temp[2] = tcp_lro_rx_csum_tcphdr(pa->tcp); 799 800 /* Incorporate the latest ACK into the TCP header. */ 801 pa->tcp->th_ack = le->ack_seq; 802 pa->tcp->th_win = le->window; 803 804 /* Incorporate latest timestamp into the TCP header. */ 805 if (le->timestamp != 0) { 806 uint32_t *ts_ptr; 807 808 ts_ptr = (uint32_t *)(pa->tcp + 1); 809 ts_ptr[1] = htonl(le->tsval); 810 ts_ptr[2] = le->tsecr; 811 } 812 813 /* Compute new TCP header checksum. */ 814 temp[3] = tcp_lro_rx_csum_tcphdr(pa->tcp); 815 816 /* Compute new TCP checksum. */ 817 csum = pa->tcp->th_sum + 0xffff - delta_sum + 818 0xffff - temp[0] + 0xffff - temp[3] + temp[2]; 819 while (csum > 0xffff) 820 csum = (csum >> 16) + (csum & 0xffff); 821 822 /* Assign new TCP checksum. */ 823 tcp_lro_assign_and_checksum_16(&pa->tcp->th_sum, csum, &temp[4]); 824 825 /* Compute all modififications affecting next checksum. */ 826 csum = temp[0] + temp[1] + 0xffff - temp[2] + 827 temp[3] + temp[4] + delta_sum; 828 while (csum > 0xffff) 829 csum = (csum >> 16) + (csum & 0xffff); 830 831 /* Return delta checksum to next stage, if any. */ 832 return (csum); 833 834 update_udp_header: 835 tlen = sizeof(*pa->udp) + payload_len; 836 /* Assign new UDP length and compute checksum delta. */ 837 tcp_lro_assign_and_checksum_16(&pa->udp->uh_ulen, htons(tlen), &temp[2]); 838 839 /* Check if there is a UDP checksum. */ 840 if (__predict_false(pa->udp->uh_sum != 0)) { 841 /* Compute new UDP checksum. */ 842 csum = pa->udp->uh_sum + 0xffff - delta_sum + 843 0xffff - temp[0] + 0xffff - temp[2]; 844 while (csum > 0xffff) 845 csum = (csum >> 16) + (csum & 0xffff); 846 /* Assign new UDP checksum. */ 847 tcp_lro_assign_and_checksum_16(&pa->udp->uh_sum, csum, &temp[3]); 848 } 849 850 /* Compute all modififications affecting next checksum. */ 851 csum = temp[0] + temp[1] + temp[2] + temp[3] + delta_sum; 852 while (csum > 0xffff) 853 csum = (csum >> 16) + (csum & 0xffff); 854 855 /* Return delta checksum to next stage, if any. */ 856 return (csum); 857 } 858 859 static void 860 tcp_flush_out_entry(struct lro_ctrl *lc, struct lro_entry *le) 861 { 862 /* Check if we need to recompute any checksums. */ 863 if (le->needs_merge) { 864 uint16_t csum; 865 866 switch (le->inner.data.lro_type) { 867 case LRO_TYPE_IPV4_TCP: 868 csum = tcp_lro_update_checksum(&le->inner, le, 869 le->m_head->m_pkthdr.lro_tcp_d_len, 870 le->m_head->m_pkthdr.lro_tcp_d_csum); 871 csum = tcp_lro_update_checksum(&le->outer, NULL, 872 le->m_head->m_pkthdr.lro_tcp_d_len + 873 le->inner.total_hdr_len, csum); 874 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 875 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 876 le->m_head->m_pkthdr.csum_data = 0xffff; 877 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 878 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 879 break; 880 case LRO_TYPE_IPV6_TCP: 881 csum = tcp_lro_update_checksum(&le->inner, le, 882 le->m_head->m_pkthdr.lro_tcp_d_len, 883 le->m_head->m_pkthdr.lro_tcp_d_csum); 884 csum = tcp_lro_update_checksum(&le->outer, NULL, 885 le->m_head->m_pkthdr.lro_tcp_d_len + 886 le->inner.total_hdr_len, csum); 887 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 888 CSUM_PSEUDO_HDR; 889 le->m_head->m_pkthdr.csum_data = 0xffff; 890 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 891 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 892 break; 893 case LRO_TYPE_NONE: 894 switch (le->outer.data.lro_type) { 895 case LRO_TYPE_IPV4_TCP: 896 csum = tcp_lro_update_checksum(&le->outer, le, 897 le->m_head->m_pkthdr.lro_tcp_d_len, 898 le->m_head->m_pkthdr.lro_tcp_d_csum); 899 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 900 CSUM_PSEUDO_HDR | CSUM_IP_CHECKED | CSUM_IP_VALID; 901 le->m_head->m_pkthdr.csum_data = 0xffff; 902 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 903 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 904 break; 905 case LRO_TYPE_IPV6_TCP: 906 csum = tcp_lro_update_checksum(&le->outer, le, 907 le->m_head->m_pkthdr.lro_tcp_d_len, 908 le->m_head->m_pkthdr.lro_tcp_d_csum); 909 le->m_head->m_pkthdr.csum_flags = CSUM_DATA_VALID | 910 CSUM_PSEUDO_HDR; 911 le->m_head->m_pkthdr.csum_data = 0xffff; 912 if (__predict_false(le->outer.data.lro_flags & LRO_FLAG_DECRYPTED)) 913 le->m_head->m_pkthdr.csum_flags |= CSUM_TLS_DECRYPTED; 914 break; 915 default: 916 break; 917 } 918 break; 919 default: 920 break; 921 } 922 } 923 924 /* 925 * Break any chain, this is not set to NULL on the singleton 926 * case m_nextpkt points to m_head. Other case set them 927 * m_nextpkt to NULL in push_and_replace. 