1 /*- 2 * Copyright (c) 2016-2018 Netflix Inc. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND 14 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 16 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE 17 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 18 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 19 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 20 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 21 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 22 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 23 * SUCH DAMAGE. 24 * 25 */ 26 #include <sys/cdefs.h> 27 __FBSDID("$FreeBSD$"); 28 29 #include "opt_inet.h" 30 #include "opt_inet6.h" 31 #include "opt_ipsec.h" 32 #include "opt_tcpdebug.h" 33 /** 34 * Some notes about usage. 35 * 36 * The tcp_hpts system is designed to provide a high precision timer 37 * system for tcp. Its main purpose is to provide a mechanism for 38 * pacing packets out onto the wire. It can be used in two ways 39 * by a given TCP stack (and those two methods can be used simultaneously). 40 * 41 * First, and probably the main thing its used by Rack and BBR for, it can 42 * be used to call tcp_output() of a transport stack at some time in the future. 43 * The normal way this is done is that tcp_output() of the stack schedules 44 * itself to be called again by calling tcp_hpts_insert(tcpcb, slot). The 45 * slot is the time from now that the stack wants to be called but it 46 * must be converted to tcp_hpts's notion of slot. This is done with 47 * one of the macros HPTS_MS_TO_SLOTS or HPTS_USEC_TO_SLOTS. So a typical 48 * call from the tcp_output() routine might look like: 49 * 50 * tcp_hpts_insert(tp, HPTS_USEC_TO_SLOTS(550)); 51 * 52 * The above would schedule tcp_ouput() to be called in 550 useconds. 53 * Note that if using this mechanism the stack will want to add near 54 * its top a check to prevent unwanted calls (from user land or the 55 * arrival of incoming ack's). So it would add something like: 56 * 57 * if (inp->inp_in_hpts) 58 * return; 59 * 60 * to prevent output processing until the time alotted has gone by. 61 * Of course this is a bare bones example and the stack will probably 62 * have more consideration then just the above. 63 * 64 * Now the tcp_hpts system will call tcp_output in one of two forms, 65 * it will first check to see if the stack as defined a 66 * tfb_tcp_output_wtime() function, if so that is the routine it 67 * will call, if that function is not defined then it will call the 68 * tfb_tcp_output() function. The only difference between these 69 * two calls is that the former passes the time in to the function 70 * so the function does not have to access the time (which tcp_hpts 71 * already has). What these functions do is of course totally up 72 * to the individual tcp stack. 73 * 74 * Now the second function (actually two functions I guess :D) 75 * the tcp_hpts system provides is the ability to either abort 76 * a connection (later) or process input on a connection. 77 * Why would you want to do this? To keep processor locality. 78 * 79 * So in order to use the input redirection function the 80 * stack changes its tcp_do_segment() routine to instead 81 * of process the data call the function: 82 * 83 * tcp_queue_pkt_to_input() 84 * 85 * You will note that the arguments to this function look 86 * a lot like tcp_do_segments's arguments. This function 87 * will assure that the tcp_hpts system will 88 * call the functions tfb_tcp_hpts_do_segment() from the 89 * correct CPU. Note that multiple calls can get pushed 90 * into the tcp_hpts system this will be indicated by 91 * the next to last argument to tfb_tcp_hpts_do_segment() 92 * (nxt_pkt). If nxt_pkt is a 1 then another packet is 93 * coming. If nxt_pkt is a 0 then this is the last call 94 * that the tcp_hpts system has available for the tcp stack. 95 * 96 * The other point of the input system is to be able to safely 97 * drop a tcp connection without worrying about the recursive 98 * locking that may be occuring on the INP_WLOCK. So if 99 * a stack wants to drop a connection it calls: 100 * 101 * tcp_set_inp_to_drop(tp, ETIMEDOUT) 102 * 103 * To schedule the tcp_hpts system to call 104 * 105 * tcp_drop(tp, drop_reason) 106 * 107 * at a future point. This is quite handy to prevent locking 108 * issues when dropping connections. 109 * 110 */ 111 112 #include <sys/param.h> 113 #include <sys/bus.h> 114 #include <sys/interrupt.h> 115 #include <sys/module.h> 116 #include <sys/kernel.h> 117 #include <sys/hhook.h> 118 #include <sys/malloc.h> 119 #include <sys/mbuf.h> 120 #include <sys/proc.h> /* for proc0 declaration */ 121 #include <sys/socket.h> 122 #include <sys/socketvar.h> 123 #include <sys/sysctl.h> 124 #include <sys/systm.h> 125 #include <sys/refcount.h> 126 #include <sys/sched.h> 127 #include <sys/queue.h> 128 #include <sys/smp.h> 129 #include <sys/counter.h> 130 #include <sys/time.h> 131 #include <sys/kthread.h> 132 #include <sys/kern_prefetch.h> 133 134 #include <vm/uma.h> 135 136 #include <net/route.h> 137 #include <net/vnet.h> 138 139 #define TCPSTATES /* for logging */ 140 141 #include <netinet/in.h> 142 #include <netinet/in_kdtrace.h> 143 #include <netinet/in_pcb.h> 144 #include <netinet/ip.h> 145 #include <netinet/ip_icmp.h> /* required for icmp_var.h */ 146 #include <netinet/icmp_var.h> /* for ICMP_BANDLIM */ 147 #include <netinet/ip_var.h> 148 #include <netinet/ip6.h> 149 #include <netinet6/in6_pcb.h> 150 #include <netinet6/ip6_var.h> 151 #include <netinet/tcp.h> 152 #include <netinet/tcp_fsm.h> 153 #include <netinet/tcp_seq.h> 154 #include <netinet/tcp_timer.h> 155 #include <netinet/tcp_var.h> 156 #include <netinet/tcpip.h> 157 #include <netinet/cc/cc.h> 158 #include <netinet/tcp_hpts.h> 159 160 #ifdef tcpdebug 161 #include <netinet/tcp_debug.h> 162 #endif /* tcpdebug */ 163 #ifdef tcp_offload 164 #include <netinet/tcp_offload.h> 165 #endif 166 167 #ifdef ipsec 168 #include <netipsec/ipsec.h> 169 #include <netipsec/ipsec6.h> 170 #endif /* ipsec */ 171 #include "opt_rss.h" 172 173 MALLOC_DEFINE(M_TCPHPTS, "tcp_hpts", "TCP hpts"); 174 #ifdef RSS 175 static int tcp_bind_threads = 1; 176 #else 177 static int tcp_bind_threads = 0; 178 #endif 179 TUNABLE_INT("net.inet.tcp.bind_hptss", &tcp_bind_threads); 180 181 static uint32_t tcp_hpts_logging_size = DEFAULT_HPTS_LOG; 182 183 TUNABLE_INT("net.inet.tcp.hpts_logging_sz", &tcp_hpts_logging_size); 184 185 static struct tcp_hptsi tcp_pace; 186 187 static int 188 tcp_hptsi_lock_inpinfo(struct inpcb *inp, 189 struct tcpcb **tp); 190 static void tcp_wakehpts(struct tcp_hpts_entry *p); 191 static void tcp_wakeinput(struct tcp_hpts_entry *p); 192 static void tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv); 193 static void tcp_hptsi(struct tcp_hpts_entry *hpts, struct timeval *ctick); 194 static void tcp_hpts_thread(void *ctx); 195 static void tcp_init_hptsi(void *st); 196 197 int32_t tcp_min_hptsi_time = DEFAULT_MIN_SLEEP; 198 static int32_t tcp_hpts_callout_skip_swi = 0; 199 200 SYSCTL_NODE(_net_inet_tcp, OID_AUTO, hpts, CTLFLAG_RW, 0, "TCP Hpts controls"); 201 202 #define timersub(tvp, uvp, vvp) \ 203 do { \ 204 (vvp)->tv_sec = (tvp)->tv_sec - (uvp)->tv_sec; \ 205 (vvp)->tv_usec = (tvp)->tv_usec - (uvp)->tv_usec; \ 206 if ((vvp)->tv_usec < 0) { \ 207 (vvp)->tv_sec--; \ 208 (vvp)->tv_usec += 1000000; \ 209 } \ 210 } while (0) 211 212 static int32_t logging_on = 0; 213 static int32_t