928 */ 929 le->m_head->m_nextpkt = NULL; 930 lc->lro_queued += le->m_head->m_pkthdr.lro_nsegs; 931 (*lc->ifp->if_input)(lc->ifp, le->m_head); 932 } 933 934 static void 935 tcp_set_entry_to_mbuf(struct lro_ctrl *lc, struct lro_entry *le, 936 struct mbuf *m, struct tcphdr *th) 937 { 938 uint32_t *ts_ptr; 939 uint16_t tcp_data_len; 940 uint16_t tcp_opt_len; 941 942 ts_ptr = (uint32_t *)(th + 1); 943 tcp_opt_len = (th->th_off << 2); 944 tcp_opt_len -= sizeof(*th); 945 946 /* Check if there is a timestamp option. */ 947 if (tcp_opt_len == 0 || 948 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 949 *ts_ptr != TCP_LRO_TS_OPTION)) { 950 /* We failed to find the timestamp option. */ 951 le->timestamp = 0; 952 } else { 953 le->timestamp = 1; 954 le->tsval = ntohl(*(ts_ptr + 1)); 955 le->tsecr = *(ts_ptr + 2); 956 } 957 958 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 959 960 /* Pull out TCP sequence numbers and window size. */ 961 le->next_seq = ntohl(th->th_seq) + tcp_data_len; 962 le->ack_seq = th->th_ack; 963 le->window = th->th_win; 964 le->flags = tcp_get_flags(th); 965 le->needs_merge = 0; 966 967 /* Setup new data pointers. */ 968 le->m_head = m; 969 le->m_tail = m_last(m); 970 } 971 972 static void 973 tcp_push_and_replace(struct lro_ctrl *lc, struct lro_entry *le, struct mbuf *m) 974 { 975 struct lro_parser *pa; 976 977 /* 978 * Push up the stack of the current entry 979 * and replace it with "m". 980 */ 981 struct mbuf *msave; 982 983 /* Grab off the next and save it */ 984 msave = le->m_head->m_nextpkt; 985 le->m_head->m_nextpkt = NULL; 986 987 /* Now push out the old entry */ 988 tcp_flush_out_entry(lc, le); 989 990 /* Re-parse new header, should not fail. */ 991 pa = tcp_lro_parser(m, &le->outer, &le->inner, false); 992 KASSERT(pa != NULL, 993 ("tcp_push_and_replace: LRO parser failed on m=%p\n", m)); 994 995 /* 996 * Now to replace the data properly in the entry 997 * we have to reset the TCP header and 998 * other fields. 999 */ 1000 tcp_set_entry_to_mbuf(lc, le, m, pa->tcp); 1001 1002 /* Restore the next list */ 1003 m->m_nextpkt = msave; 1004 } 1005 1006 static void 1007 tcp_lro_mbuf_append_pkthdr(struct lro_entry *le, const struct mbuf *p) 1008 { 1009 struct mbuf *m; 1010 uint32_t csum; 1011 1012 m = le->m_head; 1013 if (m->m_pkthdr.lro_nsegs == 1) { 1014 /* Compute relative checksum. */ 1015 csum = p->m_pkthdr.lro_tcp_d_csum; 1016 } else { 1017 /* Merge TCP data checksums. */ 1018 csum = (uint32_t)m->m_pkthdr.lro_tcp_d_csum + 1019 (uint32_t)p->m_pkthdr.lro_tcp_d_csum; 1020 while (csum > 0xffff) 1021 csum = (csum >> 16) + (csum & 0xffff); 1022 } 1023 1024 /* Update various counters. */ 1025 m->m_pkthdr.len += p->m_pkthdr.lro_tcp_d_len; 1026 m->m_pkthdr.lro_tcp_d_csum = csum; 1027 m->m_pkthdr.lro_tcp_d_len += p->m_pkthdr.lro_tcp_d_len; 1028 m->m_pkthdr.lro_nsegs += p->m_pkthdr.lro_nsegs; 1029 le->needs_merge = 1; 1030 } 1031 1032 static void 1033 tcp_lro_condense(struct lro_ctrl *lc, struct lro_entry *le) 1034 { 1035 /* 1036 * Walk through the mbuf chain we 1037 * have on tap and compress/condense 1038 * as required. 1039 */ 1040 uint32_t *ts_ptr; 1041 struct mbuf *m; 1042 struct tcphdr *th; 1043 uint32_t tcp_data_len_total; 1044 uint32_t tcp_data_seg_total; 1045 uint16_t tcp_data_len; 1046 uint16_t tcp_opt_len; 1047 1048 /* 1049 * First we must check the lead (m_head) 1050 * we must make sure that it is *not* 1051 * something that should be sent up 1052 * right away (sack etc). 1053 */ 1054 again: 1055 m = le->m_head->m_nextpkt; 1056 if (m == NULL) { 1057 /* Just one left. */ 1058 return; 1059 } 1060 1061 th = tcp_lro_get_th(m); 1062 tcp_opt_len = (th->th_off << 2); 1063 tcp_opt_len -= sizeof(*th); 1064 ts_ptr = (uint32_t *)(th + 1); 1065 1066 if (tcp_opt_len != 0 && __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1067 *ts_ptr != TCP_LRO_TS_OPTION)) { 1068 /* 1069 * Its not the timestamp. We can't 1070 * use this guy as the head. 1071 */ 1072 le->m_head->m_nextpkt = m->m_nextpkt; 1073 tcp_push_and_replace(lc, le, m); 1074 goto again; 1075 } 1076 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1077 /* 1078 * Make sure that previously seen segments/ACKs are delivered 1079 * before this segment, e.g. FIN. 1080 */ 1081 le->m_head->m_nextpkt = m->m_nextpkt; 1082 tcp_push_and_replace(lc, le, m); 1083 goto again; 1084 } 1085 while((m = le->m_head->m_nextpkt) != NULL) { 1086 /* 1087 * condense m into le, first 1088 * pull m out of the list. 1089 */ 1090 le->m_head->m_nextpkt = m->m_nextpkt; 1091 m->m_nextpkt = NULL; 1092 /* Setup my data */ 1093 tcp_data_len = m->m_pkthdr.lro_tcp_d_len; 1094 th = tcp_lro_get_th(m); 1095 ts_ptr = (uint32_t *)(th + 1); 1096 tcp_opt_len = (th->th_off << 2); 1097 tcp_opt_len -= sizeof(*th); 1098 tcp_data_len_total = le->m_head->m_pkthdr.lro_tcp_d_len + tcp_data_len; 1099 tcp_data_seg_total = le->m_head->m_pkthdr.lro_nsegs + m->m_pkthdr.lro_nsegs; 1100 1101 if (tcp_data_seg_total >= lc->lro_ackcnt_lim || 1102 tcp_data_len_total >= lc->lro_length_lim) { 1103 /* Flush now if appending will result in overflow. */ 1104 tcp_push_and_replace(lc, le, m); 1105 goto again; 1106 } 1107 if (tcp_opt_len != 0 && 1108 __predict_false(tcp_opt_len != TCPOLEN_TSTAMP_APPA || 1109 *ts_ptr != TCP_LRO_TS_OPTION)) { 1110 /* 1111 * Maybe a sack in the new one? We need to 1112 * start all over after flushing the 1113 * current le. We will go up to the beginning 1114 * and flush it (calling the replace again possibly 1115 * or just returning). 1116 */ 1117 tcp_push_and_replace(lc, le, m); 1118 goto again; 1119 } 1120 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH)) != 0) { 1121 tcp_push_and_replace(lc, le, m); 1122 goto again; 1123 } 1124 if (tcp_opt_len != 0) { 1125 uint32_t tsval = ntohl(*(ts_ptr + 1)); 1126 /* Make sure timestamp values are increasing. */ 1127 if (TSTMP_GT(le->tsval, tsval)) { 1128 tcp_push_and_replace(lc, le, m); 1129 goto again; 1130 } 1131 le->tsval = tsval; 1132 le->tsecr = *(ts_ptr + 2); 1133 } 1134 /* Try to append the new segment. */ 1135 if (__predict_false(ntohl(th->th_seq) != le->next_seq || 1136 ((tcp_get_flags(th) & TH_ACK) != 1137 (le->flags & TH_ACK)) || 1138 (tcp_data_len == 0 && 1139 le->ack_seq == th->th_ack && 1140 le->window == th->th_win))) { 1141 /* Out of order packet, non-ACK + ACK or dup ACK. */ 1142 tcp_push_and_replace(lc, le, m); 1143 goto again; 1144 } 1145 if (tcp_data_len != 0 || 1146 SEQ_GT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1147 le->next_seq += tcp_data_len; 1148 le->ack_seq = th->th_ack; 1149 le->window = th->th_win; 1150 le->needs_merge = 1; 1151 } else if (th->th_ack == le->ack_seq) { 1152 if (WIN_GT(th->th_win, le->window)) { 1153 le->window = th->th_win; 1154 le->needs_merge = 1; 1155 } 1156 } 1157 1158 if (tcp_data_len == 0) { 1159 m_freem(m); 1160 continue; 1161 } 1162 1163 /* Merge TCP data checksum and length to head mbuf. */ 1164 tcp_lro_mbuf_append_pkthdr(le, m); 1165 1166 /* 1167 * Adjust the mbuf so that m_data points to the first byte of 1168 * the ULP payload. Adjust the mbuf to avoid complications and 1169 * append new segment to existing mbuf chain. 1170 */ 1171 m_adj(m, m->m_pkthdr.len - tcp_data_len); 1172 m_demote_pkthdr(m); 1173 le->m_tail->m_next = m; 1174 le->m_tail = m_last(m); 1175 } 1176 } 1177 1178 #ifdef TCPHPTS 1179 static void 1180 tcp_queue_pkts(struct tcpcb *tp, struct lro_entry *le) 1181 { 1182 1183 INP_WLOCK_ASSERT(tptoinpcb(tp)); 1184 1185 STAILQ_HEAD(, mbuf) q = { le->m_head, 1186 &STAILQ_NEXT(le->m_last_mbuf, m_stailqpkt) }; 1187 STAILQ_CONCAT(&tp->t_inqueue, &q); 1188 le->m_head = NULL; 1189 le->m_last_mbuf = NULL; 1190 } 1191 1192 static bool 1193 tcp_lro_check_wake_status(struct tcpcb *tp) 1194 { 1195 1196 if (tp->t_fb->tfb_early_wake_check != NULL) 1197 return ((tp->t_fb->tfb_early_wake_check)(tp)); 1198 return (false); 1199 } 1200 1201 static struct mbuf * 1202 tcp_lro_get_last_if_ackcmp(struct lro_ctrl *lc, struct lro_entry *le, 1203 struct tcpcb *tp, int32_t *new_m, bool can_append_old_cmp) 1204 { 1205 struct mbuf *m; 1206 1207 /* Look at the last mbuf if any in queue */ 1208 if (can_append_old_cmp) { 1209 m = STAILQ_LAST(&tp->t_inqueue, mbuf, m_stailqpkt); 1210 if (m != NULL && (m->m_flags & M_ACKCMP) != 0) { 1211 if (M_TRAILINGSPACE(m) >= sizeof(struct tcp_ackent)) { 1212 tcp_lro_log(tp, lc, le, NULL, 23, 0, 0, 0, 0); 1213 *new_m = 0; 1214 counter_u64_add(tcp_extra_mbuf, 1); 1215 return (m); 1216 } else { 1217 /* Mark we ran out of space */ 1218 tp->t_flags2 |= TF2_MBUF_L_ACKS; 1219 } 1220 } 1221 } 1222 /* Decide mbuf size. */ 1223 tcp_lro_log(tp, lc, le, NULL, 21, 0, 0, 0, 0); 1224 if (tp->t_flags2 & TF2_MBUF_L_ACKS) 1225 m = m_getcl(M_NOWAIT, MT_DATA, M_ACKCMP | M_PKTHDR); 1226 else 1227 m = m_gethdr(M_NOWAIT, MT_DATA); 1228 1229 if (__predict_false(m == NULL)) { 1230 counter_u64_add(tcp_would_have_but, 1); 1231 return (NULL); 1232 } 1233 counter_u64_add(tcp_comp_total, 1); 1234 m->m_pkthdr.rcvif = lc->ifp; 1235 m->m_flags |= M_ACKCMP; 1236 *new_m = 1; 1237 return (m); 1238 } 1239 1240 static struct tcpcb * 1241 tcp_lro_lookup(struct ifnet *ifp, struct lro_parser *pa) 1242 { 1243 struct inpcb *inp; 1244 1245 switch (pa->data.lro_type) { 1246 #ifdef INET6 1247 case LRO_TYPE_IPV6_TCP: 1248 inp = in6_pcblookup(&V_tcbinfo, 1249 &pa->data.s_addr.v6, 1250 pa->data.s_port, 1251 &pa->data.d_addr.v6, 1252 pa->data.d_port, 1253 INPLOOKUP_WLOCKPCB, 1254 ifp); 1255 break; 1256 #endif 1257 #ifdef INET 1258 case LRO_TYPE_IPV4_TCP: 1259 inp = in_pcblookup(&V_tcbinfo, 1260 pa->data.s_addr.v4, 1261 pa->data.s_port, 1262 pa->data.d_addr.v4, 1263 pa->data.d_port, 1264 INPLOOKUP_WLOCKPCB, 1265 ifp); 1266 break; 1267 #endif 1268 default: 1269 return (NULL); 1270 } 1271 1272 return (intotcpcb(inp)); 1273 } 1274 1275 static inline bool 1276 tcp_lro_ack_valid(struct mbuf *m, struct tcphdr *th, uint32_t **ppts, bool *other_opts) 1277 { 1278 /* 1279 * This function returns two bits of valuable information. 