hpts_sleep_max = (NUM_OF_HPTSI_SLOTS - 2); 214 static int32_t tcp_hpts_precision = 120; 215 216 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, precision, CTLFLAG_RW, 217 &tcp_hpts_precision, 120, 218 "Value for PRE() precision of callout"); 219 220 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, logging, CTLFLAG_RW, 221 &logging_on, 0, 222 "Turn on logging if compiled in"); 223 224 counter_u64_t hpts_loops; 225 226 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, loops, CTLFLAG_RD, 227 &hpts_loops, "Number of times hpts had to loop to catch up"); 228 229 counter_u64_t back_tosleep; 230 231 SYSCTL_COUNTER_U64(_net_inet_tcp_hpts, OID_AUTO, no_tcbsfound, CTLFLAG_RD, 232 &back_tosleep, "Number of times hpts found no tcbs"); 233 234 static int32_t in_newts_every_tcb = 0; 235 236 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, in_tsperpcb, CTLFLAG_RW, 237 &in_newts_every_tcb, 0, 238 "Do we have a new cts every tcb we process for input"); 239 static int32_t in_ts_percision = 0; 240 241 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, in_tspercision, CTLFLAG_RW, 242 &in_ts_percision, 0, 243 "Do we use percise timestamp for clients on input"); 244 static int32_t out_newts_every_tcb = 0; 245 246 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tsperpcb, CTLFLAG_RW, 247 &out_newts_every_tcb, 0, 248 "Do we have a new cts every tcb we process for output"); 249 static int32_t out_ts_percision = 0; 250 251 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, out_tspercision, CTLFLAG_RW, 252 &out_ts_percision, 0, 253 "Do we use a percise timestamp for every output cts"); 254 255 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, maxsleep, CTLFLAG_RW, 256 &hpts_sleep_max, 0, 257 "The maximum time the hpts will sleep <1 - 254>"); 258 259 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, minsleep, CTLFLAG_RW, 260 &tcp_min_hptsi_time, 0, 261 "The minimum time the hpts must sleep before processing more slots"); 262 263 SYSCTL_INT(_net_inet_tcp_hpts, OID_AUTO, skip_swi, CTLFLAG_RW, 264 &tcp_hpts_callout_skip_swi, 0, 265 "Do we have the callout call directly to the hpts?"); 266 267 static void 268 __tcp_hpts_log_it(struct tcp_hpts_entry *hpts, struct inpcb *inp, int event, uint32_t slot, 269 uint32_t ticknow, int32_t line) 270 { 271 struct hpts_log *pl; 272 273 HPTS_MTX_ASSERT(hpts); 274 if (hpts->p_log == NULL) 275 return; 276 pl = &hpts->p_log[hpts->p_log_at]; 277 hpts->p_log_at++; 278 if (hpts->p_log_at >= hpts->p_logsize) { 279 hpts->p_log_at = 0; 280 hpts->p_log_wrapped = 1; 281 } 282 pl->inp = inp; 283 if (inp) { 284 pl->t_paceslot = inp->inp_hptsslot; 285 pl->t_hptsreq = inp->inp_hpts_request; 286 pl->p_onhpts = inp->inp_in_hpts; 287 pl->p_oninput = inp->inp_in_input; 288 } else { 289 pl->t_paceslot = 0; 290 pl->t_hptsreq = 0; 291 pl->p_onhpts = 0; 292 pl->p_oninput = 0; 293 } 294 pl->is_notempty = 1; 295 pl->event = event; 296 pl->line = line; 297 pl->cts = tcp_get_usecs(NULL); 298 pl->p_curtick = hpts->p_curtick; 299 pl->p_prevtick = hpts->p_prevtick; 300 pl->p_on_queue_cnt = hpts->p_on_queue_cnt; 301 pl->ticknow = ticknow; 302 pl->slot_req = slot; 303 pl->p_nxt_slot = hpts->p_nxt_slot; 304 pl->p_cur_slot = hpts->p_cur_slot; 305 pl->p_hpts_sleep_time = hpts->p_hpts_sleep_time; 306 pl->p_flags = (hpts->p_cpu & 0x7f); 307 pl->p_flags <<= 7; 308 pl->p_flags |= (hpts->p_num & 0x7f); 309 pl->p_flags <<= 2; 310 if (hpts->p_hpts_active) { 311 pl->p_flags |= HPTS_HPTS_ACTIVE; 312 } 313 } 314 315 #define tcp_hpts_log_it(a, b, c, d, e) __tcp_hpts_log_it(a, b, c, d, e, __LINE__) 316 317 static void 318 hpts_timeout_swi(void *arg) 319 { 320 struct tcp_hpts_entry *hpts; 321 322 hpts = (struct tcp_hpts_entry *)arg; 323 swi_sched(hpts->ie_cookie, 0); 324 } 325 326 static void 327 hpts_timeout_dir(void *arg) 328 { 329 tcp_hpts_thread(arg); 330 } 331 332 static inline void 333 hpts_sane_pace_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int clear) 334 { 335 #ifdef INVARIANTS 336 if (mtx_owned(&hpts->p_mtx) == 0) { 337 /* We don't own the mutex? */ 338 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 339 } 340 if (hpts->p_cpu != inp->inp_hpts_cpu) { 341 /* It is not the right cpu/mutex? */ 342 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 343 } 344 if (inp->inp_in_hpts == 0) { 345 /* We are not on the hpts? */ 346 panic("%s: hpts:%p inp:%p not on the hpts?", __FUNCTION__, hpts, inp); 347 } 348 if (TAILQ_EMPTY(head) && 349 (hpts->p_on_queue_cnt != 0)) { 350 /* We should not be empty with a queue count */ 351 panic("%s hpts:%p hpts bucket empty but cnt:%d", 352 __FUNCTION__, hpts, hpts->p_on_queue_cnt); 353 } 354 #endif 355 TAILQ_REMOVE(head, inp, inp_hpts); 356 hpts->p_on_queue_cnt--; 357 if (hpts->p_on_queue_cnt < 0) { 358 /* Count should not go negative .. */ 359 #ifdef INVARIANTS 360 panic("Hpts goes negative inp:%p hpts:%p", 361 inp, hpts); 362 #endif 363 hpts->p_on_queue_cnt = 0; 364 } 365 if (clear) { 366 inp->inp_hpts_request = 0; 367 inp->inp_in_hpts = 0; 368 } 369 } 370 371 static inline void 372 hpts_sane_pace_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, struct hptsh *head, int line, int noref) 373 { 374 #ifdef INVARIANTS 375 if (mtx_owned(&hpts->p_mtx) == 0) { 376 /* We don't own the mutex? */ 377 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 378 } 379 if (hpts->p_cpu != inp->inp_hpts_cpu) { 380 /* It is not the right cpu/mutex? */ 381 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 382 } 383 if ((noref == 0) && (inp->inp_in_hpts == 1)) { 384 /* We are already on the hpts? */ 385 panic("%s: hpts:%p inp:%p already on the hpts?", __FUNCTION__, hpts, inp); 386 } 387 #endif 388 TAILQ_INSERT_TAIL(head, inp, inp_hpts); 389 inp->inp_in_hpts = 1; 390 hpts->p_on_queue_cnt++; 391 if (noref == 0) { 392 in_pcbref(inp); 393 } 394 } 395 396 static inline void 397 hpts_sane_input_remove(struct tcp_hpts_entry *hpts, struct inpcb *inp, int clear) 398 { 399 #ifdef INVARIANTS 400 if (mtx_owned(&hpts->p_mtx) == 0) { 401 /* We don't own the mutex? */ 402 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 403 } 404 if (hpts->p_cpu != inp->inp_input_cpu) { 405 /* It is not the right cpu/mutex? */ 406 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 407 } 408 if (inp->inp_in_input == 0) { 409 /* We are not on the input hpts? */ 410 panic("%s: hpts:%p inp:%p not on the input hpts?", __FUNCTION__, hpts, inp); 411 } 412 #endif 413 TAILQ_REMOVE(&hpts->p_input, inp, inp_input); 414 hpts->p_on_inqueue_cnt--; 415 if (hpts->p_on_inqueue_cnt < 0) { 416 #ifdef INVARIANTS 417 panic("Hpts in goes negative inp:%p hpts:%p", 418 inp, hpts); 419 #endif 420 hpts->p_on_inqueue_cnt = 0; 421 } 422 #ifdef INVARIANTS 423 if (TAILQ_EMPTY(&hpts->p_input) && 424 (hpts->p_on_inqueue_cnt != 0)) { 425 /* We should not be empty with a queue count */ 426 panic("%s hpts:%p in_hpts input empty but cnt:%d", 427 __FUNCTION__, hpts, hpts->p_on_inqueue_cnt); 428 } 429 #endif 430 if (clear) 431 inp->inp_in_input = 0; 432 } 433 434 static inline void 435 hpts_sane_input_insert(struct tcp_hpts_entry *hpts, struct inpcb *inp, int line) 436 { 437 #ifdef INVARIANTS 438 if (mtx_owned(&hpts->p_mtx) == 0) { 439 /* We don't own the mutex? */ 440 panic("%s: hpts:%p inp:%p no hpts mutex", __FUNCTION__, hpts, inp); 441 } 442 if (hpts->p_cpu != inp->inp_input_cpu) { 443 /* It is not the right cpu/mutex? */ 444 panic("%s: hpts:%p inp:%p incorrect CPU", __FUNCTION__, hpts, inp); 445 } 446 if (inp->inp_in_input == 1) { 447 /* We are already on the input hpts? */ 448 panic("%s: hpts:%p inp:%p already on the input hpts?", __FUNCTION__, hpts, inp); 449 } 450 #endif 451 TAILQ_INSERT_TAIL(&hpts->p_input, inp, inp_input); 452 inp->inp_in_input = 1; 453 hpts->p_on_inqueue_cnt++; 454 in_pcbref(inp); 455 } 456 457 static int 458 sysctl_tcp_hpts_log(SYSCTL_HANDLER_ARGS) 459 { 460 struct tcp_hpts_entry *hpts; 461 size_t sz; 462 int32_t logging_was, i; 463 int32_t error = 0; 464 465 /* 466 * HACK: Turn off logging so no locks are required this really needs 467 * a memory barrier :) 468 */ 469 logging_was = logging_on; 470 logging_on = 0; 471 if (!req->oldptr) { 472 /* How much? */ 473 sz = 0; 474 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 475 hpts = tcp_pace.rp_ent[i]; 476 if (hpts->p_log == NULL) 477 continue; 478 sz += (sizeof(struct hpts_log) * hpts->p_logsize); 479 } 480 error = SYSCTL_OUT(req, 0, sz); 481 } else { 482 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 483 hpts = tcp_pace.rp_ent[i]; 484 if (hpts->p_log == NULL) 485 continue; 486 if (hpts->p_log_wrapped) 487 sz = (sizeof(struct hpts_log) * hpts->p_logsize); 488 else 489 sz = (sizeof(struct hpts_log) * hpts->p_log_at); 490 error = SYSCTL_OUT(req, hpts->p_log, sz); 491 } 492 } 493 logging_on = logging_was; 494 return error; 495 } 496 497 SYSCTL_PROC(_net_inet_tcp_hpts, OID_AUTO, log, CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, 498 0, 0, sysctl_tcp_hpts_log, "A", "tcp hptsi log"); 499 500 501 /* 502 * Try to get the INP_INFO lock. 503 * 504 * This function always succeeds in getting the lock. It will clear 505 * *tpp and return (1) if something critical changed while the inpcb 506 * was unlocked. Otherwise, it will leave *tpp unchanged and return (0). 507 * 508 * This function relies on the fact that the hpts always holds a 509 * reference on the inpcb while the segment is on the hptsi wheel and 510 * in the input queue. 511 * 512 */ 513 static int 514 tcp_hptsi_lock_inpinfo(struct inpcb *inp, struct tcpcb **tpp) 515 { 516 struct tcp_function_block *tfb; 517 struct tcpcb *tp; 518 void *ptr; 519 520 /* Try the easy way. */ 521 if (INP_INFO_TRY_RLOCK(&V_tcbinfo)) 522 return (0); 523 524 /* 525 * OK, let's try the hard way. We'll save the function pointer block 526 * to make sure that doesn't change while we aren't holding the 527 * lock. 528 */ 529 tp = *tpp; 530 tfb = tp->t_fb; 531 ptr = tp->t_fb_ptr; 532 INP_WUNLOCK(inp); 533 INP_INFO_RLOCK(&V_tcbinfo); 534 INP_WLOCK(inp); 535 /* If the session went away, return an error. */ 536 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 537 (inp->inp_flags2 & INP_FREED)) { 538 *tpp = NULL; 539 return (1); 540 } 541 /* 542 * If the function block or stack-specific data block changed, 543 * report an error. 544 */ 545 tp = intotcpcb(inp); 546 if ((tp->t_fb != tfb) && (tp->t_fb_ptr != ptr)) { 547 *tpp = NULL; 548 return (1); 549 } 550 return (0); 551 } 552 553 554 static void 555 tcp_wakehpts(struct tcp_hpts_entry *hpts) 556 { 557 HPTS_MTX_ASSERT(hpts); 558 swi_sched(hpts->ie_cookie, 0); 559 if (hpts->p_hpts_active == 2) { 560 /* Rare sleeping on a ENOBUF */ 561 wakeup_one(hpts); 562 } 563 } 564 565 static void 566 tcp_wakeinput(struct tcp_hpts_entry *hpts) 567 { 568 HPTS_MTX_ASSERT(hpts); 569 swi_sched(hpts->ie_cookie, 0); 570 if (hpts->p_hpts_active == 2) { 571 /* Rare sleeping on a ENOBUF */ 572 wakeup_one(hpts); 573 } 574 } 575 576 struct tcp_hpts_entry * 577 tcp_cur_hpts(struct inpcb *inp) 578 { 579 int32_t hpts_num; 580 struct tcp_hpts_entry *hpts; 581 582 hpts_num = inp->inp_hpts_cpu; 583 hpts = tcp_pace.rp_ent[hpts_num]; 584 return (hpts); 585 } 586 587 struct tcp_hpts_entry * 588 tcp_hpts_lock(struct inpcb *inp) 589 { 590 struct tcp_hpts_entry *hpts; 591 int32_t hpts_num; 592 593 again: 594 hpts_num = inp->inp_hpts_cpu; 595 hpts = tcp_pace.rp_ent[hpts_num]; 596 #ifdef INVARIANTS 597 if (mtx_owned(&hpts->p_mtx)) { 598 panic("Hpts:%p owns mtx prior-to lock line:%d", 599 hpts, __LINE__); 600 } 601 #endif 602 mtx_lock(&hpts->p_mtx); 603 if (hpts_num != inp->inp_hpts_cpu) { 604 mtx_unlock(&hpts->p_mtx); 605 goto again; 606 } 607 return (hpts); 608 } 609 610 struct tcp_hpts_entry * 611 tcp_input_lock(struct inpcb *inp) 612 { 613 struct tcp_hpts_entry *hpts; 614 int32_t hpts_num; 615 616 again: 617 hpts_num = inp->inp_input_cpu; 618 hpts = tcp_pace.rp_ent[hpts_num]; 619 #ifdef INVARIANTS 620 if (mtx_owned(&hpts->p_mtx)) { 621 panic("Hpts:%p owns mtx prior-to lock line:%d", 622 hpts, __LINE__); 623 } 624 #endif 625 mtx_lock(&hpts->p_mtx); 626 if (hpts_num != inp->inp_input_cpu) { 627 mtx_unlock(&hpts->p_mtx); 628 goto again; 629 } 630 return (hpts); 631 } 632 633 static void 634 tcp_remove_hpts_ref(struct inpcb *inp, struct tcp_hpts_entry *hpts, int line) 635 { 636 int32_t add_freed; 637 638 if (inp->inp_flags2 & INP_FREED) { 639 /* 640 * Need to play a special trick so that in_pcbrele_wlocked 641 * does not return 1 when it really should have returned 0. 642 */ 643 add_freed = 1; 644 inp->inp_flags2 &= ~INP_FREED; 645 } else { 646 add_freed = 0; 647 } 648 #ifndef INP_REF_DEBUG 649 if (in_pcbrele_wlocked(inp)) { 650 /* 651 * This should not happen. We have the inpcb referred to by 652 * the main socket (why we are called) and the hpts. It 653 * should always return 0. 654 */ 655 panic("inpcb:%p release ret 1", 656 inp); 657 } 658 #else 659 if (__in_pcbrele_wlocked(inp, line)) { 660 /* 661 * This should not happen. We have the inpcb referred to by 662 * the main socket (why we are called) and the hpts. It 663 * should always return 0. 664 */ 665 panic("inpcb:%p release ret 1", 666 inp); 667 } 668 #endif 669 if (add_freed) { 670 inp->inp_flags2 |= INP_FREED; 671 } 672 } 673 674 static void 675 tcp_hpts_remove_locked_output(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 676 { 677 if (inp->inp_in_hpts) { 678 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], 1); 679 tcp_remove_hpts_ref(inp, hpts, line); 680 } 681 } 682 683 static void 684 tcp_hpts_remove_locked_input(struct tcp_hpts_entry *hpts, struct inpcb *inp, int32_t flags, int32_t line) 685 { 686 HPTS_MTX_ASSERT(hpts); 687 if (inp->inp_in_input) { 688 hpts_sane_input_remove(hpts, inp, 1); 689 tcp_remove_hpts_ref(inp, hpts, line); 690 } 691 } 692 693 /* 694 * Called normally with the INP_LOCKED but it 695 * does not matter, the hpts lock is the key 696 * but the lock order allows us to hold the 697 * INP lock and then get the hpts lock. 698 * 699 * Valid values in the flags are 700 * HPTS_REMOVE_OUTPUT - remove from the output of the hpts. 701 * HPTS_REMOVE_INPUT - remove from the input of the hpts. 702 * Note that you can or both values together and get two 703 * actions. 