1280 * a) Is what is present capable of being ack-compressed, 1281 * we can ack-compress if there is no options or just 1282 * a timestamp option, and of course the th_flags must 1283 * be correct as well. 1284 * b) Our other options present such as SACK. This is 1285 * used to determine if we want to wakeup or not. 1286 */ 1287 bool ret = true; 1288 1289 switch (th->th_off << 2) { 1290 case (sizeof(*th) + TCPOLEN_TSTAMP_APPA): 1291 *ppts = (uint32_t *)(th + 1); 1292 /* Check if we have only one timestamp option. */ 1293 if (**ppts == TCP_LRO_TS_OPTION) 1294 *other_opts = false; 1295 else { 1296 *other_opts = true; 1297 ret = false; 1298 } 1299 break; 1300 case (sizeof(*th)): 1301 /* No options. */ 1302 *ppts = NULL; 1303 *other_opts = false; 1304 break; 1305 default: 1306 *ppts = NULL; 1307 *other_opts = true; 1308 ret = false; 1309 break; 1310 } 1311 /* For ACKCMP we only accept ACK, PUSH, ECE and CWR. */ 1312 if ((tcp_get_flags(th) & ~(TH_ACK | TH_PUSH | TH_ECE | TH_CWR)) != 0) 1313 ret = false; 1314 /* If it has data on it we cannot compress it */ 1315 if (m->m_pkthdr.lro_tcp_d_len) 1316 ret = false; 1317 1318 /* ACK flag must be set. */ 1319 if (!(tcp_get_flags(th) & TH_ACK)) 1320 ret = false; 1321 return (ret); 1322 } 1323 1324 static int 1325 tcp_lro_flush_tcphpts(struct lro_ctrl *lc, struct lro_entry *le) 1326 { 1327 struct tcpcb *tp; 1328 struct mbuf **pp, *cmp, *mv_to; 1329 struct ifnet *lagg_ifp; 1330 bool bpf_req, lagg_bpf_req, should_wake, can_append_old_cmp; 1331 1332 /* Check if packet doesn't belongs to our network interface. */ 1333 if ((tcplro_stacks_wanting_mbufq == 0) || 1334 (le->outer.data.vlan_id != 0) || 1335 (le->inner.data.lro_type != LRO_TYPE_NONE)) 1336 return (TCP_LRO_CANNOT); 1337 1338 #ifdef INET6 1339 /* 1340 * Be proactive about unspecified IPv6 address in source. As 1341 * we use all-zero to indicate unbounded/unconnected pcb, 1342 * unspecified IPv6 address can be used to confuse us. 1343 * 1344 * Note that packets with unspecified IPv6 destination is 1345 * already dropped in ip6_input. 1346 */ 1347 if (__predict_false(le->outer.data.lro_type == LRO_TYPE_IPV6_TCP && 1348 IN6_IS_ADDR_UNSPECIFIED(&le->outer.data.s_addr.v6))) 1349 return (TCP_LRO_CANNOT); 1350 1351 if (__predict_false(le->inner.data.lro_type == LRO_TYPE_IPV6_TCP && 1352 IN6_IS_ADDR_UNSPECIFIED(&le->inner.data.s_addr.v6))) 1353 return (TCP_LRO_CANNOT); 1354 #endif 1355 /* Lookup inp, if any. Returns locked TCP inpcb. */ 1356 tp = tcp_lro_lookup(lc->ifp, 1357 (le->inner.data.lro_type == LRO_TYPE_NONE) ? &le->outer : &le->inner); 1358 if (tp == NULL) 1359 return (TCP_LRO_CANNOT); 1360 1361 counter_u64_add(tcp_inp_lro_locks_taken, 1); 1362 1363 /* Check if the inp is dead, Jim. */ 1364 if (tp->t_state == TCPS_TIME_WAIT) { 1365 INP_WUNLOCK(tptoinpcb(tp)); 1366 return (TCP_LRO_CANNOT); 1367 } 1368 if (tp->t_lro_cpu == HPTS_CPU_NONE && lc->lro_cpu_is_set == 1) 1369 tp->t_lro_cpu = lc->lro_last_cpu; 1370 /* Check if the transport doesn't support the needed optimizations. */ 1371 if ((tp->t_flags2 & (TF2_SUPPORTS_MBUFQ | TF2_MBUF_ACKCMP)) == 0) { 1372 INP_WUNLOCK(tptoinpcb(tp)); 1373 return (TCP_LRO_CANNOT); 1374 } 1375 1376 if (tp->t_flags2 & TF2_MBUF_QUEUE_READY) 1377 should_wake = false; 1378 else 1379 should_wake = true; 1380 /* Check if packets should be tapped to BPF. */ 1381 bpf_req = bpf_peers_present(lc->ifp->if_bpf); 1382 lagg_bpf_req = false; 1383 lagg_ifp = NULL; 1384 if (lc->ifp->if_type == IFT_IEEE8023ADLAG || 1385 lc->ifp->if_type == IFT_INFINIBANDLAG) { 1386 struct lagg_port *lp = lc->ifp->if_lagg; 1387 struct lagg_softc *sc = lp->lp_softc; 1388 1389 lagg_ifp = sc->sc_ifp; 1390 if (lagg_ifp != NULL) 1391 lagg_bpf_req = bpf_peers_present(lagg_ifp->if_bpf); 1392 } 1393 1394 /* Strip and compress all the incoming packets. */ 1395 can_append_old_cmp = true; 1396 cmp = NULL; 1397 for (pp = &le->m_head; *pp != NULL; ) { 1398 mv_to = NULL; 1399 if (do_bpf_strip_and_compress(tp, lc, le, pp, 1400 &cmp, &mv_to, &should_wake, bpf_req, 1401 lagg_bpf_req, lagg_ifp, can_append_old_cmp) == false) { 1402 /* Advance to next mbuf. */ 1403 pp = &(*pp)->m_nextpkt; 1404 /* 1405 * Once we have appended we can't look in the pending 1406 * inbound packets for a compressed ack to append to. 1407 */ 1408 can_append_old_cmp = false; 1409 /* 1410 * Once we append we also need to stop adding to any 1411 * compressed ack we were remembering. A new cmp 1412 * ack will be required. 