704 */ 705 void 706 __tcp_hpts_remove(struct inpcb *inp, int32_t flags, int32_t line) 707 { 708 struct tcp_hpts_entry *hpts; 709 710 INP_WLOCK_ASSERT(inp); 711 if (flags & HPTS_REMOVE_OUTPUT) { 712 hpts = tcp_hpts_lock(inp); 713 tcp_hpts_remove_locked_output(hpts, inp, flags, line); 714 mtx_unlock(&hpts->p_mtx); 715 } 716 if (flags & HPTS_REMOVE_INPUT) { 717 hpts = tcp_input_lock(inp); 718 tcp_hpts_remove_locked_input(hpts, inp, flags, line); 719 mtx_unlock(&hpts->p_mtx); 720 } 721 } 722 723 static inline int 724 hpts_tick(struct tcp_hpts_entry *hpts, int32_t plus) 725 { 726 return ((hpts->p_prevtick + plus) % NUM_OF_HPTSI_SLOTS); 727 } 728 729 static int 730 tcp_queue_to_hpts_immediate_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line, int32_t noref) 731 { 732 int32_t need_wake = 0; 733 uint32_t ticknow = 0; 734 735 HPTS_MTX_ASSERT(hpts); 736 if (inp->inp_in_hpts == 0) { 737 /* Ok we need to set it on the hpts in the current slot */ 738 if (hpts->p_hpts_active == 0) { 739 /* A sleeping hpts we want in next slot to run */ 740 if (logging_on) { 741 tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_SLEEPER, 0, 742 hpts_tick(hpts, 1)); 743 } 744 inp->inp_hptsslot = hpts_tick(hpts, 1); 745 inp->inp_hpts_request = 0; 746 if (logging_on) { 747 tcp_hpts_log_it(hpts, inp, HPTSLOG_SLEEP_BEFORE, 1, ticknow); 748 } 749 need_wake = 1; 750 } else if ((void *)inp == hpts->p_inp) { 751 /* 752 * We can't allow you to go into the same slot we 753 * are in. We must put you out. 754 */ 755 inp->inp_hptsslot = hpts->p_nxt_slot; 756 } else 757 inp->inp_hptsslot = hpts->p_cur_slot; 758 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 759 inp->inp_hpts_request = 0; 760 if (logging_on) { 761 tcp_hpts_log_it(hpts, inp, HPTSLOG_IMMEDIATE, 0, 0); 762 } 763 if (need_wake) { 764 /* 765 * Activate the hpts if it is sleeping and its 766 * timeout is not 1. 767 */ 768 if (logging_on) { 769 tcp_hpts_log_it(hpts, inp, HPTSLOG_WAKEUP_HPTS, 0, ticknow); 770 } 771 hpts->p_direct_wake = 1; 772 tcp_wakehpts(hpts); 773 } 774 } 775 return (need_wake); 776 } 777 778 int 779 __tcp_queue_to_hpts_immediate(struct inpcb *inp, int32_t line) 780 { 781 int32_t ret; 782 struct tcp_hpts_entry *hpts; 783 784 INP_WLOCK_ASSERT(inp); 785 hpts = tcp_hpts_lock(inp); 786 ret = tcp_queue_to_hpts_immediate_locked(inp, hpts, line, 0); 787 mtx_unlock(&hpts->p_mtx); 788 return (ret); 789 } 790 791 static void 792 tcp_hpts_insert_locked(struct tcp_hpts_entry *hpts, struct inpcb *inp, uint32_t slot, uint32_t cts, int32_t line, 793 struct hpts_diag *diag, int32_t noref) 794 { 795 int32_t need_new_to = 0; 796 int32_t need_wakeup = 0; 797 uint32_t largest_slot; 798 uint32_t ticknow = 0; 799 uint32_t slot_calc; 800 801 HPTS_MTX_ASSERT(hpts); 802 if (diag) { 803 memset(diag, 0, sizeof(struct hpts_diag)); 804 diag->p_hpts_active = hpts->p_hpts_active; 805 diag->p_nxt_slot = hpts->p_nxt_slot; 806 diag->p_cur_slot = hpts->p_cur_slot; 807 diag->slot_req = slot; 808 } 809 if ((inp->inp_in_hpts == 0) || noref) { 810 inp->inp_hpts_request = slot; 811 if (slot == 0) { 812 /* Immediate */ 813 tcp_queue_to_hpts_immediate_locked(inp, hpts, line, noref); 814 return; 815 } 816 if (hpts->p_hpts_active) { 817 /* 818 * Its slot - 1 since nxt_slot is the next tick that 819 * will go off since the hpts is awake 820 */ 821 if (logging_on) { 822 tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_NORMAL, slot, 0); 823 } 824 /* 825 * We want to make sure that we don't place a inp in 826 * the range of p_cur_slot <-> p_nxt_slot. If we 827 * take from p_nxt_slot to the end, plus p_cur_slot 828 * and then take away 2, we will know how many is 829 * the max slots we can use. 830 */ 831 if (hpts->p_nxt_slot > hpts->p_cur_slot) { 832 /* 833 * Non-wrap case nxt_slot <-> cur_slot we 834 * don't want to land in. So the diff gives 835 * us what is taken away from the number of 836 * slots. 837 */ 838 largest_slot = NUM_OF_HPTSI_SLOTS - (hpts->p_nxt_slot - hpts->p_cur_slot); 839 } else if (hpts->p_nxt_slot == hpts->p_cur_slot) { 840 largest_slot = NUM_OF_HPTSI_SLOTS - 2; 841 } else { 842 /* 843 * Wrap case so the diff gives us the number 844 * of slots that we can land in. 845 */ 846 largest_slot = hpts->p_cur_slot - hpts->p_nxt_slot; 847 } 848 /* 849 * We take away two so we never have a problem (20 850 * usec's) out of 1024000 usecs 851 */ 852 largest_slot -= 2; 853 if (inp->inp_hpts_request > largest_slot) { 854 /* 855 * Restrict max jump of slots and remember 856 * leftover 857 */ 858 slot = largest_slot; 859 inp->inp_hpts_request -= largest_slot; 860 } else { 861 /* This one will run when we hit it */ 862 inp->inp_hpts_request = 0; 863 } 864 if (hpts->p_nxt_slot == hpts->p_cur_slot) 865 slot_calc = (hpts->p_nxt_slot + slot) % NUM_OF_HPTSI_SLOTS; 866 else 867 slot_calc = (hpts->p_nxt_slot + slot - 1) % NUM_OF_HPTSI_SLOTS; 868 if (slot_calc == hpts->p_cur_slot) { 869 #ifdef INVARIANTS 870 /* TSNH */ 871 panic("Hpts:%p impossible slot calculation slot_calc:%u slot:%u largest:%u\n", 872 hpts, slot_calc, slot, largest_slot); 873 #endif 874 if (slot_calc) 875 slot_calc--; 876 else 877 slot_calc = NUM_OF_HPTSI_SLOTS - 1; 878 } 879 inp->inp_hptsslot = slot_calc; 880 if (diag) { 881 diag->inp_hptsslot = inp->inp_hptsslot; 882 } 883 } else { 884 /* 885 * The hpts is sleeping, we need to figure out where 886 * it will wake up at and if we need to reschedule 887 * its time-out. 888 */ 889 uint32_t have_slept, yet_to_sleep; 890 uint32_t slot_now; 891 struct timeval tv; 892 893 ticknow = tcp_gethptstick(&tv); 894 slot_now = ticknow % NUM_OF_HPTSI_SLOTS; 895 /* 896 * The user wants to be inserted at (slot_now + 897 * slot) % NUM_OF_HPTSI_SLOTS, so lets set that up. 898 */ 899 largest_slot = NUM_OF_HPTSI_SLOTS - 2; 900 if (inp->inp_hpts_request > largest_slot) { 901 /* Adjust the residual in inp_hpts_request */ 902 slot = largest_slot; 903 inp->inp_hpts_request -= largest_slot; 904 } else { 905 /* No residual it all fits */ 906 inp->inp_hpts_request = 0; 907 } 908 inp->inp_hptsslot = (slot_now + slot) % NUM_OF_HPTSI_SLOTS; 909 if (diag) { 910 diag->slot_now = slot_now; 911 diag->inp_hptsslot = inp->inp_hptsslot; 912 diag->p_on_min_sleep = hpts->p_on_min_sleep; 913 } 914 if (logging_on) { 915 tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERT_SLEEPER, slot, ticknow); 916 } 917 /* Now do we need to restart the hpts's timer? */ 918 if (TSTMP_GT(ticknow, hpts->p_curtick)) 919 have_slept = ticknow - hpts->p_curtick; 920 else 921 have_slept = 0; 922 if (have_slept < hpts->p_hpts_sleep_time) { 923 /* This should be what happens */ 924 yet_to_sleep = hpts->p_hpts_sleep_time - have_slept; 925 } else { 926 /* We are over-due */ 927 yet_to_sleep = 0; 928 need_wakeup = 1; 929 } 930 if (diag) { 931 diag->have_slept = have_slept; 932 diag->yet_to_sleep = yet_to_sleep; 933 diag->hpts_sleep_time = hpts->p_hpts_sleep_time; 934 } 935 if ((hpts->p_on_min_sleep == 0) && (yet_to_sleep > slot)) { 936 /* 937 * We need to reschedule the hptss time-out. 938 */ 939 hpts->p_hpts_sleep_time = slot; 940 need_new_to = slot * HPTS_TICKS_PER_USEC; 941 } 942 } 943 hpts_sane_pace_insert(hpts, inp, &hpts->p_hptss[inp->inp_hptsslot], line, noref); 944 if (logging_on) { 945 tcp_hpts_log_it(hpts, inp, HPTSLOG_INSERTED, slot, ticknow); 946 } 947 /* 948 * Now how far is the hpts sleeping to? if active is 1, its 949 * up and ticking we do nothing, otherwise we may need to 950 * reschedule its callout if need_new_to is set from above. 