1413 */ 1414 cmp = NULL; 1415 tcp_lro_log(tp, lc, le, NULL, 25, 0, 0, 0, 0); 1416 } else if (mv_to != NULL) { 1417 /* We are asked to move pp up */ 1418 pp = &mv_to->m_nextpkt; 1419 tcp_lro_log(tp, lc, le, NULL, 24, 0, 0, 0, 0); 1420 } else 1421 tcp_lro_log(tp, lc, le, NULL, 26, 0, 0, 0, 0); 1422 } 1423 /* Update "m_last_mbuf", if any. */ 1424 if (pp == &le->m_head) 1425 le->m_last_mbuf = *pp; 1426 else 1427 le->m_last_mbuf = __containerof(pp, struct mbuf, m_nextpkt); 1428 1429 /* Check if any data mbufs left. */ 1430 if (le->m_head != NULL) { 1431 counter_u64_add(tcp_inp_lro_direct_queue, 1); 1432 tcp_lro_log(tp, lc, le, NULL, 22, 1, tp->t_flags2, 0, 1); 1433 tcp_queue_pkts(tp, le); 1434 } 1435 if (should_wake) { 1436 /* Wakeup */ 1437 counter_u64_add(tcp_inp_lro_wokeup_queue, 1); 1438 if ((*tp->t_fb->tfb_do_queued_segments)(tp, 0)) 1439 /* TCP cb gone and unlocked. */ 1440 return (0); 1441 } 1442 INP_WUNLOCK(tptoinpcb(tp)); 1443 1444 return (0); /* Success. */ 1445 } 1446 #endif 1447 1448 void 1449 tcp_lro_flush(struct lro_ctrl *lc, struct lro_entry *le) 1450 { 1451 /* Only optimise if there are multiple packets waiting. */ 1452 #ifdef TCPHPTS 1453 int error; 1454 #endif 1455 1456 NET_EPOCH_ASSERT(); 1457 #ifdef TCPHPTS 1458 CURVNET_SET(lc->ifp->if_vnet); 1459 error = tcp_lro_flush_tcphpts(lc, le); 1460 CURVNET_RESTORE(); 1461 if (error != 0) { 1462 #endif 1463 tcp_lro_condense(lc, le); 1464 tcp_flush_out_entry(lc, le); 1465 #ifdef TCPHPTS 1466 } 1467 #endif 1468 lc->lro_flushed++; 1469 bzero(le, sizeof(*le)); 1470 LIST_INSERT_HEAD(&lc->lro_free, le, next); 1471 } 1472 1473 #define tcp_lro_msb_64(x) (1ULL << (flsll(x) - 1)) 1474 1475 /* 1476 * The tcp_lro_sort() routine is comparable to qsort(), except it has 1477 * a worst case complexity limit of O(MIN(N,64)*N), where N is the 1478 * number of elements to sort and 64 is the number of sequence bits 1479 * available. The algorithm is bit-slicing the 64-bit sequence number, 1480 * sorting one bit at a time from the most significant bit until the 1481 * least significant one, skipping the constant bits. This is 1482 * typically called a radix sort. 1483 */ 1484 static void 1485 tcp_lro_sort(struct lro_mbuf_sort *parray, uint32_t size) 1486 { 1487 struct lro_mbuf_sort temp; 1488 uint64_t ones; 1489 uint64_t zeros; 1490 uint32_t x; 1491 uint32_t y; 1492 1493 repeat: 1494 /* for small arrays insertion sort is faster */ 1495 if (size <= 12) { 1496 for (x = 1; x < size; x++) { 1497 temp = parray[x]; 1498 for (y = x; y > 0 && temp.seq < parray[y - 1].seq; y--) 1499 parray[y] = parray[y - 1]; 1500 parray[y] = temp; 1501 } 1502 return; 1503 } 1504 1505 /* compute sequence bits which are constant */ 1506 ones = 0; 1507 zeros = 0; 1508 for (x = 0; x != size; x++) { 1509 ones |= parray[x].seq; 1510 zeros |= ~parray[x].seq; 1511 } 1512 1513 /* compute bits which are not constant into "ones" */ 1514 ones &= zeros; 1515 if (ones == 0) 1516 return; 1517 1518 /* pick the most significant bit which is not constant */ 1519 ones = tcp_lro_msb_64(ones); 1520 1521 /* 1522 * Move entries having cleared sequence bits to the beginning 1523 * of the array: 1524 */ 1525 for (x = y = 0; y != size; y++) { 1526 /* skip set bits */ 1527 if (parray[y].seq & ones) 1528 continue; 1529 /* swap entries */ 1530 temp = parray[x]; 1531 parray[x] = parray[y]; 1532 parray[y] = temp; 1533 x++; 1534 } 1535 1536 KASSERT(x != 0 && x != size, ("Memory is corrupted\n")); 1537 1538 /* sort zeros */ 1539 tcp_lro_sort(parray, x); 1540 1541 /* sort ones */ 1542 parray += x; 1543 size -= x; 1544 goto repeat; 1545 } 1546 1547 void 1548 tcp_lro_flush_all(struct lro_ctrl *lc) 1549 { 1550 uint64_t seq; 1551 uint64_t nseq; 1552 unsigned x; 1553 1554 NET_EPOCH_ASSERT(); 1555 /* check if no mbufs to flush */ 1556 if (lc->lro_mbuf_count == 0) 1557 goto done; 1558 if (lc->lro_cpu_is_set == 0) { 1559 if (lc->lro_last_cpu == curcpu) { 1560 lc->lro_cnt_of_same_cpu++; 1561 /* Have we reached the threshold to declare a cpu? */ 1562 if (lc->lro_cnt_of_same_cpu > tcp_lro_cpu_set_thresh) 1563 lc->lro_cpu_is_set = 1; 1564 } else { 1565 lc->lro_last_cpu = curcpu; 1566 lc->lro_cnt_of_same_cpu = 0; 1567 } 1568 } 1569 CURVNET_SET(lc->ifp->if_vnet); 1570 1571 /* get current time */ 1572 binuptime(&lc->lro_last_queue_time); 1573 1574 /* sort all mbufs according to stream */ 1575 tcp_lro_sort(lc->lro_mbuf_data, lc->lro_mbuf_count); 