951 */ 952 if (need_wakeup) { 953 if (logging_on) { 954 tcp_hpts_log_it(hpts, inp, HPTSLOG_RESCHEDULE, 1, 0); 955 } 956 hpts->p_direct_wake = 1; 957 tcp_wakehpts(hpts); 958 if (diag) { 959 diag->need_new_to = 0; 960 diag->co_ret = 0xffff0000; 961 } 962 } else if (need_new_to) { 963 int32_t co_ret; 964 struct timeval tv; 965 sbintime_t sb; 966 967 tv.tv_sec = 0; 968 tv.tv_usec = 0; 969 while (need_new_to > HPTS_USEC_IN_SEC) { 970 tv.tv_sec++; 971 need_new_to -= HPTS_USEC_IN_SEC; 972 } 973 tv.tv_usec = need_new_to; 974 sb = tvtosbt(tv); 975 if (tcp_hpts_callout_skip_swi == 0) { 976 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 977 hpts_timeout_swi, hpts, hpts->p_cpu, 978 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 979 } else { 980 co_ret = callout_reset_sbt_on(&hpts->co, sb, 0, 981 hpts_timeout_dir, hpts, 982 hpts->p_cpu, 983 C_PREL(tcp_hpts_precision)); 984 } 985 if (diag) { 986 diag->need_new_to = need_new_to; 987 diag->co_ret = co_ret; 988 } 989 } 990 } else { 991 #ifdef INVARIANTS 992 panic("Hpts:%p tp:%p already on hpts and add?", hpts, inp); 993 #endif 994 } 995 } 996 997 uint32_t 998 tcp_hpts_insert_diag(struct inpcb *inp, uint32_t slot, int32_t line, struct hpts_diag *diag){ 999 struct tcp_hpts_entry *hpts; 1000 uint32_t slot_on, cts; 1001 struct timeval tv; 1002 1003 /* 1004 * We now return the next-slot the hpts will be on, beyond its 1005 * current run (if up) or where it was when it stopped if it is 1006 * sleeping. 1007 */ 1008 INP_WLOCK_ASSERT(inp); 1009 hpts = tcp_hpts_lock(inp); 1010 if (in_ts_percision) 1011 microuptime(&tv); 1012 else 1013 getmicrouptime(&tv); 1014 cts = tcp_tv_to_usectick(&tv); 1015 tcp_hpts_insert_locked(hpts, inp, slot, cts, line, diag, 0); 1016 slot_on = hpts->p_nxt_slot; 1017 mtx_unlock(&hpts->p_mtx); 1018 return (slot_on); 1019 } 1020 1021 uint32_t 1022 __tcp_hpts_insert(struct inpcb *inp, uint32_t slot, int32_t line){ 1023 return (tcp_hpts_insert_diag(inp, slot, line, NULL)); 1024 } 1025 1026 int 1027 __tcp_queue_to_input_locked(struct inpcb *inp, struct tcp_hpts_entry *hpts, int32_t line) 1028 { 1029 int32_t retval = 0; 1030 1031 HPTS_MTX_ASSERT(hpts); 1032 if (inp->inp_in_input == 0) { 1033 /* Ok we need to set it on the hpts in the current slot */ 1034 hpts_sane_input_insert(hpts, inp, line); 1035 retval = 1; 1036 if (hpts->p_hpts_active == 0) { 1037 /* 1038 * Activate the hpts if it is sleeping. 1039 */ 1040 if (logging_on) { 1041 tcp_hpts_log_it(hpts, inp, HPTSLOG_WAKEUP_INPUT, 0, 0); 1042 } 1043 retval = 2; 1044 hpts->p_direct_wake = 1; 1045 tcp_wakeinput(hpts); 1046 } 1047 } else if (hpts->p_hpts_active == 0) { 1048 retval = 4; 1049 hpts->p_direct_wake = 1; 1050 tcp_wakeinput(hpts); 1051 } 1052 return (retval); 1053 } 1054 1055 void 1056 tcp_queue_pkt_to_input(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 1057 int32_t tlen, int32_t drop_hdrlen, uint8_t iptos, uint8_t ti_locked) 1058 { 1059 /* Setup packet for input first */ 1060 INP_WLOCK_ASSERT(tp->t_inpcb); 1061 m->m_pkthdr.pace_thoff = (uint16_t) ((caddr_t)th - mtod(m, caddr_t)); 1062 m->m_pkthdr.pace_tlen = (uint16_t) tlen; 1063 m->m_pkthdr.pace_drphdrlen = drop_hdrlen; 1064 m->m_pkthdr.pace_tos = iptos; 1065 m->m_pkthdr.pace_lock = (uint8_t) ti_locked; 1066 if (tp->t_in_pkt == NULL) { 1067 tp->t_in_pkt = m; 1068 tp->t_tail_pkt = m; 1069 } else { 1070 tp->t_tail_pkt->m_nextpkt = m; 1071 tp->t_tail_pkt = m; 1072 } 1073 } 1074 1075 1076 int32_t 1077 __tcp_queue_to_input(struct tcpcb *tp, struct mbuf *m, struct tcphdr *th, 1078 int32_t tlen, int32_t drop_hdrlen, uint8_t iptos, uint8_t ti_locked, int32_t line){ 1079 struct tcp_hpts_entry *hpts; 1080 int32_t ret; 1081 1082 tcp_queue_pkt_to_input(tp, m, th, tlen, drop_hdrlen, iptos, ti_locked); 1083 hpts = tcp_input_lock(tp->t_inpcb); 1084 ret = __tcp_queue_to_input_locked(tp->t_inpcb, hpts, line); 1085 mtx_unlock(&hpts->p_mtx); 1086 return (ret); 1087 } 1088 1089 void 1090 __tcp_set_inp_to_drop(struct inpcb *inp, uint16_t reason, int32_t line) 1091 { 1092 struct tcp_hpts_entry *hpts; 1093 struct tcpcb *tp; 1094 1095 tp = intotcpcb(inp); 1096 hpts = tcp_input_lock(tp->t_inpcb); 1097 if (inp->inp_in_input == 0) { 1098 /* Ok we need to set it on the hpts in the current slot */ 1099 hpts_sane_input_insert(hpts, inp, line); 1100 if (hpts->p_hpts_active == 0) { 1101 /* 1102 * Activate the hpts if it is sleeping. 1103 */ 1104 hpts->p_direct_wake = 1; 1105 tcp_wakeinput(hpts); 1106 } 1107 } else if (hpts->p_hpts_active == 0) { 1108 hpts->p_direct_wake = 1; 1109 tcp_wakeinput(hpts); 1110 } 1111 inp->inp_hpts_drop_reas = reason; 1112 mtx_unlock(&hpts->p_mtx); 1113 } 1114 1115 static uint16_t 1116 hpts_random_cpu(struct inpcb *inp){ 1117 /* 1118 * No flow type set distribute the load randomly. 1119 */ 1120 uint16_t cpuid; 1121 uint32_t ran; 1122 1123 /* 1124 * If one has been set use it i.e. we want both in and out on the 1125 * same hpts. 1126 */ 1127 if (inp->inp_input_cpu_set) { 1128 return (inp->inp_input_cpu); 1129 } else if (inp->inp_hpts_cpu_set) { 1130 return (inp->inp_hpts_cpu); 1131 } 1132 /* Nothing set use a random number */ 1133 ran = arc4random(); 1134 cpuid = (ran & 0xffff) % mp_ncpus; 1135 return (cpuid); 1136 } 1137 1138 static uint16_t 1139 hpts_cpuid(struct inpcb *inp){ 1140 uint16_t cpuid; 1141 1142 1143 /* 1144 * If one has been set use it i.e. we want both in and out on the 1145 * same hpts. 1146 */ 1147 if (inp->inp_input_cpu_set) { 1148 return (inp->inp_input_cpu); 1149 } else if (inp->inp_hpts_cpu_set) { 1150 return (inp->inp_hpts_cpu); 1151 } 1152 /* If one is set the other must be the same */ 1153 #ifdef RSS 1154 cpuid = rss_hash2cpuid(inp->inp_flowid, inp->inp_flowtype); 1155 if (cpuid == NETISR_CPUID_NONE) 1156 return (hpts_random_cpu(inp)); 1157 else 1158 return (cpuid); 1159 #else 1160 /* 1161 * We don't have a flowid -> cpuid mapping, so cheat and just map 1162 * unknown cpuids to curcpu. Not the best, but apparently better 1163 * than defaulting to swi 0. 1164 */ 1165 if (inp->inp_flowtype != M_HASHTYPE_NONE) { 1166 cpuid = inp->inp_flowid % mp_ncpus; 1167 return (cpuid); 1168 } 1169 cpuid = hpts_random_cpu(inp); 1170 return (cpuid); 1171 #endif 1172 } 1173 1174 /* 1175 * Do NOT try to optimize the processing of inp's 1176 * by first pulling off all the inp's into a temporary 1177 * list (e.g. TAILQ_CONCAT). If you do that the subtle 1178 * interactions of switching CPU's will kill because of 1179 * problems in the linked list manipulation. Basically 1180 * you would switch cpu's with the hpts mutex locked 1181 * but then while you were processing one of the inp's 1182 * some other one that you switch will get a new 1183 * packet on the different CPU. It will insert it 1184 * on the new hptss input list. Creating a temporary 1185 * link in the inp will not fix it either, since 1186 * the other hpts will be doing the same thing and 1187 * you will both end up using the temporary link. 1188 * 1189 * You will die in an ASSERT for tailq corruption if you 1190 * run INVARIANTS or you will die horribly without 1191 * INVARIANTS in some unknown way with a corrupt linked 1192 * list. 1193 */ 1194 static void 1195 tcp_input_data(struct tcp_hpts_entry *hpts, struct timeval *tv) 1196 { 1197 struct mbuf *m, *n; 1198 struct tcpcb *tp; 1199 struct inpcb *inp; 1200 uint16_t drop_reason; 1201 int16_t set_cpu; 1202 uint32_t did_prefetch = 0; 1203 int32_t ti_locked = TI_UNLOCKED; 1204 1205 HPTS_MTX_ASSERT(hpts); 1206 while ((inp = TAILQ_FIRST(&hpts->p_input)) != NULL) { 1207 HPTS_MTX_ASSERT(hpts); 1208 hpts_sane_input_remove(hpts, inp, 0); 1209 if (inp->inp_input_cpu_set == 0) { 1210 set_cpu = 1; 1211 } else { 1212 set_cpu = 0; 1213 } 1214 hpts->p_inp = inp; 1215 drop_reason = inp->inp_hpts_drop_reas; 1216 inp->inp_in_input = 0; 1217 tp = intotcpcb(inp); 1218 mtx_unlock(&hpts->p_mtx); 1219 CURVNET_SET(tp->t_vnet); 1220 if (drop_reason) { 1221 INP_INFO_RLOCK(&V_tcbinfo); 1222 ti_locked = TI_RLOCKED; 1223 } else { 1224 ti_locked = TI_UNLOCKED; 1225 } 1226 INP_WLOCK(inp); 1227 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1228 (inp->inp_flags2 & INP_FREED)) { 1229 out: 1230 hpts->p_inp = NULL; 1231 if (ti_locked == TI_RLOCKED) { 