1576 1577 /* input data into LRO engine, stream by stream */ 1578 seq = 0; 1579 for (x = 0; x != lc->lro_mbuf_count; x++) { 1580 struct mbuf *mb; 1581 1582 /* get mbuf */ 1583 mb = lc->lro_mbuf_data[x].mb; 1584 1585 /* get sequence number, masking away the packet index */ 1586 nseq = lc->lro_mbuf_data[x].seq & (-1ULL << 24); 1587 1588 /* check for new stream */ 1589 if (seq != nseq) { 1590 seq = nseq; 1591 1592 /* flush active streams */ 1593 tcp_lro_rx_done(lc); 1594 } 1595 1596 /* add packet to LRO engine */ 1597 if (tcp_lro_rx_common(lc, mb, 0, false) != 0) { 1598 /* Flush anything we have acummulated */ 1599 tcp_lro_flush_active(lc); 1600 /* input packet to network layer */ 1601 (*lc->ifp->if_input)(lc->ifp, mb); 1602 lc->lro_queued++; 1603 lc->lro_flushed++; 1604 } 1605 } 1606 CURVNET_RESTORE(); 1607 done: 1608 /* flush active streams */ 1609 tcp_lro_rx_done(lc); 1610 1611 #ifdef TCPHPTS 1612 tcp_run_hpts(); 1613 #endif 1614 lc->lro_mbuf_count = 0; 1615 } 1616 1617 #ifdef TCPHPTS 1618 static void 1619 build_ack_entry(struct tcp_ackent *ae, struct tcphdr *th, struct mbuf *m, 1620 uint32_t *ts_ptr, uint16_t iptos) 1621 { 1622 /* 1623 * Given a TCP ACK, summarize it down into the small TCP ACK 1624 * entry. 1625 */ 1626 ae->timestamp = m->m_pkthdr.rcv_tstmp; 1627 ae->flags = 0; 1628 if (m->m_flags & M_TSTMP_LRO) 1629 ae->flags |= TSTMP_LRO; 1630 else if (m->m_flags & M_TSTMP) 1631 ae->flags |= TSTMP_HDWR; 1632 ae->seq = ntohl(th->th_seq); 1633 ae->ack = ntohl(th->th_ack); 1634 ae->flags |= tcp_get_flags(th); 1635 if (ts_ptr != NULL) { 1636 ae->ts_value = ntohl(ts_ptr[1]); 1637 ae->ts_echo = ntohl(ts_ptr[2]); 1638 ae->flags |= HAS_TSTMP; 1639 } 1640 ae->win = ntohs(th->th_win); 1641 ae->codepoint = iptos; 1642 } 1643 1644 /* 1645 * Do BPF tap for either ACK_CMP packets or MBUF QUEUE type packets 1646 * and strip all, but the IPv4/IPv6 header. 1647 */ 1648 static bool 1649 do_bpf_strip_and_compress(struct tcpcb *tp, struct lro_ctrl *lc, 1650 struct lro_entry *le, struct mbuf **pp, struct mbuf **cmp, struct mbuf **mv_to, 1651 bool *should_wake, bool bpf_req, bool lagg_bpf_req, struct ifnet *lagg_ifp, bool can_append_old_cmp) 1652 { 1653 union { 1654 void *ptr; 1655 struct ip *ip4; 1656 struct ip6_hdr *ip6; 1657 } l3; 1658 struct mbuf *m; 1659 struct mbuf *nm; 1660 struct tcphdr *th; 1661 struct tcp_ackent *ack_ent; 1662 uint32_t *ts_ptr; 1663 int32_t n_mbuf; 1664 bool other_opts, can_compress; 1665 uint8_t lro_type; 1666 uint16_t iptos; 1667 int tcp_hdr_offset; 1668 int idx; 1669 1670 /* Get current mbuf. */ 1671 m = *pp; 1672 1673 /* Let the BPF see the packet */ 1674 if (__predict_false(bpf_req)) 1675 ETHER_BPF_MTAP(lc->ifp, m); 1676 1677 if (__predict_false(lagg_bpf_req)) 1678 ETHER_BPF_MTAP(lagg_ifp, m); 1679 1680 tcp_hdr_offset = m->m_pkthdr.lro_tcp_h_off; 1681 lro_type = le->inner.data.lro_type; 1682 switch (lro_type) { 1683 case LRO_TYPE_NONE: 1684 lro_type = le->outer.data.lro_type; 1685 switch (lro_type) { 1686 case LRO_TYPE_IPV4_TCP: 1687 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1688 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1689 break; 1690 case LRO_TYPE_IPV6_TCP: 1691 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1692 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1693 break; 1694 default: 1695 goto compressed; 1696 } 1697 break; 1698 case LRO_TYPE_IPV4_TCP: 1699 tcp_hdr_offset -= sizeof(*le->outer.ip4); 1700 m->m_pkthdr.lro_etype = ETHERTYPE_IP; 1701 break; 1702 case LRO_TYPE_IPV6_TCP: 1703 tcp_hdr_offset -= sizeof(*le->outer.ip6); 1704 m->m_pkthdr.lro_etype = ETHERTYPE_IPV6; 1705 break; 1706 default: 1707 goto compressed; 1708 } 1709 1710 MPASS(tcp_hdr_offset >= 0); 1711 1712 m_adj(m, tcp_hdr_offset); 1713 m->m_flags |= M_LRO_EHDRSTRP; 1714 m->m_flags &= ~M_ACKCMP; 1715 m->m_pkthdr.lro_tcp_h_off -= tcp_hdr_offset; 1716 1717 th = tcp_lro_get_th(m); 1718 1719 th->th_sum = 0; /* TCP checksum is valid. */ 1720 1721 /* Check if ACK can be compressed */ 1722 can_compress = tcp_lro_ack_valid(m, th, &ts_ptr, &other_opts); 1723 1724 /* Now lets look at the should wake states */ 1725 if ((other_opts == true) && 1726 ((tp->t_flags2 & TF2_DONT_SACK_QUEUE) == 0)) { 1727 /* 1728 * If there are other options (SACK?) and the 1729 * tcp endpoint has not expressly told us it does 1730 * not care about SACKS, then we should wake up. 1731 */ 1732 *should_wake = true; 1733 } else if (*should_wake == false) { 1734 /* Wakeup override check if we are false here */ 1735 *should_wake = tcp_lro_check_wake_status(tp); 1736 } 1737 /* Is the ack compressable? */ 1738 if (can_compress == false) 1739 goto done; 1740 /* Does the TCP endpoint support ACK