1232 INP_INFO_RUNLOCK(&V_tcbinfo); 1233 } 1234 if (in_pcbrele_wlocked(inp) == 0) { 1235 INP_WUNLOCK(inp); 1236 } 1237 ti_locked = TI_UNLOCKED; 1238 CURVNET_RESTORE(); 1239 mtx_lock(&hpts->p_mtx); 1240 continue; 1241 } 1242 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1243 goto out; 1244 } 1245 if (drop_reason) { 1246 /* This tcb is being destroyed for drop_reason */ 1247 m = tp->t_in_pkt; 1248 if (m) 1249 n = m->m_nextpkt; 1250 else 1251 n = NULL; 1252 tp->t_in_pkt = NULL; 1253 while (m) { 1254 m_freem(m); 1255 m = n; 1256 if (m) 1257 n = m->m_nextpkt; 1258 } 1259 tp = tcp_drop(tp, drop_reason); 1260 INP_INFO_RUNLOCK(&V_tcbinfo); 1261 if (tp == NULL) { 1262 INP_WLOCK(inp); 1263 } 1264 if (in_pcbrele_wlocked(inp) == 0) 1265 INP_WUNLOCK(inp); 1266 CURVNET_RESTORE(); 1267 mtx_lock(&hpts->p_mtx); 1268 continue; 1269 } 1270 if (set_cpu) { 1271 /* 1272 * Setup so the next time we will move to the right 1273 * CPU. This should be a rare event. It will 1274 * sometimes happens when we are the client side 1275 * (usually not the server). Somehow tcp_output() 1276 * gets called before the tcp_do_segment() sets the 1277 * intial state. This means the r_cpu and r_hpts_cpu 1278 * is 0. We get on the hpts, and then tcp_input() 1279 * gets called setting up the r_cpu to the correct 1280 * value. The hpts goes off and sees the mis-match. 1281 * We simply correct it here and the CPU will switch 1282 * to the new hpts nextime the tcb gets added to the 1283 * the hpts (not this time) :-) 1284 */ 1285 tcp_set_hpts(inp); 1286 } 1287 m = tp->t_in_pkt; 1288 n = NULL; 1289 if (m != NULL && 1290 (m->m_pkthdr.pace_lock == TI_RLOCKED || 1291 tp->t_state != TCPS_ESTABLISHED)) { 1292 ti_locked = TI_RLOCKED; 1293 if (tcp_hptsi_lock_inpinfo(inp, &tp)) { 1294 CURVNET_RESTORE(); 1295 goto out; 1296 } 1297 m = tp->t_in_pkt; 1298 } 1299 if (in_newts_every_tcb) { 1300 if (in_ts_percision) 1301 microuptime(tv); 1302 else 1303 getmicrouptime(tv); 1304 } 1305 if (tp->t_fb_ptr != NULL) { 1306 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1307 did_prefetch = 1; 1308 } 1309 /* Any input work to do, if so do it first */ 1310 if ((m != NULL) && (m == tp->t_in_pkt)) { 1311 struct tcphdr *th; 1312 int32_t tlen, drop_hdrlen, nxt_pkt; 1313 uint8_t iptos; 1314 1315 n = m->m_nextpkt; 1316 tp->t_in_pkt = tp->t_tail_pkt = NULL; 1317 while (m) { 1318 th = (struct tcphdr *)(mtod(m, caddr_t)+m->m_pkthdr.pace_thoff); 1319 tlen = m->m_pkthdr.pace_tlen; 1320 drop_hdrlen = m->m_pkthdr.pace_drphdrlen; 1321 iptos = m->m_pkthdr.pace_tos; 1322 m->m_nextpkt = NULL; 1323 if (n) 1324 nxt_pkt = 1; 1325 else 1326 nxt_pkt = 0; 1327 inp->inp_input_calls = 1; 1328 if (tp->t_fb->tfb_tcp_hpts_do_segment) { 1329 /* Use the hpts specific do_segment */ 1330 (*tp->t_fb->tfb_tcp_hpts_do_segment) (m, th, inp->inp_socket, 1331 tp, drop_hdrlen, 1332 tlen, iptos, ti_locked, nxt_pkt, tv); 1333 } else { 1334 /* Use the default do_segment */ 1335 (*tp->t_fb->tfb_tcp_do_segment) (m, th, inp->inp_socket, 1336 tp, drop_hdrlen, 1337 tlen, iptos, ti_locked); 1338 } 1339 /* 1340 * Do segment returns unlocked we need the 1341 * lock again but we also need some kasserts 1342 * here. 1343 */ 1344 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1345 INP_UNLOCK_ASSERT(inp); 1346 m = n; 1347 if (m) 1348 n = m->m_nextpkt; 1349 if (m != NULL && 1350 m->m_pkthdr.pace_lock == TI_RLOCKED) { 1351 INP_INFO_RLOCK(&V_tcbinfo); 1352 ti_locked = TI_RLOCKED; 1353 } else 1354 ti_locked = TI_UNLOCKED; 1355 INP_WLOCK(inp); 1356 /* 1357 * Since we have an opening here we must 1358 * re-check if the tcb went away while we 1359 * were getting the lock(s). 1360 */ 1361 if ((inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) || 1362 (inp->inp_flags2 & INP_FREED)) { 1363 out_free: 1364 while (m) { 1365 m_freem(m); 1366 m = n; 1367 if (m) 1368 n = m->m_nextpkt; 1369 } 1370 goto out; 1371 } 1372 /* 1373 * Now that we hold the INP lock, check if 1374 * we need to upgrade our lock. 1375 */ 1376 if (ti_locked == TI_UNLOCKED && 1377 (tp->t_state != TCPS_ESTABLISHED)) { 1378 ti_locked = TI_RLOCKED; 1379 if (tcp_hptsi_lock_inpinfo(inp, &tp)) 1380 goto out_free; 1381 } 1382 } /** end while(m) */ 1383 } /** end if ((m != NULL) && (m == tp->t_in_pkt)) */ 1384 if (in_pcbrele_wlocked(inp) == 0) 1385 INP_WUNLOCK(inp); 1386 if (ti_locked == TI_RLOCKED) 1387 INP_INFO_RUNLOCK(&V_tcbinfo); 1388 INP_INFO_UNLOCK_ASSERT(&V_tcbinfo); 1389 INP_UNLOCK_ASSERT(inp); 1390 ti_locked = TI_UNLOCKED; 1391 mtx_lock(&hpts->p_mtx); 1392 hpts->p_inp = NULL; 1393 CURVNET_RESTORE(); 1394 } 1395 } 1396 1397 static int 1398 tcp_hpts_est_run(struct tcp_hpts_entry *hpts) 1399 { 1400 int32_t ticks_to_run; 1401 1402 if (hpts->p_prevtick && (SEQ_GT(hpts->p_curtick, hpts->p_prevtick))) { 1403 ticks_to_run = hpts->p_curtick - hpts->p_prevtick; 1404 if (ticks_to_run >= (NUM_OF_HPTSI_SLOTS - 1)) { 1405 ticks_to_run = NUM_OF_HPTSI_SLOTS - 2; 1406 } 1407 } else { 1408 if (hpts->p_prevtick == hpts->p_curtick) { 1409 /* This happens when we get woken up right away */ 1410 return (-1); 1411 } 1412 ticks_to_run = 1; 1413 } 1414 /* Set in where we will be when we catch up */ 1415 hpts->p_nxt_slot = (hpts->p_cur_slot + ticks_to_run) % NUM_OF_HPTSI_SLOTS; 1416 if (hpts->p_nxt_slot == hpts->p_cur_slot) { 1417 panic("Impossible math -- hpts:%p p_nxt_slot:%d p_cur_slot:%d ticks_to_run:%d", 1418 hpts, hpts->p_nxt_slot, hpts->p_cur_slot, ticks_to_run); 1419 } 1420 return (ticks_to_run); 1421 } 1422 1423 static void 1424 tcp_hptsi(struct tcp_hpts_entry *hpts, struct timeval *ctick) 1425 { 1426 struct tcpcb *tp; 1427 struct inpcb *inp = NULL, *ninp; 1428 struct timeval tv; 1429 int32_t ticks_to_run, i, error, tick_now, interum_tick; 1430 int32_t paced_cnt = 0; 1431 int32_t did_prefetch = 0; 1432 int32_t prefetch_ninp = 0; 1433 int32_t prefetch_tp = 0; 1434 uint32_t cts; 1435 int16_t set_cpu; 1436 1437 HPTS_MTX_ASSERT(hpts); 1438 hpts->p_curtick = tcp_tv_to_hptstick(ctick); 1439 cts = tcp_tv_to_usectick(ctick); 1440 memcpy(&tv, ctick, sizeof(struct timeval)); 1441 hpts->p_cur_slot = hpts_tick(hpts, 1); 1442 1443 /* Figure out if we had missed ticks */ 1444 again: 1445 HPTS_MTX_ASSERT(hpts); 1446 ticks_to_run = tcp_hpts_est_run(hpts); 1447 if (!TAILQ_EMPTY(&hpts->p_input)) { 1448 tcp_input_data(hpts, &tv); 1449 } 1450 #ifdef INVARIANTS 1451 if (TAILQ_EMPTY(&hpts->p_input) && 1452 (hpts->p_on_inqueue_cnt != 0)) { 1453 panic("tp:%p in_hpts input empty but cnt:%d", 1454 hpts, hpts->p_on_inqueue_cnt); 1455 } 1456 #endif 1457 HPTS_MTX_ASSERT(hpts); 1458 /* Reset the ticks to run and time if we need too */ 1459 interum_tick = tcp_gethptstick(&tv); 1460 if (interum_tick != hpts->p_curtick) { 1461 /* Save off the new time we execute to */ 1462 *ctick = tv; 1463 hpts->p_curtick = interum_tick; 1464 cts = tcp_tv_to_usectick(&tv); 1465 hpts->p_cur_slot = hpts_tick(hpts, 1); 1466 ticks_to_run = tcp_hpts_est_run(hpts); 1467 } 1468 if (ticks_to_run == -1) { 1469 goto no_run; 1470 } 1471 if (logging_on) { 1472 tcp_hpts_log_it(hpts, inp, HPTSLOG_SETTORUN, ticks_to_run, 0); 1473 } 1474 if (hpts->p_on_queue_cnt == 0) { 1475 goto no_one; 1476 } 1477 HPTS_MTX_ASSERT(hpts); 1478 for (i = 0; i < ticks_to_run; i++) { 1479 /* 1480 * Calculate our delay, if there are no extra ticks there 1481 * was not any 1482 */ 1483 hpts->p_delayed_by = (ticks_to_run - (i + 1)) * HPTS_TICKS_PER_USEC; 1484 HPTS_MTX_ASSERT(hpts); 1485 while ((inp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_cur_slot])) != NULL) { 1486 /* For debugging */ 1487 if (logging_on) { 1488 tcp_hpts_log_it(hpts, inp, HPTSLOG_HPTSI, ticks_to_run, i); 1489 } 1490 hpts->p_inp = inp; 1491 paced_cnt++; 1492 if (hpts->p_cur_slot != inp->inp_hptsslot) { 1493 panic("Hpts:%p inp:%p slot mis-aligned %u vs %u", 1494 hpts, inp, hpts->p_cur_slot, inp->inp_hptsslot); 1495 } 1496 /* Now pull it */ 1497 if (inp->inp_hpts_cpu_set == 0) { 1498 set_cpu = 1; 1499 } else { 1500 set_cpu = 0; 1501 } 1502 hpts_sane_pace_remove(hpts, inp, &hpts->p_hptss[hpts->p_cur_slot], 0); 1503 if ((ninp = TAILQ_FIRST(&hpts->p_hptss[hpts->p_cur_slot])) != NULL) { 1504 /* We prefetch the next inp if possible */ 1505 kern_prefetch(ninp, &prefetch_ninp); 1506 prefetch_ninp = 1; 1507 } 1508 if (inp->inp_hpts_request) { 1509 /* 1510 * This guy is deferred out further in time 1511 * then our wheel had on it. Push him back 1512 * on the wheel. 