compression? */ 1741 if ((tp->t_flags2 & TF2_MBUF_ACKCMP) == 0) 1742 goto done; 1743 1744 /* Lets get the TOS/traffic class field */ 1745 l3.ptr = mtod(m, void *); 1746 switch (lro_type) { 1747 case LRO_TYPE_IPV4_TCP: 1748 iptos = l3.ip4->ip_tos; 1749 break; 1750 case LRO_TYPE_IPV6_TCP: 1751 iptos = IPV6_TRAFFIC_CLASS(l3.ip6); 1752 break; 1753 default: 1754 iptos = 0; /* Keep compiler happy. */ 1755 break; 1756 } 1757 /* Now lets get space if we don't have some already */ 1758 if (*cmp == NULL) { 1759 new_one: 1760 nm = tcp_lro_get_last_if_ackcmp(lc, le, tp, &n_mbuf, 1761 can_append_old_cmp); 1762 if (__predict_false(nm == NULL)) 1763 goto done; 1764 *cmp = nm; 1765 if (n_mbuf) { 1766 /* 1767 * Link in the new cmp ack to our in-order place, 1768 * first set our cmp ack's next to where we are. 1769 */ 1770 nm->m_nextpkt = m; 1771 (*pp) = nm; 1772 /* 1773 * Set it up so mv_to is advanced to our 1774 * compressed ack. This way the caller can 1775 * advance pp to the right place. 1776 */ 1777 *mv_to = nm; 1778 /* 1779 * Advance it here locally as well. 1780 */ 1781 pp = &nm->m_nextpkt; 1782 } 1783 } else { 1784 /* We have one already we are working on */ 1785 nm = *cmp; 1786 if (M_TRAILINGSPACE(nm) < sizeof(struct tcp_ackent)) { 1787 /* We ran out of space */ 1788 tp->t_flags2 |= TF2_MBUF_L_ACKS; 1789 goto new_one; 1790 } 1791 } 1792 MPASS(M_TRAILINGSPACE(nm) >= sizeof(struct tcp_ackent)); 1793 counter_u64_add(tcp_inp_lro_compressed, 1); 1794 le->compressed++; 1795 /* We can add in to the one on the tail */ 1796 ack_ent = mtod(nm, struct tcp_ackent *); 1797 idx = (nm->m_len / sizeof(struct tcp_ackent)); 1798 build_ack_entry(&ack_ent[idx], th, m, ts_ptr, iptos); 1799 1800 /* Bump the size of both pkt-hdr and len */ 1801 nm->m_len += sizeof(struct tcp_ackent); 1802 nm->m_pkthdr.len += sizeof(struct tcp_ackent); 1803 compressed: 1804 /* Advance to next mbuf before freeing. */ 1805 *pp = m->m_nextpkt; 1806 m->m_nextpkt = NULL; 1807 m_freem(m); 1808 return (true); 1809 done: 1810 counter_u64_add(tcp_uncomp_total, 1); 1811 le->uncompressed++; 1812 return (false); 1813 } 1814 #endif 1815 1816 static struct lro_head * 1817 tcp_lro_rx_get_bucket(struct lro_ctrl *lc, struct mbuf *m, struct lro_parser *parser) 1818 { 1819 u_long hash; 1820 1821 if (M_HASHTYPE_ISHASH(m)) { 1822 hash = m->m_pkthdr.flowid; 1823 } else { 1824 for (unsigned i = hash = 0; i != LRO_RAW_ADDRESS_MAX; i++) 1825 hash += parser->data.raw[i]; 1826 } 1827 return (&lc->lro_hash[hash % lc->lro_hashsz]); 1828 } 1829 1830 static int 1831 tcp_lro_rx_common(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum, bool use_hash) 1832 { 1833 struct lro_parser pi; /* inner address data */ 1834 struct lro_parser po; /* outer address data */ 1835 struct lro_parser *pa; /* current parser for TCP stream */ 1836 struct lro_entry *le; 1837 struct lro_head *bucket; 1838 struct tcphdr *th; 1839 int tcp_data_len; 1840 int tcp_opt_len; 1841 int error; 1842 uint16_t tcp_data_sum; 1843 1844 #ifdef INET 1845 /* Quickly decide if packet cannot be LRO'ed */ 1846 if (__predict_false(V_ipforwarding != 0)) 1847 return (TCP_LRO_CANNOT); 1848 #endif 1849 #ifdef INET6 1850 /* Quickly decide if packet cannot be LRO'ed */ 1851 if (__predict_false(V_ip6_forwarding != 0)) 1852 return (TCP_LRO_CANNOT); 1853 #endif 1854 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1855 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1856 (m->m_pkthdr.csum_data != 0xffff)) { 1857 /* 1858 * The checksum either did not have hardware offload 1859 * or it was a bad checksum. We can't LRO such 1860 * a packet. 1861 */ 1862 counter_u64_add(tcp_bad_csums, 1); 1863 return (TCP_LRO_CANNOT); 1864 } 1865 /* We expect a contiguous header [eh, ip, tcp]. */ 1866 pa = tcp_lro_parser(m, &po, &pi, true); 1867 if (__predict_false(pa == NULL)) 1868 return (TCP_LRO_NOT_SUPPORTED); 1869 1870 /* We don't expect any padding. */ 1871 error = tcp_lro_trim_mbuf_chain(m, pa); 1872 if (__predict_false(error != 0)) 1873 return (error); 1874 1875 #ifdef INET 1876 switch (pa->data.lro_type) { 1877 case LRO_TYPE_IPV4_TCP: 1878 error = tcp_lro_rx_ipv4(lc, m, pa->ip4); 1879 if (__predict_false(error != 0)) 1880 return (error); 1881 break; 1882 default: 1883 break; 1884 } 1885 #endif 1886 /* If no hardware or arrival stamp on the packet add timestamp */ 1887 if ((m->m_flags & (M_TSTMP_LRO | M_TSTMP)) == 0) { 1888 m->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 1889 m->m_flags |= M_TSTMP_LRO; 1890 } 1891 1892 /* Get pointer to TCP header. */ 1893 th = pa->tcp; 1894 1895 /* Don't process SYN packets. */ 1896 if (__predict_false(tcp_get_flags(th) & TH_SYN)) 1897 return (TCP_LRO_CANNOT); 1898 1899 /* Get total TCP header length and compute payload length. */ 1900 tcp_opt_len = (th->th_off << 2); 1901 tcp_data_len = m->m_pkthdr.len - ((uint8_t *)th - 1902 (uint8_t *)m->m_data) - tcp_opt_len; 1903 tcp_opt_len -= sizeof(*th); 1904 1905 /* Don't process invalid TCP headers. */ 1906 if (__predict_false(tcp_opt_len < 0 || tcp_data_len < 0)) 1907 return (TCP_LRO_CANNOT); 1908 1909 /* Compute TCP data only checksum. */ 1910 if (tcp_data_len == 0) 1911 tcp_data_sum = 0; /* no data, no checksum */ 1912 else if (__predict_false(csum != 0)) 1913 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~csum); 1914 else 1915 tcp_data_sum = tcp_lro_rx_csum_data(pa, ~th->th_sum); 1916 1917 /* Save TCP info in mbuf. */ 1918 m->m_nextpkt = NULL; 1919 m->m_pkthdr.rcvif = lc->ifp; 1920 m->m_pkthdr.lro_tcp_d_csum = tcp_data_sum; 1921 m->m_pkthdr.lro_tcp_d_len = tcp_data_len; 1922 m->m_pkthdr.lro_tcp_h_off = ((uint8_t *)th - (uint8_t *)m->m_data); 1923 m->m_pkthdr.lro_nsegs = 1; 1924 1925 /* Get hash bucket. */ 1926 if (!use_hash) { 1927 bucket = &lc->lro_hash[0]; 1928 } else { 1929 bucket = tcp_lro_rx_get_bucket(lc, m, pa); 1930 } 1931 1932 /* Try to find a matching previous segment. */ 1933 LIST_FOREACH(le, bucket, hash_next) { 1934 /* Compare addresses and ports. */ 1935 if (lro_address_compare(&po.data, &le->outer.data) == false || 1936 lro_address_compare(&pi.data, &le->inner.data) == false) 1937 continue; 1938 1939 /* Check if no data and old ACK. */ 1940 if (tcp_data_len == 0 && 1941 SEQ_LT(ntohl(th->th_ack), ntohl(le->ack_seq))) { 1942 m_freem(m); 1943 return (0); 1944 } 1945 1946 /* Mark "m" in the last spot. */ 1947 le->m_last_mbuf->m_nextpkt = m; 1948 /* Now set the tail to "m". */ 1949 le->m_last_mbuf = m; 1950 return (0); 1951 } 1952 1953 /* Try to find an empty slot. */ 1954 if (LIST_EMPTY(&lc->lro_free)) 1955 return (TCP_LRO_NO_ENTRIES); 1956 1957 /* Start a new segment chain. */ 1958 le = LIST_FIRST(&lc->lro_free); 1959 LIST_REMOVE(le, next); 1960 tcp_lro_active_insert(lc, bucket, le); 1961 1962 /* Make sure the headers are set. */ 1963 le->inner = pi; 1964 le->outer = po; 1965 1966 /* Store time this entry was allocated. */ 1967 le->alloc_time = lc->lro_last_queue_time; 1968 1969 tcp_set_entry_to_mbuf(lc, le, m, th); 1970 1971 /* Now set the tail to "m". */ 1972 le->m_last_mbuf = m; 1973 1974 return (0); 1975 } 1976 1977 int 1978 tcp_lro_rx(struct lro_ctrl *lc, struct mbuf *m, uint32_t csum) 1979 { 1980 int error; 1981 1982 if (((m->m_pkthdr.csum_flags & (CSUM_DATA_VALID | CSUM_PSEUDO_HDR)) != 1983 ((CSUM_DATA_VALID | CSUM_PSEUDO_HDR))) || 1984 (m->m_pkthdr.csum_data != 0xffff)) { 1985 /* 1986 * The checksum either did not have hardware offload 1987 * or it was a bad checksum. We can't LRO such 1988 * a packet. 1989 */ 1990 counter_u64_add(tcp_bad_csums, 1); 1991 return (TCP_LRO_CANNOT); 1992 } 1993 /* get current time */ 1994 binuptime(&lc->lro_last_queue_time); 1995 CURVNET_SET(lc->ifp->if_vnet); 1996 error = tcp_lro_rx_common(lc, m, csum, true); 1997 if (__predict_false(error != 0)) { 1998 /* 1999 * Flush anything we have acummulated 2000 * ahead of this packet that can't 2001 * be LRO'd. This preserves order. 2002 */ 2003 tcp_lro_flush_active(lc); 2004 } 2005 CURVNET_RESTORE(); 2006 2007 return (error); 2008 } 2009 2010 void 2011 tcp_lro_queue_mbuf(struct lro_ctrl *lc, struct mbuf *mb) 2012 { 2013 NET_EPOCH_ASSERT(); 2014 /* sanity checks */ 2015 if (__predict_false(lc->ifp == NULL || lc->lro_mbuf_data == NULL || 2016 lc->lro_mbuf_max == 0)) { 2017 /* packet drop */ 2018 m_freem(mb); 2019 return; 2020 } 2021 2022 /* check if packet is not LRO capable */ 2023 if (__predict_false((lc->ifp->if_capenable & IFCAP_LRO) == 0)) { 2024 /* input packet to network layer */ 2025 (*lc->ifp->if_input) (lc->ifp, mb); 2026 return; 2027 } 2028 2029 /* If no hardware or arrival stamp on the packet add timestamp */ 2030 if ((tcplro_stacks_wanting_mbufq > 0) && 2031 (tcp_less_accurate_lro_ts == 0) && 2032 ((mb->m_flags & M_TSTMP) == 0)) { 2033 /* Add in an LRO time since no hardware */ 2034 binuptime(&lc->lro_last_queue_time); 2035 mb->m_pkthdr.rcv_tstmp = bintime2ns(&lc->lro_last_queue_time); 2036 mb->m_flags |= M_TSTMP_LRO; 2037 } 2038 2039 /* create sequence number */ 2040 lc->lro_mbuf_data[lc->lro_mbuf_count].seq = 2041 (((uint64_t)M_HASHTYPE_GET(mb)) << 56) | 2042 (((uint64_t)mb->m_pkthdr.flowid) << 24) | 2043 ((uint64_t)lc->lro_mbuf_count); 2044 2045 /* enter mbuf */ 2046 lc->lro_mbuf_data[lc->lro_mbuf_count].mb = mb; 2047 2048 /* flush if array is full */ 2049 if (__predict_false(++lc->lro_mbuf_count == lc->lro_mbuf_max)) 2050 tcp_lro_flush_all(lc); 2051 } 2052 2053 /* end */ 2054