1513 */ 1514 int32_t remaining_slots; 1515 1516 remaining_slots = ticks_to_run - (i + 1); 1517 if (inp->inp_hpts_request > remaining_slots) { 1518 /* 1519 * Keep INVARIANTS happy by clearing 1520 * the flag 1521 */ 1522 tcp_hpts_insert_locked(hpts, inp, inp->inp_hpts_request, cts, __LINE__, NULL, 1); 1523 hpts->p_inp = NULL; 1524 continue; 1525 } 1526 inp->inp_hpts_request = 0; 1527 } 1528 /* 1529 * We clear the hpts flag here after dealing with 1530 * remaining slots. This way anyone looking with the 1531 * TCB lock will see its on the hpts until just 1532 * before we unlock. 1533 */ 1534 inp->inp_in_hpts = 0; 1535 mtx_unlock(&hpts->p_mtx); 1536 INP_WLOCK(inp); 1537 if (in_pcbrele_wlocked(inp)) { 1538 mtx_lock(&hpts->p_mtx); 1539 if (logging_on) 1540 tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 1); 1541 hpts->p_inp = NULL; 1542 continue; 1543 } 1544 if (inp->inp_flags & (INP_TIMEWAIT | INP_DROPPED)) { 1545 out_now: 1546 #ifdef INVARIANTS 1547 if (mtx_owned(&hpts->p_mtx)) { 1548 panic("Hpts:%p owns mtx prior-to lock line:%d", 1549 hpts, __LINE__); 1550 } 1551 #endif 1552 INP_WUNLOCK(inp); 1553 mtx_lock(&hpts->p_mtx); 1554 if (logging_on) 1555 tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 3); 1556 hpts->p_inp = NULL; 1557 continue; 1558 } 1559 tp = intotcpcb(inp); 1560 if ((tp == NULL) || (tp->t_inpcb == NULL)) { 1561 goto out_now; 1562 } 1563 if (set_cpu) { 1564 /* 1565 * Setup so the next time we will move to 1566 * the right CPU. This should be a rare 1567 * event. It will sometimes happens when we 1568 * are the client side (usually not the 1569 * server). Somehow tcp_output() gets called 1570 * before the tcp_do_segment() sets the 1571 * intial state. This means the r_cpu and 1572 * r_hpts_cpu is 0. We get on the hpts, and 1573 * then tcp_input() gets called setting up 1574 * the r_cpu to the correct value. The hpts 1575 * goes off and sees the mis-match. We 1576 * simply correct it here and the CPU will 1577 * switch to the new hpts nextime the tcb 1578 * gets added to the the hpts (not this one) 1579 * :-) 1580 */ 1581 tcp_set_hpts(inp); 1582 } 1583 if (out_newts_every_tcb) { 1584 struct timeval sv; 1585 1586 if (out_ts_percision) 1587 microuptime(&sv); 1588 else 1589 getmicrouptime(&sv); 1590 cts = tcp_tv_to_usectick(&sv); 1591 } 1592 CURVNET_SET(tp->t_vnet); 1593 /* 1594 * There is a hole here, we get the refcnt on the 1595 * inp so it will still be preserved but to make 1596 * sure we can get the INP we need to hold the p_mtx 1597 * above while we pull out the tp/inp, as long as 1598 * fini gets the lock first we are assured of having 1599 * a sane INP we can lock and test. 1600 */ 1601 #ifdef INVARIANTS 1602 if (mtx_owned(&hpts->p_mtx)) { 1603 panic("Hpts:%p owns mtx before tcp-output:%d", 1604 hpts, __LINE__); 1605 } 1606 #endif 1607 if (tp->t_fb_ptr != NULL) { 1608 kern_prefetch(tp->t_fb_ptr, &did_prefetch); 1609 did_prefetch = 1; 1610 } 1611 inp->inp_hpts_calls = 1; 1612 if (tp->t_fb->tfb_tcp_output_wtime != NULL) { 1613 error = (*tp->t_fb->tfb_tcp_output_wtime) (tp, &tv); 1614 } else { 1615 error = tp->t_fb->tfb_tcp_output(tp); 1616 } 1617 if (ninp && ninp->inp_ppcb) { 1618 /* 1619 * If we have a nxt inp, see if we can 1620 * prefetch its ppcb. Note this may seem 1621 * "risky" since we have no locks (other 1622 * than the previous inp) and there no 1623 * assurance that ninp was not pulled while 1624 * we were processing inp and freed. If this 1625 * occured it could mean that either: 1626 * 1627 * a) Its NULL (which is fine we won't go 1628 * here) <or> b) Its valid (which is cool we 1629 * will prefetch it) <or> c) The inp got 1630 * freed back to the slab which was 1631 * reallocated. Then the piece of memory was 1632 * re-used and something else (not an 1633 * address) is in inp_ppcb. If that occurs 1634 * we don't crash, but take a TLB shootdown 1635 * performance hit (same as if it was NULL 1636 * and we tried to pre-fetch it). 1637 * 1638 * Considering that the likelyhood of <c> is 1639 * quite rare we will take a risk on doing 1640 * this. If performance drops after testing 1641 * we can always take this out. NB: the 1642 * kern_prefetch on amd64 actually has 1643 * protection against a bad address now via 1644 * the DMAP_() tests. This will prevent the 1645 * TLB hit, and instead if <c> occurs just 1646 * cause us to load cache with a useless 1647 * address (to us). 1648 */ 1649 kern_prefetch(ninp->inp_ppcb, &prefetch_tp); 1650 prefetch_tp = 1; 1651 } 1652 INP_WUNLOCK(inp); 1653 INP_UNLOCK_ASSERT(inp); 1654 CURVNET_RESTORE(); 1655 #ifdef INVARIANTS 1656 if (mtx_owned(&hpts->p_mtx)) { 1657 panic("Hpts:%p owns mtx prior-to lock line:%d", 1658 hpts, __LINE__); 1659 } 1660 #endif 1661 mtx_lock(&hpts->p_mtx); 1662 if (logging_on) 1663 tcp_hpts_log_it(hpts, hpts->p_inp, HPTSLOG_INP_DONE, 0, 4); 1664 hpts->p_inp = NULL; 1665 } 1666 HPTS_MTX_ASSERT(hpts); 1667 hpts->p_inp = NULL; 1668 hpts->p_cur_slot++; 1669 if (hpts->p_cur_slot >= NUM_OF_HPTSI_SLOTS) { 1670 hpts->p_cur_slot = 0; 1671 } 1672 } 1673 no_one: 1674 HPTS_MTX_ASSERT(hpts); 1675 hpts->p_prevtick = hpts->p_curtick; 1676 hpts->p_delayed_by = 0; 1677 /* 1678 * Check to see if we took an excess amount of time and need to run 1679 * more ticks (if we did not hit eno-bufs). 1680 */ 1681 /* Re-run any input that may be there */ 1682 (void)tcp_gethptstick(&tv); 1683 if (!TAILQ_EMPTY(&hpts->p_input)) { 1684 tcp_input_data(hpts, &tv); 1685 } 1686 #ifdef INVARIANTS 1687 if (TAILQ_EMPTY(&hpts->p_input) && 1688 (hpts->p_on_inqueue_cnt != 0)) { 1689 panic("tp:%p in_hpts input empty but cnt:%d", 1690 hpts, hpts->p_on_inqueue_cnt); 1691 } 1692 #endif 1693 tick_now = tcp_gethptstick(&tv); 1694 if (SEQ_GT(tick_now, hpts->p_prevtick)) { 1695 struct timeval res; 1696 1697 /* Did we really spend a full tick or more in here? */ 1698 timersub(&tv, ctick, &res); 1699 if (res.tv_sec || (res.tv_usec >= HPTS_TICKS_PER_USEC)) { 1700 counter_u64_add(hpts_loops, 1); 1701 if (logging_on) { 1702 tcp_hpts_log_it(hpts, inp, HPTSLOG_TOLONG, (uint32_t) res.tv_usec, tick_now); 1703 } 1704 *ctick = res; 1705 hpts->p_curtick = tick_now; 1706 goto again; 1707 } 1708 } 1709 no_run: 1710 { 1711 uint32_t t = 0, i, fnd = 0; 1712 1713 if (hpts->p_on_queue_cnt) { 1714 1715 1716 /* 1717 * Find next slot that is occupied and use that to 1718 * be the sleep time. 1719 */ 1720 for (i = 1, t = hpts->p_nxt_slot; i < NUM_OF_HPTSI_SLOTS; i++) { 1721 if (TAILQ_EMPTY(&hpts->p_hptss[t]) == 0) { 1722 fnd = 1; 1723 break; 1724 } 1725 t = (t + 1) % NUM_OF_HPTSI_SLOTS; 1726 } 1727 if (fnd) { 1728 hpts->p_hpts_sleep_time = i; 1729 } else { 1730 counter_u64_add(back_tosleep, 1); 1731 #ifdef INVARIANTS 1732 panic("Hpts:%p cnt:%d but non found", hpts, hpts->p_on_queue_cnt); 1733 #endif 1734 hpts->p_on_queue_cnt = 0; 1735 goto non_found; 1736 } 1737 t++; 1738 } else { 1739 /* No one on the wheel sleep for all but 2 slots */ 1740 non_found: 1741 if (hpts_sleep_max == 0) 1742 hpts_sleep_max = 1; 1743 hpts->p_hpts_sleep_time = min((NUM_OF_HPTSI_SLOTS - 2), hpts_sleep_max); 1744 t = 0; 1745 } 1746 if (logging_on) { 1747 tcp_hpts_log_it(hpts, inp, HPTSLOG_SLEEPSET, t, (hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC)); 1748 } 1749 } 1750 } 1751 1752 void 1753 __tcp_set_hpts(struct inpcb *inp, int32_t line) 1754 { 1755 struct tcp_hpts_entry *hpts; 1756 1757 INP_WLOCK_ASSERT(inp); 1758 hpts = tcp_hpts_lock(inp); 1759 if ((inp->inp_in_hpts == 0) && 1760 (inp->inp_hpts_cpu_set == 0)) { 1761 inp->inp_hpts_cpu = hpts_cpuid(inp); 1762 inp->inp_hpts_cpu_set = 1; 1763 } 1764 mtx_unlock(&hpts->p_mtx); 1765 hpts = tcp_input_lock(inp); 1766 if ((inp->inp_input_cpu_set == 0) && 1767 (inp->inp_in_input == 0)) { 1768 inp->inp_input_cpu = hpts_cpuid(inp); 1769 inp->inp_input_cpu_set = 1; 1770 } 1771 mtx_unlock(&hpts->p_mtx); 1772 } 1773 1774 uint16_t 1775 tcp_hpts_delayedby(struct inpcb *inp){ 1776 return (tcp_pace.rp_ent[inp->inp_hpts_cpu]->p_delayed_by); 1777 } 1778 1779 static void 1780 tcp_hpts_thread(void *ctx) 1781 { 1782 struct tcp_hpts_entry *hpts; 1783 struct timeval tv; 1784 sbintime_t sb; 1785 1786 hpts = (struct tcp_hpts_entry *)ctx; 1787 mtx_lock(&hpts->p_mtx); 1788 if (hpts->p_direct_wake) { 1789 /* Signaled by input */ 1790 if (logging_on) 1791 tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 1, 1); 1792 callout_stop(&hpts->co); 1793 } else { 1794 /* Timed out */ 1795 if (callout_pending(&hpts->co) || 1796 !callout_active(&hpts->co)) { 1797 if (logging_on) 1798 tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 2, 2); 1799 mtx_unlock(&hpts->p_mtx); 1800 return; 1801 } 1802 callout_deactivate(&hpts->co); 1803 if (logging_on) 1804 tcp_hpts_log_it(hpts, NULL, HPTSLOG_AWAKE, 3, 3); 1805 } 1806 hpts->p_hpts_active = 1; 1807 (void)tcp_gethptstick(&tv); 1808 tcp_hptsi(hpts, &tv); 1809 HPTS_MTX_ASSERT(hpts); 1810 tv.tv_sec = 0; 1811 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1812 if (tcp_min_hptsi_time && (tv.tv_usec < tcp_min_hptsi_time)) { 1813 tv.tv_usec = tcp_min_hptsi_time; 1814 hpts->p_on_min_sleep = 1; 1815 } else { 1816 /* Clear the min sleep flag */ 1817 hpts->p_on_min_sleep = 0; 1818 } 1819 hpts->p_hpts_active = 0; 1820 sb = tvtosbt(tv); 1821 if (tcp_hpts_callout_skip_swi == 0) { 1822 callout_reset_sbt_on(&hpts->co, sb, 0, 1823 hpts_timeout_swi, hpts, hpts->p_cpu, 1824 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1825 } else { 1826 callout_reset_sbt_on(&hpts->co, sb, 0, 1827 hpts_timeout_dir, hpts, 1828 hpts->p_cpu, 1829 C_PREL(tcp_hpts_precision)); 1830 } 1831 hpts->p_direct_wake = 0; 1832 mtx_unlock(&hpts->p_mtx); 1833 } 1834 1835 #undef timersub 1836 1837 static void 1838 tcp_init_hptsi(void *st) 1839 { 1840 int32_t i, j, error, bound = 0, created = 0; 1841 size_t sz, asz; 1842 struct timeval tv; 1843 sbintime_t sb; 1844 struct tcp_hpts_entry *hpts; 1845 char unit[16]; 1846 uint32_t ncpus = mp_ncpus ? mp_ncpus : MAXCPU; 1847 1848 tcp_pace.rp_proc = NULL; 1849 tcp_pace.rp_num_hptss = ncpus; 1850 hpts_loops = counter_u64_alloc(M_WAITOK); 1851 back_tosleep = counter_u64_alloc(M_WAITOK); 1852 1853 sz = (tcp_pace.rp_num_hptss * sizeof(struct tcp_hpts_entry *)); 1854 tcp_pace.rp_ent = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1855 asz = sizeof(struct hptsh) * NUM_OF_HPTSI_SLOTS; 1856 for (i = 0; i < tcp_pace.rp_num_hptss; i++) { 1857 tcp_pace.rp_ent[i] = malloc(sizeof(struct tcp_hpts_entry), 1858 M_TCPHPTS, M_WAITOK | M_ZERO); 1859 tcp_pace.rp_ent[i]->p_hptss = malloc(asz, 1860 M_TCPHPTS, M_WAITOK); 1861 hpts = tcp_pace.rp_ent[i]; 1862 /* 1863 * Init all the hpts structures that are not specifically 1864 * zero'd by the allocations. Also lets attach them to the 1865 * appropriate sysctl block as well. 1866 */ 1867 mtx_init(&hpts->p_mtx, "tcp_hpts_lck", 1868 "hpts", MTX_DEF | MTX_DUPOK); 1869 TAILQ_INIT(&hpts->p_input); 1870 for (j = 0; j < NUM_OF_HPTSI_SLOTS; j++) { 1871 TAILQ_INIT(&hpts->p_hptss[j]); 1872 } 1873 sysctl_ctx_init(&hpts->hpts_ctx); 1874 sprintf(unit, "%d", i); 1875 hpts->hpts_root = SYSCTL_ADD_NODE(&hpts->hpts_ctx, 1876 SYSCTL_STATIC_CHILDREN(_net_inet_tcp_hpts), 1877 OID_AUTO, 1878 unit, 1879 CTLFLAG_RW, 0, 1880 ""); 1881 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1882 SYSCTL_CHILDREN(hpts->hpts_root), 1883 OID_AUTO, "in_qcnt", CTLFLAG_RD, 1884 &hpts->p_on_inqueue_cnt, 0, 1885 "Count TCB's awaiting input processing"); 1886 SYSCTL_ADD_INT(&hpts->hpts_ctx, 1887 SYSCTL_CHILDREN(hpts->hpts_root), 1888 OID_AUTO, "out_qcnt", CTLFLAG_RD, 1889 &hpts->p_on_queue_cnt, 0, 1890 "Count TCB's awaiting output processing"); 1891 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1892 SYSCTL_CHILDREN(hpts->hpts_root), 1893 OID_AUTO, "active", CTLFLAG_RD, 1894 &hpts->p_hpts_active, 0, 1895 "Is the hpts active"); 1896 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1897 SYSCTL_CHILDREN(hpts->hpts_root), 1898 OID_AUTO, "curslot", CTLFLAG_RD, 1899 &hpts->p_cur_slot, 0, 1900 "What the current slot is if active"); 1901 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1902 SYSCTL_CHILDREN(hpts->hpts_root), 1903 OID_AUTO, "curtick", CTLFLAG_RD, 1904 &hpts->p_curtick, 0, 1905 "What the current tick on if active"); 1906 SYSCTL_ADD_UINT(&hpts->hpts_ctx, 1907 SYSCTL_CHILDREN(hpts->hpts_root), 1908 OID_AUTO, "logsize", CTLFLAG_RD, 1909 &hpts->p_logsize, 0, 1910 "Hpts logging buffer size"); 1911 hpts->p_hpts_sleep_time = NUM_OF_HPTSI_SLOTS - 2; 1912 hpts->p_num = i; 1913 hpts->p_prevtick = hpts->p_curtick = tcp_gethptstick(&tv); 1914 hpts->p_prevtick -= 1; 1915 hpts->p_prevtick %= NUM_OF_HPTSI_SLOTS; 1916 hpts->p_cpu = 0xffff; 1917 hpts->p_nxt_slot = 1; 1918 hpts->p_logsize = tcp_hpts_logging_size; 1919 if (hpts->p_logsize) { 1920 sz = (sizeof(struct hpts_log) * hpts->p_logsize); 1921 hpts->p_log = malloc(sz, M_TCPHPTS, M_WAITOK | M_ZERO); 1922 } 1923 callout_init(&hpts->co, 1); 1924 } 1925 /* 1926 * Now lets start ithreads to handle the hptss. 1927 */ 1928 CPU_FOREACH(i) { 1929 hpts = tcp_pace.rp_ent[i]; 1930 hpts->p_cpu = i; 1931 error = swi_add(&hpts->ie, "hpts", 1932 tcp_hpts_thread, (void *)hpts, 1933 SWI_NET, INTR_MPSAFE, &hpts->ie_cookie); 1934 if (error) { 1935 panic("Can't add hpts:%p i:%d err:%d", 1936 hpts, i, error); 1937 } 1938 created++; 1939 if (tcp_bind_threads) { 1940 if (intr_event_bind(hpts->ie, i) == 0) 1941 bound++; 1942 } 1943 tv.tv_sec = 0; 1944 tv.tv_usec = hpts->p_hpts_sleep_time * HPTS_TICKS_PER_USEC; 1945 sb = tvtosbt(tv); 1946 if (tcp_hpts_callout_skip_swi == 0) { 1947 callout_reset_sbt_on(&hpts->co, sb, 0, 1948 hpts_timeout_swi, hpts, hpts->p_cpu, 1949 (C_DIRECT_EXEC | C_PREL(tcp_hpts_precision))); 1950 } else { 1951 callout_reset_sbt_on(&hpts->co, sb, 0, 1952 hpts_timeout_dir, hpts, 1953 hpts->p_cpu, 1954 C_PREL(tcp_hpts_precision)); 1955 } 1956 } 1957 printf("TCP Hpts created %d swi interrupt thread and bound %d\n", 1958 created, bound); 1959 return; 1960 } 1961 1962 SYSINIT(tcphptsi, SI_SUB_KTHREAD_IDLE, SI_ORDER_ANY, tcp_init_hptsi, NULL); 1963 MODULE_VERSION(tcphpts, 1); 1964